
energies

Article

d2ix: A Model Input-Data Management and Analysis
Tool for MESSAGEix

Thomas Zipperle *,† and Clara Luisa Orthofer †

Chair of Energy Economy and Application Technology, Department of Electrical and Computer Engineering,
Technical University of Munich, 80333 Munich, Germany; clara.orthofer@tum.de
* Correspondence: thomas.zipperle@tum.de
† These authors contributed equally to this work.

Received: 7 March 2019; Accepted: 15 April 2019; Published: 18 April 2019
����������
�������

Abstract: Bottom-up integrated assessment models, like MESSAGEix, depend on the description
of the capabilities and limitations of technological, economical and ecological parameters, and
their development over long-time horizons. Even small models of a few nodes, technologies and
model years require input-data sets involving several hundred thousand data points. Such data
sets quickly become incomprehensible, which makes error detection, collaborative working and
the interpretation of results challenging, especially for non-self-created models. In response to the
resulting need for manageable, comprehensible, and traceable representation of input-data, we
developed a Python-based spreadsheet interface (d2ix) that enables presentation and editing of model
input-data in a concise form. By increasing accessibility and transparency of the model input-data,
d2ix reduces barriers to entry for new modellers and simplifies collaborative working. This paper
describes the methodology and introduces the open-source Python-package d2ix. The package is
available under the Apache License, Version 2.0 on GitHub.

Keywords: MESSAGEix; reproducibility; collaborative work; open modelling and data; data-handling;
integrated assessment modelling; data pre- and post-processing

1. Introduction
The software package described in the following —d2ix— is freely available under the Apache

License, Version 2.0 on GitHub under: https://github.com/tum-ewk/d2ix.

1.1. Input-Data-Handling—The Underrated Modelling Challenge

Technology-based integrated assessment models, such as MESSAGEix (formerly known as
MESSAGE) have a long history in energy and environmental systems modelling [1,2]. Despite having
been developed in times of relatively low computing power, over the last forty years these models
have grown in line with multiplying computing capacity, expanding models in dimensions such as
coverage and detail [3]. Until the 1990s, the models focused on the energy-system only [4]; however,
today’s energy-engineering-economic-environment optimising models are designed to describe the
full extent of energy-system dynamics, including effects such as polluting greenhouse gas emissions,
economic development, land and water use and health implications [5,6]. At the same time, rising
computing power allows not only increasing coverage but also magnifies the level of detail represented
in models, such as the number of model years, nodes, technologies and technology parameters.

While in line with this structural change, big data not only presents a challenge in terms of
energy-systems modelling: here too, the amount of input-data has skyrocketed [7]. Today, one technology
in MESSAGEix is described by forty parameters, of which fourteen are defined not only by the installation
year of the technology but also the age of the technology. Thus, in even very simple input-data sets (e.g.,

Energies 2019, 12, 1483; doi:10.3390/en12081483 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2512-9508
https://orcid.org/0000-0002-7049-7791
https://github.com/tum-ewk/d2ix
http://dx.doi.org/10.3390/en12081483
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/8/1483?type=check_update&version=3

Energies 2019, 12, 1483 2 of 12

describing one node over ten model years), each technology is defined by approximately one thousand
input parameters, each again defined by up to twelve sets. Therefore, even a small model of one node over
ten years has an input-data set per technology of more than twelve-thousand data points, not including
the input-data for describing the ecology or economy (Figure 1).

No. of modelled years5 10 15 20 25 30No. of nodes
5

10
15

N
o.

 o
f i

np
ut

 d
at

a
po

in
ts

 p
er

 te
ch

no
lo

gy
 (t

ho
us

an
d)

100

200

300

400

500

600

700

Figure 1. Average number of data points per technology in the input-data set of a MESSAGEix model
in dependence of the number of modelled years and nodes.

1.2. d2ix—Combining Benefits of Non-Binary and Binary Data Formats

Currently, most models handle input-data using vast spreadsheets (e.g., MS Excel), csv
(comma-separated value) or plain text-files to organise, pre-process and document the model-data.
While on the one hand, binary (‘higher’) formats, such as spreadsheets, provide support with
data-handling, (un)intentional changes made to the input files are not trackable and are difficult
to retrace. On the other hand, non-binary (‘lower’) but trackable formats such as csv and text-files lack
visual clarity and data-handling support. To ensure transparency in data-handling and reproducibility
of model results, the modelling-platform (ixmp), supplies MESSAGEix users with tools for (i) database
communication for version-controlled data management, (ii) a Python/R interface for efficient
input-data and results processing and (iii) a web-browser based tool for drag and drop results
visualisation [8]. The newly developed ‘data to MESSAGEix’ (d2ix) package adds to this functionality
by providing the user with a visually comprehensible overview of the input-data by reducing the
dimensions of the input-data set, thereby reducing the number of data points to be handled by the
user (Figure 2).

User interface
Web-browser based interface for post-
processing and data visualization

Python/R API
Seamless integration of open & flexible
scientific programming languages

Reference
data

Data
processing

Model data

ix Modeling Platform

Database infrastructure
Database connection to both:
centralized data hub or local database

d2ix

Model input
data

Model creation
& manipulation

Mathematical formulation of the
socio–economic model

Optimization model

MESSAGEix

ixmp data handling

MS Excel sheets

Figure 2. Integration and interlinkages of d2ix to the ixmp modelling-platform (adapted from [8]).

Energies 2019, 12, 1483 3 of 12

This model input-data-handling approach, as such, is novel as it is the first to combine reduced
form MS Excel spreadsheet data and lucidly change-tackable .yaml files for input-data documentation.
By following the FAIR principles of scientific data-handling and analysis, d2ix makes data findable,
accessible, interoperable and reusable, and thus facilitates collaborative working and can therefore
support the energy-modelling community [9]. By enabling new users to quickly become acquainted
with existing models, and by simplifying the generation of new scenarios, d2ix reduces the barriers
to entry into energy- and climate-policy modelling. Furthermore, the synoptic organisation of the
input-data set can reduce the risk of errors prone to happen when organising big data sets (Figure 3).
Such errors can have detrimental effects such as the data and coding mistakes causing the infamous
Reinhart-Roghoff spreadsheet error [10]. Lastly, the interface will be equipped with a unit test that can
inspect the model for commodity ‘dead ends’ and overly restrictive bounds, a feature that can prevent
infeasibilities, undesired exceedingly restricted scenarios and the misinterpretation of results. Overall,
d2ix is a well-suited data-handling tool for large energy-system models such as MESSAGEix. The easy
change-trackable framework for transparent model input-data preparation is the first of its kind to be
introduced as a standardised model-creation workflow.

te
ch

n
o

lo
gy

in
v_

co
st

fi
x_

co
st

va
r_

co
st

te
ch

n
ic

al
_l

if
e

ti
m

e

co
n

st
ru

ct
io

n
_t

im
e

co
m

m
o

d
it

y_
in

1

le
ve

l_
in

1

e
ff

ic
ie

n
cy

_1

co
m

m
o

d
it

y_
o

u
t1

le
ve

l_
o

u
t1

fi
rs

t_
ye

ar

la
st

_y
e

ar

ca
p

ac
it

y_
fa

ct
o

r

o
p

e
ra

ti
o

n
_f

ac
to

r

e
m

is
si

o
n

_f
ac

to
r_

C
O

2

e
m

is
si

o
n

_f
ac

to
r_

C
H

4

in
it

ia
l_

ac
ti

vi
ty

_u
p

in
it

ia
l_

ac
ti

vi
ty

_l
o

in
it

ia
l_

n
e

w
_c

ap
ac

it
y_

u
p

in
it

ia
l_

n
e

w
_c

ap
ac

it
y_

lo

gr
o

w
th

_a
ct

iv
it

y_
u

p

gr
o

w
th

_a
ct

iv
it

y_
lo

gr
o

w
th

_n
e

w
_c

ap
ac

it
y_

u
p

gr
o

w
th

_n
e

w
_c

ap
ac

it
y_

lo

coal_ppl 500 30 30 20 1 1,0 electricity secondary 690 720 1 100 0,1
wind_ppl 1500 10 20 1 1,0 electricity secondary 690 720 1 0,1
grid 300 50 20 1 electricity secondary 1,0 electricity final 690 720 1

bulb 5 1 1 electricity final 1,0 light useful 690 720 1

costs emissionsavailability initial bounds growth boundsinput primary output

Figure 3. Reduced spreadsheet input for technology specification for the tutorial.

2. Related Work

While, in the light of good scientific practice, model transparency and reproducibility have
received wide academic attention, the focus has remained on how to deal with and how to
publish raw-data and model code [11]. However, the important link between the two much noted
components—the raw-data and the model—the input-data-handling, has so far not been dealt with
scientifically [12,13]. In contrast, the major strategies of input-data-handling which established
themselves as go-to solutions in energy-system modelling have never been subject to publication but
rather research-institution internal, customised, single-user solutions. Thus, most models now provide
different data-handling strategies. Four mayor types can be identified among the most commonly
used input-data-handling methods. They are:

• Type I—Reduced text-file structures: The input-data of such models is handled in several long or
one single, even longer, structured text-file. Such text-file-based input-data systems used to find
application with most energy-system models. Due to their long history as well as their suitability
for synoptic change-tracking, some modellers still rely on Type I input-data-handling strategies
(e.g., Calliope [14]).

• Type II—Full parameter text-files: The input-data handled by this type is organised in a
multitude of text-files. Each file contains one parameter in full dimension and shape as required
by the database. Despite the low lucidity and the difficulty in tracking any (un-)intentional
changes made to the input-data, Type II data-handling schemes are commonly used. Especially
community-friendly, open-source models such as PyPSA [15] and oemof [16] in particular

Energies 2019, 12, 1483 4 of 12

appreciate the high flexibility of the input-data-handler in combination with the low requirements
regarding the programming skills of the modeller.

• Type III—Reduced parameter spreadsheets: Here the input-data is organised in MS Excel
spreadsheets in reduced dimension. While this dimension reduction increases the lucidity of the
input-data, it can at the same time limit flexibility. However, in order to lower barriers to entry
for new modellers, several open-source models such as urbs [17] and ficus [18] rely on Type III
input-data structures.

• Type IV—Code-based input-data: Code-based input-data can be either hard-coded or predefined
and processed in functions. Thus, the input-data is documented and stored together with the code.
Such transparent data-handling types allow for the full documentation of code and input-data
within one workflow. However, extensive amounts of hard-coded data, can become overwhelming
for any new user, just like the text-file-based data. Nevertheless, several renowned models such
as MESSAGEix [8], Temoa [19] and OSEMOSYS [20] provide interfaces for hard-coded model
input-data.

Table 1 summarises and lists the strengths and shortcomings of those four strategies and compares
them to the newly developed d2ix workflow. It shows that by filling the gaps in documentation,
standardisation and transparency, frameworks such as d2ix can help improve energy-system modelling
by combining the strength of binary and non-binary input-data storage and handling formats.

Table 1. Comparison of the input-data-handling types used so far and the new data-handling
framework d2ix. The types are described in Section 2.

Type I Type II Type III Type IV d2ix

(Git) change-tracking yes no no yes yes
Synoptic data presentation no no yes no yes
Parameter dimension reduction no no yes partly yes
Sub-horizon parameter adaptation yes yes no yes partly
Usable without programming knowledge no yes few no yes
Dynamic scenario documentation no no no no yes
Easy result visualisation no no no no yes

3. Methodology

The Python-package we have created, d2ix, supports the user in creating new MESSAGEix models
as well as adapting and analysing existing input-data sets and scenarios. The support consists of four
main tasks: first, d2ix supports the user in organising the input-data for MESSAGEix. For this task, we
created an abstracted data model, summarising the reduced model input-data in two spreadsheet files.
Secondly, d2ix functions as a standardised interface between the spreadsheets and the MESSAGEix
Python API. Third, d2ix documents the pre-processed model input-data in yaml text-files. This allows
systematic and visual change-tracking of the spreadsheets-based scenario-data using automated
change-tracking services such as Git. Lastly, several unit tests implemented in d2ix will allow an
automated structured inspection of input-data sets to identify commodity ‘dead ends’ and overly
restrictive constraints.

3.1. Class Structure and Definition

The d2ix package supports researchers who want to create a MESSAGEix model, either from
scratch or by modifying existing models (Figure 4). This support is supplied by the means of four
different classes which handle the data input. In the following, the classes are described in their
functionality and structure.

Energies 2019, 12, 1483 5 of 12

d2ix.core.MessageInterface

d2ix.core.DBInterface

d2ix.core.ModifyModeld2ix.core.Model

message_ix.Scenario
ixmp.Platform

dictionary of
sets & pars

d2ix.Scenario &
d2ix.Platform

input: DB configuration
output: ixmp instances

input: dictionary of sets & pars
output: sets & pars in DB format

ix modeling
plattform

(ixmp)

database
(DB)

sets & pars to
DB via ixmp

input: predefined MS Excels
output: sets & pars for DB

input: sets & pars from DB
output: db_data.xlsx

input: db_data.xlsx
output: sets & pars for DB

dictionary of
sets & pars

sets &
pars from DB

db_data.xlsxmanual_input_parameter.xlsxmodel_data.xlsx

Transfer of class instances

Transfer of data

Class hierarchy

Line type explanation:

Abbreviations:
DB database
sets MESSAGEix model sets
pars MESSAGEix model parameters

dimension reduced
model input data

additional
parameters

model input data
in DB format

model data
in DB format

Figure 4. Class hierarchy diagram of the d2ix package.

3.1.1. MessageInterface—Communication with the Ix Modelling-Platform

The MessageInterface class acts as the interface between d2ix and the ix modelling-platform
(ixmp). To communicate with the ix modelling-platform, MessageInterface applies the MESSAGEix
classes ixmp.Platform and message_ix.Scenario. While the Platform instance contains the
connection to the database, the Scenario class predefines the format and indexation of the model
in- and output-data (parameters, sets and variables) required for running the MESSAGEix model.
The database with which MessageInterface establishes a communication with is defined in the
run-config file provided in the config folder (..\d2ix\config\run_config.yaml.template). The unique
identification of the established Scenario instance is defined by the user input (Section 4.2), as is the
logger setting of the d2ix module.

3.1.2. DBInterface—Data-Handling in d2ix

The DBInterface class enables data-handling in the d2ix package. The DBInterface class holds
the model input-data in the form of a dictionary containing all model sets and parameters which can
be accessed and modified before being transferred to the database via the MessageInterface class.
The central tasks of this class are (i) to hand over the final input-data created in d2ix to the database,
(ii) to write the final input-data into text-files for transparency and change-tracking, and (iii) to collect
the model results from the database after a model run. Furthermore, the DBInterface class will check
whether the units used in the input-data are already stored in the database and will add them if they
are not.

3.1.3. Model—Data Transformation from Reduced Spreadsheet to Database Format

The Model class constitutes the core of the d2ix package. Its main task is the pre-processing of the
input-data from the reduced d2ix spreadsheet format to the expanded final input-data format required
by MESSAGEix. Apart from creating all required sets and parameters, the Model class automatically
adds one slack technology for each demand provided in the input-data set, in order to prevent the
model from running into infeasibilities during calibration, and to simplify debugging. After each
successful scenario-run in MESSAGEix, the Model class reformats the results from database tables
into time-series elements optimised for post-processing, applying the TimeSeries class from the ixmp
package [8].

Energies 2019, 12, 1483 6 of 12

3.1.4. ModifyModel—From Database to Spreadsheet and Back

The ModifyModel class is used to enable the analysis and modification of existing MESSAGEix
models, i.e., models readily available in the database. To do so, the ModifyModel class has two main
functions: (a) ModifyModel allows users to choose a specific MESSAGEix scenario-run, which is then,
first collected from the database, secondly, written to an excel sheet and lastly, made accessible to
the user as a Python dictionary. The data can then be analysed and modified either in spreadsheet
or through scientific computing (e.g., Python). In the second function (b) the modified data can be
returned to the database as a new scenario containing the changes applied by the user.

3.2. Testing and User Experience

In accordance with best-practice collaborative programming [21], we set up a Continuous
Integration implementation, with CircleCI and Docker each executing several tasks. Additionally two
linters, thus static code analysis segments, are configured for basic code quality checks to ensure long
term code maintainability. The coding style is tested with Flake8 and MyPy, the static types in Python.
Furthermore the API functionality is tested in a defined environment inside a Docker container using
the d2ix tutorial and some basic examples.

We tested the functionality of d2ix together with various beta users. In a first step, the data
transfer from the spreadsheet to the ixmp platform and the git-tracked text-files was evaluated, thus
proving the data-model functionality of d2ix. In a second step, we created three models of different
sizes, in order to analyse and improve the runtime performance. The model descriptions and runtime
performance are documented in Table 2. Finally, we tested the tool’s intuitiveness with users without
programming skills. By having such a user without programming experience recreating an existing
MESSAGEix model we succeeded in proving the data-model functionally as well as the coherence of
the API. As a test model to recreate, we used the standalone country model of South Africa, which
is available under the GNU General Public License, Version 3 on GitHub (https://github.com/tum-
ewk/message_ix_south_africa) [22]. Two further MESSAGEix country models are currently being
developed for energy-research purposes.

Table 2. d2ix model-creation performance tests with different models. Calculations were performed on
a Intel(R) Core(TM) i7 CPU with 3.2 GHz and 64 GB RAM.

Nodes Technologies Historical Periods Model Periods Runtime in sec. *

Test Model 1 2 51 5 8 171
Test Model 2 4 88 65 8 657
Test Model 3 16 698 5 8 2291

* average of 10 runs.

4. Tutorial

4.1. Installation

To start using the open source Python-package d2ix, you must to ensure that your environment is
equipped with the requirements as described in the README instructions found alongside the d2ix
repository (https://github.com/tum-ewk/d2ix).

4.2. Running d2ix—Creating a Model from Scratch

The core functionality of the d2ix tool is to create a model from scratch. The bases for model
creation are two reduced spreadsheets (Figure 3). In this example, we create a new MESSAGEix
scenario—in this case the replica of the ‘Westeros’ tutorial from the MESSAGEix repository—using the
d2ix MS Excel templates. The required parameters, configurations and files with the corresponding

https://github.com/tum-ewk/message_ix_south_africa
https://github.com/tum-ewk/message_ix_south_africa
https://github.com/tum-ewk/d2ix

Energies 2019, 12, 1483 7 of 12

path are shown in Listing 1. The code creating the scenario is shown in Listing 2 and is explained
below.

Furthermore, an introductory tutorial is provided in the d2ix repository under tutorial.ipynb.

Listing 1: Defining the d2ix model-creation parameters.
1 CONFIG = ’config/run_config.yaml’
2 BASE_XLS = ’input/modell_data_westeros.xlsx’
3 MANUAL_PARAMETER_XLS = ’input/manual_input_parameter_westeros.xlsx’
4 MODEL = ’MESSAGE_Westeros ’

4.2.1. Creating a Model Instance

The Model class provides the functionality to create a model from scratch. The class instance is
specified by thirteen parameters which are described in Table 3. Furthermore, the code to create a new
instance is provided in Listing 2.

Table 3. Parameters used for creating a model instance.

Parameter Description

run_config the path to the run_config.yaml file located in the config folder 1

The file contains the specifications of the database type.

base_xls

the path to the model_data file, located in the input folder 2

MS Excel file consists of seven input sheets that contain all necessary information
for the model creation. Thus, the demand, the units, the technologies, and the nodes
are defined and mapped in model_data. The structure of the file must to remain
unchanged, as the input-data expansion done by d2ix depends on the current
structure.

manual_input_parameter

all possible parameters, such as economic parameters and ecological
constraints, can be added to the model using the manual_input_data file
It provides the option of adding parameters manually by adding a sheet by the name
of the parameter which contains the data in the format required by MESSAGEix.
Thus, parameters in the manual_input_data are not manipulated by d2ix, but
simply scanned for new set elements before being passed on to the database.

modelixmp the name assigned to the model used as an identifier in the ixmp database

scenixmp the name assigned to the scenario used as an identifier in the ixmp database

historical_data allows the use of historical data

first_historical_year defines the first historical year

first_model_year defines the first model year
If not assigned, it is set to the first year of demand.

last_model_year defines the last model year
If not assigned, it is set to the last year of demand.

historical_range_year defines the the temporal resolution from historical data

model_range_year defines the the model temporal resolution

verbose defines the logger level in order to facilitate easy debugging

yaml_export

allows the export of yaml files from the model
The model parameters and sets can be written to structured text-files before being
added to the database in order to facilitate change-tracking (e.g., Git) despite the
input-data being provided in xlsx format. This can be turned off during model
calibration in order to increase speed.

1 ..\d2ix\config\run_config.yaml.template; 2 ..\d2ix\input\model_data.xlsx.

In the example shown in Listing 2, we create an instance of the dummy model ‘MESSAGE
Westeros’, which comes as a tutorial in the d2ix repository. The run configurations required for scenario

Energies 2019, 12, 1483 8 of 12

creation with d2ix as well as the model input-data paths and the model name are defined in Listing 1.
The newly created instance is named ‘baseline’ and spans over a time horizon from the year 690 to the
year of 720. The first model year is defined as the year 700. The resulting model-year vector is equal to
[690, 700, 710, 720], wherein 690 is a historical year, thus, not considered in the optimisation.

By setting verbose to true, the log-level is set to debug mode which allows for more information
to pass from the creation process to the user. Setting the yaml export parameter to true permits the
creation of git-trackable yaml files of the input-data. It is recommended to only set it to false during
calibration, as this shortens the model creation runtime, though it disables the git-trackability of the
input-data set.

Listing 2: Creating a new MESSAGEix scenario using the d2ix spreadsheet templates.
1 from d2ix import Model
2

3 # Create a Model instance from the data provided in base_ & manual_parameter_xls
4 d2ix_model = Model(run_config=CONFIG , base_xls=BASE_XLS ,
5 manual_parameter_xls=MANUAL_PARAMETER_XLS , model=MODEL , scen=’baseline ’,
6 historical_data=True , first_historical_year =690, first_model_year =700,
7 last_model_year =720, historical_range_year =10, model_range_year =10,
8 verbose=True , yaml_export=True)
9

10 # write data from ’model’ dictionary to the database and solve
11 scenario = d2ix_model.model2db ()
12 scenario.solve(model=’MESSAGE ’)
13 d2ix_model.close_db ()

4.2.2. Transferring a Scenario from d2ix to the Database—model2db()

When the input-data is ready, it can be passed to the database using the model2db function, which
returns an instance of the messageix.Scenario class (Listing 2, line 11).

4.2.3. Solving a Scenario

Using the solve function (from the messageix.Scenario class), the database model is dropped
to a structured input-gdx file, which is passed on via a solve command to the mathematical model
formulation of MESSAGEix. After the successful model run, an output-gdx file is created containing
all input and output-data. This file content is automatically passed on to and stored in the database.
Further details on the solve() function can be found in the MESSAGEixdocumentation [23]. Sample
results of the baseline scenario from the Westeros example are shown in Figure 5.

700 710 7200
25
50
75

100
125
150
175
200

GW
a/

a

coal_pplwind_ppl

(a) Activity

700 710 7200
50

100
150
200
250
300
350
400

GW

coal_pplwind_ppl

(b) Installed capacity

Figure 5. Power plant activity and capacity in the ‘baseline’ scenario (Listing 2).

4.2.4. Modifying the Input-Data—get_parameter(), set_parameter()

After creating the class instance, model contains a dictionary of all parameters and sets of the
expanded input-data, which can now be accessed (Listing 3, line 11), modified (line 12) and returned
to the dictionary (line 13). In this scenario we introduce an emission tax using the d2ix get_parameter,

Energies 2019, 12, 1483 9 of 12

set_parameter procedure. The comparison between Figures 5 and 6 visualises the change in results
induced by the introduction of the tax.

Listing 3: Creating a MESSAGEixscenario—with a carbon tax—using the d2ix get_parameter() and
set_parameter() approach.

1 from d2ix import Model
2

3 # Create a Model instance from the data provided in base_ & manual_parameter_xls
4 d2ix_model = Model(run_config=CONFIG , base_xls=BASE_XLS ,
5 manual_parameter_xls=MANUAL_PARAMETER_XLS , model=MODEL , scen=’tax -emission ’,
6 historical_data=True , first_historical_year =690, first_model_year =700,
7 last_model_year =720, historical_range_year =10, model_range_year =10,
8 verbose=True , yaml_export=True)
9

10 # Add a emission tax
11 tax_emission = d2ix_model.get_parameter(par=’tax_emission ’)
12 tax_emission[’value ’] = [0.264 , 0.429, 0.699]
13 d2ix_model.set_parameter(par=tax_emission , name=’tax_emission ’)
14

15 # write data from ’model’ dictionary to the database and solve
16 scenario = d2ix_model.model2db ()
17 scenario.solve(model=’MESSAGE ’)
18 d2ix_model.close_db ()

700 710 7200
25
50
75

100
125
150
175
200

GW
a/

a

coal_pplwind_ppl

(a) Activity

700 710 7200

100

200

300

400

500

GW

coal_pplwind_ppl

(b) Installed capacity

Figure 6. Power plant activity and capacity in the ‘tax-emission’ scenario (Listing 4).

4.3. Running d2ix— Modifying Existing Models

The d2ix package can also be used to modify existing models. The code required for retrieving,
modifying and returning input-data sets to the database is shown in Listing 4, and is explained below.

4.3.1. Creating a ModifyModel Instance

The ModifyModel class provides the functionality of collecting models from the database, writing
them into a structured spreadsheet file for user modification and returning the modified model to
the database. The parameters specifying the ModifyModel instance not introduced in Section 4.2.1
(run_config, model, scen and verbose) are described in Table 4.

Table 4. Parameters used for creating a modified model instance.

Parameter Description

xls_dir the path to the directory where the MS Excel file will be saved
file_name the name of the MS Excel that will be created or that the data will be read from

4.3.2. From Database to ModifyModel Instance & Excel Sheet—scen2xls()

The scen2xls() function (Listing 4, line 8) searches the database for the scenario defined by model
and scenario name, and in the mod_model. If a scenario with the defined model and scenario name is

Energies 2019, 12, 1483 10 of 12

available, all parameters and sets from the most recent (default) version of the scenario will be written
to the spreadsheet. If a version is specified, this version instance of the scenario will be copied.

4.3.3. From the Excel File to ModifyModel Instance—xls2model()

The xls2model() (Listing 4, line 10) function reads the spreadsheet file specified in the mod_model
instance and stores the data as a structured dictionary in the instance. The data is then available to
modify, analyses and visualise using the Python functionality.

Listing 4: Modifying an existing MESSAGEix model using spreadsheet inputs.
1 from d2ix import ModifyModel
2

3 # Create a ModifyModel instance
4 mod_model = ModifyModel(run_config=CONFIG , model=MODEL , scen=SCEN , xls_dir=’xls_folder ’,
5 file_name=’db_data.xlsx’, verbose=False)
6

7 # Collecting a scenario from the database and saving it to an MS Excel file
8 mod_model.scen2xls(version=None)
9 # Collection a scenario from a MS Excel file and saving it to the database

10 mod_model.xls2model ()
11

12 # write data from ’mod_model ’ dictionary to the database and solve
13 scenario = mod_model.model2db ()
14 scenario.solve(model=’MESSAGE ’)
15 mod_model.close_db ()

4.4. Post-Processing a MESSAGEix Scenario

The ixmp package supplies tools for standardised reporting of reference data and results. These
tools are documented and described in [8] as well as in the online documentation [24].

5. Conclusions

In d2ix, we built a package that supports users in creating, modifying, and analysing MESSAGEix
scenarios. The main benefits of using d2ix for scenario creation are threefold. (i) The synoptic
input-data supports the transparency and reproducibility of even large models and can thus reduce
errors. It further encourages collaborative modelling attempts by making it easier to understand
and review model parameters and assumptions implemented by other researchers. (ii) By reducing
the dimensions of the input-data, the researchers can easily handle the data using two MS Excel
sheets. Hence, d2ix reduces barriers to access by reducing input-data complexity and allowing scenario
creation without programming knowledge. (iii) d2ix permits the combination of the benefits of ‘higher’
(easy and synoptic data-handling) and ‘lower’ (change-trackability) data formats. To put it succinctly:
by providing a synoptic and easy input-data-handling workflow d2ix can support the efforts of the
open data movement within the MESSAGEix modeller community and can serve as an example for
data-handling frameworks built for other model types.

However, simplification of input-data does reduce the flexibility of the model, e.g., currently a
maximum of two outputs is supplied for each technology. However, this can be bypassed by either
adapting the model parameter ‘output’ using the get_ and set_ parameter functionality, or by adapting the
input spreadsheet and the underlying code to supply as many outputs as required. An expansion of d2ix to
increased flexibility could be subject of future work; however, the decision on the specific balance between
flexibility and simplicity requires practical experience which still remains to be collected.

Author Contributions: T.Z. and C.L.O. have cooperated in the development of d2ix. While T.Z. is the creator
of most of the code and software concept, C.L.O. developed the work flow and the overlying package concept,
which are described in this paper. Both authors read and approved the final manuscript.

Funding: This work was supported by the German Research Foundation (DFG) and the Technical University of
Munich (TUM) in the framework of the Open Access Publishing Program.

Energies 2019, 12, 1483 11 of 12

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Schrattenholzer, L. The Energy Supply Model Message; Number 81-31 in Research Report; OCLC: 254145200;
International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1981.

2. Messner, S.; Schrattenholzer, L. MESSAGE–MACRO: Linking an energy supply model with a macroeconomic
module and solving it iteratively. Energy 2000, 25, 267–282. [CrossRef]

3. Koomey, J.; Berard, S.; Sanchez, M.; Wong, H. Implications of Historical Trends in the Electrical Efficiency of
Computing. IEEE Ann. Hist. Comput. 2011, 33, 46–54. [CrossRef]

4. Messner, S.; Strubegger, M. The energy model MESSAGE III. In Advances in Systems Analysis: Modelling
Energy-Related Emissions on a National and Global Scale; Hake, J.F., Kleemann, M., Kuckshinrichs, W., Martinsen,
D., Walbeck, M., Eds.; Konferenzen des Forschungszentrums Juelich: Juelich; Germany; 1994.

5. Huppmann, D.; Rogelj, J.; Kriegler, E.; Krey, V.; Riahi, K. A new scenario resource for integrated 1.5 ◦C
research. Nat. Clim. Chang. 2018, 8, 1027–1030. [CrossRef]

6. Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.;
Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road
scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [CrossRef]

7. Baker, T.; Asim, M.; Tawfik, H.; Aldawsari, B.; Buyya, R. An energy-aware service composition algorithm for
multiple cloud-based IoT applications. J. Netw. Comput. Appl. 2017, 89, 96–108. [CrossRef]

8. Huppmann, D.; Gidden, M.; Fricko, O.; Kolp, P.; Orthofer, C.; Pimmer, M.; Kushin, N.; Vinca, A.;
Mastrucci, A.; Riahi, K.; et al. The MESSAGE Integrated Assessment Model and the ix modeling platform
(ixmp): An open framework for integrated and cross-cutting analysis of energy, climate, the environment,
and sustainable development. Environ. Model. Softw. 2019, 112, 143–156. [CrossRef]

9. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten,
J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management
and stewardship. Sci. Data 2016, 3, 160018. [CrossRef] [PubMed]

10. Reinhart, C.M.; Rogoff, K.S. Growth in a Time of Deb—Errata. Am. Econ. Rev. 2010, 100, 573–578. [CrossRef]
11. Pfenninger, S. Energy scientists must show their workings. Nature 2017, 542, 393–393. [CrossRef] [PubMed]
12. Pfenninger, S.; Hirth, L.; Schlecht, I.; Schmid, E.; Wiese, F.; Brown, T.; Davis, C.; Gidden, M.; Heinrichs, H.;

Heuberger, C.; et al. Opening the black box of energy modelling: Strategies and lessons learned. Energy
Strategy Rev. 2018, 19, 63–71. [CrossRef]

13. Cao, K.K.; Cebulla, F.; Vilchez, J.J.G.; Mousavi, B.; Prehofer, S. Raising awareness in model-based energy
scenario studies—Transparency checklist. Energy Sustain. Soc. 2016, 6. [CrossRef]

14. Pfenninger, S.; Pickering, B. Calliope: A multi-scale energy systems modelling framework. J. Open Source Softw.
2018, 3, 825. [CrossRef]

15. Brown, T.; Hörsch, J.; Schlachtberger, D. PyPSA: Python for Power System Analysis. J. Open Res. Softw. 2018,
6. [CrossRef]

16. Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy
Modelling Framework (oemof) - A new approach to facilitate open science in energy system modelling.
Energy Strategy Rev. 2018, 22, 16–25. [CrossRef]

17. Dorfner, J. Open Source Modelling and Optimisation of Energy Infrastructure at Urban Scale. Ph.D. Thesis,
Technical University of Munich, Munich, Germany, 2016.

18. Atabay, D. An open-source model for optimal design and operation of industrial energy systems. Energy
2017, 121, 803–821. [CrossRef]

19. Decarolis, K.H.S.S.J.F. Modeling for insight using Tools for Energy Model Optimization and Analysis
(Temoa). Energy Econ. 2013, 339–349. [CrossRef]

20. Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.;
DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. Energy Policy
2011, 39, 5850–5870. [CrossRef]

http://dx.doi.org/10.1016/S0360-5442(99)00063-8
http://dx.doi.org/10.1109/MAHC.2010.28
http://dx.doi.org/10.1038/s41558-018-0317-4
http://dx.doi.org/10.1016/j.gloenvcha.2016.06.004
http://dx.doi.org/10.1016/j.jnca.2017.03.008
http://dx.doi.org/10.1016/j.envsoft.2018.11.012
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1257/aer.100.2.573
http://dx.doi.org/10.1038/542393a
http://www.ncbi.nlm.nih.gov/pubmed/28230147
http://dx.doi.org/10.1016/j.esr.2017.12.002
http://dx.doi.org/10.1186/s13705-016-0090-z
http://dx.doi.org/10.21105/joss.00825
http://dx.doi.org/10.5334/jors.188
http://dx.doi.org/10.1016/j.esr.2018.07.001
http://dx.doi.org/10.1016/j.energy.2017.01.030
http://dx.doi.org/10.1016/J.Eneco.2013.07.014
http://dx.doi.org/10.1016/j.enpol.2011.06.033

Energies 2019, 12, 1483 12 of 12

21. Latte, B.; Henning, S.; Wojcieszak, M. Clean code: On the use of practices and tools to produce maintainable
code for long-living. In Proceedings of the Workshops of the Software Engineering Conference 2019,
Stuttgart, Germany, 18 February 2019.

22. Orthofer, C.L.; Huppmann, D.; Krey, V. South Africa After Paris—Fracking Its Way to the NDCs? Front.
Energy Res. 2019, 7, 20. [CrossRef]

23. International Institute for Applied Systems Analysis (IIASA). The MESSAGEix Framework Documentation.
2018. Available online: http://messageix.iiasa.ac.at (accessed on 8 April 2019).

24. International Institute for Applied Systems Analysis (IIASA). The MESSAGEix Framework. 2018. Available
online: https://github.com/iiasa/message_ix (accessed on 8 April 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fenrg.2019.00020
http://messageix.iiasa.ac.at
https://github.com/iiasa/message_ix
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Input-Data-Handling—The Underrated Modelling Challenge
	d2ix—Combining Benefits of Non-Binary and Binary Data Formats

	Related Work
	Methodology
	Class Structure and Definition
	MessageInterface—Communication with the Ix Modelling-Platform
	DBInterface—Data-Handling in d2ix
	Model—Data Transformation from Reduced Spreadsheet to Database Format
	ModifyModel—From Database to Spreadsheet and Back

	Testing and User Experience

	Tutorial
	Installation
	Running d2ix—Creating a Model from Scratch
	Creating a Model Instance
	Transferring a Scenario from d2ix to the Database—model2db()
	Solving a Scenario
	Modifying the Input-Data—get_parameter(), set_parameter()

	Running d2ix— Modifying Existing Models
	Creating a ModifyModel Instance
	From Database to ModifyModel Instance & Excel Sheet—scen2xls()
	From the Excel File to ModifyModel Instance—xls2model()

	Post-Processing a MESSAGEix Scenario

	Conclusions
	References

