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Abstract

The discrete mode matching (DMM) method has been proven to be an efficient numerical
method to analyze multilayered structures with thin dielectric layers for microwave and
optical technologies. The main contribution of this thesis is to extend the method to struc-
tures which consist of anisotropic or isotropic, homogeneous or inhomogeneous dielectric
layers, or metamaterials. We consider both electric and magnetic anisotropies in the mate-
rial. There are several numerical techniques available to analyze electromagnetic problems
with arbitrary shape and different material properties. All techniques have their advantages
and disadvantages. By doing an extensive literature review, we see that they need a lot of
computational effort, time and memory space to deal with multilayered structures.

To ease the calculation, we model the multilayered structures by using the full-wave
equivalent circuit (FWEC) theory. We derive the mathematical formulation in Cartesian,
cylindrical or elliptical coordinate systems. The derivation is well suited for the analysis
of planar as well as conformal structures. We analyze planar and cylindrical structures,
which are modeled in their respective principal coordinate system, using a spectral domain
formulation, while for quasi-planar and quasi-cylindrical structures, we use a spatial domain
formulation from the beginning of the analysis. We analyze elliptical structures using
both cylindrical and elliptical coordinate systems in the spatial domain. We also analyze
structures that consist of inhomogeneous dielectric layers or where material properties are
not constant throughout the layer.

We use a generalized relation of the field components which can be represented by a full-
wave hybrid matrix for each dielectric layer. Then, we obtain the Green’s function using the
FWEC of the structure. We need to do only one-dimensional (1D) discretization to analyze
transmission lines which we consider to be infinite in the propagation direction. For patch
antennas, we need to discretize the structure in two dimensions which are tangential to
the interfaces between the dielectric layers and take an analytical solution in the remaining
direction perpendicular to the interfaces. We bound the computational domain by using
two or four lateral boundary walls for 1D discretization and 2D discretization, respectively.
Lateral walls can be natural walls, i.e., electric and magnetic walls, or absorbing boundary
conditions (ABCs) for radiating or open structures.

In order to validate the proposed formulation, we analyze various commonly used multi-
layered structures such as waveguides, microstrip lines and microstrip patch antennas. We
compare the results obtained from the DMM with those found in open literature and/or
obtained from commercial softwares. We achieve very good agreement between the results
with only few discretization lines. The DMM calculation takes very little time and uses low
memory storage due to the discretization in only one or two dimensions.
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Kurzfassung

Die Discrete Mode Matching ist eine bewährte Methode zur Analyse von mehrlagigen Struk-
turen mit dünnen dielektrischen Lagen, wie sie in der Mikrowellentechnik und Optik einge-
setzt werden. Der Hauptbeitrag dieser Dissertation ist die Erweiterung dieser Methode
auf Strukturen, die aus anisotropen oder isotropen, homogenen oder inhomogenen dielek-
trischen Lagen sowie Metamaterialien bestehen. Es werden sowohl elektrische als auch
magnetische Anisotropien im Material betrachtet. Zur Analyse von elektromagnetischen
Problemen mit beliebigen Formen und Materialeigenschaften existieren verschiedene nu-
merische Techniken. Mittels einer umfassenden Literaturübersicht wird gezeigt, dass diese
Techniken großen Rechenaufwand sowie viel Zeit und Arbeitsspeicher benötigen, um mit
mehrlagigen Strukturen umzugehen.

Um die Berechnung zu vereinfachen, werden die mehrlagigen Strukturen mit Hilfe der
full-wave equivalent circuit (FWEC) Theorie modelliert. Die mathematische Formulierung
wird in kartesischen, zylindrischen und sphärischen Koordinaten hergeleitet und ist für
die Analyse von planaren sowie konformen Strukturen geeignet. Planare und zylindrische
Strukturen, die im jeweiligen Hauptachsensystem modelliert wurden, werden mittels Fre-
quenzbereichsformulierung analysiert. Für quasi-planare und quasi-zylindrische Strukturen
hingegen wird die Raumbereichsformulierung von Beginn der Analyse an verwendet. El-
liptische Strukturen werden sowohl mittels zylindrischer als auch elliptischer Koordinaten-
systeme im Raumbereich analysiert. Außerdem werden Strukturen untersucht, die aus
inhomogenen dielektrischen Schichten bestehen oder bei denen die Materialeigenschaften in
der Schicht nicht konstant sind.

Es wird eine generalisierte Relation der Feldkomponenten verwendet, die mit Hilfe einer
Vollwellen-Hybridmatrix für jede dielektrische Schicht dargestellt wird. Hieraus wird nun
mittels der FWEC der Struktur die dyadische Green’sche Funktion hergeleitet. Für die
Analyse von Wellenleiter, die in Übertragungsrichtung als unendlich lang angenommen wer-
den, ist nur eine eindimensionale Diskretisierung erforderlich. Bei Patchantennen hingegen
ist eine Diskretisierung in zwei Dimensionen, die tangential zu den Randflächen der dielek-
trischen Schichten verlaufen, notwendig. Für die verbleibende Dimension, die senkrecht zu
den Randflächen verläuft, wird die analytische Lösung verwendet. Der berechnete Raum
ist, bei eindimensionaler Diskretisierung durch zwei, bei zweidimensionaler Diskretisierung
durch vier seitliche Wände begrenzt. Die seitlichen Wände können dabei natürliche Be-
grenzungen sein, also elektrische oder magnetische Wände, oder Absorptionsbedingungen
für strahlende oder offene Strukturen herstellen.

Um die vorgeschlagene Formulierung zu validieren, werden verschiedene, häufig anzutr-
effende mehrlagige Strukturen wie Wellenleiter, Mikrostreifenleiter und Streifenleiter-
Patchantennen untersucht. Dabei werden die mittels DMM erzielten Ergebnisse mit solchen
aus der offenen Literatur und/oder von kommerziell erhältlicher Simulationssoftware ver-
glichen. Selbst mit wenigen Diskretisierungslinien ist eine sehr gute Übereinstimmung zwis-
chen den Ergebnissen zu beobachten. Durch die Diskretisierung in nur einer oder zwei
Dimensionen benötigt die Berechnung mittels DMM dabei deutlich weniger Zeit und Ar-
beitsspeicher.

xi





1 Introduction

Printed antennas and microstrips are the basic components of satellite and terminal an-
tennas in satellite navigation and communication systems [Caizzone, 2017; Liu et al., 2016;
Dietrich et al., 1998]. In the open literature, it is possible to find developments in the
microstrip antenna technology [Pozar and Schaubert, 1995]. Microstrip antennas have var-
ious advantages in terms of polarization diversity, flexible input impedance, very low profile
and small size, and are mechanically rugged [Pozar and Schaubert, 1995; Garg et al., 2001;
Balanis, 1997]. Due to this, they are highly used for research and industrial applications.
Microstrip antennas have several applications in defence and commercial sectors, for exam-
ple mobile satellite communications and global positioning system (GPS) [Huang, 1995].

The focus of the present work is to deal with multilayered structures consisting of dif-
ferent kinds of dielectric layers which can be used as substrate for microstrip antennas
and medium for transmission lines. The dielectric media can be homogeneous or non-
homogeneous, isotropic or anisotropic, and can consist of conventional materials or meta-
materials. The dielectric layers can be planar or conformal. Conformal structures find
applications in satellite [Yinusa et al., 2018; Karahan et al., 2015] and mobile [Talbi et al.,
2018] communication, on aircrafts and vehicles. The physical structure should be flexible
enough so that they can adapt the shape of the interface where they are installed on.

When electrical and/or magnetic properties of a medium depend on the directions of
the field vectors, then the medium is known as anisotropic. Currently, different anisotropic
materials are widely used in integrated optics and microwave engineering. The technological
advancements are making the production of substrates and dielectric anisotropic films,
and filling of anisotropic material increasingly convenient. This shows the necessity of
better characterizing the anisotropic media and producing more realistic models for the
components that use them. For this reason we make use of anisotropic materials rather than
isotropic. The dielectric media can be either electric anisotropic or magnetic anisotropic or
both. The field relations can be written in the form of

~D = ε0 ¯̄εr · ~E, (1.1)

~B = µ0 ¯̄µr · ~H, (1.2)

where ¯̄εr and ¯̄µr are relative permittivity and permeability tensors of rank two. They can
be represented as

¯̄νr =


ν11 ν12 ν13

ν21 ν22 ν23

ν31 ν32 ν33

 , ν = ε, µ. (1.3)

1



1 Introduction

The permittivity and permeability tensors can be diagonalized by using a suitable coor-
dinate system, i.e., the principal axes:

¯̄εr =


ε1 0 0

0 ε2 0

0 0 ε3

 , (1.4)

¯̄µr =


µ1 0 0

0 µ2 0

0 0 µ3

 . (1.5)

If all three diagonal elements of the tensors are equal, then the medium is isotropic and
both tensors become scalar εr, µr. If two of the three diagonal elements are equal and the
other one is different, then the medium is known as uniaxial anisotropic medium. The axis
with the different element is known as the optical axis. If all three diagonal elements are
different, then the medium is known as biaxial anisotropic medium.

There are also engineered materials, i.e., metamaterials, widely used in research. They
enable us to manipulate the permittivity and the permeability of the materials. Left-
handed (LH) metamaterials are materials which exhibit a negative value for the refractive
index over some frequency range. An LH metamaterial allows us to control the direction
of the emission from radiating sources. It can increase the radiated power of an antenna
in a particular direction [Wu et al., 2005]. Metamaterials are basically a broader class of
materials than left-handed media. These artificial materials can provide a basis for further
miniaturization of microwave antennas having efficient power and acceptable bandwidth.
Because of smaller antenna elements, it is possible to make better use of the available space
for space-constrained cases, i.e., in satellite navigation and airplanes. A detailed study
about metamaterials is given by Caloz and Itoh [2006].

There are several numerical techniques for the analysis of complex multilayered mi-
crowave/optical structures such as the method of moments (MoM) [Harrington, 1968; Wei
et al., 1984; Sullivan and Schaubert, 1986; Pozar, 1983], the finite-element method (FEM)
[Courant, 1943; Lee et al., 1997; Hiptmair, 1999], the finite-difference time domain (FDTD)
[Yee, 1966; Ko and Mittra, 1991; Lee et al., 1992], etc. These techniques are very common
in the field of computational electromagnetics [Itoh, 1989]. MoM is based on the solution of
an integral equation in spatial or spectral domain. It has been proven to be a very accurate
numerical technique. It is also widely used with the spatial domain Green’s function for
multilayered substrates [Chen et al., 2012]. In FEM, a system of equations is obtained
by applying a variational formulation. It provides high flexibility for modeling conformal
structures using suitable mesh generation. FDTD uses Maxwell’s equations in differen-
tial form and was originally introduced by Yee [1966]. It approximates all space and time
differential operators by finite difference expressions. It also uses 3D meshes to discretize
the structure. It has been developed significantly with time by numerous authors [Taflove,
2007]. The number of mesh elements is higher in FDTD than in MoM, while the former
one is more suitable for complex structures.

There are also commercial softwares which are built on some of these numerical methods.
For example, the main solver of the ANSYS high-frequency structure simulator (HFSS) is
based on FEM, but it also uses MoM and the patented ANSYS domain decomposition

2



1.1 The Discrete Mode Matching Method

method (DDM). The time-domain solver of CST Microwave Studio (CST MWS) is based
on the finite integration technique (FIT) [Weiland, 1977; Clemens and Weiland, 2002], the
frequency domain solver on FEM, and the integral equation solver on MoM and multilevel
fast multipole method (MLFMM) [Coifman et al., 1993; Eibert, 2005]. The FIT transforms
Maxwell’s equations, in their integral form, to a linear system of equations. It can handle
arbitrary shaped and complex structures in more accurate manner. MLFMM is a fast
integral method which overcomes the computational complexity of method of moments
(MoM). Altair’s FEKO uses MoM, FDTD, FEM and MLFMM. The Momentum 3D planar
EM simulator supports arbitrary multi-layered geometries and uses spectral domain MoM
to analyze complex structures. It is integrated in various platforms, e.g., RFPro, Advanced
Design System (ADS), Genesys and Cadence Virtuoso. Another full-wave electromagnetic
simulator, i.e., IE3D is also based on MoM. When we deal with multilayered structures
then some of the above mentioned techniques are not a good option, specially when the
structures consist of several very thin dielectric layers like glue. FEM and FDTD require a
lot of computational effort to perform the simulations and large memory for the 3D meshes
and integral equation methods require complex mathematical formulations [Heckler, 2010].

There is another finite difference technique that can deal with multilayers easily, namely
the method of lines (MoL) [Pregla, 2008]. It has the advantage that we need to discretize
the structure only in one or two coordinate directions while we use the analytical solution
in the remaining directions. Thus, we save a lot of computational time and effort compared
to other numerical schemes. However, MoL depends on approximation of the differential
operators and calculating the eigenvalues of the corresponding matrices which introduce
errors in the computation.

1.1 The Discrete Mode Matching Method

24 years ago, a method has been developed for the simple full-wave analysis of patches and
microstrips in stratified structures, known as the discrete mode matching (DMM) method
[Dreher and Rother, 1995]. It was originally developed to overcome the disadvantage of
the MoL. The DMM method depends on the exact eigenvalues of waveguide modes which
reduce the computational effort due to unnecessary approximations. The convergence of
the normalized propagation constants, computed with the MoL, of the fundamental and
higher-order modes of a partially filled waveguide to their exact analytical values with
respect to the discretization distance is discussed in [Dreher and Rother, 1995].

A lot of work has been done for planar and quasi planar cases and also for cylindrical
and quasi-cylindrical cases [Dreher, 1996; Dreher and Ioffe, 2000; Ioffe et al., 2003; Heckler
and Dreher, 2007b; Heckler, 2010]. It has been proven to be an efficient spectral or spa-
tial domain numerical method for the full-wave analysis of microwave structures such as
waveguides, striplines and microstrip antennas. For the present thesis, we extend the DMM
method to analyze structures with anisotropic materials and metamaterials. We analyze
various multilayered microstrip structures in different coordinate systems.

The formulation employs the full-wave equivalent circuit (FWEC) to derive the Green’s
function. The general wave solution is applied within each dielectric layer to calculate
the field components at its interfaces. Therefore, each electric layer can be represented
with a hybrid matrix. The FWEC consists of these hybrid blocks denoting the dielectric
layers present in the multilayered structure. The formulation is well suited for numerical
computations. The DMM method uses sampling of the field components in one or two

3
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dimensions and takes the analytical solutions in the remaining direction perpendicular
to the dielectric layers. For this reason only two or four lateral boundaries are used to
bound the computational domain. It reduces the computational effort and the memory
requirement due to the semi-analytical approach. The tangential field components are
matched at discrete sampling points along the interfaces. This procedure can lead us to
form the system of equations for the multilayered structure.

Unlike MoL, in the DMM we do not discretize the Helmholtz equation, but we use exact
wave numbers as eigenvalues which are dependent on the lateral boundary conditions.
The method uses 1D discretization for transmission line structures and 2D discretization
for radiating structures unlike 3D meshes used by FEM and FDTD. The computational
domain can be bounded with electric walls (E-walls), magnetic walls (H-walls) or absorbing
boundary conditions (ABCs) for open or radiating structures.

DMM avoids the initial discretization and transformation process for calculating spectral
domain Green’s function when layers are homogeneous and constant with respect to position
in the desired coordinate system. There is a need to convert the spectral domain Green’s
function into spatial domain to locate metallization in the interfaces. If there is any change
in the shape of the layers with respect to the regular coordinate system, then only we need
to use the spatial domain Green’s function from the beginning to define the shape of the
layer.

In moment method (MoM), the most common way is to set up an electric or magnetic
field integral equation for the layered structure involving the dyadic Green’s function. Then
to solve this equation, suitable basis and weighting functions of the full- or sub-domain
type have to be defined for the currents on the strips and/or the magnetic currents in the
(small) slots. The solution requires the calculation of multi-dimensional integrals and the
discussion of a proper branch cut and integration path in the complex domain. In DMM this
complicated process is replaced by a simple multiplication with transformation matrices.
The efficiency of MoM strongly depends on the choice of basis and weighting functions as
well as on the integration methods. While in DMM, with the use of a suitable discretization
scheme we can reach high level of accuracy within a small number of discretization lines
[Heckler and Dreher, 2016].

1.2 Outline of the Thesis

In the previous work with DMM, it was assumed that all the layers are homogeneous
and isotropic. Depending on the applications, the dielectric structures can be composed
of several different types of substrates. The main objective of this dissertation is to fur-
ther develop the DMM method for the analysis of conformal structures with numerous
anisotropic layers or with metamaterials. Here we aim to better characterize the structures
and efficiently model them. Structures such as waveguides, microstrip lines or striplines,
and microstrip antennas are used for the demonstration of the method.

Chapter 2: In this chapter, we initialize the extension of the DMM to analyze pla-
nar structures having uniaxial electric or/and magnetic anisotropy. We start by solving
Maxwell’s equations in a Cartesian coordinate system to develop the formulation for DMM
to obtain the spectral domain Green’s function. First, we analyze a planar two-layer waveg-
uide and a microstrip line to find the propagation constants of the guiding structures. For
the analysis of structures with metallization, we use one dimensional (1D) discretization.
Further, we also investigate the structures with metallization on different interfaces.
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1.2 Outline of the Thesis

Chapter 3: We then extend the DMM theory to the analysis of microstrip antennas
which demands the extension of the discretization scheme in a two dimensional (2D) domain.
We do the computations for the structures in spectral domain. Initially we analyze a
stripline resonator then it is fed with a transmission line in order to predict the antenna
characteristics, i.e., the input impedance (Zin) and radiation pattern. We also analyze a
microstrip antenna having metamaterial as a substrate. Validation of the theory developed
is undertaken by comparison with results from commercially available software, results from
other techniques or/and measured data.
Chapter 4: This chapter extends the formulation of full-wave equivalent circuit to deal

with biaxial anisotropy in the dielectric layers. The DMM method is applied to analyze
quasi-planar structures, where the interface of the dielectric layers is not according to the
Cartesian coordinate system. The slope of the interface varies with the horizontal direction.
Therefore, we do the computation in spatial domain to analyze the quasi-planar nature.

Chapter 5: We extend the DMM method to analyze cylindrical and quasi-cylindrical
structures. We generate the formulation for the full-wave equivalent circuit and determine
the Green’s function in a cylindrical coordinate system. Again we consider waveguides,
microstrips and patch antennas to validate the theory with the other numerical techniques.
Both spectral domain and spatial domain analysis are explained for cylindrical and quasi-
cylindrical structures, respectively.
Chapter 6: This chapter deals with the extension to analyze planar multilayered struc-

tures with inhomogeneous dielectric layers. We derive the hybrid matrix elements for the
dielectric layer whose materials properties are dependent on space parameters. Channel
waveguides or rib waveguides are commonly used in the optical domain. Therefore, we use
these examples to demonstrate the technique and verify with the open literature.
Chapter 7: In the last phase, we deal with an elliptical coordinate system to generate

the formulation. We extend the discrete mode matching method to analyze elliptical fibers
or transmission lines with elliptical dielectric layers. To demonstrate the technique, we
analyze waveguides and compare the results with the data obtained by the other authors
and by commercial software. We also compare the results from this formulation with the
formulation explained in Chapter 5 with cylindrical coordinate system.
Chapter 8: Finally, we conclude this thesis and summarize the findings. We also outline

possible future research directions.
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2 Analysis of Planar Transmission Lines with
Uniaxial Anisotropy

Microstrip transmission lines are widely used in navigation and communication systems.
Substrates with uniaxial media are often integrated for various microwave and optical ap-
plications. Thanks to the technological advancements, it is becoming more and more easy
to produce anisotropic films and substrates. Hence, there is a need to better characterize
the anisotropic medium and to develop efficient numerical techniques to model multilayered
transmission lines.

In the case of uniaxial anisotropic materials, there is only one direction of wave prop-
agation along which the velocity of propagation has a constant value, independent of the
orientation of the electric displacement vector ~D or magnetic flux density ~B. This direction
is called optical axis of the material. Basically, there are two types of waves that are prop-
agating in the uniaxially anisotropic medium, one represents ordinary waves which are not
dependent on the direction of the wave propagation and the other represents extraordinary
waves which are dependent on the angle between the direction of the wave vector and the
optical axis. If the ordinary wave travels faster than the extraordinary one then it is a
positive uniaxial crystal, otherwise it is a negative uniaxial crystal [Zhang and Li, 1998].

Several numerical techniques and commercial software tools are available to analyze pla-
nar microwave structures such as waveguides, microstrip lines and antennas [Itoh, 1989].
Also, significant work has been done by several authors using different approaches for con-
sidering anisotropy in the material [Pregla, 2008; Krowne, 1986; Mesa et al., 1998]. In
this chapter, the focus is on multilayered planar structures having numerous interfaces and
arbitrarily thin anisotropic layers as shown in Fig. 2.1. Some predicted the characteristics
of the microtrip lines using different methods, such as potential theory [Kretch and Collin,
1987; Hsu, 2001] and calculation of equivalent isotropic substrate [Verma et al., 2014].

The most complicated task while analyzing the structure is to set up the system matrix. It
is possible to derive the system equation or Green’s function by using a full-wave equivalent
circuit (FWEC), where each dielectric layer is represented by a hybrid matrix (Fig. 2.2).
This hybrid matrix relates all the tangential field components at the interfaces. The current
sources represent metallizations between the layers, and shorts or admittances are used
for closed or open top and bottom layers. This equivalent circuit was already applied
successfully for the analytical and numerical analysis of transmission lines and microstrip
antennas in different coordinate systems [Dreher and Pregla, 1993; Thiel and Dreher, 2002;
Dreher and Ioffe, 2000; Heckler and Dreher, 2006].

This chapter first describes the derivation of the hybrid-matrix elements for uniaxial
anisotropic dielectric layers. The FWEC is then used to characterize the structure with
anisotropic dielectric layers and to determine the system equation in spectral domain. We
demonstrate the application of the extended equivalent circuit by analyzing a simple strati-
fied microwave structure like a waveguide. In the following sections, we explain the discrete
mode matching (DMM) method to analyze multilayered striplines with planar dielectric
layers having uniaxial anisotropy. Then, we compare the numerical results with those ob-
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��

��

����

��̿��,	�̿���

��̿, �̿�

��̿��, �̿���

�

��

Figure 2.1: Planar microwave structure with anisotropic stratified dielectric.
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Figure 2.2: Full-wave equivalent circuit of a general planar microwave structure with stratified
dielectric.

tained from commercial software and/or open literature. This chapter is based on the
papers [Kamra and Dreher, 2017, 2018c,d].

2.1 Formulation for the Full-Wave Equivalent Circuit

In this section, we discuss the electromagnetic equations describing the full-wave equivalent
circuit of the multilayered uniaxial anisotropic structure.

2.1.1 Field Relations

To characterize the anisotropic medium, the analysis starts from the permittivity (¯̄ε = ε0 ¯̄εr)
and permeability (¯̄µ = µ0 ¯̄µr) tensors with optical axis in z-direction, where

¯̄εr =


εx 0 0

0 εx 0

0 0 εz

 , ¯̄µr =


µx 0 0

0 µx 0

0 0 µz

 . (2.1)

We write the Maxwell’s equations in the space frequency domain and for a source-free and
homogeneous medium in their differential form by

∇× ~E(x, y, z) = −jωµ0 ¯̄µr · ~H(x, y, z), (2.2a)

∇× ~H(x, y, z) = jωε0 ¯̄εr · ~E(x, y, z), (2.2b)

where ~E and ~H are electric and magnetic field vectors, ω is the angular frequency, µ0 is the
free-space permeability and ε0 is the free-space permittivity. In rectangular coordinates,
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2.1 Formulation for the Full-Wave Equivalent Circuit

we write
~E(x, y, z) = Ex(x, y, z)x̂+ Ey(x, y, z)ŷ + Ez(x, y, z)ẑ, (2.3)

with x̂, ŷ and ẑ denoting the unit vectors along x, y and z coordinates, respectively. We
suppress the time dependence exp(jωt) throughout this thesis. To simplify the analysis,
space variables are normalized by the free space wave number k0 (= ω

√
ε0µ0) and η0 ~H is

replaced by ~H, where η0 =
√
µ0/ε0, is the intrinsic impedance of the free space. So in the

extended form, Faraday’s law (2.2a) gives the field relations as

∂

∂y
Ez −

∂

∂z
Ey = −jµxHx, (2.4a)

∂

∂z
Ex −

∂

∂x
Ez = −jµxHy, (2.4b)

∂

∂x
Ey −

∂

∂y
Ex = −jµzHz. (2.4c)

Next on taking Ampere’s law (2.2b), the expressions are

∂

∂y
Hz −

∂

∂z
Hy = jεxEx, (2.5a)

∂

∂z
Hx −

∂

∂x
Hz = jεxEy, (2.5b)

∂

∂x
Hy −

∂

∂y
Hx = jεzEz. (2.5c)

As the optical axis is in z-direction, we can take Ez and Hz as two independent field com-
ponents. Therefore on rearranging (2.4)-(2.5), the other field components can be calculated
using the relation

(
∂2

∂z2
+ εxµx)


Ex

Hx

Ey

Hy

 =


∂
∂x

∂
∂z −jµx ∂

∂y

jεx
∂
∂y

∂
∂x

∂
∂z

∂
∂y

∂
∂z jµx

∂
∂x

−jεx ∂
∂x

∂
∂y

∂
∂z


Ez
Hz

 . (2.6)

Similarly, for the case of optical axis in x- or y-direction, the independent field components
will be Ex, Hx and Ey, Hy, respectively. The whole analysis procedure will be the same as
shown here for the case of z-optical axis.

2.1.2 Interface Condition

Now consider a stratified dielectric in z-direction as shown in Fig. 2.1, in which an arbitrary
layer k is bounded by the interfaces k−1 and k. We write the source-free Helmholtz equation
in the form (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+K2

)
ψ(x, y, z) = 0, (2.7)

where ψ represents two independent field components, i.e., Ez, Hz and K represents prop-
agation constant of the medium. We assume the propagation in y-direction and the cross-
section does not vary in this direction. Therefore, we write

ψ(x, y, z) = ψ(x, z)e−jkyy. (2.8)
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2 Analysis of Planar Transmission Lines with Uniaxial Anisotropy

After introducing (2.8) in (2.7) and taking the derivative with respect to y, we get(
∂2

∂x2
+

∂2

∂z2
− k2y +K2

)
ψ(x, z) = 0. (2.9)

Using Fourier transformation, we can write the differential equation (2.9) with derivatives
with respect to one coordinate only. We can write the relation between the spatial and
spectral domain field component as

ψ(x, z) =
1

2π

∫ +∞

−∞
τx(kxx)ψ̃(kx, z)dkx, (2.10)

where kx is the spectral variable along x-direction. On transforming (2.9) into the spectral
domain, it leads to the ordinary differential equation(

∂2

∂z2
− k2z

)
ψ̃(kx, z) = 0, (2.11)

with k2z = k2x − (K2 − k2y).
In contrast to isotropic media, it must be taken into account that in the uniaxial

anisotropic case the propagation constant K has two roots. One represents TE waves
(ordinary waves) and the other represents TM waves (extraordinary waves). Therefore, the
dispersion relation for the Ez or TM mode is obtained as

kze =

√
εx
εz

(−µxεz + k2x + k2y), (2.12)

and for the Hz or TE mode as

kzh =

√
µx
µz

(−µzεx + k2x + k2y). (2.13)

Then the solution of (2.11) within an arbitrary layer k can be written in the form

Ẽzk = Ake
kzekz +Bke

−kzekz, (2.14a)

H̃zk = Cke
kzhkz +Dke

−kzhkz. (2.14b)

Depending on the roots for Ẽz and H̃z, the transverse field components can be written
in spectral domain as

Ẽx = −jkxεz
εxk2s

∂

∂z
Ẽz −

kyµz
k2s

H̃z (2.15a)

Ẽy = −jkyεz
εxk2s

∂

∂z
Ẽz +

kxµz
k2s

H̃z (2.15b)

H̃x =
kyεz
k2s

Ẽz −
jkxµz
µxk2s

∂

∂z
H̃z (2.15c)

H̃y = −kxεz
k2s

Ẽz −
jkyµz
µxk2s

∂

∂z
H̃z (2.15d)
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2.1 Formulation for the Full-Wave Equivalent Circuit

where ks =
√
k2x + k2y. On using (2.14) and (2.15), the transverse field components can be

rewritten as 
Ẽxk

H̃xk

Ẽyk

H̃yk

 =


Q̃Axk Q̃Bxk Q̃Cxk Q̃Dxk

G̃Axk G̃Bxk G̃Cxk G̃Dxk

Q̃Ayk Q̃Byk Q̃Cyk Q̃Dyk

G̃Ayk G̃Byk G̃Cyk G̃Dyk




Ak

Bk

Ck

Dk

 . (2.16)

Now to obtain the relation between the tangential fields at the interfaces k− 1 (bottom)
and k (top) bounding the layer k, we write in matrix form

Ẽk =

Ẽxk
Ẽyk

 , H̃k =

−H̃yk

H̃xk

 , F =


Ak

Bk

Ck

Dk

 , (2.17)

and Ẽk−1

H̃k−1

 = M̃k−1F , (2.18)

Ẽk

H̃k

 = M̃kF , (2.19)

M̃k =


Q̃Axk Q̃Bxk Q̃Cxk Q̃Dxk

Q̃Ayk Q̃Byk Q̃Cyk Q̃Dyk

−G̃Ayk −G̃Byk −G̃Cyk −G̃Dyk
G̃Axk G̃Bxk G̃Cxk G̃Dxk

 , (2.20)

with
Q̃Ax = −jεzkxkzeekzez/(εxk2s), Q̃Bx = jεzkxkzee

−kzez/(εxk
2
s),

Q̃Cx = −µzkyekzhz/(k2s), Q̃Dx = −µzkye−kzhz/(k2s),

Q̃Ay = −jεzkykzeekzez/(εxk2s), Q̃By = jεzkykzee
−kzez/(εxk

2
s),

Q̃Cy = µzkxe
kzhz/(k2s), Q̃

D
y = µzkxe

−kzhz/(k2s),

G̃Ax = εzkye
kzez/(k2s), G̃

B
x = εzkye

−kzez/(k2s),

G̃Cx = −jµzkxkzhekzhz/(µxk2s), G̃Dx = jµzkxkzhe
−kzhz/(µxk

2
s),

G̃Ay = −εzkxekzez/(k2s), G̃By = −εzkxe−kzez/(k2s),

G̃Cy = −jµzkykzhekzhz/(µxk2s), G̃Dy = jµzkykzhe
−kzhz/(µxk

2
s).

On eliminating the unknown column matrix F from (2.18) and (2.19), we get the relation
for the field components at the interfaces of layer k with normalized thickness dk in matrix
form as

11



2 Analysis of Planar Transmission Lines with Uniaxial Anisotropy

Ẽk−1

H̃k−1

 = K̃k

Ẽk

H̃k

 , (2.21)

with the hybrid matrix

K̃k = M̃k−1M̃
−1
k =

Ṽ k Z̃k

Ỹ k B̃k

 . (2.22)

Multiple layers can be taken into account by simple matrix multiplication.
For the outer unbounded layer (n), the solution of (2.11) can be written in the form

Ẽzn = Bne
−kzenz, (2.23a)

H̃zn = Dne
−kzhnz. (2.23b)

The transverse field components can be rewritten as
Ẽxn

H̃xn

Ẽyn

H̃yn

 =


Q̃Bxn Q̃Dxn

G̃Bxn G̃Dxn

Q̃Byn Q̃Dyn

G̃Byn G̃Dyn


Bn
Dn

 . (2.24)

We can find the admittance using the relation

Ỹ n = M̃HnM̃
−1
En , (2.25)

where

M̃Hn =

−G̃Byn −G̃Dyn
G̃Bxn G̃Dxn

 , (2.26)

and

M̃En =

Q̃Bxn Q̃Dxn

Q̃Byn Q̃Dyn

 . (2.27)

2.1.3 System Equation

We can set up the system equation on using the theory of full-wave equivalent circuit
(FWEC) which consists of hybrid matrices (K̃k) as shown in Fig. 2.2. We can get the
admittance (or impedance) of the structure by using simple network analysis technique. The
innermost layer of the planar structures is usually grounded and the outermost layer can be
terminated with admittance Ỹ n (if it is open), or can be enclosed with a perfect conductor.
When there is no metallization in the interfaces of the layers, then in order to simplify
the formulation all the inner layers can be modeled by successive matrix multiplication.
Therefore, we get the equivalent hybrid matrix as

K̃eq =

n−1∏
k=1

K̃k, (2.28)
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2.2 Analysis of Two-Layer Waveguide

representing all the cascaded K̃k matrices.
Next we should apply the continuity equations at the interface k to match the fields. The

continuity equations can be written as

(Ẽ
+

k − Ẽ
−
k ) = 0 (2.29)

and
(H̃

+

k − H̃
−
k ) = J̃k. (2.30)

Here “+” and “-” signs represent fields right above and below the kth interface, respectively,
and

J̃k =

J̃x
J̃y

 (2.31)

represents the column matrix of current densities present on the interface k. System equa-
tion gives the relation between the currents on the strip and the tangential electric field
components on the interfaces. Thus, we can obtain the system equation in the spectral
domain G̃xx G̃xy

G̃yx G̃yy

J̃x
Jy

 =

Ẽx
Ẽy

 or G̃J̃ = Ẽ, (2.32)

or L̃Ẽ = J̃ , (2.33)

where G̃ represents the matrix consisting of elements in terms of Green’s function

(impedance form) of the structure, L̃( or G̃
−1

) gives the admittance matrix of the structure
and J̃ and Ẽ represent column matrices with tangential surface current density and electric
field intensity on the interfaces, respectively.

2.2 Analysis of Two-Layer Waveguide

To validate the previous formulation, we have analyzed a two-layer waveguide filled with
anisotropic dielectric material stratified in z-direction. For this purpose, we have used
unrotated uniaxial anisotropic material whose optical axis is in z-direction. The basic
geometry with a = 12.7 mm, d1 = 0.1a, d2 = 0.9a, εr1 = (9.4,9.4,11.6) and εr2 = 1) is
shown in Fig. 2.3.

There are no currents on the interface, therefore J̃ = 0. Fig. 2.4 gives the corresponding
equivalent circuit from which we can simply obtain the system equation as

L̃Ẽ = 0, where L̃ = Z̃
−1
1 Ṽ 1 + B̃2Z̃

−1
2 (2.34)

with

K̃1 =

Ṽ 1 Z̃1

Ỹ 1 B̃1

 and K̃2 =

Ṽ 2 Z̃2

Ỹ 2 B̃2

 . (2.35)

The first term of the admittance (Z̃
−1
1 Ṽ 1) denotes the admittance of the grounded bottom

layer and the second term (B̃2Z̃
−1
2 ) denotes the admittance of the closed top layer. The

propagation constant can be found on solving the indirect eigenvalue problem

det(L̃) = 0. (2.36)
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Figure 2.3: Dispersion curve for the 5 lowest order modes of a two-layer waveguide filled with
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Figure 2.4: Equivalent circuit for a 2-layer waveguide.

Fig. 2.3 depicts the propagation constant ky for the five lowest-order modes of the waveguide
as a function of frequency and shows the comparison between the results obtained from our
code written in MATLAB using FWEC and the commercial software ANSYS HFSS. We
have obtained a very good agreement between the results and have found the difference of
≈ 0.2%.

2.3 Analysis of Multilayered Structures with Metallization

2.3.1 System Equation

The general method to form the system equation for structures with metallization in several
interfaces is well explained in [Dreher, 1995]. From (2.21) and (2.22), we can write the
equations

H̃k−1 = (Ỹ k − B̃kZ̃
−1
k Ṽ k)Ẽk + B̃kZ̃

−1
k Ẽk−1, (2.37)

H̃k = Z̃
−1
k Ẽk−1 − Z̃

−1
k Ṽ kẼk. (2.38)
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By using FWEC of the structure (Fig. 2.2), and (2.37) and (2.38), we obtain

H̃
+

k = (Ỹ k+1 − B̃k+1Z̃
−1
k+1Ṽ k+1)Ẽk+1 + B̃k+1Z̃

−1
k+1Ẽk, (2.39)

H̃
−
k = Z̃

−1
k Ẽk−1 − Z̃

−1
k Ṽ kẼk. (2.40)

Now, using (2.30), (2.39) and (2.40), we obtain the relation between the current densities
present in the interface k with the electric fields present in the interfaces k− 1, k and k− 1
as

J̃k = L̃k,k−1Ẽk−1 + L̃k,kẼk + L̃k,k+1Ẽk+1, (2.41)

where

L̃k,k−1 = −Z̃
−1
k

L̃k,k = B̃k+1Z̃
−1
k+1 + Z̃

−1
k Ṽ k

L̃k,k+1 = Ỹ k+1 − B̃k+1Z̃
−1
k+1Ṽ k+1.

(2.42)

We can represent the system matrix for the structure with M metallized interfaces by

J̃1

J̃2

J̃3

...

J̃M−1

J̃M


=



L̃11 L̃12 0 0 · · · 0

L̃21 L̃22 L̃23 0 · · · 0

0 L̃32 L̃33 L̃34 · · · 0
... · · · . . .

. . . · · ·
...

0 · · · 0 L̃M−1,M−2 L̃M−1,M−1 L̃M−1,M

0 · · · 0 0 L̃M,M−1 L̃M,M





Ẽ1

Ẽ2

Ẽ3

...

ẼM−1

ẼM


(2.43)

or

J̃ = L̃Ẽ (2.44)

where matrix L̃ represents the admittance matrix of the system. The elements L̃11 and
L̃MM should include the lower and upper terminations. The admittances for lower and
upper layers are well defined in the Appendix A. When the outer layer is unbounded, we
can write

L̃M,M = Ỹ n + Z̃
−1
M Ṽ M . (2.45)

2.3.2 The Discrete Mode Matching Method

The general cross-sectional view of the multilayered microwave structure is depicted in
Fig. 2.5. Here, we consider several microstrip lines in the interfaces of the anisotropic
dielectric layers (optical axis in z-direction). For the present analysis, the structure is
stratified in z-direction and the wave propagation (exp(−jkyy)) is assumed in y-direction.
The analysis begins with the Helmholtz’s equation, normalized by the free space wave
number k0, (

∂2

∂x2
+

∂

∂z2
+ εd

)
ψk = 0, εd = K2 − k2y. (2.46)

Here, ψ represents the independent field components Ez or Hz and K the propagation
constant in any arbitrary layer k.
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Figure 2.5: Discretized multilayered microwave structure with metallization in the interfaces.

We assume the structure to be infinite in the propagation direction, so we use just 1D
discretization along x for the analysis of multilayered microstrip lines as shown in Fig. 2.5.
The field components are sampled at N equidistant points xj between the lateral walls.
We do the discretization with two line systems as shown in the figure, e-lines show the
position of Ez and h-lines show the position of Hz field components. Using separate line
systems have several advantages, for example, we can easily fulfill the lateral boundary
conditions (electric- or magnetic-wall) by putting these lines on suitable positions. The two
line systems are shifted from each other with uniform distance [Heckler, 2010; Pregla, 2008].
From (2.6), we can see that we need Hz and the derivative of Ez on the same position to
calculate the value of Ex. Similarly, we need Ez and the derivative of Hz on the same
position to calculate the value of Hx. This can only be done with shifted discretization
scheme. Here, we adapt equidistant discretization because the finite difference method
yields the derivative in the middle of the lines.

We take the modal expansion of the field components according to the lateral boundary
conditions. To satisfy the sampling theorem, we must include the same number of modes
in the expansion of the series as the number of lines taken for the discretization [Ioffe and
Dreher, 1999; Dreher and Rother, 1995]. Therefore, the transformation equation of the field
components having N modes discretized by N samples is given by

ψj(xj , z) =

N∑
i=1

τx(kxixj)ψ̃i(kxi, z) or ψ = T ψ̃. (2.47)

Here ψ̃ represents the column matrix of field component in spectral domain containing all
the modal values, ψ represents the column matrix of field component in spatial domain
and T is the transformation matrix containing the exact eigensolutions τx(kxixj) of the
Helmholtz equation (Fourier series elements) which are dependent on the lateral boundary
conditions. Table 2.1 summarizes the eigenvalues kxi which are the wave numbers in x-
direction and corresponding wave functions for different boundary conditions. In the table,
a defines the distance between the lateral walls. The edge parameter, i.e., the distance
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2.3 Analysis of Multilayered Structures with Metallization

Table 2.1: Eigensolutions of the Helmholtz equation for different boundary combinations

Boundary

τ exi τhxi kxicombination

(left/right)

E-wall/E-wall −j sin(kxix
e) cos(kxix

h) iπ
a

H-wall/H-wall cos(kxix
e) −j sin(kxix

h) iπ
a

H-wall/E-wall cos(kxix
e) −j sin(kxix

h)
(i− 1

2
)π

a

between the edge of the metallization and the e-line is taken to be 0.25∆x. Heckler [2010]
has discussed in detail the edge conditions and suitable line placement for the efficient
computation. Appendix D also summarizes the discretization scheme in case of symmetry
present in the structures.

From (2.47), we write in matrix form that

Ez = T eẼz, (2.48)

Hz = T hH̃z, (2.49)

with T e and T h representing transformation matrices for e- and h-lines with τ exi and τhxi
as the eigensolutions, respectively. We can easily identify the locations of other field com-
ponents with the help of the field relations (2.6). Fig. 2.5 describes the positions of all
the field components. Therefore, the transformation of other field components from the
spectral domain into the spatial domain in matrix form can be summarized as

Ex = T hẼx, (2.50)

Ey = T eẼy, (2.51)

Hx = T eH̃x, (2.52)

Hy = T hH̃y. (2.53)

On using the continuity equation of magnetic fields on the interface, we get the locations
of current densities ((2.30)-(2.31)). In matrix notation for the inverse transformation, it
comes out

Jx = T hJ̃x, (2.54)

Jy = T eJ̃y. (2.55)

Therefore, on transforming field components and current densities in (2.32) into the spatial
domain, we get Gxx Gxy

Gyx Gyy

Jx
Jy

 =

Ex

Ey

 or GJ = E, (2.56)

where Gxx Gxy

Gyx Gyy

 =

T h 0

0 T e

G̃xx G̃xy

G̃yx G̃yy

T−1h 0

0 T−1e

 . (2.57)
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2 Analysis of Planar Transmission Lines with Uniaxial Anisotropy

The boundary conditions state that the tangential electric field components must vanish
on the metallizations and the electric currents outside that region. After applying these
conditions, we obtain a reduced matrix as

GredJ red = 0 or LredEred = 0. (2.58)

J red contains the surface current density components located on the metallizations, while
Ered contains the field components located outside the metallization. It can be solved as
an indirect eigenvalue problem

det(Gred) = 0 or det(Lred) = 0, (2.59)

to find the propagation constants for the microstrip line structures.

2.4 Numerical Results

This section deals with the various applications of the formulation discussed in the previous
sections of the chapter.

2.4.1 Dispersion Curve: Shielded Microstrip Line

To verify the above mentioned approach, first we have analyzed a shielded microstrip line.
Here, we have considered the uniaxial electric anisotropy in the dielectric layers with optical
axis in the z-direction. The basic geometry of the structure is presented in the inset of
Fig. 2.6, where w = 1.27 mm, a = 10w, d1 = w, d2 = a-d1, ¯̄εr1 = (9.4,9.4,11.6) and ¯̄εr2 =
(1,1,1). We have considered only half of the structure with 4 e-lines on the strip for analysis
due to symmetry. Fig. 2.7 shows the full-wave equivalent circuit used for the analysis. The
system equation can thus be obtained as(

Z̃
−1
1 Ṽ 1 + B̃2Z̃

−1
2

)
Ẽ1 = J̃1, (2.60)

where J̃1 gives the currents on the interface, i.e., on the strip. The wave functions are
described in Table 2.1 which should be used for expansion in (2.47) along with (2.14). The
results presented in Fig. 2.6 show the propagation constant ky for the two lowest-order
modes with respect to a wide frequency range. It can be realized that the results obtained
from DMM and ANSYS HFSS agree very well. They are also in good agreement with the
open literature [Mao, 2007].

Figure 2.8 shows the convergence of the propagation constant of the first mode at 10 GHz
with increasing number of e-lines in discretization direction. The exact eigenvalues are taken
directly according to the sampling theorem, which states that the number of modes should
be equal to the number of sampling points. The typical convergence curves do not apply
to the canonical structures, i.e., when the dielectric interfaces follow the coordinate axes,
without metallization. We do not need any discretization and use exact eigenvalues for
analytical solutions using FWEC, for example, the two-layer waveguide in Fig. 2.3. There
the approximation is only given by the root-finding algorithm.
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Figure 2.6: Dispersion curve for the lowest 2 modes of a shielded microstrip line filled with
anisotropic material.
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Figure 2.8: Convergence behavior of propagation constant for microstrip line.

2.4.2 Dispersion Curve: Multilayered Microstrip Line

Then we have considered a multilayered structure with four striplines at different interfaces,
as shown in Fig. 2.9. The cross-section of the structure is with a = 19.93 mm, d1 = 1.2
mm, d2 = 1.0 mm, d3 = 0.7 mm, d4 = 1.5 mm, w1 = 1.3 mm, w2 = 1.79 mm, w3 =
1.79 mm, w4 = 2.28 mm, s1 = 8.56 mm, s2 = 7.54 mm, s3 = 1.79 mm and s4 = 9.07
mm. The material parameters used for the analysis are ¯̄εr1 = 2.3 or (2.3, 2.3, 2.2), ¯̄εr2 =
8.875 or (8.875, 8.875, 8.5), ¯̄εr3 = 5 or (5, 5, 4.8), ¯̄εr4 = 12 or (12,12,10.8), εr5 = 1 and
µr1 = µr2 = µr3 = µr4 = µr5 = 1. There are five layers in the structure with four interfaces,
thus we build the system matrix of the structure according to (2.43) as


J̃1

J̃2

J̃3

J̃4

 =


L̃11 L̃12 0 0

L̃21 L̃22 L̃23 0

0 L̃32 L̃33 L̃34

0 0 L̃43 L̃44




Ẽ1

Ẽ2

Ẽ3

Ẽ4

 , (2.61)
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Figure 2.9: Multilayered microstrip structure.

where

L̃11 = B̃2Z̃
−1
2 + Z̃

−1
1 Ṽ 1

L̃12 = Ỹ 2 − B̃2Z̃
−1
2 Ṽ 2

L̃21 = −Z̃
−1
2

L̃22 = B̃3Z̃
−1
3 + Z̃

−1
2 Ṽ 2

L̃23 = Ỹ 3 − B̃3Z̃
−1
3 Ṽ 3

L̃32 = −Z̃
−1
3

L̃33 = B̃4Z̃
−1
4 + Z̃

−1
3 Ṽ 3

L̃34 = Ỹ 4 − B̃4Z̃
−1
4 Ṽ 4

L̃43 = −Z̃
−1
4

L̃44 = Ỹ 5 + Z̃
−1
4 Ṽ 4.

(2.62)

We have presented the results for the propagation constant, normalized with k0, as a
function of frequency for both isotropic and anisotropic dielectric layers in Fig. 2.10. For
the analysis we have used only 5 e-lines to discretize the top strip (w4) of the structure. We
have bounded the structure by electric walls in the x-direction and have left it open from
the top. The computed results are in good agreement with the prediction in [Dreher, 1996]
for the isotropic case and with ANSYS HFSS for both the isotropic and the anisotropic
cases. The simulation with HFSS under port mode calculation at 5 GHz took 1 second
while at 100 GHz took 8.5 minutes. The computation time varied between 1 to 3 seconds
with DMM depending on the time to find the roots.
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Figure 2.10: Dispersion curve of the multilayered stripline.

2.4.3 Dispersion Curve: Coplanar Waveguide

Next, we have analyzed a shielded coplanar waveguide to further demonstrate the method.
The anisotropic substrate has the electric dielectric constant ¯̄εr1 = (13, 13, 10.3) and εr2 = 1.
We have applied the similar procedure to compute the dispersion curve for the coplanar
waveguide. Fig. 2.11 shows the basic geometry and the computed normalized propagation
constant (ky). We have done the analysis for the two cases shown in the figure. The results
agree well with those given in [Hsu, 2001] (till 20 GHz) and those computed from ANSYS
HFSS.

2.4.4 Characteristic Impedance

Let us take the case of a coplanar waveguide for calculating the characteristic impedance.
We need the propagating power and the total current flowing on the central strip. The power
from the transmission line can be computed from the electromagnetic field components using
the equations given in [Dreher and Pregla, 1993]. The power component in propagating
y-direction is given by

Py = EzH
∗
x − ExH∗z . (2.63)

To get the power propagation in the cross-section of the structure, we need to find the z-
dependence of the field components along the corresponding discretization lines within the
dielectric layers. The methodology is given by Dreher and Pregla [1993] and summarized
in Appendix A for convenience.

Now we have discrete sampling points in the cross-section of the structure. Therefore
we get the power density only at specific points in the cross-section. To calculate the total
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Figure 2.11: Dispersion curve for the coplanar waveguide (a = 2, d2 = 1 and εr2 = 1) (all dimen-
sions in mm).

power propagating in the transmission line, we write

Py =

N,L∑
j,l

(<{ ~E × ~H∗}j,l · ŷ)∆x∆z. (2.64)

Here, N and L represent the number of samples in x- and z-directions, respectively, and
the term ∆x∆z denotes a certain area of cross-section given by the discretization distance.
Two-dimensional representation of power propagation in y-direction on half of the cross-
section of the waveguide is presented in Fig. 2.12.

Similarly, we have currents from the system equation only at specific samples in x-
direction. Therefore the total current on the central strip can be computed from

Iy =

Nc∑
j

Jyj∆x, (2.65)

where Nc denotes the samples on the central strip. Consequently, the total characteristic
impedance can be found using

Z0 =
Py
I2y
. (2.66)

Fig. 2.13 shows the computed values for the characteristic impedance against frequency,
which are closely related with the results in [Hsu, 2001] (till 20 GHz) and with those
obtained from ANSYS HFSS.
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3 Analysis of Planar Microstrip Antennas on
Multilayered Substrate

In the previous chapter, applications of the DMM method with 1D discretization were
analyzed. Here, we will discuss the extension of the DMM to 2D discretization, e.g., analysis
of microstrip patch antennas. Printed antennas are widely used in satellite navigation and
communication systems. The properties of the antennas are strongly dependent on the
substrate material. The main focus of this chapter is on the characterization of microstrip
antennas with 1) uniaxial anisotropic substrate, and 2) metamaterial substrate.

Significant work has been done for analyzing microstrip patch antennas with uniaxial
media using method of moments [Krowne, 1986; Pozar, 1987; Hassad et al., 2014; Wong
et al., 1993]. Green’s function in spectral domain is used in [Krowne, 1986; Hassad et al.,
2014] to analyze patch antennas. They discuss the effect of anisotropy on the antenna
resonance.

Also, there has been growing interest in the study of metamaterials both theoretically and
experimentally. Metamaterials are artificial materials synthesized by embedding specific in-
clusions, for example, periodic structures, in the host media and have unusual properties
which are not readily available in nature. Some of these materials exhibit either negative
permittivity or negative permeability. If both permittivity and permeability of such mate-
rials are negative at the same frequency, then the composite possesses an effective negative
index of refraction and is referred to as a lefthanded (LH) metamaterial. The first theoret-
ical study was done by Veselago [1968], then after several years the first LH material was
proposed by Smith et al. [2000].

The dispersive properties of the substrate also change due to the presence of metallic
structures in the material [Enoch et al., 2002; Weng et al., 2008], which gives rise to meta-
material substrate. The unusual properties of the metamaterials, such as negative refractive
index, huge chirality, magnetic conductivity, directive emission and etc., play a pivotal role
in antenna design, which can provide better performance and more flexibility.

The DMM employs discretization in two dimensions for radiating structures, which re-
duces memory requirement and computation time in comparison to the 3D meshes used in
FEM and FDTD. It makes use of the full-wave equivalent circuit (FWEC) in spectral do-
main, which is well explained in the previous chapter. In this method, the used eigenvalues
of the waveguide modes are exact and dependent on the four lateral boundary conditions.
We employ absorbing boundary conditions (ABCs) in both horizontal directions, which are
artificial boundaries to bound the computational domain. In the procedure, the Green’s
function is calculated to obtain the system equation of the structure.

In the following sections of the chapter, first we deal with the patch antennas with uniaxial
anisotropic substrate and then with the metamaterial based microstrip antennas to achieve
multi-band properties in the antenna. Based on that, we demonstrate the accuracy of the
DMM method by comparing the results with the open literature as far as available. Some
results have been presented in the conferences [Kamra and Dreher, 2018a,b].
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Figure 3.1: Multilayered structure with metallizations.

3.1 Formulation for the 2D discretization

3.1.1 Fourier Transformation and Discretization

We consider an arbitrary planar multilayered structure with metallizations in the interfaces,
as shown in Fig. 3.1, in which the layer k is bounded by the interfaces k − 1 and k. In
the presented structure, we do the stacking of the layers in z-direction. On using inverse
Fourier transformation, we can relate the field components in spectral and spatial domain
by

ψ(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ψ̃(kx, ky, z)e

jkxxejkyydkxdky, (3.1)

where ψ = Ez, Hz and kx and ky are the spectral variables in x- and y-directions, re-
spectively. However, (3.1) is valid for unbounded structures along x and y. We consider
the structure under analysis to be bounded in both directions, therefore the modes which
exist in the structure are limited and are dependent on the boundaries used to enclose the
computational domain. Consequently, the fields in spatial domain can be represented as

ψ(x, y, z) =

Nx∑
i

Ny∑
l

τx(kxi, x)τy(kyl, y)ψ̃(kxi, kyl, z), (3.2)

where kxi and kyl are the eigenvalues, and τx(kxi, x) and τy(kyl, y) represent eigensolu-
tions. Nx and Ny are the number of modes included in the modal expansion in x- and
y-directions, respectively. According to the Nyquist theorem, the number of lines used for
the discretization should be the same as the number of modes used for the expansion. In
the present method, we bound the radiating structure with absorbing boundary conditions
and discretize it as shown in Fig. 3.2.

Since Ez and Hz are the two independent field components, we conclude that the e-lines
are related to the points in the structure where Ez is computed, whereas h-lines are related
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Figure 3.2: Patch discretization.

to the Hz field component. Therefore, from (3.2), we can write the field components in
matrix notation as

Ez = T eeẼz, (3.3)

Hz = T hhH̃z. (3.4)

For the case of unrotated uniaxial anisotropic media, we can find the other tangential field
components using (2.6). Fig. 3.2 shows the location of all the field components on different
positions shifted by half discretization distance (∆x/2 or ∆y/2). After sampling the fields,
we relate the remaining field and current components in spatial domain to their components
in spectral domain in matrix notation by

Ex = T heẼx, (3.5)

Hx = T ehH̃x, (3.6)

Ey = T ehẼy, (3.7)

Hy = T heH̃y, (3.8)

Jx = T heJ̃x, (3.9)

Jy = T ehJ̃y. (3.10)

Here T χχ is the transformation matrix whose elements can be computed as

τχχ = τχx (kxi, x)τχy (kyl, y), where χ = e, h. (3.11)
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3 Analysis of Planar Microstrip Antennas on Multilayered Substrate

For ψ = Ez, τ
e
x and τ ey both follow the same solutions as given in Table 2.1. Similarly for

ψ = Hz, τ
h
x and τhy both follow the same solutions.

On using the inverse Fourier transformation of (2.32) with the help of (3.5)–(3.10), it will
result in the form Gxx Gxy

Gyx Gyy

Jx
Jy

 =

Ex

Ey

 (3.12)

where Gxx Gxy

Gyx Gyy

 =

T he 0

0 T eh

G̃xx G̃xy

G̃yx G̃yy

T−1he 0

0 T−1eh

 . (3.13)

3.1.2 Use of Absorbing Boundary Conditions

When the structure is radiating, absorbing boundary conditions (ABCs) in the structure
should be implemented to bound the computational domain. For planar structures we have
ABCs both in x- and y-directions. First, we start the analysis by placing an ABC-wall in
x-direction at x = −a/2 and x = +a/2. The present formulation makes use of the Higdon’s
operator [Higdon, 1987] in the calculation of ABCs which is well described by Ioffe and
Dreher [1999]. We can write the operator in the form

np∏
p=1

( ∂
∂x
± j√εmµm cos(θp)

)
ψ = 0, (3.14)

where np is the number of angles where perfect absorption exists, θp is the angle of incidence,
εm represents relative permittivity and µm represents relative permeability of the medium at
the placement of ABC-wall. As we are using multilayered anisotropic structures, therefore
we consider average value of the material parameters of all dielectric layers, i.e., product of
permeability and permittivity. We take

εmµm =
εr1µr1 + εr2µr2 + . . .+ εrnµrn

n
, (3.15a)

where εrkµrk =
εxkµxk + εykµyk + εzkµzk

3
(3.15b)

with scalar values. We take the mean of the diagonal elements of the material tensors to
remove the tensor effect.

The general field solution from the Helmholtz equation is given as

ψ = Axe
jkxix +Bxe

−jkxix. (3.16)

By solving (3.14) with (3.16) at the boundaries, we get the final characteristic equation as

ejkxia
∏p
k=1

(
kxi −

√
εmµm cos(θk)

)∏p
k=1

(
kxi +

√
εmµm cos(θk)

) = ±1 =
Ax
Bx

. (3.17)

The eigenvalues kxi can be calculated on solving (3.17) by putting Ax = ±Bx. When we
consider Ax = +Bx in (3.17), then the field response will be

ψ = 2 cos(kxix), (3.18)
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3.2 Numerical Results

Table 3.1: Eigensolutions of the Helmholtz equation for different boundary combinations with
ABCs

Boundary

τ exi τhxi kxicombination

(left/right)

ABC/ABC

−j sin(kxix
e) cos(kxix

h) kxi satisfying Bx=-Ax

cos(kx(i+1)x
e) −j sin(kx(i+1)x

h) kx(i+1) satisfying Bx=+Ax
...

...
...

(alternating) (alternating) (alternating)

E-wall/ABC −j sin(kxix
e) cos(kxix

h) kxi satisfying Bx=-Ax

H-wall/ABC cos(kxix
e) −j sin(kxix

h) kxi satisfying Bx=+Ax

and when Ax = −Bx, then

ψ = −2j sin(kxix). (3.19)

Table 3.1 summarizes the eigenvalues and eigensolutions to be used on placing ABC walls
to limit the computational domain.

3.2 Numerical Results

After obtaining the system equation, we should impose the boundary conditions on the
structure which force the tangential electric field components to vanish on the metallizations
and the electric currents outside that region. Therefore, we obtain a reduced system of
equations from (3.12) as

GredJ red = 0 or LredEred = 0. (3.20)

We can solve it as indirect eigenvalue problem to find the resonant frequency of the mi-
crostrip antenna. Gred and J red contain the elements which are calculated at the dis-
cretization points located only on the patch (metallization), whereas Lred and Ered contain
the elements calculated outside the patch. We can use root-finding algorithms to find the
complex root when det(Gred) = 0 or det(Lred) = 0. The real part (fr) of the root gives
us the resonant frequency and the imaginary part (fi) represents the losses in the antenna
caused by radiation. As this method calculates the eigenmodes, so no external excitation
is required to find the resonant frequency.

3.2.1 Patch Antenna with Uniaxial Anisotropic Substrate

3.2.1.1 Resonant Frequency

First, we have analyzed a single-layered microstrip patch antenna. We have grounded the
substrate from bottom and left open at top. With these terminations, we can represent the
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3 Analysis of Planar Microstrip Antennas on Multilayered Substrate

Table 3.2: Comparison of resonant frequencies and bandwidth for a rectangular microstrip patch
on a substrate with εx = 13.0, εz = 10.2, µx = µz = 1

Input parameters Resonant frequency (GHz)

(mm) Measured Calculated Bandwidth (%)

Pa Pb d [1] [1] [2] [3] DMM [1] DMM

30 20 1.27 2.264 2.268 2.261 2.284 2.2521 0.6 0.4

15 9.5 1.27 4.495 4.520 4.355 4.599 4.4862 1.4 0.9

30 19 2.54 2.242 2.260 2.177 2.299 2.2431 1.2 0.9

[1]=[Pozar, 1987], [2]=[Aouabdia et al., 2011], [3]=[Hassad et al., 2014]

������ ������ ���

Figure 3.3: Full-wave equivalent circuit for a microstrip patch antenna.

FWEC for the analyzed antenna with Fig. 3.3. Therefore, we obtain the system equation

(Z̃
−1
1 Ṽ 1 + Ỹ 2)

−1Ẽ1 = J̃1, (3.21)

where Z̃
−1
1 Ṽ 1 denotes the admittance of the layer with closed bottom, Ỹ 2 denotes the

admittance of the open top, Ẽ1 denotes the tangential electric field and J̃1 the tangential
surface current density on the metallized interface. Table 3.2 presents the comparison be-
tween the results of the resonant frequency (f ′) and the bandwidth (2f ′′/f ′) using different
methods. We have done the computations on considering just one quarter of the patch
because of symmetry and put the ABC walls along the substrate with a length of 4Pa in
x-direction and 6Pb in y-direction. For the presented DMM results, we have used 8 e-lines
in x- and y-directions both on quarter of the patch.

Fig. 3.4 and 3.5 show the convergence of the computations with increment in the number
of lines used for the discretization of the structure for Case 1 in Table 3.2. We have used
extrapolation of discretization in x-direction to get the predictions. We can see from the
figure that the results do not vary much between 6 and 8 e-lines in y-direction on the patch.
Therefore, we have done the analysis till only 8 e-lines along y. We have concluded from
the figure that only a few discretization lines are sufficient to lead us close to the results
presented in [Pozar, 1987].
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Figure 3.4: Convergence of the DMM computations on the real part of the resonant frequency vs.
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Figure 3.6: Resonant frequency and bandwidth versus substrate thickness (electric anisotropic
material).

Next, Fig. 3.6 and 3.7 show the real part of the resonant frequency (f ′), the imaginary part
(f ′′) of the resonant frequency and the bandwidth (2f ′′/f ′) of the microstrip patch antenna
on uniaxial electric and uniaxial magnetic anisotropic substrate, respectively. The material
parameters used for the electric anisotropic substrate in Fig. 3.6 are εx = εz = 2.43 (for
isotropic), εx = 2.43, εz = 1.62 (negative uniaxial), εx = 2.43, εz = 4.86 (positive uniaxial)
and µx = µz = 1. The material properties used for the magnetic anisotropic substrate in
Fig. 3.7 are µx = µz = 2.4 (for isotropic), µx = 4.8, µz = 2.4 (negative uniaxial), µx = 1.2,
µz = 2.4 (positive uniaxial) and εx = εz = 1. The figures compare the results for isotropic,
negative uniaxial anisotropic and positive uniaxial anisotropic substrates with Pa = 19 mm,
Pb = 22.9 mm, Sa = 4Pa and Sb = 4Pb. They also show the influence of substrate thickness
on the resonant frequency and bandwidth. The responses are in good agreement with the
open literature [Hassad et al., 2014]. We have used only 4 e-lines in the x- and y-directions
both on a quarter of the patch to obtain the shown results.
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Figure 3.7: Resonant frequency and bandwidth versus substrate thickness (magnetic anisotropic
material).

3.2.1.2 Radiation Pattern

The presented formulation computes the current densities on the points of discretization on
the metallizations. This is done by calculating the eigenvector of the square matrix Gred.
Afterwards, we compute the current components in spectral domain using

J̃x = Jx expj(kxx′+kyy′), (3.22)

J̃y = Jy expj(kxx′+kyy′), (3.23)

where (x′, y′) denotes the location of the current point and Jx and Jy denotes the surface
current densities in spatial domain. We consider each current element point to be a Hertzian
dipole and use them to find the tangential electric fields using (2.32). For this, we calculate
the Green’s function with respect to stationary values of the wave numbers. Therefore, we
represent the electric fields produced by dipoles, in spectral domain, byẼx

Ẽy

 =

G̃xx G̃xy

G̃yx G̃yy

Jx expj(kxx′+kyy′)

Jy expj(kxx′+kyy′)

 , (3.24)

where
kx = cosφ sin θ, (3.25)

ky = sinφ sin θ, (3.26)

with φ and θ representing the spherical coordinates.
We obtain the far field radiation pattern on summation of the fields radiated by each

radiator. We do it with the help of the method of stationary phase (MSP) described in
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Figure 3.8: Radiation pattern (E-plane) for antenna electric anisotropic substrate.

[Collin and Zucker, 1969] which gives the relation between the spectral domain electric field
components on the patch and the far-zone radiation field in spherical coordinates. We can
express the relation as

Eθ ' Ẽx cosφ+ Ẽy sinφ, (3.27)

Eφ ' (Ẽy cosφ− Ẽx sinφ) cos θ. (3.28)

Fig. 3.8 presents the variation of the radiation pattern, when we have considered isotropic,
negative uniaxial electric anisotropic and positive uniaxial electric anisotropic substrates for
φ = 0◦. The data used for the analysis are εx = εz = 5 (for isotropic), εx = 5, εz = 3.6
(negative uniaxial), εx = 5, εz = 6.4 (positive uniaxial) and µx = µz = 1. We have taken the
antenna element with Pa = 15 mm, Pb = 10 mm, d = 2 mm, Sa = 4Pa and Sb = 4Pb. The
figure shows the influence of anisotropy present in the substrate on the radiation pattern.
It follows the same pattern as previously presented for the resonant frequency in Fig. 3.6.
It is in good agreement with the results published by Boufrioua [2011] which says that
the radiated power increases with negative uniaxial electric anisotropy and decreases with
positive one [Barkat et al., 2017].

3.2.1.3 Input Impedance

We have calculated the input impedance of the antenna by the method explained in [Heckler,
2010]. We feed the microstrip patch with the transmission line and use a δ-gap generator
for the voltage to excite the transmission line [Davidovitz and Lo, 1989]. We present the
geometry of the analyzed structure in Fig. 3.9. From the figure, it is clear that we consider
the isolated segment of transmission line to be twice of the feeding line and feed it in
the middle. In this way, the impedance of the stub becomes half of the input impedance
of the whole transmission line. Therefore on subtracting the stub impedance from the
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3.2 Numerical Results

whole structure impedance, we get the actual input impedance of the antenna fed with the
microstrip transmission line.

We have done the DMM computations on considering only half of the structure using
H-wall symmetry as shown in Fig. 3.9. We have taken the electric anisotropic substrate
with εx = 2.33, εz = 4, µx=µz = 1 and d = 1.57 mm. We have fed the patch antenna
element with Pa = 7.6 mm and Pb = 9.6 mm with transmission line of length lf = 7.04
mm and width w = 1.52 mm. We have placed the ABC walls along the substrate with
Sa = Pa+2×9 mm, Sb = Pb+2×9 mm and have used 4 e-lines in x-direction and 8 e-lines in
y-direction on patch while analyzing the structure. Fig. 3.10 gives the comparison between
the results from DMM and ANSYS HFSS. We have observed good agreement between the
predictions from both methodologies.

��

Patch

Open stub

ABC

ABC

ABC

ABC

H-wall 
symmetry

��

��
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Feeding line 

Voltage gap

�

��

Figure 3.9: Geometry for the computation of input impedance.

3.2.2 Patch Antenna with Metamaterial Substrate

Metamaterials are built with periodic structures of unit cells which have average size smaller
than the influenced wavelength. The dispersive properties of the substrate change due to
the presence of metallic structures in the material [Weng et al., 2008]. Therefore, we have
further applied the DMM method to analyze a patch antenna with 2×2 cells metal grid in
the substrate. We place the metal grid, which consists of square lattices, in the middle of
the two dielectric layers. The analyzed structure is in accordance with Fig. 3.11. We place
the radiating element on the top layer and the ground plane below the bottom layer. We
also provide the general idea of 2D discretization for the proposed structure in the figure.
The location of the field and current components has a shift of half discretization distance,
i.e., ∆x/2 or ∆y/2.

The structure consists of three dielectric layers with two metallized interfaces. After
using the FWEC and simple network analysis techniques, we obtain the system equation
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Figure 3.10: Input impedance of a microstrip patch antenna.

in the form J̃1

J̃2

 =

L̃11 L̃12

L̃21 L̃22

Ẽ1

Ẽ2

 or J̃ = L̃Ẽ. (3.29)

We must then convert the obtained equation into the spatial domain as given in (3.12)

using (3.13), since we know L̃ = G̃
−1

.
We have analyzed the proposed antenna with Pa = Pb = 45 mm, a = 72 mm, b = 63

mm, Sa = Sb = 165 mm, d1 = d2 = 2 mm, εr1 = 2.65 and εr2 = 1 for 1 to 6 GHz frequency
band. The structure is open from the top. Table 3.3 compares the obtained results from
DMM and ANSYS HFSS. For DMM, we have analyzed only one quarter of the structure
with limited number of discretization lines to obtain the resonant frequency. We have used
4 e-lines in x-direction and 6 e-lines in y-direction on the patch for the analysis. From
the table, it is clear that presence of metal-grid in the substrate changes the properties of
antenna and makes it suitable for multi-band systems.
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Figure 3.11: Side and top view of antenna with discretization.

Table 3.3: Resonant frequency.

Method
Resonant Frequency (GHz)

Conventional antenna Antenna with metagrid

HFSS 2.45, 4.95, 5.40
2.03, 2.27, 2.60, 2.69, 3.09,

3.42, 3.98, 4.62, 5.23, 5.62

DMM 2.40, 5.52
2.22, 3.38, 3.93, 4.52,

5.21, 5.81
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4 Analysis of Transmission Lines with
Anisotropic Quasi-planar Dielectric Layers

Microstrip structures are very widely used in antennas and microwave devices for navi-
gation and communication systems in transport, aeronautics and space. Often there is a
need to integrate them into the surface of aircrafts, satellites and vehicles, which leads to
the structures to be conformal [Yinusa, 2018]. New, lightweight materials (e.g., CFRP),
exhibiting multilayers with anisotropic behavior, are used more widely. Since the substrate
material strongly affects the properties of the structures, the microwave circuit elements
need to be modeled very precisely and fast numerical procedures are required to predict
their characteristics.

In the literature, we can find work done for analyzing waveguides with arbitrary cross-
section using different methods. For example, Horikis [2013] used the finite difference
technique, Yee and Audeh [1965] used the point matching technique, She [1989] used the
iterated moment method and Yang and Pregla [1996] used the method of lines (MoL) to
analyze conformal structures.

The conformal transmission lines with quasi-planar substrate were examined earlier using
the discrete mode matching (DMM) method but with isotropic media [Dreher and Ioffe,
2000]. Ioffe et al. [2003] employed the method to 3D structures with non-planar layers. The
present chapter extends this method to analyze quasi-planar transmission line structures
with anisotropic materials. The shape of the interfaces can be defined by a suitable equation,
from which the slope at each discretization point can be calculated. Consequently, the field
components are determined for each sampling point in the interfaces with varying slope.
Then the Green’s function (or system equation) is derived using a full-wave equivalent
circuit (FWEC) in the spatial domain.

Chapter 1 has already discussed the formation of hybrid-matrices for uniaxial anisotropic
layers. In this chapter, we derive the hybrid-matrix elements for biaxial anisotropic dielec-
tric layers. For a biaxial medium, there are two optical axes in different directions and two
polarized propagating waves. Both waves are extraordinary waves and have orientation
perpendicular to each other [Zhang and Li, 1998].

We demonstrate the application by computing propagation constants for a quasi-planar
waveguide and a stripline having uniaxial or biaxial anisotropic dielectric layers and verify
the results from DMM with those obtained with commercial software, ANSYS HFSS. This
chapter is based on [Kamra and Dreher, 2018e, 2019d].

4.1 Formulation in the Spatial Domain

4.1.1 Field Relations

We depict the general cross-section of the microwave structure with arbitrarily shaped
dielectric layers in Fig. 4.1. Here we consider several microstrip lines in the interfaces of
the dielectric layers. For the present analysis, we take the stratification of the structure
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Figure 4.1: Quasi-planar multilayered microwave structure with anisotropic media.

in z-direction and the wave propagation (exp(−jkyy)) in y-direction. The permittivity
(¯̄ε = ε0 ¯̄εr) and permeability (¯̄µ = µ0 ¯̄µr) tensor of the biaxial anisotropic dielectric layer can
be written with

¯̄εr =


εx 0 0

0 εy 0

0 0 εz

 , (4.1)

¯̄µr =


µx 0 0

0 µy 0

0 0 µz

 . (4.2)

It is mentioned by Krowne [1984] that we should begin our analysis by taking any two
independent field components. Hence, we start our analysis with two scalar fields Ey and
Hy. From the source-free Maxwell’s equations normalized by the free-space wave number
k0, the relations between the field components can be written as

(
∂2

∂y2
+ εxµz)

Ex
Hz

 =

 ∂
∂x

∂
∂y jµz

∂
∂z

jεx
∂
∂x

∂
∂y

∂
∂z

Ey
Hy

 , (4.3)

(
∂2

∂y2
+ εzµx)

Ez
Hx

 =

 ∂
∂y

∂
∂z −jµx ∂

∂x

−jεz ∂∂z
∂
∂x

∂
∂y

Ey
Hy

 , (4.4)
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where η0Hx,y,z is replaced by Hx,y,z with η0 =
√
µ0ε0. After applying the Fourier transform,

we obtain two coupled second-order differential equations

d2

dz2
Ẽy + aẼy + b

d

dz
H̃y = 0 (4.5)

d2

dz2
H̃y + cH̃y + d

d

dz
Ẽy = 0 (4.6)

where

a = qεyµx −
qµx
pµz

k2x (4.7a)

b = jkxky

(
qµx
pεxµz

− 1

εz

)
(4.7b)

c = pεxµy −
pεx
qεz

k2x (4.7c)

d = jkxky

(
1

µz
− pεx
qεzµx

)
(4.7d)

p = 1−
k2y
εxµz

(4.7e)

q = 1−
k2y
εzµx

. (4.7f)

From (4.5) and (4.6), we can conclude that TEy and TMy modes cannot exist for the
biaxial case. On elimination of the other coupled field component H̃y or Ẽy from (4.5) or
(4.6), respectively, we get a fourth-order differential equation(

d4

dz4
+ (a+ c− bd)

d2

dz2
+ ac

)
ψ̃ = 0, (4.8)

with ψ̃ = Ẽy or H̃y. The four analytical solutions (±kz(1,2)) can be computed from (4.8)
with

k2z(1,2) = −(
a+ c− bd

2
)± 1

2

√
(a+ c− bd)2 − 4ac, (4.9)

where the field solution is with d2/dz2 = k2z . When we take ψ̃ = H̃y, then the solution can
be written as

H̃y = Aekz1z +Be−kz1z + Cekz2z +De−kz2z. (4.10)

From (4.6), we can write

Ẽy = −1

d

∫ [
d2H̃y

dz2
+ cH̃y

]
dz. (4.11)

Therefore combining (4.10) and (4.11), we get

Ẽy = − PA
kz1d

ekz1z +
PB

kz1d
e−kz1z − QC

kz2d
ekz2z +

QD

kz2d
e−kz2z, (4.12)

where P = k2z1 + c and Q = k2z2 + c.
For the uniaxial case with optical axis in y-direction, the variables b and d become zero in

(4.5) and (4.6), respectively. Therefore, we get two uncoupled differential equations which
can be solved as explained in Chapter 2 and in [Kamra and Dreher, 2018d]. Similarly,
the independent field components should be Ex, Hx and Ez, Hz for the optical axis in
x- and z-directions, respectively. The isotropic case can be solved with either pair of the
independent field components.
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Figure 4.2: Field components at quasi-planar interface.

4.1.2 The Discrete Mode Matching Method

We assume the structure to be infinite in the propagation direction, so we need just 1D
discretization along x for the analysis of a multilayered microstrip line as shown in Fig. 4.1.
We sample the field components at N equidistant points xj between the lateral walls. In
the figure, e-lines show the position of the Ey and h-lines the position of the Hy field
component. The modal expansion of field components having N modes discretized by N
samples is given by

ψj(xj , z) =
N∑
i=1

τx(kxixj)ψ̃i(kxi, z) or ψ = T ψ̃. (4.13)

Here T is the transformation matrix (Fourier series elements) using the exact eigensolutions
τx(kxixj) (Table 2.1) of the Helmholtz equation which are dependent on the lateral boundary
conditions and i denotes the index of the modes while j denotes the index of the samples.

We assume that for an arbitrary layer k the cross-section is constant in the y-direction.
Therefore Ey and Hy are tangential to the interfaces along the whole x-direction. The quasi
planar nature of the layers at the interfaces is in x-direction. Therefore the other tangential
fields become Etx and Htx. Fig. 4.2 clarifies the tangential field component calculation and
the components are represented as

Etxk = Exk cosαxh + Ēzk sinαxh , (4.14a)

Htxk = Hxk cosαxe + H̄zk sinαxe . (4.14b)

Here αx(e,h) = arctan(df(x)/dx) is the inclination angle at the interface with the x-axis at
e- or h-line, with f(x) representing the interface. From (4.3)-(4.4), we can say that for 1D
discretization the Ez, Ey and Hx (or Hz, Hy and Ex) components are sampled at the same
position. To determine Etx, we must calculate Ex and Ez at the same location. Therefore,
we use Ēz in (4.14a) which is the mean of the adjacent sampled values of Ez. Similarly, we
calculate H̄z from the mean of the adjacent sampled values of Hz.

We can determine the hybrid matrix of the dielectric layer in a similar way as explained
in Chapter 2, but for quasi planar structures, we should deal with the equations in spatial
domain (4.3)-(4.4) rather than in spectral domain. Therefore, we obtain the discretized
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field relations for layer k in matrix form as
Etxk

Htxk

Eyk

Hyk

 =


QA
txk

QB
txk

QC
txk

QD
txk

GA
txk

GB
txk

GC
txk

GD
txk

QA
yk

QB
yk

QC
yk

QD
yk

GA
yk

GB
yk

GC
yk

GD
yk




Ak

Bk

Ck

Dk

 . (4.15)

Now to obtain the relation between the tangential fields at the interfaces k − 1 and k
bounding the layer k, we writeEk−1

Hk−1

 = Mk−1F ,

Ek

Hk

 = MkF , (4.16)

Mk =


QA
txk

QB
txk

QC
txk

QD
txk

QA
yk

QB
yk

QC
yk

QD
yk

−GA
yk
−GB

yk
−GC

yk
−GD

yk

GA
txk

GB
txk

GC
txk

GD
txk

 , (4.17)

and take the notations of the fields and coefficients in the matrix form as

Ek =

Etxk

Eyk

 , Hk =

−Hyk

Htxk

 , F =


Ak

Bk

Ck

Dk

 . (4.18)

The full expressions of the terms in (4.17) are given in Appendix B. After eliminating the
unknown coefficient column matrix F , this results inEk−1

Hk−1

 = Kk

Ek

Hk

 . (4.19)

The hybrid matrix (Kk) for layer k can be represented as

Kk = Mk−1M
−1
k =

V k Zk

Y k Bk

 . (4.20)

As shown in Fig. 4.3, the matrix Kk relates the tangential fields at the top and bottom of
the interfaces of the layer k in the spatial domain. The system equation can be formed by
using this FWEC, network analysis techniques and the continuity equations on the interfaces
to match the fields. Then the boundary conditions which state that the tangential electric
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Figure 4.3: Full-wave equivalent circuit of a general planar microwave structure in spatial domain.

field components must vanish on the metallizations and the electric currents outside that
region must be applied. We obtain the reduced system equation as

GredJ red = 0 or LredEred = 0, (4.21)

which can be solved as an indirect eigenvalue problem (det(Gred) = 0 or det(Lred) = 0)
to find the propagation constants for the transmission lines. Here G = L−1 denotes the
Green’s function and Lred is equivalent to L in waveguides without metallizations, as there
are no currents on the interfaces.

4.2 Numerical Results

4.2.1 Waveguides

First, we have applied the DMM formulation to analyze a partially filled waveguide whose
inner layer is taken to be in triangular shape. The schematic is shown in the inset of Fig. 4.4.
The data used for the analysis are b = 6.35 mm, a = 2b, d = 0.5b, ¯̄εr1 = 9.4 or (9.4, 9.4,
11.6) or (9.4, 13, 11.6) and εr2 = 1. Fig. 4.5 gives the FWEC obtained from the structure
where K1 and K2 represent the hybrid matrices for the layer 1 and 2, respectively. From
the circuit, we can deduce the system equation as

(Z−11 V 1 +B2Z
−1
2 )E1 = 0 or LE1 = 0, (4.22)

where E1 represents the tangential electric fields at the interface between the two dielectric
layers.

Fig. 4.4 shows the dispersion curves, normalized by k0, obtained after solving the eigen-
value problem. For the present computation, we have analyzed only half of the structure
due to symmetry and have used 17 e-lines to discretize it. The results agree well with the
results obtained from ANSYS HFSS. Then, Fig. 4.6 demonstrates six higher order modes
computed for the biaxial case of the waveguide shown in the inset of Fig. 4.4. The figure
validates the DMM results with the commercial software.

Then, we have changed the inner interface within the waveguide with the function

f(x) = 0.05b(1 + exp(−u2(x/a− 0.5)2)), (4.23)

and have analyzed the structure with the following parameters: b = 7.5 mm, a = 2b,
¯̄εr1 = 8.875 or (8.875, 8.875, 15) or (8.875, 10, 15) and εr2 = 1. The shape of the interface
varies with the different model parameters u as shown in Fig. 4.7. Fig. 4.8 gives the
computed values of the normalized propagation constant with varying u. We have used
22 e-lines for discretizing half of the structure. The figure compares the DMM results for
the isotropic, uniaxial and biaxial anisotropic medium with the results from the HFSS. We
have computed the results at 30 GHz frequency.
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Figure 4.4: Dispersion curve for the partially filled waveguide with triangular dielectric layer.
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Figure 4.5: Full-wave equivalent circuit for the quasi-planar waveguide.
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Figure 4.8: Normalized propagation constant as a function of the model parameter u of the inter-
face present in the quasi-planar waveguide shown in inset.

4.2.2 Microstrip Line

Next, we have analyzed a microstrip line where the strip is placed on the inner interface of
the structure shown in Fig. 4.8. The inner layers of the structure are taken with relative
permittivity ¯̄εr1 = 8.875 or (8.875, 8.875, 10) or (8.875, 9, 11) and εr2 = 1. The cross
section of the structure is with b = 7.5 mm, a = 2b, and has a strip width w = 0.25a.
Fig. 4.9 clearly shows the variation of the strip with the interface. We obtain the FWEC of
the quasi-planar stripline as depicted in Fig. 4.10. The system equation for the two-layer
microstrip line takes the form

(Z−11 V 1 +B2Z
−1
2 )E1 = J1 or LE1 = J1, (4.24)

where J1 gives the currents on the strip.
Fig. 4.11 shows the computed results at 30 GHz frequency with DMM and HFSS. For the

DMM computation, we have used 12 e-lines on half of the strip for the isotropic and uniaxial
case and 6 e-lines for the biaxial case. In HFSS, the consumed time span for the analysis
at each u-point varied between 26 seconds to 1 hour, while with the DMM formulation it
was between 10 to 12 seconds. We have used the same number of segments for all values
of u in HFSS and also the same number of discretization lines in DMM to clearly interpret
the curvy interface. However, HFSS needs more mesh elements and computation time to
smoothly analyze the interface with higher value of u, while for DMM, the computation
time does not vary much for different values of u. With the same number of discretization
lines, it depends only on how much time is needed to calculate the roots of the eigenvalue
problem.
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5 Analysis of Cylindrical and Quasi-cylindrical
Structures with Uniaxial Anisotropy

In the former chapters, we have discussed the analysis of planar structures and quasi-planar
structures with Cartesian coordinate system. Our next goal is to deal with a cylindrical
coordinate system which helps us to easily deal with conformal structures.

In the field of navigation and communication systems, we need to integrate transmission
lines on circular, elliptical or any quasi-circular surfaces of aircrafts, satellites and vehicles,
or to feed conformal antennas [Yinusa, 2018; Naser-Moghaddasi et al., 2010], which leads
to the development of conformal transmission line structures. Over the past few decades,
anisotropic materials have widely been used in the field of microwave and optical engineering
due to the technological advancements, which is also evident from the fact that several
authors have stressed the use of anisotropy in the material [Tonning, 1982; Lindell and
Oksanen, 1984; Oksanen and Lindell, 1989] for conformal structures. Hence, it is important
to exactly characterize the anisotropic material profile and to develop efficient techniques
to model the conformal microwave circuit elements precisely.

In this chapter, the focus is on analyzing cylindrical or quasi-cylindrical structures with
numerous anisotropic thin layers as shown in Fig. 5.1, where F̃ denotes the field components
at the interfaces. Different approaches to analyze conformal structures have been discussed
in the open literature [Oksanen and Lindell, 1989; Medina and Horno, 1990; Shibayama
et al., 2000; Pregla and Conradi, 2003; Kusiek et al., 2015]. Here, we make use of the
full-wave equivalent circuit (FWEC) to model the conformal multilayered structure with
electrically or magnetically, or both, uniaxial anisotropic material, where each dielectric
layer is represented by a hybrid block (or K-matrix). This matrix relates all the tangential
field components at the interfaces of the layer (Fig. 5.2). We describe the general derivation
of the hybrid-matrix elements for anisotropic dielectric layers in a cylindrical coordinate
system, which gives the flexibility to analyze different conformal interfaces not just circular
or elliptical.

To deal with cylindrical interfaces, it is sufficient to begin the analysis in spectral domain
as explained for planar structures in Chapter 2. For quasi-cylindrical interfaces, we should
however adopt spatial domain analysis to calculate the field components on the exact shape
of the interfaces. Therefore, in the following sections the method is explained in both
spectral and spatial domain for the analysis of cylindrical and non-cylindrical structures,
respectively.

First we demonstrate the application of this extended equivalent circuit by analyzing
graded-index fibers and finding their propagation constants with different profiles. Here,
we model the graded-index core by a stratified structure which consists of several layers
with varying indices of refraction like staircases following the base profile. Then we discuss
the application of the DMM method to elliptical transmission lines with 1D discretization.
Lastly, we demonstrate the application for 2D discretization by analyzing a microstrip
patch over the most common quasi-circular cylinder, i.e., elliptical cylinder. We validate
the numerical results obtained from DMM by comparing them with the ones obtained with
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Figure 5.1: Schematic view of the anisotropic stratified dielectric for cylindrical structures.
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Figure 5.2: Full-wave equivalent circuit of a general microwave structure with stratified dielectric.
The structure is considered to be open from bottom and top both.

commercial software, i.e., ANSYS HFSS and/or CST Microwave Studio. This chapter is
based on [Kamra and Dreher, 2019b,c].

5.1 Formulation for the Transmission Line Structures

5.1.1 Field Relation

To characterize the anisotropic medium, the analysis starts from the permittivity (¯̄ε = ε0 ¯̄εr)
and permeability (¯̄µ = µ0 ¯̄µr) tensor with optical axis in z-direction, where

¯̄εr =


εt 0 0

0 εt 0

0 0 εz

 , ¯̄µr =


µt 0 0

0 µt 0

0 0 µz

 . (5.1)

We write the Maxwell’s equations in cylindrical coordinates and for a source-free and ho-
mogeneous medium in their differential form by

∇× ~E(ρ, φ, z) = −jωµ0 ¯̄µr · ~H(ρ, φ, z), (5.2a)

∇× ~H(ρ, φ, z) = jωε0 ¯̄εr · ~E(ρ, φ, z), (5.2b)

where ~E and ~H are electric and magnetic field vectors, ω is the angular frequency, µ0 the
free-space permeability and ε0 the free-space permittivity. In cylindrical coordinates, we
write

~E(ρ, φ, z) = Eρ(ρ, φ, z)ρ̂+ Eφ(ρ, φ, z)φ̂+ Ez(ρ, φ, z)ẑ, (5.3)

with ρ̂, φ̂ and ẑ denoting the unit vectors along ρ, φ and z coordinates, respectively. To
simplify the analysis, space variables are normalized by the free-space wave number k0, and
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η0 ~H is replaced by ~H, where η0 =
√
µ0/ε0, is the intrinsic impedance of the free space. So

in the extended form, Faraday’s law (5.2a) gives the field relations as

1

ρ

∂

∂φ
Ez −

∂

∂z
Eφ = −jµtHρ, (5.4a)

∂

∂z
Eρ −

∂

∂ρ
Ez = −jµtHφ, (5.4b)

1

ρ

∂

∂ρ
(ρEφ)− 1

ρ

∂

∂φ
Eρ = −jµzHz. (5.4c)

Next on taking Ampere’s law (5.2b), the expressions are

1

ρ

∂

∂φ
Hz −

∂

∂z
Hφ = jεtEρ, (5.5a)

∂

∂z
Hρ −

∂

∂ρ
Hz = jεtEφ, (5.5b)

1

ρ

∂

∂ρ
(ρHφ)− 1

ρ

∂

∂φ
Hρ = jεzEz. (5.5c)

As the optical axis is in z-direction, we can assume Ez and Hz as two independent field com-
ponents. Therefore on rearranging (5.4)-(5.5), the other field components can be calculated
using the relation

(
∂2

∂z2
+ εtµt)


Eρ

Hρ

Eφ

Hφ

 =


∂
∂ρ

∂
∂z − jµt

ρ
∂
∂φ

jεt
ρ

∂
∂φ

∂
∂ρ

∂
∂z

1
ρ
∂
∂φ

∂
∂z jµt

∂
∂ρ

−jεt ∂∂ρ
1
ρ
∂
∂φ

∂
∂z


Ez
Hz

 . (5.6)

5.1.2 Interface Condition

Consider a dielectric where the layers are stratified in ρ-direction as shown in Fig. 5.1,
in which the arbitrary layer k is bounded by the interfaces k − 1 and k. The pertinent
source-free differential equation can be written as

∇2ψ −∇(∇ · ψ) + ¯̄µr · ¯̄εr · ψ = 0, (5.7a)

or
∇2ψ +K2ψ = 0. (5.7b)

In cylindrical coordinates we obtain(
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂φ2
+ ρ2

(
∂2

∂z2
+K2

))
ψ(ρ, φ, z) = 0, (5.8)

where ψ represents each of the independent electromagnetic field components, i.e., Ez and
Hz and K represents propagation constant of the medium. We assume the propagation in
z-direction and the cross-section does not vary in this direction. Therefore, we write

ψ(ρ, φ, z) = ψ(ρ, φ)e−jkzz. (5.9)
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5 Analysis of Cylindrical and Quasi-cylindrical Structures with Uniaxial Anisotropy

After introducing (5.9) in (5.8) and taking the derivative with respect to z, we get(
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂φ2
+ (kρρ)2

)
ψ(ρ, φ) = 0. (5.10)

Using Fourier transformation, we can write the differential equation (5.10) with derivatives
with respect to one coordinate only. Therefore, transforming (5.10) into spectral domain
using modal expansion of the field components as in [Thiel and Dreher, 2002], leads to the
classic Bessel differential equation(

ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
− νi2 + (kρρ)2

)
ψ̃(ρ, νi) = 0, (5.11)

with k2ρ = (K2 − k2z) and νi denotes the spectral variable in φ-direction for mode i. Here,
in the anisotropic case the propagation constant K has two roots [Li et al., 2001], which
have to be taken into consideration. One represents TE waves (ordinary waves) and the
other represents TM waves (extraordinary waves). Therefore the dispersion relation for Ez
or TM mode is obtained as

kρe =

√
εz
εt

(µtεt − k2z), (5.12)

and for Hz or TE mode as

kρh =

√
µz
µt

(µtεt − k2z). (5.13)

5.1.2.1 Spectral Domain

As ψ̃ represents column matrices of two independent field components (with all the modal

values), i.e., Ẽz, H̃z, the solution of (5.11) within an arbitrary layer k can be written in
the form

Ẽzk = AkJν(kρekρ) +BkYν(kρekρ), (5.14a)

H̃zk = CkJν(kρhkρ) +DkYν(kρhkρ), (5.14b)

or

Ẽzk(ρ, νi) = AkiJνi(kρekρ) +BkiYνi(kρekρ), (5.15a)

H̃zk(ρ, νi) = CkiJνi(kρhkρ) +DkiYνi(kρhkρ). (5.15b)

Here Jν and Yν denote the matrices of Bessel functions of first and second kind, i.e., Jν and
Yν respectively, after modal expansion. Now, take the field relations and their derivatives
at the interfaces k and k− 1. Then, on eliminating the unknowns Ak, Bk, Ck and Dk, the
relation for the field components at the interfaces of the layer k with normalized thickness
dk can be written as

∂

∂ρ

ψ̃k−1
ψ̃k

 = p̂νk

 r̄νk 2
πI

− 2
πI q̄νk

ψ̃k−1
ψ̃k

 . (5.16)
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On transforming (5.6) using Fourier transformation, we get the other field components in
spectral domain in matrix form as

Ẽρ = −jkz
εdt

∂

∂ρ
Ẽz −

jµtν

ρεdt
H̃z, (5.17a)

H̃ρ =
jεtν

ρεdt
Ẽz −

jkz
εdt

∂

∂ρ
H̃z, (5.17b)

Ẽφ = − kzν
ρεdt

Ẽz +
jµt
εdt

∂

∂ρ
H̃z, (5.17c)

H̃φ = −jεt
εdt

∂

∂ρ
Ẽz −

kzν

ρεdt
H̃z, (5.17d)

where εdt = εtµt − k2z .
Using (5.14) - (5.17), we can find the relation between the fields which are tangential to

the interfaces k − 1 (bottom) and k (top) of the dielectric layer k asẼk−1

H̃k−1

 = K̃k

Ẽk

H̃k

 , (5.18)

with the hybrid matrix

K̃k =

Ṽ k Z̃k

Ỹ k B̃k

 (5.19)

and

Ẽk = j

ρkẼφk

Ẽzk

 , H̃k = −

−H̃zk

ρkH̃φk

 . (5.20)

The components of the K̃-matrix are given as

Ṽ k =
π

2

−r̄νh −kzνε−1dt (r̄νh + q̄νe)

0 q̄νe


k

, (5.21a)

Z̃k =
π

2εt

−ε−1dt (k2zν
2pνe + µtεts̄νh) kzνpνe

kzνpνe −pνeεdt


k

, (5.21b)

Ỹ k =
π

2µt

 pνhεdt kzνpνh

kzνpνh ε−1dt (εtµts̄νe + k2zν
2pνh)


k

, (5.21c)

B̃k =
π

2

 q̄νh 0

kzνε
−1
dt (q̄νh + r̄νe) −r̄νe


k

, (5.21d)

where the subscript e is for a TM mode while h is for a TE mode. The explanation of other
terms are presented in the Appendix C.
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Figure 5.3: Discretization scheme for the non-circular transmission lines.

5.1.2.2 Spatial Domain with 1D Discretization

When the layers are not in perfect circular shape, then there is a need to apply the method
in spatial domain to determine the field components at the interfaces with varying slope. It
is assumed that the cross-section is constant in the z-direction, so there is a need of only 1D
discretization in φ-direction (Fig. 5.3). In terms of modal expansion, the general solution
of the Maxwell’s equations in the layer k can be written as

Ezk(ρ, φ, z) =
∞∑
i

[AkiJνi(kρekρ) +BkiYνi(kρekρ)]τ eφ(νi, φ)e−jkzz, (5.22a)

Hzk(ρ, φ, z) =

∞∑
i

[CkiJνi(kρhkρ) +DkiYνi(kρhkρ)]τhφ (νi, φ)e−jkzz, (5.22b)

where νi represents the eigenvalues (spectral variable in φ-direction) and τ e,hφ represent the
eigensolutions depending on the lateral walls bounding the domain. The eigensolutions are
well explained in [Heckler, 2010]. For convenience, we have summarized them in Appendix
C.

We discretize the structure with two-line systems as shown in Fig. 5.3, where e-lines show
the position of Ez and h-lines show the position of Hz field components. When the closed
structure is discretized with N e e-lines and Nh h-lines in φ-direction, then according to the
sampling theorem we should truncate the expansion of the field component Ez with N e

modes and Hz with Nh modes. Therefore, (5.22) can be written in truncated form as

Ezk(ρ, φe, z) =

Nf∑
i=Ni

[AkiJνi(kρekρ) +BkiYνi(kρekρ)]τ eφ(νi, φ
e)e−jkzz, (5.23a)
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Hzk(ρ, φh, z) =

Nf∑
i=Ni

[CkiJνi(kρhkρ) +DkiYνi(kρhkρ)]τhφ (νi, φ
h)e−jkzz, (5.23b)

where Ni and Nf are −0.5(N e,h − 1) and 0.5(N e,h − 1), respectively, for odd N e,h. When
we bound the computational domain with electric or magnetic walls then Ni becomes 0 or
1 and Nf becomes N e,h.

Because the quasi circular nature of the layers at the interfaces is in the φ-direction, the
field components (Ez and Hz) in z-direction remain tangential to the interfaces along the
whole φ-direction while the other tangential fields become Etφ and Htφ, and are represented
as

Etφk = Eφk cosαφh + Ēρk sinαφh , (5.24a)

Htφk = Hφk cosαφe + H̄ρkρ sinαφe . (5.24b)

Here, αφ = arctan(f(φ)−1df(φ)/dφ) is the inclination angle at the interface with the φ-
axis, with f(φ) representing the interface. From (5.6), we can say that for 1D discretization
(Fig. 5.3) Ez, Eρ and Hφ (or Hz, Hρ and Eφ) components are sampled at the same point.
As Eρ and Eφ are located on different lines, therefore Ēρ is calculated from the mean of
the adjacent values to get the field component in the same position as Eφ. Similarly, H̄ρ is
calculated.

On combining (5.6), (5.23) and (5.24), the tangential field components can be written in
matrix form as 

Etφk

Htφk

Ezk

Hzk

 =


QA
tφk

QB
tφk

QC
tφk

QD
tφk

GA
tφk

GB
tφk

GC
tφk

GD
tφk

QA
zk

QB
zk

QC
zk

QD
zk

GA
zk

GB
zk

GC
zk

GD
zk




Ak

Bk

Ck

Dk

 . (5.25)

The full expressions of the terms in (5.27) are given in Appendix C. Using (5.27), we write
the discretized field relations at the interfaces k− 1 and k bounding the layer k in the formEk−1

Hk−1

 = Mk−1F ,

Ek

Hk

 = MkF , (5.26)

where

Mk =


QA
tφk

QB
tφk

QC
tφk

QD
tφk

QA
zk

QB
zk

QC
zk

QD
zk

GA
zk

GB
zk

GC
zk

GD
zk

−GA
tφk

−GB
tφk

−GC
tφk

−GD
tφk

 , (5.27)

and take the notations of the fields and coefficients in matrix form as

Ek =

Etφk

Ezk

 , Hk =

 Hzk

−Htφk

 , F =


Ak

Bk

Ck

Dk

 . (5.28)

59



5 Analysis of Cylindrical and Quasi-cylindrical Structures with Uniaxial Anisotropy

After eliminating the unknown coefficient column matrix F , it results inEk−1

Hk−1

 = Kk

Ek

H̃k

 . (5.29)

Therefore, the hybrid matrix (Kk) for layer k can be represented as

Kk = Mk−1M
−1
k =

V k Zk

Y k Bk

 . (5.30)

5.1.3 System Equation

In order to derive the system equation for the multilayered cylindrical structures, we set up
an FWEC which consists of hybrid blocks (K̃k) as shown in Fig. 5.2. Each block represents
a corresponding dielectric layer in the structure. The inner and outer layers are terminated
with admittances Ỹ 0 and Ỹ n, respectively, whose expressions are given in Appendix C.
Several inner layers (without metallic strip) can be taken into account simultaneously by
simple matrix multiplication. From this we get the equivalent hybrid matrix as

Keq =
n−1∏
k=1

Kk, (5.31)

representing all the cascaded Kk matrices (Fig. 5.4). After applying the continuity equa-
tions in the interface k to match the fields we get the system equation in the form

GJ = E. (5.32)

There is no current on the interfaces of the waveguides, therefore the system equation
becomes

LE = 0. (5.33)

The propagation constant can be found on solving the indirect eigenvalue equation

det(L) = 0, (5.34)

where the elements of the matrix L = G−1 for multilayered structures can be calculated
from (2.42)-(2.43).

For stripline structures, after applying the network analysis technique and the boundary
conditions that the tangential electric field components must vanish on the metallizations
and the electric currents outside that region, we obtain the reduced matrix as

GredJ red = 0 or LredEred = 0. (5.35)

It can be solved as indirect eigenvalue problem det(Gred) = 0 or det(Lred) = 0 to find the
propagation constant for the microstrip line.

For structures with circular interfaces, spectral domain equations should be used to sim-
plify the calculations. For waveguides, (5.33) must be solved in spectral domain using
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(5.21). While for stripline structures, (5.35) must be solved, where the spectral domain
Green’s function is converted into spatial domain usingGφφ Gφz

Gzφ Gzz

 =

T h 0

0 T e

G̃φφ G̃φz

G̃zφ G̃zz

T−1h 0

0 T−1e

 . (5.36)

Here, the transformation matrices T e and T h are formed from τ eφ and τhφ , respectively.

5.2 Numerical Results

5.2.1 Graded-Index Fibers

We apply the developed procedure of multilayered cylindrical structures to analyze graded-
index fibers. Fig. 5.5 shows the schematic of the fiber. We approximate the core of the
structure by a step-index profile. After deciding on the number of layers (Mcore) taken to
model the profile, we calculate the outer radius of each layer from

ρk =
ρcore
Mcore

(k + 1). (5.37)

Here, k represents the integer number which varies from 0 to Mcore− 1 and ρcore represents
the radius of the core. We take the index profile in the same way as given by Heckler and
Dreher [2007a],

f(ρ) = n2max

[
1− 2∆

(
ρ

ρcore

)q]
, 0 ≤ ρ ≤ ρcore, (5.38)

where ∆ is the profile height and the value of q is 1 or 2 for linear and parabolic profiles,
respectively. We calculate the refractive index for each layer k as

n2k = f(ρnk), (5.39)

where

ρnk =
ρcore

2Mcore
(2k + 1) (5.40)

represents the radius at the middle of the layer.
Fig. 5.4 represents the reduced FWEC of the fiber after matrix multiplication of all the

inner layers. Thus, we obtain the total admittance (L̃) of the structure by simple circuit
analysis as

L̃ = (Ỹ 0Z̃eq + B̃eq)
−1(Ỹ 0Ṽ eq + Ỹ eq) + Ỹ n, (5.41)

where Ỹ 0 denotes the innermost layer (core) admittance, Ỹ n denotes the top open layer
admittance and B̃eq, Ṽ eq, Ỹ eq, and Z̃eq are the elements of the equivalent hybrid matrix

K̃eq of the inner layers. The propagation constant of the fiber can be found on solving the
indirect eigenvalue problem

det(L̃) = 0. (5.42)

First, we have analyzed the fiber with both linear and parabolic profile with nmax =
(3.098, 3.098, 3.098

√
α) and nclad = (1.52, 1.52, 1.52

√
α), where α is the anisotropy ratio

in the material. Therefore, we define the material by εr = n2 and µr = 1. We take
the structure open at the top, so we can model it by an air layer extending to ∞. Fig. 5.6
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Figure 5.4: Full-wave equivalent circuit of a stratified structure after matrix multiplication.
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Figure 5.5: Schematic view of the equivalent model for a graded-index fiber with anisotropic ma-
terial.

shows the normalized propagation constants of the HE11 mode for both linear and parabolic
profiles with normalized ρcore = 0.45 and ρclad = 7ρcore. The figure compares the results
with ANSYS HFSS and CST for Mcore = 2, 5, and 10. The results from HFSS are slightly
below from the ones with our code and the results from CST are slightly above, but in very
good agreement. However, the commercial codes were not able to handle significantly more
than 10 layers in a reasonable time.

We have done the programming of the code in MATLAB and have performed all the
simulations on Intel i7-6600U CPU @2.6 GHz processor. When we have modeled the fiber
core with 10 layers, the computation time with the FWEC was 0.16 seconds, whereas the
same simulation took 25 seconds with HFSS (port mode calculation) and 27 seconds with
CST (time-domain solver with port modes only). We have used open boundary conditions
in CST and waveguide port excitation for both HFSS and CST. With Mcore = 10,000 in
the fiber, the elapsed time with FWEC computation was 12.16 seconds.
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Figure 5.6: Normalised propagation constants of the first mode (HE11) for different number of
layers used to model the core of graded-index fiber with anisotropic material (α = 2).

5.2.2 Elliptical Waveguide

To verify the DMM formulations for non-circular interfaces of the stratified dielectric in
microwave structures, we have started with analyzing a simple elliptical waveguide. The
waveguide comprises 2 layers, one is an elliptical core and the other is air surrounding
that core. Fig. 5.7 presents the schematic view of the analysed waveguide, with different
values of the normalized frequency VB = Bk0

√
εr,core − εr,air. We have taken the material

of the core with εr,core = (1.539)2 for the isotropic and ¯̄εr,core = ((1.539)2, (1.539)2, (1.25)2)
for the anisotropic case. We have assumed the normalized frequency for both cases with
εr,core = (1.539)2. We have done the analysis with axial ratio (AR = B/A) of the waveguide
at 0.5 for the isotropic case and 0.5 and 0.8 for the anisotropic case. We obtain the total
admittance of the structure as

L = Y 0 + Y 1, (5.43)

where Y 0 denotes the admittance of the core and Y 1 denotes the admittance of the air
surrounding the core.

Fig. 5.8 plots the dispersion curve for the first two modes i.e. oHE11 and eHE11 at 2 GHz
frequency. The figure shows very good agreement with the various approaches shown in
Heckler and Dreher [2007b] for the isotropic case and also with the ANSYS HFSS and CST
for both the isotropic and the anisotropic case. Fig. 5.9 and Fig. 5.10 show the electric and
magnetic field distribution for both modes at the cross section of the waveguide at VB = 1.6
and AR = 0.8 for the anisotropic case.

5.2.3 Elliptical Stripline

Here, the DMM formulation is used to analyze conformal stripline structures. First we
consider the case of a stripline, where the top ground is taken to be in elliptical shape. We
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Figure 5.8: Dispersion curve of elliptical waveguide.
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Figure 5.9: Distribution of the total electric field for the elliptical waveguide.
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Figure 5.10: Distribution of the total magnetic field for the elliptical waveguide.
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Figure 5.11: Propagation constants of striplines with elliptical top ground.

have done the simulations with the parameters: ρ1 = 11.72 mm ρ0 = 10.98 mm, B = 16.23
mm, W = 5.37(ρ1 − ρ0), εr2 = 1, µr2 = 1, εr1 = 3 and µr1 = 1 for the isotropic case, while
¯̄µr1 = (1, 1, 2) for the anisotropic case. From network analysis technique, we obtain the
system equation as (

Z−11 V 1 +B2Z
−1
2

)
E1 = J1. (5.44)

Fig. 5.11 shows the computed propagation constants for different cases of A. We have
achieved a very good agreement with the predictions from DMM and ANSYS HFSS.

Then, we have analyzed the microstrip line where the strip is coated on the elliptical
interface between substrate and air. We have done the computations with the same pa-
rameters as above with the elliptical top ground, while we have taken B = 11.72 mm and
φ = 20◦ for the microstrip line. Here, we obtain the system equation as(

Z−11 V 1 + Y 2

)
E1 = J1, (5.45)

where the first term Z−11 V 1 denotes that the structure is grounded at the bottom and the
second term Y 2 gives the admittance of the open top. Again the propagation constants
are computed for different values of A, as shown in Fig. 5.12. We can see from the graphs
that the DMM obtains smooth convergence. Fig. 5.13 shows the electric and magnetic field
distribution over the cross-section of the stripline at A = 12.18 mm for the anisotropic case.

Also, we have analyzed the microstrip line bounded by E-walls along the azimuth as
shown in Fig. 5.14. We have done the analysis with ρ0 = 11 mm, A = 1.2B and B varies
from 12 to 18 mm. Fig. 5.14 shows the dispersion curve of the structure with anisotropic
material (εr1 = 3, ¯̄µr1 = (1, 1, 2)). We have done all the calculations at 5 GHz frequency.
The HFSS time span was between 4 to 7.5 minutes for full structure simulation, while DMM
took between 9 to 11 seconds for analyzing half of the structure due to symmetry. We have
obtained very good results with only 4 e-lines on half of the strip.
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Figure 5.12: Propagation constants of microstrip lines with non-circular cross-section.
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Figure 5.14: Variation of the propagation constants with the dimension of the microstrip line with
non-circular cross-section.

5.3 Formulation for the 2D Discretization

Fig. 5.15 shows a multilayered structure with varying interfaces in both φ- and z-directions.
There is a need to apply lateral boundary conditions in two directions to enclose the domain.
Therefore, we can represent the general solution of Maxwell’s equations as

Ezk(ρ, φ, z) =
∞∑
i

∞∑
l

[AkilJνil(kρekρ) +BkilYνil(kρekρ)]τ eφ(νi, φ)τ ez (kzl, z), (5.46a)

Hzk(ρ, φ, z) =
∞∑
i

∞∑
l

[CkilJνil(kρhkρ) +DkijYνil(kρhkρ)]τhφ (νi, φ)τhz (kzl, z), (5.46b)

where νi and kzl are the eigenvalues and τ e,hφ and τ e,hz are the eigenfunctions depending on
the lateral walls bounding the domain. Here, kρe is for TE waves and kρh for TM waves
and can be represented as

kρe =

√
εz
εt

(µtεt − k2z) and kρh =

√
µz
µt

(µtεt − k2z). (5.47)

Fig. 5.16 gives the two-dimensional discretization scheme for the cylindrical coordinate
system. We take the position of the independent field components as e-lines and h-lines
for Ez and Hz, respectively, which are shifted with half discretization distance ((∆φ/2 or
∆z/2)) in φ- and z-direction. We bound the computational domain with N e

φ and N e
z number

of e-lines in φ- and z-directions and Nh
φ and Nh

z number of h-lines in φ- and z-directions

by placing some E-, H- or ABC-walls. Therefore, N e,h
φ and N e,h

z should be the number of
modes included in the modal expansion in φ- and z-directions, respectively. Then (5.46) in
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Figure 5.15: Multilayered structure with quasi-cylindrical interfaces.

truncated form becomes

Ezk(ρ, φe, ze) =

Ne
φ∑
i

Ne
z∑
l

[AkilJνil(kρekρ) +BkilYνil(kρekρ)]τ eφ(νi, φ
e)τ ez (kzl, z

e), (5.48a)

Hzk(ρ, φh, zh) =

Nh
φ∑
i

Nh
z∑
l

[CkilJνil(kρhkρ) +DkijYνil(kρhkρ)]τhφ (νi, φ
h)τhz (kzl, z

h). (5.48b)

The positions of the other field components can be identified using the relation given in
(5.6). A detailed study about positioning of the discretization lines on the metallization
is done in [Heckler and Dreher, 2016]. In case of symmetry in the metallization, there is
a need to only examine half or quarter of the structure. Appendix D covers the possible
cases with the positions of the field components.

Since the deformations in the structure can happen in both φ- and z-direction, we can cal-
culate the tangential field components at the interfaces by combining the field components.
We can write the obtained relation as

Etφk =Eφk cosαφh + Ēρk sinαφh , (5.49a)

Htφk =Hφk cosαφe + H̄ρk sinαφe , (5.49b)

Etzk =Ezk cosαze + Ēρk sinαze , (5.49c)

Htzk =Hzk cosαzh + H̄ρk sinαzh . (5.49d)

Here, αφ and αz are the inclination angles at the interface with the φ- and z-axes, respec-
tively. The tangential field components are sampled at the same points as Ez and Hz.
From Fig. 5.16 it is clear that the position of Eρ (eh-line) and Hρ (he-line) is different from
the position of Ez (e-line) and Hz (h-line) or Eφ ((h-line)) and Hφ (e-line), respectively.
Therefore, we take the average of the adjacent sampled values of Eρ and Hρ and represent
the average as Ēρ and H̄ρ.
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Figure 5.16: 2D discretization scheme for the interfaces of the structure.

After calculating the tangential field components at the interfaces and doing some ana-
lytical work, we can calculate the admittance/hyrid matrix for each layer. Then, on using
the FWEC and network analysis techniques we get the system equation in the form Gtφ Gtφtz

Gtztφ Gtz

J tφ
J tz

 =

Etφ

Etz

 or GJ = E. (5.50)

5.4 Numerical Results for Microstrip Patch with Elliptical
Substrate

We have applied the extended DMM method to analyze a microstrip patch with elliptical
substrate. We have fed the antenna with a conformal microstrip line as shown in Fig. 5.17.
Fig. 5.18 gives the FWEC obtained of the analyzed structure. The method to analyze
conformal antennas with voltage gap generators is well discussed in [Heckler and Dreher,
2011] and is similar to what is explained in Chapter 3. The dimensions used for the analysis
are B0 = 28.43 mm, B1 = 30 mm, A0 = B0/AR, A1 = B1/AR, Pa = 105◦, Pb = 52.78
mm and Wf = 4.71 mm. Here the axial ratio AR = B/A represents the ratio between the
minor and major axes of the ellipse. We have taken the material properties of the substrate
as εr1 = 2.2 and µr1 = 1 for the isotropic case, while ¯̄εr1 = (2.2, 2.2, 1.5) and ¯̄µr1 = (1, 1, 2)
for the anisotropic case.

Due to symmetry, we have analyzed only half of the structure with DMM. We have
calculated the absorbing boundary conditions using Higdon’s operator [Higdon, 1987] to
bound the structure in z-direction. We have discretized the structure with a limited number
of lines: 9 e-lines to discretize the patch in φ-direction, and 8 and 7 h-lines to discretize the
patch in z-direction, for AR = 1 and 0.833, respectively. The cross-section of the substrate
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Figure 5.17: Microstrip patch antenna with elliptical substrate.
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Figure 5.18: Full-wave equivalent circuit for microstrip patch antenna with elliptical substrate.
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Figure 5.19: S-parameters for the microstrip patch antenna with cylindrical substrate.

becomes cylindrical with AR = 1, therefore the system equation appears asGφ Gφz

Gz Gz

Jφ
Jz

 =

Eφ

Ez

 . (5.51)

The cross-section is elliptical with AR = 0.833 and there are no variations in z-direction.
We obtain the system equation asGtφ Gtφz

Gztφ Gz

J tφ
Jz

 =

Etφ

Ez

 (5.52)

or (
Z−11 V 1 +B2Z

−1
2

)−1
J1 = E1. (5.53)

Figures 5.19 and 5.20 show the S-parameters for the structure with AR = 1 and 0.833,
respectively. The figures compare the results computed from the DMM formulation with
the ones obtained from HFSS. A very good agreement has been obtained between them.
Figures 5.21 and 5.22 compare the computed input impedances for these antennas.
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Figure 5.20: S-parameters for the microstrip patch antenna with elliptical substrate.
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Figure 5.21: Input impedance of the patch with cylindrical substrate
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Figure 5.22: Input impedance of the patch with elliptical substrate.
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6 Analysis of Anisotropic Inhomogeneous
Transmission Lines

Planar dielectric waveguides are widely used in microwave and millimeter-wave circuits
using non-radiative dielectric (NRD) waveguide integrated technology [Wu and Han, 1997],
substrate integrated technology [Cassivi et al., 2002], and also in modern integrated optics
[Bulla et al., 2002]. The focus of this chapter is on inhomogeneous dielectric structures.
Various hybrid waveguides are shown in Fig. 6.1. These inhomogeneities are fabricated in
the fibers or optical waveguides to provide the desired confinement. Here the problem is
to characterize the media where the permittivity and/or permeability are space dependent.
It is desired by the design engineers that the dielectric waveguides must be accurately
modeled with efficient numerical procedures so that they have precise values of propagation
constants for these complex multilayered structures.

Several approaches are already used to precisely compute the propagation constants of
inhomogeneous waveguides, like Fourier decomposition in [Pashaie, 2007], method of lines
(MoL) in [Berini and Wu, 1996; Pregla et al., 1987], finite element method in [Lu and
Fernandez, 1993], variational method in [Akiba and Haus, 1982] and plane wave expansion
method in [Eti and Kurt, 2016].

This chapter extends the DMM method and explains the derivation of the hybrid-matrix
elements for the inhomogeneous dielectric layers. The formulation is then used to compute
the system equation of the structure under analysis. The method is applied to various
inhomogeneous dielectric waveguides for validation. It also considers metallization between
the dielectric layers.

First, we introduce the detailed theory for the analysis of inhomogeneous dielectric layers.
The full-wave analysis is obtained using summation of both kinds of modes, transversal
electric and transversal magnetic modes. Then, we discuss the various cases where the
derived hybrid matrices can be useful. At the end, we discuss various numerical results
and validate them with open literature and/or commercial software ANSYS HFSS. This
chapter is based on [Kamra and Dreher, 2019a, 2020b].

(a) (b) (c)

Figure 6.1: Hybrid waveguide structures: (a) Dielectric waveguide with microstrip, (b) Dielectric
waveguide (c) Dielectric waveguide with quasi-planar interface.
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6 Analysis of Anisotropic Inhomogeneous Transmission Lines

6.1 Formulation for the Full-Wave Equivalent Circuit

6.1.1 Field Relations

We consider an arbitrary planar multilayered structure with homogeneous and inhomoge-
neous dielectric layers. The direction of the wave propagation is taken along the z-axis and
the cross-section in the xy-plane as shown in Fig. 6.2. The inhomogeneous layer contains an
abrupt transition in the material properties. Therefore, the space dependent permittivity
(¯̄ε = ε0 ¯̄εr) and permeability (¯̄µ = µ0 ¯̄µr) tensors of the dielectric layer can be written with

¯̄εr =


εx(x, y) 0 0

0 εy(x, y) 0

0 0 εz(x, y)

 , (6.1)

¯̄µr =


µx(x, y) 0 0

0 µy(x, y) 0

0 0 µz(x, y)

 . (6.2)

The source-free second order curl-curl equations are obtained for electric and magnetic fields
as

∇× ¯̄µ−1r · ∇ × ~E(x, y, z)− ¯̄εr · ~E(x, y, z) = 0, (6.3)

∇× ¯̄ε−1r · ∇ × ~H(x, y, z)− ¯̄µr · ~H(x, y, z) = 0. (6.4)

Here, all the space variables are normalized by the free space wave number k0, the time fac-
tor is suppressed and η0 ~H is replaced by ~H, where η0 =

√
µ0/ε0 is the intrinsic impedance

of the free space. We can take a large number of layers in y-direction, which removes the
y-dependance of the material properties.

We know that each scalar differential equation obtained from (6.3) and (6.4) is at least
coupled to another one. It is a well-known fact that hybrid modes are a combination of TE
and TM modes. Therefore, we consider TEx (ETE

x = 0) and TMx (HTM
x = 0) modes to

obtain the uncoupled scalar differential equations and take ψ = ETE
y , HTM

y to be the two
independent field components. We obtain the differential equation for the TEx modes as

∂2

∂y2
ETE
y + µx

εz
εy

∂

∂x

1

µz

∂

∂x
ETE
y + µxεzE

TE
y − εz

εy
k2zE

TE
y = 0. (6.5)

Similarly, we obtain the differential equation for the TMx modes as

∂2

∂y2
HTM
y + εx

µz
µy

∂

∂x

1

εz

∂

∂x
HTM
y + µzεxH

TM
y − µz

µy
k2zH

TM
y = 0. (6.6)

We can calculate all the electric and magnetic field components with the following set of
equations:

Ex =
1

kz

(
∂

∂x

1

εz

∂

∂x
HTM
y + µyH

TM
y

)
(6.7)

Hx = − 1

kz

(
∂

∂x

1

µz

∂

∂x
ETE
y + εyE

TE
y

)
(6.8)
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Figure 6.2: Discretization scheme for the waveguide structure with inhomogeneous dielectric layers.

Ez = − j

kz

εy
εz

∂

∂y
ETE
y − j

εz

∂

∂x
HTM
y (6.9)

Hz =
j

µz

∂

∂x
ETE
y − j

kz

µy
µz

∂

∂y
HTM
y (6.10)

Ey = ETE
y +

1

εzkz

∂

∂y

∂

∂x
HTM
y (6.11)

Hy = HTM
y − 1

µzkz

∂

∂y

∂

∂x
ETE
y . (6.12)

6.1.2 The Discrete Mode Matching Method

We consider that the transmission lines are infinite in the propagation direction. Therefore,
the method employs only 1D discretization along the horizontal tangential direction (x-
axis) for the analysis and takes the analytical solution in the perpendicular direction (y-
axis). The structure is discretized using e- and h-lines, which give the position of ETE

y

and HTM
y , respectively. Fig. 6.2 shows the equidistant discretization scheme used for the

inhomogeneous dielectric layers bounded with electric walls. We take the distance between
the edge of the metallization and the e-line to be 0.25∆x. We can relate the spatial domain
field components in the spectral domain using the relation in matrix form

ψ = TSψ̃ (6.13)

or we write

ETE
y = T eSeẼ

TE

y (6.14)

HTM
y = T hShH̃

TM

y . (6.15)
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Here ψ̃ represents the column matrix of the independent field components in spectral do-
main containing all the modal values, ψ represents the column matrix of the independent
field components in spatial domain, T e,h gives the transformation matrices and Se,h denotes
additional matrices which account for inhomogeneity in the dielectric layer (subscript e is
for e-lines and subscript h is for h-lines). We calculate the transformation matrices depend-
ing on the conditions used to bound the lateral domain which consists of eigensolutions
with exact eigenvalues as mentioned in Chapter 2.

We can easily identify the locations of the other field components with the help of the
field relations (6.7)-(6.10). Fig. 6.2 describes the positions of all the field components and
material properties. Therefore, the relation of the other field components between the
spatial domain and the spectral domain in matrix form can be summarized as

Ex = T hẼx (6.16)

Ey = T eẼy (6.17)

Ez = T eẼy (6.18)

Hx = T eH̃x (6.19)

Hy = T hH̃y (6.20)

Hz = T hH̃z. (6.21)

On using the continuity equation of magnetic fields on the interface, we get the relation for
the current densities as

Jx = T hJ̃x (6.22)

Jz = T eJ̃z. (6.23)

The discontinuities in layer k are aligned with the e-lines, therefore the material properties
on these lines change accordingly:

εy =
εy1 + εy2

2
(6.24)

εz =
εz1 + εz2

2
(6.25)

µx =
µx1 + µx2

2
. (6.26)

The reason for taking the arithmetic mean of the material properties at the discontinuities
is well explained in [Pregla et al., 1987]. Due to inhomogeneity in the dielectric layer, we get
the diagonal matrix of varying material properties along the discretization in x-direction.
These matrices can be converted into spectral domain using the relation

ε̄e,h = T−1e,hεe,hT e,h (6.27)

µ̄e,h = T−1e,hµe,hT e,h. (6.28)

On transforming (6.5) and (6.6) using (6.13), we get the relations

Qe = µ̄xeε̄zeε̄
−1
ye kxµ̄

−1
zh kx − µ̄xeε̄ze + ε̄zeε̄

−1
ye k

2
z , (6.29)

Qh = ε̄xhµ̄zhµ̄
−1
yhkxε̄

−1
ze kx − µ̄zhε̄xh + µ̄zhµ̄

−1
yh k

2
z , (6.30)
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where kx denotes the eigenvalues.
Now, there is a need to solve the eigenvalue problems

QeSe = Sek
2
ye and QhSh = Shk

2
yh, (6.31)

to obtain the ordinary differential equation(
d2

dy2
− k2ye,h

)
ψ̃e,h = 0. (6.32)

On solving the separated equation (6.32), we get the solution within the arbitrary layer k
as

Ẽ
TE

yk
= Ake

−kyeky +Bekyeky, (6.33a)

H̃
TM

yk
= Cke

−kyhky +Dke
kyhky. (6.33b)

After discretizing the structure and transforming the field components (6.7)-(6.10) accord-
ing to (6.14)-(6.21), we get the tangential field components in spectral domain as

Ẽx =
1

kz

(
(−jkx)ε̄−1ze (−jkx) + µ̄yh

)
ShH̃

TM

y (6.34)

H̃x = − 1

kz

(
(−jkx)µ̄−1zh (−jkx) + ε̄ye

)
SeẼ

TE

y (6.35)

Ẽz = − j

kz
ε̄yeε̄

−1
ze

∂

∂y
SeẼ

TE

y − jε̄−1ze (−jkx)ShH̃
TM

y (6.36)

H̃z = jµ̄−1zh (−jkx)SeẼ
TE

y −
j

kz
µ̄yhµ̄

−1
zh

∂

∂y
ShH̃

TM

y . (6.37)

On using (6.33a)-(6.37), we rewrite the tangential field components for the layer k in
matrix form as 

Ẽxk

H̃xk

Ẽzk

H̃zk

 =


Q̃
A

xk
Q̃
B

xk
Q̃
C

xk
Q̃
D

xk

G̃
A

xk
G̃
B

xk
G̃
C

xk
G̃
D

xk

Q̃
A

zk
Q̃
B

zk
Q̃
C

zk
Q̃
D

zk

G̃
A

zk
G̃
B

zk
G̃
C

zk
G̃
D

zk




Ak

Bk

Ck

Dk

 . (6.38)

Now to obtain the relation between the fields at the interfaces k − 1 and k bounding the
layer k, we write Ẽk−1

H̃k−1

 = M̃k−1F ,

Ẽk

H̃k

 = M̃kF , (6.39)

M̃k =


Q̃
A

xk
Q̃
B

xk
Q̃
C

xk
Q̃
D

xk

Q̃
A

zk
Q̃
B

zk
Q̃
C

zk
Q̃
D

zk

G̃
A

zk
G̃
B

zk
G̃
C

zk
G̃
D

zk

−G̃
A

xk
−G̃

B

xk
−G̃

C

xk
−G̃

D

xk

 , (6.40)
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and take the notation of the fields and coefficients in matrix form as

Ẽk =

Ẽxk

Ẽzk

 , H̃k =

 H̃zk

−H̃xk

 , F =


Ak

Bk

Ck

Dk

 . (6.41)

On eliminating the unknown column matrix F from (6.39), we get the relation for the field
components at the interfaces of the layer k with normalized thickness dk asẼk−1

H̃k−1

 = K̃k

Ẽk

H̃k

 , (6.42)

with the hybrid matrix

K̃k = M̃k−1M̃
−1
k =

Ṽ k Z̃k

Ỹ k B̃k

 . (6.43)

We can take into account the multiple dielectric layers by simple matrix multiplication.
After getting hybrid matrices for each layer, we must apply continuity equations to match
the fields at the interfaces. Then the Green’s function (G̃) can be found in spectral domain
after applying the theory of full-wave equivalent circuit and network analysis technique
according to [Kamra and Dreher, 2018d]. The system equation takes the form

G̃J̃ = Ẽ, (6.44)

where J̃ and Ẽ represent surface current density and electric field in the interfaces respec-
tively. By applying the boundary conditions at the interface in the waveguides, we can
write J̃ = 0. Therefore, the propagation constant can be found on solving the indirect
eigenvalue problem

det(L̃) = 0 where L̃ = G̃
−1
. (6.45)

6.1.2.1 Interface with Metallization

Now consider the case when metallization is present on the interfaces of the structure. We
take the metallization to be infinitely thin. The system matrix with several metallized
interfaces (M) can be represented by (2.43). After that, we transform the field components
and current densities in (6.44) into the spatial domain using (6.16)-(6.23) and getGxx Gxz

Gzx Gzz

Jx
Jz

 =

Ex

Ez

 or GJ = E (6.46)

where Gxx Gxz

Gzx Gzz

 =

T h 0

0 T e

G̃xx G̃xz

G̃zx G̃zz

T−1h 0

0 T−1e

 . (6.47)

Here G = L−1 denotes the Green’s function in spatial domain.
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Figure 6.3: Waveguide with quasi-planar interface.

After obtaining the system equation, the boundary conditions must be applied. The con-
ditions state that the tangential electric field components must vanish on the metallizations
and the electric currents outside that region. We obtain the reduced system equation as

GredJ red = 0 or LredEred = 0, (6.48)

where J red contains the tangential surface current density components located on the met-
allizations, while Ered contains the tangential electric field components located outside the
metallization. We can solve it as an indirect eigenvalue problem

det(Gred) = 0 or det(Lred) = 0 (6.49)

to find the propagation constants for the transmission lines with metallization in the inter-
faces. Lred is equivalent to L in waveguides, as there are no currents on the interfaces.

6.1.2.2 Quasi-planar Interface

When the interfaces between the layers are not constant according to the coordinate system
then there are two ways to deal with such types of problems. One way is to divide the non-
planar dielectric layer into several layers with changing rib width as shown in Fig. 6.3a.
This will lead us to deal with inhomogeneous layers which has been explained in earlier
sections. The other way is to calculate tangential field components at the actual interface
as shown in Fig. 6.3b.

In the second way we deal with non-planar interfaces within the dielectric, therefore the
whole analysis should be done in spatial domain. We assume that the quasi planar nature of
the layers at the interfaces is in x-direction and the cross-section is constant in z-direction.
We need to calculate the tangential field components at the interfaces. In this case, the
components no longer remain in the x-direction as in the previous case, but Ez and Hz

are tangential to the interfaces along the whole x-direction. Therefore the other tangential
fields become Etx and Htx and are represented as

Etxk = Exk cosαxh + Ēyk sinαxh , (6.50a)

Htxk = Hxk cosαxe + H̄yk sinαxe . (6.50b)

Here αx(e,h) represents the inclination angle at the interface with the x-axis. From Fig. 6.2,
we can say that for 1D discretization ETE

y , Ez, Ey and Hx (or HTM
y , Hz, Hy and Ex)

components are sampled at the same position. To determine Etx, we must calculate Ex
and Ey at the same point. Therefore, Ēy is used in (6.50a) which is the mean of the adjacent
sampled values of Ey. Similarly, H̄y is calculated from the mean of the adjacent values of
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Figure 6.4: Convergence behavior of normalized propagation constant for rib waveguide.

Hy. Then, (6.41) changes according to

Ek =

Etxk

Ezk

 , Hk =

 Hzk

−Htxk

 . (6.51)

6.2 Numerical Results

6.2.1 Convergence for Rib Waveguide

First, we have taken the rib waveguide, shown in the inset of Fig 6.4, for the analysis. It
is widely used for optical communication. We have analyzed the waveguide with εr1 = 1.5,
εr2 = 3.8, εr3 = 1, a/d2 = 13.5, b/d2 = 8, d1/d2 = 0.5 and d2 = 1.5. The two bottom layers
are combined together and the resultant hybrid matrix is obtained as

K̃eq = K̃1K̃2 =

Ṽ eq Z̃eq

Ỹ eq B̃eq

 . (6.52)

From network analysis techniques, we simply obtain the system equation as

L̃Ẽ = 0, where L̃ = Z̃
−1
eq Ṽ eq + B̃3Z̃

−1
3 . (6.53)

The first term of the admittance (Z̃
−1
eq Ṽ eq) denotes the admittance of the grounded bottom

layer and the second term (B̃3Z̃
−1
3 ) denotes the admittance of the closed top layer.

Fig. 6.4 shows the convergence of the propagation constant (normalized by k0) of the
fundamental mode with increasing number of e-lines used for discretization of half of the
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Figure 6.5: Dispersion curve for rib waveguide.

slab with εr2. The increase in the discretization lines is equivalent to the increasing number
of modes used for the field expansion due to the Nyquist–Shannon sampling theorem. We
have computed the values for up to 9 e-lines because the results do not vary much with
increment in discretization lines after a certain limit. We can see from the figure that the
results with 7, 8 and 9 e-lines are very close to each other and within a small number of
discretization lines we can reach a high level of accuracy. An extrapolation to the exact
value given by an infinite number of lines and modes (1/(Number of e-lines) → 0) is also
possible. Therefore there is no need to do very fine discretization of the structure which
saves our memory and time.

Fig. 6.5 shows the dispersion curve for two fundamental modes of the same rib waveguide
over normalized d2. We have validated the results with the predicted results from ANSYS
HFSS. The results also agree well with the results presented in [Pregla et al., 1987] for MoL
and finite difference technique. Fig. 6.6 shows the variation of the electric field along the
horizontal direction at various heights of the waveguide cross-section. It shows that the
field is concentrated mainly over the rib region and is maximum below the rib.

6.2.2 Lossy Anisotropic Image Waveguide

We have then applied the DMM formulation on a shielded lossy anisotropic image waveg-
uide, as shown in Fig. 6.7a. We have analyzed only half of the structure by placing a
magnetic wall along the centre due to symmetry. The relative permittivities of the dielec-
tric structure are εx1 = εz1 = 1.5 − j1.5, εy1 = ε′y1 − j1.5 (where ε′y1 = 1, 1.5 or 2) and
εr2 = 1. The system equation of the structure becomes same as the two-layer waveguide,
which is (

Z̃
−1
1 Ṽ 1 + B̃2Z̃

−1
2

)
Ẽ1 = 0. (6.54)
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Figure 6.6: Normalized electric field variation along x-direction in rib waveguide (d2 = 1).

Fig. 6.7 shows the obtained attenuation and phase constant (normalized by k0) for E11
y

mode from the DMM method with only 5 e-lines placed on the inner slab of the structure. It
also compares the results with different numerical techniques, i.e., FEM [Lu and Fernandez,
1993] and MoL [Berini and Wu, 1996], and shows good agreement with them. The MATLAB
simulation was done on an Intel i7-6600U CPU @2.6 GHz processor and took 0.3 to 0.5
seconds to compute the propagation constants at each b-point.

6.2.3 Anisotropic Dielectric Waveguide

Second, we have analyzed the open dielectric waveguide, as shown in Fig. 6.8. We can
enclose the computational domain with absorbing boundary conditions (ABCs) or electric
walls placed at far distance from the guide. Here we have considered the waveguide to be
bounded by ABC walls with a distance of 6b in the lateral sides and open from both top
and bottom sides. We have calculated the required eigenvalues using Higdon’s operator.
We can divide the structure into 3 layers, i.e., 0, 1, 2, where 0th and 2nd layers are with εr2
and 1st layer is with ¯̄εr1. From network analysis technique, we simply obtain the system
equation as (

(B̃1 + Ỹ 0Z̃1)
−1(Ỹ0Ṽ1 + Ỹ 1) + Ỹ 2

)
Ẽ1 = 0. (6.55)

The relative permittivities of the structure are ¯̄εr1 = (2.31, 2.19, 2.31) and εr2 = 2.05.
The normalized electric field distribution of the E11

x mode at normalized b = 4 is presented
in Fig. 6.9. We can see from Fig. 6.8 that the computed results from DMM agree well with
fourier decomposition [Pashaie, 2007], MoL and FEM.

6.2.4 LiNbO3 Optical Waveguide

Next, we have taken the LiNbO3 anisotropic optical waveguide. We have analyzed only half
of the structure by placing a vertical magnetic wall along the centre. The material properties

84



6.2 Numerical Results

2 4 6 8 10

0.5

0.55

0.6

0.65

ε′y1 = 1

ε′y1 = 1.5

ε′y1 = 2

��̿�

��̿�

��

��

�

�

�� ��̿�

��̿� �

4b

2�

2�

��̿�

��̿� �

2�

Normalized b

N
or

m
a
li

ze
d
α

DMM

MoL

FEM

(a)

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

ε′y1 = 1

ε′y1 = 1.5

ε′y1 = 2

Normalized b

N
or

m
al

iz
ed

β

DMM

MoL

FEM

(b)

Figure 6.7: Dispersion characteristics of the lossy image waveguide as illustrated: (a) Normalized
attenuation constant, (b) Normalized phase constant.
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Figure 6.8: Normalized dispersion characteristics of the illustrated anisotropic dielectric waveg-
uide.
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Figure 6.10: Normalized dispersion characteristics of the illustrated optical waveguide.

of the structure are ¯̄εr1 = ((2.2)2, (2.29)2, (2.29)2), ¯̄εr2 = ((2.22)2, (2.3129)2, (2.3129)2) and
εr3 = 1. Fig. 6.10 depicts the structure of the optical waveguide, which is open from the
top and bottom both. Therefore, we get a similar system equation as in the case of the
anisotropic dielectric waveguide (6.55).

The figure presents the normalized propagation constants of the guided modes E11
y and

E41
y and validates the DMM results with the results from other methods.

6.2.5 Effect of Anisotropy in Dielectric Waveguide

Then we have taken a case study, where we have examined the effect of different permittivity
and permeability tensors on the dielectric waveguide as given in Table 6.1. The background
material has the relative permittivity εr2 = 2 and the relative permeability µr2 = 1. We have
done the analysis for two guided modes, i.e., E11

x and E11
y . Fig. 6.11 gives the dispersion

curves and shows the good agreement between the obtained results from DMM and the
results from other literature.

Table 6.1: Material tensors for the structure shown in Fig. 6.11.

Case 1 Case 2 Case 3

¯̄εr1

εx1 = 2.6 εx1 = 2.4 εx1 = 2.8

εy1 = 2.6 εy1 = 2.8 εy1 = 2.4

εz1 = 2.6 εz1 = 2.6 εz1 = 2.6

¯̄µr1

µx1 = 1.10 µx1 = 1.15 µx1 = 1.05

µy1 = 1.10 µy1 = 1.05 µy1 = 1.15

µz1 = 1.10 µz1 = 1.10 µz1 = 1.10
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Figure 6.11: Normalized dispersion characteristics of the illustrated dielectric waveguide with dif-
ferent material tensors.

6.2.6 Hybrid Waveguide

To understand the coupling between the microstrip and the dielectric waveguide, we have
examined the hybrid waveguide which consists of an inhomogeneous dielectric waveguide
with microstrip, as shown in Fig. 6.12. The analysis gives the results for the coupled
waveguide and microstrip (CG) when we move the dielectric slab from the side wall to the
center. We have also computed the results for the dielectric waveguide without microstrip
(WG), and microstrip line without dielectric slab with ¯̄εr3 (MS). We can divide the structure
into four dielectric layers with three homogeneous layers and one inhomogeneous layer. The
system matrix obtained for the coupled hybrid waveguide is(

Z̃
−1
eqd
Ṽ eqd + B̃equZ̃

−1
equ

)
Ẽm = J̃m, (6.56)

where

K̃eqd = K̃1K̃2 and K̃equ = K̃3K̃4 (6.57)

and Ẽm and J̃m denote the electric field distribution and surface current density, respec-
tively, over the interface with metallization.

Fig. 6.13 and 6.14 show the effective dielectric constants with respect to the shift between
microstrip and dielectric slab for isotropic and anisotropic dielectric layers, respectively. The
data used for the analysis are εr1 = 1, ¯̄εr2 = 9.6 or (9.6, 9, 9.6), ¯̄εr3 = 16 or (16, 15, 16),
εr4 = 1, a = 7.112 mm, w = 1.6 mm, t = 1.422 mm and d1 = d2 = d3 = d4 = 0.729 mm.
The computation was done at 30 GHz frequency and with 5 e-lines on the strip. The DMM
results agree well with the results obtained from the ANSYS HFSS for both isotropic and
anisotropic medium. The isotropic results also validate with the results from the method
of lines presented in [Pregla et al., 1987].

88



6.2 Numerical Results

��̿�

��̿�

��

��

�

�

�

��

���
��̿�

��̿�

��̿�

��̿� ��

�

�

�

��̿�
��

Figure 6.12: Coupled microstrip and dielectric waveguide.

The simulation for the coupled dielectric waveguide and microstrip at s/a = −0.05 using
the DMM formulation took around 1 second and HFSS took 17 seconds with port mode
calculation.

6.2.7 Comparison between Waveguides with Different Interfaces

Next, we have done a comparison between the results obtained from different kinds of
shielded waveguides. We have analyzed the conventional two-layer homogeneous dielectric
waveguide, the quasi-planar waveguide with varying interface and the rib waveguide, as
shown in Fig. 6.15.

Again, we have considered only half of the structure for the analysis by placing a magnetic
wall along the center due to symmetry. The material properties of the structure are ¯̄εr1 = 1.5
or (1.5, 2, 1), εr2 = 1 and µr1 = µr2 = 1. The structure has width 4b and height 2b. The
width of the rib is taken to be 2b. For a quasi-planar waveguide, we can use any equation
which can determine the shape of the interface. Here, we have used the function

f(x) = 0.001b+ (0.999d/(1 + exp (B(x−A)))), (6.58)

with A = (x1 + x2)/2, B = 2/|x1 − x2|, x1 = 0.95b and x2 = 1.2b.
Fig. 6.16 and 6.17 give the normalized propagation constants computed from DMM with

varying value of normalized b. The figures also compare the DMM results with the results
obtained from HFSS. They show very good agreement between the results. It is clear from
the figures that the results from the quasi-planar interface very well approximate the results
from the rib structure.
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Figure 6.13: Effective dielectric constant versus shift for isotropic waveguides (WG: dielectric
waveguide only, MS: microstrip only, CG: coupled guide).
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Figure 6.14: Effective dielectric constant versus shift for anisotropic waveguides..
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Figure 6.15: Cross-section of different analyzed waveguides (with b = 2).
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shown in Fig. 6.15.
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Figure 6.17: Dispersion curves for waveguides with anisotropic medium.
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7 Analysis of Transmission Lines with
Anisotropic Elliptical Dielectric Layers

During the past decades, a considerable amount of attention has been paid to the analysis
of optical fibers or dielectric waveguides for fast data transmission. The fibers exhibit
ellipticity due to fabrication imperfections or purposely, due to manufacturing convenience.
Also, the elliptical fibers have the interesting feature that their higher order modes are
azimuthally stable, in contrast to circular fibers.

In Chapter 5, we have dealt with elliptical structures using a cylindrical coordinate sys-
tem. The goal of this chapter is to extend the DMM method to directly deal with an
elliptical coordinate system. We consider the problem of electromagnetic wave propaga-
tion along a dielectric cylinder of elliptical cross-section. We use elliptic cylinder functions,
known as Mathieu functions to find the solution of the Helmholtz equation. The whole
analysis is done in spatial domain.

Several authors have analyzed elliptical waveguides in the literature, for example propa-
gating modes are determined using ellipse transformation perturbation method (ETPM) in
[Antikainen et al., 2017]. The cutoff wavelength is solved using the method of fundamental
solutions (MFS) along with the singular value decomposition (SVD) technique in [Young
et al., 2005] and higher order mode cutoff is investigated in [Rengarajan, 1989]. Conradi
and Pregla [2001] explain the analysis of elliptical fibers using method of lines (MoL) in
elliptical coordinates but the angular Mathieu functions are approximated with a Fourier
expansion. Dyott collated lot of information on several approaches used to analyze elliptical
fibers in the book [Dyott, 1995]. Yeh and Shimabukuro [2008] also discussed in detail the
fundamental theory of wave propagation in elliptical dielectric rods and several results in
Chapter 6 of the book.

This chapter first describes the solution of the Helmholtz equation in elliptical coordi-
nates. Then, it explains the derivation of the hybrid-matrix elements for elliptical dielectric
layers. We demonstrate the application by computing propagation constants for elliptical
dielectric waveguides with isotropic and uniaxial anisotropic layers. Finally, we validate
the computed results with the open literature and/or results obtained from the commercial
software ANSYS HFSS. This chapter is based on [Kamra and Dreher, 2020a].

7.1 Formulation in the Elliptical Coordinate System

Let us consider the elliptical coordinate system (ξ, η, z) as shown in Fig. 7.1. In the figure,
we describe the elliptical cylinder by the coordinate ξ and the hyperbolic cylinder by the
coordinate η. We locate the two foci of the elliptical cylinder at −f and +f on the x-axis.
We can write the relation between the Cartesian and the elliptical coordinate system as

x = f cosh ξ cos η = A cos η, (7.1)

y = f sinh ξ sin η = B sin η, (7.2)
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Figure 7.1: Elliptical cylindrical coordinates with semifocal length f .

where A and B represent the semi-major and the semi-minor axes of the elliptical cylinder.
The range of the coordinates is specified as

ξ ≥ 0, 0 ≤ η ≤ 2π, − inf ≤ z ≤ inf . (7.3)

7.1.1 Solution of the Maxwell’s Equations

We write the Maxwell’s equations in elliptical coordinates and for a source-free and homo-
geneous medium in their differential form as

∇× ~E(ξ, η, z) = −jω ¯̄µ · ~H(ξ, η, z), (7.4a)

∇× ~H(ξ, η, z) = jω ¯̄ε · ~E(ξ, η, z). (7.4b)

We take the permittivity (¯̄ε = ε0 ¯̄εr) and permeability (¯̄µ = µ0 ¯̄µr) tensors with optical axis
in z-direction with

¯̄εr =


εt 0 0

0 εt 0

0 0 εz

 , ¯̄µr =


µt 0 0

0 µt 0

0 0 µz

 . (7.5)

In the extended form, Faraday’s law (7.4a) gives the field relations as

1

h

{
∂

∂η
Ez −

∂

∂z
(hEη)

}
= −jωµ0µtHξ, (7.6a)

1

h

{
∂

∂z
(hEξ)−

∂

∂ξ
Ez

}
= −jωµ0µtHη, (7.6b)

1

h2

{
∂

∂ξ
(hEη)−

∂

∂η
(hEξ)

}
= −jωµ0µzHz. (7.6c)

Next on taking Ampere’s law (7.4b), the expressions are

1

h

{
∂

∂η
Hz −

∂

∂z
(hHη)

}
= −jωε0εtEξ, (7.7a)
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1

h

{
∂

∂z
(hHξ)−

∂

∂ξ
Hz

}
= −jωε0εtEη, (7.7b)

1

h2

{
∂

∂ξ
(hHη)−

∂

∂η
(hHξ)

}
= −jωε0εzEz. (7.7c)

As the optical axis is in z-direction, we assume Ez and Hz as the two independent field
components. Then, we calculate the other field components using the relations(

∂2

∂z2
+ ω2ε0µ0εtµt

)
Eξ =

1

h

∂

∂z

∂

∂ξ
Ez −

jωµ0µt
h

∂

∂η
Hz (7.8a)(

∂2

∂z2
+ ω2ε0µ0εtµt

)
Hξ =

jωε0εt
h

∂

∂η
Ez +

1

h

∂

∂z

∂

∂ξ
Hz (7.8b)(

∂2

∂z2
+ ω2ε0µ0εtµt

)
Eη =

1

h

∂

∂z

∂

∂η
Ez +

jωµ0µt
h

∂

∂ξ
Hz (7.8c)(

∂2

∂z2
+ ω2ε0µ0εtµt

)
Hη =

−jωε0εt
h

∂

∂ξ
Ez +

1

h

∂

∂z

∂

∂η
Hz. (7.8d)

Here the scale factor h = f
√

cosh2 ξ − cos2 η and f is the semifocal length of the ellipse.
We write the source free differential equation for the electric field Ez in elliptical coordi-

nates as (
∂2

∂ξ2
+

∂2

∂η2
+ h2

εz
εt

∂2

∂z2
+ h2ω2ε0µ0µtεz

)
Ez = 0, (7.9)

and for the magnetic field Hz as(
∂2

∂ξ2
+

∂2

∂η2
+ h2

µz
µt

∂2

∂z2
+ h2ω2ε0µ0εtµz

)
Hz = 0. (7.10)

On assuming that the propagation is in z-direction then the equations lead to(
∂2

∂ξ2
+

∂2

∂η2
+ h2εd(e,h)

)
ψ = 0, (7.11)

where ψ represents each of the independent electromagnetic field components, i.e., Ez and
Hz and εde = ω2ε0µ0µtεz − k2zεz/εt and εdh = ω2ε0µ0εtµz − k2zµz/µt for Ez and Hz,
respectively. Similar to the procedure explained in [Yeh and Shimabukuro, 2008], we apply
next the rule of separation of variables on the field component and set

ψ = R(ξ)S(η). (7.12)

Then we obtain two ordinary differential equations

∂2S(η)

∂η2
+ (a− 2q cos 2η)S(η) = 0, (7.13)

∂2R(ξ)

∂ξ2
− (a− 2q cosh 2ξ)R(ξ) = 0. (7.14)

Here, a represents the separation constant and q equals εdef
2/4 and εdhf

2/4 for Ez and
Hz, respectively. These equations are known as Mathieu differential equation and modified
Mathieu differential equation, respectively.
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We express the solution of the differential equation (7.9) as linear combination of products
of angular and radial Mathieu functions:

Ez0 =
∞∑
i=0

A0iJei(qe0,0 , ξ)Cei(qe0,0 , η)

+
∞∑
i=1

B0iJoi(qe0,0 , ξ)Soi(qe0,0 , η) (0 ≤ ξ ≤ ξ0),
(7.15)

Ezk =
∞∑
i=0

[Ak1iJei(qek,int , ξ) +Ak2iNei(qek,int , ξ)]Cei(qek,int , η)

+
∞∑
i=1

[Bk1iJoi(qek,int , ξ) +Bk2iNoi(qek,int , ξ)]Soi(qek,int , η) (ξk−1 ≤ ξ ≤ ξk),

(7.16)

Ezn =
∞∑
i=0

AniHe
(2)
i (qen,n−1 , ξ)Cei(qen,n−1 , η)

+
∞∑
i=1

BniHo
(2)
i (qen,n−1 , ξ)Soi(qen,n−1 , η) (ξn−1 ≤ ξ <∞).

(7.17)

The field component in (7.15) is for innermost layer 0 extending from ξ = 0 to ξ0, (7.16) is
for arbitrary layer k extending from ξ = ξk−1 to ξk and (7.17) is for top layer n extending
from ξ = ξn−1 to ∞. Similarly, we write the solution of the differential equation (7.10) as

Hz0 =

∞∑
i=0

C0iJei(qh0,0 , ξ)Cei(qh0,0 , η)

+

∞∑
i=1

D0iJoi(qh0,0 , ξ)Soi(qh0,0 , η) (0 ≤ ξ ≤ ξ0),
(7.18)

Hzk =

∞∑
i=0

[Ck1iJei(qhk,int , ξ) + Ck2iNei(qhk,int , ξ)]Cei(qhk,int , η)

+

∞∑
i=1

[Dk1iJoi(qhk,int , ξ) +Dk2iNoi(qhk,int , ξ)]Soi(qhk,int , η) (ξk−1 ≤ ξ ≤ ξk),

(7.19)

Hzn =
∞∑
i=0

CniHe
(2)
i (qhn,n−1 , ξ)Cei(qhn,n−1 , η)

+
∞∑
i=1

DniHo
(2)
i (qhn,n−1 , ξ)Soi(qhn,n−1 , η) (ξn−1 ≤ ξ <∞).

(7.20)

The even and odd angular Mathieu functions, represented with Ce and So, respectively,
are solutions of the Mathieu differential equation (7.13). The functions Je, Jo and Ne, No
are radial Mathieu functions of the first and second kind which come from the solution
of the modified Mathieu differential equation (7.14). They play a similar role as Bessel
functions in the circular coordinate system. Eqs. (7.17) and (7.20) contain He and Ho,
which represent even and odd Mathieu-Hankel functions of the second kind, respectively,
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7.1 Formulation in the Elliptical Coordinate System

which are analogous to the Hankel functions. Mathieu-Hankel functions come from the
solution of the modified Mathieu differential equation (7.14) in an unbounded domain.
The angular Mathieu functions are expressed with Fourier series and the radial Mathieu
functions as series of Bessel functions. Here the terms qek,int and qhk,int are dependent on
medium parameters with k denoting the dielectric layers and int denoting the interfaces
between the layers. For example, layer 0 has only top interface 0 with ξ = ξ0, layer k has
both bottom and top interfaces represented by k − 1 with ξ = ξk−1 and k with ξ = ξk,
respectively, and layer n has bottom interface n− 1 with ξ = ξn−1. Therefore, the Mathieu
functions are not only functions of η or ξ coordinates, but also depend on the medium
parameters, i.e., ¯̄ε, ¯̄µ. The definitions of these Mathieu functions are given in McLachlan
[1951]. The coefficients are represented by Ak1i , Ak2i , A0i , Ani , Bk1i , Bk2i , B0i , Bni , Ck1i ,
Ck2i , C0i , Cni , Dk1i , Dk2i , D0i and Dni for mode i.

7.1.2 Mode Classification

We know that the coexistence of TE and TM modes happens when the fields are dependent
on the angular coordinate. They give rise to the hybrid modes which are also the case in
the cylindrical coordinate system. The modes are known as HE if the cross-sectional field
pattern is similar to the TE mode or H mode, and EH if the cross-sectional field pattern is
similar to the TM mode or E mode. However, there exists an asymmetry in the elliptical
cylinder, which generates two types of field configurations. Thus, we have even or odd types
of hybrid modes which are denoted with prescript e or o, i.e., e,oHE or e,oEH.

7.1.2.1 Even Modes eHE or eEH

The expressions for the independent electric and magnetic field components for even modes
are

Ez0 =
∞∑
i=1

B0iJoi(qe0,0 , ξ)Soi(qe0,0 , η) (0 ≤ ξ ≤ ξ0), (7.21)

Ezk =
∞∑
i=1

[Bk1iJoi(qek,int , ξ) +Bk2iNoi(qek,int , ξ)]Soi(qek,int , η) (ξk−1 ≤ ξ ≤ ξk), (7.22)

Ezn =

∞∑
i=1

BniHo
(2)
i (qen,n−1 , ξ)Soi(qen,n−1 , η) (ξn−1 ≤ ξ <∞), (7.23)

Hz0 =
∞∑
i=0

C0iJei(qh0,0 , ξ)Cei(qh0,0 , η) (0 ≤ ξ ≤ ξ0), (7.24)

Hzk =
∞∑
i=0

[Ck1iJei(qhk,int , ξ) + Ck2iNei(qhk,int , ξ)]Cei(qhk,int , η) (ξk−1 ≤ ξ ≤ ξk), (7.25)

Hzn =
∞∑
i=0

CniHe
(2)
i (qhn,n−1 , ξ)Cei(qhn,n−1 , η) (ξn−1 ≤ ξ <∞). (7.26)
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7.1.2.2 Odd Modes oHE or oEH

Similarly, the expressions for the independent electric and magnetic field components for
odd modes are

Ez0 =
∞∑
i=0

A0iJei(qe0,0 , ξ)Cei(qe0,0 , η) (0 ≤ ξ ≤ ξ0), (7.27)

Ezk =
∞∑
i=0

[Ak1iJei(qek,int , ξ) +Ak2iNei(qek,int , ξ)]Cei(qek,int , η) (ξk−1 ≤ ξ ≤ ξk), (7.28)

Ezn =
∞∑
i=0

AniHe
(2)
i (qen,n−1 , ξ)Cei(qen,n−1 , η) (ξn−1 ≤ ξ <∞), (7.29)

Hz0 =
∞∑
i=1

D0iJoi(qh0,0 , ξ)Soi(qh0,0 , η) (0 ≤ ξ ≤ ξ0), (7.30)

Hzk =

∞∑
i=1

[Dk1iJoi(qhk,int , ξ) +Dk2iNoi(qhk,int , ξ)]Soi(qhk,int , η) (ξk−1 ≤ ξ ≤ ξk),

(7.31)

Hzn =
∞∑
i=1

DniHo
(2)
i (qhn,n−1 , ξ)Soi(qhn,n−1 , η) (ξn−1 ≤ ξ <∞). (7.32)

7.1.3 The Discrete Mode Matching Method

We assume that the structure is infinite in the propagation direction, i.e., in z-direction.
From (7.21)-(7.26) and (7.27)-(7.32), it is clear that the wave solution for every elliptical
cylinder ξ is dependent on each and every point on the η-axis. Therefore we do 1D dis-
cretization in the η-direction (see Fig. 7.2). For every value of q, there exists an infinite
sequence of eigenvalues a and for each value of a exists a corresponding infinite sequence
of eigenvectors (expansion coefficients). The important step in the algorithm is to compute
the eigenvalues and the corresponding eigenvectors. Here, we consider a number of 25 ex-
pansion coefficients for all categories of Mathieu functions. In our code, we calculate exact
expansion coefficients without any approximations.

We take Ez and Hz to be the two independent field components. We assume that Ez
is sampled on e-lines and Hz on h-lines. We discretize the structure with N e

η e-lines and

Nh
η h-lines in the η-direction and include the same number of modes in the field expansion.

Therefore, we write (7.21)-(7.26) in discretized form as

Ez0(ξ, ηej ) =

Ne
η∑

i=1

B0iJoi(qe0,0 , ξ)Soi(qe0,0 , η
e
j ) (0 ≤ ξ ≤ ξ0), (7.33)

Ezk(ξ, ηej ) =

Ne
η∑

i=1

[Bk1iJoi(qek,int , ξ) +Bk2iNoi(qek,int , ξ)]Soi(qek,int , η
e
j ) (ξk−1 ≤ ξ ≤ ξk),

(7.34)

Ezn(ξ, ηej ) =

Ne
η∑

i=1

BniHo
(2)
i (qen,n−1 , ξ)Soi(qen,n−1 , η

e
j ) (ξn−1 ≤ ξ <∞), (7.35)
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Hz0(ξ, ηhj ) =

Nh
η∑

i=0

C0iJei(qh0,0 , ξ)Cei(qh0,0 , η
h
j ) (0 ≤ ξ ≤ ξ0), (7.36)

Hzk(ξ, ηhj ) =

Nh
η∑

i=0

[Ck1iJei(qhk,int , ξ) + Ck2iNei(qhk,int , ξ)]Cei(qhk,int , η
h
j ) (ξk−1 ≤ ξ ≤ ξk),

(7.37)

Hzn(ξ, ηhj ) =

Nh
η∑

i=0

CniHe
(2)
i (qhn,n−1 , ξ)Cei(qhn,n−1 , η

h
j ) (ξn−1 ≤ ξ <∞). (7.38)

Similarly we write (7.27)-(7.32) in discretized form as

Ez0(ξ, ηej , z) =

Ne
η∑

i=0

A0iJei(qe0,0 , ξ)Cei(qe0,0 , η
e
j ) (0 ≤ ξ ≤ ξ0), (7.39)

Ezk(ξ, ηej , z) =

Ne
η∑

i=0

[Ak1iJei(qek,int , ξ) +Ak2iNei(qek,int , ξ)]Cei(qek,int , η
e
j ) (ξk−1 ≤ ξ ≤ ξk),

(7.40)

Ezn(ξ, ηej , z) =

Ne
η∑

i=0

AniHe
(2)
i (qen,n−1 , ξ)Cei(qen,n−1 , η

e
j ) (ξn−1 ≤ ξ ≤ ∞), (7.41)

Hz0(ξ, ηhj , z) =

Nh
η∑

i=1

D0iJoi(qh0,0 , ξ)Soi(qh0,0 , η
h
j ) (0 ≤ ξ ≤ ξ0), (7.42)

Hzk(ξ, ηhj , z) =

Nh
η∑

i=1

[Dk1iJoi(qhk,int , ξ) +Dk2iNoi(qhk,int , ξ)]Soi(qhk,int , η
h
j ) (ξk−1 ≤ ξ ≤ ξk),

(7.43)

Hzn(ξ, ηhj , z) =

Nh
η∑

i=1

DniHo
(2)
i (qh, ξ)Soi(qhn,n−1 , η

h
j ) (ξn−1 ≤ ξ ≤ ∞). (7.44)

From (7.8), we can identify the location of the other field components. Therefore, we say
that for 1D discretization Ez, Eξ and Hη (or Hz, Hξ and Eη) components are sampled at
the same locations. Using (7.34), (7.37) and the field relations from Maxwell’s equations,
we write the discretized tangential field components for even modes in layer k in matrix
form as 

Eηk

Hηk

Ezk

Hzk

 =


QB1
ηk

QB2
ηk

QC1
ηk

QC2
ηk

GB1
ηk

GB2
ηk

GC1
ηk

GC2
ηk

QB1
zk

QB2
zk

0 0

0 0 GC1
zk

GC2
zk




Bk1

Bk2

Ck1

Ck2

 . (7.45)
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(a) Layers with equal ellipticities.
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(b) Layers with different ellipticities.

Figure 7.2: Discretization scheme for the elliptical transmission lines.

Similarly, for odd modes
Eηk

Hηk

Ezk

Hzk

 =


QA1
ηk

QA2
ηk

QD1
ηk

QD2
ηk

GA1
ηk

GA2
ηk

GD1
ηk

GD2
ηk

QA1
zk

QA2
zk

0 0

0 0 GD1
zk

GD2
zk




Ak1

Ak2

Dk1

Dk2

 . (7.46)

Therefore, we write the relations for layer k in the formEk−1

Hk−1

 = Mk−1F ,

Ek

Hk

 = MkF , (7.47)

where

Mk =


QB1
ηk

QB2
ηk

QC1
ηk

QC2
ηk

QB1
zk

QB2
zk

0 0

0 0 GC1
zk

GC2
zk

GB1
ηk

GB2
ηk

GC1
ηk

GC2
ηk

 (7.48)

for even modes and

Mk =


QA1
ηk

QA2
ηk

QD1
ηk

QD2
ηk

QA1
zk

QA2
zk

0 0

0 0 GD1
zk

GD2
zk

GA1
ηk

GA2
ηk

GD1
ηk

GD2
ηk

 (7.49)

for odd modes. We take the notations of the fields and coefficients in the matrix form as

Ek =

Eηk

Ezk

 , Hk =

Hzk

Hηk

 , (7.50)
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7.1 Formulation in the Elliptical Coordinate System

F =


Bk1

Bk2

Ck1

Ck2

 or


Ak1

Ak2

Dk1

Dk2

 . (7.51)

After eliminating the unknown coefficient column matrix F , it results inEk−1

Hk−1

 = Kk

Ek

H̃k

 . (7.52)

Therefore, we represent the hybrid matrix (Kk) for layer k as

Kk = Mk−1M
−1
k . (7.53)

Next on using (7.33), (7.36), (7.35) and (7.38), we write the discretized tangential field
components present in the inner layer extending from ξ = 0 to ξ = ξ0 or outer bounded
layer for even modes as Eηχ

Ezχ

 =

QB
ηχ QC

ηχ

QB
zχ 0

Bχ

Cχ

 , (7.54)

Hzχ

Hηχ

 =

 0 GC
zχ

GB
ηχ GC

ηχ

Bχ

Cχ

 . (7.55)

For odd modes, we write Eηχ

Ezχ

 =

QA
ηχ QD

ηχ

QA
zχ 0

Aχ

Dχ

 , (7.56)

Hzχ

Hηχ

 =

 0 GD
zχ

GA
ηχ GD

ηχ

Aχ

Dχ

 , (7.57)

where χ = 0 for inner layer and χ = n for the outer unbounded medium. We calculate the
admittance by

Y χ = MHχM
−1
Eχ
, (7.58)

where

MEχ =

QB
ηχ QC

ηχ

QB
zχ 0

 and MHχ =

 0 GC
zχ

GB
ηχ GC

ηχ

 (7.59)

for even modes and

MEχ =

QA
ηχ QD

ηχ

QA
zχ 0

 and MHχ =

 0 GD
zχ

GA
ηχ GD

ηχ

 (7.60)

for odd modes.
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7 Analysis of Transmission Lines with Anisotropic Elliptical Dielectric Layers
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Figure 7.3: Schematic of elliptical waveguide cross-section.
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Figure 7.4: Half of the elliptical waveguide cross-section.
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Figure 7.5: One quarter of the elliptical waveguide cross-section (i as odd index).

102



7.2 Numerical Results

Table 7.1: Value of modes for different boundary combinations

Boundary combination
i

(left/right) (integers)

E/E all(i)

M/M all(i)

M/E odd(i)

Let us consider a two-layer dielectric waveguide as shown in Fig. 7.3. We need to analyze
only half of the structure due to symmetry. We get even modes by placing electric walls
(E-wall) on the bounding domain while we get odd modes by placing magnetic walls (H-
wall) on the boundary, as represented in Fig. 7.4. We can also analyze only a quarter of
the structure to get odd or even modes with odd subscript, e.g., eHEil with i as odd index.
Fig 7.5 gives the position of E- and H-walls to get suitable modes. Here the coordinate
η discretization starts from the horizontal line, as given in Fig. 7.2. Table 7.1 defines the
suitable values for mode i in the modal expansion for various boundary conditions.

After calculating the hybrid or admittance matrices for each dielectric layer, we calculate
the system equation using a full-wave equivalent circuit. Then, we find the propagation con-
stant after using the boundary conditions and solving the eigenvalue problem as explained
in the previous chapters.

7.2 Numerical Results

7.2.1 Elliptical Waveguide

To validate the DMM formulations in elliptical coordinates, we have analyzed the same
dielectric elliptical waveguide as taken for analysis in Chapter 5. The waveguide comprises
two layers, one is the elliptical core and the other is air surrounding the core as given in
Fig. 7.3. The analysis is performed with an axial ratio B/A = 0.5, where B is the minor axis
and A is the major axis. The material of the elliptical core is taken as εr,core = (1.539)2

for the isotropic and ¯̄εr,core = ((1.539)2, (1.539)2, (1.25)2) for the anisotropic case. The
dispersion curves, as shown in Fig. 7.6 and 7.7, are plotted against the normalized frequency
VB = Bk0

√
εr,core − εr,air. Here VB is calculated using isotropic values for both the isotropic

and the anisotropic case. The computed propagation constants are normalized with the
free-space wave number k0.

The computed results agree very well with the open literature [Pregla and Conradi,
2003; Conradi and Pregla, 2001; Dyott, 1995] and predicted results from ANSYS HFSS.
The results from Pregla and Conradi [2003] (MoLcyl) are based on a cylindrical coordinate
system while the results from Conradi and Pregla [2001] (MoL+Fourier) are calculated in
an elliptical coordinate system but with Fourier approximation. We have also compared
the results with those shown in Chapter 5 using a cylindrical coordinate system.
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7 Analysis of Transmission Lines with Anisotropic Elliptical Dielectric Layers
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Figure 7.6: Dispersion curve of elliptical waveguide with isotropic material. (DMMcyl: [Kamra
and Dreher, 2019b], MoLcyl: [Pregla and Conradi, 2003], MoL+Fourier: [Conradi and
Pregla, 2001], Dyott, Measurements: [Dyott, 1995])
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Figure 7.7: Dispersion curve of elliptical waveguide with anisotropic material.
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7.2 Numerical Results

0 2 4 6 8 10 12
1

1.1

1.2

1.3

1.4

1.5

Normalized Frequency VB

N
or

m
a
li

ze
d

p
ro

p
a
g
at

io
n

co
n
st

an
t

DMM

HFSS

Figure 7.8: Higher order even modes of a dielectric rod.

7.2.2 Investigation of Higher Order Modes

Further to investigate higher order modes, we have analyzed a polythene rod as elliptical
core with εr = 2.26 and surrounded by air. We have done the computation with an axial
ratio B/A = 0.9. Fig. 7.8 and 7.9 show the results for the even and odd fundamental modes,
respectively, and the first nine higher order modes. We have again plotted the dispersion
curves against the normalized frequency VB. They show very good agreement with the
results computed from ANSYS HFSS. They are also in order with the results shown in
[Dyott, 1995].
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7 Analysis of Transmission Lines with Anisotropic Elliptical Dielectric Layers
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Figure 7.9: Higher order odd modes of a dielectric rod.
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8 Conclusion & Outlook

In the present work, we have extended the discrete mode matching method (DMM) for
the analysis of multilayered microstrip transmission lines and printed antennas with dif-
ferent kinds of dielectric layers whether in terms of anisotropy or homogeneity, or with
metamaterial substrate. It has involved a generalized relation of the field components of
the multilayered structure, which can be represented by a full-wave hybrid matrix for each
layer. Thus, for stratified structures, we have obtained the system equation by using a full-
wave equivalent circuit (FWEC). We have used straightforward circuit analysis techniques
and matrix multiplications to take into account several dielectric layers. The accuracy of
the DMM could be inferred from the monotonic convergence curves, which allow the ex-
trapolation to the value that would be obtained for an infinite number of discretization
lines. The DMM method of analysis has been proven very efficient to analyze a variety of
structures. The codes are written in MATLAB for the whole analysis procedure.

First, we have presented a simple formalism as a basis to analyze planar microwave
structures with uniaxial anisotropic materials having either electric or magnetic anisotropy
or both. This formulation is based on the Fourier transformation of electromagnetic field
components on the interfaces of stratified structures. The application was demonstrated by
analyzing the well-known example of a two-layer waveguide filled with uniaxial anisotropic
dielectric material. Then, we have presented the application of the discrete mode matching
method to analyze a microstrip line filled with anisotropic dielectric material. We have
validated the numerical results with the finite-element based software ANSYS HFSS and
the open literature.

We can conclude that the proposed method provides convincible results in a shorter
computing time with few lines on the strip. Moreover, we can analyze the transmission
lines with any number of metallic strips accurately using the DMM method with only 1D
discretization. Therefore, we have validated the method with a multilayered microstrip line
with multiple strips and coupled waveguides. The method can also be used to analyze slot-
lines and coupled microstrip lines. We have bounded the structures used for the verification
by electric walls. However, absorbing boundary conditions can also be used to deal with
open and radiating structures in more practical situations.

Then we have presented the method to analyze microstrip patch antennas with
anisotropic substrate. We have used a 2D discretization scheme for the analysis of radia-
tors which reduces the computation time and memory. It can easily deal with multilayered
substrate present in the structure. Accurate results have been achieved with the proposed
method and have been validated with the open literature. For antennas, we have employed
absorbing boundary conditions (ABCs) to deal with open and radiating phenomena as in
more practical situations. It has removed the need of 3D meshes and provides accurate
results.

We have also dealt with the application of the DMM method to analyze microstrip
antennas based on metamaterial substrates. We have seen the advantage of including
metamaterial in the substrate which provides multiple resonant frequencies in the selected
band. The method can easily deal with multilayered structures with metallizations in

107



8 Conclusion & Outlook

different interfaces which gives the flexibility to include more complex unit cells in the
structure.

Another contribution of the present work was to deal with conformal structures and
biaxial anisotropy. The derivation of the mathematical formulation for the FWEC in spatial
domain has been given to analyze quasi-planar transmission lines with biaxial anisotropic
stratified media. We have analyzed both waveguides and stripline structures with good
agreement to commercial software. We can also extend the method for the analysis of
microstrip patch antennas on quasi-planar anisotropic substrates with 2D discretization.

Next to analyze circular or quasi-circular uniaxial anisotropic dielectric layers, we have
derived the FWEC formulation with a cylindrical coordinate system. A general procedure
for the fast and efficient full-wave analysis of stratified conformal anisotropic structures
has been presented. It involved the tangential field relations on the interfaces of each
layer in spectral domain or spatial domain. The method has been successfully applied and
verified with commercial software whereby a gain in computing time by a factor of more
than 100 has been achieved for optical fibers. Besides optical fibers, we have efficiently
analyzed other microwave structures like elliptical waveguides, and striplines with metallic
strips at the non-circular interfaces. The method is not limited to elliptical structures,
it can analyze any conformal interface represented by a suitable function. For analyzing
microstrip antennas on quasi-cylindrical substrates, we have extended the method to 2D
discretization. For the analysis, we have calculated the angle of inclination with the regular
coordinate system using the slope of the interface. We have presented the numerical results
for the microstrip patch antenna with elliptical substrate and validated with the commercial
software.

Then, we have presented an extension of the discrete mode matching (DMM) method
which enables us to analyze the multilayered planar structures with inhomogeneous dielec-
tric layers. The presented algorithm enabled us to deal with different hybrid waveguides
very accurately and efficiently. The formulation is capable to deal with electric as well as
magnetic anisotropy in the structure. Various examples have been analyzed and presented.
The obtained results have shown good validation with the results available in the open
literature and/or results from commercial software.

Motivated with the conformal structures, we have also discussed the DMM method with
the elliptical coordinate system in the last chapter. The derivation of the hybrid matrix
elements for anisotropic elliptical dielectric layers has been done. The formulation has been
validated well with the quasi-cylindrical approach. The elliptical fibers have been analyzed
with good agreement with the commercial software and open literature.

In short, we can write the advantages of the DMM method as:

• It easily deals with multilayered structures with just matrix multiplications.

• It uses sampling of the field components in only one or two dimensions.

• It uses exact eigenvalues which are dependent on lateral boundary conditions.

• It removes the need of 3D meshes and reduces time and memory requirements.

• It provides smooth convergence, hence extrapolation is possible and gives accurate
results.

Till now, we have used only uniform discretization everywhere in the structure. In
future, there is a scope to apply non-uniform discretization or subgridding technique to the
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structures. We can put more lines in the region where field variations are significant. The
non-uniform discretization has been done efficiently in method of lines [Greda and Pregla,
2002, 2004]. This can further reduce the computation time. Also there is a possibility to
further extend the work to periodic structures. This can enable us to deal with unit cells
in metamaterials more efficiently.
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A Admittances with Terminations

We write the tangential field relations between the interfaces k − 1 and k of the layer k asẼk−1

H̃k−1

 =

Ṽ k Z̃k

Ỹ k B̃k

Ẽk

H̃k

 with K̃k =

Ṽ k Z̃k

Ỹ k B̃k

 . (A.1)

The FWEC shown in Fig. A.1 includes the terminated bottom and top layer of the stratified
dielectric. Both bottom and top layers can be closed (grounded) or open. In the figure, a
grounded bottom layer is shown by the short circuit and an open top layer is represented
by the admittance. It also gives the resultant equivalent circuit after the cascading of the
matrices. To calculate the terminations, we write the tangential field components on the
lower (-) and the upper (+) side of the interface k with metallization as

H̃
−
k = −Ỹ

(d)
Ẽ
−
k , (A.2)

H̃
+

k = Ỹ
(u)
Ẽ

+

k . (A.3)

For open bottom, the field relation becomesẼ0

H̃0

 =

Ṽ d Z̃d

Ỹ d B̃d

Ẽ−k
H̃
−
k

 (A.4)

and
H̃0 = −Ỹ 0Ẽ0 (A.5)

for the bottom layer 0. Here hybrid matrix K̃d represents the cascading of the hybrid
matrices of the inner layers from 1 to k. We obtain the lower admittance

Ỹ
(d)

= (B̃d + Ỹ 0Z̃d)
−1(Ỹ 0Ṽ d + Ỹ d). (A.6)
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Figure A.1: Equivalent circuit of a stratified dielectric.
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A Admittances with Terminations

For closed bottom (Ẽ0 = 0), we obtain the admittance

Ỹ
(d)

= Z̃
−1
d Ṽd. (A.7)

For open top layer, the field relation becomesẼ+

k

H̃
+

k

 =

Ṽ u Z̃u

Ỹ u B̃u

Ẽn

H̃n

 . (A.8)

and
H̃n = Ỹ nẼn (A.9)

for the top layer n. Here hybrid matrix K̃u represents the cascading of the hybrid matrices
of the outer layers from (k + 1) to (n− 1). We obtain the upper admittance

Ỹ
(u)

= (Ỹ u + B̃uỸ n)(Ṽ u + Z̃uỸ n)−1. (A.10)

For closed top layer (Ẽn = 0), we obtain the admittance

Ỹ
(u)

= B̃uZ̃
−1
u . (A.11)
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B Expressions in Rectangular Coordinates

B.1 z-Dependence of Field Components

Generally we calculate tangential field components at the interfaces of the dielectric layers,
i.e., Ex, Ey, Hx and Hy. To see the field variation along the cross-section of the structure,
we need to find out the field dependency on the perpendicular coordinate (z) [Dreher and
Pregla, 1993]. The normal field components Ez and Hz can be written as

Ez =
1

jεz

( ∂
∂x
Hy −

∂

∂y
Hx

)
, (B.1)

Hz = − 1

jµz

( ∂
∂x
Ey −

∂

∂y
Ex
)
. (B.2)

On transforming into spectral domain, we write them in matrix form as

Ẽz =
1

jεz

(
(−jkx)H̃y − (−jky)H̃x

)
, (B.3)

H̃z = − 1

jµz

(
(−jkx)Ẽy − (−jky)Ẽx

)
. (B.4)

To get the z-dependence of all the field components in spectral domain, we eliminate the
coefficients of the wave solution at k− 1 and k interface of the arbitrary layer k and obtain

ψ̃(z) = α̂(Ŝ1ψ̃k−1 + Ŝ2ψ̃k), (B.5)

where
α̂ = (kze,h sinhkze,hdk)

−1 (B.6)

Ŝ1 = kze,h sinhkze,h(zk − z) (B.7)

Ŝ2 = kze,h sinhkze,h(z − zk−1). (B.8)

When there is metallization at the bottom layer, then

ψ̃(z) = Ŝψ̃1, (B.9)

where
Ŝ = sinhkze,hz(sinhkze,hd1)

−1 (B.10)

for ψ̃ = Ẽx, Ẽy or H̃z, and

Ŝ = coshkze,hz(coshkze,hd1)
−1 (B.11)

for ψ̃ = Ẽz, H̃x or H̃y with dielectric height d1. When the structure is open at the top,
then

ψ̃(z) = Ŝψ̃n, (B.12)

where
Ŝ = e−kze,h(z−zn). (B.13)
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B Expressions in Rectangular Coordinates

B.2 Equations for Spatial Domain

In Chapter 4, we assume the cross-section of the structure in xz-plane and the wave propaga-
tion in y-direction. For any arbitrary layer k, we obtain the equations for 1D discretization
in x-direction as

Eyk(xe, y, z) =
Ne∑
i

(AkiS
A
i +BkiS

B
i + CkiS

C
i +DkiS

D
i )

Hyk(xh, y, z) =
Nh∑
i

(AkiR
A
i +BkiR

B
i + CkiR

C
i +DkiR

D
i ), (B.14)

where

SAi = − P

kz1d
τ ex(kxi, x

e)ekz1ze−jkyy (B.15)

SBi =
P

kz1d
τ ex(kxi, x

e)e−kz1ze−jkyy (B.16)

SCi = − Q

kz2d
τ ex(kxi, x

e)ekz2ze−jkyy (B.17)

SDi =
Q

kz2d
τ ex(kxi, x

e)e−kz2ze−jkyy. (B.18)

RAi = τhx (kxi, x
h)ekz1ze−jkyy (B.19)

RBi = τhx (kxi, x
h)e−kz1ze−jkyy (B.20)

RCi = τhx (kxi, x
h)ekz2ze−jkyy (B.21)

RDi = τhx (kxi, x
h)e−kz2ze−jkyy. (B.22)

We write the expressions used in Chapter 4 as

Qtx = Qx cosαhx + Q̄z sinαhx (B.23)

QAx =
DxDyS

A

pεxµz
+
jDzR

A

pεx
(B.24)

QBx =
DxDyS

B

pεxµz
+
jDzR

B

pεx
(B.25)

QCx =
DxDyS

C

pεxµz
+
jDzR

C

pεx
(B.26)

QDx =
DxDyS

D

pεxµz
+
jDzR

D

pεx
(B.27)

QAz =
DyDzS

A

qεzµx
− jDxR

A

qεz
(B.28)

QBz =
DyDzS

B

qεzµx
− jDxR

B

qεz
(B.29)

QCz =
DyDzS

C

qεzµx
− jDxR

C

qεz
(B.30)
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B.2 Equations for Spatial Domain

QDz =
DyDzS

D

qεzµx
− jDxR

D

qεz
(B.31)

Q̄z(x
h
j ) =

1

2
(Qz(x

e
j) +Qz(x

e
j+1)) (B.32)

QAy = SA (B.33)

QBy = SB (B.34)

QCy = SC (B.35)

QDy = SD (B.36)

Gtx = Gx cosαex + Ḡz sinαex (B.37)

GAx = −jDzS
A

qµx
+
DxDyR

A

qεzµx
(B.38)

GBx = −jDzS
B

qµx
+
DxDyR

B

qεzµx
(B.39)

GCx = −jDzS
C

qµx
+
DxDyR

C

qεzµx
(B.40)

GDx = −jDzS
D

qµx
+
DxDyR

D

qεzµx
(B.41)

GAz =
jDxS

A

pµz
+
DyDzR

A

pεxµz
(B.42)

GBz =
jDxS

B

pµz
+
DyDzR

B

pεxµz
(B.43)

GCz =
jDxS

C

pµz
+
DyDzR

C

pεxµz
(B.44)

GDz =
jDxS

D

pµz
+
DyDzR

D

pεxµz
(B.45)

Ḡz(x
h
j ) =

1

2
(Gz(x

e
j) +Gz(x

e
j+1)) (B.46)

GAy = RA (B.47)

GBy = RB (B.48)

GCy = RC (B.49)

GDy = RD (B.50)

with Dy = −jky.
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C Expressions in Cylindrical Coordinates

C.1 Equations for Spectral Domain

We write the expressions for Ez or TM mode by

p̂νek = diag
(
(pνekρk−1)

−1, (pνekρk)
−1) (C.1)

q̄νek = kρekρkqνek (C.2)

r̄νek = kρekρk−1rνek (C.3)

s̄νek = k2ρekρkρk−1sνek (C.4)

pνek = Jν(kρekρk−1)Y ν(kρekρk)

− Jν(kρekρk)Y ν(kρekρk−1) (C.5)

qνek = Jν(kρekρk−1)Y
′
ν(kρekρk)

−J ′ν(kρekρk)Y ν(kρekρk−1) (C.6)

rνek = J ′ν(kρekρk−1)Y ν(kρekρk)

−Jν(kρekρk)Y
′
ν(kρekρk−1) (C.7)

sνek = J ′ν(kρekρk−1)Y
′
ν(kρekρk)

−J ′ν(kρekρk)Y
′
ν(kρekρk−1). (C.8)

We can model the inner layer by the admittance matrix Ỹ 0 and the outer unbounded
medium surrounding the structure by Ỹ n. We write the expression as

Ỹ 0,n =
−1

µt

−εdtu−1νh −kzνu−1νh
−kzνu−1νh ε−1dt (−k2zν2u−1νh + εtµtuνe)


0,n

, (C.9)

where

uνe0 = kρe0ρ0
J ′ν(kρe0ρ0)

Jν(kρe0ρ0)
, (C.10)

uνen = kρenρn
H
′(2)
ν (kρenρn)

H
(2)
ν (kρenρn)

. (C.11)

Similar equations follow for Hz or TE mode, whereby the subscript e is replaced by h ( or
kρe → kρh).
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C.2 Equations for Spatial Domain

For any arbitrary layer k, we obtain the equations for 1D discretization as

Ezk(ρ, φe, z) =

Ne∑
i

(AkiP
A
i +BkiP

B
i )

Hzk(ρ, φe, z) =
Nh∑
i

(CkiP
C
i +DkiP

D
i ), (C.12)

where

PAi = Jνi(kρeρ)τ eφ(νi, φ
e)e−jkzz

PBi = Yνi(kρeρ)τ eφ(νi, φ
e)e−jkzz

PCi = Jνi(kρhρ)τhφ (νi, φ
h)e−jkzz

PDi = Yνi(kρhρ)τhφ (νi, φ
h)e−jkzz. (C.13)

For 2D discretization

Ezk(ρ, φe, ze) =

Ne
φ∑
i

Ne
z∑
l

(AkilP
A
il +BkilP

B
il )

Hzk(ρ, φh, zh) =

Nh
φ∑
i

Nh
z∑
l

(CkilP
C
il +DkilP

D
il ), (C.14)

where

PAil = Jνil(kρeρ)τ eφ(νi, φ
e)τ ez (kzl, z

e)

PBil = Yνil(kρeρ)τ eφ(νi, φ
e)τ ez (kzl, z

e)

PCil = Jνil(kρhρ)τhφ (νi, φ
h)τhz (kzl, z

h)

PDil = Yνil(kρhρ)τhφ (νi, φ
h)τhz (kzl, z

h). (C.15)

We write the expressions used in Chapter 5 as

Qtφ = Qφ cosαhφ + Q̄ρ sinαhφ (C.16)

QAφ =
DφDzP

A

edtρ
(C.17)

QBφ =
DφDzP

B

edtρ
(C.18)

QCφ =
jµtDρP

C

edt
(C.19)

QDφ =
jµtDρP

D

edt
(C.20)

QAρ =
DρDzP

A

edt
(C.21)
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QBρ =
DρDzP

B

edt
(C.22)

QCρ = −
jµtDφP

C

edtρ
(C.23)

QDρ = −
jµtDφP

D

edtρ
(C.24)

Qtz = Qz cosαez + Q̄ρ sinαez (C.25)

QAz = PA (C.26)

QBz = PB (C.27)

QCz = 0 (C.28)

QDz = 0 (C.29)

Gtφ = Gφ cosαeφ + Ḡρ sinαeφ (C.30)

GAφ =
jεtDρP

A

edt
(C.31)

GBφ =
jεtDρP

B

edt
(C.32)

GCφ =
DφDzP

C

edtρ
(C.33)

GDφ =
DφDzP

D

edtρ
(C.34)

GAρ =
jεtDφP

A

edtρ
(C.35)

GBρ =
jεtDφP

B

edtρ
(C.36)

GCρ =
DρDzP

C

edt
(C.37)

GDρ =
DρDzP

D

edt
(C.38)

Gtz = Gz cosαhz + Ḡρ sinαhz (C.39)

GAz = 0 (C.40)

GBz = 0 (C.41)

GCz = PC (C.42)

GDz = PD, (C.43)

where edt = εtµt − k2z .
For inner layer extending from 0 to ρ0 (denoted by 0) and outer unbounded layer (denoted

by n), we obtain the equations for 1D discretization as

Ez0,n(ρ, φe, z) =

Ne∑
i

A0,niP
A
0,ni
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C Expressions in Cylindrical Coordinates

Hz0,n(ρ, φh, z) =
Nh∑
i

C0,niP
C
0,ni

, (C.44)

where

PA0i = Jνi(kρe0ρ)τ eφ(νi, φ
e)e−jkzz

PC0i = Jνi(kρh0ρ)τhφ (νi, φ
h)e−jkzz (C.45)

and

PAni = H(2)
νi (kρenρ)τ eφ(νi, φ

e)e−jkzz

PCni = H(2)
νi (kρhnρ)τhφ (νi, φ

h)e−jkzz. (C.46)

For 2D discretization

Ez0,n(ρ, φe, ze) =

Ne
φ∑
i

Ne
z∑
l

A0,nilP
A
0,nil

Hz0,n(ρ, φh, zh) =

Nh
φ∑
i

Nh
z∑
l

C0,nilP
C
0,nil

, (C.47)

where

PA0il = Jνil(kρe0ρ)τ eφ(νi, φ
e)τ ez (kzl, z

e)

PC0il = Jνil(kρh0ρ)τhφ (νi, φ
h)τhz (kzl, z

h) (C.48)

and

PAnil = H(2)
νil

(kρenρ)τ eφ(νi, φ
e)τ ez (kzl, z

e)

PCnil = H(2)
νil

(kρhnρ)τhφ (νi, φ
h)τhz (kzl, z

h). (C.49)

C.3 Eigensolutions of the Helmholtz Equation

The eigensolutions in both φ- and z-directions are summarized in the Table C.1 and C.2,
respectively, where φ0 is the angular distance between walls along azimuth (φ) and a is the
distance between walls in the axial direction (z).
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C.3 Eigensolutions of the Helmholtz Equation

Table C.1: Eigensolutions of the Helmholtz equation in azimuth direction for different boundary
combinations

Boundary

τ eφi τhφi νicombination

along azimuth

E-wall/E-wall −j sin(νiφ
e) cos(νiφ

h) iπ
φ0

H-wall/H-wall cos(νiφ
e) −j sin(νiφ

h) iπ
φ0

H-wall/E-wall cos(νiφ
e) −j sin(νiφ

h)
(i− 1

2
)π

φ0

Closed Cylinder exp−jνiφ
e

exp−jνiφ
h

i

Table C.2: Eigensolutions of the Helmholtz equation in axial direction for different boundary com-
binations

Boundary

τ ezl τhzl kzlcombination

(left/right)

E-wall/E-wall cos(kzlz
e) −j sin(kzlz

h) lπ
a

H-wall/H-wall −j sin(kzlz
e) cos(kzlz

h) lπ
a

H-wall/E-wall −j sin(kzlz
e) cos(kzlz

h)
(l− 1

2
)π

a

ABC/ABC

cos(kzlz
e) −j sin(kzlz

h) kzl satisfying Bz=+Az

−j sin(kz(l+1)z
e) cos(kz(l+1)z

h) kz(l+1) satisfying Bz=-Az
...

...
...

(alternating) (alternating) (alternating)

E-wall/ABC cos(kzlz
e) −j sin(kzlz

h) kzl satisfying Bz=+Az

H-wall/ABC −j sin(kzlz
e) cos(kzlz

h) kzl satisfying Bz=-Az
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D Discretization with Symmetry

D.1 Cartesian Coordinate System

D.1.1 1D Discretization

When the microstrip transmission line presents a symmetry, then only half of the structure
needs to be analyzed. Fig. D.1a shows the discretization when structure is truncated in
half by the H-wall in the middle and Fig. D.1b shows when the structure is truncated by
the E-wall in the middle. Let us assume that the number of e-lines present on half of the
strip in x-direction is Nes with discretization distance of ∆x between the lines. Then the
width of the strip becomes

W = 2(Nes − 0.25)∆x (D.1)

for an H-wall in the middle and

W = 2(Nes + 0.25)∆x (D.2)

for an E-wall in the middle.

D.1.2 2D Discretization

We take a microstrip patch antenna surrounded by E-walls in x-direction and H-walls in
y-direction. Let us assume that the number of eh-lines present on half of the patch in
x-direction is Nehpx and in y-direction is Nehpy . The discretization distance between lines
in x-direction is ∆x and in y-direction is ∆y. When we truncate the patch by placing an
H-wall in the center in x-direction (Fig. D.2a), then the patch dimensions become

Pa = 2(Nehpx − 0.25)∆x, (D.3)

Pb = (Nehpy + 0.5)∆y. (D.4)

In case of symmetry with E-wall in the middle of the structure (Fig. D.2b), the patch
dimensions become

Pa = 2(Nehpx + 0.25)∆x, (D.5)

Pb = (Nehpy + 0.5)∆y. (D.6)
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Figure D.1: 1D discretization scheme for half of the microstrip structure in Cartesian coordinate
system. (— e-line (Ez, Ey, Hx), - - - h-line (Hz, Hy, Ex))
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Figure D.2: 2D discretization scheme for half of the microstrip patch in Cartesian coordinate
system.

For resonance along y, we need to analyze only a quarter of the structure with the
symmetry conditions shown in Fig. D.3a. Here we truncate the microstrip patch with H-
wall in x-direction and E-wall in y-direction. In short, the structure is bounded by HE-walls
in x-direction and EH-walls in y-direction. The number of eh-lines placed on quarter of the
patch are Nehpx and Nehpy in x- and y-directions, respectively. The patch dimensions in
this case become

Pa = 2(Nehpx − 0.25)∆x, (D.7)

Pb = 2(Nehpy + 0.25)∆y. (D.8)

For resonance along x, we also need to analyze only a quarter of the structure with the
symmetry conditions shown in Fig. D.3b. Here we truncate the microstrip patch with E-
wall in x-direction and H-wall in y-direction. In short, the structure is bounded by EE-walls
in x-direction and HH-walls in y-direction. The patch dimensions in this case become

Pa = 2(Nehpx + 0.25)∆x, (D.9)

Pb = 2(Nehpy + 0.75)∆y. (D.10)
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Figure D.3: 2D discretization scheme for a quarter of the microstrip patch.

D.2 Cylindrical Coordinate System

D.2.1 1D Discretization

Similar discretization happens in cylindrical structures as in planar structures. The dif-
ference comes in the location of the field components. Fig. D.4 gives the discretization of
the cross-section of cylindrical microstrip lines. The computational domain of the structure
can be truncated by placing E-walls or H-walls as given in Fig. D.4a and D.4b respectively.
When there are Nes number of e-lines present on the strip in φ-direction, then the strip
width becomes

W = (Nes − 0.5)∆φ, (D.11)

where ∆φ is the discretization distance between the lines. A quarter sector can also be
analyzed using H-wall symmetry in the middle of the strip as shown in Fig. D.4c. The total
width of the microstrip is equal to

W = 2(Nes − 0.25)∆φ, (D.12)

with Nes e-lines placed on half of the strip.
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Figure D.4: 1D discretization scheme for half of the microstrip structure in a cylindrical coordinate
system. (— e-line (Ez, Eρ, Hφ), - - - h-line (Hz, Hρ, Eφ))

D.2.2 2D Discretization

We take the microstrip patch present on the cylindrical substrate. We bound the domain
of the cylinder with EE-walls in φ-direction and HH-walls in z-direction. Similar to the
Cartesian coordinate system, here also we need to analyze only half of the domain due to the
symmetry present in the patch structure. The top half view of the rectangular microstrip
patch present on the cylindrical structure is depicted in Fig. D.5. We consider that the
number of e-lines present on half of the patch along φ and z is Nepφ and Nepz , respectively.
When we truncate the patch by placing an H-wall in the center in φ-direction (Fig. D.5a),
then the patch dimensions become

Pa = 2(Nepφ − 0.25)∆φ, (D.13)

Pb = (Nepz + 0.5)∆z, (D.14)

where ∆φ and ∆z are the discretization distances in φ- and z-directions, respectively.
In case of symmetry with E-wall in the middle of the structure (Fig. D.5b), the patch
dimensions become

Pa = 2(Nepφ + 0.25)∆φ, (D.15)

Pb = (Nepz + 0.5)∆z. (D.16)
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Figure D.5: 2D discretization scheme for half of the microstrip patch in a cylindrical coordinate
system.

The discretization for a quarter of the patch for resonance in z- or φ-direction follows
the same pattern as shown in Fig. D.3a and D.3b, respectively. The field locations are the
same as in Fig. D.5. The patch dimensions for first case in Fig. D.3a become

Pa = 2(Nepφ − 0.25)∆φ, (D.17)

Pb = 2(Nepz + 0.25)∆z, (D.18)
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while the patch dimensions for second case in Fig. D.3b become

Pa = 2(Nepφ + 0.25)∆φ, (D.19)

Pb = 2(Nepz + 0.75)∆z. (D.20)
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List of Symbols

Latin Symbols

Symbol Description Unit

A major axis of the elliptical cross-section m

B minor axis of the elliptical cross-section m

~B magnetic flux density vector V s m−2

Bk submatrix of Kk

B̃k submatrix of K̃k

~D electric displacement vector A s m−2

~E electric field vector V m−1 or
V#

E electric field column matrix of system of equations in spatial
domain

V

Ẽ electric field column matrix of system of equations in spectral
domain

V

Ek column matrix of FWEC that represents the electric field tan-
gential to the kth interface in spatial domain

V

E+
k column matrix of FWEC that represents the tangential electric

field above the kth interface in spatial domain
V

E−k column matrix of FWEC that represents the tangential electric
field below the kth interface in spatial domain

V

Ẽk column matrix of FWEC that represents the electric field tan-
gential to the kth interface in spectral domain

V

Ẽ
+

k column matrix of FWEC that represents the tangential electric
field above the kth interface in spectral domain

V

Ẽ
−
k column matrix of FWEC that represents the tangential electric

field below the kth interface in spectral domain
V

Ered reduced form of E V

~E(x, y, z) electric field vector in rectangular coordinate system V m−1

~E(ρ, φ, z) electric field vector in cylindrical coordinate system V m−1
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Symbol Description Unit

~E(ξ, η, z) electric field vector in elliptical coordinate system V m−1

Etx electric field along x tangential to the kth interface V

Etx column matrix containing the sampled Etx V

Etz electric field along z tangential to the kth interface V

Etz column matrix containing the sampled Etz V

Etφ electric field along φ tangential to the kth interface V

Etφ column matrix containing the sampled Etφ V

Ex x-oriented electric field component V

Ex column matrix containing the sampled Ex in spatial domain V

Ẽx field component Ex in spectral domain V

Ẽx column matrix containing the modal values of Ẽx V

Ẽxk column matrix containing the modal values of Ẽx in the kth

interface
V

Ey y-oriented electric field component V

Ey column matrix containing the sampled Ey in spatial domain V

Ẽy field component Ey in spectral domain V

Ẽy column matrix containing the modal values of Ẽz V

Ẽyk column matrix containing the modal values of Ẽy in the kth

interface
V

Ez z-oriented electric field component V m−1**
or V

Ez column matrix containing the sampled Ez in spatial domain V

Ẽz field component Ez in spectral domain V

Ẽz column matrix containing the modal values of Ẽz V

Ezk z-oriented electric field component in the kth layer V

Ezk column matrix containing the sampled Ez in the kth interface V

Ẽzk column matrix containing the modal values of Ẽz in the kth

interface
V

Ēzk interpolated Ezk V

Eφ φ-oriented electric field component V

Eφ column matrix containing the sampled Eφ in spatial domain V

Ẽφ field component Eφ in spectral domain V
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Symbol Description Unit

Ẽφ column matrix containing the modal values of Ẽφ V

Eφk φ-oriented electric field component in the kth layer V

Ẽφk column matrix containing the modal values of Ẽφ in the kth

interface
V

Eρ ρ-oriented electric field component V

Ẽρ field component Eρ in spectral domain V

Ẽρ column matrix containing the modal values of Ẽρ V

Eρk ρ-oriented electric field component in the kth layer V

Ēρk interpolated Eρk V

Eξ ξ-oriented electric field component V m−1

Eη η-oriented electric field component V m−1

Eηk column matrix containing the sampled Eη in the kth interface V m−1

Eθ column matrix containing electric field along θ V

Eφ column matrix containing electric field along φ V

G matrix of the system of equations in the spatial domain whose
elements are according to the Green’s function of the structure

G̃ matrix of the system of equations in the spectral domain whose
elements are according to the Green’s function of the structure

Gred reduced form of G

Gxx submatrix of G

G̃xx submatrix of G̃

Gxy submatrix of G

G̃xy submatrix of G̃

Gyx submatrix of G

G̃yx submatrix of G̃

Gyy submatrix of G

G̃yy submatrix of G̃

~H magnetic field vector A m−1 or
A Ω*

Hk column matrix of FWEC that represents the magnetic field
tangential to the kth interface in spatial domain

A Ω
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Symbol Description Unit

H+
k column matrix of FWEC that represents the tangential mag-

netic field above the kth interface in spatial domain
A Ω

H−k column matrix of FWEC that represents the tangential mag-
netic field below the kth interface in spatial domain

A Ω

H̃k column matrix of FWEC that represents the magnetic field
tangential to the kth interface in spectral domain

A Ω

H̃
+

k column matrix of FWEC that represents the tangential mag-
netic field above the kth interface in spectral domain

A Ω

H̃
−
k column matrix of FWEC that represents the tangential mag-

netic field below the kth interface in spectral domain
A Ω

~H(x, y, z) magnetic field vector in rectangular coordinate system A m−1

~H(ρ, φ, z) magnetic field vector in cylindrical coordinate system A m−1

~H(ξ, η, z) magnetic field vector in elliptical coordinate system A m−1

Htx magnetic field along x tangential to the kth interface A Ω

Htx column matrix containing the sampled Htx in the kth interface A Ω

Htz magnetic field along z tangential to the kth interface A Ω

Htz column matrix containing the sampled Htz in the kth interface A Ω

Htφ magnetic field along φ tangential to the kth interface A Ω

Htφ column matrix containing the sampled Htφ in the kth interface A Ω

Hx x-oriented magnetic field component A Ω

Hx column matrix containing the sampled Hx in spatial domain A Ω

H̃x field component Hx in spectral domain A Ω

H̃x column matrix containing the modal values of H̃x A Ω

H̃xk column matrix containing the modal values of H̃x in the kth

interface
A Ω

Hy y-oriented magnetic field component A Ω

Hy column matrix containing the sampled Hy in spatial domain A Ω

H̃y field component Hy in spectral domain A Ω

H̃y column matrix containing the modal values of H̃y A Ω

H̃yk column matrix containing the modal values of H̃y in the kth

interface
A Ω

Hz z-oriented magnetic field component A m−1** or
A Ω
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Symbol Description Unit

Hz column matrix containing the sampled Hz in spatial domain A Ω

H̃z field component Hz in spectral domain A Ω

H̃z column matrix containing the modal values of H̃z A Ω

Hzk z-oriented magnetic field component in the kth layer A Ω

Hzk column matrix containing the sampled Hz in the kth interface A Ω

H̃zk column matrix containing the modal values of H̃z in the kth

interface
A Ω

H̄zk interpolated Hzk A Ω

Hφ φ-oriented magnetic field component A Ω

H̃φ field component Hφ in spectral domain A Ω

H̃φ column matrix containing the modal values of H̃φ A Ω

Hφk φ-oriented magnetic field component in the kth layer A Ω

H̃φk column matrix containing the modal values of H̃φ in the kth

interface
A Ω

Hρ ρ-oriented magnetic field component A Ω

H̃ρ field component Hρ in spectral domain A Ω

H̃ρ column matrix containing the modal values of H̃ρ A Ω

Hρk ρ-oriented magnetic field component in the kth layer A Ω

H̄ρk interpolated Hρk A Ω

Hξ ξ-oriented magnetic field component A m−1

Hη η-oriented magnetic field component A m−1

Hηk column matrix containing the sampled Hη in the kth interface A m−1

J surface current density column matrix of system of equations
in spatial domain

A Ω

J̃ surface current density column matrix of system of equations
in spectral domain

A Ω

J̃k column matrix of FWEC that represents the surface current
density tangential to the kth interface in spectral domain

A Ω

J red reduced form of J A Ω

Jtz surface current density along z tangential to the kth interface A Ω

J tz column matrix containing the sampled Jtz in the kth interface A Ω

Jtφ surface current density along z tangential to the kth interface A Ω
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D Discretization with Symmetry

Symbol Description Unit

J tφ column matrix containing the sampled Jtz in the kth interface A Ω

Jx column matrix containing the sampled surface current density
along x in spatial domain

A Ω

J̃x column matrix containing the modal values of surface current
density along x in spectral domain

A Ω

Jy column matrix containing the sampled surface current density
along y in spatial domain

A Ω

J̃y column matrix containing the modal values of surface current
density along y in spectral domain

A Ω

Jz column matrix containing the sampled surface current density
along z in spatial domain

A Ω

J̃z column matrix containing the modal values of surface current
density along z in spectral domain

A Ω

Jφ column matrix containing the sampled surface current density
along φ in spatial domain

A Ω

k index for the sequence of the dielectric layer in stratified media

K propagation constant

k0 propagation constant in the vacuum m−1

K̃eq equivalent hybrid matrix obtained after multiplications of cas-
caded K̃k matrices

Kk hybrid matrix of the kth layer in FWEC in the spatial domain

K̃k hybrid matrix of the kth layer in FWEC in the spectral domain

kx spectral variable in x-direction

ky spectral variable in y-direction

kxi spectral variable in x-direction of order i

kyi spectral variable in y-direction of order i

kz spectral variable/wave number in z-direction

kzi spectral variable in z-direction of order i

kze wave number in z-direction for e-lines

kzh wave number in z-direction for h-lines

kρ wave number in ρ-direction

kρe wave number in ρ-direction for e-lines

kρh wave number in ρ-direction for h-lines
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D.2 Cylindrical Coordinate System

Symbol Description Unit

n total number of layers

Nx number of modes in x-direction

Ny number of modes in y-direction

Nz number of modes in z-direction

Nφ number of modes in φ-direction

L matrix of the admittance as given by system of equations in
the spatial domain

L̃ matrix of the admittance as given by system of equations in
the spectral domain

Lred reduced form of L

L̃k,k submatrix of L̃

Pa patch width m

Pb patch length m

Sa substrate width m

Sb substrate length m

T e transformation matrix for e-lines

T ee transformation matrix for e, e-lines in 2D discretization

T eh transformation matrix for e, h-lines in 2D discretization

T h transformation matrix for h-lines

T he transformation matrix for h, e-lines in 2D discretization

T hh transformation matrix for h, h-lines in 2D discretization

V k submatrix of Kk

Ṽ k submatrix of K̃k

x coordinate of rectangular coordinate system (normalized by
k0)

x′ x-coordinate of a point source

y coordinate of rectangular coordinate system (normalized by
k0)

y′ y-coordinate of a point source

Y 0 admittance of inner layer in the spatial domain

Ỹ 0 admittance of inner layer with 0 ≤ ρ ≤ ρ0 in the spectral
domain
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D Discretization with Symmetry

Symbol Description Unit

Y k submatrix of Kk

Ỹ k submatrix of K̃k

Y n admittance of unbounded medium around the multilayered
structure in the spatial domain

Ỹ n admittance of unbounded medium around the multilayered
structure in the spectral domain

z coordinate of rectangular coordinate system (normalized by
k0)

Z0 characteristic impedance Ω

zk height of z coordinate at kth interface

Zk submatrix of Kk

Z̃k submatrix of K̃k

Greek Symbols

Symbol Description Unit

αx angle at the interface with the x-axis

αz angle at the interface with the z-axis

αφ angle at the interface with the φ-axis

∆x distance between two adjacent e-/h-lines along x

∆y distance between two adjacent e-/h-lines along y

∆z distance between two adjacent e-/h-lines along z

∆φ distance between two adjacent e-/h-lines along φ m−1

¯̄ε permittivity tensor F m−1

¯̄εk permittivity tensor of layer k F m−1

¯̄εr relative permittivity tensor

¯̄εrk relative permittivity tensor of layer k

ε0 permittivity of vacuum F m−1

εair relative permittivity of air

εcore relative permittivity of core of the fiber

εm relative permittivity of medium where ABCs are placed

εde = k2x + k2y for e-line field component
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D.2 Cylindrical Coordinate System

Symbol Description Unit

εdh = k2x + k2y for h-line field component

εr relative permittivity

εrk relative permittivity of layer k

εt relative permittivity in ρ- and φ-directions

εx relative permittivity in x-direction

εy relative permittivity in y-direction

εz relative permittivity in z-direction

ξ coordinate of elliptical coordinate system

ξk ξ coordinate at kth interface

η coordinate of elliptical coordinate system

η0 intrinsic impedance of vacuum Ω

ηej η coordinate of the jth e-line

ηhj η coordinate of the jth h-line

θ coordinate of spherical coordinate system

θ angle of incidence

¯̄µ permeability tensor H m−1

¯̄µk permeability tensor of layer k H m−1

¯̄µr relative permeability tensor

¯̄µrk relative permeability tensor of layer k

µ0 permeability of vacuum H m−1

µm relative permeability of medium where ABCs are placed

µr relative permeability

µrk relative permeability of layer k

µt relative permittivity in ρ- and φ-directions

µx relative permeability in x-direction

µy relative permeability in y-direction

µz relative permeability in z-direction

ν spectral variable along φ m

ρ coordinate of cylindrical coordinate system (normalized by k0)

τx eigensolutions along x
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D Discretization with Symmetry

Symbol Description Unit

τy eigensolutions along y

τ ex eigensolutions along x related to e-lines

τhx eigensolutions along x related to h-lines

τ ey eigensolutions along y related to e-lines

τhy eigensolutions along y related to h-lines

τ eφ eigensolutions along φ related to e-lines

τhφ eigensolutions along φ related to h-lines

τ ez eigensolutions along z related to e-lines

τhz eigensolutions along z related to h-lines

φ coordinate of cylindrical coordinate system (normalized by k0) m−1

φ coordinate of spherical coordinate system

φen φ coordinate of the nth e-line m−1

φhn φ coordinate of the nth h-line m−1

ψ variable that represents fields or field component

ψ column matrix containing the sampled ψ in the spatial domain

ψ̃ variable that represents fields or field component in the spec-
tral domain

ψ̃ column matrix containing the modal values of ψ̃

ω angular frequency s−1

# normalized by k0
* η0 ~H is replaced by ~H and normalized by k0
** in elliptical coordinate system
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List of Abbreviations

1D one-dimentional

2D two-dimentional

3D three-dimentional

ABC absorbing boundary condition

AR axial ratio

CFRP carbon fiber reinforced polymer / carbonfaserverstärkte Kunst-
stoffe (CFK)

CST Computer Simulation Technology

DMM discrete mode matching

E-wall electric wall

FDTD finite-difference time domain

FEM finite element method

FWEC full-wave equivalent circuit

FTD fourier transform domain

H-wall magnetic wall

HFSS High-Frequency Structure Simulator

LH left-handed

MoL method of lines

MoM method of moments

MSP method of stationary phase

TE transversal electric

TM transversal magnetic
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