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Abstract: We calculate for the first time all four-quark hadronic matrix elements of local

operators possibly contributing to K → ππ decays and in particular to the ratio ε′/ε

beyond the Standard Model (BSM). To this end we use the Dual QCD (DQCD) approach.

In addition to 7 new mirror operators obtained from the SM ones by flipping the chirality,

we count 13 BSM four-quark operators of a given chirality linearly independent of each

other and of the aforesaid 14 operators for which hadronic matrix elements are already

known. We present results in two bases for all these operators, one termed DQCD basis

useful for the calculation of the hadronic matrix elements in the DQCD approach and

the other called SD basis suited to the short distance renormalization group evolution

above the 1 GeV scale. We demonstrate that the pattern of long distance evolution (meson

evolution) matches the one of short distance evolution (quark-gluon evolution), a property

which to our knowledge cannot be presently achieved in any other analytical framework.

The highlights of our paper are chirally enhanced matrix elements of tensor-tensor and

scalar-scalar BSM operators. They could thereby explain the emerging ε′/ε anomaly which

is strongly indicated within DQCD with some support from lattice QCD. On the other

hand we do not expect the BSM operators to be relevant for the ∆I = 1/2 rule.
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1 Introduction

The direct CP-violation in K → ππ decays, represented by the ratio ε′/ε, plays a very

important role in the tests of the Standard Model (SM) and more recently in the tests

of its possible extensions. For recent reviews see [1, 2]. In fact there are strong hints for

sizable new physics (NP) contributions to ε′/ε from Dual QCD approach (DQCD) [3, 4]

that are supported to some extent by RBC-UKQCD lattice collaboration [5, 6]. Most recent

SM analyses at the NLO level can be found in [7, 8] and a NNLO analysis is expected to

appear soon [9]. Most importantly, an improved result on ε′/ε from RBC-UKQCD lattice

collaboration is expected this summer.

This situation motivated several authors to look for various extensions of the SM which

could bring the theory to agree with data [10–30]. In most of the models the rescue comes

from the modification of the Wilson coefficient of the dominant electroweak left-right (LR)

penguin operator Q8, but also solutions through a modified contribution of the dominant

QCD LR penguin operator Q6 could be considered [15].

Here we want to emphasize that scalar-scalar and tensor-tensor four-fermion operators

generated e.g. through tree-level exchanges of colour-singlet and colour-octet heavy mesons

could also give significant contributions to ε′/ε because they have, just like the Q6 and Q8

operators, chirally enhanced K → ππ matrix elements. However, whereas in the case of Q6

and Q8 operators significant progress in evaluating their matrix elements relevant for ε′/ε

by lattice QCD has been made [5, 6], no lattice QCD calculations have been performed so

far for these scalar-scalar and tensor-tensor operators although their two-loop anomalous

dimensions have been known [31, 32] for almost two decades. In fact, to our knowledge,

there exist no analytic results for the matrix elements in question, even obtained by the

vacuum insertion method which, in any case, as already demonstrated in several studies,

totally misrepresents QCD.

We are aware of the fact that it will still take some time before lattice QCD will be

able to provide K → ππ matrix elements for scalar-scalar and tensor-tensor operators. Yet,

in view of the hints for NP in ε′/ε, we think it is time to estimate their matrix elements

in the framework of DQCD [33–36] which has been generalized in this decade [3, 4, 37,

38] through the inclusion of vector meson contributions and improved through a better

matching to short distance contributions. While not as precise as ultimate lattice QCD

calculations, this approach offered over many years an insight in the lattice results and

often, like was the case of the ∆I = 1/2 rule [35] and the parameter B̂K [36], provided

results almost three decades before this was possible with lattice QCD. The agreement

between results from DQCD and lattice QCD is remarkable, in particular considering the

simplicity of the former approach compared to the very sophisticated and computationally

demanding numerical lattice QCD one. The most recent example of this agreement was an

explanation by DQCD of the pattern of values of B
(1/2)
6 and B

(3/2)
8 entering ε′/ε obtained by

lattice QCD [3, 4] and of the pattern of lattice values for BSM parameters Bi in K0 − K̄0

mixing [39]. This is also the case for hadronic matrix elements of the chromomagnetic

operator presented recently in [40] that are in agreement with the result from the ETM

collaboration [41].
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Our paper is organized as follows. In section 2 we recall the SM operators contributing

to K → ππ decays and construct a basis of four-quark BSM operators. Consisting ex-

clusively of 13 products of colour singlet scalar, vector and tensor bilinears, this complete

basis is particularly useful for the calculations of hadronic matrix elements in the DQCD

approach and will thus be called the DQCD basis. In section 3 we recall very briefly the

elements of DQCD relevant for our paper. In section 4 we perform the evolution of BSM

operators from a very low factorization scale up to scales µ = O(1 GeV), the so-called

meson evolution, in the chiral limit. While this is a crude approximation, a recent analy-

sis of BSM hadronic K0 − K̄0 matrix elements in this limit [39] was able to explain at a

semi-quantitative level the pattern of the values of these matrix elements obtained by the

ETM, SWME and RBC-UKQCD lattice QCD collaborations [42–46].

In section 5 we present the formulae for the quark-gluon evolution in the DQCD basis

while in section 6 we demonstrate that the patterns of meson evolution of BSM operators

presented in section 4 and of the quark-gluon evolution of section 5 are compatible with

each other, assuring us that the matching of hadronic matrix elements evaluated in DQCD

and of their Wilson coefficients will be satisfactory. In section 7 we calculate the matrix

elements of all BSM operators at leading order in the DQCD basis and, using the results

for their meson evolution of section 4, we obtain their values at the scale µ = O(1 GeV).

In section 8 we introduce a different basis of 13 BSM operators which turns out to be

particularly suited to the usual short distance (SD) QCD evolution. For this reason we

call this basis the SD basis. We establish the relation between the DQCD and SD bases

which, using the results of section 7, allows us to obtain hadronic matrix elements of all

BSM operators in the SD basis at µ = O(1 GeV). For completeness we give in appendix D

also their values in the large N limit. The 13 BSM operators of a given chirality already

mentioned are all allowed by the SU(3)c×U(1)Q invariance. In section 9, following [47, 48],

we emphasize that in the SM effective field theory (SMEFT), based on the full SM gauge

symmetry SU(3)c× SU(2)L×U(1)Y , only 7 four-quark BSM operators of a given chirality

are allowed. We identify these operators in the DQCD and SD bases.

In section 10 we calculate the K → ππ matrix elements of all BSM operators in two

bases in question for values of µ to be explored one day by lattice QCD. The results in the

DQCD basis demonstrate once again that the pattern of meson evolution agrees with the

one of SD evolution. The ones in the SD basis can now be used in the BSM phenomenology

of ε′/ε and ∆I = 1/2 rule.

A brief summary of our results is given in section 11. In a number of appendices

we collect useful auxiliary material. Phenomenological implications of our results will be

presented elsewhere.

2 K → ππ decays

2.1 Preliminaries

The isospin amplitudes AI in K → ππ decays are introduced through

A(K+ → π+π0) =

(
1

h

)[
3

2
A2e

iδ2

]
, (2.1)
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A(K0 → π+π−) =

(
1

h

)[
A0e

iδ0 +

√
1

2
A2e

iδ2

]
, (2.2)

A(K0 → π0π0) =

(
1

h

)[
A0e

iδ0 −
√

2A2e
iδ2
]
, (2.3)

where the parameter h distinguishes between various normalizations of A0,2 found in the

literature. We use h = 1 but the RBC-UKQCD collaboration uses h =
√

3/2 implying

that their amplitudes A0,2 are by a factor
√

3/2 larger than ours. This difference cancels

of course in all physical observables. All matrix elements listed below should be multiplied

by h in case h = 1 is not used.

2.2 SM operators

We begin by recalling the SM operators:

Current-current:

Q1 = (s̄d)V−A(ūu)V−A, Q2 = (s̄u)V−A (ūd)V−A, (2.4)

QCD penguins:

Q3 = (s̄d)V−A
∑

q=u,d,s

(q̄q)V−A, Q4 = (s̄αdβ)V−A
∑

q=u,d,s

(q̄βqα)V−A,

Q5 = (s̄d)V−A
∑

q=u,d,s

(q̄q)V+A, Q6 = (s̄αdβ)V−A
∑

q=u,d,s

(q̄βqα)V+A,
(2.5)

Electroweak penguins

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq (q̄q)V+A, Q8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s

eq (q̄βqα)V+A,

Q9 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq (q̄q)V−A, Q10 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s

eq (q̄βqα)V−A.

(2.6)

Here, α, β denote colour indices and eq the electric quark charges reflecting the electroweak

origin of Q7, . . . , Q10. Finally, (s̄d)V±A ≡ s̄αγµ(1 ± γ5)dα. As we are only interested in

hadronic matrix elements in this paper, the summations are only over u, d, s quarks.

2.3 BSM operators

2.3.1 Chiral Fierz identities

The following 16 Dirac bilinears form the appropriate chiral basis for a systematic classifi-

cation of all ∆S = 1 weak operators beyond the Standard model (BSM):

{ΓA} = {PL, PR, γµPL, γµPR, σµν}, (A = 1, . . . 16) (2.7)

with

PL,R =
1

2
(1∓ γ5), {γµ, γν} = 2gµν , σµν =

i

2
[γµ, γν ] . (2.8)

– 3 –
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Within these conventions, the corresponding dual basis

{ΓA} =

{
PL, PR, γµPR, γµPL,

1

2
σµν

}
, (2.9)

obeys the orthogonality property

Tr(ΓAΓB) = 2δBA . (2.10)

If we substitute the matrix indices by parentheses () and brackets [ ] such that each

parenthesis/bracket represents a different spinor index, the completeness relation

(1)[1] =
1

2
(ΓA][ΓA), (2.11)

leads then to the so-called chiral Fierz identities [49]

(ΓA)[ΓB] =
1

4
Tr(ΓAΓCΓBΓD)(ΓD][ΓC). (2.12)

Anticipating the fermion field anticommutation, we can turn all the four-quark oper-

ators into products of colour singlet bilinears according to four classes of Fierz identities:

Class A:

(γµPL][γµPL) = (γµPL)[γµPL], (2.13)

Class B:

(γµPL][γµPR) = −2(PR)[PL], (2.14)

Class C:

(PR][PL) = −1

2
(γµPL)[γµPR], (2.15)

Class D:

(PL][PL) = −1

2
(PL)[PL]− 1

8
(σµνPL)[σµνPL], (2.16)

(σµνPL][σµνPL) = −6(PL)[PL] +
1

2
(σµνPL)[σµνPL]. (2.17)

Mirror operators are obtained through an obvious chirality-flip (L↔ R).

2.3.2 Illustration with ∆S = 2 operators

Tree-level neutral meson exchanges can lead to various BSM ∆S = 2 transitions. As a

consequence, we have to consider the four classes of operators for a single set of Fierz-

conjugate flavour indices {ab; cd} = {sd; sd}:

A : (s̄γµPLd][s̄γµPLd) = (s̄γµPLd)[s̄γµPLd] = O1, (2.18)

B : (s̄γµPLd][s̄γµPRd) = −2(s̄PRd)[s̄PLd] = −2O4, (2.19)

C : (s̄PRd][s̄PLd) = −1

2
(s̄γµPLd)[s̄γµPRd] = O5, (2.20)

D : (s̄PLd][s̄PLd) = −1

2
(s̄PLd)[s̄PLd]− 1

8
(s̄σµνPLd)[s̄σµνPLd] = O3, (2.21)

(s̄σµνPLd][s̄σµνPLd) = −6(s̄PLd)[s̄PLd] +
1

2
(s̄σµνPLd)[s̄σµνPLd]

= −8O2 − 4O3. (2.22)

– 4 –
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Using this technology, we succeeded [32, 39] in turning the SUSY basis [50, 51] represented

by 1 SM operator O1 and 4 BSM operators O2−5 into the SD basis of [32].

2.3.3 Application to the SM ∆S = 1 operators

In the case of tree-level charged or neutral meson exchanges leading to various ∆S = 1

transitions we now have to consider four different sets of flavour indices {ab; cd}, namely

{su;ud} , {sd;uu} , {sd; dd} , {sd; ss} , (2.23)

for each class of operators. The last set of operators with a (s̄s) bilinear does not con-

tribute to the K → ππ matrix elements at the factorization scale, the starting point of our

calculation. Yet, they may contribute above this scale through the evolution into other

pure ∆I = 1/2 operators.

According to our generic Fierz classification and up to parity-transformations (L↔ R),

this complete basis gives rise to 5 × 4 = 20 linearly independent operators written as

the product of two colour-singlet bilinears. But now, we want to build the optimal ba-

sis for a transparent evolution of the BSM operators orthogonal to the SM Qi displayed

in (2.4)–(2.6). For that purpose let us first isolate the latter ones by selecting the appro-

priate combinations of operators in (2.23), with sums over q = u, d, s understood.

Class A:

(s̄γµPLu)[ūγµPLd] =
1

4
Q2 , (s̄γµPLd)[ūγµPLu] =

1

4
Q1 , (2.24)

(s̄γµPLd)[q̄γµPLq] =
1

4
Q3 . (2.25)

In fact this class covers all SM (V −A)× (V −A) operators since the charge matrix eq ap-

pearing in the electroweak weak penguins in (2.6) can be decomposed in the following way:

diag.(2/3,−1/3,−1/3) = diag.(1, 0, 0)− (1/3)diag.(1, 1, 1) (2.26)

and implies

Q4 = −Q1 +Q2 +Q3 , (2.27)

Q9 =
3

2
Q1 −

1

2
Q3 , (2.28)

Q10 =
1

2
Q1 +Q2 −

1

2
Q3 . (2.29)

Class B:

(s̄PRu) [ūPLd] = − 1

12

(
Q8 +

1

2
Q6

)
, (s̄PRq)[q̄PLd] = −1

8
Q6 . (2.30)

Here we use the fact that {ss; sd} is the mirror partner of {sd; ss}.

– 5 –
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Class C:

(s̄γµPLu)[ūγµPRd] =
1

6

(
Q7 +

1

2
Q5

)
, (s̄γµPLd)[q̄γµPRq] =

1

4
Q5 . (2.31)

So we end up with a total of 7 four-quark SM operators scattered in the first three classes,

all of them being invariant under the discrete symmetry CPS which is the product of

ordinary CP with d↔ s switch [52].

2.3.4 Application to the BSM ∆S = 1 operators

As a consequence of our counting in the previous subsection, by orthogonality we are left

with 20 − 7 = 13 four-quark BSM operators linearly independent from the SM ones and

violating CPS symmetry, namely

- one in class A:

A = (s̄γµPLd)[d̄γµPLd− s̄γµPLs] , (2.32)

- two in class B:

B1 = (s̄PRd)[ūPLu] , B2 = (s̄PRd)[d̄PLd]− (s̄PRs)[s̄PLd] , (2.33)

- two in class C:

C1 = (s̄γµPLu)[ūγµPRd] , C2 = (s̄γµPLd)[d̄γµPRd− s̄γµPRs] , (2.34)

- eight in class D:

D1 = (s̄PLu)[ūPLd] , D2 = (s̄PLd)[ūPLu] , (2.35)

D3 = (s̄PLd)[d̄PLd] , D4 = (s̄PLd)[s̄PLs] , (2.36)

D∗1 = −(s̄σµνPLu)[ūσµνPLd] , D∗2 = −(s̄σµνPLd)[ūσµνPLu] , (2.37)

D∗3 = −(s̄σµνPLd)[d̄σµνPLd] , D∗4 = −(s̄σµνPLd)[s̄σµνPLs] . (2.38)

Finally we want to emphasize the following virtue of the chosen basis of BSM operators

in which, in contrast to the SM basis in (2.5) and (2.6), no summation over quarks is

performed. Indeed when considering various extensions of the SM it often turns out that

a new heavy mediator, vector or scalar, couples at tree level only to up-quarks or down-

quarks but not to both. Moreover right-handed up- and down-quark couplings to new

mediators, not related by SU(2)L symmetry, could differ by much from each other. In this

manner this basis, to be called DQCD basis, is not only appropriate to the evaluation of

hadronic matrix elements but also useful for model building.

– 6 –
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3 Dual QCD basics

The explicit calculation of the contributions of pseudoscalars to hadronic matrix elements

of local operators is based on a truncated chiral Lagrangian describing the low energy

interactions of the lightest mesons [33, 34, 53]

Ltr =
F 2

8

[
Tr(DµUDµU

†) + rTr(mU † + h.c.)− r

Λ2
χ

Tr(mD2U † + h.c.)

]
, (3.1)

where

U = exp

(
i
√

2
Π

F

)
, Π =

8∑
α=1

λαπ
α , (3.2)

is the unitary chiral matrix describing the octet of light pseudoscalars and transforming as

U → gLUg
†
R under the chiral symmetry SU(3)L × SU(3)R. The parameter F is related to

the weak decay constants Fπ ≈ 130 MeV and FK ≈ 156 MeV through

Fπ = F

(
1 +

m2
π

Λ2
χ

)
, FK = F

(
1 +

m2
K

Λ2
χ

)
, (3.3)

so that Λχ ≈ 1.1 GeV. The diagonal mass matrix m involving mu, md and ms is such that

r(µ) =
2m2

K

ms(µ) +md(µ)
, (3.4)

with r(1 GeV) ≈ 3.75 GeV for (ms +md)(1 GeV) ≈ 132 MeV. Compared to large N Chiral

Perturbation Theory, there is a one-to-one correspondence to the low energy parameters

introduced in [54, 55]

Λ2
χ =

f2

8L5
, r = 2B0 . (3.5)

The flavour-singlet η0 meson decouples due to the large mass m0 generated by the

non-perturbative U(1)A anomaly. Consequently the matrix Π in (3.2) reads

Π =

π
0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8
√

2K0

√
2K−

√
2K̄0 − 2√

3
η8

 . (3.6)

In order to calculate the matrix elements of the local operators in question we need meson

representations of colour-singlet quark bilinears. Only currents and densities are directly

extracted from the effective Lagrangian in (3.1). They are given respectively as follows

q̄bLγµq
a
L = i

F 2

8

{
(∂µU)U † − U(∂µU

†) +
r

Λ2
χ

[
(∂µU)m† −m(∂µU

†)
]}ab

, (3.7)

q̄bRq
a
L = −F

2

8
r

[
U − 1

Λ2
χ

∂2U

]ab
, (3.8)

with U turned into U † under parity. As a matter of fact, the chiral correction to densi-

ties is meaningful for the Q6 operator only, as seen in eq. (D.1). For Q8 and the other

– 7 –
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density-density operators, O(p4) mass terms with additional low-energy constants should

be introduced in (3.1). For the sake of consistency, we will thus work in the chiral limit for

all of them.

The lowest-order chiral realization of tensor bilinears requires two derivatives to get

the correct Lorentz structure. It thus involves yet another dimensionful low-energy con-

stant [56]:

q̄bRσµνq
a
L = −i F

2

4Λ′χ
[∂µU∂νU

†U − ∂νU∂µU †U ]ab . (3.9)

In the large N limit, all four-quark operators factorize into two colour singlet bilinears. As

a consequence, at O(p2) the only relevant colour-singlet bilinears are

(γµPL)ba = i
F 2

4
(∂µUU †)ab, (PL)ba = −F

2

8
r(U)ab , (3.10)

and their parity partners, with

Class A : −
[
F 2

4

]2
(∂µUU †)ab(∂µUU

†)cd , (3.11)

Class B : +

[
F 2

8

]2
r2(U †)ab(U)cd , (3.12)

Class C : −
[
F 2

4

]2
(∂µUU †)ab(∂µU

†U)cd , (3.13)

Class D : +

[
F 2

8

]2
r2(U)ab(U)cd . (3.14)

4 Meson evolution in the DQCD basis

The formulae (3.11)–(3.14) apply to the strict large N limit at which the factorization of

matrix elements is valid. In this limit it is not possible to determine the scale associated

to these matrix elements. To this end one has to calculate non-factorizable contributions

represented by loops in the meson theory. The factorization scale is then the scale at

which these non-factorizable contributions vanish. Quite generally the factorization scale

is found to be at very low scales O(mπ) and in order to obtain the matrix elements at

scales O(1 GeV) one has to evolve them with the help of the meson evolution. As in our

paper this evolution will be performed in the chiral limit, the factorization scale is simply

at zero momentum.

Like in our recent paper on BSM hadronic matrix elements for K0 − K̄0 mixing [39],

we will work in the O(p2) chiral limit with

p2

(4πF )2
= O(1/N) . (4.1)

While this is a rough approximation, it has been demonstrated there that the pattern

of matrix elements evaluated in DQCD at a scale Λ = (0.65 ± 0.05) GeV agrees well with

– 8 –
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the pattern at µ = 1 GeV obtained from lattice QCD results at µ = 3 GeV through the

usual perturbative quark QCD evolution with

αs
4π

= O(1/N) . (4.2)

This makes us confident that the results presented here on the basis of the same 1/N

counting and the same Λ-to-µ identification have rather similar uncertainties.

Let us first emphasize that all K → ππ matrix elements of chirally-flipped (relative to

the SM operators) mirror operators denoted by a prime can be obtained from the results

of RBC-UKQCD collaboration by just reversing their signs. What remains for us is the

calculation of the matrix elements which cannot be expressed in terms of SM ones.

The flavour SU(n) generators already introduced in (3.2) for n = 3 are normalized

such that

Tr (λαλβ) = 2δαβ . (4.3)

If we again substitute the matrix indices by parenthesis () and brackets [ ] such that each

parenthesis/bracket represents now a different flavour index, then the completeness relation

among matrices of the fundamental representation of SU(n)

1

2
(λα)ab(λα)cd +

1

n
δabδcd = δadδcb, (4.4)

simply reads
1

2
(λα) [λα] +

1

n
(1)[1] = (1][1) . (4.5)

With the background field technology used in [57], the relevant one-loop operator evolutions

from the factorization scale taken at zero momentum (denoted 0) to the cut-off-momentum

(denoted Λ) can also be classified according to these identities:

Class A : (∂µUU †)ab(∂µUU
†)cd(Λ) = (∂µUU †)ab(∂µUU

†)cd(0) (4.6)

−4

(
Λ

4πF

)2[
(∂µUU †)ad(∂µUU

†)cb+
1

2
δad(∂µU∂µU

†)cb

+
1

2
δcb(∂µU∂µU

†)ad
]

(0),

Class B : (U †)ab(U)cd(Λ) = (U †)ab(U)cd(0) (4.7)

+4

(
Λ

4πF

)2[
(U †U)adδcb− 1

n
(U †)ab(U)cd

]
(0),

Class C : (∂µUU †)ab(∂µU
†U)cd(Λ) = (∂µUU †)ab(∂µU

†U)cd(0) (4.8)

+4

(
Λ

4πF

)2

M2

[
(U)ad(U †)cb− 1

n
δab(U †U)cd

]
(0),

Class D : (U)ab(U)cd(Λ) = (U)ab(U)cd(0) (4.9)

−4

(
Λ

4πF

)2[
(U)ad(U)cb− 1

n
(U)ab(U)cd

]
(0),
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with M2, an SU(3)-breaking mass term equal to m2
K for ∆S = 2 transitions and of or-

der (m2
K − m2

π) for ∆S = 1 ones. Had we worked with a nonet of light pseudo-scalars,

the 1/n term resulting from the purely non-perturbative axial anomaly would have been

absent (m0 = 0).

As already mentioned below (2.23), the set of operators {sd; ss} may evolve into other

∆I = 1/2 ones. Such is indeed the case in the meson evolution where only the one in Class

A induces the SM Q4 operator. We also observe a reordering of the flavour indices with

mixing between operators of classes B and C. Eventually, the mirror operators are again

obtained through a parity transformation (U ↔ U †).

Applied to the 13 BSM operators classified in section 2.3.4, these non-factorizable

meson evolutions imply:

Class A: if A ≡ {sd; dd} − {sd; ss}

A(Λ) =

[
1− 4

(
Λ

4πF

)2
]
A(0) , (4.10)

Class B: if B1 ≡ {sd;uu} and B2 ≡ {sd; dd} − {ss; sd} with {ss; sd} = {sd; ss}′

B1,2(Λ) =

[
1− 4

n

(
Λ

4πF

)2
]
B1,2(0) , (4.11)

Class C: if C1 ≡ {su;ud} and C2 ≡ {sd; dd} − {sd; ss}

C1,2(Λ) = C1,2(0)− 16
M2

r2

(
Λ

4πF

)2

B1,2(0) , (4.12)

Class D: if D1 ≡ {su;ud}, D2 ≡ {sd;uu}, D3 ≡ {sd; dd}, D4 ≡ {sd; ss},

D1(Λ) =

[
1 +

4

n

(
Λ

4πF

)2
]
D1(0)− 4

(
Λ

4πF

)2

D2(0) , (4.13)

D2(Λ) =

[
1 +

4

n

(
Λ

4πF

)2
]
D2(0)− 4

(
Λ

4πF

)2

D1(0) , (4.14)

D3(Λ) =

[
1 + (

4

n
− 4)

(
Λ

4πF

)2
]
D3(0) , (4.15)

D4(Λ) =

[
1 + (

4

n
− 4)

(
Λ

4πF

)2
]
D4(0) . (4.16)

They agree respectively with the evolution derived in [39] for the O1,4,5 {sd; sd} opera-

tors defined in (2.18)–(2.20) and for the O2 {sd; sd} operator extracted from (2.21)–(2.22).

However, to infer the meson evolution of the four tensor-tensor operators D∗i above the

factorization scale, we now have to rely on the SD running pattern.
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5 Quark-gluon evolution in DQCD basis

In order to study the short distance RG evolution from µ = 1 GeV to higher scales we

collect here the fundamental equations in the leading order approximation. To see the

pattern of this evolution we keep first only the first leading logarithms. One has then

for µ2 > µ1

〈Xi(µ2)〉 = 〈Xi(µ1)〉
(

1− αs
4π
γ̂
(0)
ii ln

(
µ2
µ1

))
− 〈Xj(µ1)〉

αs
4π
γ̂
(0)
ij ln

(
µ2
µ1

)
, (5.1)

where Xi denote generically the operators in the DQCD basis. We group them in classes

I-IV with no mixing under renormalization between various classes. This will also allow us

a transparent comparison with the so-called SD basis that we discuss in section 8.

The anomalous dimension matrix (ADM) for all SD operators is then given in the

DQCD basis as follows (in units of αs/4π):

Class I

γ̂(0)(A) = 4 , (5.2)

Class II

γ̂(0)(B1, C1) =

(
−6N + 6

N 0

12 6
N

)
=

(
−16 0

12 2

)
, (5.3)

with the same matrix for the operators B2, C2,

Class III

γ̂(0)(D1, D2, D
∗
1, D

∗
2) =


−6N + 6

N 6 − 1
N

1
2

6 −6N + 6
N

1
2 − 1

N

−48
N −24 2N − 2

N 6

−24 −48
N 6 2N − 2

N

 (5.4)

=


−16 6 −1

3
1
2

6 −16 1
2 −

1
3

−16 −24 16
3 6

−24 −16 6 16
3

 ,

Class IV

γ̂(0)(D3, D
∗
3) =

(
−6N + 6

N + 6 1
2 −

1
N

−24− 48
N 2N − 2

N + 6

)
=

(
−10 1

6

−40 34
3

)
, (5.5)

with the same matrix for the operators D4, D
∗
4.

The numerical values of the elements of these ADMs correspond to N = 3 but their

explicit N dependence will turn out to be very useful soon.

Of particular interest here are the large entries in the elements (3, 2), and (4, 1) in (5.4)

and (2, 1) in (5.5) that imply large mixing of the scalar-scalar operators into tensor-tensor

operators. We will see soon that this feature enhances the matrix elements of tensor-

tensor operators in the process of O(1/N) meson evolution. This feature has some analogy
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to the observation made in [58, 59] where the QED short distance RG evolution of NP

contributions to charged-current induced leptonic and semileptonic meson decays has been

presented, focusing on chirality-flipped operators at the quark level. It has been pointed

out that the large mixing of the tensor-tensor operators into the scalar-scalar ones has an

important impact on the phenomenology. Recently this aspect has also been discussed in

the context of R(D(∗)) anomalies in [60, 61].

In fact the one-loop QED diagrams responsible for this mixing are the same as the

one-loop QCD diagrams with gluon replaced by photon, QCD coupling replaced by QED

one and colour matrices replaced by charge ones. Even if the RG evolution of the QED

coupling constant is different from the QCD one, the pattern of mixing analysed in [58, 59]

is very similar to the one in (5.4).1

The reason why in [58, 59] tensor operators have the impact on the scalar ones, as

opposed to the case discussed by us, is simply related to the known fact that while the

evolution of the matrix elements of operators is governed by the ADM of operators, the

evolution of their Wilson coefficients, analysed in [58, 59], is governed by the corresponding

transposed matrix.

While in [58–61] the large mixing in question had impact on the phenomenology of

B-meson decays, in our case it will have significant impact on ε′/ε.

6 Matching SD-LD evolutions in DQCD basis

From (5.2)–(5.5), the short distance quark-gluon non-factorizable evolutions read

A(µ2) =

[
1− 4

αs
4π

ln

(
µ2
µ1

)]
A(µ1) , (6.1)

B1,2(µ2) = B1,2(µ1) , (6.2)

C1,2(µ2) = C1,2(µ1)− 12
αs
4π

ln

(
µ2
µ1

)
B1,2(µ1) , (6.3)

D1,2(µ2) = D1,2(µ1)− 6
αs
4π

ln

(
µ2
µ1

)[
D2,1 +

1

12
D∗2,1

]
(µ1) , (6.4)

D3,4(µ2) =

[
1− 6

αs
4π

ln

(
µ2
µ1

)]
D3,4(µ1)−

1

2

αs
4π

ln

(
µ2
µ1

)
D∗3,4(µ1) , (6.5)

D∗1,2(µ2) = D∗1,2(µ1) + 24
αs
4π

ln

(
µ2
µ1

)[
D2,1 −

1

4
D∗2,1

]
(µ1) , (6.6)

D∗3,4(µ2) = D∗3,4(µ1) + 24
αs
4π

ln

(
µ2
µ1

)[
D3,4 −

1

4
D∗3,4

]
(µ1) , (6.7)

by

• subtracting the (−6N+6/N) and (2N−2/N) diagonal contributions to scalar-scalar

and tensor-tensor operators, given the anomalous dimension of the q̄q and q̄σµνq

bilinears [62, 63]:

γS = −3
N2 − 1

N
, γT =

N2 − 1

N
, (6.8)

1See lower right corner of γT
em in (2.3) of [59], compared to D2 −D∗

1 central submatrix in (5.4).
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• dropping the subleading 1/N terms in the ADMs (5.3)–(5.5):

αs
N

= O(
1

N2
) . (6.9)

From (4.10)–(4.16), these non-factorizable evolutions are compatible with the long-

distance ones in the nonet approximation (m0 → 0) with(
r(µ2)

r(µ1)

)2

= 1 + 2γm
αs
4π

ln

(
µ2
µ1

)
, γm = −γS , (6.10)

since the tensor-tensor operators vanish at the factorization scale at O(p2). Comforted

by such a consistent matching of mixing pattern, we extend the octet meson evolution

(m0 →∞) to the non-factorizable tensor-tensor operators as follows:

D∗1,2(Λ) = +16

(
Λ

4πF

)2

D2,1(0) , (6.11)

D∗3,4(Λ) = +
32

3

(
Λ

4πF

)2

D3,4(0) , (6.12)

through the relative (−4) factor between the D-to-D and D∗-to-D SD evolutions (6.4)–

(6.7) taken over to the D-to-D LD evolutions (4.13)–(4.16). They agree with the evolution

derived in [39] for the O3 {sd; sd} operator defined in (2.21).

7 BSM matrix elements in DQCD basis

7.1 Large N limit

Having established the meson evolution from the factorization scale (corresponding in the

chiral limit to Λ = 0) to Λ = O(1 GeV), what remains to be done is the calculation of the

matrix elements of all 13 four-quark BSM operators in the large N limit that here will be

generically denoted by

〈Xi(0)〉I ≡ 〈(ππ)I |Xi(0)|K〉 , (7.1)

with I = 0, 2 being strong isospin and Xi = A,B1,2, . . ..

When calculating the non-zero matrix elements of the BSM operators in Class B and

D, we have to take into account the fact that the partial 〈ππ|Uds|K0〉 contribution to on-

shell K → ππ decay amplitudes is precisely canceled by a non-local pole diagram involving

the strong K0 → ππK̄0 vertex followed by the K̄0 annihilation into the vacuum through

the non-vanishing 〈K̄0|Uds|0〉 weak matrix element. Considering charge conservation and

Lorentz invariance, the recipe is to simply neglect any contribution from the identity when

expanding the Uuu,dd,ss components of density-density operators in Classes B and D. In

giving the values of the matrix elements, we drop the overall +i factor that is immaterial

for physical applications. In the large N limit, the non-vanishing BSM matrix elements in
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the DQCD basis are then given as follows (h = 1):

〈A(0)〉0 = +
F

12
(m2

K −m2
π), 〈A(0)〉2 = −

√
2
F

12
(m2

K −m2
π) , (7.2)

〈B1(0)〉0 = +
F

12
r2, 〈B1(0)〉2 = − F

24
√

2
r2 , (7.3)

〈B2(0)〉0 = +
F

24
r2, 〈B2(0)〉2 = +

F

24
√

2
r2 , (7.4)

〈C1(0)〉0 = −F
6

(m2
K −m2

π), 〈C1(0)〉2 = − F

6
√

2
(m2

K −m2
π) , (7.5)

〈C2(0)〉0 = − F
12

(m2
K −m2

π), 〈C2(0)〉2 = +
√

2
F

12
(m2

K −m2
π) , (7.6)

〈D1(0)〉0 = − F
24
r2, 〈D1(0)〉2 = − F

24
√

2
r2 , (7.7)

〈D2(0)〉0 = − F
24
r2, 〈D2(0)〉2 = − F

24
√

2
r2 , (7.8)

〈D3(0)〉0 = − F
12
r2, 〈D3(0)〉2 = +

F

24
√

2
r2 , (7.9)

with the chiral enhancement factor r2 � (m2
K − m2

π) as seen from (3.4) and F ∼ Fπ as

seen from (3.3). Those of the mirror operators differ by sign only.

The matrix elements for the operator D4, containing three s-quarks, as well as for the

tensor-tensor operators D∗1,2,3,4 involving at least four derivatives vanish:

〈D4(0)〉I = 〈D∗1(0)〉I = 〈D∗2(0)〉I = 〈D∗3(0)〉I = 〈D∗4(0)〉I = 0 . (7.10)

We are thus left with 8 four-quark BSM matrix elements for a given chirality and

isospin, each of them expressed in terms of either (m2
K−m2

π) or r2(µ) in the chiral limit con-

sidered.

7.2 Summary of hadronic matrix calculations

We have now completed the calculation of 13 BSM hadronic matrix elements evaluated at

the cut-off scale Λ, which is governed by the general formula

〈Xi(Λ)〉I =

[
δij + aij

(
Λ

4πF

)2
]
〈Xj(0)〉I (7.11)

with the coefficients aij to be extracted from (4.10)–(4.16), (6.11) and (6.12) and with the

matrix elements 〈Xj(0)〉I collected above. In evaluating these matrix elements one should

set n = 3.

In the numerical evaluation of matrix elements we will deal with two scales, Λ explicitly

seen in (7.11) and µ in r(µ) hidden in 〈Xj(0)〉I . In this context it is useful to make the

following comments:

• The Λ dependence is present only in the non-factorizable part of the matrix elements

as given above. The scale µ present in r(µ) is at this stage not related to Λ.
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• As far as meson evolution in the chiral limit is concerned, there is no distinction

between the matrix elements 〈Xi〉0 and 〈Xi〉2 so that this distinction is fully described

by the values of these matrix elements in the large N limit, that is 〈Xj(0)〉I .

Concerning the value of Λ we will set it at 0.7 GeV. Evaluating then r(µ) at µ = 1 GeV,

we will interpret the resulting values of matrix elements as valid at µ = 1 GeV. From there

on we will use the standard renormalization group evolution as summarized in section 5,

thereby summing this time leading logarithms to all orders of perturbation theory.

7.3 Number of BSM matrix elements to be calculated

In principle one has to evaluate 13 matrix elements for a given chirality and isospin at the

factorization scale. They are given in (7.2)–(7.10). However by definition s̄s bilinears do

not contribute to the K → ππ matrix elements at the factorization scale. Consequently

the matrix elements of D4 and D∗4 vanish, while the matrix elements of A and B2 and C2

can then be expressed in terms of the SM ones as follows

〈A〉I =
1

6
(〈Q3〉I − 〈Q9〉I), (7.12)

〈B2〉I = − 1

12
(〈Q6〉I − 〈Q8〉I), (7.13)

〈C2〉I =
1

6
(〈Q5〉I − 〈Q7〉I) , (7.14)

wherever 〈s̄ΓAs〉 = 0. Therefore, in the general case the number of BSM matrix elements

for a given chirality and isospin one has to evaluate at the factorization scale is reduced to

8. These are the matrix elements of

B1, C1, D1−3, D∗1−3 . (7.15)

However, in the chiral limit this number reduces to 3. Indeed, at the factorization scale

the matrix elements of D∗1−3 vanish and we have the relations:

〈D1(0)〉I = 〈D2(0)〉I , 〈B1(0)〉I = −〈D3(0)〉I , (7.16)

such that it is sufficient to calculate the matrix elements of

B1, C1, D1 . (7.17)

But above the factorization scale the situation changes as can be seen from the meson

evolution. In particular, the relation between matrix elements of B1 and D3 is violated

while the one between D1 and D2 is preserved. Most importantly the matrix elements of

tensor-tensor operators D∗1−3 become non-zero.

8 SD basis

While the short distance evolution for scales above µ = 1 GeV can be performed in the

DQCD basis as demonstrated above, for short distance renormalization group evolution a
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different basis of 13 BSM operators based on [32] is more useful.2 That basis, to be termed

SD basis in what follows, is closer to bases used in various computer codes present in the

literature (see appendices A.3 and A.4). So, for completeness we would like to present our

results in that basis as well. In the SD basis, like in the DQCD basis, no summations

over quark flavours are performed, but in contrast to the DQCD basis, colour non-singlet

operators are present. While this is a disadvantage with respect to the DQCD basis as far

as calculations of hadronic matrix elements are concerned, it turns out to be more suitable

for quark-gluon evolution.

The 13 independent BSM operators in the SD basis are also linearly independent from

the SM ones, in particular none of them mixes into QCD- and QED-penguin operators

Q3,...10. Using the notation of [32] they are given as follows:

Class I:

QVLL,d−s
1 = (s̄αγµPLd

α)
[
(d̄βγµPLd

β)− (s̄βγµPLs
β)
]
, (8.1)

Class II

QSLR,u
1 = (s̄αPLd

β) (ūβPR u
α), (8.2)

QSLR,u
2 = (s̄αPLd

α) (ūβPR u
β), (8.3)

QVLR,d−s
1 = (s̄αγµPLd

β)
[
(d̄βγµPRd

α)− (s̄βγµPRs
α)
]
, (8.4)

QVLR,d−s
2 = (s̄αγµPLd

α)
[
(d̄βγµPRd

β)− (s̄βγµPRs
β)
]
, (8.5)

Class III

QSLL,u
1 = (s̄αPLd

β) (ūβPL u
α), (8.6)

QSLL,u
2 = (s̄αPLd

α) (ūβPL u
β), (8.7)

QSLL,u
3 = −(s̄ασµνPLd

β) (ūβσµνPL u
α), (8.8)

QSLL,u
4 = −(s̄ασµνPLd

α) (ūβσµνPL u
β), (8.9)

Class IV

QSLL,d
1 = (s̄αPLd

β) (d̄βPL d
α), (8.10)

QSLL,d
2 = (s̄αPLd

α) (d̄βPL d
β), (8.11)

QSLL,s
1 = (s̄αPLd

β) (s̄βPL s
α), (8.12)

QSLL,s
2 = (s̄αPLd

α) (s̄βPL s
β). (8.13)

The connection between the operators in the DQCD and SD bases is rather simple

and given in appendix A. To obtain these relations, Fierz identities in (2.13)–(2.17) have

been used. Having these relations and the expressions for meson evolution in the DQCD

basis, it is straightforward to obtain analogous evolution in the SD basis. It is given in

appendix B. The large N hadronic matrix elements of the 13 BSM operators in the SD basis

are collected in appendix D and one-loop anomalous dimension matrices in appendix C.

2We thank Mikolaj Misiak for discussions.
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Similar to the discussion in section 7.3, the number of matrix elements one has to

calculate at the factorization scale is reduced for the following reasons. As s̄s bilinears do

not contribute to the matrix elements at the factorization scale, the matrix elements of

QSLL,s
1,2 vanish while those of QVLL,d−s

1 and QVLR,d−s
1,2 can be then expressed in terms of the

SM ones as follows

〈QVLL,d−s
1 〉I =

1

6
(〈Q3〉I − 〈Q9〉I), (8.14)

〈QVLR,d−s
1 〉I =

1

6
(〈Q6〉I − 〈Q8〉I), (8.15)

〈QVLR,d−s
2 〉I =

1

6
(〈Q5〉I − 〈Q7〉I) , (8.16)

wherever 〈s̄ΓAs〉 = 0. Therefore, in the general case the number of BSM matrix elements

for a given chirality and isospin one has to evaluate at the factorization scale is reduced as

in the DQCD basis to 8:

QSLR,u
1,2 , QSLL,u

1−4 , QSLL,d
1,2 . (8.17)

However in the chiral limit, analogous arguments to those presented in section 7.3

imply that only the matrix elements of the following operators have to be evaluated

QSLR,u
1 , QSLR,u

2 , QSLL,u
1 . (8.18)

This can be easily verified by using the result in (7.17) together with the connection between

the operators in the DQCD and SD bases given in appendix A.

9 SMEFT view of BSM operators

Following [47, 48], it should be emphasized that while generally 13 BSM operators are

consistent with the SU(3)c×U(1)Q symmetry, only 7 operators are consistent with the full

SM gauge symmetry SU(3)c × SU(2)L × U(1)Y [64, 65].3 As in [48] a different operator

basis has been used, we identify here these 7 operators in the SD and DQCD bases.

Beginning with the SD basis, the operators in (8.2) and (8.3) and in class IV violate

the full SM gauge symmetry SU(3)c×SU(2)L×U(1)Y [64, 65]. In particular one can easily

check that they do not conserve hypercharge. Consequently, if no new particles close to

electroweak scale exist and the SMEFT is the correct description between the electroweak

scale and the NP scale, then the Wilson coefficients of the operator (8.3) and those in

class IV must vanish. Though explicitly carrying a non-zero weak hypercharge (Y = 2),

the operator (8.2) can in principle be generated through the dimension-six gauge-invariant

operator i(φ̃†Dµφ)(ūγµPRd) frozen at the vacuum expectation value of the Higgs doublet

φ (Y = 1). Such would for example be the case in an SU(2)L × SU(2)R × U(1)B−L UV

completion of the SM via the tree-level WL −WR mixing. If we neglect this modified WL

3We thank Christoph Bobeth and David Straub for discussions.
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VLL SLR,u VLR SLL,u SLL,d SLL,s

SD QVLL,d−s
1 −− QVLR,d−s

1,2 QSLL,u
1−4 −− −−

DQCD A −− B2, C2 D
(∗)
1,2 −− −−

Table 1. SD and DQCD BSM operators generated in SMEFT.

coupling [64], the full set of contributing linearly independent operators contains not 40

but 28 operators:

• 7 SM operators and the corresponding 7 mirror operators with L and R interchanged,

• 7 BSM operators, those in classes I and III and the operators in (8.4) and (8.5), and

the corresponding 7 mirror operators obtained again by interchanging L and R.

Similarly, in the DQCD basis the imposition of invariance under the full gauge group of

the SM reduces the number of contributing BSM operators of a given chirality to 7. In

table 1 we list these operators.

As discussed already at the end of sections 7.3 and 8, the number of matrix elements

one has to evaluate at the factorization scale for given chirality and isospin is reduced to 8

when one takes into account that s̄s bilinears do not contribute to the matrix elements at

this scale. They are listed in (7.15) and (8.17) for the DQCD and SD bases, respectively.

Evidently then in the SMEFT this number is reduced to 4:

DQCD : D
(∗)
1,2, SD : QSLL,u

1−4 (9.1)

However, in the chiral limit even without the imposition of SMEFT, the number of

matrix elements to be calculated at the factorization scale in each basis is reduced to 3.

They are given in (7.17) and (8.18). Consequently, once SMEFT is imposed only one

matrix element at the factorization scale in each basis for a given chirality and isospin has

to be evaluated. For instance

DQCD : D1, SD : QSLL,u
1 (SMEFT). (9.2)

Once meson evolution is turned on the picture is much richer as some relations between

matrix elements valid at the factorization scale are broken. Most important, the matrix

elements of colour singlet tensor-tensor operators do not vanish any longer.

10 Numerical results

Having all these results for hadronic matrix elements in DQCD and SD bases at hand,

we will next present their numerical values. To this end we will assume that values of

the matrix elements at Λ = 0.7 GeV give an adequate representation of their values at

1 GeV. This treatment was rather successful in the case of our analysis of K0− K̄0 matrix

elements in [39] and we expect that it is a reasonable approximation for the time being.

This is furthermore supported by the fact, as discussed at the end of section 4, that the
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meson evolutions for operators discussed in the present paper have similar structure to the

ones in [39].

Next two features should be noticed:

• The BSM hadronic matrix elements of classes B and D, involving the factor r2(µ),

are chirally enhanced with

r2(1 GeV) ≈ 60 (m2
K −m2

π) (10.1)

and the corresponding operators have the highest potential to have an impact on ε′/ε

without requiring large values of their Wilson coefficients.

• Among the chirally enhanced matrix elements of classes B and D, those contributing

to the isospin amplitude A2 are most important as the contribution of the amplitude

A0 to ε′/ε is automatically suppressed by a factor 1/22 relative to the one of A2 since

ε′/ε ∝
[

ReA2

ReA0
ImA0 − ImA2

]
,

ReA2

ReA0
≈ 1

22
. (10.2)

Consequently as pointed out in [15], in order to obtain a significant contribution

to this ratio from NP contributing to A0 the imaginary part of the corresponding

Wilson coefficient should be larger than in the case of A2 in order to compensate this

suppression. This in turn could lead, in certain NP models, to the violation of the

present bounds on rare decays.

• The values of I = 0 and I = 2 matrix elements of all BSM operators are at µ =

O(1 GeV) similar to each other so that we do not expect these new operators to

be relevant for the ∆I = 1/2 rule. This is an important result as it implies that

either this rule is fully governed by the SM dynamics or NP contributions to the

A0 amplitude, at the level of (10 − 20)%, come from modifications of the Wilson

coefficients of the SM operators. See [10] for a detailed analysis.

Now among the hadronic matrix elements of SM penguin operators calculated by lattice

QCD and DQCD, the most important ones are the matrix elements of Q6 and Q8 which

are given as follows [33, 66, 67]

〈Q6(µ)〉0 = − r2(µ)(FK − Fπ)B
(1/2)
6 , B

(1/2)
6 = 0.59± 0.19, (10.3)

〈Q8(µ)〉2 =
1

2
√

2
r2(µ)FπB

(3/2)
8 , B

(3/2)
8 = 0.76± 0.05 , (10.4)

with the values of B
(1/2)
6 and B

(3/2)
8 from RBC-UKQCD collaboration and similar results

from DQCD [3]. It will be then of interest to compare the values of the matrix elements of

BSM operators with these two matrix elements for A0 and A2, respectively. In doing this

we have to take into account that Q6 and Q8 have the (V −A)⊗ (V +A) Dirac structure,

while the BSM operators considered by us involve the PL and PR chiral projectors. In

order to compensate for this, we will give the results for

〈Q̂6(µ)〉0 ≡
〈Q6(µ)〉0

4
, 〈Q̂8(µ)〉2 ≡

〈Q8(µ)〉2
4

. (10.5)
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For the numerical analysis of the matrix elements SD evolution we use WCxf [68] and

Wilson [69] as well as the results from the previous section. Below the hadronic scale,

the running of the matrix elements is given by the meson evolution formulae given in

previous sections.

We use the following input

F = 130.41 MeV, mK = 497.6 MeV, mπ = 134.98 MeV, αs(MZ) = 0.1181 .

(10.6)

In tables 2 and 3 we show the results in the DQCD basis for operators allowed by

SMEFT and forbidden by it, respectively. The corresponding results for the SD basis are

given in tables 4 and 5. Let us then extract the most important lessons from these tables.

• Concentrating first on I = 2 matrix elements, that according to (10.2) could have

larger impact on ε′/ε than I = 0 matrix elements, we pin down several BSM operators

for which the values of matrix elements are in the ballpark of the value of 〈Q8(µ)〉2
for µ = O(1 GeV). As the Wilson coefficient of Q8 is O(αe), it is conceivable that

some of these operators could have significant impact on ε′/ε.

In the DQCD basis this is the case of the pure tensor-tensor operators

D∗1, D∗2, D∗3 , (DQCD basis) (10.7)

with the first two allowed by SMEFT.

In the SD basis this is the case of the operators

QVLR,d−s
1 , QSLL,u

3 , QSLL,u
4 , (SD basis) (10.8)

with all three allowed by SMEFT.

• Looking then at I = 0 matrix elements, we bring out a number of matrix elements

which are comparable to or larger than the one of 〈Q6(µ)〉0. In the DQCD basis

this is the case not only for the operators in (10.7) but also for B1,2 and D3. In the

case of the SD basis the additional large I = 0 matrix elements are those of QSLR,u
2

and QSLL,d
2 .

Explicitly we have

|〈D∗1,2〉2| ≈ 〈Q
SLL,u
4 〉2 ≈ 1.2 |〈Q8(µ)〉2|, (10.9)

|〈D∗3〉2| ≈ 0.8 |〈Q8(µ)〉2|, |〈QSLL,u
3 〉2| ≈ 2.0 |〈Q8(µ)〉2| , (10.10)

at µ = 1 GeV. In the DQCD basis the meson evolution from the factorization scale to

scales O(1 GeV) is primarily responsible for this result. It should however be noticed

that while the matrix elements of Q6, Q8 and generally scalar-scalar operators increase

with increasing µ, the ones of tensor-tensor operators are only weakly dependent on µ

for µ > 1 GeV. Therefore the numerical factors in (10.9) and (10.10) generally decrease
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I = 0 A B2 C2 D1 D2 D∗1 D∗2 Q̂6

1 GeV 0.001 0.058 −0.006 −0.039 −0.039 −0.224 −0.224 −0.053

1.3 GeV 0.001 0.070 −0.015 −0.044 −0.044 −0.213 −0.214 −0.071

2 GeV 0.001 0.088 −0.028 −0.050 −0.050 −0.207 −0.207 −0.099

3 GeV 0.001 0.104 −0.039 −0.055 −0.055 −0.204 −0.204 −0.125

I = 2 A B2 C2 D1 D2 D∗1 D∗2 Q̂8

1 GeV −0.001 0.041 0.001 −0.028 −0.028 −0.158 −0.158 0.124

1.3 GeV −0.001 0.050 −0.006 −0.031 −0.031 −0.151 −0.151 0.164

2 GeV −0.001 0.062 −0.015 −0.035 −0.035 −0.146 −0.146 0.230

3 GeV −0.001 0.074 −0.023 −0.039 −0.039 −0.145 −0.145 0.290

Table 2. Matrix elements 〈Xi〉0,2 of BSM operators in the DQCD basis allowed by SMEFT

contributing to the isospin amplitudes A0,2 in units of GeV3 for four values of µ. In the last

column we give the values of the matrix elements 〈Q̂6(µ)〉0 and 〈Q̂8(µ)〉2 for comparison.

significantly with increasing µ. An exception is the operator QSLL,u
3 which, among tensor-

tensor operators in both operator bases, is the only one which is colour-non-singlet. We

will return to this point at the end of the present section.

It is of interest to understand why the matrix elements of the remaining tensor-tensor

operators exhibit such a weak dependence on µ. This is most transparently seen by studying

the RG formula (5.1) for Xi = D∗1 together with the ADM in (5.4), although it can already

be suspected at the one-loop level, from (6.6) and (6.11) which imply 〈D2,1 − 1
4D
∗
2,1〉 = 0

at Λ = 2πF ≈ 0.8 GeV.

Now the matrix element 〈D∗1(µ1)〉 with µ1 = 1 GeV is generated, as seen in (6.11), in the

process of meson evolution, through mixing with the scalar-scalar operator D2. Because

this mixing is very large and further enhanced through short but fast meson evolution

〈D∗1(µ1)〉 is, as seen in table 2, much larger than 〈D2(µ1)〉. The values of 〈D∗1(µ2)〉, for

µ2 > µ1 are now governed first of all by the self-mixing of D∗1, the (3, 3) in (5.4) and the

mixing of D∗1 with D2 given by the entry (3, 2) in (5.4). But while the (3, 3) entry is much

smaller than (3, 2), the matrix element of D∗1 is much larger than that of D2 as mentioned

above. Using this information in (5.1) we find that these effects cancel each other to a

large extend leaving a very weak µ dependence of D∗1(µ). This cancellation even improves

with increasing µ because, while the diagonal evolution of D∗1 slowly decreases its matrix

element, the one of D2 governed by the large entry (2, 2) in (5.4) and having opposite sign

to (3, 3) increases this matrix element. The evolution of D∗1 is governed in addition by the

entry (3, 1), the mixing of D∗1 and D1, and by the entry (3, 4), the mixing of D∗1 and D∗2.

Taking into account that the matrix elements of D∗2 and D∗1 are equal to each other and the

same applies to matrix elements of D1 and D2, one can then easily check using (5.1) that

these two additional effects cancel each other to a large extent and have only a very small

impact on the evolution of D∗1. This result remains true after performing the summation

of leading logarithms to all orders of perturbation theory, which all the numerical values

in the tables are based on.
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I = 0 B1 C1 D3 D4 D∗3 D∗4 Q̂6

1 GeV 0.116 −0.012 −0.079 0 −0.298 0 −0.053

1.3 GeV 0.141 −0.030 −0.088 0 −0.298 0 −0.071

2 GeV 0.176 −0.056 −0.101 0 −0.303 0 −0.099

3 GeV 0.208 −0.078 −0.111 0 −0.311 0 −0.125

I = 2 B1 C1 D3 D4 D∗3 D∗4 Q̂8

1 GeV −0.041 −0.001 0.028 0 0.105 0 0.124

1.3 GeV −0.050 0.006 0.031 0 0.105 0 0.164

2 GeV −0.062 0.015 0.036 0 0.107 0 0.230

3 GeV −0.074 0.023 0.039 0 0.110 0 0.290

Table 3. Matrix elements 〈Xi〉0,2 of BSM operators in the DQCD basis allowed by SU(3)c×U(1)Q
but not by SMEFT contributing to the isospin amplitudes A0,2 in units of GeV3 for four values of µ.

In the last column we give the values of the matrix elements 〈Q̂6(µ)〉0 and 〈Q̂8(µ)〉2 for comparison.

I = 0 QVLL,d−s
1 QVLR,d−s

1 QVLR,d−s
2 QSLL,u

1 QSLL,u
2 QSLL,u

3 QSLL,u
4

1 GeV 0.001 −0.116 −0.006 −0.008 −0.039 −0.348 −0.224

1.3 GeV 0.001 −0.141 −0.015 −0.005 −0.044 −0.371 −0.214

2 GeV 0.001 −0.176 −0.028 −0.001 −0.050 −0.404 −0.207

3 GeV 0.001 −0.208 −0.039 0.002 −0.055 −0.433 −0.204

I = 2 QVLL,d−s
1 QVLR,d−s

1 QVLR,d−s
2 QSLL,u

1 QSLL,u
2 QSLL,u

3 QSLL,u
4

1 GeV −0.001 −0.082 0.001 −0.006 −0.028 −0.246 −0.158

1.3 GeV −0.001 −0.100 −0.006 −0.003 −0.031 −0.262 −0.151

2 GeV −0.001 −0.125 −0.015 −0.001 −0.035 −0.285 −0.146

3 GeV −0.001 −0.147 −0.023 0.001 −0.039 −0.306 −0.145

Table 4. Matrix elements 〈Xi〉0,2 of BSM operators in the SD basis allowed by SMEFT contributing

to the isospin amplitudes A0,2 in units of GeV3 for four values of µ.

I = 0 QSLR,u
1 QSLR,u

2 QSLL,d
1 QSLL,d

2 QSLL,s
1 QSLL,s

2

1 GeV −0.006 −0.116 0.002 −0.079 0 0

1.3 GeV −0.015 −0.141 0.007 −0.088 0 0

2 GeV −0.028 −0.176 0.012 −0.101 0 0

3 GeV −0.039 −0.208 0.017 −0.111 0 0

I = 2 QSLR,u
1 QSLR,u

2 QSLL,d
1 QSLL,d

2 QSLL,s
1 QSLL,s

2

1 GeV 0.000 0.041 −0.001 0.028 0 0

1.3 GeV 0.003 0.050 −0.002 0.031 0 0

2 GeV 0.007 0.062 −0.004 0.036 0 0

3 GeV 0.011 0.074 −0.006 0.039 0 0

Table 5. Matrix elements 〈Xi〉0,2 of BSM operators in the SD basis allowed by SU(3)c × U(1)Q
but not by SMEFT contributing to the isospin amplitudes A0,2 in units of GeV3 for four values

of µ.
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In order to further demonstrate that the pattern of meson evolution agrees with the

SD evolution, it is useful to normalize our results for BSM matrix elements of scalar-scalar

operators to 〈Q̂8(µ)〉2 and consider the ratios

RI(Xi(µ)) =
〈Xi(µ)〉I
〈Q̂8(µ)〉2

(scalar-scalar) (10.11)

with Xi denoting any scalar-scalar operator either in DQCD or SD basis. This has the

virtue that in the case of chirally enhanced matrix elements of scalar-scalar operators

the dominant µ-dependence present in r(µ) cancels out, exhibiting the non-factorizable µ

dependence of RI for such operators.

Inspecting the tables 6 and 7 for the DQCD basis and tables 8 and 9 for the SD basis,

we can make the following observations:

• The ratios RI for scalar-scalar matrix elements governed by r2(µ), that is of B1,2 and

D1,2,3 in the DQCD basis, all decrease with increasing µ so that the SD evolution

matches well the meson one. In particular, the SD evolution of B1,2 is in the range

1 − 3 GeV by roughly a factor of two slower than that of D1,2,3 in agreement with

the meson evolution equations of section 4. The matrix elements of A and C1,2 are

not chirally enhanced and the ratios RI are not useful in this case for exhibiting the

proper matching of SD and meson evolutions. However, inspecting the SD and meson

evolutions, also in this case the matching is good.

• The ratios RI for scalar-scalar matrix elements of QVLR,d−s
1 , QSLL,u

1,2 , QSLR,u
2 , QSLL,d

1,2

in the SD basis, all governed by r2(µ), exhibit also the SD pattern as expected from

the matching of SD evolution to the meson evolution summarized in appendix B.

All decrease with increasing µ with the speed expected from meson evolution. The

comments made on matrix elements not enhanced by r2(µ) in the DQCD basis applies

also to the SD basis.

In the case of tensor-tensor operators the diagonal evolution of these operators differs

from the one of scalar-scalar operators simply because their anomalous dimensions, as seen

from (6.8), are very different and read for N = 3

γ(Q8) = 2γS = −16, γ(QT ) = 2γT =
16

3
, (10.12)

where QT denotes any colour singlet tensor-tensor operator. Consequently, the diagonal

SD evolutions of 〈Q8(µ)〉 and 〈QT (µ)〉 are rather different

〈Q8(µ)〉 ∝ [αs(µ)]γS/β0 , 〈QT (µ)〉 ∝ [αs(µ)]γT /β0 , (10.13)

with β0 = 11 − 2f/3. Moreover, as we discussed above, the evolution of tensor-tensor

operators is not governed by their diagonal evolution but rather by a complicated ADM.

Therefore, the ratios in (10.11) are not useful in this case for the demonstration of the

matching of non-factorizable evolutions and we do not show them in tables 6–8.
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R0(Xi(µ)) A B2 C2 D1 D2

0 GeV 0.020 0.620 −0.020 −0.620 −0.620

1 GeV 0.005 0.469 −0.050 −0.318 −0.318

1.3 GeV 0.004 0.429 −0.093 −0.268 −0.268

2 GeV 0.003 0.384 −0.121 −0.218 −0.218

3 GeV 0.002 0.359 −0.135 −0.190 −0.190

R2(Xi(µ)) A B2 C2 D1 D2

0 GeV −0.029 0.439 0.029 −0.439 −0.439

1 GeV −0.008 0.332 0.008 −0.225 −0.225

1.3 GeV −0.006 0.303 −0.034 −0.189 −0.189

2 GeV −0.004 0.271 −0.064 −0.154 −0.154

3 GeV −0.003 0.254 −0.079 −0.134 −0.134

Table 6. Ratios RI of BSM operators in the DQCD basis allowed by SMEFT over Q̂8 contributing

to the isospin amplitudes A0,2 for four values of µ.

An exception is the colour non-singlet operator QSLL,u
3 , as already mentioned above.

In this case, in order to exhibit better non-factorizable SD evolution of matrix elements of

this operator, it appears to be more appropriate to consider the ratio

RI(Q
SLL,u
3 ) =

〈QSLL,u
3 (µ)〉I
〈Q̂8(µ)〉2

[αs(µ)](2γS−γ3)/2β0 , γ3 ≡ γ(QSLL,u
3 ) = −38

3
(10.14)

with γ3 extracted from the (3, 3) entry in (C.5). We show this ratio in table 8. One

can easily check that the decrease of this ratio with increasing µ matches well the meson

evolution of this operator. It is also interesting to note that at the one-loop level (6.7)

together with (6.12) imply 〈D3 − D∗3/4〉 = 0 at a higher value of Λ =
√

6πF = 1 GeV

compared to (6.6) and (6.11) for which a similar cancellation occurs at Λ = 2πF ≈ 0.8 GeV.

11 Summary and outlook

Motivated by the hints for NP contributing to the ratio ε′/ε we have calculated hadronic

matrix elements of 13 BSM four-quark operators in DQCD, including the meson evolution

in the chiral limit. This is the first calculation of these matrix elements to date, thereby

opening the road to the investigations of ε′/ε and K → ππ decays beyond all BSM anal-

yses found in recent literature [10–30] in which NP affected only Wilson coefficients of

SM operators.

Our main messages to take home are the following ones:

• The pattern of long distance evolution (meson evolution) matches once more the

one of short distance evolution (quark-gluon evolution), a property which to our

knowledge cannot be presently achieved in any other analytical framework. It should

be emphasized that this important result has been obtained for 13 operators without

any free parameter except possibly the physical cut-off Λ which in any case has to be

chosen in our framework in the ballpark of 0.7 GeV. See section 10 for details.

– 24 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
1

R0(Xi(µ)) B1 C1 D3 D4

0 GeV 1.241 −0.040 −1.241 0

1 GeV 0.939 −0.099 −0.637 0

1.3 GeV 0.858 −0.185 −0.537 0

2 GeV 0.767 −0.243 −0.438 0

3 GeV 0.718 −0.270 −0.383 0

R2(Xi(µ)) B1 C1 D3 D4

0 GeV −0.439 −0.029 0.439 0

1 GeV −0.332 −0.008 0.225 0

1.3 GeV −0.303 0.034 0.190 0

2 GeV −0.271 0.064 0.155 0

3 GeV −0.254 0.079 0.136 0

Table 7. Ratios RI of BSM operators in the DQCD basis allowed by SU(3)c × U(1)Q but not by

SMEFT over Q̂8 contributing to the isospin amplitudes A0,2 for four values of µ.

R0(Xi(µ)) QVLL,d−s
1 QVLR,d−s

1 QVLR,d−s
2 QSLL,u

3

0 GeV 0.020 −1.241 −0.020 −4.273

1 GeV 0.005 −0.939 −0.050 −3.233

1.3 GeV 0.004 −0.858 −0.093 −2.736

2 GeV 0.003 −0.767 −0.121 −2.232

3 GeV 0.002 −0.718 −0.135 −1.965

R2(Xi(µ)) QVLL,d−s
1 QVLR,d−s

1 QVLR,d−s
2 QSLL,u

3

0 GeV −0.029 −0.877 0.029 −3.021

1 GeV −0.008 −0.664 0.008 −2.286

1.3 GeV −0.006 −0.606 −0.034 −1.935

2 GeV −0.004 −0.542 −0.064 −1.578

3 GeV −0.003 −0.508 −0.079 −1.389

Table 8. Ratios RI of BSM operators in the SD basis allowed by SMEFT over Q̂8 contributing to

the isospin amplitudes A0,2 for four values of µ.

• Several matrix elements and in particular those of tensor-tensor operators have values

at µ = O(1 GeV) in the ballpark of the ones of the dominant electroweak penguin

matrix element 〈Q8(µ)〉2. Therefore they could have large impact on ε′/ε.

• The mixing of the scalar-scalar operators into tensor-tensor operators in the process of

meson evolution is responsible for this result so that the role of scalar-scalar operators

should not be underestimated. They can be most easily generated through tree-level

exchanges of heavy colourless and coloured scalars.

Clearly, in order to identify the most important operators, also their Wilson coeffi-

cients in a given NP scenario must be known. But having to disposal large K → ππ

matrix elements identified in our paper will, in some NP scenarios, facilitate the removal
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R0(Xi(µ)) QSLR,u
1 QSLR,u

2 QSLL,d
1 QSLL,d

2 QSLL,s
1 QSLL,s

2

0 GeV −0.020 −1.241 0.620 −1.241 0 0

1 GeV −0.050 −0.939 0.017 −0.637 0 0

1.3 GeV −0.093 −0.858 0.042 −0.537 0 0

2 GeV −0.121 −0.767 0.054 −0.438 0 0

3 GeV −0.135 −0.718 0.058 −0.383 0 0

R2(Xi(µ)) QSLR,u
1 QSLR,u

2 QSLL,d
1 QSLL,d

2 QSLL,s
1 QSLL,s

2

0 GeV −0.014 0.439 −0.219 0.439 0 0

1 GeV −0.004 0.332 −0.006 0.225 0 0

1.3 GeV 0.017 0.303 −0.015 0.190 0 0

2 GeV 0.032 0.271 −0.019 0.155 0 0

3 GeV 0.039 0.254 −0.020 0.136 0 0

Table 9. Ratios RI of BSM operators in the SD basis allowed by SU(3)c × U(1)Q but not by

SMEFT over Q̂8 contributing to the isospin amplitudes A0,2 for four values of µ.

of ε′/ε anomaly without violating other constraints. A detailed analysis of ε′/ε with and

without the imposition of SMEFT and concentrating rather on the structure of Wilson

coefficients of BSM operators resulting from the renormalization group effects is presented

in an accompanying paper [48] while a master formula for ε′/ε beyond the SM has been

recently presented in [47]. Furthermore the hadronic matrix elements computed in this

paper are implemented in the open-source codes flavio [70] and smelli [71], which allow for

a numerical analysis including ε′/ε.

Our calculation of meson evolution has been performed in the chiral limit but, as

we already mentioned in the Introduction, DQCD could reproduce some lattice results in

this approximation. Still it is desirable to extend our work beyond chiral limit, a goal

which could be reached before lattice QCD calculations for the hadronic matrix elements

in question are expected to be available.

In the case of confirmation of ε′/ε anomaly predicted in DQCD by more precise lattice

QCD calculations, our results will play an important role in selecting those NP models

that can provide sufficient upward shift in ε′/ε in order to explain the data.

On the other hand, if future lattice QCD calculations within the SM will confirm the

data on ε′/ε, our results will put strong constraints on the parameters of a multitude of

NP models.
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A Basis transformations

A.1 From SD to DQCD basis

Here we list the basis transformation between the SD and DQCD bases.

Class A

A = QVLL,d−s
1 . (A.1)

Class B

B1 = QSRL,u
2 , B2 =− 1

2
QVLR,d−s

1 . (A.2)

Class C

C1 = −2QSRL,u
1 , C2 = QVLR,d−s

2 . (A.3)

Class D

D1 = −1

2
QSLL,u

1 +
1

8
QSLL,u

3 , D2 = QSLL,u
2 , (A.4)

D3 = QSLL,d
2 , D4 = QSLL,s

2 , (A.5)

D∗1 = 6QSLL,u
1 +

1

2
QSLL,u

3 , D∗2 = QSLL,u
4 , (A.6)

D∗3 = 8QSLL,d
1 + 4QSLL,d

2 , D∗4 = 8QSLL,s
1 + 4QSLL,s

2 . (A.7)

A.2 From DQCD to SD basis

Class I

QVLL,d−s
1 = A . (A.8)

Class II

QSLR,u
1 = −1

2
C ′1 , QSLR,u

2 = B′1 , (A.9)

QVLR,d−s
1 = −2B2 , QVLR,d−s

2 = C2 , (A.10)

Class III

QSLL,u
1 = −1

2
D1 +

1

8
D∗1 , QSLL,u

2 = D2 , (A.11)

QSLL,u
3 = 6D1 +

1

2
D∗1 , QSLL,u

4 = D∗2 , (A.12)

Class IV

QSLL,d
1 = −1

2
D3 +

1

8
D∗3 , QSLL,d

2 = D3 , (A.13)

QSLL,s
1 = −1

2
D4 +

1

8
D∗4 . QSLL,s

2 = D4 , (A.14)

with ′ on C1, B1 meaning mirror partner (L↔ R) and ∗ on D1,2,3,4 meaning tensor-tensor

partner of PL − PL.
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A.3 From Flavio to SD basis

To use Wilson for the SD matrix element evolution we need to translate the used SM and

BSM operators into a predefined basis. We choose the flavio basis [70], where the operators

are defined in [72]. The transformation from the flavio basis into SM basis reads:

Q†1 = 4OV,LLsduu , Q†2 = 4ÕV,LLsduu , (A.15)

Q†3 = 4OV,LLsduu + 4OV,LLsddd + 4OV,LLsdss , Q†5 = 4OV,LRsduu + 4OV,LRsddd + 4OV,LRsdss , (A.16)

Q†6 = 4ÕV,LRsduu − 8OS,LRsddd − 8OS,RLsdss , Q†7 = 4OV,LRsduu − 2OV,LRsddd − 2OV,LRsdss , (A.17)

Q†8 = 4ÕV,LRsduu + 4OS,LRsddd + 4OS,RLsdss , (A.18)

with Õi meaning coloured partners of Oi.

Similarly, for the BSM operators one finds:

Class I

(QVLL,d−s
1 )† = OV,LLsddd −O

V,LL
sdss , (A.19)

Class II

(QSLR,u
1 )† = ÕS,RLsduu , (QSLR,u

2 )† = OS,RLsduu , (A.20)

(QVLR,d−s
1 )† = −2OS,LRsddd + 2OS,RLsdss , (QVLR,d−s

2 )† = OV,LRsddd −O
V,LR
sdss , (A.21)

Class III

(QSLL,u
1 )† = ÕS,RRsduu , (QSLL,u

2 )† = OS,RRsduu , (A.22)

(QSLL,u
3 )† = −ÕT,RRsduu , (QSLL,u

4 )† = −OT,RRsduu , (A.23)

Class IV

(QSLL,d
1 )† = −1

2
OS,RRsddd −

1

8
OT,RRsddd , (QSLL,d

2 )† = OS,RRsddd , (A.24)

(QSLL,s
1 )† = −1

2
OS,RRsdss −

1

8
OT,RRsdss , (QSLL,s

2 )† = OS,RRsdss . (A.25)
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A.4 From SD to Flavio basis

Here we report the inverse transformation of the relations in the previous subsection.

OV,LLsduu =
1

4
Q†1 , ÕV,LLsduu =

1

4
Q†2 , (A.26)

OV,LLsddd =−1

8
Q†1+

1

8
Q†3+

1

2
(QVLL,d−s

1 )† , OV,LLsdss =−1

8
Q†1+

1

8
Q†3−

1

2
(QVLL,d−s

1 )† , (A.27)

OV,LRsduu =
1

12
Q†5+

1

6
Q†7 , ÕV,LRsduu =

1

12
Q†6+

1

6
Q†8 , (A.28)

OV,LRsddd =
1

12
Q†5−

1

12
Q†7+

1

2
(QVLR,d−s

2 )† , OV,LRsdss =
1

12
Q†5−

1

12
Q†7−

1

2
(QVLR,d−s

2 )† , (A.29)

OS,RLsduu = (QSLR,u
2 )† , ÕS,RLsduu = (QSLR,u

1 )† , (A.30)

OS,LRsddd =− 1

24
Q†6+

1

24
Q†8−

1

4
(QVLR,d−s

1 )† , OS,RLsdss =− 1

24
Q†6+

1

24
Q†8+

1

4
(QVLR,d−s

1 )† ,

(A.31)

OS,RRsduu = (QSLL,u
2 )† , ÕS,RRsduu = (QSLL,u

1 )† , (A.32)

OS,RRsddd = (QSLL,d
2 )† , OS,RRsdss = (QSLL,s

2 )† , (A.33)

OT,RRsduu =−(QSLL,u
4 )† , ÕT,RRsduu =−(QSLL,u

3 )† , (A.34)

OT,RRsddd =−8(QSLL,d
1 )†−4(QSLL,d

2 )† , OT,RRsdss =−8(QSLL,s
1 )†−4(QSLL,s

2 )† . (A.35)

B Meson evolution in the SD basis

Using the notation Λ̂ = Λ/(4πF ) for short, we have the following evolution:

Class I

QVLL,d−s
1 (Λ) =

[
1− 4Λ̂2

]
QVLL,d−s

1 (0) , (B.1)

Class II

QSLR,u
1 (Λ) = QSLR,u

1 (0) + 8
M2

r2
Λ̂2QSLR,u

2 (0) , (B.2)

QSLR,u
2 (Λ) =

[
1− 4

3
Λ̂2

]
QSLR,u

2 (0) , (B.3)

QVLR,d−s
1 (Λ) =

[
1− 4

3
Λ̂2

]
QVLR,d−s

1 (0) , (B.4)

QVLR,d−s
2 (Λ) = QVLR,d−s

2 (0) + 8
M2

r2
Λ̂2QVLR,d−s

1 (0) , (B.5)
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Class III

QSLL,u
1 (Λ) =

[
1 +

4

3
Λ̂2

]
QSLL,u

1 (0) + 4Λ̂2QSLL,u
2 (0) , (B.6)

QSLL,u
2 (Λ) =

[
1 +

4

3
Λ̂2

]
QSLL,u

2 (0) + 2Λ̂2QSLL,u
1 (0)− 1

2
Λ̂2QSLL,u

3 (0) , (B.7)

QSLL,u
3 (Λ) =

[
1 +

4

3
Λ̂2

]
QSLL,u

3 (0)− 16Λ̂2QSLL,u
2 (0) , (B.8)

QSLL,u
4 (Λ) =

[
−8QSLL,u

1 (0) + 2QSLL,u
3 (0)

]
Λ̂2 , (B.9)

Class IV

QSLL,d
1 (Λ) =

[
1− 8

3
Λ̂2

]
QSLL,d

1 (0) +
4

3
Λ̂2QSLL,d

2 (0) , (B.10)

QSLL,d
2 (Λ) =

[
1− 8

3
Λ̂2

]
QSLL,d

2 (0) , (B.11)

with analogous equations for QSLL,s
1,2 .

C Quark-gluon evolution in the SD basis

The anomalous dimension matrices for all BSM operators are then given in the SD basis

as follows (in units of αs/4π) [32, 58].

Class I

γ̂(0)(QVLL,d−s
1 ) = 4 , (C.1)

Class II

γ̂(0)(QSLR,u
1 , QSLR,u

2 ) =

(
6
N −6

0 −6N + 6
N

)
=

(
2 −6

0 −16

)
, (C.2)

γ̂(0)(QVLR,d−s
1 , QVLR,d−s

2 ) =

(
−6N + 6

N 0

−6 6
N

)
=

(
−16 0

−6 2

)
, (C.3)

where N denotes the number of colours with N = 3.

Class III In the basis (QSLL,u
1 , QSLL,u

2 , QSLL,u
3 , QSLL,u

4 ) we have

γ̂(0)SLL,u =


6
N −6 N

2 −
1
N

1
2

0 −6N + 6
N 1 − 1

N

−48
N + 24N 24 − 2

N − 4N 6

48 −48
N 0 2N − 2

N

 (C.4)

=


2 −6 7/6 1/2

0 −16 1 −1/3

56 24 −38/3 6

48 −16 0 16/3

 . (C.5)
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Class IV

γ̂(0)(QSLL,d
1 , QSLL,d

2 ) =

(
2N + 4 + 2

N 4N − 4− 8
N

4− 8
N −6N + 8 + 2

N

)
(C.6)

=

(
32/3 16/3

4/3 −28/3

)
, (C.7)

with the same matrix for the operators QSLL,s
1,2 .

D Hadronic matrix elements in the SD basis

In the large-N limit the matrix elements of the two most important SM operators are given

as follows [33, 66, 67]

〈Q6(µ)〉0 = − r2(µ)(FK − Fπ) , 〈Q6(µ)〉2 = 0 , (D.1)

〈Q8(µ)〉0 =
1

2
r2(µ)Fπ , 〈Q8(µ)〉2 =

1

2
√

2
r2(µ)Fπ . (D.2)

The matrix elements of BSM operators are listed below. We omit for brevity the

argument Λ = 0.

Class I

〈QVLL,d−s
1 〉0 = +

Fπ
12

(m2
K −m2

π) , 〈QVLL,d−s
1 〉2 =−

√
2
Fπ
12

(m2
K −m2

π) . (D.3)

Class II

〈QSLR,u
1 〉0 = −Fπ

12
(m2

K −m2
π) , 〈QSLR,u

1 〉2 = − Fπ

12
√

2
(m2

K −m2
π) , (D.4)

〈QSLR,u
2 〉0 = − 1

12
r2(µ)Fπ , 〈QSLR,u

2 〉2 = +
1

24
√

2
r2(µ)Fπ , (D.5)

〈QVLR,d−s
1 〉0 = − 1

12
r2(µ)Fπ , 〈QVLR,d−s

1 〉2 = − 1

12
√

2
r2(µ)Fπ , (D.6)

〈QVLR,d−s
2 〉0 = −Fπ

12
(m2

K −m2
π) , 〈QVLR,d−s

2 〉2 = +
√

2
Fπ
12

(m2
K −m2

π) . (D.7)

Class III

〈QSLL,u
1 〉0 = +

1

48
r2(µ)Fπ , 〈QSLL,u

1 〉2 = +
1

48
√

2
r2(µ)Fπ , (D.8)

〈QSLL,u
2 〉0 = − 1

24
r2(µ)Fπ , 〈QSLL,u

2 〉2 = − 1

24
√

2
r2(µ)Fπ , (D.9)

〈QSLL,u
3 〉0 = −1

4
r2(µ)Fπ , 〈QSLL,u

3 〉2 = − 1

4
√

2
r2(µ)Fπ , (D.10)

〈QSLL,u
4 〉0 = 0 , 〈QSLL,u

4 〉2 = 0 . (D.11)

Class IV

〈QSLL,d
1 〉0 = +

1

24
r2(µ)Fπ , 〈QSLL,d

1 〉2 = − 1

48
√

2
r2(µ)Fπ , (D.12)

〈QSLL,d
2 〉0 = − 1

12
r2(µ)Fπ , 〈QSLL,d

2 〉2 = +
1

24
√

2
r2(µ)Fπ . (D.13)
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[61] D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar

leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev.

D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].

[62] D.J. Broadhurst and A.G. Grozin, Matching QCD and HQET heavy-light currents at two

loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [INSPIRE].

[63] C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of B̄ → K`+`− decays, JHEP

12 (2007) 040 [arXiv:0709.4174] [INSPIRE].

[64] J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six

operators for b→ s and b→ c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830]

[INSPIRE].

[65] E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the

Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486]

[INSPIRE].

[66] A.J. Buras and J.M. Gérard, 1/N Expansion for Kaons, Nucl. Phys. B 264 (1986) 371

[INSPIRE].

[67] A.J. Buras and J.M. Gérard, Isospin Breaking Contributions to ε′/ε, Phys. Lett. B 192

(1987) 156 [INSPIRE].

[68] J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard

Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].

[69] J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and

matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78

(2018) 1026 [arXiv:1804.05033] [INSPIRE].

[70] D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the

Standard Model and beyond, arXiv:1810.08132 [INSPIRE].

[71] J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision

Constraints and Flavour Anomalies, arXiv:1810.07698 [INSPIRE].

[72] D.M. Straub, Basis flavio (EFT WET-3) web site,

https://wcxf.github.io/assets/pdf/WET-3.flavio.pdf, accessed 12 December (2018).

– 35 –

https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,158,142%22
https://doi.org/10.1016/0550-3213(85)90492-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B250,465%22
https://doi.org/10.1007/JHEP08(2011)069
https://doi.org/10.1007/JHEP08(2011)069
https://arxiv.org/abs/1103.5992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5992
https://doi.org/10.1016/0370-2693(95)00047-O
https://doi.org/10.1016/0370-2693(95)00047-O
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B347,136%22
https://doi.org/10.1007/JHEP09(2017)158
https://doi.org/10.1007/JHEP09(2017)158
https://arxiv.org/abs/1704.06639
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.06639
https://doi.org/10.1016/j.physletb.2017.07.003
https://arxiv.org/abs/1706.00410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00410
https://doi.org/10.1007/JHEP11(2018)191
https://arxiv.org/abs/1806.10155
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10155
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1103/PhysRevD.98.055003
https://arxiv.org/abs/1806.05689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.05689
https://doi.org/10.1103/PhysRevD.52.4082
https://arxiv.org/abs/hep-ph/9410240
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9410240
https://doi.org/10.1088/1126-6708/2007/12/040
https://doi.org/10.1088/1126-6708/2007/12/040
https://arxiv.org/abs/0709.4174
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.4174
https://doi.org/10.1007/JHEP05(2016)037
https://arxiv.org/abs/1512.02830
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02830
https://doi.org/10.1007/JHEP03(2018)016
https://arxiv.org/abs/1709.04486
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04486
https://doi.org/10.1016/0550-3213(86)90489-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B264,371%22
https://doi.org/10.1016/0370-2693(87)91159-2
https://doi.org/10.1016/0370-2693(87)91159-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B192,156%22
https://doi.org/10.1016/j.cpc.2018.05.022
https://arxiv.org/abs/1712.05298
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.05298
https://doi.org/10.1140/epjc/s10052-018-6492-7
https://doi.org/10.1140/epjc/s10052-018-6492-7
https://arxiv.org/abs/1804.05033
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.05033
https://arxiv.org/abs/1810.08132
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.08132
https://arxiv.org/abs/1810.07698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.07698
https://wcxf.github.io/assets/pdf/WET-3.flavio.pdf

	Introduction
	K –> pi pi decays
	Preliminaries
	SM operators
	BSM operators
	Chiral Fierz identities
	Illustration with Delta S = 2 operators
	Application to the SM Delta S = 1 operators
	Application to the BSM Delta S = 1 operators


	Dual QCD basics
	Meson evolution in the DQCD basis
	Quark-gluon evolution in DQCD basis
	Matching SD-LD evolutions in DQCD basis
	BSM matrix elements in DQCD basis
	Large N limit
	Summary of hadronic matrix calculations
	Number of BSM matrix elements to be calculated

	SD basis
	SMEFT view of BSM operators
	Numerical results
	Summary and outlook
	Basis transformations
	From SD to DQCD basis
	From DQCD to SD basis
	From Flavio to SD basis
	From SD to Flavio basis

	Meson evolution in the SD basis
	Quark-gluon evolution in the SD basis
	Hadronic matrix elements in the SD basis

