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1 Introduction

The weak-coupling expansion of QCD high-energy scattering fails near kinematic thresholds

due to the restricted phase space for real emission. The logarithmic enhancements in the

kinematic variable that characterizes the threshold must be resummed to all orders in the

coupling expansion to arrive at a reliable approximation. This has been studied first [1, 2]

and in greatest detail for the simplest such situation, the production of a single uncoloured

particle DY (Drell-Yan process) in the collision of two hadrons, A(pA)B(pB)→ DY(Q)+X,

where X denotes an unobserved QCD final state. The DY process has always provided the

first physically very relevant case on which to push the accuracy of resummation to the

next level, or explore new approaches to resummation [3].

The DY spectrum dσDY/dQ
2 is given by the convolution of parton distributions in

the incoming hadrons with partonic short-distance cross sections σ̂ab in partonic channels

ab. The parton scattering cross sections can be regarded as functions of z = Q2/ŝ, where

ŝ = xaxbs is the partonic center-of-mass (cms) energy squared, and xa, xb the momentum
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fractions of the partons in the corresponding hadrons. Near the partonic threshold z = 1,

σ̂ab has the singular expansion

σ̂ab(z) =
∞∑
n=0

αns

[
cnδ(1− z) +

2n−1∑
m=0

(
cnm

[
lnm(1− z)

1− z

]
+

+ dnm lnm(1− z)

)
+ . . .

]
. (1.1)

In this expression the series with coefficients cn, cnm encompass the leading power (LP)

singular terms, and, more specifically, the terms c0 and cn(2n−1) constitute the leading

logarithms (LL). The terms multiplied by dnm are suppressed by one power of (1− z) and

are referred to as next-to-leading power (NLP). The NLP LL series is given by the highest

power NLP logarithms with coefficients dn(2n−1) for n = 1, 2, . . ..

Existing approaches to soft gluon resummation of the DY threshold apply only to the

LP terms. The key result is the factorization of the partonic cross section

σ̂(z) = H(Q2)QSDY(Q(1− z)) (1.2)

into the product of a hard function and the DY soft function [4]

SDY(Ω) =

∫
dx0

4π
eix

0Ω/2 1

Nc
Tr 〈0|T̄(Y †+(x0)Y−(x0)) T(Y †−(0)Y+(0))|0〉 (1.3)

expressed in terms of Wilson lines, as defined below. Both functions depend on a renormal-

ization scale µ. This dependence is important to perform the resummation via a renormal-

ization group equation, but will not be indicated explicitly unless necessary. In principle it

is possible to sum arbitrary subleading logarithms at LP by computing the hard and soft

function and the evolution equation to sufficiently high order. Presently, LP logarithms

can be summed to the next-to-next-to-next-to-leading logarithmic order [3, 5].

In contrast, much less is understood at NLP. The structure of NLP logarithms has re-

cently received increased interest with explicit calculations at fixed order n = 1, 2 using the

method of region approach [6–8] and diagrammatic factorization techniques [9–11]. How-

ever, an all-order resummation has not yet been performed for NLP threshold logarithms

in the Drell-Yan process.

In the present work we accomplish this task for the leading logarithmic terms at NLP

for the quark-antiquark production channel of the DY process within the framework of

soft-collinear effective theory (SCET). This framework has the distinct advantage of pro-

viding precise operator definitions of the factors appearing in the factorization formula

extended to NLP, which converts the resummation problem into a renormalization prob-

lem of SCET operators and soft functions. In section 2 we discuss the factorization formula

for the DY process at NLP. While the form of the result is rather intuitive, this section

draws heavily on a companion publication [12], where this formula is derived in detail and

verified at the one-loop order. The core result of NLP LL resummation is contained in

section 3, which identifies the sources of NLP LLs and derives the hard, soft and collinear

functions needed for resummation, as well as the renormalization-group equation and its

LL solution. In section 4 we expand the resummed result in αs, which provides both, a

check of the resummed result by comparison with existing fixed-order expressions, and the
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so far unknown logarithmic terms at higher order. The technical details of the one-loop

anomalous dimension calculation for the soft functions and the derivation of an evolution

equation for the NLP partonic cross section are given in two appendices.

2 Factorization near threshold at NLP

The following treatment makes use of SCET [13, 14] in the position-space representa-

tion [15, 16]. In order to describe the Drell-Yan threshold SCET must include collinear, an-

ticollinear and soft fields with momentum scaling Q(1, λ2, λ), Q(λ2, 1, λ) and Q(λ2, λ2, λ2),

respectively, where the components refer to (n+k, n−k, k⊥) with n2
+ = n2

− = 0, n+n− = 2,

and the power counting parameter is λ =
√

1− z. In addition to the above (anti)collinear

modes with parametric threshold scaling, the ordinary parton distributions are defined in

terms of (anti)collinear-PDF modes with scaling (Q,Λ2/Q,Λ) for c-PDF, and (Λ2/Q,Q,Λ)

for c̄-PDF,1 where Λ denotes the strong interaction scale.

In the following we summarize some general results on the DY threshold at NLP

from [12]. We first note from (1.2) that the LP factorization formula does not contain a

collinear function with threshold momentum scaling for two reasons: 1) Due to threshold

kinematics generic collinear modes cannot be radiated into the hadronic final state. 2)

Virtual collinear loops are scaleless, because a threshold-collinear scale can only be formed

by attaching a soft momentum to the collinear loop. However, after the soft-gluon decou-

pling transformation [14] of the collinear fields, there are no soft-collinear interactions in

the leading-power SCET Lagrangian.

The factorization of the DY threshold at NLP is obtained by matching the coupling

to the DY particle to higher order in the (1 − z) expansion and by including subleading

interactions from the SCET Lagrangian as perturbations. The decoupling of collinear and

soft fields in the LP Lagrangian guarantees that the amplitude factorizes into a convolution

of hard, collinear and soft amplitudes. However, reason 2) no longer holds at NLP, since

the NLP SCET Lagrangian contains soft-collinear interactions. The time-ordered products

with the hard vertex inject soft momentum into the collinear loops, resulting in a non-

vanishing collinear function at the amplitude level.

The DY spectrum for the production of a lepton-antilepton pair with invariant mass

Q through a virtual photon can be written as (leaving out quark electric charge factors)

dσDY

dQ2
=

4πα2
em

3NcQ4

∑
a,b

∫ 1

0
dxadxb fa/A(xa)fb/B(xb) σ̂ab(z) . (2.1)

1The above classification of regions refers to the ‘standard’ treatment of factorization near threshold,

which neglects momentum regions which lead to scaleless integrals in dimensional regularization. If one

aims at the correct identification of ultraviolet and infrared singularities, the situation is more subtle, as

discussed in [17]. The whole effect of the additional collinear-soft region introduced in this reference is to

convert the IR singularities in the soft function of the standard treatment into UV singularities, ultimately

leading to the same factorization formula at leading power. If this holds at LP, it must also hold at NLP,

since the additional region interpolates between the soft scale and the scale of the parton distributions,

which are the same leading-twist parton distributions at NLP in the threshold expansion.
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The factorization formula for σ̂ab(z) for z → 1 covering power-suppressed terms in (1−z) is

σ̂(z) =
∑

terms

∫
dωidω̄idω

′
idω̄
′
iD(−ŝ;ωi, ω̄i)D∗(−ŝ;ω′i, ω̄′i)

×Q2

∫
d3~q

(2π)3 2
√
Q2 + ~q 2

1

2π

∫
d4x ei(xapA+xbpB−q)·x S̃(x;ωi, ω̄i, ω

′
i, ω̄
′
i) . (2.2)

The formula holds for each partonic channel ab, and we dropped the parton indices ab for

notational convenience. We also used the same symbol i for four separate index sets ij and

a sum over various terms of this form is implicit. This will be made more precise in the

following section for the terms relevant to LL resummation. S̃(x;ωi, ω̄i, ω
′
i, ω̄
′
i) denotes a

generalized multilocal soft function, which depends on the soft momenta radiated from the

collinear and anticollinear functions. The coefficient function D(−ŝ;ωi, ω̄i) is defined at the

amplitude level, and summarizes convolutions of the hard functions with the initial-state

collinear and anticollinear functions at the amplitude level:

D(−ŝ;ωi, ω̄i) =

∫
d(n+pi)d(n−p̄i)C(n+pi, n−p̄i)

× J(n+pi, xan+pA;ωi) J̄(n−p̄i,−xbn−pB; ω̄i) . (2.3)

Here C(n+pi, n−p̄i) is the momentum-space coefficient function of a general two-jet opera-

tor as defined in [18]. Beyond LP, its Fourier transform can depend on several momentum

fractions as indicated by the unspecified generic index i. Note that colour and Lorentz

indices on the hard, collinear and soft functions are suppressed for the purpose of this

generic discussion.

The LP factorization formula is recovered from the general formula as the spe-

cial case when there are no collinear functions. In this case the index set i is empty,

the convolutions over the various ωi variables in (2.2) are absent and D(−ŝ;ωi, ω̄i) →
CA0(−ŝ) ≡ CA0(xan+pA, xbn−pB), where the latter denotes the matching coefficient of

the LP SCET current,

ψ̄γµψ(0) =

∫
dt dt̄ C̃A0(t, t̄ ) JA0

µ (t, t̄ ) (2.4)

with

JA0
µ (t, t̄ ) = χ̄c̄(t̄n−)γ⊥µχc(tn+) , (2.5)

CA0(n+p, n−p̄) =

∫
dt dt̄ e−itn+p−it̄n−p̄ C̃A0(t, t̄ ) . (2.6)

Here χc and Aµc⊥ (below) denote the collinear-gauge-invariant collinear quark and gluon

fields that form the building blocks of general N -jet operators as defined in [18]. Eq. (2.2)

then turns into an intermediate result derived in [3], which after further kinematic simpli-

fications valid at LP leads to the LP factorization formula (1.2).

We provide some further details on the definition of the generalized soft and the

collinear functions. We define the soft Wilson lines

Y± (x) = P exp

[
igs

∫ 0

−∞
ds n∓As (x+ sn∓)

]
(2.7)
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in the fundamental representation, and perform the standard soft-decoupling transforma-

tion from (anti)collinear fields with Y+ (Y−). In terms of the decoupled collinear fields,

which will be used below, the current reads

JA0
µ (t, t̄ ) = χ̄c̄(t̄n−)Y †−(0)γ⊥µY+(0)χc(tn+) . (2.8)

We then introduce two sets of soft gluon and soft quark building blocks

Bµ± = Y †± [iDµ
s Y±] , (2.9)

q± = Y †±qs , (2.10)

in terms of which the NLP soft-collinear SCET quark-gluon interaction Lagrangian [16]

can be written as

L(1)
ξ = χ̄cix

µ
⊥
[
in−∂B+

µ

] /n+

2
χc

L(2)
1ξ =

1

2
χ̄cin−xn

µ
+

[
in−∂B+

µ

] /n+

2
χc

L(2)
2ξ =

1

2
χ̄cx

µ
⊥x

ν
⊥
[
i∂νin−∂B+

µ

] /n+

2
χc

L(2)
3ξ =

1

2
χ̄cx

µ
⊥x

ν
⊥
[
B+
ν , in−∂B+

µ

] /n+

2
χc

L(2)
4ξ =

1

2
χ̄c
(
i/∂⊥ + /Ac⊥

) 1

in+∂
ixµ⊥γ

ν
⊥
[
i∂νB+

µ − i∂µB+
ν

] /n+

2
χc + h.c.

L(2)
5ξ =

1

2
χ̄c
(
i/∂⊥ + /Ac⊥

) 1

in+∂
ixµ⊥γ

ν
⊥
[
B+
ν ,B+

µ

] /n+

2
χc + h.c.

L(1)
ξq = q̄+ /Ac⊥χc + h.c. (2.11)

The soft-collinear interactions in the SCET Yang-Mills Lagrangian can be rewritten in

a similar way. We recall that the soft fields B+
µ , q+ are evaluated at the multipole-

expanded position. A corresponding expression holds for the anticollinear sector. The

generalized soft functions are the vacuum matrix elements of Wilson lines from the DY

current similar to (1.3) and in addition collections of Bµ±(z∓) insertions, where the argu-

ment zµ∓ = (n±z)nµ∓/2 arises from the integration over d4z in the time-ordered product and

the multipole expansion of soft fields in soft-collinear interactions. Similar multilocal soft

functions have appeared as “subleading shape functions” in early applications of SCET to

power-suppressed effects in semi-inclusive heavy-quark decay [19–21], and recently in the

resummation of NLP LLs of the thrust distribution in Higgs decay to two gluons [22].

A novel feature of the NLP factorization formula for the DY process is the appear-

ance of collinear functions at the amplitude level [12]. They are defined as the matching

coefficients of a product of generic collinear fields to collinear-PDF fields in the presence

of soft field operators. Equivalent definitions hold for the anticollinear sector. To this end,

we construct a basis of gauge-covariant soft field operators

si(z−) ∈
{

∂µ⊥
in−∂

B+
µ⊥

(z−), ∂[µ⊥B+
ν⊥](z−), [B+

µ⊥
(z−), B+

ν⊥
(z−)], . . .

}
(2.12)
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from all the possible insertions of the subleading Lagrangian. We then collect the remain-

ing collinear fields, and define the collinear functions J̃i as the matching coefficients in

equations, such as

i

∫
d4zT

[
χc,αa(tn+)L(2)(z)

]
= 2π

∑
i

∫
du

∫
d(n+z)

2
J̃i;αβ,µ,abd

(
t, u;

n+z

2

)
χPDF
c,βb (un+) si;µ,d(z−) , (2.13)

where ab refer to colour and αβ to Dirac indices, and d (µ) represents a collective colour

(Lorentz) index from the soft operator. In the DY process the c-PDF modes can be

radiated into the final state without violating threshold kinematics, since their trans-

verse momentum of order Λ is negligible, hence the amplitude involves the matrix el-

ement 〈Xc,PDF| . . . |A(pA)〉 of the above equation. After squaring the amplitude and

summing over the unobserved Xc,PDF particles along the beam direction, the matrix ele-

ment 〈Xc,PDF|χPDF
c,βb (un+)|A(pA)〉 can be associated with the parton distribution function

fa/A(xa). The matching coefficient J̃i;αβ,µ,abd(u, t;ω) is a perturbative short-distance co-

efficient dominated by virtualities Q2(1 − z) � Λ2. Since (2.13) is an operator equation,

the short-distance coefficient can be extracted by computing the partonic matrix element

〈0| . . . |q(xapA)〉. These considerations generalize to all collinear matrix elements that ap-

pear upon working out the time-ordered products with the subleading SCET Lagrangian.

At leading twist in the Λ/Q expansion, but to all orders in the (1 − z) expansion, only

c-PDF operators with a single quark or a single gluon building block on the right-hand

side of (2.13) are needed. Eq. (2.13) provides the SCET analogue and operator definition

of the concept of ‘radiative jet functions’ in the diagrammatic approach [9, 10, 23].

At NLP, the first subleading power in the (1 − z) expansion, the hard DY vertex

should in principle be matched to SCET current operators with up to three collinear

building blocks. The general basis of these operators and their renormalization is discussed

in [18, 24]. In the classification of these papers the operators in question correspond to

A0, A1, B1 and A2, B2, C2-type operators at orders 1, λ, λ2, respectively. However, a

non-scaleless collinear function can arise only in conjunction with a time-ordered product,

from the subleading SCET Lagrangian. Since the subleading Lagrangian insertions start at

O(λ), the O(λ2) suppressed A2, B2, C2-type can be dropped from the beginning. Further

simplifications can be made when one is interested only in the leading logarithms, as

described in the next section.

3 Leading-logarithmic resummation

3.1 Relevant terms

For the following discussion, we adopt a frame where the transverse momenta of the col-

liding partons vanish, pµa = xa
√
snµ−/2, pµb = xb

√
snµ+/2, and write the NLP factorization

formula in the schematic form

σ̂ = [C ⊗ J ⊗ J̄ ]2 ⊗ S . (3.1)

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
0
4
3

Every factor including σ̂ on the left-hand side depends on the renormalization and factor-

ization scale µ, but the scale dependence cancels after convolution with the parton densities

within a given accuracy, if all factors are computed consistently. Let us assume that µ is

chosen at the collinear scale O(Qλ). Since each factor depends only on a single scale, with

this choice, the collinear functions J do not contain large logarithms at any order in the

expansion in the strong coupling αs. The hard (C) and soft (S) functions exhibit large

logarithms of (1− z), which we aim to resum at LL.

The NLP LL series is given by the terms αns ln2n−1(1− z). The soft functions start at

O(αs) or higher, since they involve at least one soft gluon radiated into the final state. A

NLP LL can be generated at one-loop only if the one-loop soft function contains αs ln(1−z)

and if the product [C ⊗ J ⊗ J̄ ]2 has an O(α0
s) term. We can therefore drop all terms for

which the hard and collinear functions do not have tree-level contributions.

Since at least one power of λ comes with the necessary time-ordered product, at NLP

O(λ2), we can allow for at most one further factor λ from the hard matching of the DY

current. Hence, only one or none of the two factors of C in (3.1) can be the coefficient

function of an O(λ) suppressed current. The available structures are

χ̄c̄(t̄n−)[nµ±i/∂⊥]χc(tn+), χ̄c̄(t̄n−)[nµ±(−i)
←−
/∂⊥]χc(tn+) (A1-type) ,

χ̄c̄(t̄n−)[nµ±A/c⊥(t2n+)]χc(t1n+), χ̄c̄(t̄1n−)[nµ±A/c̄⊥(t̄2n−)]χc(tn+) (B1-type). (3.2)

The collinear gauge field in the B1-type currents must be contracted within the amplitude,

which leads to collinear functions that start at the one-loop order O(αs). We can therefore

neglect these operators. The A1-operators could produce NLP LL terms together with a

soft function generated by a single L(1)
ξ insertion. However, the time-ordered product of

an A1-operator with L(1)
ξ contains two collinear transverse indices from the current and xµ⊥

and one soft transverse index from B±µ in L(1)
ξ , whereas the leading-power SCET soft gluon

interaction does not involve the transverse direction. The time-ordered product must then

vanish in the adopted reference frame, since there is no external vector available to contract

an odd number of transverse indices. We conclude that the NLP LL series arises entirely

from the time-ordered products of subleading power soft-collinear Lagrangian interactions

with the leading-power SCET current (2.4). Moreover, its coefficient function can be taken

in the tree-level approximation at the hard scale.

3.1.1 Quark-antiquark channel

The possible time-ordered products of the A0-operator at NLP can be inferred from (2.11)

as well as the terms in L(1)
YM and L(2)

YM in eqs. (36) and (37) of [16]. We now argue that

many of them do not contribute LLs.

The single insertion of L(1)
ξ or L(1)

YM vanishes, since the associated collinear function

depends on a single transverse index, but an external transverse vector is not available in

the chosen reference frame. As expected, there is no O(
√

1− z) power correction. The

same argument is also valid for the case of two insertions of L(1)
ξ or L(1)

YM arising from the

square of the amplitude with a single insertion.

– 7 –
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We turn now to the single insertions of the O(λ2) interactions in (2.11). The first

step, as discussed before (2.13), is to find a minimal basis of soft fields operators. This

is done systematically by considering Lagrangian insertions with one soft gluon, two soft

gluons, and so on. For LL resummation only contributions from operators with a single

soft gluon are necessary. This is because the soft function associated with the insertion

containing two soft gluons starts at O(α2
s). Such soft functions could contribute to the

NLP LL series only if the O(α2
s) contribution has a ln3(1 − z) term, which could arise, if

there is logarithmically enhanced one-loop mixing with a one-gluon soft function. No such

logarithmic enhancements of the cusp anomalous dimension type are known for off-diagonal

operator mixing and we assume the absence of such logarithmically enhanced mixing in the

following. This argument also excludes the possibility of LL terms arising from a double

insertion of L(1)
ξ and the double insertion of L(1)

ξq into the amplitude as the corresponding

soft functions also start at O(α2
s). The square of the single insertion of latter interaction

contributes only to the quark-gluon channel.

We restrict then to the O(λ2) Lagrangian insertion with one soft gluon field. Inspect-

ing (2.11) and the YM Lagrangian we note that the possible soft gluon structures are n+B+,

∂νB+
⊥µ for the collinear direction. The soft structure n+B+, contained for example in L(2)

1ξ ,

can in fact be related to ∂µ⊥B+
⊥µ using the equation of motion for the soft field, namely

n+B+ = −2
i∂µ⊥
in−∂

B+
⊥µ + two-gluon terms. (3.3)

Furthermore, the building block ∂⊥νB+
⊥µ can be decomposed into 1

2∂⊥{νB+
⊥µ}+ 1

2∂⊥[νB+
⊥µ].

The first, symmetric part must be proportional to gµν⊥ , because the soft function is a vacuum

matrix element of Wilson lines and the soft gluon field insertions. gµν⊥ is then the only

symmetric structure which can carry two transverse Lorentz indices. The only remaining

soft structure is given by the second, antisymmetric combination i∂⊥νB+
⊥µ− i∂⊥µB+

⊥ν . This

combination does not contribute, because by the above argument the NLP soft function

with this soft field insertion must be proportional to the epsilon tensor, which is excluded

by parity conservation of QCD.

We are thus left with only one collinear function proportional to a single soft building

block, given by

i

∫
d4zT

[
χc,αa(tn+)

(
L(2)

1ξ (z) + L(2)
2ξ (z) + L(2)

YM(z)
)]

= 2π

∫
du

∫
d(n+z)

2
J̃2ξ;αβ,abde

(
t, u;

n+z

2

)
χPDF
c,βb (un+)

∂µ⊥
in−∂

B+
⊥µ;de(z−) . (3.4)

We note at this point that L(2)
1ξ contains n−z, which in momentum space can be con-

verted into a derivative ∂n+p on CA0(n+p, n−p̄). But at tree-level the hard coefficient is

momentum-independent, and the derivative evaluates to zero. Moreover, the insertions of

the YM Lagranian can only start contributing through one loop. As discussed in section

3.1, only the tree level collinear function contribution is necessary for LL resummation,

when µ is chosen at the collinear scale. Hence, the only Lagrangian insertion contributing
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at LL accuracy is given by L(2)
2ξ , since it is the only piece which contributes at tree level to

the collinear function in (3.4).

We therefore find that for LL resummation at NLP in the quark-antiquark channel

only the single time-ordered product(
JT2
A0,2ξ(s, t)

)µ
= i

∫
d4zT

[
JµA0(s, t)L(2)

2ξ (z)
]

(3.5)

needs to be considered when the renormalization scale µ is chosen at the collinear scale.

To NLP LL accuracy the matching equation (2.4) is then simply extended to

ψ̄γµψ(0) =

∫
dt dt̄ C̃A0(t, t̄ )

[
JµA0(t, t̄ ) +

(
JT2
A0,2ξ(t, t̄ )

)µ
+ c̄-term

]
. (3.6)

We shall consider explicitly the insertion on the incoming collinear quark line. There is the

corresponding term, where the insertion is placed on the anticollinear antiquark line. The

NLP factorization formula (2.2) for the qq̄ channel is obtained after extracting the collinear

function from the above equation, followed by squaring the amplitude. One also needs to

keep track of a kinematic correction, which arises from evaluating the d3~q, d3~x integrals

in (2.2) with NLP accuracy.

3.1.2 (Anti)quark-gluon channel

For gq̄ → γ∗(→ ¯̀̀ ) + q̄ to occur near threshold, the PDF-collinear gluon needs to be

converted into a collinear quark carrying almost all its momentum by emission of a soft

antiquark. This process vanishes at LP, but can be realized at NLP by inserting L(1)
ξq once

at the amplitude level. The matching equation for the (anti)quark gluon channel is

ψ̄γµψ(0) =

∫
dt dt̄ C̃A0(t, t̄ )

[(
JT1
A0,ξq(t, t̄ )

)µ
+ c̄-term

]
(3.7)

with (
JT1
A0,ξq(s, t)

)µ
= i

∫
d4zT

[
JµA0(s, t)L(1)

ξq (z)
]
. (3.8)

The cross section follows from the interference of this amplitude with itself. A non-vanishing

interference requires that the two L(1)
ξq insertions are either both on the collinear quark line,

or both on the anticollinear antiquark line. No kinematic corrections need to be considered

in this channel, since there is no LP amplitude.

3.1.3 Gluon-gluon channel

The gluon-gluon channel at threshold does not contain NLP leading logarithms for the

production of a lepton-antilepton pair through a virtual photon that couples only to quarks.

As shown above, NLP LLs could come only from the A0 quark-antiquark SCET current,

but to turn the external PDF-(anti)collinear gluons into (anti)collinear (anti)quarks, would

require at least four insertions of the L(1)
ξq Lagrangian, implying NNLP O(λ4) ∼ (1 − z)2

suppression relative to the LP qq̄ partonic channel. We do not discuss here the case of

Higgs production for which this channel is relevant for the leading NLP logarithms.

In the following we focus on the quark-antiquark production channel and defer the

further discussion of the quark-gluon channel to future work.
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3.2 Collinear functions

The generic collinear modes with virtuality Q2λ2 are integrated out at the amplitude level

by matching collinear field operators to PDF-collinear fields. In this section we define the

collinear functions relevant to NLP LL resummation and calculate the tree-level coeffi-

cient functions.

So far we have shown that the only time-ordered product with insertion of L(2)
2ξ con-

tributes to LLs when µ is chosen at the collinear scale. We collect the collinear fields from

the time-ordered product (3.5) in the operator

J̃2ξ;α,ade(tn+, z) =
1

2

z2
⊥

d− 2
(in−∂z)

2 T

[
χc,αa(tn+)χ̄c,d(z)

/n+

2
χc,e(z)

]
, (3.9)

where α is a Dirac index, and Latin indices (except for c) are colour indices. The derivative

prefactor (in−∂z)
2 is conventional and conforms with the definition of the soft field product

in (3.18) below as well as being consistent with equation of motion in equation (3.3). We

find it convenient to define the analogue of the matching equation (2.13) in momentum

space with the soft field already stripped off. Introducing

J2ξ;α,ade(n+p, ω) =

∫
dt ei(n+p)t i

∫
d4z eiω(n+z)/2 J̃2ξ;α,ade(tn+, z) (3.10)

and the Fourier-transform of the PDF-collinear quark field,

χ̂PDF
c,αb (n+p) =

∫
du ei(n+p)u χPDF

c,αb (un+) , (3.11)

the matching equation takes the form

J2ξ;α,ade(n+p, ω) =

∫
d(n+p

′) J2ξ;αβ,abde(n+p, n+p
′;ω) χ̂PDF

c,βb (n+p
′). (3.12)

The collinear function J2ξ;αβ,abde(n+p, n+p
′; ω) is defined as the matching coefficient in this

operator equation.

The matching coefficient is governed by the large scale Qλ � Λ. We determine it by

calculating the 〈0| . . . |q(pa)〉 matrix element of the above equation. At tree level we find

J2ξ;αβ,abde(n+p, n+p
′; ω) ≡ J2ξ;αβ,abde(n+p; ω)δ(n+p− n+p

′)

= − 1

n+p
δ(n+p− n+p

′)δαβδadδeb . (3.13)

For time-ordered products originating from A-type operators, which contain only a single

collinear building block by definition, collinear momentum conservation implies that one

can always extract a delta function, or derivatives of the delta function from the collinear

function, as done above. We can use the colour-Fierz relation

δadδeb =
1

Nc
δabδed + 2TAabT

A
ed (3.14)

with SU(Nc) generators TA in the fundamental representation to write

J2ξ;αβ,abde(n+p; ω) = J
(S)
2ξ;αβ(n+p; ω)δabδed + J

(O)
2ξ;αβ(n+p; ω)TAabT

A
ed (3.15)
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which is also the most general colour decomposition. Since from the definition the indices de

are contracted with the matrix soft gluon field B±⊥µ;de, the first term will never contribute.

General arguments also imply that this collinear function is diagonal in the Dirac indices,

hence to all orders in perturbation theory only a single scalar jet function defined through

J
(O)
2ξ;αβ(n+p;ω) = δαβJ

(O)
2ξ (n+p;ω) arises from the time-ordered product (3.5).

We now calculate the matrix element of (3.6) after the (second) matching step that

makes the collinear function explicit. The integrals over t, t̄ can be performed by introduc-

ing the momentum-space hard function. After some manipulations, we obtain

〈X|ψ̄γµψ(0)|A(pA)B(pB)〉 =

∫
dn+p

2π

dn−p̄

2π
CA0(n+p, n−p̄)

×
∫
dn−pb δ(n−p̄+ n−pb) 〈Xc̄,PDF| ˆ̄χPDF

c̄,αa (n−pb)|B(pB)〉

×
∫
dn+pa 〈Xc,PDF|χ̂PDF

c,βb (n+pa)|A(pA)〉

×
{
γµ⊥αβ δ(n+p− n+pa) 〈Xs|T

[
Y †−(0)Y+(0)

]
ab
|0〉

+ γµ⊥αγ

∫
dω

4π
J2ξ;γβ,fbde (n+p, n+pa;ω)

×
∫
d(n+z) e−iω(n+z)/2 〈Xs|T

([
Y †−(0)Y+(0)

]
af

i∂⊥ν
in−∂

B+
⊥ν;de(z−)

)
|0〉
}

+ c̄-term (3.16)

The above expression includes the LP term and the LP matching on the anticollinear

antiquark leg. The new NLP contribution appears in the second- and third-to-last line.

The corresponding power-suppressed contribution from the insertion on the anticollinear

antiquark leg is the c̄-term not written explicitly. Making use of the delta function in the

collinear factor and its colour and spin decomposition, we can simplify (3.16) to

〈X|ψ̄γµψ(0)|A(pA)B(pB)〉 =

∫
dn+pa

2π

dn−pb
2π

CA0(n+pa,−n−pb)

×〈Xc̄,PDF| ˆ̄χPDF
c̄,αa (n−pb)|B(pB)〉 γµ⊥αβ 〈Xc,PDF|χ̂PDF

c,βb (n+pa)|A(pA)〉

×
{
〈Xs|T

[
Y †−(0)Y+(0)

]
ab
|0〉

+
1

2

∫
dω

4π
J

(O)
2ξ (n+pa;ω)

×
∫
d(n+z) e−iω(n+z)/2 〈Xs|T

([
Y †−(0)Y+(0)

]
af

i∂ν⊥
in−∂

B+
⊥ν;fb(z−)

)
|0〉
}

+ c̄-term (3.17)

Eq. (3.16) as it stands is still valid to all orders in perturbation theory. In the tree approx-

imation for the hard and collinear functions, which is sufficient to resum the NLP LLs, we

can further set CA0(n+pa,−n−pb)→ 1 at the hard scale and J
(O)
2ξ (n+pa;ω)→ −2/n+pa at

the collinear scale. The hadronic matrix elements of the PDF (anti)collinear state will turn
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into the (anti)quark parton distribution after squaring the above amplitude and summing

over the hadronic final state X, which on the right-hand side has been split into its soft

and PDF-(anti)collinear components.

3.3 Soft functions

The soft functions are defined after squaring the amplitude and summing over the soft final

state Xs. We introduce the soft operator

S̃2ξ (x, z−) = T̄
[
Y †+(x)Y−(x)

]
T

[
Y †−(0)Y+(0)

i∂ν⊥
in−∂

B+
⊥ν(z−)

]
, (3.18)

and the Fourier transform of its (colour-traced) vacuum matrix element

S2ξ(Ω, ω) =

∫
dx0

4π

∫
d(n+z)

4π
eix

0Ω/2−iω(n+z)/2 1

Nc
Tr 〈0|S̃2ξ(x

0, z−)|0〉 . (3.19)

To see how this generalized soft function appears, we recall some standard steps in the

derivation of the factorization formula for the DY process. We first express the phase-space

delta function (2π)4δ(pA + pB − q − pXs − pXc,PDF
− pXc̄,PDF

) in terms of the space-time

integral of the exponential, then use the translation operator to absorb the hadronic final

state momenta into translations of the field arguments, then square the amplitude. At

this point, the sum over the PDF-(anti)collinear state can be performed, and the matrix

element of the PDF-(anti)collinear fields expressed in terms of the parton distributions,

〈A(pA)|χ̄c,αa(x+ u′n+)χc,βb(un+)|A(pA)〉 =
δba
Nc

(
/n−
4

)
βα

n+pA

×
∫ 1

0
dxa fa/A(xa) e

i(x+u′n+−un+)·xapA .

(3.20)

A similar standard definition applies to the anti-quark distribution in hadron B.2

Applying these steps to (3.17), performing the integrations over n+pa, n−pb and strip-

ping off the convolution with the parton distribution functions, we arrive at

σ̂(z) = H(ŝ)× Q2

∫
d3~q

(2π)3 2
√
Q2 + ~q 2

1

2π

∫
d4x ei(xapA+xbpB−q)·x

×
{
S̃0(x) + 2 · 1

2

∫
dω J

(O)
2ξ (xan+pA;ω) S̃2ξ(x, ω) + c̄-term

}
. (3.21)

Here S̃0(x) is the leading-power position-space soft function, defined as the generalization

of (1.3) to x0 → xµ = (x0, ~x ) in the position of the Wilson lines. The Fourier transform with

respect to x0 will be denoted by S0(Ω, ~x) such that SDY(Ω) = S0(Ω,~0). Similarly S̃2ξ(x, ω)

is the generalization of (3.19) such that S2ξ(Ω, ω) denotes the Fourier transform with

2The contribution from antiquarks in A, and quarks in B follows from a separate contribution with

collinear and anti-collinear fields interchanged in the definition of the A0 current.
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respect to x0 of S̃2ξ(x, ω)|~x=0. The factor of two in (3.21) arises from the two identical (see

appendix A.2) NLP terms in the square of the amplitude. We introduced the hard function

H(ŝ, µh) = |CA0(−ŝ)|2 , (3.22)

which is the same for the LP and NLP term, and indicated the dependence on the hard

renormalization scale for later convenience.

While the collinear function J
(O)
2ξ (xan+pA;ω) is non-zero at tree level, the soft function

starts only at O (αs). The straightforward one-loop calculation gives

S2ξ(Ω, ω) =
αsCF

2π

{
θ(Ω)δ(ω)

(
−1

ε
+ ln

Ω2

µ2

)
+

[
1

ω

]
+

θ(ω)θ(Ω− ω)

}
, (3.23)

where ∫ Ω

0
dω

f(ω)

[ω]+
=

∫ Ω

0
dω

f(ω)− f(0)

ω
. (3.24)

Eq. (3.23) exhibits a divergence despite being the lowest-order contribution. The divergence

can be interpreted as mixing into the soft function Sx0 , defined as

Sx0(Ω) =

∫
dx0

4π
eix

0Ω/2 −2i

x0 − iε
1

Nc
Tr 〈0|T̄

[
Y †+(x0)Y−(x0)

]
T
[
Y †−(0)Y+(0)

]
|0〉. (3.25)

In position space, this is simply the LP soft function with an extra factor −2i/x0, which

leads to O(λ2) power suppression and the presence of the θ(Ω) factor in the tree-level

expression Sx0(Ω) = θ(Ω), required to cancel the divergence. At first sight, such soft func-

tions might appear peculiar. However, similar objects with collinear fields were required

in the renormalization of subleading gluon jet functions [25] and the above is the position-

space and Drell-Yan process equivalent of the “θ-soft functions” introduced in [22] for the

subleading-power thrust distribution.

We renormalize the soft functions by writing

SA(Ω, ωi)|ren =
∑
B

∫
dΩ′

∫
dω′j ZAB(Ω, ωi; Ω′, ω′j)SB(Ω′, ω′j)|bare (3.26)

where ωi, ω
′
j denote (possibly empty) sets of continuous variables that parameterize the

non-locality of the soft function beyond the dependence on Ω. In general, the number of

arguments ωi can be different than the number of ω′j , and the integration is over all ω′j
that the bare soft function depends on. If it depends only on Ω, the integration

∫
dω′j can

be omitted. Explicitly, the 2ξ soft function satisfies

S2ξ(Ω, ω)|ren =

∫
dΩ′

∫
dω′ Z2ξ,2ξ(Ω, ω; Ω′, ω′)S2ξ(Ω

′, ω′)|bare

+

∫
dΩ′ Z2ξ,x0(Ω, ω; Ω′)Sx0(Ω′)|bare (3.27)

with

Z2ξ,2ξ(Ω, ω; Ω, ω′) = δ(Ω− Ω′)δ(ω − ω′) +O(αs) , (3.28)

Z2ξ,x0(Ω, ω; Ω′) =
αsCF

2π

1

ε
δ(Ω− Ω′)δ(ω) +O(α2

s) . (3.29)
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The mixing term in the second line of (3.27) subtracts the divergent part of the first term

on the right-hand side, resulting in a finite, renormalized soft function at O(αs). The

complete one-loop anomalous dimension matrix for the above soft functions required for

LL resummation at NLP is derived in appendix A.2.

3.4 Kinematic corrections

Kinematic corrections arise from the evaluation of the second line of (2.2) with NLP ac-

curacy. In the partonic center-of-mass frame xa~pA + xb~pB = 0, the three-momentum ~pXs

of the soft hadronic final state is balanced by the lepton-pair, ~q + ~pXs = 0. This implies

the counting ~q ∼ λ2, q0 =
√
ŝ + O(λ2). The energy of the soft hadronic final state is

expanded as

[x1p1 + x2p2 − q]0 = p0
Xs

=
√
ŝ−

√
Q2 + ~q 2 =

Ω∗
2
− ~q 2

2Q
+O

(
λ6
)

(3.30)

with

Ω∗ = 2Q
1−√z√

z
= Q(1− z) +

3

4
Q(1− z)2 +O

(
λ6
)
. (3.31)

We then find for the second line of (2.2) the approximation

Q

4π

∫
dx0 eix

0Ω∗/2

(
1 +

ix0∂2
~x

2Q
+O

(
λ4
))

S̃(x0, ~x;ωi, ω̄i, ω
′
i, ω̄
′
i)|~x=0 (3.32)

valid to NLP. It is understood that ~x = 0 is set after the spatial derivatives are taken. The

result is general and holds for any soft function. However, at NLP we need to apply the

kinematic correction only to the LP term. Eq. (3.21) therefore simplifies to

σ̂(z) = H(ŝ)× Q

{(
1 +

1

Q

∂

∂Ω
∂2
~x

)
S0(Ω, ~x)|~x=0,Ω=Ω∗

+ 2 · 1

2

∫
dω J

(O)
2ξ (xan+pA;ω)S2ξ(Q(1− z), ω) + c̄-term

}
. (3.33)

Since S̃0(x) = 1 at tree level, the derivative soft function starts at O(αs). For dimensional

reasons x0∂2
~xS̃0(x)|~x=0 ∝ 1/x0. Hence, like the soft function S̃2ξ, the derivative soft function

times x0 mixes into S̃x0 and produces leading logarithms at NLP. Further details on the

renormalization of S̃0(x) and ∂2
~xS̃0(x)|~x=0 are provided in appendix A.1.

The kinematic corrections contained in the first line of (3.33) can be made more ex-

plicit. First, additional corrections arise from expanding the hard matching coefficient

H(ŝ) = H(Q2) +Q2(1− z)H ′(Q2) +O(λ4), but these terms do not contribute to the NLP

LL series. Indeed, H ′(Q2) starts with O(αs ln(1 − z)), but the tree-level LP soft function

is δ(1 − z), which sets this term to zero. Any further term arising from the product of

(1− z)H ′(Q2) with the LP soft function is explicitly at most of NLL accuracy. Hence we

can set H(ŝ) → H(Q2) in (3.33). Another implicit kinematic correction arises from the

(1− z)2 term in the definition (3.31) of Ω∗. Defining

SK1(Ω) =
∂

∂Ω
∂2
~xS0 (Ω, ~x)|~x=0 , (3.34)

SK2(Ω) =
3

4
Ω2 ∂

∂Ω
S0(Ω, ~x)|~x=0 , (3.35)
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the term in the first line of the curly bracket in (3.33) reads

SDY(Q(1− z)) +
1

Q
SK1(Q(1− z)) +

1

Q
SK2(Q(1− z)) +O(λ4) . (3.36)

Often, instead of the definition of the partonic cross section in (2.1), the quantity

∆ab(z) =
σ̂ab(z)

z
(3.37)

is considered. The additional NLP term (1− z)× σ̂LP(z) in the expansion in (1− z), where

σ̂LP(z) refers to the LP term in the expansion of σ̂(z), can be formally included by adding

the term SK3(Q(1− z))/Q to (3.36), where

SK3(Ω) = ΩS0(Ω, ~x)|~x=0. (3.38)

With this modification (3.33) applies to ∆(z) as well.

All three soft functions SKi(Ω) vanish at O(α0
s), but mix into Sx0(Ω) through a 1/ε

pole at the one-loop order. While each of the three functions is divergent and produces a

NLP leading logarithm at O(αs),

SK1 (Ω) =
αsCF

2π

(
1

ε
+ 2 ln

µ

Ω
− 2

)
θ (Ω) (3.39)

SK2 (Ω) =
αsCF

2π

(
3

ε
+ 6 ln

µ

Ω
+ 6

)
θ (Ω) (3.40)

SK3 (Ω) =
αsCF

2π

(
−4

ε
− 8 ln

µ

Ω

)
θ (Ω) , (3.41)

the sum of all three kinematic corrections is finite,

3∑
i=1

SKi(Ω) = 2
αsCF
π

θ(Ω) (3.42)

and hence there is no leading logarithm. The diagonal renormalization of all three kinematic

soft functions involves the same cusp anomalous dimension, since they descend from the

same S0(x). The general structure of the renormalization group equation then implies that

the cancellation of kinematic NLP leading logarithms for ∆qq̄(z) (but not σ̂qq̄(z)) holds to

all orders in perturbation theory, see appendix A.1 for further details.

3.5 Resummation

We are now in the position to sum the leading logarithms at NLP to all orders in the αs
expansion. The logarithms arise from the ratio of the scales involved in the process. We

shall sum the logarithms by evolving the hard function from the hard scale µh ∼ Q and

the soft functions from the soft scale µs ∼ Q(1−z) to a common scale µc ∼ Q
√

1− z using

the renormalization group equations (RGEs) for the hard and soft functions. Choosing µc
to be of order of the collinear scale, we do not need the RGE of the collinear function. We

shall consider the expansion of ∆(z) = σ̂(z)/z, since, as discussed above, the kinematic

corrections cancel for this quantity, which simplifies the discussion.
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The hard matching function H(Q2, µ) obeys the RGE

d

d lnµ
H(Q2, µ) =

(
2Γcusp ln

Q2

µ2
+ 2γ

)
H(Q2, µ), (3.43)

which follows from the anomalous dimension of the LP SCET A0 operator.3 Here

Γcusp =
αs
π
CF +O(α2

s), γ = −3

2

αs
π
CF +O(α2

s), (3.44)

and αs denotes the MS QCD coupling at the scale µ. The general solution to (3.43) reads

H(Q2, µ) = exp [4S(µh, µ)− 2aγ(µh, µ)]

(
Q2

µ2
h

)−2aΓ(µh,µ)

H(Q2, µh) , (3.45)

where [3]

S(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, (3.46)

aΓ(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

Γcusp(α)

β(α)
, aγ(ν, µ) = −

∫ αs(µ)

αs(ν)
dα

γ(α)

β(α)
. (3.47)

To LL accuracy, aΓ and aγ can be set to zero, and S(ν, µ) evaluated with the one-loop

approximation to the cusp anomalous dimension and the beta function

β(αs) =
d

d lnµ
αs = −2

β0α
2
s

4π
+O(α3

s), β0 =
11

3
Nc −

2

3
nf , (3.48)

resulting in

SLL(ν, µ) =
CF
β2

0

4π

αs(ν)

(
1− αs(ν)

αs(µ)
+ ln

αs(ν)

αs(µ)

)
. (3.49)

To evolve the soft function S2ξ we have to solve the coupled system of RGEs derived

in (A.47) of appendix A.2,

d

d lnµ

(
S2ξ (Ω, ω)

Sx0 (Ω)

)
=
αs
π

 4CF ln
µ

µs
−CF δ(ω)

0 4CF ln
µ

µs

(S2ξ (Ω, ω)

Sx0 (Ω)

)
, (3.50)

where µs denotes an arbitrary soft scale of order Q(1−z). This equation matches precisely

the form of the general equation (A.22), if we identify L0 → ln(µ2/µ2
s), ∆(0) = −CF . Ap-

plying (A.26), (A.27) to this specific case, we can immediately write down the LL solution

SLL
2ξ (Ω, ω, µ) =

2CF
β0

ln
αs(µ)

αs(µs)
exp

[
−4SLL(µs, µ)

]
θ(Ω)δ(ω) . (3.51)

3We note that the time-ordered products of Lagrangian insertions with the A0-operator do not mix into

currents at LL accuracy [24], which is consistent with the absence of power-suppressed current operators in

the NLP factorization formula at LL accuracy.
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Here µ does not have to be chosen of order of the soft scale, in which case the solution

sums the leading large logarithms ln(µ/µs) to all orders.

With the LL evolved hard and soft function at hand, we can proceed with the evaluation

of the NLP partonic cross section (3.33). We write this equation for ∆(z) = σ̂(z)/z, in

which case we can drop the kinematic correction at LL accuracy, hence (3.33) simplifies to

∆(z) = H(Q2, µc)× Q

{
SDY(Q(1− z), µc)

+ 2 · 1

2

∫
dω J

(O)
2ξ (xan+pA;ω, µc)S2ξ(Q(1− z), ω, µc) + c̄-term

}
.

(3.52)

We have explicitly indicated the scale dependence of all quantities and it is understood that

H and S2ξ are evolved from µh ∼ Q and µs ∼ Q(1− z) to a common scale µc ∼ Q
√

1− z.

Inserting the tree-level value of the collinear function J
(O)
2ξ (xan+pA;ω, µ) = −2/(xan+pA)

and using xan+pA = Q+O(Q(1− z)) in the NLP term, we find

∆(z) = H(Q2, µc)× Q

{
SDY(Q(1− z), µc)

− 2

Q

∫
dω S2ξ(Q(1− z), ω, µc) + c̄-term

}
. (3.53)

At this point the c̄-term takes an identical form to the second term in the curly bracket

and the two can be added. In effect, the four insertions of the L(2)
2ξ Lagrangian on the

four external legs of the squared amplitude all contribute the same amount to the leading-

logarithmic next-to-leading power correction. We refer to appendix A.2 for the details of

the argument.

With the explicit LL solutions (3.45), (3.51) for H(Q2, µ) and S2ξ(Ω, ω, µ), respectively,

inserted, the above equation reads

∆LL(z) = ∆LL
LP(z)− exp

[
4SLL(µh, µc)− 4SLL(µs, µc)

]
× 8CF

β0
ln
αs(µc)

αs(µs)
θ(1−z) , (3.54)

where we also used H(Q2, µh) = 1 +O(αs). ∆LL
LP(z) represents the LL-resummed leading-

power partonic cross section, in the present formalism given in [3]. We can set µh = Q, µs =

Q(1−z) and µc = Q
√

1− z, since the precise choice is irrelevant for the leading logarithms.

Note, however, that (3.54) is not of the most general form, since it implies that the

factorization scale µ is set to µc = Q
√

1− z in the parton distributions. In order to translate

the result to arbitrary µ we use the evolution equation for the partonic cross section,

d

d lnµ
σ̂ab(z, µ) = −

∑
c

∫ 1

z
dx
(
Pca(x)σ̂cb

( z
x
, µ
)

+ Pcb(x)σ̂ac

( z
x
, µ
))

. (3.55)

In order to extract the power-suppressed contribution at O(λ2), we expand the Altarelli-

Parisi splitting kernels in the form

Pab(x) = PLP
ab (x) + PNLP

ab +O(1− x) , (3.56)
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where

PLP
ab (x) =

(
2Γcusp(αs)

1

[1− x]+
+ 2γφ(αs)δ(1− x)

)
δab ,

PNLP
ab = γNLP

ab (αs) . (3.57)

For a = b = q or q̄, γφ = 3
4αsCF /π + O(α2

s) and γNLP
qq = γNLP

q̄q̄ = −2αsCF /π + O(α2
s).

For the qq̄ channel, no mixing terms in the splitting kernels need to be considered up to

O(λ2), because Pab starts at O(λ2) for a 6= b, and the contributions from σ̂ab for ab 6= qq̄

yield additional power-suppression, starting at O(λ2) for the qg channel. For the quantity

∆(z) = σ̂qq̄(z)/z this implies

d

d lnµ
∆(z, µ) = −2

∫ 1

z

dx

x
Pqq(x)∆

( z
x
, µ
)

+O(λ4) , (3.58)

where we used also Pqq = Pq̄q̄.

In appendix B we derive from this equation the evolution equation for the NLP part

∆NLP(z, µ) in the expansion ∆(z, µ) = ∆LP(z, µ) + ∆NLP(z, µ) + . . . , and find

d

d lnµ
∆NLP(z, µ)

= −4

[
Γcusp(αs)

(
ln(1− z)− γE − ψ

(
1 +

d

d ln(1− z)

))
+ γφ(αs)

]
∆NLP(z, µ)

+K(z, µ) , (3.59)

with the inhomogeneous term given by

K(z, µ) = −2γNLP
qq (αs)

∫ 1

z
dy∆LP (y, µ)− 4 Γcusp(αs)(1− z)∆LP(z, µ) . (3.60)

Since we are interested in LL accuracy only, all terms in the square bracket of (3.59) except

for Γcusp(αs) ln(1 − z) can be dropped, as well as the second term on the right-hand side

of (3.60), that arises from the kinematic correction. The solution of (3.59) under this

approximation is given by

∆NLP(z, µ) = eŜ(z,µc,µ) ∆NLP(z, µc) +

∫ lnµ

lnµc

d lnµ′ eŜ(z,µ′,µ)K(z, µ′) , (3.61)

with

Ŝ(z, ν, µ) = 4aΓ(ν, µ) ln(1− z) . (3.62)

We use the LL approximation to this solution to evolve the NLP term in (3.54) from

µc to an arbitrary µ. To calculate the inhomogeneous term to LL accuracy, we use the

expression

∆LL
LP(z, µ) = exp

[
4SLL(µh, µ)− 4SLL(µs, µ)

] e−2γEη

Γ(2η)

1

1− z

(
Q(1− z)

µs

)2η

, (3.63)

for the LL resummed LP partonic cross section, where η = 2aΓ(µs, µ) and the expression

must be understood as a distribution [3]. Recalling that the expansion of SLL yields
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double logarithms at every order, while that of η produces only single logarithms, we

obtain from (3.60)

KLL(z, µ) =
4αs(µ)CF

π
exp

[
4SLL(µh, µ)− 4SLL(µs, µ)

]
θ(1− z) . (3.64)

To leading-logarithmic accuracy

4SLL(µh, µ)− 4SLL(µs, µ) = Ŝ(z, µc, µ) , (3.65)

which also implies SLL(µh, µc) − SLL(µs, µc) = 0 in (3.54). Hence the two terms on the

right-hand side of (3.61) are given by

eŜ(z,µc,µ) ∆NLP(z, µc)

= eŜ(z,µc,µ) × −8CF
β0

ln
αs(µc)

αs(µs)
θ(1− z)

= exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

]
× −8CF

β0
ln
αs(µc)

αs(µs)
θ(1− z) , (3.66)

∫ lnµ

lnµc

d lnµ′ eŜ(z,µ′,µ)K(z, µ′)

= eŜ(z,µc,µ)

∫ lnµ

lnµc

d lnµ′
4αs(µ

′)CF
π

= exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

]
× −8CF

β0
ln
αs(µ)

αs(µc)
θ(1− z) , (3.67)

where we used Ŝ(z, µ′, µ) + Ŝ(z, µc, µ
′) = Ŝ(z, µc, µ). Adding the two terms we find

∆LL
NLP(z, µ) = exp

[
4SLL(µh, µ)− 4SLL(µs, µ)

]
× −8CF

β0
ln

αs(µ)

αs(µs)
θ(1− z) , (3.68)

which is identical to the NLP term in (3.54) except that µ in the above expression is not

restricted to the collinear scale, but can take any value. The scale of the parton luminosity

that multiplies the above expression is now manifestly independent of z, and the logarithms

of (1−z) are generated by setting µs ∼ Q(1−z). The fact that the form of (3.54) and (3.68)

are identical implies that the collinear function cannot contain leading logarithms when

evaluated at a scale µ different from µc.

The simple result (3.68) for the summed NLP LLs is the main result of this paper. Let

us briefly summarize the main steps of the derivation. Starting from the NLP factorization

formula (3.1), we obtained the explicit LL-accurate form (3.33), which contains NLP terms

from a kinematic correction and the convolution of a radiative jet function with a gener-

alized soft function. We then noted that the kinematic correction cancels for the quantity

∆(z) and obtained (3.53). The LL resummed NLP correction (3.54) follows from inserting

the LL resummed generalized soft function (3.51) and the well-known hard function. The

final step to arrive at (3.68) consisted in evolving (3.54) from the collinear scale µc to an

arbitrary µ, which turned out to preserve the form of the resummed result.
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4 Fixed-order expansion: predictions and checks

We expand the resummed NLP cross section in the strong coupling. This serves both, as

a check of the equation by comparing the logarithms at fixed order with the known NLO

and NNLO partonic cross sections and provides new results beyond these orders.

To generate the fixed-order logarithms from (3.68), we expand the ratios of the running

strong coupling into a series in αs(µ) and logarithms. To LL accuracy, we may approximate

SLL(µ1, µ2) = −αsCF
2π

ln2 µ2

µ1
,

1

β0
ln
αs(µ1)

αs(µ2)
=
αs
2π

ln
µ2

µ1
. (4.1)

The scale of αs on the right-hand sides of these equations is not specified, since its precise

value is a NLL effect. The NLP term in (3.68), with µ taken to be the free renormalization

and factorization scale as discussed above, then reduces to

∆LL
NLP(z, µ) =

σ̂LL
NLP(z, µ)

z
= exp

[
−2

αsCF
π

ln2 µ

µh

]
exp

[
+2

αsCF
π

ln2 µ

µs

]
×(−4)

αsCF
π

ln
µs
µ
θ(1− z) . (4.2)

Interestingly, for the special choice µ = µc, the two exponentials cancel to LL accuracy and

the NLP LL series becomes trivial,

∆LL
NLP(z, µc) = −2

αsCF
π

ln(1− z) θ(1− z) . (4.3)

In this case, the z-dependence of the hadronic cross section is hidden in the scale-

dependent parton densities, evaluated at the collinear scale. For arbitrary µ, we use (4.2)

with µh = Q and µs = Q(1− z), and define Lµ = ln(µ/Q). Then

∆LL
NLP(z, µ) = − θ(1− z)

{
4CF

αs
π

[
ln(1− z)− Lµ

]
+ 8C2

F

(αs
π

)2 [
ln3(1− z)− 3Lµ ln2(1− z) + 2L2

µ ln(1− z)
]

+ 8C3
F

(αs
π

)3 [
ln5(1−z)−5Lµ ln4(1−z)+8L2

µ ln3(1−z)−4L3
µ ln2(1−z)

]
+

16

3
C4
F

(αs
π

)4 [
ln7(1− z)− 7Lµ ln6(1− z) + 18L2

µ ln5(1− z)

−20L3
µ ln4(1− z) + 8L4

µ ln3(1− z)
]

+
8

3
C5
F

(αs
π

)5 [
ln9(1− z)− 9Lµ ln8(1− z) + 32L2

µ ln7(1− z)

−56L3
µ ln6(1− z) + 48L4

µ ln5(1− z)− 16L5
µ ln4(1− z)

]}
+O(α6

s × (log)11) , (4.4)

where (log)11 stands for some combination of the two logarithms to the 11th power.

The first two lines can be compared to known exact results [26].4 In particular, the

NLO result in the first line agrees with eq. (B.29) in [26], and the NNLO contribution

4Our ∆(z, µ) corresponds to ∆ij(x,Q
2,M2) in the notation of [26], where ij = qq̄, x = z, and M = µ.
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in the second line with eq. (B.31) in [26], up to subleading terms in the expansion in

logarithms. The N3LO term confirms the conjecture [27, 28] that the leading logarithm

at this order can be simply obtained from including the NLP term in the Altarelli-Parisi

splitting kernels in the standard LP resummation formalism. The N3LO and N4LO terms

for Lµ = 0 have been given in eqs. (B.4) and (B.5) of [29] based on the observation that

the “physical evolution kernels”, which express the scale dependence of a given quantity

in terms of the quantity itself, exhibits only single logarithms as z → 1 to the respective

order in the αs expansion. Our direct derivation from the all-order resummed partonic

cross section agrees with these results as well. The N5LO term is a new result and the

expansion to any order can be obtained without effort from (4.2).

5 Summary

Historically, soft gluon resummation was first studied for the threshold of the DY process [1,

2] and then extended to increasingly higher logarithmic accuracy at leading power in the

expansion in the threshold variable (1 − z), based on the factorization into a hard and

soft function. In this work, we considered the next-to-leading power (NLP) in (1 − z) and

provided an all-order resummation of the leading NLP logarithms of the form αns ln2n−1(1−
z), n = 1, 2, . . . near the kinematic threshold z = Q2/ŝ→ 1.

This result is made possible by the systematic treatment of the threshold in the frame-

work of position-space soft-collinear effective theory, which implies a generalized factor-

ization formula including collinear functions at the amplitude level beyond leading power.

We sketched and explained the factorization formula, which will be further elaborated

in [12], and derived a simple expression for the leading logarithmic terms at NLP in the

quark-antiquark production channel. Our main results are the resummed partonic cross

sections (3.68) and (4.2), which follow from the solution to the renormalization group

equations for the hard function and generalized subleading-power soft functions. The final

result is stunningly simple. When the parton distributions are evaluated at a factorization

scale of order Q
√

1− z, the LL series terminates at O(αs). For general factorization scale,

re-expansion in αs shows agreement with known exact results at NLO and NNLO and with

predictions from the physical evolution kernel at N3LO and N4LO, and leads to new results

at the five-loop order and beyond.

We are aware of two other resummations at subleading power, both also to LL accuracy.

The thrust distribution in Higgs decay to two gluons for (1−T )→ 1 was recently considered,

also in the SCET framework [22]. There are differences of conceptual nature in the collinear

physics, as thrust is infrared-safe, while the parton distributions must be factorized for the

DY process, which requires the introduction of the PDF collinear modes and the matching

of the collinear functions at the amplitude level. Nevertheless, at the LL level, the NLP

resummation has a very similar structure and the result a similar level of simplicity. In

particular, the mixing pattern of the required subleading soft functions is similar, and

the “theta soft-function” (here the 1/x0 soft function) appears in both cases. A number

of quark-mass suppressed form factors has been resummed with LL accuracy in [30, 31]

through a diagrammatic all-order analysis. Here the NLP suppression is provided by the
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quark mass m� Q rather than the kinematics itself. It would be interesting to reproduce

and generalize this result in the SCET framework.

All NLP resummations are presently restricted to the leading logarithmic accuracy. We

expect extensions of these results to NLL to reveal the full complexity of NLP resummation.

Indication of this is already provided by the form of the non-cusp terms of the one-loop

anomalous dimension kernels of subleading-power N -jet operators [18, 24], which enter at

this order. In addition, the renormalization of subleading-power soft and collinear functions

must be better understood to determine the single-pole terms needed for NLL resummation.

A related question is whether the convolution integrals in the ωi variables of collinear and

soft functions exhibit singularities at ωi → 0, requiring extra renormalization.
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A Anomalous dimensions of the soft functions

In this appendix, we consider the renormalization of the soft functions that contribute to

the renormalization group equations for the NLP DY cross section in the qq channel, and

calculate their one-loop anomalous dimensions. The general form of the RGE reads

d

d lnµ
SA (Ω, ωi) =

∑
B

∫
dΩ′dω′j ΓAB

(
Ω, ωi; Ω′, ω′j

)
SB
(
Ω′, ω′j

)
, (A.1)

with the anomalous dimension matrix defined in terms of the Z-factor (3.26) as

ΓAB
(
Ω, ωi; Ω′, ω′j

)
=
∑
C

∫
dΩ′′dω′′k

dZAC (Ω, ωi; Ω′′, ω′′k)

d lnµ
Z−1
CB

(
Ω′′, ω′′k ; Ω′, ω′j

)
. (A.2)

The inverse Z-factor is defined such that∑
C

∫
dΩ′′dω′′kZAC

(
Ω, ωi; Ω′′, ω′′k

)
Z−1
CB

(
Ω′′, ω′′k ; Ω′, ω′j

)
= δABδ

(
Ω− Ω′

)
δ
(
ω − ω′

)
, (A.3)

where δ (ω − ω′) =
∏
j δ
(
ωj − ω′j

)
. For further convenience, we introduce the perturbative

expansion of the renormalization constants

ZAB
(
Ω, ωi; Ω′, ω′j

)
= δABδ

(
Ω− Ω′

)
δ
(
ω − ω′

)
+

∞∑
n=1

Z
(n)
AB

(
Ω, ωi; Ω′, ω′j

)
, (A.4)

where Z
(n)
AB ∝ αns .
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A.1 Kinematic soft functions

The basic object from which all kinematic soft functions can be derived is the LP position-

space soft function generalized to arbitrary position x,

S̃0(x) =
1

Nc
Tr 〈0|T̄(Y †+(x)Y−(x)) T(Y †−(0)Y+(0))|0〉 . (A.5)

The leading-power soft function is recovered for ~x = 0, while a Taylor expansion in ~x

yields power-suppressed contributions. Lorentz invariance and invariance under repara-

metrization of the collinear basis vectors, n− → an−, n+ → a−1n+, for any a > 0, implies

that S̃(x) is a function

S̃0(x) = S̃0

(
ln(−n+xn−xµ

2),
x2

n+xn−x

)
(A.6)

of two dimensionless variables. The soft function is an example of a closed Wilson loop

with two cusps, light-like segments and no crossing point, whose anomalous dimension

arises only from the cusp points (see, e.g., [4, 32–34]). In particular, they are renormalized

multiplicatively in position space.

At the one-loop order in dimensional regularization with d = 4 − 2ε, the bare soft

function must have a simple dependence

S̃0,bare (x) = 1 +
αs
π

(
−n−xn+xµ

2
)ε
f

(
ε,

x2

n+xn−x

)
(A.7)

on the position variable with some function f(ε, u). The explicit evaluation gives

S̃0,bare(x) = 1 +
αsCF
π

Γ (1− ε)
ε2

e−εγE

×
(
−1

4
n−xn+xµ

2e2γE

)ε( x2

n−xn+x

)1+ε

2F1

(
1, 1, 1− ε; 1− x2

n−xn+x

)
= 1 +

αsCF
π

(
1

ε2
+
L

ε
+
L2

2
+
π2

12
+ Li2

(
1− x2

n−xn+x

)
+O(ε)

)
, (A.8)

(see also [35]), where we defined

L ≡ ln

(
−1

4
n−xn+xµ

2e2γE

)
. (A.9)

The renormalized position-space soft function satisfies the renormalization group equation

d

d lnµ
S̃0(x) =

[
2ΓcuspL− 2γW

]
S̃0(x) (A.10)

with Γcusp(αs) defined in (3.44), and

γW = O(α2
s) (A.11)

at the one-loop order, as follows from (A.8).
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S̃(x) is analytic around the point x0 = (x0, 0, 0, 0) (corresponding to

x2/(n+xn−x) = 1). We can therefore obtain the RGEs for the kinematic soft functions

by taking the appropriate derivatives of (A.10) and their one-loop expressions from (A.8).

Let us therefore define the following vector of NLP position-space soft functions

~S(x0) =
(
S̃⊥, S̃3, S̃K2, S̃K3, S̃x0

)T
, (A.12)

where (assuming the transverse plane to be the x1-x2-plane)

S̃⊥(x0) =
ix0

2
~∂ 2
⊥S̃0(x)|~x=0 , (A.13)

S̃3(x0) =
ix0

2
~∂ 2

3 S̃0(x)|~x=0 , (A.14)

S̃K2(x0) =
3

4
(2i)2 ∂2

x0

[
ix0

2
S̃(x0)

]
(A.15)

S̃K3(x0) = 2i∂x0S̃(x0) (A.16)

S̃x0(x0) =
−2i

x0 − iε S̃(x0) . (A.17)

S̃K2(x0), S̃K3(x0) and S̃x0(x0) represent the Fourier transforms to position space of the

kinematic and x0 soft functions (3.35), (3.38), and (3.25), respectively, while S̃K1(x0) =

S̃⊥(x0)+ S̃3(x0). With these definitions, it follows from (A.10) that the NLP soft functions

above satisfy the system of RGEs given by

d

d lnµ
~S(x0) =

[
2ΓcuspL0 − 2γW

]
1 ~S(x) + Γcusp


0 0 0 0 0

0 0 0 0 +1

0 0 0 −6 +3

0 0 0 0 −4

0 0 0 0 0

 ~S(x0) , (A.18)

where now

L0 ≡ ln

(
−1

4
(x0)2µ2e2γE

)
. (A.19)

The mixing of S̃3(x0), S̃K2(x0), and S̃K3(x0) into S̃x0(x0) arises from the expansion

L = L0 −
(x3)2

(x0)2
+O

(
(x3)4

(x0)4

)
(A.20)

and from x0-derivatives on L0, and is given by the cusp anomalous dimension to all orders.

The diagonal entries of the anomalous dimension matrix are identical for all functions and

equal to the one of the LP DY soft function.

We are now in the position to justify the statement made in the main text that in the

sum of the kinematic corrections to ∆(z) = σ̂(z)/z the leading NLP logarithms cancel to

all orders in perturbation theory. From (A.18) we obtain, by summing,

d

d lnµ
S̃K1+K2+K3(x0) =

[
2ΓcuspL− 2γW

]
S̃K1+K2+K3(x0)− 6 Γcusp S̃K3(x0) , (A.21)
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that is, the mixing into the 1/x0 soft function vanishes. Since the kinematic soft functions

all start at the one-loop order, the evolution can only produce terms at most of the order

of αs(αs ln2(1− z))n, which correspond to next-to-leading logarithms.

This conclusion does not hold for σ̂(z) defined as in (2.1) itself, for which the relevant

kinematic soft function is the sum S̃K1+K2(x0). For this reason, and for further use in

section 3.5, it is instructive to solve the RGE system

d

d lnµ

(
S̃NLP(x0, µ)

S̃x0(x0, µ)

)
=

(
2ΓcuspL0 − 2γW ∆

0 2ΓcuspL0 − 2γW

)(
S̃NLP(x0, µ)

S̃x0(x0, µ)

)
. (A.22)

For the present case of interest S̃NLP(x0) = S̃K1+K2(x0) and the off-diagonal anomalous

dimension is given by ∆ = Γcusp. Since the RGE is local in position space, for fixed x0 it

is of the same form as (3.45), except for the off-diagonal term. The general solution can

be written as

S̃x0(x0, µ) = U(µ, µs)S̃x0(x0, µs) (A.23)

S̃NLP(x0, µ) = U(µ, µs)
[
S̃NLP(x0, µs) + a∆(µ, µs)S̃x0(x0, µs)

]
(A.24)

defining

U(µ, µs) = exp [−4S(µs, µ) + 2aγW (µs, µ)]

(
−1

4
(x0)2µ2

se
2γE

)2aΓ(µs,µ)

(A.25)

with S(ν, µ), aΓ(ν, µ) as given in (3.46), (3.47). aγW , a∆ are defined analogously to aγ with

the obvious replacement of γ by the respective anomalous dimension function.

The 1/x0 soft function does not appear directly in the NLP DY cross section, but only

through mixing. Also, the initial condition S̃NLP(x0, µs) in (A.24) is O(αs), hence to LL

accuracy, we may approximate

S̃LL
NLP(x0, µ) = ULL(µ, µs) a

LL
∆ (µ, µs) S̃x0,tree(x

0, µs) (A.26)

with S̃x0,tree(x
0, µs) = −2i/(x0 − iε) and

ULL(µ, µs) = exp
[
−4SLL(µs, µ)

]
, aLL

∆ (µ, µs) = −2∆(0)

β0
ln

αs(µ)

αs(µs)
. (A.27)

The function SLL(ν, µ) was defined in (3.49), and ∆(αs) = ∆(0)αs/π + O(α2
s). In this

approximation the momentum space solution for S̃LL
NLP(Ω, µ) is simply given by substituting

S̃x0,tree(x
0, µs)→ θ(Ω).

A.2 S2ξ(Ω, ω) soft function

Here we consider the renormalization of the soft function S2ξ(Ω, ω) defined in (3.19),

which arises from the L(2)
2ξ Lagrangian insertion. As discussed in section 3.3, this soft

function mixes into the 1/x0 soft function Sx0(Ω). We therefore determine the one-loop

anomalous dimension matrix ΓAB for A,B = x0, 2ξ, more precisely the terms required
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for LL resummation, namely the cusp-logarithmic terms in the diagonal entries, and the

off-diagonal entries.

The diagonal entry Γx0 x0 has been shown above to be identical to the one of the leading

power soft function in position space. Written as momentum-space kernel corresponding

to the definition (A.1), and keeping only the cusp-logarithm part, we have

Γx0 x0(Ω,Ω′) = 4
αsCF
π

ln
µ

µs
δ
(
Ω− Ω′

)
, (A.28)

where µs is a soft scale of order Ω. Its precise value is not needed, since it only affects the

non-logarithmic term. The off-diagonal term Γ2ξ x0 can be inferred from (3.29) to be

Γ2ξ x0

(
Ω, ω; Ω′

)
= −αsCF

π
δ
(
Ω− Ω′

)
δ (ω) . (A.29)

The 1/x0 soft function cannot mix into the non-local 2ξ soft function, hence Γx0 2ξ = 0.

We use two different methods to extract the diagonal part Γ2ξ 2ξ. First, we consider the

renormalization of the soft operator

S2ξ (Ω, ω) =

∫
dx0

4π

∫
d (n+z)

4π
ei(x

0Ω−n+zω)/2 T
[
Y †+ (x0)Y− (x0)

]
×T

[
Y †− (0)Y+ (0)

i∂⊥µ
in−∂

Bµ+ (z−)

]
(A.30)

instead of the soft function

S2ξ (Ω, ω) =
1

Nc
Tr 〈0| S2ξ (Ω, ω) |0〉 , (A.31)

which allows us to extract Γ2ξ 2ξ from a one-loop calculation of the matrix element 〈g|S2ξ|0〉
involving an external gluon. Second, we compute the soft function (A.31), involving the

vacuum matrix element 〈0|S2ξ|0〉, at the two-loop level.

First method. We generalize (3.26) to the corresponding operators,

[SA (Ω, ωi)]ren =
∑
B

∫
dΩ′dω′jZAB

(
Ω, ωi; Ω′, ω′j

) [
SB
(
Ω′, ω′j

)]
bare

. (A.32)

The operator (S2ξ)ab carries open colour indices, and in general the renormalization factor

(Z2ξ,2ξ)ab,cd has a matrix structure with respect to these colour indices. The renormaliza-

tion factor of the soft function is obtained by projecting on the colour singlet part,

Z2ξ 2ξ =
1

Nc

∑
a,c

(Z2ξ 2ξ)aa,cc . (A.33)

For the leading 1/ε2 pole we find that (Z2ξ 2ξ)ab,cd ≡ δacδbdZ2ξ 2ξ + O(ε−1) is diagonal in

colour indices, such that Z2ξ 2ξ = Z2ξ 2ξ+O(ε−1). Since for the purpose of LL resummation

we are interested in the leading pole only, we do not discriminate between Z2ξ 2ξ and Z2ξ 2ξ

in the following.
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n− n−

n+ n+

z−

n− n−

n+ n+

z−

Figure 1. Tree-level diagrams for the one-gluon matrix element of the soft operator S2ξ. The

part to the left (right) of the cut corresponds to the time-ordered (anti-time-ordered) part of the

diagram, and lines labeled by n± with in (out)-going arrow correspond to soft Wilson lines Y∓ (Y †∓).

The filled square and the two solid lines connected to it stand for the soft covariant derivative and

the Wilson lines contained in
i∂⊥µ

in−∂
Bµ+ =

i∂⊥µ

in−∂
Y †+[iDµ

s Y+], respectively.

In order to extract Z2ξ 2ξ we consider a matrix element of S2ξ with a non-vanishing

tree-level contribution. We find it convenient to consider a single gluon with momentum

p and colour index A in the external state, 〈gA(p)|S2ξ|0〉. The gluon can be emitted from

both of the fields inside the time- and anti-time ordered part. For a general polarization

vector ε, the tree-level matrix element is (see figure 1)

〈gA(p)|S2ξ(Ω, ω)|0〉tree = gsT
A

(
p⊥ · ε∗⊥
n−p

− p2
⊥n−ε

∗

(n−p)2

)
δ(Ω)δ(ω − n−p). (A.34)

The components of the polarization vector are related by

0 = p · ε = p⊥ · ε⊥ +
1

2
n−p n+ε+

1

2
n+p n−ε . (A.35)

For the computation of the one-loop matrix element, we find it convenient to choose

a polarization vector satisfying n−ε = 0, such that the tree-level matrix element is pro-

portional to p⊥ · ε∗⊥ (this implies that only the left diagram in figure 1 contributes). The

one-loop computation yields p⊥ · ε⊥ as well as n+ε terms. The latter can be eliminated in

terms of the former using

n+ε = −2
p⊥ · ε⊥
n−p

. (A.36)

The computation is done in dimensional regularization for both UV and IR singularities

of the on-shell matrix element. As mentioned above, it will be sufficient to extract the

leading 1/ε2 pole.

The relevant diagrams are shown in figures 2 and 3. They can be divided into “real”

(internal gluon connecting time- and anti-time-ordered parts of the operator, see figure 2)

and “virtual” contributions (internal gluon connecting two fields within the time- or anti-

time-ordered parts, respectively, see figure 3). In both cases, additional diagrams that

vanish due to our assumption n−ε = 0 are not shown. In particular, this implies that

the external gluon cannot be directly attached to the Wilson lines contained in Bµ+. In

addition, virtual diagrams with an internal gluon line in the anti-time-ordered part are not

shown. They yield scaleless integrals, analogous to the leading-power soft function.
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(d) (e) (f )

n−

n+n+

n−

n+n+

n−

z−

n−

z−

n+

n−

z−

n−

n+n+

n−

z−

n−

n+

(a) (b) (c)

n−

n+ n+

n−

z−

n−

n+

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n+

n−

z−

n+

n−

z−

n−

n+

(g) (h) (i)

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n−

n+n+

n−

z−

Figure 2. One-loop diagrams with gluon passing the cut for the one-gluon matrix element of the

soft operator S2ξ.

First consider diagrams a− c in figure 2. In these diagrams, the ⊥ gluon from the Bµ+
insertion is connected directly to the external state, while the loop is formed by the gluons

connecting different Wilson lines. We find

〈gA(p)|S2ξ(Ω, ω)|0〉a)
1-loop =

[
αs
2π

CF
ε2

+O
(
ε−1
)]
〈gA(p)|S2ξ(Ω, ω)|0〉tree ,

〈gA(p)|S2ξ(Ω, ω)|0〉b)1-loop =

[
αs
2π

CF
ε2

+O
(
ε−1
)]
〈gA(p)|S2ξ(Ω, ω)|0〉tree ,

〈gA(p)|S2ξ(Ω, ω)|0〉c)1-loop =

[
−αs

4π

CA
ε2

+O
(
ε−1
)]
〈gA(p)|S2ξ(Ω, ω)|0〉tree . (A.37)

Diagrams d) and e) can be shown not to lead to a 1/ε2 pole. Next we compute real

diagrams that involve a triple-gluon vertex shown in figure 2 f − i. We find that the

1/ε2 pole cancels among these diagrams. There exist four additional diagrams, that are
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n−

n+n+

n−

z−

(m) (n) (o)

n−

n+

n+

n−

z−

n−

n+

(j) (k) (l)

n+

n−

z−

n−

n+

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n−

n+n+

n− n−

n+n+ n+

n−

z−

n−

z−

(q)

n−

n+n+

n−

z−

n+

n−

z−

n−

n+n+

n−

z−

n−

n+

(p) (r)

n+

n−

z−

n−

n+n+

n−

n+

n−

z−

Figure 3. One-loop virtual diagrams for the one-gluon matrix element of the soft operator S2ξ.

obtained from diagrams f − i in the following way: each of these diagrams contains two

internal gluon lines, one of which is cut. When cutting the other gluon line instead, the

corresponding diagrams can be shown to have no 1/ε2 poles.

Finally, we compute the virtual diagrams shown in figure 3. For diagrams l), m)

and n), the internal gluon couples only to Wilson lines. We find that they yield scaleless

integrals, and thus vanish. The same is true for diagrams p), q) and r). Diagram o) does

not yield a 1/ε2 pole, similar to d). Only the first two diagrams j) and k) contribute.

We find

〈gA(p)|S2ξ(Ω, ω)|0〉j)+k)
1-loop =

[
αs
4π

CA
ε2

+O
(
ε−1
)]
〈gA(p)|S2ξ(Ω, ω)|0〉tree. (A.38)

We observe that the CA term cancels in the sum of real and virtual diagrams. The renor-

malization factor is

Z
(1)
2ξ 2ξ

(
Ω, ω; Ω′, ω′

)
= −αsCF

π

1

ε2
δ
(
Ω− Ω′

)
δ
(
ω − ω′

)
, (A.39)
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and therefore the diagonal part of the anomalous dimension matrix is found to be

Γ2ξ 2ξ

(
Ω, ω; Ω′, ω′

)
= 4

αsCF
π

ln
µ

µs
δ
(
Ω− Ω′

)
δ
(
ω − ω′

)
, (A.40)

again omitting non-logarithmic, µ-independent contributions.

This method of computation does not allow us to determine the exact value of µs or the

non-logarithmic terms associated with the single 1/ε poles, because we find that the single

poles depend on the momentum components of the external state. This points to the need

for a better understanding of the renormalization properties of generalized soft functions

that arise from time-ordered products at subleading power. The issue does not appear to

be relevant to LL accuracy (the double pole). Nevertheless, to check the above calculation,

we determine the logarithmic term of Γ2ξ 2ξ by another method in the following.

Second method. We derive Γ2ξ 2ξ in an alternative way from the two-loop calculation

of the soft function S2ξ = 1
Nc

Tr〈0|S2ξ|0〉. In the following, S
(n)
A (Ω, ωi) denotes the O(αns )

term in the perturbative expansion of the soft function SA(Ω, ωi).

The renormalization condition (3.26) for the two-loop matrix element, restricted to

A = 2ξ, x0, reads

S
(2)
2ξ + Z

(1)
2ξ x0

S(1)
x0

+ Z
(2)
2ξ x0

S(0)
x0

+ Z
(1)
2ξ 2ξS

(1)
2ξ = finite , (A.41)

where we omit convolutions with respect to Ω′ and ω′j for brevity. We use this equation

to extract the double pole part of Z
(1)
2ξ,2ξ. For that purpose it is sufficient to focus on the

leading pole 1/ε3 term of the equation.

The counterterm Z
(1)
2ξ x0

has already been determined in (3.29) by requiring that the

one-loop matrix element (3.23) is finite. We further use that the renormalization of the

Sx0 soft function is the same as for the leading-power soft function. Thus we have

S(1)
x0

= −Z(1)
x0 x0

S(0)
x0

+O
(
ε0
)

(A.42)

and we can rewrite (A.41) as

S
(2)
2ξ +

(
−Z(1)

x0 x0
Z

(1)
2ξ x0

+ Z
(2)
2ξ x0

)
S(0)
x0

+ Z
(1)
2ξ 2ξS

(1)
2ξ = O

(
1

ε2

)
, (A.43)

where Z
(2)
2ξ x0

and Z
(1)
2ξ 2ξ are unknown at this point. Now we use that the relevant entries

of ΓAA have explicit, linear dependence on ln µ, while the off-diagonal terms depend on µ

only implicitly through αs. Under these assumptions we can solve (A.2) perturbatively for

ZAB and find a relation that constrains the highest poles of the renormalization factor,

Z
(2)
AB =

1

4
Z

(1)
AB

(
Z

(1)
AA + 3Z

(1)
BB

)
+O

(
1

ε2

)
, A 6= B. (A.44)

We could also determine the 1/ε2 pole of Z
(2)
AB, but it is not required for LL resummation.

The above relation implies that the double pole part of the renormalization constant Z
(1)
2ξ 2ξ
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can be determined from the leading 1/ε3 pole of the two-loop vacuum matrix element S
(2)
2ξ

through the equation

S
(2)
2ξ −

1

4
Z

(1)
2ξ x0

(
3Z

(1)
2ξ 2ξ + Z(1)

x0 x0

)
S(0)
x0

= O
(

1

ε2

)
. (A.45)

Due to the implicit convolution, we are not able to reconstruct the full dependence on the

momentum variables from this equation. Nevertheless, for the leading pole, assuming

Z
(1)
2ξ 2ξ(Ω, ω; Ω′, ω′) ∝ 1

ε2
δ(Ω− Ω′)δ(ω − ω′) +O(1/ε) , (A.46)

leads to an algebraic equation for the prefactor of the double pole that can be solved. We

performed the computation of S
(2)
2ξ to cross-check the previous method and we obtained a

result that agrees with (A.39).

Combining the results we find the following RGE equation for the generalized soft

functions at LL accuracy,

d

d lnµ

(
S2ξ (Ω, ω)

Sx0 (Ω)

)
=
αs
π

 4CF ln
µ

µs
−CF δ(ω)

0 4CF ln
µ

µs

(S2ξ (Ω, ω)

Sx0 (Ω)

)
, (A.47)

where µs = O(Q(1− z)).

As discussed in the main text, the L(2)
2ξ insertion appears four times. In addition to

the insertion on the incoming quark leg, discussed explicitly in the main text, it may

also occur along the n+ direction (“c̄-term”), or within the complex conjugated amplitude

contributing to the DY cross section, in which case the Lagrangian insertion occurs within

the anti-time-ordered part (“T̄ -term”). Finally, there is a contribution from L(2)
2ξ along the

n+ direction within the conjugated amplitude (“c̄ T̄ -term”).

These contributions can be treated in a way analogous to the one discussed in the main

text. The c̄-term involves the soft operator

S c̄2ξ (Ω, ω) =

∫
dx0

4π

∫
d (n−z)

4π
ei(x

0Ω−n−zω)/2 T̄
[
Y †+ (x0)Y− (x0)

]
×T

[
i∂⊥µ
in+∂

Bµ− (z+)Y †− (0)Y+ (0)

]
. (A.48)

The corresponding soft function is S c̄2ξ (Ω, ω) = 1
Nc

Tr〈0|S c̄2ξ (Ω, ω) |0〉. Its value at the one-

loop order is identical to (3.23) up to a sign, such that Γc̄2ξ x0
= −Γ2ξ x0 . To determine

the corresponding diagonal part of the anomalous dimension, we proceed as in the first

method outlined above. However, we find it convenient to use a polarization vector for

the external gluon with n+ε = 0 and n−ε 6= 0. The relevant Feynman diagrams can then

be obtained from figures 2 and 3 by interchanging n− ↔ n+ as well as the arrows, and

replacing z− → z+. We refer to the labels of the corresponding “flipped” diagrams below,

and describe the changes. Due to the different operator ordering, one needs to replace

CF → CF −CA/2 in a) and b). Diagram c) flips its sign, since the virtual gluon is attached

to Y †+(x0) instead of Y−(x0). These changes compensate in the sum of a − c, which gives
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the same contribution as for S2ξ, when expressed in terms of the corresponding tree-level

matrix element. Apart from that, only the virtual diagrams j) and k) contribute to the

1/ε2 pole, as before. For these contributions, the different colour ordering gives a factor

of (−1). In addition, since the virtual gluon is attached to Y+(0) instead of Y †−(0), one

obtains another factor of (−1), as well as a different sign in the iε-term arising from the

Wilson line. The latter can be checked to have no effect on the 1/ε2 pole. Therefore, the

total virtual contribution is also unchanged, and we find Γc̄2ξ 2ξ = Γ2ξ 2ξ.

This means the soft functions (S c̄2ξ, Sx0) obey an analogous equation as (S2ξ, Sx0), given

by (A.47), with a sign flip in the off-diagonal term. This sign difference is compensated by

a sign flip in the corresponding jet function J
(O)
2ξ appearing in the c̄-term, such that the

contribution to ∆ is the same.

The T̄ -term involves the soft operator

S T̄2ξ (Ω, ω) =

∫
dx0

4π

∫
d (n+z)

4π
ei(x

0Ω+n+zω)/2 T̄

[
i∂⊥µ
in−∂

Bµ+ (x0 + z−)Y †+ (x0)Y− (x0)

]
×T

[
Y †− (0)Y+ (0)

]
. (A.49)

Within our conventions, the sign in the exponent of ein+zω/2 needs to be flipped compared

to S2ξ. The corresponding soft function ST̄2ξ (Ω, ω) = 1
Nc

Tr〈0|S T̄2ξ (Ω, ω) |0〉 involves the

vacuum matrix element. Since the vacuum state is space-time translation invariant, we

can add a four-vector aµ to the argument of all field operators inside this matrix element,

without changing it. Note that this is true also in presence of the time- and anti-time-

ordering operators. Choosing aµ = −x0 = (−x0, 0, 0, 0), and then performing a substitution

x0 → −x0, we find

ST̄2ξ (Ω, ω) = S2ξ (Ω, ω)∗ , (A.50)

where we also used (Bµ+)† = Bµ+. A similar argument yields Sx0(Ω) = Sx0(Ω)∗ (including

the iε-term in (3.25)). Therefore, the equations for the soft functions (ST̄2ξ, Sx0) can be

obtained by complex conjugation of (A.47).

By combining the arguments for the c̄- and T̄ -terms from above, we find that the soft

function arising from the c̄ T̄ -term satisfies an equation analogous to the c̄-term, and the

same is true for the jet function. In total, all terms contribute equally to ∆.

B Derivation of eq. (3.59)

In this appendix we derive (3.59) starting from the evolution equation (3.58),

d

d lnµ
∆(z, µ) = −2

∫ 1

z

dx

x
Pqq(x)∆

( z
x
, µ
)

+O(λ4) . (B.1)

In order to extract the next-to leading power contribution we write ∆(z, µ) = ∆LP(z, µ) +

∆NLP(z, µ) + . . . . Eq. (3.58) then takes the form

d

d lnµ
∆NLP(z, µ) = −2

∫ 1

z

dx

x

(
PLP
qq (x)∆LP + PLP

qq (x)∆NLP + PNLP
qq (x)∆LP

) ∣∣
NLP

, (B.2)

– 32 –



J
H
E
P
0
3
(
2
0
1
9
)
0
4
3

where we indicated that the NLP term should be extracted from the right-hand side after

the integration, and omitted the argument of ∆(N)LP(z/x, µ) for brevity. The first term on

the right-hand side, expanded to NLP, yields a kinematic correction, which we will discuss

further below.

After inserting the formal expansions

∆LP(z, µ) =
∞∑
n=0

αs(µ)n

{
cn(µ)δ(1− z) +

2n−1∑
m=0

cnm(µ)

[
lnm(1− z)

1− z

]
+

}
,

∆NLP(z, µ) =

∞∑
n=0

αs(µ)n
2n−1∑
m=0

dnm(µ) lnm(1− z) , (B.3)

the second term on the right-hand side of (B.2) contains integrals of the form∫ 1

z

dx

x

[
1

1− x

]
+

lnm(1− z/x)

= lnm+1(1− z) +

m∑
k=1

(−1)kζ(k + 1)
m!

(m− k)!
lnm−k(1− z) +O(1− z)

=

[
ln(1− z) +

m∑
k=1

ζ(k + 1)

(
− d

d ln(1− z)

)k]
lnm(1− z) +O(1− z) , (B.4)

where we used ∫ 1

z
dx f(x)

[
1

1− x

]
+

=

∫ 1

z
dx

f(x)− f(1)

1− x −
∫ z

0
dx

f(1)

1− x . (B.5)

Note that the upper limit of the summation over k can be extended to infinity without

changing the result. We can therefore rewrite the result in terms of Euler’s psi function

using

∞∑
k=1

(−a)kζ(k + 1) = −γE − ψ(1 + a) . (B.6)

This yields

−2

∫ 1

z

dx

x
PLP
qq (x)∆NLP

( z
x
, µ
) ∣∣

NLP

= −4

[
Γcusp(αs)

(
ln(1− z)− γE − ψ

(
1 +

d

d ln(1− z)

))
+ γφ(αs)

]
∆NLP(z, µ) .

(B.7)

After substituting y = z/x, the last term on the right-hand side of (B.2) gives

− 2

∫ 1

z

dx

x
PNLP
qq (x)∆LP

( z
x
, µ
) ∣∣

NLP
= −2γNLP

qq (αs)

∫ 1

z

dy

y
∆LP (y, µ)

∣∣
NLP

. (B.8)

In order to extract the strict NLP contribution we should omit any terms of NNLP and

beyond, and in particular replace dy/y → dy. After this replacement, it can be readily

checked that the remaining integral over y is strictly NLP by inserting (B.3) and using∫ 1

z
dy

[
lnm(1− y)

1− y

]
+

=
1

m+ 1
lnm+1(1− z) . (B.9)
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Note that no terms proportional to powers of 1 − z appear on the right-hand side. A

similar argument applies to the contribution to ∆LP that is proportional to δ(1 − z). We

therefore obtain

− 2

∫ 1

z

dx

x
PNLP
qq (x)∆LP

( z
x
, µ
) ∣∣

NLP
= −2γNLP

qq (αs)

∫ 1

z
dy∆LP(y, µ) . (B.10)

In order to compute the kinematic correction from the first term on the right-hand

side of (B.2), we use (3.57) and (B.5), resulting in

−2

∫ 1

z

dx

x
PLP
qq (x)∆LP

( z
x
, µ
)

= −4
[
Γcusp(αs) ln(1− z) + γφqq(αs)

]
∆LP (z, µ)

− 4 Γcusp(αs)I[∆LP](z, µ) , (B.11)

where

I[∆](z, µ) ≡
∫ 1

z
dx

1

x
∆
( z
x
, µ
)
−∆ (z, µ)

1− x . (B.12)

The terms in the first line on the right-hand side of (B.11) do not yield power-suppressed

contributions. In order to treat the integral in the second line, we need to specify ∆LP.

We quote the result from [3] in the form,

∆LP(z, µ) = f(Q,µh, µs, µ)
1

1− z s̃DY(∂η, µs)

(
Q(1− z)

µs

)2η [
z−η
]a e−2γEη

Γ(2η)
, (B.13)

where η = 2aΓ(µs, µ), f(Q,µh, µs, µ) = |CV (−Q2, µh)2|U(Q,µh, µs, µ), and s̃DY(∂η, µs) as

defined in [3]. The factor [z−η]
a

was introduced in [3] (with a = 1) for convenience. It does

not change the result to LP accuracy, but introduces power-suppressed contributions into

∆LP. Since we collect all NLP contributions in ∆NLP, we must omit this factor, that is,

set a = 0 in the following. Using

I[(1− z)−1+2η](z, µ) = (1− z)−1+2η
[
− (ψ(2η) + γE) + (1− z) +O(1− z)2

]
, (B.14)

gives

I[∆LP](z, µ) = f(Q,µh, µs, µ)
1

1− z s̃DY(∂η, µs)

(
Q(1− z)

µs

)2η e−2γEη

Γ(2η)

×
[
− (ψ(2η) + γE) + (1− z) +O(1− z)2

]
. (B.15)

In order to unambiguously identify LP and NLP terms, we need to specify the power

counting order of the various terms for the combined expansion in powers of 1 − z ∼ λ2,

ln(1− z) as well as ln(µ/Q). In particular, η formally counts as a single power of a scale-

dependent logarithm, and therefore all terms involving (1− z)2η = exp[2η ln(1− z)] should

formally be treated as contributing to the expansion in logarithms [3].5 This implies that

5This expansion cannot be taken literally, since ∆LP has to be interpreted as a distribution, but it

suffices to identify the relevant order in power counting.
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the first term in the square bracket in (B.15) should be interpreted as the LP contribution,

and the second one as the NLP correction. Hence

I[∆LP](z, µ)|NLP = (1− z)∆LP(z, µ) , (B.16)

which gives

−2

∫ 1

z

dx

x
PLP
qq (x)∆LP

( z
x
, µ
) ∣∣

NLP
= −4 Γcusp(αs)(1− z)∆LP(z, µ) . (B.17)

Note that this result is consistent with the structure of the formal expansions (B.3) of

∆(N)LP: since the right-hand side contributes to the µ-evolution of ∆NLP, it should possess

a formal series expansion in terms of lnm(1 − z), m ≥ 1. Using the formal expansion of

∆LP in the first line of (B.3), the product (1−z)∆LP(z, µ) indeed yields such an expansion,

since, when applied to a regular test function, (1 − z)[lnm(1 − z)/(1 − z)]+ = lnm(1 − z),

and (1− z)δ(1− z) = 0.

One may wonder whether the derivatives contained in s̃DY(∂η, µs) in (B.15) implicitly

contain additional NLP terms. Based on the power counting rules discussed above, this is

not expected. In order to explicitly check this point, we use

s̃DY(∂η, µs)

(
Q(1− z)

µs

)2η e−2γEη

Γ(2η)
=

(
Q(1− z)

µs

)2η

s̃DY

(
ln
Q2(1− z)2

µ2
s

+ ∂η, µs

)
e−2γEη

Γ(2η)
.

(B.18)

Inserting this into (B.13), ∆LP can formally be written as

∆LP(z, µ) =

∞∑
m=0

dm ∆m(z, µ) , (B.19)

with suitable scale- and αs-dependent, but z-independent, coefficients dm, and

∆m(z, µ) ≡ lnm(1− z)

(1− z)1−2η
. (B.20)

The integrals relevant for the kinematic correction are

Im(z, µ) ≡ I [∆m] (z, µ) . (B.21)

We need to expand the result in powers of 1 − z. We find

Im(z, µ) = −
m∑
k=0

(
ψ(k)(2η) + γE δk,0

) Γ(m+ 1)

Γ(m+ 1− k)
∆m−k(z, µ)

+ (1− z) ∆m(z, µ) + . . . , (B.22)

where the ellipsis stands for terms of order (1 − z)2 × ∆k, k ≥ 0. The first line of the

right-hand side contributes at leading power. Using the NLP contribution from the second

line we confirm the previous result (B.17).

Yet another way to derive (B.17) is not to use the explicit LP result for ∆, but

instead the formal series expansion (B.3). We checked explicitly that the result is consistent
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with (B.17) up to m = 4, when inserting the expansion from the first line of (B.3) on both

sides and expanding in powers of 1 − z and ln(1− z), respectively.

Altogether, the evolution equation for the NLP term in the power expansion of the

partonic cross section reads

d

d lnµ
∆NLP(z, µ)

= −4

[
Γcusp(αs)

(
ln(1− z)− γE − ψ

(
1 +

d

d ln(1− z)

))
+ γφ(αs)

]
∆NLP(z, µ)

+K(z, µ) , (B.23)

where

K(z, µ) ≡ −2γNLP
qq (αs)

∫ 1

z
dy∆LP (y, µ)− 4Γcusp(αs)(1− z)∆LP(z, µ) . (B.24)
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