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Abstract Many particle physics experiments use constant
threshold triggers, where the trigger threshold is in an online
variable that can be calculated quickly by the trigger module.
Offline data analysis then calculates a more precise offline
variable for the same quantity, for example the event energy.
The efficiency curve is a step function in the online variable,
but not in the offline variable. One typically obtains the shape
of the efficiency curve in the offline variable by way of a
calibration dataset, where the true rate of events at each value
of the offline variable is measured once and compared to the
rate observed in the physics dataset. For triggers with a fixed
threshold condition, it is sometimes possible to obtain the
trigger efficiency curve without use of a calibration dataset.
This is useful to verify stability of a calibration over time
when calibration data cannot be taken often enough. It also
makes it possible to use datasets for which no calibration is
available. This paper describes the method and the conditions
that must be met for it to be applicable.

1 Introduction

In many particle physics experiments, the data acquisition
system (DAQ) monitors the signals from the detector and
initiates recording of data when a pre-defined trigger con-
dition is met. The DAQ has only a short time window in
which to determine, based on the detector data, the variables
on which the trigger condition is based. Hence, the decision
about when to trigger must be based on an imperfect estimate
of the quantity of interest (such as the event energy), which
can be calculated with the required speed [1] and without the
use of calibration inputs, which are often only determined
after a dataset is recorded.

Consider a situation where the DAQ bases the trigger
decision on an online variable x . Data read-out is triggered
whenever x � θx , so the trigger efficiency in x is a step
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function ε(x) = �(x − θx ). In offline data analysis, the vari-
able y is calculated based on the same event information, but
using more elaborate algorithms and calibration inputs. The
y variable is therefore a more precise indicator of the trigger
quantity. Of interest for analysis is the trigger efficiency as a
function of y, ε(y).

As an example, the DEAP-3600 dark matter detector uses
a constant threshold trigger [2]. Data read-out is triggered
whenever the signal intensity from the light detectors, which
is related to the event energy, passes a fixed threshold. In
offline analysis, the signal intensity is converted into the total
number of photo electrons, using calibration constants that
account for differences in light detector gain between differ-
ent light detectors, and for changes in gain over time. This
offline variable measures the event energy more precisely,
but near the trigger threshold, the efficiency is no longer a
simple step function.

A number of methods exist to determine ε(y) by way of
a calibration dataset. These rely on measuring directly or
indirectly the true rate of events at each value of y, so that
by comparison with the rate obtained after the trigger, the
trigger efficiency can be calculated.

Obtaining a trigger efficiency calibration is not always
possible. The calibration data could be corrupt, it could be
impossible to record calibration data due to electronics or
physics constraints, or the calibration could drift with time
faster than calibration datasets can be taken. In such cases, the
efficiency curve might still be recovered or verified provided
the value of x for each event was recorded or can be obtained
offline.

In the DEAP-3600 detector for example, recording a cal-
ibration dataset takes approximately 48hours, so performing
regular trigger efficiency calibrations reduces the lifetime of
the detector for dark-matter search data. The trigger effi-
ciency changes the shape of the spectra used to obtain the
energy calibration. It also changes the shape of the distribu-
tions of certain backgrounds in a pulseshape-discrimination
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parameter, which cannot be modelled correctly unless a trig-
ger efficiency correction is applied [3]. Therefore, monitoring
the trigger efficiency on an ongoing basis is crucial to some
analysis efforts.

2 General principle and illustration of the method

A dataset contains the value of x and y for each event. For
concreteness, we say that these are both variables for the
event energy. We assume that the events recorded have a
continuous spectrum in both x and y in the region relevant
to the trigger.

Consider the histogram of x versus y for many events,
I (x, y). Because x and y are variables describing the same
quantity, they are correlated and the data will form a ‘band’
in this 2-dimensional space. The data has a spectrum in the
x parameter, I (x) = ∫ ∞

−∞ I (x, y)dy, and a spectrum in the
y parameter I (y) = ∫ ∞

−∞ I (x, y)dx .
To illustrate how to obtain ε(y) from a dataset, we create

data in a toy Monte Carlo (MC) simulation with a spectrum
I (x) = 10x , a trigger threshold θx = 100, and a resolu-
tion such that the shape of the y distribution for events of
the same x is a skewed Gaussian. The I (x, y) histogram
for the simulated events is shown in Fig. 1a. The func-
tional form of the relation between x and y is not typi-
cally known a-priori in real data, and the method devel-
oped here does not rely on such knowledge, so we limit our-
selves in this section to information that can be obtained from
the data. This situation will be analysed mathematically in
Sect. 3.2.

Figure 1a shows what the real detector data might look
like. To obtain the trigger turn-on curve in y, the following
steps are taken

1. Normalize the I (x, y) histogram such that I (x) = 1
for x � θx . This can be achieved by dividing each bin
(x,y) in the histogram by I (x). We denote the histogram
normalized in x as Ix (x, y). It is shown in Fig. 1b. After
this normalization, Ix (x) is equal to the efficiency curve
ε(x) = �(x − θ).

2. Now consider the spectrum in y, that is Ix (y) =∫ ∞
−∞ Ix (x, y)dx , illustrated in Fig. 2a. For values of y

where all possible values of x are above the trigger thresh-
old (approximately at y � 30 in this example), a constant
plateau arises. For values of y where some of the possible
x values are below the trigger threshold, the spectrum is
diminished by that fraction of x values which lies below
the threshold.

3. The height of the plateau is determined by a fit with a
straight line (red dashed line in Fig. 2a).

4. Finally, Ix (y) is divided by the plateau height. The result-
ing curve, shown in Fig. 2b, is an estimate of the trigger
efficiency turn-on function.
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Fig. 1 Simulated data using a skewed Gaussian resolution function
with μ = 0.2x , σ = 0.2, and λ = 0.7 (see Eq. (10)). The spectrum is
I (x) = 10x . a The I (x, y) distribution as it might be measured in an
experiment. b The Ix (x, y) distribution, where each bin in I (x, y) is
normalized such that I (x) = 1 for x � θx

Because in the simulation the functional dependence is
known, the functional shape of the turn-on curve can be fit
to the data. This is the blue solid line in Fig. 2a, b.

The crucial feature necessary for this method to work is
the constant plateau in Ix (y). In other words, that step 1
forces the spectrum Ix (y) to be uniform. A constant plateau
arises when Ix (y) does not depend on x or y until the trigger
threshold is introduced. That is, Îx (y) = c where the hat
indicates the absence of the trigger and c is a constant plateau
height. Any value in the actual Ix (y) histogram not equal to
c then indicates the influence of the trigger and the difference
c − Ix (y) is proportional to the number of events missing at
y due to the trigger efficiency.1 The conditions necessary to
obtain a constant plateau will be discussed in Sect. 5.

1 This assumes that we know that the trigger efficiency tends toward
exactly 1. A value different from 1 can be trivially accommodated in
the scaling done in the last step.
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Fig. 2 For the same MC data as Fig. 1 a The Ix (y) distribution is fit
with a straight line in a region far away from the trigger threshold, and
with the analytic description of the turn-on shape, which is known in
this case. b Ix (y) scaled by the plateau height results in the trigger
efficiency curve (zoomed in compared to panel a) to better show the
turn-on region)

3 Validation

In the following two sections, we analytically demonstrate
the validity of this method for two common resolution func-
tions and discuss the conditions that must be met to obtain a
constant plateau region.

3.1 Gaussian example

In this section, the method of determining the trigger effi-
ciency is discussed mathematically for Gaussian resolution
functions. The offline variable y follows a Gaussian distri-
bution for any given value of x . The shape parameters of
the Gaussian distribution are functions of x , and the data has
some spectrum N (x)2:

2 We explicitely name the spectrum N (x) here. By integration, we find
that I (x) = ∫

I (x, y)dy = N (x).

I (x, y) =
{
N (x) 1√

2πσ(x)
e−(y−μ(x))2/(2σ(x)2) (x � θx )

0 (x < θx )

(1)

Division by N (x) gives Ix (x, y) which is by construction
already normalized such that Ix (x) = 1 above the trigger
threshold. To obtain Ix (y), an assumption must be made
about the shape parameters. In the simplest case, σ(x) = σ

and μ(x) = a · x . Thus:

Ix (x, y) =
{

1√
2πσ

e−(y−ax)2/(2σ 2) (x � θx )

0 (x < θx )
(2)

We temporarily ignore the trigger condition to study the
spectrum in y (indicated by the hat).

Îx (y) =
∫ ∞

−∞
1√

2πσ
e−(y−a·x)2/(2σ 2)dx (3)

= 1

a
(4)

We find that the spectrum in y is a constant if no trigger
condition is applied. Thus, we proved here that the critical
condition for the method to work is met, i.e. that for values
of y well above the trigger region, Ix (y) forms a constant
plateau.

The analytic shape of the turn-on curve can be obtained
by including the trigger condition in the integral

Ix (y) =
∫ ∞

−∞
1√

2πσ
e−(y−a·x)2/(2σ 2)H(x − θx )dx (5)

= 1

2a

[

erf

(
y − aθx√

2σ

)

+ 1

]

(6)

The integral in Eq. (5) is formally equal to a convolution
of a Gaussian with a step function. This curve describes the
fraction of events that pass the trigger for each value of y,
relative to some plateau height 1

a that is reached for y � aθx .
It can be turned into the trigger turn-on curve by scaling such
that the plateau is at 1

ε(y) = Ix (y) · a (7)

= 1

2

[

erf

(
y − aθx√

2σ

)

+ 1

]

(8)

Figure 3 illustrates Eq. (2) (panel a), Eq. (6) (panel b),
and Eq. (8) (panel c). Parameters used are a = 0.2, σ = 3
and θx = 100. This is not a Monte Carlo simulation; the
respective equations are evaluated numerically here.

In a more realistic case, both the mean and the width of
the y distribution at a given x vary with x : σ(x) = b · x and
μ(x) = a · x so that
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Fig. 3 The Gaussian example (Eq. (2)) for a = 0.2, σ = 3. a The
distribution of x versus y. b The y-profile (black line), together with the
calculated level of the plateau (pink dashed). c The profile scaled by the
plateau height (black), which represents the trigger efficiency. The blue
dashed line is a step function convoluted by a Gaussian, with function
parameters taken at the trigger threshold

Ix (y) =
∫ ∞

−∞
1√

2πbx
e−(y−a·x)2/(2(bx)2)dx (9)

This integral cannot be solved analytically. The numeric
solution for a = 0.2y and b = 0.015y is shown in Fig. 4.
Panel (b) shows that a constant plateau exists and the plateau
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Fig. 4 The Gaussian example with μ = 0.2y and σ = 0.015y. a x vs
y. b The efficiency curve in y

height is determined by a fit to the histogram between 30 and
50 y. The trigger turn-on curve in panel (b) is overlaid with
the model from Eq. (8) with σ = σ(θx ).

This method does not produce proper efficiency curves in
all situations. Figures 5 and 6 show situations when it does
not work, namely when at least one of the mean or the sigma
functions are polynomials of level bigger than 1. In both
figures, the trigger efficiency model from Eq. (8) is drawn to
illustrate the differences.

3.2 Skewed Gaussian example

To show that this method does not work only for Gaussian
distributions, we repeat the calculation for skewed Gaussian
(also called exponentially modified Gaussian (EMG)) reso-
lution functions:

Ix (x, y) = λ(x)

2
e

λ(x)
2 (2μ(x)+λ(x)σ (x)2−2y)

· erfc

(
μ(x) + λ(x)σ (x)2 − y√

2σ(x)

)

H(x − θx ) (10)

123



Eur. Phys. J. C (2019) 79 :322 Page 5 of 8 322

 Online estimator x [au]
0 100 200 300 400 500 600

 O
ffl

in
e 

es
tim

at
or

 y
 [a

u]

0

20

40

60

80

100

120

140

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a)

 Offline estimator y [au]
0 10 20 30 40 50 60 70

Tr
ig

ge
r e

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 5 The Gaussian example with μ = 0.2y and σ = 0.07y + 2 ·
10−5y2. No constant plateau arises, hence the method is not applicable
and b does not represent the trigger efficiency

In the simplest case, σ(x) = σ , λ(x) = λ, and μ(x) =
a·x , shown in Fig. 7. The y-axis projection without the trigger
condition is then3 (see Appendix 1).

Îx (y; a, σ, λ) =
∫ ∞

0

λ

2
e

λ
2 (2ax+λσ 2−2y)

· erfc

(
ax + λσ 2 − y√

2σ

)

dx (11)

= 1

a
(12)

Again, a constant plateau height is expected in the absence
of the trigger.

The analytic shape of the trigger turn-on curve is again
obtained by including the trigger condition:

Ix (y; a, σ, λ, θx ) =
∫ ∞

0
Ix (x, y)H(x − θx )dx (13)

3 The lower integration bound is set at 0 because of the definition of
the EMG.
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Fig. 6 The Gaussian example with μ = 0.2y + 5 · 10−5y2 and σ =
0.015y. No plateau arises, hence the method is not applicable and b
does not represent the trigger efficiency

= 1

2a

[
1 − e

λ
2

(
2aθx+λσ 2−2y

)

· erfc

(
σ√

2

(

λ + aθx − y

σ 2

))

+ erf

(
1√
2σ

(y − aθx )

)]

(14)

and dividing by the plateau height

ε(y) = a · Ix (y; a, σ, λ, θx ) (15)

Figure 7 shows the EMG model for values of μ = 2y,
σ = 3, and θx = 100. The turn on curve, Eq. (15), is drawn
as well. Function parameters are taken at the trigger threshold
(i.e. this is not a fit).

Figure 8 shows the skewed Gaussian example for μ =
0.2y, σ = 0.015y, and λ = 0.7. The efficiency curve again
shows a plateau and the shape is described by Eq. (15),
but here the parameters of the turn-on curve were fit out
to μ = 19.8, σ = 2.0, and λ = 0.705, so the parameters
that determine the shape differ slightly from the parameters
of the skewed Gaussian at the trigger threshold.
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Fig. 7 Skewed Gaussian example with μ = 0.2y, σ = 3, and λ =
0.7. a x vs y. b The normalized y profile. Also shown (blue dashed)
is a skewed Gaussian convoluted with a step function, and function
parameters are taken at the trigger threshold

As previously seen in the Gaussian example, the method
fails if μ or σ are polynomials of order bigger than 1 in y.
It also fails if λ is not constant, though if the dependence of
λ on x is not strong, an approximately flat plateau region is
obtained.

4 Uncertainties

The normalization of the spectrum in x adds correlated uncer-
tainties to the statistical uncertainties of each bin in the Ix (y)
histogram. Then, the plateau level must be fit out, introduc-
ing an uncertainty in the ‘true’ number of events. The final
efficiency curve or histogram comes with a complicated mix-
ture of correlated and uncorrelated, statistical and system-
atic uncertainties. Furthermore, because the ‘true’ number
of events is only an estimate, the efficiency histogram can
have values bigger than 1.

Some assumptions can be made to simplify the uncertain-
ties. The uncertainty on the total number of events in each x
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Fig. 8 Skewed Gaussian example with μ = 0.2y, σ = 0.015y, and
λ = 0.7. a x vs y. b The normalized y profile. Also shown (blue dashed)
is a fit to the curve with Eq. (15)

bin will always be smaller than the statistical uncertainty on
the events in any (x, y) bin. Thus, the correlated uncertainties
can be neglected in the Ix (y) histogram.

The efficiency histogram can be fit with an analytic func-
tion where the maximum value is constrained to 1. Then,
confidence regions can be obtained in the usual way by vary-
ing the fit parameters within their uncertainties.

The uncertainty on the plateau height must be minded as
a systematic uncertainty.

5 Discussion

The method introduced here allows an estimation of the trig-
ger efficiency turn-on curve without the use of calibration
data. This method will have a larger uncertainty than a typ-
ical efficiency calibration for the same amount of data used.
However, since ‘physics’ datasets are often much larger than
calibration datasets, this method can result in a more precise
estimate.
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The method works if a number of assumptions are true:
(1) The trigger bases the trigger decision solely on an online
parameter x , and the value of x is known for each event. (2)
The trigger curve in x is a step function; that is the efficiency
is known to be 0 for x < θx and 1 for x � θx . (3) The existing
data covers the full available parameter space in the trigger
turn-on region, and far enough into the plateau region to
estimate the plateau height. (4) The distribution of the offline
parameter y for events with the same x , I (y; x = const), has
the same functional form at all values of x (or at least for all
values of x in the critical turn-on region and far enough into
the plateau region that the plateau height can be obtained).
(5) The I (x, y) histogram shows a linear dependence of y
on x , and the width of the I (y; x = const) distribution is
a polynomial of order � 1 in x . Non-Gaussian distributions
will have additional requirements on the distribution shape
parameters. These do not have to be explicitly determined –
if this method produces a flat plateau region, the conditions
are met.

Condition (1) is typically met in particle physics experi-
ments. We note that if the trigger variable x is not recorded for
each event, it can often by re-constructed by programming an
offline analysis algorithm that reproduces the trigger module
algorithm.

Condition (2) must be met such that the result of this
method is in fact a trigger efficiency. This method determines
the efficiency curve of y with regard to x , not the efficiency
of y with regard to the actual trigger. But if the trigger effi-
ciency in x is a step function with values of either 0 or 1, the
curve obtained is the trigger efficiency in y. If the trigger effi-
ciency in x is not a step function, then it must additionally be
obtained another way before the trigger efficiency in y can be
determined. A typical situation where this is the case would
be one where the trigger is pre-scaled or otherwise known to
approach a value different from one.

Condition (3) means that the physics data recorded must
contain a sufficient number of events with values of x near
the trigger threshold. If it does not, presumably, the trigger
turn-on curve is not of interest to begin with.

Condition (4) is the only one that is not trivial to ver-
ify based just on the physics data. An unchanging func-
tional form of the I (y; x = const) distribution is a rea-
sonable assumption in most cases, but should if possible be
checked using a traditional efficiency calibration approach. If
I (y; x = const) is known analytically, such that the shape of
the turn-on curve can be obtained by convolution with a step
function, then the shape of the data should be well described
by this analytic turn-on curve. If the shapes do not match, it
would be an indication that condition iv) is not met.

We showed analytically that this method works for certain
forms of Gaussian and skewed Gaussian resolution functions.
We expect that this method will work for many realistic dis-
tributions I (x, y), as long as I (y; x = const) tends to 0 at

both tails. This can be intuitively understood. At the integra-
tion borders of y = −∞ and y = ∞, the distribution is 0. x
determines where inside the integration region the distribu-
tion peaks (through μ = μ(x)), but since the integration goes
from minus to plus infinity, the location of the distribution
on the y-axis is not relevant.

The events used to obtain the trigger efficiency calibra-
tion do not need to be signal events. Taking the DEAP-3600
detector as an example again, events from a high-rate back-
ground, the beta decay of 39Ar, are used to obtain the trigger
efficiency calibration.

6 Summary

We have presented a method to obtain the trigger efficiency
turn-on curve for a physics dataset. This method uses only
the physics data itself, that is it does not require calibration
data. It is based on several assumptions that are fulfilled for
many types of experiments but at least one of which is dif-
ficult to verify without a calibration. Therefore, this method
is particularly well suited to tracking the efficiency turn-on
curve over time. It can be verified against calibration at any
point of data recording and, once verified, be used to obtain
the trigger efficiency curve over time, for example if cali-
bration parameters drift faster than it is reasonable to record
calibrations.

It can also be used to find out where full efficiency is
reached, even if the precise shape of the turn-on is not reliable
because the method was not verified. This can be useful when
a dataset must be analyzed for which no other calibration is
available, to at least find out in which region the recorded
data is reliable.
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Appendix A: The skewed Gaussian

The generic skewed Gaussian probability density function
(PDF) is

emg(z; σ, λ) = λ

2
e

λ
2 (2μ+λσ 2−2z) · erfc

(
μ + λσ 2 − z√

2σ

)

(A.1)
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The cummulative distribution function (CDF) is [4]

EMG(z; σ, λ) =
∫ z

0
emg(z; σ, λ) (A.2)

=
∫ ∞

0

∫ z−τ

−∞
(λe−λτ )

(
1√

2πσ
e− (β−μ)2

2σ2

)

dβdτ

(A.3)

=1

2

[

1 − e
λ
2 (2μ+λσ 2−2z) erfc

(
σ√

2

(

λ + μ − z

σ 2

))

+ erf

(
1√
2σ

(z − μ)

)]

(A.4)

which in the limit for z → ∞ is 1.
We are dealing with Eq. (11), which is reproduced slightly

re-written here

Îx (y; σ, λ) = lim
x→∞

∫ x

0

λ

2
e

λ
2 (2ax+λσ 2−2y) · erfc

(
ax + λσ 2 − y√

2σ

)

dx

(A.5)

Do a variable transformation x̂ = ax then

Îx (y; σ, λ) = lim
x→∞

∫ x

0

λ

2
e

λ
2 (2x̂+λσ 2−2y) · erfc

(
x̂ + λσ 2 − y√

2σ

)
1

a
dx̂

(A.6)

Equation (A.6) is in its form similar to Eq. (A.2) if z =
−x̂ and μ = −y. We see from Eq.(A.3) that the integral is
unchanged when going from z → −z and μ → −μ at the
same time, hence4

4 Note the change in the limit because the argument changed sign.

Îx (y; σ, λ) = lim
x→−∞

1

2a

[

1 − e
λ
2 (−2y+λσ 2+2ax)

· erfc

(
σ√

2

(

λ + ax − y

σ 2

))

+ erf

(
1√
2σ

(y − ax)

)]

(A.7)

= 1

a
(A.8)

The profile in y after applying the trigger threshold is given
by Eq. (A.7) when setting x = θx instead of taking the limit.
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