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INTRODUCTION

Submerged aquatic vegetation (SAV) provides
detailed information about the ecology of freshwater lakes
(Melzer, 1999). For instance, SAV is a highly suitable and
often used bioindicator for trophic state assessments since
it mirrors nutrient concentrations, water temperature,
water level and water transparency (Skubinna et al., 1995;
Melzer, 1999; Penning et al., 2008; Søndergaard et al.,
2010; Poikane et al., 2015). Changes in the trophic state
induce variations in plant species composition, spatial
distribution and extent, onset of SAV growth and
senescence (Short and Neckles, 1999; Rooney and Kalff,

2000; Silva et al., 2008). According to the European
Water Framework Directive (WFD) SAV should be
mapped every three years (European Commission, 2000).
In consideration of the observed strong dynamics in SAV
distribution and species composition, Palmer et al. (2015)
even recommended more frequent observations. In
contrast to conventional SAV monitoring by scientific
divers, remote sensing offers a time- and cost-effective
alternative to observe seasonal and annual changes in SAV
coverage as an indicator of water quality (George, 1997;
Malthus and George, 1997; Dekker et al., 2002; Pinnel et
al., 2004; Giardino et al., 2007; Yuan and Zhang, 2008;
Roessler et al., 2013a; Wolf et al., 2013). In this context,
results from Fritz et al. (2017b) suggest that the
microclimatic conditions of the respective growing season
in conjunction with the related water temperature dynamic
may support the differentiation of SAV growth class level.
With higher water temperature the development of
especially the tall-growing SAV start and collapse earlier.
Under such conditions the second level of the meadow-
growing SAV becomes dominant in the reflection spectra,
resulting, in some cases, in a second vegetation vitality
maximum. In addition, this behaviour, which might
become the common one in the course of global warming,
might be a key for differentiating more robust invasive
species like Elodea nuttallii which do not show such
double vitality maximum over the growing season. 

Using optical remote sensing data, the spectral
information is essential, e.g., the spectral signature of SAV
is necessary for analysis of lake bottom surface types. The
contributions of SAV and bare sediment for each pixel
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control the intensity of the spectral response. Organic
overlay, such as detritus and epiphytes, additionally
influences the spectral signature of sediment and SAV
(Armstrong, 1993; Fyfe, 2003; Williams et al., 2003;
Silva et al., 2008; Wolf et al., 2013). Furthermore, the
spectral signature of SAV varies within the growing
season. Variations in leaf size and orientation as well as
pigment content and ratio lead to changes in shape and
intensity of the spectral signature (Fyfe, 2003; Silva et al.,
2008; Wolf et al., 2013). Pigment degradation, especially
of chlorophyll-a, indicate leaf senescence (Gausman,
1984; Gitelson et al., 2002; Wolf et al., 2013; Fritz et al.,
2017b). Especially in case of tall-growing species,
pigment decomposition processes accompany structural
changes such as the collapse of the canopy. These
physiological plant characteristics, however, differ among
SAV species. Therefore, Pinnel et al. (2004), Wolf et al.
(2013), Fritz et al. (2017b) and others suggested that a
method capable to monitor the different phenologic
development stages of SAV may provide a valuable key
for a refined taxonomic differentiation. 

For identifying specific phenology-related
characteristics in shallow water areas with remote sensing
systems, high spatial, spectral and radiometric resolution
data registered at high temporal frequency are mandatory.
Analysing remote sensing data in a field-monitoring
context additionally requires comparable data sets over
time. Therefore, control and correction of external factors
influencing the spectral signature of lake bottom types is
necessary, i.e. changes in the atmosphere, within the water
body and at the atmosphere/water interface. Different
strategies exist to consider the attenuation by the water
column. The most common approaches belong either to
the semi-empirical (Lyzenga, 1978; 1981) or to the bio-
optical model categories (Heege and Fischer, 2004;
Dekker et al., 2011; Giardino et al., 2012; Gege, 2014). 

Semi-empirical methods rely on in situ data for littoral
bottom type discrimination. Lyzenga (1978, 1981)
developed a semi-empirical method based on depth-
invariant indices for detecting and distinguishing littoral
bottom coverage. Several authors used semi-empirical
methods to map SAV with different sensors at different
inland waters and at sea. The study of Armstrong (1993)
used Landsat Thematic Mapper imagery in combination
with field surveys to map seagrass and to estimate its
biomass in the shallow water areas at the Bahamas.
Brooks et al. (2015) and Shuchman et al. (2013) also used
Landsat Thematic Mapper in combination with
Multispectral Scanner Imagery time series from the mid-
1970s to 2012 to investigate SAV patterns (notably
Cladophora spec.) at the Laurentian Great Lakes.
Manessa et al. (2014) studied the distribution of seagrass
and corals of shallow water coral reefs in Indonesia using
WorldView2 imagery. Ciraolo et al. (2006) investigated

the distribution of seagrass in a coastal lagoon in Italy
using the hyperspectral sensor MIVIS (Multispectral
Infrared Visible Imaging Sensor). A time series of
RapidEye imagery was used to detect seasonal changes
of SAV in two freshwater lakes of different trophic state
(Lake Starnberg, Roessler et al., 2013a; and Lake
Kummerow, Fritz et al., 2017a) in Germany.

Bio-optical model inversion requires information on
the scattering and the absorption characteristics of water
constituents. The bottom type and coverage determination
rely on sample spectra from existing spectral libraries.
Several studies have explored different remote sensing
data types by using bio-optical models at different inland
waters. The changes of SAV patterns at Lake Garda, Italy,
was investigated by Giardino et al. (2007) using the
hyperspectral sensor MIVIS. Heblinski et al. (2011) used
a bio-optical model to investigate the effects of water level
changes on SAV structure at Lake Sevan, Armenia, using
multi-spectral QuickBird imagery. To monitor invasive
SAV, Roessler et al. (2013b) applied the bio-optical model
BOMBER (Giardino et al., 2012) on hyperspectral
Airborne Prism Experiment (APEX) imagery at Lake
Starnberg, Germany. Giardino et al. (2015) used the same
model to detect the interaction of suspended particulate
matter, SAV and water depth using MIVIS sensor at Lake
Trasimeno, Italy.

SAV expansion varies in successive years due to
shifts in growing seasons, different water constituents,
nutrient load and remobilization processes from lake
bottom substrate, which all influence the detectability of
SAV (Dekker et al., 2011). To figure out the spatio-
temporal change pattern of SAV, however, a short
revisiting time and a high spatial and spectral resolution
are key requirements for a remote sensing-based lake
monitoring. Nowadays, hyperspectral, airborne sensor
systems with their high spectral resolution (e.g., APEX,
MIVIS) are still unsuitable for a continuous monitoring
due to their high costs. The Hyperion mission provided
spaceborne hyperspectral data until 2017 which were
used for shallow water analysis (Giardino et al., 2007;
Lee et al., 2007). Currently, operational, hyperspectral
satellite systems are, however, unavailable. The
experimental ISS based DLR Earth Sensing Imaging
Spectrometer (DESIS), operated since mid 2018, and the
hyperspectral sensor PRISMA (PRecursore IperSpettrale
della Missione Applicativa, Italian Space Agency)
planned for February 2019, may help closing this gap
until the experimental EnMAP system is in space,
planned for end 2020. As alternative strategy, several
authors therefore suggested multi-seasonal images of
high spatial resolution multispectral satellite data to
compensate the reduced spectral information (Dekker et
al., 2011; Roessler et al., 2013a; Palmer et al., 2015; Fritz
et al., 2017a). Especially remote sensing systems with
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73Mapping the spatial distribution of submerged aquatic vegetation

high revisiting frequencies in combination with large area
coverage seem to complement laborious in situ
observations of WFD by diver mappings ideally. The
expected synergies are the analysis of the expansion and
shift in SAV species composition within the growing
season in addition with information on the spatio-
temporal SAV growth dynamics (Palmer et al., 2015;
Fritz et al., 2017b; Dörnhöfer et al., 2018). Especially the
multi-spectral Sentinel-2A, available since mid of 2015,
provides good preconditions for mapping freshwater
lakes and littoral bottom coverage types. 

The key aim of this study was to test whether the
multi-seasonal observation capability of Sentinel-2A
provides sufficient information to support currently
employed in situ mappings according to the WFD.
Therefore, four Sentinel-2A data sets from August and
September 2015 were analysed with the following
objectives:
• To investigate whether Sentinel-2 data are suitable for

mapping littoral bottom coverage of freshwater lakes.
• To explore the potential of Sentinel-2 for mapping

development and expansion of littoral bottom
coverage within a SAV growing season.

• To investigate the potential of Sentinel-2 to
differentiate SAV on a growth class level.

METHODS

Study site 

Lake Starnberg (49.9°N, 11.3°E) is an oligotrophic
lake, located in the alpine foreland about 25 km south of
Munich, Germany. With an area of 56.4 km2 and a
maximum depth of 127.8 m, Lake Starnberg is the fifth
largest lake in Germany (Wöbbecke et al., 2003). Low,
groundwater-dominated inflows (3.6 m³·s–1) of small
tributaries as well as low outflow rates (4.5 m³·s–1)
(Melzer et al., 2003) result in a long residence time of
water (21 years) (Wöbbecke et al., 2003).

In the shallow water regions, a variety of SAV species
colonize the littoral bottom (Fig. 1), making this an ideal
study case for comparing alternative mapping approaches.
Divers conducted a detailed mapping of SAV on species
level on 30 and 31 July 2014 for the western part of Lake
Starnberg (WWA Weilheim, 2015) using the five-step scale
of frequency after Kohler (1978). The composition of SAV
varied at different water depths. At each transect,
Characeae, such as Chara contraria and Chara aspera
occur mainly in water depths down to 2 m. In the deeper
zones, from 4 m downwards, several species of Characeae
(Chara contraria, Chara virgata, Nitellopsis obtusa and

Fig. 1. Distribution of SAV species in different water depths: (a) 0-1 m; (b) 1-2 m; (c) 2-4 m; (d) >4 m, as result of the WFD mapping
at the western shoreline of Lake Starnberg in 2014; frequency distribution of the species in a five-step scale after Kohler (1978)
(background: Sentinel-2A true-colour composite R-G-B: 655 nm - 560 nm - 490 nm, acquisition date: 3 August 2015). 

Non
-co

mmerc
ial

 us
e o

nly
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Nitella opaca) predominated. Several pondweed species
such as Potamogeton perfoliatus, Potamogeton filiformis
and Potamogeton pusillus) were present in all water depths.
In our study, Chara spp., Nitellopsis obtusa and Nitella
opaca were combined as meadow-growing species,
Potamogeton spp. as tall-growing species.

Data collection and processing

Spectral signature of SAV and sediment

Both applied approaches, i.e., unmixing bottom
coverage based on a depth-invariant index and bio-optical
modelling, require the spectral signature of bottom types
as an input information, i.e., different SAV species and
sediment. Spectro-radiometric in situ measurements of
different SAV species with submersible instruments
(RAMSES spectroradiometers; spectral range 320 nm to
950 nm; TriOS, 2018) served as basis for the reflectance
models of SAV as developed by Fritz et al. (2017b). A
detailed description of the measurement setup, data
processing and technical specifications is available in Wolf
et al. (2013) and Fritz et al. (2017b). Fritz et al. (2017b)
already highlighted spectral variations between different
SAV species and demonstrated a species-specific seasonal
phenologic development. This information was used to
build up species-specific reflectance models (Fritz et al.,
2017b) that mirror and visualise the daytime and seasonal,
spectral variations of SAV. Using these reflectance models
(Fritz et al., 2017b), SAV spectra according to the
phenologic development at the date and time of the
Sentinel-2A image acquisition were calculated and used as
input for the unmixing processes. For unmixing purposes
sediment spectra taken before the growing season started
were used. The in situ processing chain included a
resampling of simulated SAV and sediment spectra (Fritz
et al., 2017b) to Sentinel-2A response curves (Dörnhöfer
et al., 2016). Afterwards, their depth-invariant indices were
calculated (Lyzenga, 1978; 1981). The satellite data
processing chain was based on MIP (Modular Inversion
and Processing System (Heege and Fischer, 2004; Heege
et al., 2014)) atmospherically corrected Sentinel-2A
reflectance data sets, which were used to differentiate
shallow and deep water areas using the Red Index (RI)
(Spitzer and Dirks, 1987). To identify different bottom
types, two methods were tested: the method of depth-
invariant indices (Lyzenga, 1978; 1981) and the bio-optical
method using WASI-2D (Gege, 2014). In both cases, a
linear spectral unmixing based on the in situ processed
spectra was performed. Fig. 2 schematically illustrates the
pathway of data processing.

Data processing of in situ data

For the Sentinel-2A data set, depth-invariant indices Yi,j

of the different bottom types were calculated from spectral

bands i and j. These indices were assumed to reduce the
influence of water constituents to such a level that the
investigation of lake bottom types becomes possible. Ten
index combinations (Y1,2; Y1,3; Y1,4; Y1,5; Y2,3; Y2,4; Y2,5; Y3,4;
Y3,5; Y4,5) of Sentinel-2A bands 1 to 5 (band 1=443 nm; band
2=490 nm; band 3=560 nm; band 4=665 nm; band 5=705
nm) were used. The method of Lyzenga (1978, 1981) was
applied on in situ data assuming that the attenuation
coefficients Kd(λi) and Kd(λj) (Maritorena, 1996) account
for the influence of present water constituent conditions and
the water column itself (equation 1). 

 

(eq. 1)

i; j                               band i; band j, where i < j
Kd(λi); Kd(λj)               diffuse attenuation coefficients of

Ed(λ) at band i and j; collected in
situ and resampled to Sentinel-2A
response curves (Dörnhöfer et al.,
2016)

rshallow(λi); rshallow(λj)     shallow water reflectance at band i
and j;

The remote sensing reflectance of shallow water areas
(rshallow) varied for different water depths (z), the remote
sensing reflectance of the different bottom types (rbottom)
and the remote sensing reflectance of the water column
(rdeepwater) (equation 2).

rshallow(λi,j)=rbottom(λi,j)exp–2Kd(λi,j)z+rdeepwater(λi,j)(1exp–2Kd(λi,j)z)
                                                                               (eq. 2)
z                                  water depth
rbottom(λi,j)                     littoral bottom reflectance at band

i, j; simulated reflectance spectra of
reflectance models (Fritz et al.,
2017b) and resampled to Sentinel-
2A response curves (Dörnhöfer et
al., 2016)

rdeepwater(λi,j)                    reflectance over optical deep water
at band i, j; calculated from Sentinel-
2A imagery over deep water areas 

Data processing of satellite data 

Sentinel-2A satellite data (processing baseline: 2.04,
Tile: UPU) acquired on 3 August 2015, 13 August 2015,
23 August 2015 and 12 September 2015 were
atmospherically corrected to remote sensing reflectance

by EoMAP GmbH & Co. KG (Seefeld,

Germany) using MIP (Heege and Fischer, 2004; Heege et
al., 2014). MIP is a physically based, coupled
atmospheric-water algorithm correcting the effects of
atmosphere and water surfaces (sun glint). In a previous
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75Mapping the spatial distribution of submerged aquatic vegetation

study of atmospheric correction algorithms, Dörnhöfer et
al. (2016) compared different atmospheric corrections
algorithms (i.e., Sen2Cor, ACOLITE and MIP). In this
comparison for a Sentinel-2A overpass at Lake Starnberg,
MIP performed best (r=0.987, RMSE=0.002 sr−1). That
fore we used the result of MIP processing for this study.
To distinguish between deep water and shallow water
areas the deep water RI (Spitzer and Dirks, 1987) was
applied on data.

                                     
(eq. 3)

(665)                   remote sensing reflectance value of
each pixel in the red

(665, �)               mean red remote sensing reflectance
over optically deep water around the
deepest point of the lake

Water areas with RI higher than 0.15 sr–1 were
classified as shallow water and were further investigated.
From 2014 to 2017, the mean Secchi disk depth was about

6.4 m (Bavarian Environmental Agency, 2018). To avoid
misclassification in optical deep water zones, the areas
with more than 8 m water depths (official bathymetric
chart (Bavarian Environmental Agency, 2000)) were
excluded from further processing.

Spectral unmixing using depth-invariant indices

To transfer Sentinel-2A data to the same level as
in situ measured data, we applied the equation of Lee et
al. (1998) (equation 4).

                 
(eq. 4)

σ; σL
–; σ–                      reflection factors

Q                                ratio of upwelling irradiance to
upwelling radiance

nw
2                                squared refractive index of water

The equation of Lee et al. (1999) can be used to
approximate the reflectance from above to beyond the

Fig. 2. The pathway of in situ and satellite data processing.
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water surface ( )=0.518; σ– • Q; (equation 5).

                                  
(eq. 5)

The ten different depth-invariant indices (Yi,j) were
calculated for the subsurface reflectance (Y1,2; Y1,3; Y1,4;
Y1,5; Y2,3; Y2,4; Y2,5; Y3,4; Y3,5; Y4,5) of shallow water regions
in the satellite data sets (equation 6). Here, the subsurface
reflectances ( ) of neighbouring bands were related to
the diffuse vertical attenuation of the downwelling
irradiance (Kd). Kd in combination with the deep water

reflectance of the respective Seninel-2A data
set account for the influence of water column attenuation;

originated from a homogenous deep water
area and was extracted for each acquisition date
separately.

                                                                               (eq. 6)
i; j                               band i; band j, where i < j
Kd (λi); Kd (λj)             Diffuse attenuation coefficients of

Ed (λ) at band i and j

     remote sensing reflectance at band
i and j of each pixel

mean deep water remote sensing
reflectance at band i and j

The calculated Yi,j data set was the input for a linear
spectral unmixing process performed with Sentinel
Application Platform SNAP (ver. 4.0). The Yi,j index
values of the different littoral bottom types represented
the spectral endmembers. Linear spectral unmixing varies
the share of the considered spectral endmembers at a
pixel’s signature assuming a linear contribution. Here, we
assume that the unmixed share of an endmember (fi–Y)
normalized between 0 and 1, represents the relative
abundance (bottom coverage) of a littoral bottom type. 

Based on these normalized bottom coverage data we
started two independent classification runs. To distinguish
between areas of sediment and SAV, we used two bottom

types. This run was performed to separate vegetated areas
(independent on their growth height level) from bare
sediment patches (sediment and SAV). To differentiate the
vegetated areas into tall- and meadow-growing SAV
classes, we used three bottom types. This run focused on
the distribution of SAV growth types (sediment, tall-
growing SAV and meadow-growing SAV). The input
spectra with different sun elevations were simulated with
the reflectance model (Fritz et al., 2017b) according to
the respective overpass time of the satellite. 

Spectral unmixing using WASI-2D

WASI-2D is a freely available software tool, which
enables the retrieval of water constituents, bottom
characteristics and water depths by inversely modelling
atmospherically corrected multispectral or hyperspectral
imagery (Gege, 2014). WASI-2D models the using
physically based equations, measured or modelled
constants and parameters. Some parameters, i.e., fit
parameters, can be varied during modelling. In shallow
water, WASI-2D considers the spectral influence of the
water depth, fractional contribution from bottom
reflectance (e.g., different shares of pure reflectance from
sediment and SAV) and light absorbing (chlorophyll-a
(CHL), coloured dissolved organic matter (CDOM) and
backscattering (TSM) water constituents (technical details
and specific equations in Gege, 2014). For this study, fit
criterions were the water depth, bottom types and
fractions of bottom coverage.

To avoid overfitting of the model, concentrations of
CHL, TSM and CDOM (at 440 nm) were set constant. To
obtain reasonable values for the model parameters we first
retrieved water constituent concentrations (CHL, CDOM,
TSM and the CDOM slope factor SCDOM) in deep water of
each acquisition date with a setting as described in
Dörnhöfer et al. (2016) (Tab. 1). 

We used the arithmetic mean of deep water results as
constant parameter values for shallow water inversion.
Water depth was considered as a fit parameter, which
could vary between 0.1 and 8.0 m. WASI-2D calculates
the reflectance from the bottom (Rb(λ)) as the sum of
linearly mixing reflectance from different bottom types
(equation 7).

Tab. 1. Water constituent concentrations over optically deep water for Sentinel-2A acquisition dates, retrieved with a setting as described
in Dörnhöfer et al. (2016). 

Parameter                                           3 Aug 2015                       13 Aug 2015                      23 Aug 2015                      12 Sep 2015

CHL (mg·m–3)                                           0.97                                    3.45                                    2.86                                     0.5
TSM (g·m–3)                                              1.25                                    3.56                                    2.38                                    2.18
CDOM (440) (m–1)                                   0.183                                  0.182                                  0.227                                  0.398
SCDOM (nm–1)                                       0.0163                                0.0163                                0.0093                                0.0065

Non
-co

mmerc
ial

 us
e o

nly



77Mapping the spatial distribution of submerged aquatic vegetation

                       (eq. 7)

n                                 number of bottom types
fi–WASI                           fractional share of the bottom type

within the pixel
Bi                                proportion of bottom reflectance

towards the sensor
Ri

b (λ)                           reflectance of the bottom type,
originated from SAV reflectance
model (Fritz et al., 2017b)

After resampling the spectral database of WASI-2D to
the Sentinel-2A spectral response curves as described in
Dörnhöfer et al. (2016), WASI-2D inversely models the

and compares modelled and Sentinel-2A spectra
for each pixel. The model then varies the fit parameters
in a predefined range until modelled and satellite
match a similarity criterion or, if no perfect match is
feasible, a predefined maximum number of iterations is
achieved.

To unmix the spectra of bottom constituents, the
proportion of bottom reflectance towards the sensor was
assumed to be angle-independent, i.e. Lambertian
surfaces (Bi=1/π sr–1). For each acquisition date, we fitted
fi–WASI to linearly unmix bottom types while considering
variable water depths and a constant contribution of water
constituents to the reflectance. fi–WASI was normalized to a
range between 0 and 1. Similar to the unmixing approach
based on the depth-invariant index, we conducted model
runs with two (n=2: sediment and SAV) and three (n=3:
sediment, tall-growing SAV class, meadow-growing SAV
class) bottom types. To reduce the influence of sun glint
(not corrected by MIP) we additionally varied the share
of directly reflected radiance (see Dörnhöfer et al., 2016). 

To compare the results of both methods, we conducted
a linear regression analysis between obtained and
normalised endmember shares, fi–Y and fi–WASI , using the
software R (R Core Team, 2017, ver.3.4.2). For each
Sentinel-2A data set, both parameters were compared in
scatterplots based on the entire shallow water. Calculation
of the coefficient of determination, R2, supported
assessing the similarities and differences between the
resulting littoral bottom coverage of both approaches.

RESULTS

Seasonal spectral variation within the growing season

The spectra of the three investigated littoral bottom
types (sediment, meadow-growing SAV class and tall-
growing SAV class) were consistently different, following
bimonthly modelling with the SAV reflectance models
(Fritz et al., 2017b) for the 1st and 15th of June, July, August

and September (Fig. 3). Resampled to Sentinel-2A bands,
the spectral response of the surface types also differed
clearly in spectral shape and intensity at each of the
observed dates within the growing season (Fig. 4) Overall,
while the intensity of the remote sensing reflectance
remained low in the visible wavelength regions (400 nm to
700 nm), it increased strongly towards the near infrared
region (>700 nm, Figs. 3 and 4). In the visible wavelength
region, the reflectance of sediment was the highest.
Reflectance of meadow- and tall-growing SAV was similar
in spectral shape, but differed in intensity. The reflectance
intensity of meadow-growing SAV was slightly higher than
the intensity of tall-growing SAV. 

Spectral unmixing of shallow water areas using
depth-invariant indices 

The depth-invariant index analysis of the littoral
bottom types at the test sites Roseninsel, Karpfenwinkel
and Seeshaupt based on the pre-processed Sentinel-2A
data sets. It revealed a different spatial extension of SAV
(green) and sediment (red) patches (Fig. 5) and a different
SAV class composition (sediment (red), meadow-growing
(green) and tall-growing (blue) SAV, Fig. 6) for the
investigated dates. The spatial distribution of sediment
and SAV classes changed during the growing season. The
spatial extension of shallow water areas depended on the
index, which may differ for each Sentinel-2A data set.

At the test site Roseninsel, the first index run classified
large sediment and mixed sediment dominated patches
(Fig. 5, Tab. 2). Mixed SAV-dominated patches were
identified at the western shoreline of Lake Starnberg and
at the south-eastern part of the island Roseninsel. For all
Sentinel-2A acquisition dates, the sediment-dominated
patches were similarly large and clearly zoned from
vegetated areas. For the test site Karpfenwinkel, large
sediment-dominated patches were classified in the centre
at the beginning of August. This clear spatial distinction
between sediment and SAV areas decreased during
August, resulting in a large mixed area. On 12 September,
only a small band at the shoreline was classified as
shallow water area. At the test site Seeshaupt, the
classified littoral bottom coverages changed solely in mid-
September. The first index run further identified large
sediment-dominated areas in the south-western part of this
test site (up to 45.59%), while SAV patches were tagged
in the south-eastern part near the shoreline. On 12
September, the former sediment area at the eastern
shoreline was classified as mixed area (75.70%). 

The results of the second run revealed more details on
the distribution of SAV growth types in the mixed and
dense SAV patches (Fig. 6, Tab. 3). On 3, 13 and 23 August,
the majority of the shallow water area at the test site
Roseninsel was assigned as sediment, while small patches
of tall- (up to 7.68%) and meadow-growing (up to 4.99%)
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Fig. 3. Remote sensing reflectance of meadow- and tall-growing SAV classes, simulated with the reflectance model, for the 1st and 15th

of June (a), July (b), August (c), and September (d). The sediment spectrum was constant for each day.

Tab. 2. Areas classified for each littoral bottom type using depth-invariant index and the two-bottom-type approach (sediment <0.3,
mixed sediment dominated: 0.3-0.5; mixed SAV dominated: 0.5-0.7; dense SAV >0.7).

Two-bottom-type approach                                                    Depth-invariant index data (%)
Test site              Littoral bottom type                           3 Aug 2015                13 Aug 2015               23 Aug 2015               12 Sep 2015

Roseninsel           Sediment                                                    0.73                            64.07                           76.43                           77.46
                           Mixed sediment dominated                       56.69                           35.93                           23.06                           21.20
                           Mixed SAV dominated                              42.43                              0                               0.51                             1.34
                           Dense SAV                                                 0.15                               0                                  0                                  0
Karpfenwinkel    Sediment                                                       0                              14.69                           25.34                            2.50
                           Mixed sediment dominated                       13.23                           81.95                           63.43                           65.25
                           Mixed SAV dominated                              74.16                            3.36                            10.95                           32.00
                           Dense SAV                                                12.61                              0                               0.28                             0.25
Seeshaupt            Sediment                                                       0                              32.34                           45.59                           20.55
                           Mixed sediment dominated                       14.95                           60.36                           48.99                           61.68
                           Mixed SAV dominated                              77.86                            5.89                             4.67                            14.02
                           Dense SAV                                                 7.19                             1.42                             0.76                             3.75

SAV, submerged aquatic vegetation.
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SAV were located at the south-eastern part of the island and
a narrow stripe along the shoreline was classified as
meadow-growing SAV. On 12 September, the situation
changed and nearly the entire shallow water area was
classified as a mixture of sediment and tall-growing SAV
(99.45%). On 3, 13 and 23 August, a large sediment mixed
area patch dominated the centre of the test Karpfenwinkel.
Meadow-growing SAV populated the shallow areas in the
south (up to 14.57%), while tall-growing SAV
predominated in deeper areas in the north (up to 37.10%).
During August, however, the patches of tall-growing SAV
increased (from 21.27% to 37.10%). On 12 September,
only a narrow stripe along the shoreline was detected as
shallow water, dominated by a mixture of sediment and tall-
growing SAV. On 3, 13 and 23 August, meadow-growing
SAV were situated in the south-eastern near the shoreline
part and sediment patches in the south-western part of test
site Seeshaupt. Tall-growing SAV were located in deeper
zones: the eastern shoreline was classified as a mixture of

sediment and meadow-growing SAV. On 12 September, the
entire shallow water area was classified as a mixture of
sediment, tall- and meadow-growing vegetation
dominating the entire shallow water area.

Spectral unmixing of shallow water areas using
WASI-2D

WASI-2D based unmixing was also carried out for the
test sites Roseninsel, Karpfenwinkel and Seeshaupt.
Again, two unmixing runs were conducted, i.e. one to
differ between sediment (red) and SAV (green) (Fig. 7)
and one to distinguish sediment (red), meadow-growing
(green) and tall-growing (blue) SAV (Fig. 8). 

At the test site Roseninsel, the first run revealed large
sediment patches around the island Roseninsel for all
Sentinel-2A acquisition dates (Fig. 7, Tab. 4). On 3 and
13 August, towards deeper water mixed areas dominate,
followed by patches classified as dense SAV. On 23

Fig. 4. Remote sensing reflectance of meadow- and tall-growing SAV classes, simulated with the reflectance model and resampled on
Sentinel-2A bands, for the 1st and 15th of June (a), July (b), August (c), and September (d). The sediment spectrum was constant for each day.
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August and 12 September, the area classified as sediment
increased (80.28%) and SAV patches almost disappeared
(2.82%). At the test site Karpfenwinkel, SAV-dominated
patches were covering almost the complete shallow water
area on 3, 13 and 23 August (up to 76.89%); sediment and
patches of mixed bottom types were located in the north
and in the southeast. The sediment-dominated patches
increased noticeably on 23 August (60.93%). On 12
September, only a narrow stripe at the shoreline was
classified as shallow water, which was dominated by
sediment and mixed areas. At the test site Seeshaupt,
sediment patches and mixed areas were detected in the
western part and at the eastern shoreline for all Sentinel-

2A acquisition dates. On August 3, the majority of the
shallow water area in the south was classified as dense
SAV (17.22%). This SAV patch decreased on August 23
(3.96%) and September 12 (0.90%), resulting in an
increase of sediment-dominated patches (90.75%). The
pattern was similar on September12, although the
detected shallow water area was considerably smaller. 

For the test site Roseninsel, the results of the second
run (Fig. 8, Tab. 5) revealed large sediment areas around
the island (up to 69.42%), followed by patches of tall-
growing SAV in deeper water on 3, 13 and 23 of August.
Small isolated patches of meadow-growing SAV (up to
6.29%) occurred between tall-growing areas (up to

Tab. 3. Areas classified for each littoral bottom type using depth-invariant index and the three-bottom-type approach.

Three-bottom-type approach                                                 Depth-invariant index data (%)
Test site              Littoral bottom type                           3 Aug 2015                13 Aug 2015               23 Aug 2015               12 Sep 2015

Roseninsel           Sediment                                                   56.79                            4.36                            10.67                            0.95
                           Meadow-growing classes                           4.99                             1.22                             1.13                             0.55
                           Tall-growing classes                                   7.68                             5.14                             4.66                            12.27
                           Mixed area                                                30.54                           89.29                           83.54                           86.22
Karpfenwinkel    Sediment                                                   22.14                            3.77                             2.18                             0.50
                           Meadow-growing classes                          14.57                            6.94                             2.12                             9.00
                           Tall-growing classes                                  21.27                           35.99                           37.10                           21.25
                           Mixed area                                                42.02                           53.30                           58.60                           69.25
Seeshaupt            Sediment                                                   37.91                            9.34                             7.30                             0.05
                           Meadow-growing classes                          10.11                            5.10                             2.33                             6.33
                           Tall-growing classes                                  20.85                           25.47                           16.43                           15.46
                           Mixed area                                                31.13                           60.08                           73.95                           78.16

Tab. 4. Areas classified for each littoral bottom type using bio-optical modelling and the two-bottom-type approach (sediment <0.3,
mixed sediment dominated: 0.3-0.5; mixed SAV dominated: 0.5-0.7; dense SAV >0.7). 

Two-bottom-type approach                                                    Bio-optical modelling data (%)
Test site              Littoral bottom type                           3 Aug 2015                13 Aug 2015               23 Aug 2015               12 Sep 2015

Roseninsel           Sediment                                                   51.24                           50.73                           80.28                           68.07
                           Mixed sediment dominated                       18.27                           34.74                           12.25                           26.05
                           Mixed SAV dominated                              23.95                           14.53                            4.65                             5.04
                           Dense SAV                                                 6.54                             0.00                             2.82                             0.84
Karpfenwinkel    Sediment                                                    3.79                             7.09                            30.66                           45.31
                           Mixed sediment dominated                       19.32                           48.57                           30.27                           37.32
                           Mixed SAV dominated                              49.72                           44.25                           33.11                           17.37
                           Dense SAV                                                27.18                            0.08                             5.96                             0.00
Seeshaupt            Sediment                                                   21.61                           30.97                           55.64                           74.64
                           Mixed sediment dominated                       22.06                           34.28                           29.38                           16.10
                           Mixed SAV dominated                              39.11                           31.30                           11.02                            8.35
                           Dense SAV                                                17.22                            3.45                             3.96                             0.90

SAV, submerged aquatic vegetation.

Non
-co

mmerc
ial

 us
e o

nly



81Mapping the spatial distribution of submerged aquatic vegetation

23.31%). On August 23, however, the area classified as
sediment increased strongly (69.42%), while tall- (8.33%)
and meadow-growing (2.45%) patches decreased. At the
test site Karpfenwinkel large patches of tall-growing SAV
were classified in the centre and meadow-growing SAV
and sediment patches in the south at the beginning of
August. On August 13, a mixture of sediment and
meadow-growing SAV with isolated patches of tall-

growing SAV (7.43%) covered the shallow water area.
These sediment patches (23.73%) increased on August 23,
framed by tall-growing SAV. Meadow-growing SAV were
located in the south of the test site. In September,
sediment dominated the narrow stripe along the shoreline
classified as shallow water. At the test site Seeshaupt,
large sediment areas were classified in the south-western
part and at the eastern shoreline for all Sentinel-2A

Fig. 5. Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg illustrated after the linear spectral unmixing
using the depth-invariant indices on 3 August 2015, 13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour
composite R-G-B: 665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated shallow water
areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and ‘Seeshaupt’ (red box). The linear spectral unmixing
of 2 bottom types displays 100% bare sediment areas in red and 100% dense vegetated areas in green, mixed areas in yellow. Land and
deep water areas are masked.
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82 C. Fritz et al.

acquisition dates. At the beginning of August, large areas
of tall-growing SAV (22.58%) with isolated small patches
of meadow-growing SAV dominated the centre of this test
site. On 13 and 23 of August, the areas of tall-growing
SAV strongly decreased; sediment dominated the
shoreline, meadow-growing SAV the deeper water. In
September most of the shallow water area was assigned
as sediment (68.83%).

Analysing the results of the spectral unmixing
of both methods

To compare the results of both methods, a scatterplot
with linear regression lines was performed for both
methods for each bottom type and acquisition date. Fig. 9
shows a comparison of the two-bottom-type approach
(grey) and of the three-bottom-type approach (red). Both

Fig. 6. Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg illustrated after the linear spectral unmixing
using the depth-invariant indices on 3 August 2015, 13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-colour
composite R-G-B: 665 nm-560nm-490nm, acquisition date: 3 August 2015; left). The boxes represent the investigated shallow water
areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and ‘Seeshaupt’ (red box). The result of 3 bottom types
displays areas of bare sediment (red), meadow-growing plant SAV classes (green) and tall-growing plant SAV classes (blue). Land and
deep water areas are masked. 
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approaches showed a correlation, though the results of
two-bottom-types approach were less scattered. The results
of both approaches differentiating between two littoral
bottom types (Figs. 5 and 7) also emphasized visually a
similar spatial distribution of sediment and dense SAV
patches. For example, at the test site Roseninsel, both
approaches showed predominating sediment (red) areas
for all acquisition dates. When using the depth-invariant
index (Fig. 5), the remaining patches were mixed areas
(yellow and orange), while WASI-2D classified those
patches as mixed (yellow) and dense SAV areas (green)
(Fig. 7).

The results for meadow-growing (green) and tall-
growing (blue) SAV indicated widely scattered values
(Fig. 10), with low coefficients of determination (R2, see
Tab. 6). The highest coefficients of determination were
achieved for two-bottom-type approach (R2 up to 0.81).
The R2 values of the results of the three-bottom-type
approach were consistently lower (R2 up to 0.42).
Meadow- and tall-growing SAV correlations obtained the
lowest R2 values (R2=0.007 and R2=0.003). The results of
the three-bottom-type approach (Figs. 6 and 8)
demonstrated a similar spatial distribution of sediment
and SAV patches, but showed no comparable spatial

distribution for SAV on class growth level. For example,
for the test site Karpfenwinkel, the results of both methods
completely differed on 3 and 13 of August: WASI-2D
derived a large patch of tall-growing SAV whereas the
depth-invariant index detected sediment and mixed areas
of sediment and meadow-growing SAV.

DISCUSSION

The key aim of this study was to investigate the
performance of a Sentinel-2 multi-seasonal time-series in
providing information of in situ mappings according to
the WFD. For investigating the littoral bottom coverage
mapping capability in shallow water areas of Lake
Starnberg, two established methods were applied, i.e. the
depth-invariant index and bio-optical modelling with
WASI-2D. The second objective was to analyse whether
a time series of Sentinel-2 data allows a reconstruction of
the spatio-temporal dynamics of littoral bottom coverage
within a SAV growing season. The third objective was to
investigate whether Sentinel-2 data provide sufficient
spectral detail to allow a differentiation on class growth
level (meadow and tall-growing SAV). 

Tab. 5. Areas classified for each littoral bottom type using bio-optical modelling and the three-bottom-type approach.

Three-bottom-type approach                                                 Bio-optical modelling data (%)
Test site              Littoral bottom type                           3 Aug 2015                13 Aug 2015               23 Aug 2015               12 Sep 2015

Roseninsel           Sediment                                                   42.22                           43.65                           69.42                           90.96
                           Meadow-growing classes                           6.29                             2.52                             2.45                             0.15
                           Tall-growing classes                                  23.31                            8.73                             8.33                             2.38
                           Mixed area                                                28.18                           45.10                           19.80                            6.51
Karpfenwinkel    Sediment                                                    3.64                             6.02                            23.73                           38.50
                           Meadow-growing classes                           3.02                             4.90                             4.90                             3.29
                           Tall-growing classes                                  32.17                            7.43                             7.47                            15.02
                           Mixed area                                                61.17                           81.65                           63.90                           43.19
Seeshaupt            Sediment                                                   19.07                           28.50                           48.66                           68.83
                           Meadow-growing classes                           0.87                            12.30                           11.83                            1.04
                           Tall-growing classes                                  22.58                            2.00                             1.90                             0.35
                           Mixed area                                                57.48                           57.20                           37.61                           29.78

Tab. 6. R2 values for the different littoral bottom types for each acquisition date.

Littoral bottom type                                                      3 Aug 2015                13 Aug 2015               23 Aug 2015               12 Sep 2015

Sediment (2 bottom types)                                                     0.56                             0.66                             0.81                             0.79
Sediment (3 bottom types)                                                     0.42                             0.27                             0.31                             0.24
Meadow-growing classes                                                      0.06                            0.007                           0.05                             0.11
Tall-growing classes                                                              0.04                            0.003                           0.18                             0.39
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Differentiation and seasonal changes
of littoral bottom coverage

In our study both methods, i.e. the depth-invariant
index and WASI-2D, were able to retrieve bottom
substrate maps based on two bottom types i.e., SAV and
sediment, which indicates the potential suitability of
Sentinel-2A for monitoring littoral bottom coverage. Both

approaches detected similar spatial patterns and
distributions of SAV and sediment (Figs. 5 and 7, Tabs. 2
and 4). Sediment predominates shallow water zones
exposed to wind and waves (e.g., the test site Roseninsel)
and shipping traffic (e.g. the western part of test site
Seeshaupt) due to a high level of disturbances (Koch,
2001). Calm and protected areas with a broad reed belt
(e.g., the test site Karpfenwinkel and the south-eastern part

Fig. 7. Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg illustrated after linear spectral unmixing
using the bio-optical model WASI-2D on 3 August 2015, 13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-
colour composite R-G-B: 665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated shallow
water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and ‘Seeshaupt’ (red box). The result of 2 bottom
types displays 100% bare sediment areas in red and 100% dense vegetated areas in green, mixed areas in yellow. Land and deep water
areas are masked.
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85Mapping the spatial distribution of submerged aquatic vegetation

of test site Seeshaupt) allow the development of a dense
SAV patch. Areas with mixed coverage are characteristic
for detritus overlay on sediment, plant residuals, epiphytes
or sparsely growing SAV with sediment influence
(Armstrong, 1993; Fyfe, 2003; Williams et al., 2003;
Silva et al., 2008; Wolf et al., 2013). 

The results indicate that two-bottom type approach
(sediment and SAV classes) is able to support regular in

situ mappings as recommended by the WFD. Independent
of the SAV growth class, changes in the SAV spatial
extend, e.g., the covering of previously ungrown areas or
the desolation of vegetated areas, can be determined. This
information further supports a systematic and cost-
effective planning of in situ mapping.

Changes in the SAV growth extend, e.g., the covering
of previously ungrown areas or the punctually

Fig. 8. Littoral bottom coverage of the investigated shallow water areas at Lake Starnberg illustrated after linear spectral unmixing
using the bio-optical model WASI-2D on 3 August 2015, 13 August 2015, 23 August 2015 and 12 September 2015 (Sentinel-2A true-
colour composite R-G-B: 665 nm-560 nm-490 nm, acquisition date: 3 August 2015; left). The boxes represent the investigated shallow
water areas from left to right: ‘Roseninsel’ (green box), ‘Karpfenwinkel’ (blue box) and ‘Seeshaupt’ (red box). The result of 3 bottom
types displays areas of bare sediment (red), meadow-growing plant SAV classes (green) and tall-growing plant SAV classes (blue).
Land and deep water areas are masked.
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desertification of vegetated areas, can be determined,
independent of the growth type of SAV. This information
allows a systematic use of divers and in situ investigations
and supports the regular monitoring with regard to time
and financial aspects.

Seasonal spectral variation within the growing season

In our study, we investigated on a period in late
summer, where SAV is expected to change significantly
with maximum plant height and patch extension in August
(main vegetation time) to degrading and dying SAV
patches in September. Modelled SAV reflectance spectra,
resampled to Sentinel-2A, showed significant differences
within the growing season (Fig. 4), which were

sufficiently high to track the SAV class specific
development during the monitoring period. Sentinel-2A
therefore seems to be suitable for the differentiation
between tall- and meadow-growing SAV, especially in the
range of band 4 (665 nm) and 5 (705 nm), which are
sensitive to chlorophyll-a variations. 

At the end of the growing season in September, the
spectral shape of meadow-growing SAV class is flattened
in the yellow and orange wavelength region (560 nm –
630 nm); moreover, the chlorophyll-a absorption
maximum is less distinct. This is due to variations in leaf
pigment ratio (Sims and Gamon, 2002; Wolf et al., 2013),
when a lower Chlorophyll-a content in ageing leaves
unmasks other leaf pigments (e.g., carotenoids) and

Fig. 9. Scatterplot with regression line of sediment for the acquisition dates 03 August 2015 (a), 13 August 2015 (b), 23 August 2015
(c) and 12 September 2015 (d). Results of spectral unmixing of 2 bottom types for sediment (grey) and results of the spectral unmixing
of 3 bottom types for sediment (red).
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induces a shift towards yellow and orange wavelengths
(Gitelson and Merzlyak, 1994; Sims and Gamon, 2002). 

For a classification on SAV growth class level based
on real Sentinel-2 data, a spectral unmixing was applied.
Modelled spectra of the three littoral bottom types served
as endmembers, whereas the SAV spectra were selected
according to their phenologic status. The spatially distinct
differentiation between sediment patches and areas of tall-
and meadow-growing SAV classes (Figs. 6 and 8, Tabs. 3
and 5) suggests that Sentinel-2 data offer a suitable basis
for a littoral bottom classification. The shallow water area
near the harbour Seeshaupt is highly disturbed and
therefore classified as sediment. Calm water regions and
deeper water zones allow a dense SAV coverage (e.g., test

site Karpfenwinkel and south-eastern part of test site
Seeshaupt). The distribution of different SAV classes
seemed to be dependent on the water depth. While tall-
growing SAV predominates in deeper water regions,
meadow-growing SAV populates shallower areas close to
the shoreline. Differing growth height and plant structure
may explain this distribution detected by remote sensing
data. The characteristic spectral response of tall-growing
SAV classes dominates the reflectance signal in the deeper
zones. In the Sentinel-2 data only the canopy of the tall-
growing SAV classes is apparent: they cover the lower
growing SAV classes and therefore superimpose their
characteristic reflectance signal. This finding may explain
existing differences in classification results of remote

Fig. 10. Scatterplot with regression line of the different bottom types for the acquisition dates 03 August 2015 (a), 13 August 2015 (b),
23 August 2015 (c) and 12 September 2015 (d). Results of the spectral unmixing of 3 bottom types for meadow-growing SAV classes
(green) and tall-growing SAV classes (blue).
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sensing data and diver mappings (Fig. 1). In the shallow
water regions, meadow-growing SAV dominate the
remote sensing signal, because low water levels aggravate
growth of tall-growing SAV classes, which therefore are
unable to develop a dense cover. This modifies the
characteristic spectral signature and hinders a mapping
based on remote sensing.

Data of 12 September have to be considered
separately, because large parts of the shallow water area
were masked wrongly as deep water. The performance of
RI highly depends on a homogenous deep water
reflectance in red wavelengths (630 nm - 700 nm).
Differing water constituent concentrations at this
acquisition date (see Tab. 1) therefore may have affected
the RI calculation. Improving automatic shallow water
delineation may avoid such misinterpretation.
Nevertheless, the spectral unmixing of three bottom types
using depth-invariant indices also shows some
irregularities for this acquisition date. The unmixing
results are fundamentally different to those of pervious
acquisition dates, which is probably due to an insufficient
consideration of the water constituent concentration in the
depth-invariant index calculation.

Comparing the results of both investigated methods
showed similarities as well as differences between the
spectral unmixing of two or three littoral bottom types
(Figs. 9 and 10). For both methods, the results for
sediment (Fig. 9) scatter less than for SAV classes (Fig.
10); sediment further showed higher R2 values (Tab. 6).
This can be attributed to the spectral differences that are
more distinct between sediment and SAV than between
SAV growth classes. For both methods, low coefficients
of determination demonstrate that an unmixing at SAV
class growth level seems infeasible so far. To improve the
results, we therefore recommend detailed in situ
investigations to understand how the spectral signal of
SAV species changes with their phenologic development. 

When comparing the investigated methods, they offer
specific advantages and disadvantages based on their
methodology. The in situ measured input spectra of the
reflectance models serve as a basis for both approaches.
WASI-2D advantageously uses the input spectra without
water influence directly for modelling above water
reflectance ( ). Achieving a similar level with the depth-
invariant indices approach necessitates several steps: each
index is calculated on subsurface level, which includes a
subsequent transformation to the level of satellite data, i.e.,
above water reflectance ( ). This additional but
necessary step is a source of error, which can be avoided
when using WASI-2D, since the modelling happens on the
same level as the satellite data. The approach using WASI-
2D further has fewer processing steps and is therefore less
time-consuming. Moreover, the physically based approach

of WASI-2D directly includes the attenuation by water
constituents on the above water reflectance. This influence
therefore can be considered as spatially variable during
modelling. In contrast, the depth-invariant index addresses
the water column based on a spatially constant Kd (λ)
measurement. Additionally, WASI-2D can consider sun
glint during modelling (Dörnhöfer et al., 2016), which is
ignored by depth-invariant indices.

An advantage of the approach using the depth-invariant
index is the option of focusing only on individual band
combinations, which may omit band combinations with
few information. Furthermore, the water depth is calculated
from in situ measurements of Kd (λ) while WASI-2D
models the water depth as a fit parameter. These fit
parameters (in this case water depth and fractional
contribution from bottom reflectance) vary during
modelling within a predefined range until modelled and
satellite match a similarity criterion. The model results
therefore are a highly probable combination of fit
parameters, which, however, does not necessarily reflect
reality. Other parameter combinations may therefore lead
to a similar result, i.e. the inversion of a model may lead to
spectral ambiguity. Modelling is further constrained by the
number of available and suitable bands to avoid overfitting.

Besides the choice of the method, a major shortcoming
of our study is the lack of validation data. For a meaningful
validation, however, large-scale in situ measurements on
SAV species level would be beneficial. Our study showed,
that the currently available information based on transect
mappings is insufficient for a solid validation of remote
sensing data. We expect that large-scale mappings would
be more promising to record extent and coverage of SAV
patches, ideally during a Sentinel-2A overpass. 

Furthermore, we expect that access to spectral
information of sensors such as Sentinel-2 within the entire
growing season may significantly improve the accuracy
of a remote sensing based SAV monitoring. For this
however, knowledge of species-specific variations within
a growing season is essential. The setup of a spectral
database of SAV species integrating both species-specific
spectral characteristics and phenologic development is
necessary to achieve a successful classification on SAV
class level. Multi-year time-series further provides an
insight in trends of SAV coverage and SAV class
distribution. The revisit time and the high spatial
resolution of Sentinel-2A may support the in situ SAV
mappings as required by the WFD.

CONCLUSIONS

This study used four Sentinel-2A scenes of August and
September 2015 to map the spatio-temporal development
of SAV in shallow water areas of the oligotrophic Lake
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Starnberg (Southern Germany). To map sediment and
SAV distribution as well as distribution on SAV class
growth level, we applied the semi-empirical method of
depth-invariant indices and the bio-optical model WASI-
2D. To provide endmember spectra for the monitoring
period, we applied spectral reflectance models of different
SAV types for different phenologic stages. The results
confirm other studies demonstrating that the spatial and
spectral resolution of Sentinel-2A data is suitable for SAV
monitoring. Both applied methods provide similar spatial
distributions of sediment and SAV. None of the methods,
however, was able to show a clear distinction between
meadow- and tall-growing SAV. The improvement of the
validation of unmixing results seems solely possible by
extensive in situ mappings carried out simultaneously to
the satellite overpasses. We further recommend setting up
a spectral database of SAV species at different phenologic
stages, because an integration of SAV endmember spectra
at the proper growth stage proved to enhance
discrimination of SAV on class and species level. In view
of global warming, a multi-year time-series may obtain
information about trends in SAV coverage and species
distribution. Satellite systems with high spatial resolution
and a frequent revisit time such as Sentinel-2 offer the
potential to support in situ SAV mappings as required by
the WFD.
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