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Abstract

Emotions play a critical role in rational and intelligent behavior; a better fundamental knowl-

edge of them is indispensable for understanding higher order brain function. We propose a

non-invasive brain-computer interface (BCI) system to feedback a person’s affective state

such that a closed-loop interaction between the participant’s brain responses and the musi-

cal stimuli is established. We realized this concept technically in a functional prototype of

an algorithm that generates continuous and controllable patterns of synthesized affective

music in real-time, which is embedded within a BCI architecture. We evaluated our concept

in two separate studies. In the first study, we tested the efficacy of our music algorithm by

measuring subjective affective responses from 11 participants. In a second pilot study, the

algorithm was embedded in a real-time BCI architecture to investigate affective closed-loop

interactions in 5 participants. Preliminary results suggested that participants were able to

intentionally modulate the musical feedback by self-inducing emotions (e.g., by recalling

memories), suggesting that the system was able not only to capture the listener’s current

affective state in real-time, but also potentially provide a tool for listeners to mediate their

own emotions by interacting with music. The proposed concept offers a tool to study emo-

tions in the loop, promising to cast a complementary light on emotion-related brain research,

particularly in terms of clarifying the interactive, spatio-temporal dynamics underlying affec-

tive processing in the brain.

1 Introduction

Research on emotion has a longstanding tradition that has garnered interest from a variety of

scientific fields, such as psychology, sociology, and neuroscience (e.g., [1–4]). For example, sci-

entists now know that there is at least some degree of independence between emotion process-

ing and attentional mechanisms, that the amygdala is crucial in forming conditioned fear

responses, and that evoking certain emotional states biases decision making processes [5].

These findings have shed light on the cognitive, neural, and social factors at play in emotion
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processing. Despite these advances, existing theories and models of emotion often lack consis-

tency, and are often strongly context-dependent [6]. In addition, the majority of neuroscientific

research on affective responses has investigated brain processes involved in mere recognition of

emotional content, while the brain processes involved in the induction and mediation of affec-

tive states by emotionally-evocative stimuli are not yet well understood, due in part to the diffi-

culty of carefully controlling these types of studies. That is, traditional approaches have elicited

important breakthroughs in terms of how we understand affective responses at the behavioral,

social, and physiological levels. They have not, however, provided many tools for directly quan-

tifying neurophysiological measures of emotion that can help individuals both detect and mod-

ulate their own emotions. This is where the comparatively recent fields of Affective Computing
[7] and Brain-Computer Interfaces (BCI) [8, 9] can offer important insight into the physiology

and neuroscience of emotions, as well as cutting-edge techniques. Recently, BCI has been sug-

gested as a “powerful tool for scientific inquiry” of the brain in vivo, most notably for investi-

gating the nervous system’s adaptive capacities during interaction with external stimuli [10].

In particular, BCI has the clear methodological advantage of offering interactive approaches

to capturing neural responses that may be used to facilitate self-regulation of affective states in

users.

BCI approaches to affective states are of particular importance at this time, not only to

advance our understanding of emotion induction mechanisms by investigating the neural sig-

natures of emotions, but also for the myriad possible medical applications [11]. For example,

mental diseases, such as mood disorders and depression, have their origin in emotional dys-

functions [12]. Effective techniques to promote emotional regulation are of great importance

to the field of medicine; the affective BCI approach has been proposed as one possible route in

this direction [13]. Indeed, BCI-based treatment protocols have been proposed for several neu-

rological disorders, such as attention deficit hyperactivity disorder (ADHD) [14] as well as

depression in elderly [15].

To aid potential BCI approaches for emotion regulation, music is a useful medium, as it

is widely acknowledged to be highly effective in eliciting affective responses. Indeed, one of

the main reasons people reportedly listen to music is to change or enhance their mood [16].

Therefore, incorporating musical feedback into BCI systems offers great potential for emo-

tion-regulation systems.

Music and emotion: Music is known to express and evoke strong emotions [17–19], and

perceiving music implicates a wide spectrum of cognitive brain processes, such as short and

long term memory, visual and auditory perception and integration, physiological entrainment,

motor planning, and coordination [12]. Because music taps into so many different cognitive

resources, it can serve as an outstanding tool for better fundamental understanding of the

human brain. As Leng and Shaw [20] stated decades ago: “Since processing of music is a com-

plex set of perceptive and cognitive operations with links to memory and emotions, it offers a

window to the understanding of higher brain functions”.

Music is also a culturally robust phenomenon; evidence of musical behavior has been found

in every society [21, 22]. Furthermore, music perception starts very early in human ontogeny,

with infants demonstrating, for example, rhythmic and melodic discrimination [23]. Scientists

have even suggested that music was even a precursor to language development over the course

of human evolution [24]. Studies have also found that a basic understanding of emotional con-
tent in music begins in early childhood [17]. Because music is so widely appreciated, and is

often used (informally) by individuals to mediate or enhance their own emotional states, it has

great potential to be an effective tool for investigating affective regulation in listeners.

Several prior studies have employed music to trigger specific patterns of brain activity,

showing that it can be used as a diagnostic tool for neurological dysfunctions [25] and for
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treatment of such diseases [26], [27]. Music has also been used to treat depression and anxiety

in the elderly, individuals suffering from mental health disorders, and numerous other clinical

conditions and diseases (see for example [15, 28–31]). Scientists acknowledge that “A better

understanding of music evoked emotions and their neural correlates can lead to a more sys-

tematic and effective use of music therapy because dysfunctions in these structures are related

to emotional disorder” [12].

Another important feature of music that is particularly advantageous for the BCI context

of the present work: Unlike many other types of emotional stimuli that are difficult to

manipulate in specific ways over time, such as pictures and videos, music can algorithmically

be synthesized, and thus be used to form custom-made emotional stimuli. It can serve as a

continuous affective display—a real-time representation of a person’s affective state or

desired affective state. The idea to translate human brain activity into sound or music

was first proposed about five decades ago, however driven by artistic, rather than scientific

objectives. In a public demonstration in 1965 entitled “Music for Solo Performer”, Alvin

Lucier translated EEG measures into actuations for simultaneously playing several acoustic

percussion instruments [32]. A more contemporary application along these lines has been

presented by Hinterberger and Baier [33], who reported an EEG-based device for the sonifi-

cation of brain-oscillations. Similarly, Miranda et al. presented a concept in 2005 that maps

alpha- and beta-bandpower (representing relaxation- and attention-level) onto music con-

trol parameters to switch between two different styles of music [34]. In 2011, Makeig et al.

[35] conducted a study in which the participant was asked to associate several two-tone

musical drone sounds with corresponding self-induced emotions. Related EEG-patterns

were captured during a calibration session and subsequently modeled. In a live performance

together with a small chamber orchestra, the user was then able to trigger the drone sounds

by re-experiencing the initially associated self-induced emotions. A more recent work by

Deuel et al. in 2017 [36] utilized EEG alpha- and mu-band oscillations to allow the user to

generate different notes of a musical scale based on the level of bandpower activation in real-

time. The objectives of the above mentioned works were mainly for artistic purposes, and

except for the work by Makeig et al. [35], were not particularly focused on emotional brain

processes. Nevertheless, they demonstrate how well music lends itself to being generated in

real time based on the user’s emotions, and more specifically, how brain responses may be

used to drive music generation.

This work presents a novel Brain-Computer Interface (BCI) to feedback a user’s emotional

state by means of algorithmically synthesized music in such a way that continuous closed-loop

affective interaction can be established. The concept presented here builds upon preliminary

work of the authors [37]. The core component of our approach—and the major contrast to

previous works—is the utilization of a parameterizable music synthesis algorithm (Fig 1). This

algorithm allows for generating musical sequences with seamless and continuous transitions

between patterns of different emotional expressiveness. This algorithm is utilized to both ‘cali-

brate’ the system for EEG-based affect modeling (Fig 1A), and for online application (continu-

ous EEG-based affect translation, as shown in Fig 1B). This approach allows for a seamless

transition between the calibration phase and the online application phase as well as high flexi-

bility for developing novel calibration and stimulation protocols.

The remainder of this paper is structured as follows: The next section introduces our pro-

posed affective BCI concept, as well as a description of the technical realization of our concept.

The evaluation of the system is described in two sections: Section 2.3 describes a listening

study that evaluates the algorithm’s ability to generate synthesized affective music. In Section

2.4, this algorithm is integrated into the proposed affective BCI, and a real-time BCI study for

evaluating affective closed-loop interaction utilizing our proposed affective BCI. Section 3
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provides results of these two studies, which is followed by a discussion and concluding remarks

in Section 4.

2 Materials and methods

2.1 Automatic music generation system

Music can be thought of as a combination of harmonic, rhythmic and timbre components that

change over time. The automatic music generation system was implemented as a rule-based

probabilistic algorithm (see Fig 2A(b)), inspired by the work of Wallis et al. in 2008 [39]

and 2011 [40], however with widely different technical realization. Our algorithm generates

streams of MIDI-events, whereupon the occurrence and type of events are modulated by sev-

eral continuous control parameters. These control parameters were implemented such that

Fig 1. Conceptual illustration of the affective music BCI. (A) During calibration, the user is exposed to automatically generated patterns of affective

music, and brain activity is measured simultaneously via EEG. EEG patterns are extracted and used to build a user-specific emotion model. (B) During

online application, the obtained model is used to continuously translate the user’s brain activity into affective music, thereby closing the loop through

continuous affective brain interactions.

https://doi.org/10.1371/journal.pone.0213516.g001

Fig 2. Schematic illustration of the automatic music generation system. (A) mapping of valence and arousal onto music structural parameters (a),

state-machine to generate MIDI patterns (b), virtual instruments to translate MIDI patterns into sound (c). (B) Exemplary synthesized musical

trajectory through affective space (valence-arousal-model according to [38]).

https://doi.org/10.1371/journal.pone.0213516.g002
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they modulate the musical pattern according to five music structural components, namely:

harmonic mode, tempo, rhythmic roughness, overall pitch, and relative loudness of subsequent

notes. According to their settings, different musical patterns are generated. However, these

parameters do not inherently allow the generation of emotion-specific musical patterns. The

crucial aspect of the technical realization is illustrated in Fig 2A(a): Several psychological stud-

ies [41–43] have shown functional relationships between music structural parameters and

emotional responses expressed by valence and arousal (see [38]). We employed a subset of

functional relationships proposed by Gomez and Danuser in 2007 [43] to map two emotion-

related parameters (valence and arousal, val; aro 2 ½0; 1� � R) onto the five implemented

music structural parameters (input to the algorithm). The music generation system’s input

controls and the generated musical patterns are consequently emotion-related. The MIDI-pat-

terns are sent over a virtual MIDI path (MIDI Yoke) to software (ProTools 8 LE) hosting vir-

tual instruments (Fig 2A(c)) that are then translated into sound (playback engine was an

AVID MBox3 Mini external soundcard). In total 3 virtual instruments (piano, cello, bass)

were controlled with the MIDI-signals, resulting in a musical style comparable with a small

classical chamber orchestra (sound examples are available online here: http://ics.ei.tum.de/~

ehrlich/affectiveBCI/). The music structural parameters were implemented as described below.

The smallest note entity was set to an eighth note whose duration notedur is determined by the

parameter tempo. Tempo was functionally related to arousal according to Eq 1. The number

of notes played within one bar was randomly set based on a probability determined relative to

the arousal input parameter according to Eq 2. This parameter was called rhythmic roughness
as it controls the amount of notes being played, with more notes resulting in more complex

rhythmicity. The velocity (loudness) of each note was uniform randomly set within a loudness

range, whereupon the range is determined by the parameter relative loudness of subsequent

tones. Relative loudness was functionally related to arousal according to Eq 3. The pitch regis-

ter wherein one note notereg is played was also randomly set, such that the probability for high

(C5), middle (C4) or low registers (C3) is determined by the parameter pitch. Pitch was func-

tionally related to valence according to Eq 4. The parameter harmonic mode determines

which chords are played within one chord progression. One chord progression consists of four

subsequent bars; one chord is played per bar. The tonal key was fixed to C-major, as well as the

harmonic progression to I-IV-V-I (among the most common chord progressions in music

composition [44]). According to the principle of Kirchentonleitern, seven harmonic modes

are possible. An order of these modes from positive to negative valence has been proposed by

Schmuckler in 1989 [45], namely: 1. Lydian (4th mode), 2. Ionian (1st mode), 3. Mixolydian

(5th mode), 4. Dorian (2nd mode), 5. Aeolian (6th mode), 6. Phrygian (3rd mode), and 7.

Locrian (7th mode). The resulting chord progression is determined by the selected mode (Lyd-

ian mode, e.g. would result in the following chord progression: ||:Fmaj|Cmaj|Bdim|Fmaj:||). Har-

monic mode follows a 7-step discrete order, and is related to valence in a discrete manner

according to Eq 5. Note that all parameters, with the exception of harmonic mode, are contin-

uous.

tempo : notedur ¼ 0:3 � aro � 0:15 � R ð1Þ

rhythm : pðnote ¼ 1Þ ¼ aro ð2Þ

loudness : notevel ¼ unif f50; 40 � aroþ 60g � N ð3Þ

A music-based BCI for emotion mediation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213516 March 18, 2019 5 / 24

http://ics.ei.tum.de/~ehrlich/affectiveBCI/
http://ics.ei.tum.de/~ehrlich/affectiveBCI/
https://doi.org/10.1371/journal.pone.0213516


pitch : notereg ¼

pðC3Þ ¼ 2 � val if val < 0:5

pðC5Þ ¼ 2 � ðval � 0:5Þ if val � 0:5

C4 otherwise

8
>>><

>>>:

ð4Þ

mode ¼ 7 � ð6 � valÞ 2 1; :::; 7 � N ð5Þ

The way the music generation system was implemented allows for generating continuous

streams of music patterns with particular qualities of emotional expressiveness (parameteriz-

able with the respective input parameters valence and arousal). By gradually changing the

input parameters, the algorithm’s generated music patterns flow seamlessly and gradually

change in terms of emotional expressiveness. Any desired ‘trajectory’ through the valence-

arousal-space is therefore possible, e.g. going continuously from happy over sad towards angry

musical expressiveness (see exemplary trajectory in Fig 2B). This principle allows the integra-

tion of the algorithm into an online BCI architecture according to our initially proposed con-

cept (Fig 1). The applicability of the automatic music generation system is, however, not

restricted to the use case described in this work. The system was also employed in one of our

previous works on continuous augmentation of speech with affective synthesized music based

on real-time speech emotion recognition [46].

2.2 Affective BCI architecture

We developed a functional prototype of our concept by introducing the automatic music gen-

eration system into an online BCI architecture. In the following sections we first describe the

system calibration, then the procedure of building emotion classification models based on

EEG data recorded during calibration, and, finally, how we apply the emotion classification

model online to continuously translate the user’s affect into a musical representation using the

automatic music generation system.

2.2.1 Calibration. For a first proof-of-concept, we purposely simplified a few aspects

of the prototype development. For instance, during the calibration phase, the listener was

exposed to three classes of musical excerpts generated by the automatic music generation sys-

tem, namely: sad (low-arousal-negative-valence), neutral (intermediate-arousal-intermediate-

valence), and happy (high-arousal-positive-valence). Out of these three classes of musical

excerpts, only two classes (sad, happy) were used for the subsequent modeling step. This sim-

plification allowed us to treat the modeling step as a binary classification problem. The neutral

excerpts were introduced as a mediator between the two classes of interest (e.g., to reduce the

contrast between subsequently presented excerpts). Each excerpt was presented two times for

20 sec each in a pseudo-randomized order, such that subsequent excerpts were always of dif-

ferent classes. The excerpts were separated by idle periods of 10 sec in which no music was pre-

sented. The total calibration time was around three minutes. Brain activity during calibration

was measured via a 14-channel Emotiv EPOC EEG system with a sampling rate of 128 Hz.

2.2.2 Modeling. After presentation of the calibration excerpts, the recorded EEG data

were automatically modeled offline in 10 steps (Fig 3, top): (1) The respective listening periods

of the two classes of interest and the intermittent idle periods were extracted from the continu-

ous EEG data. (2) The data were further partitioned into segments with a window size of 4 sec

and an overlap of 87.5%. In previous in-house pilot experiments, we varied the window size (1,

2, 4, and 8 sec) and empirically found the best system performance for 4 sec. segments. We
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defined 87.5% overlap as this resulted in a reasonable update rate of 0.5 sec. during online

application. (3) The EEG data were filtered into 5 frequency bands by means of 2nd order zero-

phase Chebyshev IIR-bandpass filters. Please note that no continuous filtering was performed;

zero-phase filtering was conducted on each segment independently after windowing. This

approach was chosen to avoid unnecessary delays introduced by filtering. The selection of fre-

quency bands was based on the standardized recommendations [47], namely theta (4-7 Hz),

alpha (8-13 Hz), low beta (14-21 Hz), high beta (22-29 Hz) and gamma (30-47 Hz). We

excluded delta-band (0-4 Hz) as low frequency components in the EEG are prone to contami-

nation by eye-movement artifacts and slow signal drifts. Furthermore, we separated the beta-

band into a low and high components because of its large bandwidth in comparison to the

other frequency bands. (4) Spectral band power features f were extracted by computing the

log-variance f = log(var(xfilt(t))) of each segment xfilt(t) for all 14 channels and 5 frequency

bands, resulting in a total of 70 features, 80 observations per class, and 120 observations for the

idle condition. (7) The observations from the idle condition were averaged, forming a base-

line-vector. (8) The baseline-vector was then subtracted from each observation of the feature

vector, resulting in class-wise observations with cleared baseline. (9) The baseline-cleared

observations from the two classes of interest were then standardized. (10) Finally, the observa-

tions were used to build a classification model based on Linear Discriminant Analysis (LDA).

The LDA discriminant function is the hyperplane discriminating the feature space corre-

sponding to two classes: yðxÞ ¼ ~wT~f þ b, with~f being the feature vector, ~w being the normal

vector to the hyperplane (or weight vector), b the corresponding bias. The weight vector and

bias were computed by ~w ¼ ð~m2 � ~m1ÞðS1 þ S2Þ
� 1

and b ¼ � ~wTð~m1 þ ~m2Þ, with ~mj being the

class-wise means, and Sj being the class-wise covariance matrices.

2.2.3 Online application. During online application, the previously built LDA-model was

used as a translator of EEG signals into input parameter settings for the automatic music gen-

eration system (Fig 3, bottom). Incoming EEG data (in segments of 4 sec with 87.5% overlap)

were used for online feature extraction and classification. Identical to the calibration phase, 70

band-power features were extracted from one segment of EEG data (see processing pipeline in

section 2.2.2). The baseline vector and the standardization parameters obtained during the off-

line modeling phase were used to clear the baseline and subsequently rescale the feature vector.

According to Eq 6, the feature-vector~f was then applied to the formerly built LDA-model to

calculate the distance from the decision hyperplane separating the two classes of interest, given

Fig 3. BCI architecture. Signal processing and information flow during calibration (top row) and online application (bottom row) of the system. Note,

the dual use of the automatic music generation system in both cases for providing either open-loop stimulation (calibration) or closed-loop feedback

(application). The black dashed lines indicate model-specific parameters (filter parameters, standardization and baseline parameters, and classifier

parameters) that were obtained during calibration, and utilized during online application.

https://doi.org/10.1371/journal.pone.0213516.g003
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by the normal vector ~w and bias b of the hyperplane. The sigmoid function scales the LDA-

classifier output resulting in the final control signal s 2 (0, 1) (referred to as ‘score’ in the

remainder of this paper). This controls the system reactivity; in other words, the steepness,

determined by sigmoid function parameter α, controls how sensitive the score changes

with regard to changes in the feature vector. This parameter was set to α = 2, which was deter-

mined empirically based on subjective assessment of the system reactivity (perceived feedback

latency) in previous pilot experiments. Each score update (one per 0.5 sec) was subsequently

translated into an update of the music generation system’s input parameters, with val = s and

aro = s. Closing the loop was achieved by playing back the resulting musical patterns to the

subject. This enabled the subject to interact with the affective musical feedback along a contin-

uous scale between the affective states sad (low-arousal-negative-valence) and happy (high-

arousal-positive-valence).

s ¼
1

1þ eð� að~wT~f � bÞÞ
; s 2 ð0; 1Þ ð6Þ

2.3 Listening study: Evaluating the affective responses of the algorithmic

compositions

The purpose of this study was to investigate whether participants’ affective responses to the

generated musical patterns were in accordance with the corresponding valence and arousal

settings of the music generation system. That is, the listening study was meant to evaluate and

validate the functionality of the automatic music generation system, a prerequisite for justify-

ing its use in the online BCI system.

2.3.1 Listening study participants. Eleven healthy participants (age: 26.9±3.4 yrs; 7

males, 4 females) participated in this study. The group consisted of 4 musicians (with at least 5

years of formal musical education) and 7 non-musicians. All participants reported regularly

listening to music at least several days per week. Music preferences ranged across classical,

pop, rock genres, hip-hop, latin, electronic, and experimental music. Regardless of musical

expertise or listening preferences, all participants were given the same instructions prior to

the experiment. In addition, all participants signed a data collection consent form prior to the

study. The study was approved by the Institutional Review Board (IRB) of the National Uni-

versity of Singapore (NUS) under reference number 08-036.

2.3.2 Listening study stimuli. The automatic music generation system’s input parame-

ters span a two-dimensional emotional scale (valence-arousal model). In total, 13 uniformly-

distributed locations in the valence-arousal space were selected to be presented as stimuli.

The individual stimuli for each of the 13 locations were specific musical patterns arising

from the settings of the music generation system’s input parameters: {val,aro} = [{0,0};

{0,0.5}; {0,1}; {0.25;0.25}; {0.25,0.75}; {0.5,0}; {0.5,0.5}; {0.5,1}; {0.75,0.25}; {0.75,0.75}; {1,0};

{1,0.5}; {1,1}]. The order of presentation of the stimuli was pseudo-randomized for each indi-

vidual participant.

2.3.3 Listening study experiment protocol. The experiment took place in a quiet room

without visual or auditory distraction. Music was played back via an AVID Mbox Mini (exter-

nal sound-card) and Sennheiser earphones. The volume was set to a comfortable listening vol-

ume and participants were allowed to manually correct the volume at the beginning of the

experiment to their preferred level. The participants were first instructed (verbally and by

means of an instruction text) about the experiment setup, and then completed a brief question-

naire capturing demographic information and music preferences. Next, the 13 music excerpts

were consecutively presented to the participants for 30 sec each. Participants were asked to
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keep their eyes closed during music-listening in order to avoid distraction. After each excerpt,

the participants were asked to rate their emotional responses by means of the Self-Assessment

Manikin (SAM) [48], which is essentially a visual representation of a 9-point Likert scale. Par-

ticipants were allowed to take as long they desired to make each rating. The experiment was

approximately 15 minutes in duration per participant.

2.4 BCI study: Evaluating the affective closed-loop interaction

2.4.1 BCI study objective and hypothesis. The purpose of this pilot study was to investi-

gate to what extent participants were able to gain control over the music feedback, i.e., volun-

tarily change the music feedback by modulating their brain activity accordingly. We were

interested in what strategies participants would develop to attain such voluntary modulations

of the music feedback. Gaining control over the musical feedback would imply that partici-

pants are able to effectively mediate their own emotional states; this finding would support the

usability of BCI system to foster self-regulation of affective responses.

2.4.2 BCI study participants. Five healthy participants (age: 27.8±5.0, all males, all right-

handed) participated in this study. Four participants had no formal education in music. The

remaining participant had six years of formal musical training, but had not played music in

the seven years prior to this experiment. All participants reported regularly listening to music

more than a few minutes per day. Music preferences varied between rock, pop, and more spe-

cific music genres such as electronic music, folk, and hip-hop. All participants took part volun-

tarily and gave written consent. The study was approved by the Institutional Review Board

(IRB) of the National University of Singapore (NUS) under reference number 08-036.

2.4.3 BCI study experiment protocol. The experiment took place in a quiet room without

visual or auditory distractions. EEG data was recorded with a 14-channel emotiv EPOC EEG

system. While signal quality and spatial resolution of the emotiv EPOC is lower than that of

high-density research-grade gel-based EEG system, a number of publications have demon-

strated that the emotiv EPOC system can successfully be employed in different experimental

paradigms [49, 50], including neurofeedback applications [15]. In contrast to research-grade

EEG systems, the emotiv EPOC system is inexpensive, requires only brief preparation time

(around 5 min), is easy to handle (no professional training is needed), supports wireless data

transmission (high mobility), and has a comparably unobtrusive design. This offers clear

methodological advantages when deploying and validating our approach outside of the labora-

tory in the future (e.g., in elderly care centers). EEG electrodes were arranged according to the

international 10-20 system [51] (AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8, P7, P8, O1, O2)

and all leads were referenced to the average of two reference channels located at the locations

P3 and P4. The sampling rate was fixed to 128 Hz. Signal quality was checked with the emotiv

TestBench software prior to the start of the experiment. Sensors were adjusted until connectiv-

ity reached the ‘green’ level (corresponding to an impedance of< 220kO according to [50]).

The participants were seated on a comfortable chair, and music was played back via an AVID

Mbox Mini (external sound device) and Panasonic earphones. The music volume was set to a

comfortable listening volume, and participants were allowed to manually adjust the volume of

the music at the beginning of the experiment to their preferred level. The experiment protocol

is depicted in Fig 4A. The participants were instructed (verbally and by means of written

instructions) about the experiment procedure, and then completed a questionnaire capturing

demographic information and music preferences. Furthermore, participants were asked to

perform a self-assessment of their current mood based on a custom-made questionnaire with

14 opposing emotional attributes on a 7-point scale (e.g. stressed versus relaxed). The experi-

ment started with a 3-minute calibration phase, followed by automated building of the
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participant individual emotion classification model based on the recorded EEG data during

the calibration phase (c.f. Section 2.2.2 for details about technical implementation). The partic-

ipants were deliberately not given any hints on how to achieve the feedback modulations.

Instead, the participants were asked to develop an individual strategy, that they were allowed

to change throughout the experiment. According to the continuous metric between high-

valence-high-arousal (happy) and low-valence-low-arousal (sad), participants were asked to

perform two different tasks: modulate music feedback towards happy patterns and modulate
music feedback towards sad patterns.

A detailed description of the experimental design is shown in Fig 4B. One trial consisted of

a resting-period of 15 sec and a subsequent action-period of 30 sec. Although participants

were not explicitly instructed to try to modulate the musical feedback through the use of emo-

tion imagery, we hypothesized that they would employ this type of approach. Therefore, we

based the durations of the resting and action periods on a study using emotion imagery by

Sitaram et. al in 2011 [52]. They specified 24 seconds for the emotion imagery task and 4.5 sec-

onds for the resting period. During the resting period, no music feedback was provided; the

participants had no specific task and were asked to relax and prepare for the next trial. The

score was acquired during this resting period, and the data were then averaged to determine

which of the two tasks the participant would be given during the action-period. When the

average resting-score tended towards a sad state (< 0.5), the task modulate towards happy was

given. Conversely, when the average resting-score tended towards a happy state (>= 0.5), the

task modulate towards sad was given. Participants were informed about which of the two tasks

they had to perform two seconds before the start of the action period. The indication of the

task was realized by means of two different emotionally neutral indication sounds with the

same duration, pitch, and loudness-level: three subsequent short tones indicated the task

‘modulate towards happy‘, and one long tone indicated the task ‘modulate towards sad‘.

The action period started with the onset of music feedback and lasted for 30 seconds, during

which participants tried to modulate the music feedback towards the desired state according

Fig 4. BCI study experiment protocol (A) and trial structure (B). (A) Each session began with a questionnaire, followed by a calibration phase and

subsequent modeling of the emotion classifier. Afterwards, the main part of the experiment, the online application phase, was conducted. The

experiment ended with a second questionnaire. (B) A single trial started with a resting period of 15 sec in which no music feedback was presented to the

participant. The participant‘s EEG was recorded in the background, and the average score was used to assign, on every trial, one of the two tasks

(modulate towards happy or sad) to the participant. The subject then performed the task for a duration of 30 sec (action period).

https://doi.org/10.1371/journal.pone.0213516.g004
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to the given task. The end of the action period marked the start of the subsequent resting

period of the next trial. Participants were asked to sit still and limit their movement, keeping

their eyes closed throughout the entire online application phase (including the resting and

action periods).

Each participant took part in the BCI experiment twice (on two separate days). In the first

session, the participant performed 20 interaction trials (approximate duration of 15 min) to

become comfortable with the environment and the experimental setup. In the second session,

participants were asked to perform 50 interaction trials (approximate duration of 38 min). In

each session, and for each participant, the emotion classification model was (re-)calibrated.

The preparation time (questionnaires and calibration) was around 10 min and identical in

both sessions; thus the total duration of session 1 was around 25 min (15 min online interac-

tion) and of session 2 around 50 min (38 min online interaction). At the end of each session,

participants were asked to describe their experience and strategies while performing the music

feedback modulations verbally and by means of a short written text.

3 Results

3.1 Listening study

We discuss below the results of the listening study, where participants provided arousal and

valence ratings for each musical excerpt (c.f. Table 1). The raw data of perceptual ratings

revealed varying means across participants, e.g. some participants had a bias towards lower rat-

ings and others a bias towards higher ratings. These variations might have been a result of the

participants using different reference frames to make their ratings, possibly due to varying

music preferences. In order to normalize these variations we rescaled the perceptual ratings of

each participant between 0 and 1 for valence and arousal separately. Fig 5A shows the averaged

interpolated valence ratings across all presented excerpts. The valence ratings seemed to be

influenced by arousal such that excerpts with perceived low arousal produced a bias towards

negative valence, whereas the opposite effect is visible for high arousal. Although the results

are not optimal due to non-independent valence and arousal ratings, the ratings generally

reflected an increase of rated valence relative to an increase of the target values for valence.

Table 1. Listening study results. The music generation system’s parameter settings (target valence/arousal) and corre-

sponding perceptual ratings for valence and arousal (MEAN±SD, n = 11).

target ratings

No. val aro val aro
1 0 0 0.12±0.12 0.30±0.32

2 0 0.5 0.30±0.19 0.51±0.35

3 0 1 0.29±0.31 0.95±0.15

4 0.25 0.25 0.39±0.34 0.25±0.26

5 0.25 0.75 0.58±0.29 0.67±0.28

6 0.5 0 0.23±0.18 0.23±0.28

7 0.5 0.5 0.50±0.27 0.52±0.28

8 0.5 1 0.69±0.28 0.80±0.21

9 0.75 0.25 0.74±0.32 0.29±0.24

10 0.75 0.75 0.79±0.23 0.68±0.21

11 1 0 0.73±0.26 0.29±0.24

12 1 0.5 0.62±0.33 0.45±0.24

13 1 1 0.67±0.27 0.83±0.20

https://doi.org/10.1371/journal.pone.0213516.t001
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In contrast to the valence ratings, arousal ratings were nearly independent from perceived

valence (Fig 5B). An increase in the target arousal setting is clearly reflected in an increase in

the perceived average arousal. Participants’ arousal ratings nicely reflected the music genera-

tion system‘s target values for arousal, as hypothesized. The relatively high standard deviations

(c.f. Table 1) may be explained by considerably large variations in participants’ cultural back-

ground, musical education, and listening preferences, not to mention the relatively small sam-

ple size. Furthermore, the understanding and interpretation of the SAM scheme may have

differed slightly from participant to participant. Additionally, for each individual participant,

we computed Pearson‘s linear correlation coefficients between the perceptual ratings and the

corresponding music generation system‘s input parameters of all 13 excerpts, for valence and

arousal ratings separately. Fig 5C shows the distribution of the correlation coefficients across

participants (n = 11), with a median correlation of rval = .52 for valence, and of raro = .74 for

arousal. For valence ratings, significant correlation coefficients (p< 0.05) with target valence

were reached in 5 out of 11 participants; for arousal ratings, significant correlation coefficients

with target arousal were reached in 8 out of 11 participants.

3.2 BCI study

3.2.1 Evaluation of offline model performance. In order to obtain an estimate of the per-

formance of the individual models built prior to the start of the online application phase, we

performed 10-fold cross-validations (CV) on the calibration data. Because the calibration data

contained only two trials per class, we were unable to perform trial-based cross-validation that

would yield meaningful results. Therefore, we decided to partition the data into non-overlap-

ping windows of 1 second in duration. This produced 80 observations (40 per class). We per-

formed the cross-validation by splitting the data into 10 folds, where 9 folds were used for

training and the remaining fold was used for testing the model. The folds were then shuffled

10 times such that all folds were used once for testing. The entire procedure was repeated 100

times to obtain a stable estimate of the average performance, resulting in 1000 individual test

results, which were then averaged for every model. The averaged results for each model (for

every participant/session combination) are reported in Table 2. The average accuracy (i.e., cor-

rectly classified samples) across all participants is 58.4% for session S01 with an avg. AUC of

0.58 and 64.9% for session S02 with an avg. AUC of 0.65. The binary chance-level threshold

given the number of observations per participant (n = 80) and equal prior probabilities is

Fig 5. Listening study perceptual ratings. (A) Interpolated valence- and (B) arousal-ratings averaged across subjects. (C) Distribution of per-subject

Pearson correlation coefficients between perceptual ratings and the music generation system‘s parameter settings for valence and for arousal.

https://doi.org/10.1371/journal.pone.0213516.g005
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58.75% (based on the binomial inverse cumulative distribution function with p< 0.05). There-

fore, the results were significantly higher than chance for three out of five participants (P03,

P04, P05) in session S01, and significantly higher than chance for all four out of five partici-

pants in session S02 (P01, P03, P04, P05). The improvement in average cross-validation per-

formance from session s01 to s02 is likely related to participants becoming more familiar

with the stimuli and the experimental procedure, resulting in more coherent response data.

Nevertheless, the results generally support the validity of the acquired data and the modeling

approach employed. It is worth noting that offline model performance does not directly trans-

late into the model‘s performance during online-application, because the listener in the loop
may be adapting to the music feedback during interaction.

3.2.2 Modulation performance results. After the experiment, participants were asked

to describe their strategies verbally and in the form of a short written text. All participants

reported strategies based on retrieval of emotional mental images or episodes from the past as

well as events they look forward to in the future. In addition, for the ‘modulation towards sad’

task, participant P01 reported in the second session to have successfully used the strategy of

self-inducing a “meditative state of mind”, rather than retrieving memories.

In order to quantitatively assess the participants’ performance in the given tasks, we sepa-

rated subsequent observations of the model output (score s) into resting and action periods for

each trial and task separately. The score observations were then averaged into two scalar values

per trial: the mean score of the resting-period, and the mean score of the action period. For

each individual participant and session, we then performed either a left-tailed (for the ‘! sad’

trials) or a right-tailed (for the ‘! happy’ trials) paired t-test, testing the deviation between

action and rest across all trials per participant and session according to the given task (see Fig

6). To distinguish between good and poor performance, we used a threshold at the marginal

significance level of p< 0.1. Surprisingly, although a baseline-correction was performed dur-

ing the online application phase using the acquired baseline-vector of the calibration phase,

most participants developed a bias towards one of the two affective states. This resulted in

imbalanced trials in terms of the task distribution for 7 of 10 participant-session-combina-

tions. Therefore, part of the data could not be analyzed using the proposed method due to too

few trials per specific task. However, 3 of 5 participants showed significant modulation perfor-

mance in either one or both tasks. Interestingly, the only musically educated participant (P01)

performed best in both sessions and achieved significant modulation performance in both

tasks in the second session. Yet, paradoxically, the model built for P01/S01 had very low offline

performance compared to other participant-session combinations (see Table 2). The fact that

P01 performed relatively well in S01 may indicate that this subject was able to successfully

adapt and compensate for the insufficiencies of the model during the online testing phase.

Table 2. Offline model performance results. Offline model performance based on 100-times-10-fold cross-validation for all subjects (P01-P05) and sessions (S01 and

S02). Offline decoding performance is expressed in form of percentage of correctly classified observations per class (happy and sad), overall correctly classified instances

(ACC) and via the area under receiver operator curve (AUC).

S01 S02

happy sad ACC AUC happy sad ACC AUC

P01 49.1% 45.6% 47.3% 0.47 72.6% 76.4% 74.5% 0.75

P02 60.6% 50.7% 55.8% 0.56 61.4% 53.9% 57.6% 0.58

P03 72.1% 52.5% 62.3% 0.62 65.7% 68.0% 66.8% 0.67

P04 65.4% 68.6% 67.0% 0.67 64.5% 62.9% 63.7% 0.64

P05 51.9% 67.6% 59.7% 0.60 63.7% 59.9% 61.8% 0.62

AVG 59.8% 57.0% 58.4% 0.58 65.6% 64.2% 64.9% 0.65

https://doi.org/10.1371/journal.pone.0213516.t002
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Fig 6 shows the average modulation performance in form of the mean difference �sdiff between

the model score of the action period minus the corresponding resting period, averaged across

trials (Eq 11). One can observe that in almost all participant/session/task-combinations,

successful modulations were performed, except for P02/S01/! sad and P03/S02/! happy.

However, the modulations were only statistically significant in some participant/session/task-

combinations (denoted with an asterisk (�)).

3.2.3 Analysis of relationships between modulation performance and mood self-assess-

ment. Besides the objective performance measures obtained in the previous analysis, we were

interested in whether observed performance variations among participants and sessions are

explained by subjective mood self-assessment ratings provided by the participants before the

start of each session, e.g. whether measures of self-assessed mood predicted subsequent perfor-

mance in the interaction tasks.

For each participant-session-combination, we designed three objective performance mea-

sures: resting mean (RM), action mean (AM), and total deviation (TD), as shown in Eqs 7–10,

where s denotes the score and n denotes the total number of task- and period-specific score

observations and m the number of trials of the corresponding condition.

RM ¼
1

m

Xm

i¼1

1

n

Xn

j¼1

srest ð7Þ

Fig 6. Average modulation performance. The bars represent the mean difference �sdiff between the model score of the action period minus the

corresponding resting period, averaged across trials (Eq 11) separated in sessions (S01: A and B; S02: C and D) and task (! happy: A and C;! sad: B

and D). Numbers in parentheses denote the number of trials for the respective participant/task/session combination and the asterisks (�) those

combinations with significant modulation performance.

https://doi.org/10.1371/journal.pone.0213516.g006
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AM ¼
1

m

Xm

i¼1

1

n

Xn

j¼1

saction ð8Þ

TDhappy ¼ AMhappy � RMhappy ð9Þ

TDsad ¼ RMsad � AMsad ð10Þ

�sdiff ¼
1

m

Xm

i¼1

ð
1

n

Xn

j¼1

saction �
1

n

Xn

j¼1

srestÞ ð11Þ

We computed Pearson‘s correlation coefficients between the 6 performance measures and

the mood self-assessment ratings across all participant-session combinations. The results for

mood assessment ratings that significantly correlated with RM, AM, and/or TD are shown in

Table 3. The analysis revealed that participants performed larger modulations towards the sad

condition if they felt concentrated (rather than distracted) and angry (rather than content)

prior to start of the experiment. In addition, a tendency for lower resting mean was discovered

when participants felt more calm (rather than excited) before the study. The resting and action

means in the! happy task correlated with the level of tiredness vs. awakeness reported by

the participants prior to the experiment. As a result, for this condition, reports of feeling

exhausted, scattered, and tired prior to the study biased the resting and action means to be

higher.

3.2.4 Preliminary results indicating brain activity modulation. For our final analysis,

we examined participants’ brain activity while performing the modulation tasks. The objective

of this analysis was to support the behavioral results reported in the previous section with cor-

responding electrophysiological results. Specifically, we investigated whether certain kinds of

EEG oscillatory brain activity were associated with particular emotion states, as emotion states

have been associated with different EEG correlates in the literature (for a review see [53]). In

the frequency domain, variations in alpha power have been associated with affective valence

[54] and discrete emotions such as happiness, sadness, and fear [55]. Beta band power over

right temporal sites has been shown to correlate positively with affective valence [56], and

gamma band power modulations have been related to discrete emotions such as happiness

Table 3. Correlation analysis results. Correlation coefficients, across all participant-session combinations for task ‘modulate towards happy’ (!happy) and task ‘modu-

late towards sad’ (!sad), between performance measures (resting mean (RM), action mean (AM), total deviation (TD)) and mood assessment ratings (for the six signifi-

cant mood scales of 14 total ratings made by participants).

! happy ! sad

RM AM TD RM AM TD
exhausted vs. refreshed -.59 -.61

calmed vs. excited -.44

distracted vs. concentrated .67�

scattered vs. focused -.57 -.56

angry vs. contented -.56

tired vs. awake -.61 -.68�

Note: Correlations are provided above that have at least marginal significance (p< 0.1). Asterisks (�) denote a significant correlation of p< 0.05.

https://doi.org/10.1371/journal.pone.0213516.t003
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and sadness [57–59]. Hence, to support the assumption that participants performed inten-

tional music feedback modulations by self-inducing corresponding emotions, we hypothesize

here that feedback modulations were accompanied by changes in emotion-relevant EEG corre-

lates, especially in the alpha, beta, and gamma bands. For this analysis, we focused on session

S02, and the task! happy, because all participants performed a sufficiently large number of

trials (at least 27 times) in this task. Furthermore, only subjects with at least marginally signifi-

cant modulation performance for the task! happy in session S02 were included in this analy-

sis. This criterion excluded participants P02 and P03, leaving participants P01, P04, and P05

for the analysis. We performed a pseudo-online analysis by processing the continuous raw

EEG data as in the online application of the original experiment: 4-second long EEG segments

were fed into the model segment-by-segment with an overlap of 87.5% in the processing chain

(c.f. Section 2.2.3). We then extracted all data segments from the! happy (action-period)

task, as well as all segments belonging to their corresponding resting periods. For the analysis

all data from the respective subjects and task were used; no artifact removal was performed.

On each trial, we computed the mean bandpower across all segments of the action-period and

subtracted the mean bandpower from all segments of the corresponding resting period. This

resulted in one observation per trial (action minus rest) and 70 features in total (14 channels x

5 frequency bands). We then performed within-participant standardization of the observations

in order to minimize inter-participant variations. Finally, we performed Bonferroni-corrected

multiple t-tests on all features (p< (0.05/70)) in order to test for significant differences. The

results are depicted in Fig 7 and show that music feedback modulations towards the happy

state were accompanied by significant power decrease in beta band over frontal areas, in par-

ticular in the high beta band (21-30Hz), as well as a significant increase in gamma band power

over the fronto-central right hemisphere. These effects are largely driven by subjects s01 and

s05, who exhibited similar topographic plots for all frequency bands. In s04, decreased frontal

beta power and a general increase in gamma power are also observable, but are weaker than in

s01 and s05.

Granger causality: The closed-loop experimental design allowed us to conduct an explor-

atory causality analysis to elucidate which neural modulations may have likely contributed to

changes in music feedback (and which modulations resulted from hearing the music). One

may argue that the significant modulations observed in participants P01, P04, P05 merely

reflect a reaction to the onset of the presentation of the music stimuli rather than an effect that

reflects a bi-directional interaction between brain activity and musical feedback. To account

for this possibility, we performed a causality analysis to investigate whether brain activity

Fig 7. Brain activity modulations during online application in task! happy averaged across participants P01, P04, and P05. Music feedback

modulations toward the happy state were accompanied by significant power decrease in beta band over frontal areas (a), as well as an increase in

gamma power over the right hemisphere (b). The highlighted channels indicate Bonferroni-corrected statistically significant modulations comparing

action and resting periods (action minus rest), (p< 0.05).

https://doi.org/10.1371/journal.pone.0213516.g007
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modulations caused the feedback to change, whether the feedback triggered a brain response,

or whether bidirectional causal relationships were present. For brain activity modulations that

responded only to changes in music feedback, we expected unidirectional causal relationships

with a directional flow from feedback to the respective brain activity features s!~f . Alterna-

tively, brain activity modulations contributing to changes in music feedback should be

reflected in causal relationships with a directional flow from respective brain activity features

to the feedback~f ! s. Bi-directional causal relationships are of particular interest as they sug-

gest features that interacted reciprocally with the music feedback, i.e., they both caused and

responded to feedback modulations (s!~f &~f ! s). For these analyses, we first concatenated

the observations from the action periods (60 observations per trial) for participants P01, P04,

P05 during task! happy. We then computed the causal relationships between each feature

and the feedback score resulting in 71x71 causal relationships. Causal relationships were com-

puted using the Granger causal connectivity toolbox [60] with a maximal number of lags

nlags = 10 (corresponding to 5 sec) and a statistical Bonferroni-corrected threshold of

p< 0.01. Fig 8 shows the results of our analysis. As a main result, bi-directional causal flow

was discovered, particularly in gamma-activity over FC6. This provides support that the

gamma-power related brain activity modulations observed in the previous analysis on brain

activity modulations (see Fig 7) were (1) causing the feedback to change, and (2) caused by

changes in the feedback, i.e. reciprocally interacted with the music feedback. Moreover, causal

flow s!~f (reaction) spread from right temporal to anterior-central and posterior-central

areas, whereas the causal flow~f ! s (modulation) was mainly focused on FC6. Interestingly,

no causal relationships were apparent for the significant modulations in frontal beta that were

observed as a result of our previous analysis (see Fig 7). This suggests that the frontal beta

activity did not cause the musical feedback to change, and was also not influenced by it. This

suggests that the frontal beta activity modulations were rather a side effect, not directly con-

tributing to the interaction, and may have been the result of participants concentrating on the

task.

Fig 8. Granger-causal information flows during task!happy in session S02 jointly computed for P01, P04, P05 (participants with good

modulation performance). s!~f indicates causal flow from feedback to brain activity features (top row) and~f ! s from brain activity features to

feedback (bottom row). The g-causalities are statistically tested for significance (p< 0.01) and Bonferroni-corrected.

https://doi.org/10.1371/journal.pone.0213516.g008
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4 Discussion

4.1 Listening study

The listening study was conducted to investigate whether participants’ affective responses to

generated musical patterns were in accordance with the corresponding valence and arousal

settings of the automatic music generation system. The results confirmed a good match as

indicated by exclusively positive within-participant correlation coefficients between self-

assessed perceptual ratings of emotional affect and valence/arousal settings of the music

generation algorithm. Despite the overall match between perceptual ratings and music genera-

tion settings, we observed high variance of ratings across subjects. The variance discovered

between participants was probably due in large part to the variety of demographic back-

grounds of the listeners (e.g., cultural background, music listening habits, musical training,

etc.). Overall, the findings validated the functionality of the automatic music generation system

as a parameterizable emotion stimulus and justified its utilization in the proposed closed-loop

BCI architecture.

Closer inspection of the results revealed that arousal ratings match in general better than

the valence ratings, as shown in Fig 5A and 5B. This is reflected in higher median across sub-

ject correlations and lower variations among subjects for the arousal ratings than for the

valence ratings. This finding is in line with previous research; as stated by Yang et al. [61],

across studies, researchers often find it is easier to predict or model arousal than valence. In

their own study, Yang and colleagues reported best performance (as evaluated with R2 statis-

tics) for modeling arousal at 58.3%, but only 28.1% for valence, using a SVM regression model.

Furthermore, one may observe in the current Listening study that arousal ratings were largely

independent of valence music generation settings; but in contrast, valence ratings were some-

what dependent on the arousal music generation settings (Fig 5A). This dependency has also

been found in other research (e.g., [62, 63]). As summarized in [64], Yoo and Lee (2011) found

that arousal and valence were not completely independent from one another, even though

they were two dimensions in the 2D Thayer-Russell space [63].

With regard to our automatic music generation system itself, we decided to implement har-

monic mode in a valence-related order suggested by Schmuckler in 1989 [45] with lydian and

ionian mode ranking first and second, respectively, in terms of positive valence. The results,

however, indicated that ionian mode was rated with higher valence on average than lydian

mode, suggesting that swapping these two modes in a future version of the automatic music

generation system could result in a better match with perceptual valence ratings. Similarly,

the influence of valence on arousal might be minimized in future applications of this work by

modifying the functional relationships between the valence/arousal parameters and the music

structural parameters. Both modifications can be implemented in a straightforward manner

based on the perceptual ratings collected in this study. Finally, although participants were spe-

cifically asked to rate their experienced (induced) emotion, this task can be rather difficult for

participants [17, 18, 65]. Therefore, we cannot exclude the possibility that the ratings of emo-

tional affect were to some extent intertwined with perceived emotional expressiveness. This

would make an interesting avenue for future research.

4.2 BCI study

The results of the BCI pilot study were a preliminary proof-of-concept that feedback modula-

tions are possible using our proposed music-based BCI system. According to the participants’

reports, music feedback modulations were mainly performed by self-inducing the target emo-

tions by recalling emotional memories. The analysis of resting versus action means of the
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score observations revealed that in all but two out of 10 participant-session combinations, the

intended modulations were achieved. One of 5 participants achieved significant modulations

in both tasks, whereas two other participants achieved significant modulations in one of the

two given tasks. The analysis of relationships between modulation performance and mood rat-

ing prior to the experiment provided useful insight about why some of the participants per-

formed well whereas others exhibited rather low performance. In particular, self-reports of

feeling concentrated rather than distracted prior to the experiment significantly correlated

with the feedback modulation performance during the task! sad. In general, high inter- and

intra-participant variations were observed. This was reflected in the bias some participants

developed towards one of the classes during the online application, which resulted in biased

output by the BCI classification model. This phenomenon (classification bias) is common in

the online application of BCIs and typically a result of shifts of feature distributions, e.g. due to

electrodes drying, drowsiness, and attention variations.

Our investigation of brain activity modulations during one specific task showed significant

differences for the participants who performed well in the experiment. Right hemisphere

gamma power and frontal beta power modulations were found to be involved in the interac-

tion task. While power modulations were most pronounced in frontal beta and right frontal

gamma, Granger causality analysis suggested that only right frontal gamma contributed to

the feedback modulations. Although a reduction of beta band activity was found during self-

induced imagination of emotions, our causality analysis suggested that the frontal beta modu-

lations did not significantly contribute to the interaction between brain states and emotion

modulations. While previous authors have discovered positive correlations between beta band

power over right temporal sites and valence [56], beta band activity could have been a side

effect due to the participants concentrating on the task [66]. Regarding the gamma power

modulations, the possibility that muscular activity (e.g. facial or neck muscle tension) contrib-

uted to the observed findings cannot be completely excluded. Nevertheless, gamma power

modulations have been consistently reported in the literature in relation to emotion process-

ing, based on a variety of experimental tasks and stimuli [57–59]. Onton and Makeig observed

positive correlations between gamma-modulations over anterior temporal sites and emotional

valence, which was also confirmed by Koelstra et al. [67]. Further, out of a set of features tested,

Lin et al. [68] found temporal gamma-power to have the most discriminative power for the

classification of emotional affect in music listening.

The literature therefore lends support to our hypothesis that subjects intentionally modu-

lated the music feedback based on self-inducing corresponding emotions. Although these find-

ings are promising, it is important to note that they are based on a relatively low number of

participants. This, in conjunction with high inter- and intra-participant variations, prevents

us from drawing strong conclusions from the pilot study. Nevertheless, the findings provide

important insight into how the system works, and point towards future research directions.

These considerations are addressed in the following section.

4.3 Future work

A follow-up study would be helpful to confirm the initial findings of the pilot study. Future

work would most likely benefit from: (1) increasing the sample size, (2) collecting more data

during the calibration phase (this would allow for more robust modeling and evaluation of

the emotion classifier, and may counteract the observed classification bias), and (3) including

automatic balancing of the task distribution during online application, or restricting the study

to a single task (e.g.,! happy) only. In addition, although the Emotiv EPOC system has been
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validated in numerous BCI studies, as discussed above, one could use a high-density research-

grade EEG system for more robust localization of neural activity.

The preliminary results of the BCI study show that feedback modulations are possible via

this music-based BCI system, and the brain activity analyses (especially the causality analysis)

demonstrate how brain processes involved in the interaction can be isolated effectively. These

findings are a proof-of-concept for our system, and more generally, provide a promising new

approach to studying emotion regulation and related brain processes. Because our BCI system

features continuity of interaction with an adaptive, emotionally evocative stimulus, it may be

used to investigate the interaction dynamics between a listener and affective stimuli, and to

model the corresponding brain processes. In this way, the emotion regulation system could be

described and modelled as a ‘controller’ pursuing a particular ‘desired emotional state‘. More-

over, we believe in the applicability of our concept in neuro-rehabilitation of affective disor-

ders, which we seek to explore in the future. Closing the loop via a brain-computer interface

allows users to monitor their own brain processes, which can trigger neuroplasticity, recovery,

or even enhancement of brain function.

Although our work did not evaluate the efficacy of the proposed BCI for use in neuro-

rehabilitation, we believe that this would be a worthwhile direction, and that our concept is

particularly advantageous over conventional approaches to this topic: The use of a single para-

metrizeable emotion stimulus allows flexible and convenient use in both BCI calibration and

online application. As such, users are exposed with the same stimulus in both phases, allowing

for tight calibration-to-application immediacy. In other words, the proposed approach allows

for continuous interaction with an emotionally evocative stimulus (online application) based

on the brain responses that were engaged during passive listening of the very same stimulus

(calibration phase). To the best of the authors’ knowledge, no such integrated approach has

been presented before in the domain of affective BCIs. This opens possibilities for the develop-

ment of novel neuro-rehabilitation treatment protocols.

4.4 Concluding remarks

We have presented the concept, technical realization and evaluation of a novel non-invasive

BCI to establish affective closed-loop brain interaction by means of a music-based emotion

feedback. The BCI is based on an automatic music generation system to generate patterns

of synthesized affective music employable as a continuously controllable emotion stimulus.

In our first study, we successfully evaluated the affective quality of synthesized musical

patterns generated with the automatic music generation system. A second feasibility

study was conducted to examine affective closed-loop interactions in several participants.

Preliminary results suggested that participants were able to intentionally modulate the musi-

cal feedback by self-inducing emotions (e.g., by recalling memories), an important finding

for future studies in this line of research. We believe that this BCI system, including the

music-generation system and technical framework, can be used as an effective new tool for

investigating affective responses, emotion regulation, and the rehabilitation of affective

disorders.
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