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Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets.
Approximately half of the members of the human GPCR superfamily are chemosensory receptors,
including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors
(TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory
GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to
play a role in biological functions other than chemosensation. Despite their abundance and
physiological/pathological relevance, the druggability of csGPCRs has been suggested but not
fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by
reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the
chemical space and the drug-likeness of flavour molecules.
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1. Introduction

Thirty-five percent of approved drugs act by modulating G protein-coupled receptors (GPCRs) [1,2].
GPCRs, also named 7-transmembrane (7TM) receptors, based on their canonical structure, are the largest
family of membrane receptors in the human genome. The most commonly-used classification system
divides GPCRs into six classes: class A (rhodopsin-like), consisting of over 80% of all GPCRs, class B
(secretin-like), class C (metabotropic glutamate receptors), class D (pheromone receptors), class E (cAMP
receptors) and class F (frizzled/smoothened family) [3–5].

The high GPCRs’ “druggability”, that is, the likelihood of modulating a target by small-molecule
drugs [6], is due to a combination of numerous factors, including their physiological and pathological
relevance, their expression in the plasma membrane, which facilitates molecular interactions in the
extracellular milieu, and a very defined binding site [2,7–9]. The number of GPCRs targeted by drugs
is currently 134, ~16% of the ~800 GPCRs in the human genome [1]. Remaining 84% of the GPCR
repertoire include orphan GPCRs (~100 receptors) and sensory GPCRs (olfactory, taste and visual
receptors). Chemosensory GPCRs (csGPCRs) constitute structurally and phylogenetically diverse
subgroups within the superfamily of GPCRs (Figure 1).
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Figure 1. Architecture of csGPCRs. (A) Chemosensory receptors classified as class A G protein-

coupled receptors (GPCRs), whose orthosteric binding site is located inside the TM domain, i.e., ORs, 

TAARs and TAS2Rs. (B) Chemosensory receptors classified as class C GPCRs, whose orthosteric 

binding site is located in the Venus flytrap (VFT) domain, i.e., TAS1R2/TAS1R3 and TAS1R1/TAS1R3. 

Odorant receptors (ORs) are class A GPCRs, encoded by ~400 genes in human and thus represent 

the largest GPCR subgroup. Additional class A csGPCRs in the nasal cavity are the trace amine-

associated receptors (TAARs). Six functional TAAR genes have been found in human and except for 

TAAR1, all receptor subtypes are suggested to be targeted by odorants, particularly by volatile 

amines [10–12]. 

Bitter taste signalling is initiated by 25 TAS2Rs [13–15], classified as class A GPCRs for their 

architecture and binding site location [16]. By contrast, there are only three class C GPCRs, TAS1R1, 

TAS1R2 and TAS1R3, which form functional heterodimers that specifically recognize sweeteners and 

amino acids: the TAS1R2/TAS1R3 combination recognizes natural and artificial sweeteners whereas 

the TAS1R1/TAS1R3 is involved in umami taste [17–20]. GPCRs have been suggested to mediate also 

the orosensory perception of fat [21–23] and kokumi (i.e., enhancement of mouthfulness and 

thickness of food perception) substances [24,25]. 

It is well-established that, by csGPCRs within our chemical senses smell and taste, we constantly 

monitor our external chemical environment to detect and discriminate especially foodborne stimuli 

[26,27]. However, canonical csGPCRs are also expressed in tissues not directly related to the detection 

of odorants or tastants [28–31], which strongly suggest their role in the monitoring of internal 

environments. Indeed, in some cases their physiological roles and their involvement in serious 

diseases, like respiratory and metabolic diseases and even cancer, have been characterized [32]. 

The fact that csGPCRs have pharmacological relevance and that they belong to a highly 

druggable protein family, unequivocally points them out as new attractive drug targets, increasing 

the potential therapeutic GPCR target space [33]. Since previous analyses on emerging drug design 
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attempt to describe the state-of-the-art of csGPCR research and explore the potential druggability of 
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2. “Ecnomotopic” csGPCRs and Their Modulation by Small Molecules 

OR gene expression has been established in a multitude of human tissues, that is, brain, blood 

leukocytes, airway smooth muscle, skin, gut [36–45]. Similarly, TAS1Rs and TAS2Rs are located in 
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Figure 1. Architecture of csGPCRs. (A) Chemosensory receptors classified as class A G protein-coupled
receptors (GPCRs), whose orthosteric binding site is located inside the TM domain, i.e., ORs, TAARs
and TAS2Rs. (B) Chemosensory receptors classified as class C GPCRs, whose orthosteric binding site is
located in the Venus flytrap (VFT) domain, i.e., TAS1R2/TAS1R3 and TAS1R1/TAS1R3.

Odorant receptors (ORs) are class A GPCRs, encoded by ~400 genes in human and thus
represent the largest GPCR subgroup. Additional class A csGPCRs in the nasal cavity are the trace
amine-associated receptors (TAARs). Six functional TAAR genes have been found in human and except
for TAAR1, all receptor subtypes are suggested to be targeted by odorants, particularly by volatile
amines [10–12].

Bitter taste signalling is initiated by 25 TAS2Rs [13–15], classified as class A GPCRs for their
architecture and binding site location [16]. By contrast, there are only three class C GPCRs, TAS1R1,
TAS1R2 and TAS1R3, which form functional heterodimers that specifically recognize sweeteners and
amino acids: the TAS1R2/TAS1R3 combination recognizes natural and artificial sweeteners whereas
the TAS1R1/TAS1R3 is involved in umami taste [17–20]. GPCRs have been suggested to mediate also
the orosensory perception of fat [21–23] and kokumi (i.e., enhancement of mouthfulness and thickness
of food perception) substances [24,25].

It is well-established that, by csGPCRs within our chemical senses smell and taste, we
constantly monitor our external chemical environment to detect and discriminate especially foodborne
stimuli [26,27]. However, canonical csGPCRs are also expressed in tissues not directly related to
the detection of odorants or tastants [28–31], which strongly suggest their role in the monitoring of
internal environments. Indeed, in some cases their physiological roles and their involvement in serious
diseases, like respiratory and metabolic diseases and even cancer, have been characterized [32].

The fact that csGPCRs have pharmacological relevance and that they belong to a highly druggable
protein family, unequivocally points them out as new attractive drug targets, increasing the potential
therapeutic GPCR target space [33]. Since previous analyses on emerging drug design trends and
opportunities have focused on the non-sensory GPCR-ome [1,2,34,35], in this review we attempt to
describe the state-of-the-art of csGPCR research and explore the potential druggability of csGPCRs.

2. “Ecnomotopic” csGPCRs and Their Modulation by Small Molecules

OR gene expression has been established in a multitude of human tissues, that is, brain, blood
leukocytes, airway smooth muscle, skin, gut [36–45]. Similarly, TAS1Rs and TAS2Rs are located in
tissues other than the tongue and palate epithelium; including gastrointestinal tract, heart, leukocytes,
vascular smooth muscle, airway epithelium, skin, lung and brain [39,46–55].

The expression of extra-nasal ORs and extra-oral TAS1Rs and TAS2Rs is frequently defined as
“ectopic” [etymology: from Greek,
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the term nomotopic is used in medicine for biological events “occurring at the usual place” while the 
term ecnomotopic can be considered as a new combined word [57]. Indeed, we are approaching a 
unique case: receptors that are named as taste and smell receptors but their function might be not 
limited to the taste and smell perception. 

The number of csGPCRs expressed in different human tissues varies substantially, some have a 
broad tissue distribution, whereas others appear to be exclusively restricted to one specific tissue 
[37,58]. Overall, csGPCRs have a tissue-dependent expression, with generally lower average 
expression level in ecnomotopic tissues compared to that observed in the respective sensory tissues 
[59,60]. 

Even though the biological functions of ecnomotopic csGPCRs have not been fully characterized, 
they seem to have the potential to serve as therapeutic tools [61–66]. The current knowledge about 
the ecnomotopic expression of smell and taste receptors and their suggested physiological and 
pathological functions has been recently and carefully reviewed [29,32,67]. Here, we aim to lay the 
bases for analysing and discussing the potential use of drug design techniques for treating diseases 
through the chemosensory reception system; therefore, we zoom-in on those cases where the putative 
biological functions of ecnomotopic csGPCRs were tested and reversed with the use of small-
molecule ligands. 

2.1. Ecnomotopic ORs 

Very recently, OR2AT4 expressed in human scalp hair follicles has been found as a target for 
hair loss therapy: indeed, stimulation of OR2AT4 by the odorant Sandalore (3-methyl-5-(2,2,3-
trimethylcyclopent-3-en-1-yl)pentan-2-ol) prolongs human hair growth by decreasing apoptosis and 
increasing production of the anagen-prolonging growth factor IGF-1; in contrast, co-administration 
of the specific OR2AT4 antagonist (Phenirat, 2-phenoxyethyl 2-methylpropanoate) inhibits hair 
growth [68]. Preliminary studies for the use of Sandalore in shampoo or lotion have been performed 
and clinical trials are planned in Italy. 

Some ORs are highly expressed in cancer tissues and this opened new directions for cancer 
diagnosis [69–75]. Additionally, in some specific cases, the role of ORs in cancer tissues has been 
characterized, paving the way to target ORs as a strategy of cancer therapy. OR51E2, one of the most 
broadly expressed ecnomotopic ORs, is present in healthy prostate tissue and shows significantly 
increased expression in prostate adenocarcinoma [37,75]. There are several lines of evidence that the 
OR51E2 agonist β-ionone has effects on prostate cancer: it can cause a decreased proliferation but 
also an increase of the invasiveness of human prostate cancer cells [76–78]. Recently, a testosterone 
metabolite (19-hydroxyandrostenedione) was found to be an endogenous agonist produced by 
activation of OR51E2 in prostate cancer cells [79]. The activation of OR51E2 by newly endogenous 
metabolites induces neuroendocrine trans-differentiation, a feature commonly seen in prostate 
carcinoma and frequently associated to hormone therapy refractory and aggressive disease [79,80]. 

Stimulation of another OR expressed in prostate tissue, OR51E1, with its agonist nonanoic acid 
was found to significantly reduce proliferation and induce cellular senescence in prostate cancer cell 
line LNCaP and to influence androgen receptor-mediated signalling [81]. 

Activation of OR2J3 in human lung carcinoma tissues with the agonist helional (3-(1,3-
benzodioxol-5-yl)-2-methylpropanal) was found to induce apoptosis and inhibition of cell 
proliferation [82]. Apoptosis and inhibition of cell proliferation are also caused by stimulation of 
OR51B4 by Troenan (5-methyl-2-pentan-2-yl-5-propyl-1,3-dioxane) in colorectal cancer cells [83]. 
Suppository capsules with Troenan for colon cancer have not been tested in clinical trials but are 
already being used to treat patients in German clinics [32]. 
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term used for “a biological event or process occurring in an abnormal location or position within the
body” [56,57]. However, csGPCRs outside their canonical places cannot be considered abnormal and
we prefer to use the term “ec-nomotopic” [etymology: from Greek,
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κ(out) + νóµoσ(law, custom) +
τóπoσ(place), out-of-the-usual(conventional)-place]. To the best of our knowledge, the term nomotopic
is used in medicine for biological events “occurring at the usual place” while the term ecnomotopic
can be considered as a new combined word [57]. Indeed, we are approaching a unique case: receptors
that are named as taste and smell receptors but their function might be not limited to the taste and
smell perception.

The number of csGPCRs expressed in different human tissues varies substantially, some have a
broad tissue distribution, whereas others appear to be exclusively restricted to one specific tissue [37,58].
Overall, csGPCRs have a tissue-dependent expression, with generally lower average expression level
in ecnomotopic tissues compared to that observed in the respective sensory tissues [59,60].

Even though the biological functions of ecnomotopic csGPCRs have not been fully characterized,
they seem to have the potential to serve as therapeutic tools [61–66]. The current knowledge about the
ecnomotopic expression of smell and taste receptors and their suggested physiological and pathological
functions has been recently and carefully reviewed [29,32,67]. Here, we aim to lay the bases for
analysing and discussing the potential use of drug design techniques for treating diseases through the
chemosensory reception system; therefore, we zoom-in on those cases where the putative biological
functions of ecnomotopic csGPCRs were tested and reversed with the use of small-molecule ligands.

2.1. Ecnomotopic ORs

Very recently, OR2AT4 expressed in human scalp hair follicles has been found as a
target for hair loss therapy: indeed, stimulation of OR2AT4 by the odorant Sandalore
(3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-ol) prolongs human hair growth by
decreasing apoptosis and increasing production of the anagen-prolonging growth factor IGF-1;
in contrast, co-administration of the specific OR2AT4 antagonist (Phenirat, 2-phenoxyethyl
2-methylpropanoate) inhibits hair growth [68]. Preliminary studies for the use of Sandalore in shampoo
or lotion have been performed and clinical trials are planned in Italy.

Some ORs are highly expressed in cancer tissues and this opened new directions for cancer
diagnosis [69–75]. Additionally, in some specific cases, the role of ORs in cancer tissues has been
characterized, paving the way to target ORs as a strategy of cancer therapy. OR51E2, one of
the most broadly expressed ecnomotopic ORs, is present in healthy prostate tissue and shows
significantly increased expression in prostate adenocarcinoma [37,75]. There are several lines of
evidence that the OR51E2 agonist β-ionone has effects on prostate cancer: it can cause a decreased
proliferation but also an increase of the invasiveness of human prostate cancer cells [76–78]. Recently,
a testosterone metabolite (19-hydroxyandrostenedione) was found to be an endogenous agonist
produced by activation of OR51E2 in prostate cancer cells [79]. The activation of OR51E2 by newly
endogenous metabolites induces neuroendocrine trans-differentiation, a feature commonly seen
in prostate carcinoma and frequently associated to hormone therapy refractory and aggressive
disease [79,80].

Stimulation of another OR expressed in prostate tissue, OR51E1, with its agonist nonanoic acid
was found to significantly reduce proliferation and induce cellular senescence in prostate cancer cell
line LNCaP and to influence androgen receptor-mediated signalling [81].

Activation of OR2J3 in human lung carcinoma tissues with the agonist helional
(3-(1,3-benzodioxol-5-yl)-2-methylpropanal) was found to induce apoptosis and inhibition of cell
proliferation [82]. Apoptosis and inhibition of cell proliferation are also caused by stimulation of
OR51B4 by Troenan (5-methyl-2-pentan-2-yl-5-propyl-1,3-dioxane) in colorectal cancer cells [83].
Suppository capsules with Troenan for colon cancer have not been tested in clinical trials but are
already being used to treat patients in German clinics [32].



Int. J. Mol. Sci. 2019, 20, 1402 4 of 21

2.2. Ecnomotopic Taste Receptors

Accumulating evidence supports the role of csGPCRs in the gut for monitoring foodborne
compounds: enteroendocrine cells express csGPCRs, which sense food components and metabolites
and by regulating hormones such as glucagon-like peptide 1 (GLP-1) and ghrelin transmit signals to
control the secretion of appetite [42,55,84,85].

Stimulation of sweet taste receptors in the duodenal L cells by glucose and sucralose was shown
to cause the release of GLP-1 that can be reversed by the sweet receptor antagonist lactisole [86,87].
GLP-1 increases insulin release from beta cells and inhibits glucagon release and gastric emptying.
Therefore, modulating GLP-1 secretion in gut via sweet taste receptors may provide an important
treatment for obesity, diabetes and abnormal gut motility [86]. However, in-vivo studies on the effect
of artificial sweeteners on GLP-1 secretion gave controversial results: the oral delivery of sweet tastants
seems not to be associated with GLP-1 release but the increase in GLP-1 secretion can still be observed
for combinations of artificial sweeteners in diet drinks [88–91].

The activation of TAS2R9 in cells of enteroendocrine origin was found to elicit GLP-1 secretion [92].
Similarly, mouse gut-expressed bitter taste receptors stimulated with denatonium benzoate lead to
GLP-1 secretion [93]. The anti-diabetic properties of the bitter isohumulone KDT501, on phase II
clinical trial (ID number: NCT02444910) for threating metabolic disorders, were recently found to
be mediated by bitter taste receptor Tas2r108 in mice (and supposedly by TAS2R1 in humans, since
KDT501 can activate selectively this receptor) [94].

Intragastric administration of the bitter denatonium benzoate in humans (healthy females) was
shown to decrease hunger scores and caloric intake [95]. Intragastric administration of denatonium
benzoate in mice can induce release of ghrelin and, consequently, decrease food intake [96].

On the contrary, intragastric administration of glucose was found to reduce plasma ghrelin
levels [97]. Recently, Wang and colleagues have performed in-vitro studies to show how the
chemosensory signalling in the gut is altered in obesity: in fundic cultures of obese patients, glucose
inhibited ghrelin secretion via TAS1R3 and bitter compounds, such as chloroquine, stimulated ghrelin
secretion [84].

Ecnomotopic taste receptors seem to work together also in the upper airway. A robust
innate immune defensive function of the upper airway, the production of nitric oxide, is mediated
by TAS2R38 in response to acyl-homoserine lactones, that is, N-butanoyl-L-homoserine lactone
(C4HSL) and N-lauroyl-L-homoserine lactone (C12HSL), quorum sensing molecules secreted by
bacteria [98–100]. Similarly, nitric oxide production can be induced by TAS2R14 activation
with flavones (e.g., apigenin and chrysin) and can be blocked with TAS2R14 antagonists (e.g.,
4′-fluoro-6-methoxyflavanone) [101]. The TAS2R-mediated anti-microbial activity was found to be
inhibited by the sweet taste receptor [102,103]. TAS1R2/TAS1R3 was suggested also to measure
glucose concentration in the mucosa: as microorganisms use the sugar in their environment for energy
consumption, a drop in glucose concentration would indicate infection, which would in turn remove
the sweet taste roadblock to activate bitter taste-induced immunity [102,103].

Bitter taste receptors are then suggested as responsible for the anti-inflammatory activity observed
in asthma, since the stimulation of TAS2Rs in mast cells with bitter agonists (i.e., chloroquine and
denatonium) mediate the inhibition of an IgE-induced release of histamine [104].

Stimulation of TAS1R3 in the pulmonary vasculature by the artificial sweetener sucralose was
demonstrated to affect pulmonary microvasculature and may represent a novel therapeutic strategy to
protect the endothelium in settings of acute respiratory distress syndrome [52].

2.3. Ecnomotopic Odorant and Taste GPCRs: A Functional Cross-Talk?

The expression of different csGPCRs in same ecnomotopic tissues, such as the case of sweet
and bitter taste receptors in the gut and the upper airway, seems not to be exceptional and not even
confined to taste modalities.
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One of the most relevant example is the presence of csGPCRs in the leukocytes: TAARs, ORs,
TAS2Rs, sweet and umami taste receptors are all expressed in leukocytes and investigating their
roles is a growing research field [45,51,105,106]. The cellular immune system is exposed to exogenous
foodborne chemicals and may respond to them through csGPCRs. In fact, OR56B4 in human leukocytes,
upon agonist activation, for example, with δ-decalactone, induces concentration-dependent chemotaxis
of isolated human neutrophils [107].

Both olfactory and bitter taste GPCRs are expressed in the human airway smooth muscle (ASM).
Bitterants, such as chloroquine and quinine, can act as bronchodilator by stimulating TAS2Rs in the
ASM [108–110], whereas OR51E2, activated by its agonists, such as acetate and propionate, causes a
decrease of cytoskeletal remodelling and proliferation, two cardinal features of asthma [111].

To date, most studies on ecnomotopic csGPCRs have focused on gene expression rather
than on their physiological relevance, therefore we do not have proofs to support the
complementary/synergistic functions of different csGPCRs when expressed in the same tissues.
Certainly, the high physiological and pathological potential on one side and the complexity of the
cross-talking between the csGPCRs on the other side, suggest that it would be of great value to
use csGPCR modulators to efficiently shed light on their biological functions and attempt to treat
csGPCR-mediated pathological disorders.

Figure 2 shows the chemical structures of the csGPCRs ligands mentioned in this paragraph. Can
these compounds be considered candidates or starting points for the development of csGPCR drugs?
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(OR), TAS2R and TAS1R ligands are coloured in blue, green and magenta, respectively. MW (Molecular
Weight), AlogP (octanol/water partition coefficient), HBDs (Hydrogen Bond Donors) and HBAs
(Hydrogen Bond Acceptors) values at physiological pH have been calculated with Maestro (Schrödinger
Release 2018-4: Maestro, Schrödinger, LLC, New York, NY, 2018).

3. csGPCR Drug Discovery

Drug discovery is a multi-step process that starts with target identification (Figure 3). Thinking of
filling in a hypothetical drug discovery pipeline for csGPCRs, ecnomotopic odorant and taste receptors
described in the paragraph above can be considered as the identified biological targets. The next steps,
hit discovery and optimization and lead development, aim to provide good candidates for preclinical
and clinical studies.
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3.1. csGPCR Hit Discovery

Known ligands of chemosensory receptors mainly come from the flavour chemistry, synthetic
or natural compounds with well-defined sensory properties. The recently developed “sensomics”
approach has led to the identification of many taste and odorant molecules from complex processed
foods [112–118]. Several csGPCRs have been deorphanized with in-vitro screening of odour- and
taste-active compounds [26,119–127].

Sweet taste molecules include monosaccharides (e.g., glucose, fructose, galactose), disaccharides (e.g.,
sucrose, lactose, trehalose), polyols (e.g., sorbitol, mannitol, xylitol), D-amino acids (e.g., D-Tryptophane),
proteins (e.g., thaumatin), plant-derived sweeteners (e.g., neohesperidin dihydrochalcone, stevioside and
steviolbioside) and synthetic non-nutritive sweeteners (e.g., saccharin, sucralose, aspartame) [128,129].
Umami molecules are proteogenic amino acids or peptides, but also small molecules [129–131]. Bitter
molecules include ions, peptides, alkaloids, polyphenols and glucosinolates [132,133]. A comprehensive
list of plant naturals as agonists/antagonists for taste receptors has been recently reviewed [134]. OR
agonists are volatile compounds, of less than 400 Daltons [27].

Can these flavour compounds be considered hits for drug discovery? Are they good candidates
for further optimization?

Hit molecules are chemical compounds capable to interact with the target with micromolar
potency. Many csGPCRs are still orphan and their ligands need to be discovered. For deorphanized
csGPCRs, most identified csGPCR ligands are agonists with mid-to-high micromolar potency, a range
that is relevant for flavour detection but may not be sufficient for ecnomotopic functions and is
definitely not enough for drug discovery [27,135]. Therefore, to be considered proper hits their potency
should be optimized.

Importantly, because of the high cost and low success rate of the drug discovery process, promising
drug candidates should be selected at early stages to avoid late failures. In pharma terms, it is
important that hit molecules are “drug-like” [136]. Drug-like compounds have molecular properties
consistent with the majority of known drugs and hence can be inferred as compounds with therapeutic
potential [137]. Drug-likeness provides a broad composite descriptor that implicitly captures several
criteria, with bioavailability among the most prominent. Methods that predict drug-likeness of
molecules are based on their ability to distinguish known drugs from non-drugs [138]. Interestingly,
properties relevant for drug delivery, like solubility, metabolic stability, oral bioavailability, membrane
permeability, are often correlated with molecular descriptors. Several methods have been developed
to predict the range of properties where drug-like molecules fall, from simple counting of descriptors
to methods that take into consideration chemistry or structural features [138–145].

Simple counting methods include Lipinski’s RULE OF 5 (RO5) [144]. The RO5 states that
molecules are more likely orally bioactive if they have hydrogen-bond donors (HBDs) fewer than
5, hydrogen-bond acceptors (HBAs) fewer than 10, Molecular Weight (MW) not over 500 Daltons,
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calculated octanol–water partition coefficient (log P) not greater than 5. Even though passing the RO5
is no guarantee that a compound is drug-like, because of its simple and straightforward applicability,
it is a widespread guideline for compound evaluation. And, indeed, the preferential selection of
drug-like compounds helps alleviate attrition rates in drug discovery [146].

DrugBank is a freely accessible database containing information on approved drugs and drug
candidates [147,148]. Since 1997, when Lipinski’s rule was defined, to our days, the chemical space of
drugs has seen a substantial growth. The latest release of DrugBank (version 5.1.1) contains more than
10,000 drug entries including ~2500 approved drugs. RO5 applies to ~70% of approved drugs and
~60% of all DrugBank entries. The majority of approved drugs has MW between 200 and 500 Daltons
(66%), HBAs fewer than 5 (80%), HBDs fewer than 3 (88%), a wider distribution of AlogP, with 75% of
drugs ranging from −1 to 5 (Figure 4).
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Figure 4. Distribution of molecular descriptors defining the RO5 among approved drugs (DrugBank
v. 5.1.1). MW, AlogP, HBD and HBA values at physiological pH have been calculated with Maestro
(Schrödinger Release 2018-4: Maestro, Schrödinger, LLC, New York, NY, 2018).

3.2. Drug-Likeness of Flavor Molecules

Flavour molecules shown in Figure 2 have high chemical diversity: different hydrophobic content,
few HB donors and acceptors and low MW, reaching a maximum of 365 for the bitter isohumulone.
For a better analysis of the chemical space, we analysed molecular properties of cured libraries of
flavour molecules. The new release of BitterDB stores more than 1000 bitter molecules, including
calculated physicochemical properties [149,150]; 100 sweet tastants (Supplementary Information File
S1) were collected by integrating small molecules listed in the SuperSweet database [151] with natural
compounds reviewed by Kim and Kinghorn in 2002 and Behrens and colleagues in 2011 [129,152]; 37
umami compounds (Supplementary Information File S2) were retrieved from literature [131,153,154];
and the in-house list of odorant molecules characterized in food samples was made available in
its updated version (250 compounds instead of the 226 molecules published in 2014) [27]. Table 1
summarizes the analysis of physicochemical properties and drug-likeness calculated for the collected
flavour molecules. We consider here drug-like those molecules that have MW between 200 and 500
Daltons, AlogP between −1 and 5, HBAs fewer than 5 and HBDs fewer than 3, that is, the ranges were
most of approved DrugBank compounds fall (Figure 4).

The shared chemical space between drugs and bitter compounds has been previously
investigated [132,155]: many drugs suffer low compliance for their bitter taste and almost 10%
BitterDB compounds are approved drugs. The numbers in Table 1 are very promising and the
majority of bitter compounds can be considered drug-like. Interestingly, compared to other flavour
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sets, bitter compounds show a wider range of AlogP. This leads us to think that bitter compounds
carry higher chemical diversity, however we have to consider the diversity in set composition (1000
bitter compounds are analysed compared to less than 500 for all other flavours). The connection
between bitterness and hydrophobicity has been extensively disputed [132,133,156]. Even though
hydrophobicity alone was not found to be a predictive feature of small molecules’ bitterness [132],
the majority of bitter compounds shows higher hydrophobicity compared to sweet compounds
and reducing hydrophobicity has been suggested as a strategy for decreasing the bitter off-taste of
sweeteners [128]. Odorant molecules are very small molecules and consequently the ranges of their
properties are tinier, making this set more difficult to compare to other sets but definitely the less
drug-like (Table 1). However, the OR51E2 endogenous agonist 19-hydroxyandrostenedione reported
in Figure 2 suggests that OR endogenous ligands may cover a different chemical space compared to
odorants and may be good candidates for OR drug design.

Table 1. Physicochemical property ranges and drug-likeness percentage of flavour molecules.
Drug-likeness indices are: 200 < MW < 500 Daltons, −1 < AlogP < 5, HBAs < 5, HBDs < 3, as
found for approved DrugBank compounds.

MW AlogP HBAs HBDs

Bitter tastants
Range 27–1524 −8.2–12.6 0–28 0–19

Drug-like 67% 85% 70% 80%

Sweet tastants a Range 92–1287 −6.1–5.1 0–29 0–19
Drug-like 27% 85% 23% 20%

Umami tastants b Range 89–388 −6.6–4.2 0–8 0–6
Drug-like 70% 54% 84% 78%

Odorants
Range 44–345 −1.2–4.2 0–4 0–2

Drug-like 4% 99% 100% 100%

Except for bitter compounds, for which all data were retrieved from BitterDB [149,150], physicochemical properties
at physiological pH have been calculated with Maestro (Schrödinger Release 2018-4: Maestro, Schrödinger, LLC,
New York, NY, 2018). a Supplementary Information File S1. b Supplementary Information File S2.

Despite the chemical diversity, a shared chemical space between csGPCR ligands can be
envisioned. Indeed, many sweeteners are limited in their use due to the unpleasant bitter
off-taste [157,158]. There are many examples of sweet compounds that can modulate bitter
taste receptors [128]. TAS2R4 and TAS2R14 were found to mediate the bitter off-taste of steviol
glycosides [159]. The sweet saccharin activates TAS2R31 and TAS2R43 and blocks TAS2R1 and
TAS2R38 [160,161]. On the contrary, cyclamate is a sweetener that activates TAS2R1 and TAS2R38
and blocks TAS2R31 and TAS2R43 [160]. The odorant (R)-citronellal has been recently reported as an
inhibitor of the bitter taste receptors TAS2R43 and TAS2R46, indicating a possible shared chemical
space between OR and TAS2R ligands [162]. Exploring the overlapping chemical space of csGPCR
ligands may contribute to decode the complex receptor-based mechanisms underlying chemosensation
but also shed light on the ecnomotopic csGPCRs’ molecular pharmacology.

3.3. Towards the Discovery of csGPCR Lead Molecules

During the H2L stage, the chemical space around each hit is explored in order to narrow down
the candidate molecules to drug-like high-potency lead structures, that is, molecules that potently
trigger or antagonize an intrinsic activity of the target, while confining logP and MW, in order to
penalize compounds that improve potency with unnecessary increases in molecular size and/or
lipophilicity [146,163,164].

Bitter drugs could be located at this stage of our drug discovery pipeline (Figure 3). Even though
these molecules are already approved drugs, their potency against TAS2Rs is not enough for their
repurposing to TAS2R-driven diseases [135]. Flufenamic acid is an anti-inflammatory and analgesic
drug and, together with strychnine [165], is the most potent known TAS2R agonist but its activity
towards its cognate bitter taste receptor, TAS2R14, requires concentrations of 100 nM or higher [119].
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Ligand- and structure-based computer-aided drug design (CADD) tools are commonly used in
this drug discovery stage to improve binding, selectivity or other pharmacological properties of hit
molecules [166,167]. To extend the chemical space of hit series, analogues can be quickly selected
from commercially available compound libraries (“analogue by catalogue”) and/or generated with
“hit expansion” tools. Testing of analogue compounds will provide data for ligand-based analysis to
determine a quantitative structure-activity relationship (QSAR). Structure-based approaches can be
used to investigate the key interactions between the receptor and the ligand for the rational design of
new molecules with improved binding and selectivity profile.

As we discussed in the previous paragraph, taste and odorant compounds are high-micromolar
csGPCR agonists. Until now, the use of CAAD methods to csGPCRs has been confined to hit
identification and rationalization of known data [16,168,169]. Ligand-based methods were used
to investigate the activity and selectivity of flavonoids and isoflavonoids towards TAS2R14 and
TAS2R39 [170]; to identify TAS2R14 agonists among approved and experimental drugs [171]; to
identify bitter taste antagonists [172,173], to discriminate agonist vs. antagonist molecular determinants
towards OR1G1 [174], to capture the key features for the interaction between umami compounds and
its receptor [153].

Figure 1 shows the schematic representation of the different classes of csGPCRs. Despite the great
progress in GPCR structure determination, no experimental structure of a csGPCR is currently available
and 3D structures of csGPCRs are computationally modelled [16,175]. The most used technique,
homology modelling, predicts protein structure starting from the structure(s) of homologous protein(s),
therefore the quality of the generated model is determined by the template selection [176]. Several
class A and class C GPCRs have been crystallized but the similarity with csGPCRs is low and leads to
low-resolution models. Despite that, the analysis of a wide conformational space of the binding site
and the integration with experimental data allowed the validation of the structure predictions and the
investigation of the ligand binding modes [177,178].

With the contribution of structure-based methods, it was found that the umami receptor
orthosteric ligand binding site is located in the extracellular Venus flytrap (VFT) domain of the TAS1R1
subunit and the sweet receptor orthosteric ligand binding site in the VFT domain of the TAS1R2
subunit [179–182]. The predicted binding modes of known umami and sweet taste enhancers have even
opened the possibility to rationally design potent allosteric modulators for class C csGPCRs [181–185].

By combining CADD methods with site-directed mutagenesis and functional analysis, a
descriptive and predictive molecular model was generated for the OR2AG1 receptor and its
agonists [186]. Integrated computational/experimental approaches were recently used to characterize
the enantiomer-selective carvone binding pocket of the OR1A1 receptor [187] and the binding mode
of muscone analogues into the OR5AN1 and OR1A1 receptors [188]. A virtual screening campaign
against the 3D homology model of OR51E2 successfully led to the identification of potent ligands
among human metabolite compounds [79]. Homology modelling and virtual screening techniques
were also used to discover new ligands for mouse TAAR5 receptor [189].

Despite the low similarity of TAS2Rs to class A GPCRs (less than 30% for the TM domains),
the combination of structure-based CADD approaches and in-vitro techniques allowed to locate
the ligand binding pocket of bitter taste receptors in the extracellular side of the TM bundle, as the
well-characterized orthosteric binding pocket of class A GPCRs [135]. The multi-specificity of TAS2Rs
towards a vast range of chemical structures seems to be achieved by using subsites within the binding
pocket and by forming different types of interactions for different ligands [190–196]. Interestingly,
it has been suggested that, similarly to class A GPCRs, TAS2Rs possess an additional vestibular
binding site transiently occupied by agonists [197]. The first attempts of using CADD methods for
hit optimization of csGPCR ligands have been very recently pursued: hit expansion of the selective
TAS2R14 agonist flufenamic acid has led to new agonists with improved potency compared to the
reference structure [198].
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4. Conclusions

More than half of the GPCR family members are chemosensory receptors, involved in taste and
olfaction, along with a variety of other physiological processes when expressed ecnomotopically.
Hence, these receptors constitute promising targets for pharmaceutical intervention.

Until now, chemosensory research has focused on flavour molecules, indicative of food content,
as csGPCR ligands: taste molecules, as the attractive sweet and umami (indicative of carbohydrate and
protein content, respectively) and the aversive bitter (indicative of toxicity) and odorant molecules,
volatile compounds responsible for food aroma. As first measurement of food quality, these
molecules activate csGPCRs at relatively high concentrations. This is a limit also for the repurposing
of bitter drugs, since most compounds currently tested in-vitro against TAS2Rs showed at most
sub-micromolar activity.

Flavour molecules are chemically diverse: odorants are usually smaller than tastants, bitter
compounds tend to be more hydrophobic than sweet and umami compounds. Bitter molecules are
the most and the odorants the least drug-like flavour compounds. The chemical space and biological
efficacy of flavour molecules as csGPCR ligands limit their current use for therapeutic applications.
CADD methods, already in use for understanding of csGPCR molecular recognition, are suggested as
useful tools to speed up the process of hit identification and optimization for ecnomotopic csGPCRs.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/6/
1402/s1.
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