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Summary

Groundwater aquifers are unique but so far little explored ecosystems that are character-
ized by environmental conditions that distinguish them from most other non-subsurface
habitats, such as the lack of light, low nutrient concentrations, low temperatures, and
little variation in environmental conditions over time. Microbial communities lie at the
heart of key biogeochemical processes in these ecosystems like the turnover of carbon
and other nutrients, mineral cycling, or pollutant degradation. Due to its vast size,
the groundwater-saturated zones of the terrestrial subsurface are the largest freshwater
ecosystem on Earth, and accommodate a large share of the global microbial biomass. In
addition, groundwater is the most abundant source of liquid freshwater worldwide. The
quality of this vital resource in large part hinges on the activity of groundwater organisms
and microbial communities in particular. Despite the relevance of groundwater ecosys-
tems for society, and the importance of microbial communities in these ecosystems, the
processes that shape microbial community composition in groundwater environments are
not well understood. Moreover, groundwater has historically been regarded mainly as a
resource rather than an ecosystem that deserves to be protected. Even though this view
has started to change—leading to the recognition of the ecosystem status of ground-
water in environmental policies in different parts of the world—ecological criteria are
still widely ignored in routine groundwater monitoring in practice. The reason for this
mainly lies in the lack of practically applicable ecological assessment tools suitable for
groundwater ecosystems. This thesis aims at shedding light on the processes that drive
microbial community assembly in groundwater aquifers, and introduces an approach that
enables the incorporation of biological-ecological criteria based on microbiological data
into groundwater monitoring schemes.

In the first part of this thesis, I applied theoretical frameworks from community
ecology to investigate the impact of processes related to species sorting, dispersal, and
drift on microbial community composition across geographically distinct aquifers. The
factors that drive species sorting in these habitats were distinguished between selec-
tion due to local environmental conditions, and possible selection effects resulting from
broad-scale region-specific factors, which may represent impacts of climate, geology, or
historical events. While several studies have analyzed biogeographic distribution pat-
terns of microbial communities across broad spatial scales, it has often remained unclear
to what extent differences in community composition across different regions are caused
by dispersal limitation or species sorting, and if species sorting is caused mainly by local
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Summary

environmental conditions alone or additional broad-scale region-specific factors. This is
especially true for microbial communities in groundwater environments, which have been
understudied in this context relative to other non-subsurface habitats so far. To tackle
these questions, we analyzed microbial community composition based on exact 16S rRNA
amplicon sequence variants (ASVs) from four geographically separated aquifers located
in different regions along a latitudinal transect of ∼700 km across Germany. Using a
combination of variation partitioning and ecological null models revealed that differences
in microbial community composition were mainly the product of species sorting imposed
by local environmental conditions, and to a smaller but still significant extent disper-
sal limitation and drift across regions. Only ∼23% of the total variation in microbial
community composition remained unexplained, possibly due to underestimated effects of
dispersal limitation among local communities within regions and temporal drift. How-
ever, no evidence was found for species sorting due to region-specific factors independent
of local environmental conditions.

The second part of my thesis addresses the processes that drive microbial commu-
nity assembly on groundwater sediments, as they typically account for the bulk of the
microbial biomass and activity in groundwater environments, and thus are expected to
play a particularly important part in these ecosystems. Although previous studies could
show that the composition of sediment-attached communities can differ significantly from
planktonic communities in the surrounding groundwater, the processes that give rise to
these differences are not well understood. In order to unravel these processes, we followed
the microbial colonization of initially sterile sediments in in situ microcosms that were
exposed to groundwater for almost one year at two distant but hydrologically connected
sites of a shallow porous aquifer. Our results revealed intriguing similarities between the
microbial community succession on the newly-colonized sediments and succession pat-
terns previously observed for the assembly of biofilms in other more dynamic aquatic
environments, indicating that the assembly of microbial communities on surfaces may
be governed by similar underlying mechanisms across a wide range of different habitats.
Null model simulations on spatiotemporally resolved 16S rRNA amplicon sequencing data
further indicated selection of specific operational taxonomic units (OTUs) rather than
random colonization as the main driver of community assembly. A small fraction of per-
sistent OTUs that had established on the sediments during the first 115 days dominated
the final communities, with combined relative abundances of 68% to 85%, suggesting
a key role of these early-colonizing organisms for community assembly and succession
during the colonization of the sediments. Overall, the results of this study suggest that
differences between sediment-attached and planktonic communities in groundwater en-

vii



Summary

vironments are not the result of purely stochastic events, but that sediment surfaces
select for specific groups of microorganisms that assemble over time in a reproducible,
non-random way.

In the third part, I introduce a simple, inexpensive approach that enables ecological
groundwater monitoring based on three microbiological parameters that can be easily
integrated into existing routine monitoring protocols: prokaryotic cell density (D) mea-
sured by flow cytometry; microbial activity (A) measured as prokaryotic intracellular
ATP concentrations using a simple cell lysis-luminescence assay; and, as an optional
parameter, the bioavailable carbon (C) measured as the concentration of assimilable or-
ganic carbon in a simple batch growth assay. To explore the potential of this approach,
we analyzed data for three case studies of different disturbances representing some of the
main threats to groundwater ecosystems, that is organic contamination with hydrocar-
bons, surface water intrusion, and agricultural land use. For all three cases, disturbed
samples could be reliably distinguished from undisturbed samples based on a single index
value obtained from multivariate outlier analyses of the microbial variables (i.e. robust
Mahalanobis distances). We could show that this multivariate data analysis approach
allowed for a significantly more sensitive and reliable detection of disturbed samples com-
pared to separate univariate outlier analyses of the measured variables. Furthermore, a
comparison of non-contaminated aquifers from nine different regions across Germany re-
vealed distinct multivariate signatures along the three microbial variables, which should
be considered when applying our approach in practice by analyzing data on a suitable
regional scale. In essence, our approach offers a practical tool for the detection of distur-
bances of groundwater ecosystems based on easy-to-analyze microbial parameters, which
can be seamlessly extended in the future by additional parameters to further increase
the sensitivity as well as flexibility of the analysis.

All in all, this thesis contributes to a better understanding of the fundamental ecol-
ogy of microbial communities in groundwater environments, and additionally presents
application-oriented research that led to the development of a practical approach that
enables the implementation of ecological criteria in routine groundwater monitoring,
which will allow for a more informed and sustainable management of vital groundwater
ecosystems.
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Zusammenfassung

Grundwasser ist ein einzigartiges, jedoch bislang wenig erforschtes Ökosystem, das sich
durch Umweltbedingungen auszeichnet, die sich deutlich von anderen, oberirdischen Le-
bensräumen unterscheiden. Hierzu gehören das Fehlen von Licht, niedrige Nährstoffkon-
zentrationen und Temperaturen sowie geringe zeitliche Schwankungen der abiotischen
Bedingungen. Mikrobielle Gemeinschaften bilden die Basis wichtiger biogeochemischer
Prozesse in diesen Ökosystemen, wie beispielsweise Nährstoffkreisläufe oder Schadstof-
fabbau. Auf Grund ihrer ausgedehnten Ausmaße ist die grundwassergesättigte Zone der
größte aquatische, limnische Lebensraum der Erde und beherrbergt einen Großteil der
globalen mikrobiellen Biomasse. Des Weiteren ist Grundwasser die weltweit größte Quel-
le flüssigen Süßwassers. Die Aktivität von Grundwasserorganismen, und mikrobiellen
Gemeinschaften im Speziellen, ist ausschlaggebend für die Qualität dieser lebenswichti-
gen Ressource. Trotz der hohen Relevanz von Grundwasserökosystemen und der darin
lebenden mikrobiellen Gemeinschaften, gibt es derzeit noch wenig wissenschaftliche Er-
kenntnisse zu den Mechanismen, welche die Zusammensetzung dieser Gemeinschaften im
Grundwasser bestimmen. Auf gesellschaftlich-politischer Ebene wurde Grundwasser über
lange Zeit hauptsächlich als Ressource und nicht als schützenwertes Ökosystem wahrge-
nommen. Zwar ist diesbezüglich seit einigen Jahren ein Umdenken zu verzeichnen, das
in einzelnen Ländern bereits zur gesetzlichen Anerkennung von Grundwasser als Öko-
system in Umweltrichtlinien geführt hat, dennoch werden ökologische Kriterien derzeit
kaum in der routinemäßigen Überwachung von Grundwasser berücksichtigt, da es bis-
her an geeigneten Methoden für deren Erfassung mangelt. In dieser Dissertation werden
die Prozesse, welche die Zusammensetzung mikrobieller Gemeinschaften im Grundwas-
ser beeinflussen, beleuchtet. Zusätzlich wird ein Ansatz vorgestellt, der es ermöglicht,
biologisch-ökologische Kriterien in die Routineüberwachung von Grundwasser zu inte-
grieren.

Im ersten Teil dieser Arbeit wurden, unter Berücksichtigung theoretischer Ansätze
aus der Gemeinschaftsökologie, die Einflüsse von Selektion (species sorting), Dispersion
und stochastischem Drift auf die Zusammensetzung mikrobieller Gemeinschaften in ver-
schiedenen, geografisch voneinander abgegrenzten, Grundwasserleitern untersucht. Die
Faktoren, von denen Selektion ausgeht, wurden unterschieden in von lokalen Umweltbe-
dingungen bestimmte Selektionsfaktoren und solchen, die sich möglicherweise aus überge-
ordneten, regional-spezifischen Faktoren ergeben, wie etwa Klima, Geologie, oder zeitlich
zurückliegende Ereignisse. Biogeografische Verteilungsmuster mikrobieller Gemeinschaf-
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ten über größere räumlich Distanzen waren bereits Gegenstand einiger vorangegangener
Studien. Allerdings ist bislang weitestgehend unklar, in wie weit Unterschiede zwischen
Gemeinschaften in unterschiedlichen Regionen durch Selektion bedingt, oder das Ergeb-
nis von verminderter Dispersion sind und ob Selektion hauptsächlich von lokalen Umwelt-
bedingungen bestimmt wird, oder zusätzlich von übergeordneten regional-spezifischen
Faktoren ausgeht. Dies gilt besonders für mikrobielle Gemeinschaften im Grundwasser,
die im Vergleich zu Gemeinschaften in anderen, oberirdischen Habitaten diesbezüglich
noch weitestgehend unerforscht sind. Um Antworten auf diese offenen Fragen zu lie-
fern, haben wir die Zusammensetzungen mikrobieller Gemeinschaften auf Basis exakter
16S rRNA Amplicon Sequence Variants (ASVs) zwischen vier geografisch voneinander
abgetrennten Grundwasserleitern verglichen, die in unterschiedlichen Regionen entlang
eines ∼700 km langen Nord-Süd-Transsekts durch Deutschland beprobt wurden. Mit-
tels der Kombination von Varianzpartitionierung und ökologischen Nullmodellanalysen
konnten wir zeigen, dass die Unterschiede zwischen Gemeinschaften aus verschiedenen
Regionen hauptsächlich auf Selektion durch lokale Umweltbedingungen zurückzuführen
waren, wobei verminderte Dispersion zwischen Regionen und Drift eine untergeordne-
te, aber dennoch signifikante Rolle spielten. Lediglich ∼23% der gesamten Varianz in
der Zusammensetzung der mikrobiellen Gemeinschaften konnte nicht zugeordnet werden,
womöglich durch nicht erfasste Effekte von verminderter Dispersion zwischen lokalen Ge-
meinschaften innerhalb der einzelnen Regionen. Es wurden jedoch keine Anhaltspunkte
gefunden, die auf Selektion durch übergeordnete, regional-spezifische, von lokalen Um-
weltbedingungen unabhängige Faktoren hindeuten.

Der zweite Teil meiner Dissertation beleuchtet die Prozesse, die für die Zusammenset-
zung mikrobieller Gemeinschaften auf Grundwassersedimenten verantwortlich sind. Diese
Gemeinschaften machen in der Regel den Großteil der mikrobiellen Biomasse und Aktivi-
tät im Grundwasser aus, weshalb ihnen eine besondere Rolle innerhalb dieser Ökosysteme
zugesprochen wird. In der Vergangenheit konnte bereits in mehreren Studien gezeigt wer-
den, dass sich die Zusammensetzung der Gemeinschaften auf Sedimenten deutlich von
der Zusammensetzung planktonischer Gemeinschaften im umgebenden Grundwasser un-
terscheiden kann. Die Ursache dieser Unterschiede ist jedoch bislang nicht genau bekannt.
Um diese Ursachen näher zu ergründen, haben wir die Besiedelung von anfangs sterilen
Sedimenten in in situ Mikrokosmen verfolgt, die über einen Zeitraum von fast einem
Jahr an zwei räumlich getrennten aber dennoch hydrologisch miteinander verbundenen
Standorten eines Grundwasserleiters inkubiert wurden. Unsere Ergebnisse haben bemer-
kenswerte Ähnlichkeiten zwischen dem Ablauf der Besiedelung der inkubierten Sedimente
und in der Vergangenheit beobachteten Mustern bei der Bildung von Biofilmen in ande-
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ren, dynamischeren aquatischen Öksystemen aufgezeigt. Dies deutet darauf hin, dass die
Besiedelung von Oberflächen durch mikrobielle Gemeinschaften in unterschiedlichen Ha-
bitaten von ähnlichen grundlegenden Mechanismen bestimmt wird. Nullmodellanalysen
auf Basis von räumlich und zeitlich aufgelösten 16S rRNA Gensequenzdaten deuteten an,
dass die Besiedelung der Sedimente maßgeblich durch Selektion spezifischer Operational
Taxonomic Units (OTUs) bestimmt wurde anstatt durch stochastische Besiedelungspro-
zesse. Am Ende der Inkubation wurden die Gemeinschaften von einem kleinen Anteil
beständiger OTUs dominiert, die sich im Laufe der ersten 115 Tage auf den Sedimenten
angesiedelt hatten und am Ende zusammen eine relative Abundanz von 68% bis 85% in
den Gemeinschaften aufwiesen, was auf eine besondere Rolle dieser Organismen für die
Besiedelung der Sedimente schließen lässt. Schlussfolgernd lässt sich aus den Ergebnissen
dieser Studie ableiten, dass Unterschiede zwischen mikrobiellen Gemeinschaften auf Se-
dimenten und planktonischen Gemeinschaften in Grundwassersystemen wahrscheinlich
nicht das Ergebnis von hauptsächlich stochastischen Besiedlungsprozessen sind, sondern
dass Sedimente spezifische Gruppen von Mikroorganismen selektieren, die sich reprodu-
zierbar und auf nicht zufällige Art und Weise auf den Sedimenten ansiedeln.

Im dritten Teil dieser Arbeit wird ein einfacher, kostengünstiger Ansatz zur ökologi-
schen Bewertung von Grundwasser vorgestellt, der sich problemlos in bereits bestehende
Protokolle zur Grundwasserüberwachung integrieren lässt. Dieser Ansatz stützt sich auf
drei mikrobiologische Parameter: die mittels Durchflusszytometrie ermittelte prokaryo-
tische Gesamtzellzahl (cell density, D); die mikrobielle Aktivität (activity, A), abge-
leitet von der Konzentration des prokaryotischen intrazellulären ATPs, was mit Hilfe
eines einfachen Zelllyse-Lumineszenzverfahrens bestimmt wird; und, als optionaler zu-
sätzlicher Parameter, biologisch verfügbarer Kohlenstoff (carbon, C ), der anhand der
Konzentration des assimilierbaren organischen Kohlenstoffs in einem einfachen mikro-
biologischen Wachstumsversuchs in Batchkulturen bestimmt werden kann. Der Ansatz
wurde anhand von Datensätzen zu drei Fallstudien getestet, die repräsentativ für einige
der Hauptgefährdungen für Grundwasserökosysteme stehen, nämlich organische Belas-
tung mit Kohlenwasserstoffen, Oberflächenwassereintrag und landwirtschaftliche Land-
nutzung. Mit Hilfe statistischer multivariater Ausreißeranalysen, die auf robusten Schätz-
verfahren basieren (robuste Mahalanobis-Distanzen), konnten belastete Proben in allen
drei Fallstudien zuverlässig von nichtbelasteten Proben unterschieden werden. Wir konn-
ten zeigen, dass durch die gleichzeitige multivariate Analyse aller Parameter belastete
Proben signifikant sensitiver und zuverlässiger angezeigt wurden als bei separaten univa-
riaten Analysen der einzelnen Parameter. Des Weiteren ergab eine Analyse von Daten zu
nichtbelasteten Grundwasserleitern aus unterschiedlichen Regionen Deutschlands, dass
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sich die multivariaten Signaturen anhand der drei mikrobiologischen Parameter signifi-
kant zwischen einzelnen Regionen unterscheiden können. Regionale Gegebenheiten sollten
daher für die Datenerhebung und -analyse bei der praktischen Anwendung dieses Ansat-
zes berücksichtigt werden. Alles in allem bietet unser Ansatz eine praktische Lösung für
das Aufspüren von Störungen in Grundwasserökosystemen anhand von einfach messbaren
mikrobiologischen Parametern, die in Zukunft nahtlos um weitere Parameter erweitert
werden können um die Sensitivität und Flexibilität der Analyse weiter zu erhöhen.

Im Ergebnis liefert diese Dissertation einen Beitrag zum besseren Verständnis der
grundlegenden ökologischen Prozesse, die für die Zusammensetzung mikrobieller Gemein-
schaften im Grundwasser verantwortlich sind. Darüberhinaus beinhaltet diese Arbeit das
Ergebnis anwendungsorientierter Forschung, welche einen praktischen Ansatz für die öko-
logische Bewertung von Grundwasser hervorgebracht hat und damit ein nachhaltigeres
und sachkundigeres Management lebenswichtiger Grundwasserökosysteme ermöglicht.

xii



1 Introduction

1.1 Groundwater ecosystems: characteristics, microbial
ecology, and relevance

The water-saturated zones of the terrestrial subsurface are among the least explored
ecosystems on Earth, with unique features that set them apart from most other, non-
subsurface habitats. The lack of light—and hence absence of primary production via
photosynthesis—is certainly one of the most striking features that distinguish ground-
water from other ecosystems such as soil, surface freshwater, or marine systems (apart
from the deep sea) (Griebler and Lueders, 2009). As a consequence, groundwater ecosys-
tems depend on inputs from soils and surface waters as main source of carbon and other
essential nutrients like nitrogen and phosphate. The carbon pool in groundwater mainly
consists of dissolved organic carbon (DOC) since particulate organic matter is largely
removed by filtration as it seeps through overlaying zones before reaching the groundwa-
ter (Griebler and Lueders, 2009). Because the DOC is being degraded in this process,
concentrations in the groundwater are usually 10 to 1000 times lower than for example
in soils, typically ranging between 0.5 and 5mgL−1 (Hancock et al., 2005; Goldscheider
et al., 2006; Gooddy and Hinsby, 2009). Furthermore, since the degradation mainly at-
tacks labile organic matter, a large fraction of the DOC in groundwater often consists
of recalcitrant compounds, of which only a small part is readily bioavailable to microor-
ganisms. Concentrations of this assimilable organic carbon (AOC) can be two to three
orders of magnitude lower compared to the DOC (Gooddy and Hinsby, 2009). Next to
low nutrient concentrations, relatively low temperatures as well as stable environmental
conditions are another distinctive feature of groundwater environments compared to sur-
face habitats. Although large geological, hydrological, and chemical variation may exist
between different zones of an aquifer, the environmental conditions within each zone are
often more stable, exhibiting little variation in pH, nutrient concentrations, and temper-
ature over time (Hancock et al., 2005; Goldscheider et al., 2006; Griebler and Lueders,
2009).

Despite these seemingly harsh conditions, which have led researchers to consider
groundwater even an extreme environment (Danielopol et al., 2000), these ecosystems
are far from being lifeless deserts. Aquifers are ubiquitously colonized by diverse microbial
communities, which mainly consist of heterotrophs and chemolithoautotrophs that are
well adapted to these oligotrophic, stable conditions (Hancock et al., 2005; Griebler
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1 Introduction

and Lueders, 2009; Akob and Küsel, 2011; Smith et al., 2018). The majority of these
organisms and the bulk of the microbial activity can usually be found attached to rock
surfaces and sediment particles (Alfreider et al., 1997; Lehman et al., 2001; Lehman and
O’Connell, 2002; Griebler et al., 2002; Zhou et al., 2012; Smith et al., 2018). This attached
mode of life may have several advantages over a planktonic lifestyle, for instance by
providing access to limiting nutrients and carbon adsorbed to mineral surfaces (Griebler
and Lueders, 2009; Smith et al., 2018). Because of the energetic constraints and low
temperatures, local prokaryotic cell densities and activity are often lower compared to
other environments, typically ranging between 102 and 106 cellsmL−1 groundwater and
104 and 108 cells cm−3 sediment (Griebler and Lueders, 2009; Akob and Küsel, 2011).
However, due to its vast size, the terrestrial subsurface is estimated to harbor between 6%

and 40% of the total global prokaryotic biomass, making it one of the largest microbial
habitats on Earth, second probably only to marine systems (Griebler and Lueders, 2009;
McMahon and Parnell, 2013; Magnabosco et al., 2018).

Microbial communities are key actors in groundwater ecosystems and beyond. Ground-
water not only accommodates ’simple’ prokaryotic organisms, but provided that oxygen
is present, aquifers are inhabited by a diverse protozoan and metazoan fauna comprising
several rare and endemic species which can only be found in these habitats (Danielopol
et al., 2000; Hancock et al., 2005; Goldscheider et al., 2006; Griebler et al., 2014; Griebler
and Avramov, 2015). Microorganisms serve as prey for many of these higher organ-
isms and thus are a crucial component of groundwater food webs (Hancock et al., 2005;
Foulquier et al., 2011a; Griebler et al., 2014; Griebler and Avramov, 2015; Hutchins et al.,
2016). Moreover, microorganisms are the bedrock of key biogeochemical processes like
the cycling of carbon and other nutrients. Since aquifers are open systems that are hy-
drologically connected to other aquatic and terrestrial ecosystems on the surface, the
ecological importance of microbially catalyzed processes in groundwater extends beyond
the confines of the subsurface (Goldscheider et al., 2006; Akob and Küsel, 2011; Griebler
and Avramov, 2015; Smith et al., 2018).

Next to the ecological relevance, the functioning of groundwater ecosystems is also of
direct concern to society. Out of the many services that societies obtain from groundwa-
ter (Griebler and Avramov, 2015; Griebler et al., 2019), the provision of clean freshwater
is probably the one that most people would rank highest. About 95% of the liquid
freshwater on Earth is groundwater, making it the most important source of drinking
and irrigation water worldwide. For example, in Europe 75% of all the drinking water is
produced from groundwater; worldwide, an estimated 2.5 billion people—about one third
of the global population—solely rely on groundwater as source of freshwater. However,
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the availability of this vital resource is increasingly diminished not only due to overex-
ploitation, but also because of chemical and pathogenic contamination resulting from
intensive agriculture, industrial activities, and insufficient wastewater treatment (United
Nations World Water Assessment Programme, 2015). Microbial communities are the
main drivers of contaminant degradation and furthermore play important roles in the
elimination of pathogens, which makes them a crucial element of maintaining the quality
of this vital resource (Griebler and Lueders, 2009; van Elsas et al., 2012; van Nevel et al.,
2013; Feichtmayer et al., 2017).

Elucidating the mechanisms that shape microbial community composition would be
an important step towards a better understanding of biogeochemical processes in ground-
water ecosystems, which in turn can pave the way to a better prediction and protection of
pivotal ecosystem services. It is widely accepted within the general field of ecology that
biodiversity and community composition are determining factors for the functioning and
stability of ecosystems (Loreau et al., 2001; Tilman et al., 2014), and microbial communi-
ties likely are no exception in that sense (Wallenstein and Hall, 2012; Stegen et al., 2018a).
For instance, studies on soil could show that key functions related to carbon and nitro-
gen cycling are linked to microbial community diversity and composition (Wallenstein
et al., 2010; Wagg et al., 2014), and furthermore that including information on microbial
community composition can improve the accuracy of regression models to predict process
rates of these functions (Strickland et al., 2009; Graham et al., 2016b). Moreover, the
extent to which microbial communities are subject to species sorting and dispersal can
affect rates of biogeochemical functions, and likely has a determining effect on the vulner-
ability of communities to perturbations (Dini-Andreote et al., 2015; Graham et al., 2016a;
Graham and Stegen, 2017; Albright et al., 2019). However, despite the importance of
groundwater microbial communities, our understanding of the ecological processes that
shape their composition and diversity is still relatively limited compared to other environ-
ments (see Section 1.2). Historically, research on microbial communities in groundwater
has mainly been conducted from the perspective of applied microbiology, focusing on
issues like corrosion and plugging of pipes used for groundwater extraction, or biore-
mediation of contaminated sites, whereas fundamental ecological processes—especially
in pristine, undisturbed aquifers—have only relatively recently started to be addressed
with the emergence of groundwater ecology as a scientific discipline (Hancock et al., 2005;
Griebler et al., 2014).

Viewing groundwater from an ecological perspective has not only driven scientific
research in that area, but has also led to changes in environmental policies in several
parts of the world, which now require the integration of ecological criteria in routine
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groundwater monitoring to ensure a better protection of these ecosystems (Danielopol
et al., 2007; Griebler et al., 2010). However, the lack of suitable ecological assessment
tools has largely hindered the implementation of these policies in practice to date (see
Section 1.3).

1.2 Ecological theory on microbial community assembly and
knowledge gaps

1.2.1 Species sorting, dispersal, and drift

Understanding the processes that cause differences in microbial community composition
across space has become one of the central questions in today’s field of microbial ecology
(Lindström and Langenheder, 2012; Nemergut et al., 2013; Antwis et al., 2017; Zhou and
Ning, 2017). Different theoretical concepts have been developed, which share overlapping
perspectives on the processes that determine the assembly of local communities from a
common regional species pool, which can be broadly categorized as selection processes—
also referred to as species sorting or environmental filtering—and processes related to
species dispersal and random drift due to stochastic extinction, migration, or speciation
events (Vellend, 2010; Chase et al., 2011; Leibold and Chase, 2018) (Fig. 1.2.1). The
species sorting view assumes that species from a regional species pool assemble into local
communities according to environmental conditions, determined by abiotic and biotic
factors, which select for distinct sets of species that are able to thrive and compete under
these conditions. Accordingly, communities at different locations with similar environ-
mental conditions are expected to be composed of similar species, provided that species
can disperse freely to track environmental gradients and reach their preferred environ-
ment. Thus, from this perspective, differences in community composition are expected
to be strongly linked to differences in environmental conditions, while spatial distance
between communities is supposed to have little effect (Leibold et al., 2004). However,
community composition can be uncoupled from environmental conditions by processes
that determine species dispersal. Apart from species sorting, differences between com-
munities can also arise due to dispersal limitation, in which case the impeded exchange
of species in combination with random drift causes communities to diverge over time
(Chase and Myers, 2011). Additionally, dispersal limitation no longer allows species
to track environmental gradients and reach locations with their preferred environment,
causing differences in community composition to be predominantly associated with spa-
tial distance between communities rather than differences in environmental conditions.
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Figure 1.2.1: Schematic illustration of processes that affect local community assembly
from a regional species pool. Species are represented by different shapes,
environmental conditions are shown as color gradient, and spatial location
is indicated by arbitrary measures of latitude and longitude. A) Assembly
purely driven by species sorting. Species are sorted into local communi-
ties according to environmental conditions independent of spatial distance,
such that the blue and yellow environments are always occupied by triangle
and circle species, respectively, while square and star species are exclusively
found at the interface. B) Community assembly driven by homogenizing
dispersal and dispersal limitation. Strong dispersal (represented by bidi-
rectional arrows) homogenizes local communities across space, whereas dis-
persal limitation (represented by the dashed line) impedes species exchange
between local communities. In both cases, the distribution of species is
uncoupled from their preferred environmental conditions shown in A. C )
Community assembly purely driven by random drift causing local commu-
nities to be random subsets of the regional species pool regardless of spatial
distance or environmental conditions.

On the other hand, high similarities between communities can arise—and species sort-
ing be overruled—under conditions with high dispersal rates, which homogenize local
communities and allow species to occur even under unfavorable environmental condi-
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tions, if dispersal rates are sufficient to compensate for species extinction caused by the
unfavorable conditions (Leibold et al., 2004).

These theoretical frameworks have their origins in classical community ecology deal-
ing with the distribution of macroscopic organisms such as animals or plants and have
only recently started to be considered in microbial ecology. The reasons for this are
twofold: first, microbial ecology is mainly a descendant of microbiology, which tradition-
ally takes reductionist experimental approaches to decipher physiological mechanisms
rather than trying to understand ecological processes that shape community diversity;
second, it has long been impossible to quantitatively assess microbial diversity in na-
ture using classical culture-dependent techniques (Prosser et al., 2007; Barberán et al.,
2014). Only the relatively recent advent of molecular tools such as DNA fingerprinting
and later on sequencing has enabled microbial ecologists to measure microbial diversity
with a sufficient resolution and conduct studies from the perspective of ecological theory,
which had not been possible to this extent until then (Lindström and Langenheder, 2012;
Barberán et al., 2014).

Before the necessary molecular tools were available, the historically most widely held
view on the spatial distribution of microorganisms was essentially a species sorting per-
spective, as famously stated by Baas Becking in his hypothesis that "everything is every-
where, but the environment selects" (Baas Becking, 1934). The basic assumption of this
tenet is that microorganisms are not subject to dispersal limitation and drift, because
their small body size, fast growth, and large population size facilitate ubiquitous dispersal
and prevent local extinction. Therefore, the distribution of microorganisms was supposed
not to be limited by spatial distance, but only by environmental conditions that allow
some microorganisms with certain traits to colonize a given environment, while excluding
others that lack the necessary traits to thrive under these conditions. Directly opposed to
this fundamentally selection-oriented perspective stands Hubbell’s neutral theory, which
assumes that traits of trophically similar organisms are irrelevant to the success of col-
onizing a given environment, but that this success is purely determined by stochastic
species arrival in a local community through dispersal and random drift (Hubbell, 2001).
Consequently, according to this theory, local community composition can be predicted
simply from average abundances of species in a region, without taking environmental
conditions into account. Taking this perspective, more recent studies have started to
challenge the classical view of microbial community assembly being exclusively driven
by selection, showing that purely neutral models can explain observed diversity patterns
of microbial communities with surprising accuracy (Sloan et al., 2006; Woodcock et al.,
2007; Ofiţeru et al., 2010).
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It is important to note that those studies did not deny the role of species sorting com-
pletely, but rather pointed out that also dispersal processes and drift can have important
impacts on the assembly of microbial communities. Thus, in between the two extremes
of a purely selection-oriented view on the one hand and a purely neutral view on the
other, there has now been growing consent that both types of processes play a role, as
recently captured in a rephrased version of the Baas Becking hypothesis by van der Gast
(2013): "Some things are everywhere and some things are not. Sometimes the environ-
ment selects and sometimes it doesn’t". Albeit arguably not as appealing and elegant as
the original version, this quote pinpoints the current knowledge and focus of research on
microbial community assembly. It is now widely recognized that both species sorting and
processes related to dispersal and drift act simultaneously, and that the contribution of
each process is context-dependent—as highlighted by the word "sometimes"—and may
shift over the course of community succession (see Section 1.2.2), with changing environ-
mental conditions, and with the spatial scale at which communities are being investigated
(Martiny et al., 2006, 2011; Hanson et al., 2012; Lindström and Langenheder, 2012; Wang
et al., 2013; Zhou et al., 2014; Dini-Andreote et al., 2015; Langenheder and Lindström,
2019). Therefore, rather than trying to find evidence in support of one hypothesis or
the other, the focus has changed towards understanding the relative importance of these
processes with respect to environmental conditions and habitat types.

A common pattern that has emerged from studies and meta-analyses that have com-
pared microbial community assembly mechanisms across habitats is that species sorting
appears to be the dominating process in most cases (Hanson et al., 2012; Lindström and
Langenheder, 2012; Wang et al., 2013; Langenheder and Lindström, 2019). However,
this dominant effect is not a general rule as it depends to a large degree on the interplay
between environmental conditions and spatial scale. Langenheder and Lindström (2019)
have provided a conceptual synthesis of this interplay as shown in Figure 1.2.2. Gener-
ally, the effect of species sorting is expected to be weak relative to processes affecting
species dispersal and drift in stable, homogeneous environments due to the low variation
between local environmental conditions (Ofiţeru et al., 2010; Zhou et al., 2013; Wang
et al., 2013). In this case, the role of dispersal, dispersal limitation, and drift is then
largely determined by the spatial distance between communities. Homogenizing dispersal
is expected to predominately operate over short distances, whereas the likelihood of a
dominating effect of drift and dispersal limitation increases as distances become larger.
The exact spatial scale at which these processes gain importance, however, depends on
habitat-specific factors that determine the connectivity between communities. For ex-
ample, homogenizing dispersal may only have a significant impact in the micrometer
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Figure 1.2.2: Dominance of community assembly processes in relation to spatial scale
and environmental heterogeneity. Spatial scale is given in arbitrary units
increasing from A to E; the exact units may vary depending on habitat
characteristics as explained in the main text. Also note that although the
changes between dominating processes are shown in discrete steps along
the two axes, in reality they can be expected to overlap and change contin-
uously. Processes related to dispersal and drift are expected to dominate
if differences between local environmental conditions are small; the impor-
tance of homogenizing dispersal decreases with spatial distance in favor of
random drift and dispersal limitation at intermediate and large distances,
respectively. The importance of species sorting increases with increasing
environmental heterogeneity, but may still be overruled by homogenizing
dispersal and dispersal limitation, respectively, at the outer extremes of
the spatial scale. At short to intermediate distances, biotic factors like
species interactions are expected to be the main mediators of species sort-
ing. At intermediate distances, local environmental conditions gain im-
portance, whereas at larger distances, broad-scale factors like climate or
geology may impose species sorting, in addition to selection events in the
past having left a permanent imprint on community composition. (Modified
from Langenheder and Lindström, 2019).

to centimeter range in less fluid habitats like soils and other fine-grained media, or in
stagnant water bodies where microorganisms primarily disperse via active movement or
passive diffusion. However, its effect could extend over large scales of several (tens or
hundreds of) meters, for instance in aquatic environments with strong water currents
that facilitate long-range passive transport. By the same token, dispersal limitation may
operate significantly already at the scale of a few meters or only at large geographic dis-
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tances of hundreds or thousands of kilometers. Pure random drift is expected to mainly
drive differences in community composition at intermediate spatial scales where disper-
sal is low enough to avoid homogenization of communities but still sufficient not to be
limiting (Langenheder and Lindström, 2019).

The relative contribution of dispersal to microbial community assembly diminishes
in favor of species sorting as differences between environmental conditions become larger
(Fig. 1.2.2). Biotic factors involving species interactions—antagonistic as well as syn-
ergistic—have been suggested to be a key element of species sorting, especially at small
spatial scales in the range of centimeters or smaller, provided that dispersal is not too
strong to cause community homogenization (Raynaud and Nunan, 2014; Konopka et al.,
2015; Cordero and Datta, 2016). At intermediate distances, the effect of biotic inter-
actions decreases and local environmental conditions defined for example by pH, tem-
perature, or nutrient concentrations become the main drivers of species sorting (Hanson
et al., 2012; Cordero and Datta, 2016; Langenheder and Lindström, 2019). However, even
in heterogeneous environments where a dominating effect of selection processes becomes
more likely, dispersal and drift can still prevail in certain situations. For example, pertur-
bations (i.e. strong or sudden changes in environmental conditions that exceed the range
of fluctuation to which native species are adapted) can inactivate part of a community
and thereby leave open niches, leading to reduced competition and hence increasing the
chance of randomly dispersed species to establish in a community (Shade et al., 2012;
Ferrenberg et al., 2013; Zhou et al., 2014; Fukami, 2015; Zhang et al., 2016). Moreover,
conditions with high biomass production have been suggested to weaken species sort-
ing, presumably by offering a larger niche space and thus favoring random colonization
(Chase, 2010; Zhou et al., 2014; Ren et al., 2017), although contrary observations have
also been reported indicating opposite effects (Langenheder et al., 2012). Overall, while
biological productivity does seem to influence community assembly, the direction of these
effects is still little understood and might vary depending on habitat type (Langenheder
and Lindström, 2019).

In addition to local environmental conditions, broad-scale region-specific factors can
become an important part of species sorting over large spatial distances spanning hun-
dreds to thousands of kilometers across different regions. These factors may comprise
features like climate, geology, or land use, but also past environmental conditions that
may have left a lasting imprint on contemporary community structure (Martiny et al.,
2006; Andersson et al., 2014; Fukami, 2015; Stegen et al., 2016b; Vass and Langenheder,
2017; Rummens et al., 2018; Svoboda et al., 2018). However, a common problem of
studies that have investigated changes in microbial community composition over large
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spatial scales is that distance decay relationships (i.e. a significant decrease in community
similarity with increasing spatial distance, while controlling for the effect of differences
in local environmental conditions) can be caused both by dispersal limitation over large
spatial distances as well as species sorting due to broad-scale regional factors (Leibold
et al., 2010; Hanson et al., 2012; Wang et al., 2013). Therefore, it is often unclear to what
extent adaptation to these broad-scale factors, relative to dispersal limitation and drift,
contributes to differences between communities across regions. Moreover, the potential
effect of broad-scale factors on local community composition within regions, on top of
dispersal and selection imposed by local environmental conditions, is not well understood
(Ricklefs, 2008; Heino et al., 2017).

Several studies have investigated differences in microbial community composition and
the underlying assembly processes over different spatial scales in various habitats includ-
ing soil, marine environments, and freshwater systems like ponds, streams, and lakes (for
reviews see Hanson et al., 2012; Lindström and Langenheder, 2012; Langenheder and
Lindström, 2019). However, the majority of studies so far have focused on local commu-
nities within a region, while only a few studies have explicitly investigated communities
at larger spatial scales across regions (e.g. Martiny et al., 2011; Almasia et al., 2016;
Comte et al., 2016; O’Brien et al., 2016; Ma et al., 2017; Hassell et al., 2018; Power et
al., 2018; Shi et al., 2018). Strikingly, research on groundwater environments is largely
underrepresented in this context compared to surface habitats. Although recent studies
have addressed the impacts of changes in environmental conditions and the relative con-
tributions of dispersal, drift, and species sorting on microbial community composition in
groundwater (Stegen et al., 2012, 2013, 2015; Shabarova et al., 2014; Beaton et al., 2016;
Savio et al., 2019) and the hyporheic zone (i.e. groundwater-surface water mixing zones)
(Graham et al., 2016a, 2017; Stegen et al., 2016a, 2018b), they mainly focused on differ-
ences between local communities within a single aquifer, whereas studies that compared
communities across aquifers from different regions are scarce (Ben Maamar et al., 2015;
Danczak et al., 2018). Consequently, the factors and processes that determine microbial
community composition in these characteristically stable, low-productivity environments
have not been fully unraveled. Considering the importance of groundwater as a microbial
habitat and the crucial role of microbial communities in these ecosystems and beyond,
this is a critical knowledge gap in microbial ecology, which I set out to address in the
first part of this thesis (see Section 1.4.1).
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1.2.2 Microbial community assembly and succession during surface
colonization

As briefly alluded to in the previous section, the relative contribution of species sorting
to community assembly may shift over the course of community succession in newly-
colonized environments (Tilman, 2004; Langenheder and Székely, 2011). At the initial
stage of colonization, the arrival of species in a new environment is often driven by
stochastic dispersal (Tilman, 2004; Ferrenberg et al., 2013; Dini-Andreote et al., 2015),
which can override effects of species sorting in homogeneous environments with little
variation between local environmental conditions as explained above. However, once
established, resident species can affect the establishment of newly-arriving species (posi-
tively or negatively) over the course of the subsequent succession, either directly through
species interactions, or indirectly by modifying their local environment (Nemergut et al.,
2013; Fukami, 2015), for example by depleting oxygen and thereby changing redox con-
ditions. Thus, the order and timing of species arrival, albeit initially stochastic, can
affect subsequent species sorting events that determine the composition and functioning
of the final community, which is commonly known as priority effect (Fargione et al., 2003;
Tilman, 2004; Fukami et al., 2010; Peay et al., 2012; Tan et al., 2012; Nemergut et al.,
2013; Rummens et al., 2018; Svoboda et al., 2018).

One example of the initial colonization of new environments is the formation of
biofilms on initially empty surfaces. A general conceptual model that summarizes the
successional stages during the development of biofilms has been described by Jackson
(2003) (Fig. 1.2.3). According to this model, initially empty surfaces offer ample space
and resources to facilitate the establishment of diverse microorganisms, resulting in a
rapid increase in species richness and diversity that is fueled by the dispersal of newly-
arriving species from the species pool in the overlaying water phase. The steady arrival
of new species eventually leads to niche depletion and growing competition between es-
tablished and newly-arriving species, which more and more suppresses the increase in
species richness. As the competition intensifies, less competitive species are lost from the
community, resulting in a decline of species richness after the initial stage of community
assembly. However, as the biofilm matures further and becomes more heterogeneous,
new niches are created that enable specialized species to establish (e.g. anoxic pockets
permitting the growth of anaerobes), which may again lead to an increase in species
richness and diversity in the mature biofilm. Although Woodcock and Sloan (2017)
could demonstrate that these changes in species richness and diversity can be predicted
by a purely neutral model based on stochastic birth-death-immigration events akin to
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Figure 1.2.3: Microbial community succession during biofilm development. A) Schematic
illustration of the colonization of an initially empty surface (shown as gray
rectangles) by species from an overlaying water phase over the successional
stages of biofilm development, and accompanying changes in the relative
importance of species sorting. Different species are represented by colored
shapes. The ramp represents the increasing importance of species sorting
as the biofilm develops. B) Expected changes in species diversity, richness,
and the fraction of newly-arriving species in the biofilm over the course of
the succession (Modified from Jackson, 2003).

Hubbell’s neutral theory (Hubbell, 2001), empirical studies suggest that the assembly of
biofilm communities is often driven by a shift from initially stochastic assembly towards
selection-driven succession at the later stages, for instance caused by species interactions
or growing niche space due to increasing chemical heterogeneity of the biofilm (Martiny
et al., 2003; Lyautey et al., 2005; Battin et al., 2016; Veach et al., 2016; Brislawn et al.,
2019).

In contrast to typically studied biofilms in environments like surface waters, which
form dense, spatially coherent, heterogeneous structures that can reach a thickness of
several hundred micrometers (Battin et al., 2016), microbial communities attached to
rock and sediment surfaces in groundwater environments usually occur as small, patchily
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distributed microcolonies that consist of only a few cells (Schmidt et al., 2017; Smith
et al., 2018). Nevertheless, they represent the bulk of the microbial biomass and ac-
tivity in groundwater environments, and thus can be expected to play a particularly
important role in these ecosystems (Alfreider et al., 1997; Lehman et al., 2001; Lehman
and O’Connell, 2002; Griebler et al., 2002; Zhou et al., 2012; Smith et al., 2018). Even
though previous studies have repeatedly shown that the composition of sediment-attached
communities can differ substantially from planktonic communities in the surrounding
groundwater (e.g. Zhou et al., 2012; Flynn et al., 2013; Hug et al., 2015), the ecological
processes that give rise to these differences during community assembly and succession
have largely remained in the dark so far. Thus, it is unclear whether sediment-attached
communities assemble initially from random subsets of the planktonic species pool and
subsequently diverge from planktonic communities through temporal drift, or whether
sediment surfaces select for distinct suites of microorganisms.

To date, most of the studies on ecological processes behind the assembly of micro-
bial communities in groundwater environments have focused on planktonic communities
suspended in the groundwater (Stegen et al., 2012, 2013; Beaton et al., 2016; Danczak
et al., 2018), while sediment-attached communities have received less attention and were
mainly investigated in the hyporheic zone (Graham et al., 2016a, 2017; Stegen et al.,
2016b). In these studies, the assembly of planktonic communities generally tended to
be more influenced by dispersal and drift, as well as species sorting imposed by local
hydrochemical conditions, compared to sediment-attached communities, which showed
a relatively stronger effect of species sorting albeit mostly unrelated to hydrochemistry,
but supposedly exerted by mineralogy. However, the groundwater-surface water mixing
in the hyporheic zone creates a much more dynamic environment with higher nutrient
concentrations that promote microbial activity and productivity relative to groundwater
in the absence of surface water inputs (Hancock et al., 2005). Overall, it is unknown
whether the assembly of sediment-attached communities in comparatively more stable
and energy-poor groundwater environments follows the same trends as observed for com-
munities in the hyporheic zone or typical biofilms in other aquatic environments as de-
scribed above. The research presented in the second part my thesis aimed at shedding
light on this open question (see Section 1.4.2).

1.3 Ecological monitoring of groundwater ecosystems

Fundamental research on the ecology of groundwater environments, like the aspects cov-
ered in the previous sections, is essential for a better understanding of the functioning
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and vulnerability of these ecosystems, which in turn provides crucial information to ad-
vise policy makers in drafting environmental regulations. Over the past two decades,
scientific advances in the field of groundwater ecology have stimulated a paradigm shift
in environmental policy. While legislators in the past used to regard groundwater first
and foremost as a commodity, it is now more and more recognized as a unique ecosys-
tem that merits protection (Danielopol et al., 2007; Griebler et al., 2010). Certainly,
socioeconomic aspects have played a large part in this development, as legislators have
become increasingly aware of the strong link between ecosystem health and the quality of
groundwater as an invaluable resource, as well as the importance of groundwater for the
integrity of other ecosystems on the surface. In addition, there are also important and
valid cultural-ethical arguments that deserve consideration, such as the responsibility
of society to protect rare organisms in these subsurface habitats and to preserve them
for future generations (Danielopol et al., 2000, 2007; Hancock et al., 2005; Goldscheider
et al., 2006; Griebler et al., 2014; Griebler and Avramov, 2015). Nevertheless, to date,
conventional groundwater monitoring has focused almost exclusively on physicochemical
parameters (and hygienic indicators such as the presence of pathogens), which how-
ever do not provide information on the ecological or biological state of the groundwater.
However, several advantages could be gained from ecological assessments during routine
monitoring. Not only would it allow for a better protection of these unique ecosystems,
it would also enable a more sustainable and informed ecosystem management, thereby
helping maintain valuable ecosystem services such as the provision of clean freshwater
(Griebler et al., 2014; Griebler and Avramov, 2015). Moreover, considering that the
indigenous organisms have adapted to the characteristically stable environmental con-
ditions in groundwater aquifers, they can be expected to react sensitively to various
disturbances, some of which might not be detected by conventional monitoring of physic-
ochemical parameters alone. Therefore, the sensitivity of groundwater monitoring could
be increased by amending routine monitoring protocols with ecological-biological param-
eters.

In order to give incentives for the implementation of ecological criteria in ground-
water monitoring, several countries have passed environmental directives demanding the
consideration of parameters that allow for an ecological assessment of groundwater, in
addition to the conventional physicochemical measurements. Examples of such direc-
tives can be found in Switzerland (SWPO, 1998) and Australia (NSW-SGDEP, 2002;
EPA, 2003), and plans for the implementation of similar frameworks have furthermore
existed in the European Union since 2006 (EU-GWD, 2006). However, these directives
largely remain ambiguous about specific parameters that should be considered and ac-
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cording benchmarks. To quote one representative example, the Swiss Water Protection
Ordinance states that:"The biotic community of underground waters shall: a) be close to
nature and appropriate to the location; b) be specific to unpolluted or only slightly polluted
waters." (SWPO, 1998; status of June 1, 2018). This ambiguity is attributed to the fact
that, first, potential bioindicators like groundwater fauna communities are often highly
specific to a given location, and second, there is still limited knowledge about such po-
tential indicator organisms, which both complicate the definition of specific, universally
applicable ecological monitoring criteria. Therefore, these directives collectively call for
research striving to "provide better criteria for ensuring groundwater ecosystem quality"
as stated for instance in the EU Groundwater Directive (EU-GWD, 2006).

The lack of suitable, universally applicable monitoring criteria has largely hampered
the routine implementation of ecological groundwater monitoring in practice to date,
although progress has recently been made in that direction (e.g. Korbel and Hose 2011;
2017). While ecological assessment criteria based on sets of indicator organisms have
already been firmly integrated into routine monitoring of surface water ecosystems (e.g.
EU-WFD, 2000), these approaches are not compatible with groundwater due to the char-
acteristic environmental conditions outlined above (Section 1.1) and the specific reper-
toire of organisms (e.g. lack of algae, macrophytes, and often vertebrates) in these envi-
ronments (Steube et al., 2009). Consequently, this raises the demand for new monitoring
tools that are specifically tailored to groundwater ecosystems.

To be integrated into routine monitoring protocols, such tools should fulfill certain
criteria:

1. The targeted parameters need to be easy and inexpensive to measure.

2. They need to be sensitive to a wide range of disturbances and globally applicable
across different hydrogeological conditions.

3. The data need to be simple to analyze and interpret.

4. Ideally, samples for measuring ecological parameters should be obtainable along
with samples for typical physicochemical analyses, without the need for additional
sampling efforts.

Several studies have suggested the use of groundwater fauna as bioindicators for the
detection of disturbances of groundwater ecosystems (Malard et al., 1996; Mösslacher,
1998; Hahn, 2006; Schmidt et al., 2007; Bork et al., 2009; Stein et al., 2010; Marmonier
et al., 2013, 2018). However, the notoriously sparse and locally often highly heteroge-
neous distribution of groundwater fauna, as well as their absence under anoxic conditions,
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complicates data collection and interpretation for these types of indicators, and further-
more restricts their applicability to oxic aquifers (Stein et al., 2010; Korbel and Hose,
2017).

Prokaryotic microorganisms on the other hand are ubiquitous in aquifers even un-
der harsh conditions (Griebler and Lueders, 2009), making them ideal bioindicators for
ecological monitoring in various environmental settings. The idea of using microorgan-
isms for groundwater monitoring is not new (Brielmann et al., 2009; Pronk et al., 2009;
Steube et al., 2009; Griebler et al., 2010; Stein et al., 2010; Foulquier et al., 2011b; van
Driezum et al., 2018), but so far there are only a few examples of applicable frameworks
that integrate microbial parameters into ecological assessment schemes. However, these
approaches are either applicable only under certain conditions, for example requiring
non-stagnant water in monitoring wells (Mermillod-Blondin et al., 2013), or rely on DNA
sequencing-based approaches and elaborate bioinformatic analyses (Pearce et al., 2011).
Although, as argued earlier (Section 1.2.1), these types of molecular tools have been es-
sential for enhancing our fundamental understanding of microbial communities, to date
they likely still exceed the expertise and financial resources of most local authorities and
water suppliers responsible for conducting groundwater monitoring. We may speculate
that rapidly declining sequencing costs and advances in automating sample preparation
and data analysis pipelines might make these tools accessible to a broader range of users
in the future, which may also open the doors to novel applications in routine groundwater
monitoring. However, currently these methods are still too sophisticated and expensive
for such applications to be feasible in practice.

To meet the demand for a universally applicable and at the same time user-friendly
method that enables the consideration of biological-ecological criteria in groundwater
monitoring, an approach was developed in the context of this thesis based on simple mi-
crobiological parameters that serve as indicators of the stability of groundwater ecosys-
tems facing disturbances. The core parameters of this approach are microbial cell density
measured as total porkaryotic cell counts by flow cytometry, and the activity displayed
by those cells measured as intracellular ATP concentrations using a standardized com-
mercially available kit. Furthermore, concentrations of AOC, as a measure for the energy
available to the microorganisms, can be optionally included as an additional parameter.
These parameters have already proved useful for monitoring the stability of drinking wa-
ter distribution systems (FDHA, 2012; Vital et al., 2012; Lautenschlager et al., 2013; Vang
et al., 2014; van Nevel et al., 2017), and have furthermore been shown to react readily to
sudden disturbances in groundwater settings (Foulquier et al., 2011b; Mermillod-Blondin
et al., 2013; Herzyk et al., 2017), strongly suggesting a great potential for their appli-
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cation in groundwater monitoring. The developed approach integrates the signals of all
measured variables in a multivariate analysis, and allows for a simple detection of distur-
bances based on a single value, which will be referred to as the D-A-(C) index, standing
short for the parameters considered in the analysis (i.e. prokaryotic cell density, activ-
ity, and optionally concentrations of assimilable organic carbon). This approach will be
illustrated in the third part of this thesis (see Section 1.4.3).

1.4 Outline and aims of this thesis

1.4.1 Ecological drivers of differences in microbial community
composition across geographically distinct aquifers

The research presented in the first part of my thesis aimed at elucidating the ecologi-
cal processes that determine microbial community composition in pristine groundwater
ecosystems. Based on the ecological theory presented in Section 1.2.1, our goal was to
establish the degree to which microbial community composition is shaped by species
sorting imposed by local environmental conditions as well as possible broad-scale region-
specific factors, and processes related to dispersal, dispersal limitation, and drift acting
on communities within as well as across aquifers. To this end, we compared microbial
community composition based on 16S rRNA amplicon sequence data in groundwater
samples that were collected from four geographically distinct, shallow, porous aquifers,
located in different catchment areas along a latitudinal transect of ∼700 km across Ger-
many. We used a combination of variation partitioning and null model simulations to
quantify the contributions of species sorting relative to dispersal and drift, and to identify
the factors responsible for species sorting.

1.4.2 Assembly and succession of microbial communities during the
colonization of groundwater sediments

The second part of my thesis addresses the processes that determine microbial community
assembly on groundwater sediments and differences in community composition between
sediments and groundwater. In this study, we set out to, first, investigate whether the
assembly of sediment-attached communities in pristine groundwater environments can be
explained by the general patterns observed for surface-attached biofilms in other habitats
discussed in Section 1.2.2; second, study the importance of early colonizers for community
succession during the colonization of the sediments; and third, see if the dominating effect
of species sorting on community assembly that has been observed for sediment-attached
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communities in the hyporheic zone also drives community assembly in comparatively
more stable and energy-poor groundwater zones. To tackle these goals, we analyzed data
from an incubation experiment with in situ microcosms that were filled with sterilized
sediments and incubated in monitoring wells at two spatially separated but hydrologically
connected sites of a pristine porous aquifer over a period of almost one year (Zhou
et al., 2012). We used 16S rRNA amplicon sequence data to study changes in alpha and
beta diversity of the sediment-attached communities incubated at the two sites as well
as differences between sediment-attached and planktonic communities over the course
of the succession. Null model simulations on the spatiotemporally resolved amplicon
sequence data were used to explore the influence of species sorting, dispersal, and drift
on community assembly and the differences between sediment-attached communities and
planktonic communities in the surrounding groundwater.

1.4.3 Ecological groundwater monitoring based on microbiological
parameters

Part three of this thesis illustrates the application of the approach for ecological ground-
water monitoring described in Section 1.3 based on the combined analysis of prokaryotic
cell density, intracellular ATP, and AOC concentrations using the D-A-(C) index. We
tested the potential of the D-A-(C) index to indicate disturbances based on three case
studies representing some of the main threats to groundwater ecosystems, that is 1) or-
ganic contamination with hydrocarbons; 2) surface water intrusion; and 3) disturbances
related to agricultural land use. Furthermore, we explored the benefit of the simul-
taneous multivariate analysis of the microbiological parameters compared to separate
univariate analyses of each individual parameter alone. In addition, we analyzed a large
dataset comprising over 200 samples taken from nine non-contaminated aquifers located
in different regions across Germany to investigate geographic differences in the microbial
parameters as a first step towards the definition of monitoring benchmarks.
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2 Materials and methods

2.1 Ecological drivers of differences in microbial community
composition across geographically distinct aquifers

2.1.1 Sample collection

A total of 45 samples were collected on single sampling campaigns between spring 2016

and summer 2018 from four distinct unconfined, shallow, porous aquifers, mainly con-
sisting of unconsolidated gravel and sand, located in four different regions across Ger-
many (Fig. 2.1.1). Region NOR (n=12; September 2018; 53.72°N, 10.01°E) was located
in Norderstedt near the city of Hamburg in the catchment of the Elbe River; region
WUR (n=13; May 2016; 49.77°N, 9.93°E) was located in Würzburg in the Main River
catchment; region AUG (n=12; June 2016; 48.25°N, 10.90°E) was located near Augs-
burg in the Lech River catchment; region MIT was located near Mittenwald (n=8; July
2018; 47.41°N, 11.26°E) at the foothills of the German Alps in the Isar River catchment.
Groundwater from the sampled areas of all aquifers was classified as non-contaminated
and is used for drinking water production in the respective regions. Prevalent types of
land use in all four regions were forests, grasslands, and fallow agricultural land.
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Figure 2.1.1: Schematic map of Germany. Locations of the investigated regions are shown
as black squares; rivers are shown as grey lines. (From Fillinger et al.,
2019a).

Groundwater samples were collected from fully screened monitoring wells using a
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MP1 submersible pump connected to an adjustable frequency converter to control the
pumping rate (Eijkelkamp Soil & Water, Giesbeek, The Netherlands). The pump was
lowered to half the depth of the water column inside the well. The collection of ground-
water was done based national and international standard protocols (DIN, 1985; LUBW,
2013; EPA, 2017). In order to obtain a representative sample of the groundwater, moni-
toring wells were purged prior to sample collection to remove well water and water in the
direct surrounding of the monitoring well by pre-pumping until two to three borehole vol-
umes had been exchanged and physicochemical parameters (temperature, pH, electrical
conductivity, and concentrations of dissolved oxygen) monitored by online measurements
had stabilized. Groundwater pumping was done at the highest possible rate accepting a
maximum drawdown of the groundwater table by ∼30 cm.

All containers were sterilized prior to the sampling and rinsed with sample water three
times before sample collection. All samples were kept in the dark at 4 ◦C for transport to
the lab and until further processing. Samples for DOC concentration measurements were
collected in glass bottles that were baked at 450 ◦C for 4 h or soaked in 10%w/v sodium
persulfate overnight to eliminate residual carbon. To remove traces of particulate organic
matter, DOC samples were passed through a 0.45 µm filter (Millex-HV; Merck-Millipore,
Carrigtwohill, Ireland) rinsed once with sample water prior to sample collection, and
were acidified on-site with HCl to a final pH ≤2. Samples for total prokaryotic cell
counts were collected in sterile Falcon tubes and fixed with 2.5%v/v glutardialdehyde
(final concentration) immediately after sampling to stabilize and preserve cells. Samples
for DNA extraction (5L) were collected in autoclaved glass bottles or plastic containers
rinsed three times with 1M HCl followed by three washing steps with 80%v/v ethanol;
residual ethanol was allowed to evaporate from the containers overnight. Cells were
collected on a 0.2µm polycarbonate filter membrane (Merck-Millipore) within 48 h after
sample collection and stored at −20 ◦C until DNA extraction.

2.1.2 Measurements of physicochemical parameters

To estimate local environmental conditions, we measured 13 physicochemical parameters
for each groundwater sample in addition to total prokaryotic cell counts as a measure
of microbial biomass (see Section 2.1.3). Electrical conductivity, pH, temperature, and
concentrations of dissolved oxygen were measured online during sampling using field sen-
sors (WTW, Weilheim, Germany). DOC concentrations were measured as non-purgeable
organic carbon using high-temperature combustion of organic carbon at 680 ◦C and in-
frared detection of the resulting CO2 on a TOC-V CPH Analyzer coupled to an ASI-V
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autosampler (Shimadzu, Kyoto, Japan). Measurements of concentrations of major ions
were carried out by the Research Unit Analytical BioGeoChemistry at Helmholtz Zen-
trum München. Inductively coupled plasma atomic emission spectrometry (ARCOS;
Ametec-Spectro, Kleve, Germany) was used for the determination of cation concentra-
tions (calcium (measured spectral element line: 183.801 nm), magnesium (279.079 nm),
potassium (766.491 nm), and sodium (589.592 nm)) with radio frequency power set to
1400W and argon as plasma gas at a flow rate of 15Lmin−1. Samples were introduced
by a peristaltic pump connected to a micromist nebulizer with a cyclon spray chamber.
Anion concentrations (chloride, nitrate, orthophosphate, sulfate) were determined by ion
chromatography (Dionex ICS-1500; pre-column: Dionex AG4; analytical column: Dionex
AS4; Thermo Scientific, Idstein, Germany) with Na2CO3 (1.8mM) + NaHCO3 (1.7mM)
as eluent at a flow rate of 1mLmin−1.

2.1.3 Determination of total prokaryotic cell counts by flow cytometry

Total prokaryotic cell counts were determined using a FC500 CYTOMICS flow cytome-
ter (Beckmann Coulter, Brea, CA, USA). To distinguish cells form abiotic particles and
background noise, cells in 500 µL sample aliquots were stained with SYBR Green I flu-
orescent nucleic acid stain (Invitrogen, Darmstadt, Germany) at a ratio of 1:10 000 v/v
followed by incubation for 13min at 37 ◦C in the dark in an Eppendorf Thermomixer
(Eppendorf, Hamburg, Germany). Gates for cell counting were set in dot plots of green
fluorescence (recorded at 530 nm; FL1 channel) versus red fluorescence (610 nm; FL3
channel) (Hammes and Egli, 2005; Kötzsch et al., 2012; Zunabovic-Pichler et al., 2018).
Excitation was achieved with a 488 nm argon ion laser. Instrument-specific filter gain
settings were as follows: FL1: 569; FL3: 640; trigger threshold (set on FL1): 1. Data
acquisition and analysis were done using the CYTOMICS FC500 CXP software (version
2.2; Beckman Coulter). Samples were measured with flow rate set to ’medium’ for 60 sec.
To determine the exact volume of measured sample, a 100µL aliquot of a suspension of a
known number of fluorescent reference beads (Trucount Tubes; Becton-Dickson, Franklin
Lakes, NJ, USA) was added to each sample as internal standard. Samples were measured
in duplicate.

2.1.4 DNA extraction

DNA was extracted from cells collected on membrane filters based on the protocol by
Pilloni et al. (2012). Filters were cut into pieces of ∼5mm× 5mm and inserted into
sterile 2mL screw cap microcentrifuge tubes filled with ∼0.2 g of a 1:1 mixture of 0.1mm
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and 0.7mm Zirconia/Silica beads (Roth, Karlsruhe, Germany). Cells were subjected
to enzymatic lysis by adding 750 µL autoclaved and filter sterilized phosphate-Tris-
NaCl (PTN) buffer (16.02 g L−1 Na2HPO4; 0.86 g L−1 NaH2PO4; 11.20 g L−1 Tris-HCl;
6.60 g L−1 Tris-Base; 1.46 g L−1 NaCl; pH 8; dissolved in Milli-Q water), 40 µL lysozyme
(1.5× 103UmL−1 in 1x TE buffer), and 10 µL protein kinase K (1× 106UmL−1 in 1x TE
buffer) (both Sigma Aldrich, Steinheim, Germany). After manual mixing, samples were
incubated for 15min at 37 ◦C in an Eppendorf Thermomixer. The enzymatic reaction
was stopped by adding 100µL 20%w/v sodium dodecyl sulfate (Sigma Aldrich) followed
by incubation for 15min at 65 ◦C with shaking at 500 rpm. Following the enzymatic
treatment, samples were mixed with 100 µL 25:24:1 phenol:chloroform:isoamly alcohol
(PCIA; Sigma Aldrich; pH 8) and subjected to bead beating for 45 sec at 6.0m sec−1

using a FastPrep-24 sample homogenizer (MP Biomedicals, Irvine, CA, USA). Sam-
ples were centrifuged for 5min at 6000×g and 4 ◦C in an Eppendorf 5417R table top
centrifuge. 600 µL supernatant was transferred to a 2mL Phase Lock Gel Heavy tube
(Quantabio/QIAGEN, Beverly, MA, USA) and put on ice. The remaining sample was
mixed with 300 µL PTN buffer followed by an additional bead beating step for 20 sec

at 6.5m sec−1 and centrifugation as before. Supernatants from both extraction steps
were pooled and mixed with 1 volume (900 µL) PCIA followed by manual shaking and
centrifugation for 4min at 21 000×g and 4 ◦C. 800 µL supernatant was transferred to
a fresh Phase Lock Gel Heavy tube and mixed with 1 volume 24:1 chloroform:isoamyl
alcohol (Sigma Aldrich) followed by centrifugation as before. 650 µL supernatant was
transferred to a fresh 2mL microcentrifuge tube and mixed with 2 volumes precipitation
solution (30%w/v polyethylene glycol 6000 (AppliChem, Darmstadt, Germany) plus
1.6M NaCl). DNA was allowed to precipitate for ∼12 h at 4 ◦C. DNA was pelleted by
centrifugation for 30min at 21 000×g and 21 ◦C. The supernatant was removed by pipet-
ting and the DNA pellet was washed twice with ice-cold 70%v/v ethanol in nuclease-free
water with centrifugation (5min; 21 000×g; 4 ◦C) in between washing steps. The ethanol
was removed by pipetting and the DNA pellet was allowed to air-dry for ∼5min at room
temperature. The final DNA pellet was resuspended in 30 µL EB buffer (QIAGEN,
Hilden, Germany) and stored at −20 ◦C until further processing.

2.1.5 16S rRNA gene amplification and sequencing

DNA concentrations in raw extracts were determined using the Quant-iT PicoGreen ds-
DNA Assay Kit (Invitrogen) according to the manufacturer’s instructions. DNA extracts
of all samples were diluted to an equal concentration of 1 ng µL−1 with EB buffer and
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used as template (1 µL) for PCR amplification of the V4 region of 16S rRNA genes using
the primer pair 515FB (5’-GTGYCAGCMGCCGCGGTAA) (Parada et al., 2016) and
806RB (5’-GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015) extended with Illu-
mina adapters attached to the 5’ end of each primer (forward: 5’-TCGTCGGCAGCGT
CAGATGTGTATAAGAGACAG; reverse: 5’-GTCTCGTGGGCTCGGAGATGTGTA
TAAGAGACAG). Each reaction (25 µL) contained 12.5 µL NEBNext High-Fidelity 2X
PCR Master Mix (New England Biolabs, Ipswich, MA, USA), 3.75 µL 2%w/v bovine
serum albumin (Roche Diagnostics, Mannheim, Germany), 0.5µL of each primer (10 µM),
and 6.75 µL nuclease-free water. The amplification cycles were executed in an Eppendorf
Mastercycler Epgradient. Initial denaturation was achieved at 98 ◦C for 30 sec followed
by 25 amplification cycles (denaturation: 98 ◦C, 10 sec; primer annealing: 50 ◦C, 30 sec;
elongation: 72 ◦C, 30 sec) and final elongation at 72 ◦C for 5min. Each sample was
amplified in independent triplicate reactions; triplicates were pooled after amplification.
Pooled amplicons were purified using magnetic beads (AMPure-XP; Beckman Coulter)
at a bead:sample ration of 0.8 and an incubation at room temperature for 5min. After
washing (two washing steps with 200 µL 80%v/v ethanol) and air-drying (10min, room
temperature), amplicons were eluted from the beads with 30 µL EB buffer. Amplicon size
and concentration were determined by capillary gel electrophoresis (Fragment Analyzer;
Agilent Technologies, Santa Clara, CA, USA) using the DNF-473 Standard Sensitivity
NGS Fragment Analysis Kit (Agilent Technologies). For each sample, 10 ng amplicons
were used as template for index PCR using Illumina Nextera XT Index Kit v2 primers
(Illumina, San Diego, CA, USA) according to the manufacturer’s specifications and with
the same polymerase as above. After purification and electrophoresis as above, barcoded
amplicons were pooled in equimolar concentrations (4 nM) and used for paired-end se-
quencing (2× 300 bp) on an Illumina MiSeq platform. Sequencing was carried out by
the Research Unit Comparative Microbiome Analysis at Helmholtz Zentrum München.

2.1.6 Sequence data processing

Sequence data were processed in R (R Core Team, 2018) using the ’DADA2’ package
(version 1.10.1) for the inference of exact amplicon sequence variants (ASVs) (Callahan
et al., 2016a). The concept of ASVs is a relatively novel alternative to the conventional
approach of clustering sequences into operational taxonomic units (OTUs). Instead of
grouping sequences above a certain similarity threshold into OTUs (usually >97% simi-
larity), the DADA2 algorithm makes use of the quality scores generated during sequencing
and sequence abundances in the dataset, to build an error model that is subsequently
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used to determine whether nucleotide mismatches between sequences are likely due to
biological variation or mere sequencing errors. As such, this method in theory allows
to distinguish sequences that differ by as little as a single nucleotide, thereby covering
more of the biological diversity within a sample compared to the OTU approach. As
an additional benefit, ASVs generated this way overcome problems associated with the
comparability of OTUs across datasets (Callahan et al., 2016a). Although the rationale
behind this approach is appealing, this method was mainly chosen for practical reasons
for this study. Furthermore, it is still controversial whether the use of ASVs inferred
from 16S rRNA amplicon sequence data actually provides significantly more accurate
estimates of microbial community diversity and composition compared to the traditional
OTU-based approach (e.g. see Glassman and Martiny, 2018). Therefore, for the purpose
of this thesis, I will assume that the use of either ASVs or OTUs does not affect the
ecological inferences drawn from the data.

Quality filtering, merging of paired-end reads, inference of ASVs, and chimera removal
was done using the DADA2 workflow as described in Callahan et al. (2016b) with slight
modifications. Truncation length during quality trimming was set to 280 bp and 200 bp

for forward and reverse reads, respectively, after primer trimming. Negative controls (i.e.
PCR reactions without added sample DNA as template) were excluded from the error
model building step to infer error rates from the sequence data. ASVs were inferred
across all samples using pseudo-pooling, which prevents discarding ASVs based on the
occurrence in a single sample, if it is represented by at least two error-free reads in at least
two samples in the full dataset. ASVs found in negative controls or with a sequence length
<261 bp were discarded. In addition, to facilitate downstream processing and reduce
sparsity of the data, ASVs with an abundance <0.001% across all samples were removed.
Taxonomic assignment was done using the online implementation of IDTAXA (Murali
et al., 2018) by mapping ASV sequences against the SILVA SSU reference database
(release 132; Quast et al., 2013) with a 50% confidence threshold. ASVs that were
classified as mitochondria or chloroplasts were discarded, as well as ASVs that could
neither be classified as bacteria nor archaea. The final ASV table contained 9153 ASVs;
abundances were rarefied to 6281 reads per sample, which was the lowest number of
reads observed in a single sample. To infer phylogenetic relationships, ASV sequences
were aligned using the ’DECIPHER’ package (version 2.10.1; Wright et al., 2015); the
sequence alignment was passed on to FastTree (Price et al., 2009) for building a midpoint-
rooted phylogenetic tree. Sequence data are publicly available at the NCBI Sequence
Read Archive (accession no. SRP191753).
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2.1.7 Data analysis

All analyses were done in R. ASV richness and Faith’s phylogenetic diversity (PD) were
calculated using the ‘picante’ package (version 1.7; Kembel et al., 2010). Differences in
microbial community composition were analyzed based on β-mean nearest taxon distance
(β-MNTD), which is the mean phylogenetic distance of taxa in one community to their
closest relatives in another community. Thus, β-MNTD focuses on short phylogenetic
distances, that is the tips of a phylogenetic tree, indicating turnover of lineages that have
diverged relatively recently in evolutionary history. We additionally used β-mean pairwise
distance (β-MPD), which is the overall mean phylogenetic distance between taxa in two
communities and thus also captures deeper phylogenetic distances, indicating turnover
of deeper branching phylogenetic lineages (Fine and Kembel, 2011; Liu et al., 2017).
β-MNTD and β-MPD were calculated with abundance weighting using the functions
‘comdistnt’ and ‘comdist’, respectively, of the ‘picante’ package. Differences in microbial
community composition were illustrated by non-metric multidimensional scaling (NMDS)
using the ‘metaMDS’ function of the ‘vegan’ package (version 2.5.3; Oksanen et al.,
2018a).

Environmental variables were standardized to z-scores for all analyses. Variables con-
taining censored data, that is values below the detection limit (nitrate: <0.131mgL−1;
orthophosphate: <22.2 µg L−1), were handled according to Helsel (2011) using rank-
transformation with tied ranks for values below the detection limit. Overall environ-
mental differences were calculated as standardized Euclidean distances between samples
considering all measured variables. Permutational analysis of multivariate dispersion
(PERMDISP; Anderson, 2006) was used for pairwise tests of differences between regions
in microbial community beta diversity, environmental differences, and spatial distance
between sampling locations, respectively, using the ‘betadisper’ function (‘vegan’) with
10 000 permutations. Differences in ASV richness were assessed using Kruskal-Wallis
non-parametric analysis of variance with Dunn’s mean rank sum tests for pairwise com-
parisons and Holm correction for multiple testing.

We used the null model approach described by Stegen et al. (2012, 2013) to study
the contributions of species sorting, dispersal processes, and drift on community turnover
within as well as across regions. This approach is based on two steps: under the assump-
tion that phylogenetic similarity between closely related taxa approximates ecological
similarity, the strength of species sorting is evaluated in the first step based on the β-
nearest taxon index (β-NTI). β-NTI is the standardized effect size of β-MNTD, which
measures how much the observed difference between a pair of communities differs from
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a null distribution of β-MNTD calculated with randomized phylogenetic relationships.
For this randomization, taxa labels and abundances are repeatedly shuffled across the
tips of a phylogenetic tree. As such, β-NTI indicates whether the observed phylogenetic
differences between two communities are as large, larger, or smaller than expected given
the differences in taxa abundances between the communities. Values of β-NTI <− 2

(β-NTI >+ 2) indicate departures from the mean of the null distribution by more than
two standard deviations, which means that two communities are composed of taxa that
are phylogenetically significantly more (less) closely related than expected under the null
distribution, suggesting selection of similar (different) taxa in both communities (referred
to as homogeneous and variable selection, respectively, sensu Dini-Andreote et al. (2015)
and Stegen et al. (2015)). Absolute values of β-NTI <2 indicate no significant deviation
from the null distribution, suggesting that processes other than species sorting are re-
sponsible for observed differences in community composition, that is dispersal, dispersal
limitation, and drift (a graphical example of the calculation of β-NTI is given in Fig.
2.1.2).

In this case, the RCbray index is used in the second step of the null model approach
to identify the nature of these alternative processes. Because phylogeny is assumed to be
irrelevant to the chance of taxa being subject to dispersal, dispersal limitation, or random
drift, RCbray does not consider phylogenetic relationships to calculate differences between
communities, but only uses information on taxa occurrence and abundance. RCbray is an
extension of the Raup-Crick metric (Chase et al., 2011), which was modified by Stegen
et al. (2013) to not only consider presence-absence of taxa, but also take into account
abundances. Thus, while the original metric is based on Jaccard dissimilarity, RCbray

uses Bray-Curtis dissimilarity instead. The procedure starts by randomly assembling
local communities from taxa found in the dataset. To this end, single individuals of each
taxon are drawn into communities, until the empirically observed taxon richness in each
community is reached. The probability of drawing an individual of a given taxon into
a community is proportional to the number of communities occupied by that taxon. At
this point, each taxon is represented by a single individual (in our case sequence read)
in each community. Subsequently, further individuals are added to each community, but
only for taxa that were drawn into a given community in the previous step. Here, the
probability of drawing additional individuals of a taxon is proportional to that taxon’s
abundance observed across all communities in the dataset. This probabilistic assem-
bly simulates community assembly under the assumption of pure random drift acting
alone, akin to Hubbell’s neutral theory (Hubbell, 2001). For each pair of communities
that is to be compared, both communities are repeatedly assembled following the above
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Figure 2.1.2: Schematic illustration of the calculation of β-NTI. The example compares
two communities, each containing two taxa. Community A (closed symbols)
contains taxa 1 and 2; community B (open symbols) contains taxa 3 and 4.
For simplicity, the lengths of all branches in the phylogenetic tree as well
as taxa abundances are assumed to be equal, all having a value of 1. The
observed phylogenetic relationships are shown in grey in panel I. The mean
branch length connecting taxa in community A to their closest relatives in
community B (and vice versa) gives the observed β-MNTD which in this
case equals 8. To generate a null distribution, β-MNTD is calculated multi-
ple times (in this example 3x) with randomized phylogenetic relationships
shown in color in panel I and II, where each color represents a single iter-
ation. For example, after the first randomization (shown in green), taxon
1 in community A is separated by 4 branch lengths from its closest relative
in B, which now is taxon 4; taxon 2 and its closest relative in community
B (now taxon 3) are separated by 2 branch lengths. Thus, β-MNTD after
the first randomization equals 3. Multiple iterations of this randomization
yield the null distribution of β-MNTD to which the observed β-MNTD is
compared as shown in panel III. In this case, the null distribution has a
mean value of 5.3 and a standard deviation of 2.5. The observed β-MNTD
lies 1.1 standard deviations away from the mean of the null distribution,
thus β-NTI =1.1, which falls within the thresholds of −2 and +2. Accord-
ingly, the taxa in community A and B are as closely related as expected by
chance, suggesting no significant effect of species sorting. (Modified from
Stegen et al., 2012).
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procedure. The Bray-Curtis dissimilarity between both communities is calculated af-
ter each iteration to generate a null distribution of dissimilarities that are expected if
random drift was alone responsible for differences between the two communities. As
above for β-NTI, the empirically observed Bray-Curtis dissimilarity between the pair of
communities is compared to this null distribution to obtain RCbray. Values of RCbray

<− 0.95 (>+ 0.95) indicate significant departures from the null distribution, such that
two communities share more (less) taxa than expected by chance, which is interpreted as
homogenizing dispersal (dispersal limitation in combination with drift) being responsible
for the observed difference between a pair of communities. Absolute values of RCbray

<0.95 indicate no significant departure from the null distribution, which means that two
communities share as many taxa as expected by chance, pointing towards random drift
acting alone. β-NTI and RCbray were calculated as in Stegen et al. (2012, 2013) with
999 randomizations. For the analyses within regions, β-NTI and RCbray were calculated
for each region separately based on null distributions that only considered ASVs found
within a given region. For the analysis across regions, β-NTI and RCbray were calculated
across all samples with ASVs found in the full dataset.

As alluded to above, the ecological inference drawn from β-NTI regarding the influence
of species sorting on differences between communities is based on the assumption that
phylogenetic similarity between taxa across short phylogenetic distances approximates
ecological similarity. This requires that phylogenetic distance between taxa correlates
positively with differences in environmental optima (i.e. environmental optima have a
phylogenetic signal). We tested this assumption for our dataset using Mantel correlo-
grams as done by others (Wang et al., 2013; Dini-Andreote et al., 2015). Differences in
environmental optima between ASVs were estimated as standardized Euclidean distances
between relative abundance-weighted means for environmental variables that were shown
to have a significant effect on microbial community composition by distance-based re-
dundancy analysis (db-RDA; see below) (Stegen et al., 2012; Dini-Andreote et al., 2015).
The phylogenetic signal was evaluated at phylogenetic distance steps of 2% of the maxi-
mum phylogenetic distance with Mantel correlograms using Pearson correlation and 999
permutations for significance testing; p-values were adjusted for multiple testing using
progressive Holm correction (function ‘mantel.correlog’; ‘vegan’). The analysis was done
for each region separately only considering ASVs found within a given region, as well as
with ASVs found across regions in the full dataset. For the latter, we randomly selected
4500 ASVs similar to Dini-Andreote et al. (2015), since an analysis comprising all 9153
ASVs was computationally unfeasible. In all cases, significant positive correlations were
found mainly over short phylogenetic distances (12% to 18% of the maximum phyloge-
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netic distance; Fig. S1.1), confirming that the assumption of a phylogenetic signal was
met for our dataset.

We used variation partitioning based on db-RDA to examine the relative importance
of local environmental conditions, spatial distance with regions, and region identity on
differences in microbial community composition, and the degree to which these compo-
nents were responsible for species sorting. Regular redundancy analysis (RDA) is a linear
modeling approach that can be thought of as multiple linear regression with multiple re-
sponse variables contained in a site-by-species matrix, where each response variable is
the abundance of a species across samples/sites, which is modeled in relation to sets of
explanatory variables such as environmental or spatial variables. db-RDA is an exten-
sion of this method that can handle any type of dissimilarity matrix as input and tries
to model dissimilarities between samples in response to sets of explanatory variables
(Legendre and Anderson, 1999). Variation partitioning allows to dissect the explained
variation in the response matrix between individual explanatory variables, or sets thereof
(Legendre, 2008). Suppose the aim was to model the response of a site-by-species ma-
trix Y with respect to a set of environmental and spatial explanatory variables E and
S, respectively, using RDA. To this end, individual RDA models are computed contain-
ing each set of explanatory variables separately, as well as a full model containing both
sets. For each model, the adjusted R2 is calculated, which is the fraction of explained
variation adjusted for the number of variables included in the model. The adjusted R2

of the full model Y ∼ E + S is the sum of the variation in Y explained by E alone
([a]), the variation explained by S alone ([c]), and the variation shared between E and S
([b]), which represents the effect of spatially structured environmental variables. Thus,
R2

Y∼E+S = [a + b + c]. The adjusted R2 of the individual models (Y ∼ E and Y ∼ S)
still contain the variation explained by the shared effects between E and S ([b]). Hence
R2

Y∼E = [a+ b] and R2
Y∼S = [b+ c]. To calculate the fraction of explained variation only

accounted for by the individual effects of E and S, respectively controlling for the effect
of the other (i.e. [a] and [c]), their shared effect [b] is calculated from the adjusted R2 of
the full model and both individual models: R2

Y∼E∩S = [b] = [a+ b] + [b+ c]− [a+ b+ c].
Subsequently, [a] and [c] are computed by subtracting the calculated fraction [b] from
the adjusted R2 of both individual models, that is R2

Y∼E|S = [a] = [a + b] − [b] and
R2

Y∼S|E = [c] = [b+ c]− [b]. The fractions calculated this way can yield negative values
for the adjusted R2, which however merely indicates that the given fraction explains less
of the variation than expected for a random variable. Hence, negative adjusted R2 values
for individual fractions are interpreted as 0. Finally, the residual fraction representing
the variation in Y that remained unexplained in the model is calculated by subtracting
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the variation explained by the full model from 1: Res = 1− [a+ b+ c] (Legendre, 2008).
To study the effect on differences in microbial community composition, we used

β-MNTD and β-MPD as response matrices in the db-RDA models, respectively. Lo-
cal environmental conditions were represented by standardized environmental variables.
To reduce variance inflation, collinear environmental variables (electrical conductivity,
sodium, calcium, magnesium, chloride, and sulfate concentrations) were replaced by the
first principal component resulting from a principal component analysis (PCA) of these
six variables (referred to as ionPC1). IonPC1 was significantly positively correlated with
all six variables and explained 74% of the variance. Environmental variables were se-
lected by forward selection using the adjusted R2 of a full db-RDA model containing
all environmental variables as stopping criterion (Blanchet et al., 2008) (function ‘or-
diR2step’ with 10 000 permutations; ‘vegan’). Calculation of variance inflation factors
(VIF) (function ‘vif.cca’; ‘vegan’) confirmed low degrees of redundancy among the se-
lected variables in all models (all VIF <2). The marginal significance of each selected
environmental variable was assessed using permutation tests (function ‘anova.cca’ with
10 000 permutations; ‘vegan’).

Spatial distances within and across regions were included as separate components in
the db-RDA models following the approach used by Declerck et al. (2011). Spatial dis-
tance between sampling locations within regions were represented by Moran’s eigenvector
maps (MEMs). MEMs are sets of orthogonal vectors derived from principal coordinate
analysis on Euclidean geographic distances between connected sites, where individual
vectors represent distances between sites at different spatial scales (Dray et al., 2006).
Converting a Euclidean geographic distance matrix into sets of MEM vectors enables
the inclusion of spatial distances over different scales as explanatory variables in sta-
tistical models like (db-)RDA. However, this approach does not work well if there are
large gaps between sties, as is the case between unconnected sites located in different
regions. Declerck et al. (2011) solved this problem by representing large spatial dis-
tances across regions as a dummy-coded variable matrix, and computing a staggered
MEM matrix, where MEM vectors are arranged in blocks such that each block repre-
sents the spatial variation between locations within a given region, while locations from
different regions are assigned a value of 0. The MEM matrix was constructed using the
‘create.dbMEM.model’ function in the ‘adespatial’ package (version 0.3-2; Dray et al.,
2018). Permutation tests were used as above to assess the overall significance of each
component (i.e. region identity, MEM matrix, and the set of selected environmental vari-
ables) in individual db-RDA models and only significant components were subsequently
used for variation partitioning (function ‘varpart’; ‘vegan’).
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To study the effect on selection processes, we repeated the db-RDA and subsequent
variation partitioning including the same three explanatory components as above, but
this time using the β-NTI matrix calculated across all samples as response matrix. The
rationale behind this approach is that changes in β-NTI should only result from species
sorting, because the effects of processes related to dispersal and drift are accounted for
in the null distribution by maintaining species abundances within samples during the
randomization of phylogenetic relationships (Stegen et al., 2013; Wang et al., 2013). Ac-
cordingly, the fraction of variation in β-NTI explained by variables used to estimate local
environmental conditions indicates that these variables impose species sorting, whereas a
significant effect of spatial distance or region identity would indicate selection by spatially
structured unmeasured environmental variables or broad-scale region-specific factors, re-
spectively, rather than dispersal limitation. Since db-RDA requires only positive distance
values, β-NTI was scaled to range between 0 and 1 as in Stegen et al. (2013).
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2.2 Assembly and succession of microbial communities
during the colonization of groundwater sediments

2.2.1 Site description, experimental setup, and origin of the raw data

The field experiment, collection of the raw data, DNA extraction, 16S rRNA gene am-
plification, and sequencing for this study were carried out within the PhD project of Dr.
Yuxiang Zhou (Zhou, 2013) and are briefly outlined here for the sake of completeness.

The field experiment was conducted over a period of 347 days from March 2010 until
February 2011 with intermediate sampling campaigns in May (day 49), July (day 115)
and December (day 263). The area with the two monitoring wells used for the incubation
of in situ microcosms was located at the foothills of the German Alps in the upper Isar
River Valley close to the village of Mittenwald (Fig. 2.2.1). The wells were installed in a
pristine, shallow, porous aquifer composed of quaternary sediment mainly consisting of
gravel and coarse sand. Well MIT052 was located on a mountain pasture in the forested
Riedboden nature reserve ∼400m away from the nearby river; well MIT039 was located
∼2 km away from MIT052 in proximity to the village with a distance of ∼240m to the
river (for a detailed site description, see Zhou et al., 2012).

1

2

MIT052

MIT039

Forested area

Grassland

Village

Road

Isar River

General groundwater 
flow direction

Riedboden
nature
reserve

1

2

Mittenwald

500 m

S

N

Germany

Figure 2.2.1: Schematic illustration of the main geographical features of the study site,
the locations of the two monitoring wells, and general groundwater flow
directions. (From Fillinger et al., 2019c).

Sediments for the in situ microcosms were taken from the Isar river that drains the
aquifer. Sediments were sieved (0.2mm to 0.63mm) and packed into perforated polyethy-
lene columns with a mesh size of 1mm to 2mm. Sediment columns were submerged in

32



2 Materials and methods

deionized water and sterilized by autoclaving five times at 121 ◦C for 30min. After each
autoclaving step, the sediments were rinsed with and again submerged in fresh deionized
water. The columns were stored at 4 ◦C submerged in sterile water until the start of
the incubation experiment. Replicate sediment columns were incubated in each well;
duplicate columns were sampled destructively at each sampling campaign. Samples for
DNA extraction were put on dry ice for transport to the lab, and were stored at −20 ◦C
until DNA extraction using the protocol described by Anneser et al. (2010). For the
comparison of sediment-attached versus planktonic microbial communities, cells from
5L groundwater obtained by pumping as described in Section 2.1.1 were collected on a
0.2 µm polycarbonate filter on-site; filters were transported and stored as done with the
sediment columns. For measurements of total prokaryotic cell counts, 0.5mL ground-
water (or 0.5 cm3) was fixed on-site with glutardialdehyde as described in Section 2.1.1;
fixed samples were stored in the dark at 4 ◦C until further processing. Cells were stained
with SYBR Green I as above (Section 2.1.3) and subsequently counted using a LSR II
flow cytometer (Becton Dickson, Heidelberg, Germany) according to Bayer et al. (2016).
Physicochemical parameters of the groundwater (pH, temperature, electrical conductiv-
ity, and concentrations of DOC, AOC, dissolved oxygen, orthophosphate, sulfate, nitrate,
chloride, potassium, sodium, calcium, and magnesium) were measured as described by
Zhou et al. (2012) (Fig. S2.1).

PCR amplification (28 cycles) and subsequent bidirectional 454-pyrosequencing of
16S rRNA gene fragments was done according to Pilloni et al. (2011) using the primers
Ba27f (5’-AGAGTTTGATCMTGGCTCAG) and Ba519r (5’-TATTACCGCGGCKGC
TG) (Lane, 1991) extended with sequencing adapters and multiplex barcodes. Each of the
sample duplicates was amplified again in duplicate; after amplification, all replicates of
a given sample were combined, followed by purification using magnetic beads (AMPure-
XP; Beckman Coulter) according to the manufacturer’s instructions. After purification,
DNA concentrations were determined using the Quant-iT PicoGreen dsDNA Assay Kit
(Invitrogen). Barcoded amplicons from all samples were pooled in equimolar amounts
before sequencing on a 454 GS FLX pyrosequencer using Titanium chemistry (Roche,
Penzberg, Germany).

2.2.2 Sequence data processing

Sequence data were processed in QIIME (version 1.9.0; Caporaso et al., 2010). Demul-
tiplexing and quality filtering (min./max. sequence length: 250/600 bp; primer mis-
matches and barcode errors: 0; min. quality score: 25; quality score window size:
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50 bp) was done using the ’split_libraries.py’ command. Chimera filtering was done
by mapping reads against the SILVA SSU reference data base (release 128; Quast et
al., 2013) using the ’identify_chimeric_seqs.py’ command with usearch61 as detection
method. After quality and chimera filtering, the average number of combined forward
and reverse reads per sample was 5709 with an average length of 388 bp. OTUs were
clustered by uclust against the SILVA SSU reference database at 97% similarity using
the ’pick_open_reference_otus.py’ command. To reduce data sparsity, OTUs with a
combined abundance of <0.01% across all samples were removed, in addition to OTUs
classified as chloroplasts, leaving a total of 910 OTUs in the final OTU table. The to-
tal number of reads per sample was rarefied to 2045, which was the lowest number of
reads observed for a single sample. A midpoint-rooted phylogenetic tree was constructed
from the alignment of OTU reference sequences using FastTree (Price et al., 2009). Se-
quence data have been deposited in the NCBI Sequence Read Archive (accession no.
SRP139256).

2.2.3 Data analysis

All analyses were done in R. Alpha diversity (OTU richness (S ) and Shannon diveristy
(H’ )) was calculated using the ’vegan’ package (version 2.5-2; Oksanen et al., 2018b).
The number of newly-arriving OTUs (Sn) in sediment samples was defined as the num-
ber of OTUs that displayed an abundance >0% in a community for the first time at a
given time point. Phylogenetic beta diversity was assessed based on abundance-weighted
β-MNTD calculated as in Section 2.1.7. Differences in microbial community composition
across time, space, and community type (i.e. sediment-attached and planktonic) were
illustrated by NMDS as above (Section 2.1.7). To test for the effect of physicochemical
parameters on changes in community composition of sediment-attached and planktonic
communities, respectively, physicochemical variables were standardized to z-scores be-
fore fitting to the NMDS ordination using the ’envfit’ function of the ’vegan’ package
with 10 000 permutations stratified within community types. Permutational multivariate
analysis of variance (PERMANOVA; Anderson, 2001) was used to estimate the marginal
effects of each of the three categorical variables community type, sampling time point,
and site location, respectively controlling for the effects of the other two variables, using
the ’adonis2’ function with 10 000 permutations (’vegan’). For the identification of key
organisms that were responsible for the differences between community types, similar-
ity percentage (SIMPER) analysis (function ’simper’ with 1000 permutations; ’vegan’)
was used on relative OTU abundances summarized at genus level. We applied parti-
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tioning of beta diversity according to Baselga (2012), to estimate the extent to which
sediment-attached communities were subsets of the planktonic species pool, and to as-
sess the degree of temporal community turnover in the sediment-attached communities
over the course of the succession. This approach is based on the additive partitioning of
incidence-based Jaccard dissimilarity between two communities into a nestedness and a
turnover component. A high contribution of nestedness to the total dissimilarity indi-
cates that two communities are subsets of each other and that differences are caused by
differences in species richness, that is gain or loss of species in one community relative
to another. On the other hand, a high contribution of turnover indicates little overlap
in species composition, such that species in one community have been replaced by other
species in the other community. Beta diversity partitioning was done using the ’betapart’
package (Baselga and Orme, 2012).

We calculated β-NTI and RCbray from null model simulations as explained above
(Section 2.1.7) to assess the impact of species sorting, dispersal, and drift on differences
in community composition 1) across space between the two sites within community types
and time points; 2) between sediment-attached and planktonic communities within sites
and time points; and 3) between consecutive time points within community types and
sites. For the calculation of null distributions, OTUs from the entire dataset were con-
sidered. The assumption of a significant phylogenetic signal was tested separately for
sediment-attached and planktonic communities, respectively, using Mantel correlograms
as above (Section 2.1.7). Significant positive correlations were found over short phyloge-
netic distances (2% to 7% of the maximum phylogenetic distance; Fig. S2.2), confirming
that the assumption of a phylogenetic signal was met. To test for the effect of changes in
physicochemical conditions on species sorting, Mantel correlations based on Spearman’s
rank correlation were calculated between the β-NTI matrix and individual Euclidean
distances calculated for each physicochemical variable separately. Mantel tests were
computed using the ’mantel’ function (’vegan’) with 10 000 permutations for significance
testing.
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2.3 Ecological groundwater monitoring based on
microbiological parameters

2.3.1 Origin of the data and description of the disturbance case studies

The data for this study originated from different research projects and collaborations,
and were collected at different sites located across Germany (Fig. 2.3.1).

Würzburg

Augsburg

Erft-Rur

Eifel

Swabian Alb
(porous)

Ratzeburg

Soltau

Mittenwald

Düsseldorf

Fuhrberg

Longitude (°E)

La
tit

ud
e 

(°
N

)

7.5 10.0 12.5 15.0

47.5

50.0

52.5

55.0

Swabian Alb
(karst)

0 100 200

km

Figure 2.3.1: Schematic map with the locations of the different regions considered in this
study. Black squares represent the two regions where data were collected
for the disturbance case studies (data for the organic contamination and
the surface water intrusion case study were collected in Düsseldorf; data
for disturbances related to different types of land use were collected in
Fuhrberg). Grey dots represent the nine regions that were analyzed for
geographic differences in D-A-(C) signatures of non-contaminated aquifers.
(From Fillinger et al., 2019b).

For the first disturbance case study, we simulated a severe organic contamination
event by combining data from a non-contaminated site in the city of Düsseldorf with
data from a nearby former coal gasification site in Düsseldorf-Flingern that has a long
history of organic contamination with aromatic hydrocarbons (BTEX and polyaromat-
ics). Here, samples were collected across the vertical profile of the contaminant plume
using peristaltic pumps connected to the ports of multilevel wells. Out of a total pool
of 65 contaminated samples that were collected during different sampling campaigns in
2005, 2006 and 2007 (see Anneser et al., 2008; 2010; Jobelius et al., 2011), data from 30

randomly selected samples were combined with data from 81 non-contaminated samples.
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The data for these non-contaminated samples were taken from a total pool of 108
samples that formed the basis for the second case study regarding the impact of surface
water intrusion. These samples were collected between January and October 2018 from
an alluvial aquifer at the bank of the Rhine River in Düsseldorf at a site where drinking
water is produced via river bank filtration. At this site, groundwater monitoring wells
were located along a transect perpendicular to the river shore at different distances to
the river: sets of three wells each were situated close to the river at distances of about
2m and 20m, respectively; this area of the aquifer receives river water under normal
conditions due to river bank filtration. Another set of three wells and one single well
were located approximately 60m and 75m away from the river, respectively, in an area
which usually does not come into contact with the river water but is recharged from
landside groundwater. However, high water levels of the Rhine River from January until
March 2018 led to an increased intrusion of river water into the aquifer at wells close to
the river, as well as surface water intrusion in the more distant areas, which was revealed
by stable water isotope signatures (Fig. S3.1).

For the third case study regarding the impact of different types of land use, we
analyzed data collected in Fuhrberg near the city of Hannover, where areas with different
types of land use could be found close to each other. A total of 29 samples were collected
between spring and summer 2018, comprising 9 samples from a forest, and 10 samples
from a grassland and an agricultural land, respectively.

For assessing differences in D-A-(C) signatures between regions, we analyzed data
from non-contaminated aquifers in nine different regions across Germany (Fig. 2.3.1).
Non-contaminated groundwater in this context is defined here as shallow groundwater
that, although being exposed to a multitude of potential anthropogenic impacts (e.g.
waste water, agriculture, or urban run-off), did not display significantly elevated con-
centrations of concerning chemicals or metals at the time of sampling (mainly based on
thresholds set for drinking water). Samples were collected in each region at least during
two sampling campaigns between the years 2007 and 2017. An in-depth description of
the individual regions would go beyond the scope of this study; instead, a summary of
key information is given in Table 2.3.1.

Except for the samples from the organically contaminated site as mentioned above,
groundwater was collected as described in Section 2.1.1. Samples for measurements of
total prokaryotic cell counts were collected as above (Section 2.1.1). Samples for ATP
measurements were collected in autoclaved glass bottles. Glassware for the collection of
AOC samples was baked at 450 ◦C for 4 h prior to sampling and closed with plastic caps
with Teflon inlays that were treated with 10%w/v sodium persulfate at 60 ◦C for 1 h to
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remove traces of organic carbon. Samples were stored in the dark at 4 ◦C for transport
to the lab and until analysis (within 48 h after sampling).

2.3.2 Determination of the D-A-(C) parameters

Total prokaryotic cell counts were determined by flow cytometry as in Section 2.1.3.
ATP was measured using the BacTiter-Glo Microbial Cell Viability Assay kit (Pro-

mega, Madison, WI, USA) based on the method by Hammes et al. (2010) with slight
modifications. The measurement is a luminescence assay based on the ATP-dependent
oxidation of luciferin catalyzed by luciferase. The kit offers a single-step sample prepa-
ration protocol by combining the bacterial cell lysis buffer and the luciferase enzymes
in a single reagent. Samples and the BacTiter-Glo reagent, prepared according to the
manufacturer’s instructions, were pre-warmed separately at 38 ◦C for at least 2min be-
fore mixing 1mL sample with 50 µL reagent. The mixture was incubated at 38 ◦C for
1min. Following the incubation, luminescence was measured on a GloMax 20/20 Lumi-
nometer (Promega). Concentrations were determined by comparison with external ATP
standards dissolved in ATP-free water (both Fisher Scientific, Waltham, MA, USA), us-
ing ATP-free water as blank. To correct for the contribution of extracellular ATP in
the samples to the measured luminescence signal, the measurements were performed on
an unfiltered sample fraction, representing the total ATP concentration in the sample,
and additionally on a fraction of the same sample that was passed through a 0.1 µm
polyvinylidene fluoride Millex syringe filter (Merck, Kenilworth, NJ, USA) before sample
preparation to remove cells, thus containing only extracellular ATP. The concentration
of intracellular ATP was then calculated by subtracting the extracellular concentration
from the total (Hammes et al., 2010). All measurements were carried out in triplicate.

AOC concentrations were determined indirectly with a batch growth assay based on
the method by Hammes and Egli (2005). The assay quantifies prokaryotic cell growth
of a natural microbial community in a water sample on the bioavailable carbon present
in that sample during an incubation under in situ conditions until stationary phase (in
our case over a period of 30 days). To this end, a sample was diluted 10:1 with filter-
sterilized groundwater from the same site. The filtered groundwater served as carbon
source to initiate batch growth of the cells derived from the unfiltered sample. Samples
for the determination of total prokaryotic cell counts were taken immediately at the
beginning of the incubation and at the end. The cells that were produced during the
incubation were used as a measure for the amount organic carbon that was assimilated
into microbial biomass. Thus, the AOC concentration was calculated from the average
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net growth determined from triplicate incubations by converting the number of produced
cells into carbon with a constant factor of 20 fg organic C cell-1 (Griebler et al., 2002).
For the incubation, 80mL diluted groundwater was incubated in 100mL glass bottles
at in situ groundwater temperature in the dark with shaking at 100 rpm. Cell numbers
were measured as total prokaryotic cell counts by flow cytometry. All glassware used for
the incubations were treated to remove traces of organic carbon as above.

2.3.3 Determination of hydrochemical parameters and isotope ratios

Groundwater temperature, pH, electrical conductivity, and oxygen concentrations were
measured on-site using field sensors (WTW, Weilheim, Germany). DOC Concentrations
were measured in samples passed through a 0.45 µm filter (VWR, Radnor, PA, USA) that
was rinsed three times with ultra-pure water prior to sample filtration to remove residual
carbon. Samples were filtered on-site and subsequently acidified with 20mM HCl (final
concentration). DOC was determined by high-temperature (680 ◦C) catalytic oxidation
on a Shimadzu TOC-LCPH Analyzer equipped with a non-dispersive infrared detector.
Nitrate concentrations were measured by ion chromatography at GBA Group laboratories
(GBA Group, Gesellschaft für Bioanalytik mbH, Hamburg, Germany). Stable isotope
ratios of oxygen (18O/16O) were determined using a PICARRO L2130-i Isotopic Water
Analyzer (PICARRO, Santa Clara, CA, USA). δ18O ratios were measured in samples
via equilibration with CO2 at 18 ◦C for 5 h under constant shaking. δ18O ratios were
determined relative to internal standards that were calibrated against V-SMOW, V-
GESP, and V-SLAP standards (International Atomic Energy Agency, Vienna, Austria).
All measurements were performed at least in duplicate.

2.3.4 Data analysis

In order to detect disturbances in the three case studies, we combined the signals of the D-
A-(C) variables in a multivariate analysis as schematically shown in Figure 2.3.2. Under
normal undisturbed conditions, samples are expected to display a certain distribution
in a multivariate space along these variables. For multivariate normally distributed
data, a cloud of samples arrange in an elliptical form, which is defined by the mean
values of the variables forming the center of the ellipse, the variances of the individual
variables, and the covariance between them, determining the shape and slope of the
ellipse. Disturbances that cause severe changes in one or more of these variables increase
the distance of affected samples to the center of the ellipse beyond the range of distances
expected due to random variation. In other words, samples affected by a disturbance can
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Figure 2.3.2: Schematic overview of the D-A-(C) workflow. The measured variables are
combined in a multivariate analysis to detect disturbances. Samples affected
by a disturbance are identified as multivariate outliers that deviate from
the distribution of undisturbed samples along the measured variables. The
D-A-(C) index is used to distinguish significant multivariate outliers from
random variation in the data as explained in the main text. (From Fillinger
et al., 2019b)

be considered outliers. The distance of a single sample to the center is calculated as the
Mahalanobis distance according to Equation 2.3.1:

MDi =
√
(Xi − µ)′ × S−1 × (Xi − µ), (2.3.1)

where Xi is a vector with the values of the individual variables for a single sample, and µ
and S−1 are the vector with the variable means and the inverse of the covariance matrix,
respectively, calculated from the full data. This distance is unitless and indicates how
far a given sample lies away from the center of a multivariate distribution. Hence it can
be considered a multidimensional extension of univariate z-scores (Manly, 1994). The
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Mahalanobis distance takes values of the square root of a chi-squared distribution with
as many degrees of freedom as there are variables in the analysis (e.g. df = 3 when
all three D-A-C variables are considered in the analysis). This information is used to
set thresholds to distinguish significant outliers from random variation in the data. For
example, 97.5% of the values of a chi-squared distribution with three degrees of freedom
are <9.35. Thus, a sample with a Mahalanobis distance above the critical value of

√
9.35

would be declared an outlier at a 0.975 confidence level and consequently be interpreted
as a sign of a disturbance (a simple numerical example of the calculation of Mahalanobis
distances is given in Supporting Information SI.3 along with Fig. S3.4).

Problems arise, however, if Mahalanobis distances are calculated based on the raw
data directly, since the presence of already a small fraction of outliers in the dataset can
severely distort the estimates of µ and S. Therefore, we used the Fast-MCD algorithm,
which can provide reliable robust estimates of µ and S in datasets contaminated with out-
liers, and calculated robust Mahalanobis distances based on these estimates (Rousseeuw
and Van Driessen, 1999; Hubert and Debruyne, 2010). Briefly, the algorithm searches
for a subset of samples of size h (h = n+p+1

2 , where n is the number of samples in the
dataset and p the number of variables) with the smallest determinant of S, that is with
the smallest dispersion in the multivariate space, and subsequently calculates µ and S

based on these h samples. We will refer to the final robust Mahalanobis distances as the
D-A or D-A-C index, respectively, depending on the variables included in the analysis.
A sample was declared an outlier at a 0.975 confidence level if its calculated index value
exceeded the square root of the 0.975 quantile of a chi-squared distribution with the
according degrees of freedom as described above (Rousseeuw and Van Driessen, 1999).

The strength of this multivariate approach is that it not only takes into account the
variance of each variable, but also possible correlations (in the form of covariance) be-
tween these variables, which are not taken into account in separate univariate analyses
of the individual variables (Manly, 1994). To illustrate this strength, we compared the
multivariate D-A-(C) approach to a univariate method for outlier detection. For this
univariate approach, separate thresholds were set for each variable based on the median
and the median absolute deviation (MAD). This approach was chosen because the me-
dian and the MAD provide more robust estimates of the center and the dispersion of
data, respectively, even in the presence of outliers, compared to the mean and standard
deviation similar to what has been explained above. Using this approach, a sample was
considered an outlier if it fell outside the range of median±2.5×MAD as recommended
by Leys et al. (2013).

To assess differences in D-A-(C) signatures between regions, that is differences be-
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tween the covariance matrices and variable means, we again applied the Fast-MCD algo-
rithm to the data from the non-contaminated aquifers sampled at the different regions
across Germany (Fig. 2.3.1). Box’s M test was used to test for differences in covariance
matrices (i.e. robust estimates of S) between regions. Differences in means for each vari-
able were assessed using Welch’s ANOVA followed by the corresponding Games-Howell
post-hoc test for pairwise comparisons to assess differences between individual regions.
Outliers for a given region that were detected based on the robust Mahalanobis distances
were not considered for the analysis of differences in means.

All analyses were done in R. Variables were log10-transformed for all analyses to
achieve normality. Normality was confirmed using the Shapiro-Wilk test implemented
in the ‘stats’ package and its multivariate extension to test for multivariate normality
implemented in the ‘mvnormtest’ package (version 0.1-9; Jarek, 2012). Robust estimates
of µ and S and robust Mahalanobis distances with additional adjustment for sample
size according to Pison et al. (2002) were obtained using the ‘covMcd’ function of the
‘robustbase’ package (version 0.93-3; Maechler et al., 2018). Confidence ellipses (two-
dimensional) and ellipsoids (three-dimensional) were calculated at a 0.975 confidence
level based on the robust estimates of µ and S using the ‘ellipse’ function of the ‘ellipse’
package (version 0.4.1; Murdoch and Chow, 2018) and the ‘ellipse3d’ function of the
‘rgl’ package (version 0.99.16; Adler and Murdoch, 2018), respectively. Box’s M tests
were performed using a modified version of the according function from the ‘biotools’
package (da Silva et al., 2017) with the modification that the robust estimates of S
were used as input instead of the raw data. Welch’s ANOVA was carried out using the
‘oneway.test’ function (‘stats’ package); Games-Howell tests were performed using the
‘userfriendlyscience’ package (version 0.7.2; Peters et al., 2018).
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3.1 Ecological drivers of differences in microbial community
composition across geographically distinct aquifers

3.1.1 Differences in microbial community composition and
environmental conditions within and across regions

Analyses of differences in environmental conditions and microbial community composi-
tion by PCA and NMDS based on β-MNTD, respectively, revealed distinct clustering of
samples by region with little overlap of samples from different regions (Fig. 3.1.1). In
terms of environmental conditions, regions along the North-South transect were mainly
separated along the second PCA axis, mostly influenced by differences in pH and con-
centrations of oxygen, potassium, and DOC. Samples from the WUR region additionally
separated from the other three regions along the first PCA axis, mostly influenced by
temperature, electrical conductivity, and concentrations of various ions (summary statis-
tics of individual environmental variables are listed in Table S1.1).
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Figure 3.1.1: A) PCA showing differences in local environmental conditions (O2: dis-
solved oxygen; DOC : dissolved organic carbon; K+: potassium; TCC : total
prokaryotic cell counts; PO 3–

4 : orthophosphate; Na+: sodium; Temp: tem-
perature; Cl–: chloride; SO 2–

4 : sulfate; EC : electrical conductivity; Ca2+:
calcium; NO –

3 : nitrate; Mg2+: magnesium). B) NMDS showing differ-
ences in microbial community composition based on abundance-weighted
β-MNTD. (From Fillinger et al., 2019a).

In contrast to the turnover of closely related ASVs across regions indicated by β-
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MNTD, clustering of communities was weaker when differences in community compo-
sition were assessed across broader phylogenetic scales based on β-MPD (Fig. S1.2).
Congruently, while >65% of the ASVs were exclusively detected within a single region,
the majority of higher taxonomic groups from phylum to genus level (∼69% to 73%)
were observed across more than one region, further corroborating that differences be-
tween regions were mainly caused by turnover of related ASVs within broader clades
such as genus or family. Regardless of the taxonomic level, taxa that occurred in more
than one region also showed higher average relative abundances suggesting that local
communities were dominated by more widespread taxa (Fig. S1.3). The most dominant
taxonomic groups in all four regions were Alpha-, Delta-, and Gammaproteobacteria,
in addition to Bacteroidia, Actinobacteria, and taxonomically unclassified bacteria (Fig.
S1.4). Despite the dominance of these classes, community evenness calculated at the
ASV level was high in all regions, with Pielou’s index values ranging between 0.8 and 0.9

on average (Fig. S1.5). Accordingly, average relative abundances of the most dominant
individual ASVs within a single region were relatively low ranging between 0.6% and 6%.
These dominant ASVs were predominantly found within the families Burkholderiaceae,
Caulobacteraceae, Pseudomonadaceae, and Rhodocyclaceae in the WUR, AUG, and MIT
regions, and Thiovulaceae, Gallionellaceae as well as members of the Thaumarchaeota in
the NOR region (Table S1.2).

Comparing the dispersion of samples in the PCA and NMDS analyses shown in
Figure 3.1.1 suggested that regions with larger differences in environmental conditions
also displayed larger differences in microbial community composition. This was confirmed
by significant differences of within-region environmental heterogeneity and differences in
community composition, respectively, revealed by pairwise PERMDISP tests (Fig. 3.1.2).
Also in this case, patterns of observed differences in community composition based on
β-MNTD matched the patterns of differences in environmental conditions better than
β-MPD (Fig. S1.6).

Since we had to rely on access to pre-installed monitoring wells during the sampling
campaigns, it was unfortunately not possible to obtain samples from each region with
the same spatial coverage. However, these differences in spatial coverage did not seem
to have biased the estimates of ASV richness (Faith’s PD showed the same pattern as
richness, Fig. S1.7), differences in microbial community composition, or environmental
differences. For example, even though region WUR had the smallest spatial coverage,
it displayed the second highest alpha and beta diversity estimates as well as the second
largest environmental differences (Fig. 3.1.2).
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Figure 3.1.2: A) Spatial distance between sites within regions. B) ASV richness within
regions (total number of ASVs within each region is given in parentheses).
C ) Differences in local environmental conditions (standardized Euclidean
distance considering all environmental variables) within regions. D) Differ-
ences in microbial community composition (abundance-weighted β-MNTD)
within regions. Asterisks indicate significant differences inferred from PER-
MDISP tests (10 000 permutations) (A, C, D) and Dunn’s rank sum tests
(B) (*p<0.05; **p<0.01; ***p<0.001). Note: we chose to display dis-
tances on their original scales as distances to group centroids obtained from
PERMDISP revealed the same patterns as shown in A, C, and D. (From
Fillinger et al., 2019a).

3.1.2 Effect of species sorting and dispersal processes on community
turnover inferred from null models

When evaluated within the individual regions as well as for pairwise comparisons of com-
munities across regions, median β-NTI values were not significantly different from the null
expectation, except for the NOR region, thus indicating no significant effect of species
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sorting on community assembly on average. However, the distributions of β-NTI in all
regions as well as for comparisons across regions were strongly positively skewed (Fig.
3.1.3). Calculations of the fractions of pairwise community comparisons indicative of the
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Figure 3.1.3: A) Distribution of β-NTI values for pairwise community comparisons.
Dashed lines indicate the range of β-NTI under the null expectation of no
significant effects of species sorting (|β-NTI|<2). Solid lines within violins
represent quartiles (1st, median, 3rd). B) Contribution of individual assem-
bly processes to observed differences in microbial community composition
derived from null models according to Stegen et al. (2013). Null models were
run for each region separately; for the analysis across regions, null models
were run on the full dataset, and only results for pairs of communities from
different regions are shown. (From Fillinger et al., 2019a).

different turnover processes showed that the contribution of species sorting to the ob-
served differences between communities varied for each region between 32% (WUR) and
75% (NOR) (Fig. 3.1.3). In most cases, variable selection was the dominating process,
indicating that communities were more different than expected by chance, except for the
AUG region, where homogenous selection was the dominating selection process, suggest-
ing that communities were more similar than expected. The fractions not accounted for
by selection processes were largely dominated by dispersal limitation and drift in most
cases, or drift acting alone in the MIT region. Across regions, variable selection was the
dominating process, accounting for 69% of the observed differences between communi-
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ties, while the remaining fraction was indicated to have resulted almost exclusively from
dispersal limitation and drift.

3.1.3 Variation partitioning of differences in microbial community
composition and changes in species sorting

We applied db-RDA and variation partitioning to identify environmental variables that
shaped microbial community composition (β-MNTD), and to dissect the individual con-
tributions of these variables relative to spatial distance within regions and region iden-
tity (Table 3.1.1). Contradictory to the null model results for the individual regions
that hinted at dispersal limitation, spatial distance between sites within regions repre-
sented by MEMs did not have a significant effect on differences in microbial community
composition in an individual db-RDA model (adjusted R2=−0.03; p=0.916) and were
therefore not considered for variation partitioning. In contrast, region identity and vari-
ables representing local environmental conditions (pH, ionPC1, and concentrations of
dissolved oxygen, orthophosphate, and DOC) together explained 77% of the variation
in community composition, of which the majority (i.e. ∼41%) was shared between both
components. The effect of environmental variables alone was still significant after con-
trolling for region identity (pH, dissolved oxygen) and explained ∼27% of the variation,
whereas region identity alone explained only ∼9% after controlling for the effect of en-
vironmental variables. In contrast to the results obtained for β-MNTD, <7% of the
total variation could be explained for β-MPD, and the individual fractions explained
by local environmental conditions and region identity were almost equally low (∼2%)
(Table S1.3). Hence, together with the results described above, differences in commu-
nity composition both in response to local environmental and regional differences were
best reflected by turnover across short phylogenetic distances represented by β-MNTD
compared to turnover across broader phylogenetic scales captured by β-MPD.

Given that region identity alone explained a significant amount of the variation in
community composition, we further explored to which extent this variation was due to
dispersal limitation or caused by species sorting either imposed by local environmental
conditions or region-specific factors. To this end, we used variation partitioning as above,
only this time using the β-NTI matrix calculated for the full dataset as response matrix
in the db-RDA (Table 3.1.1). As in the analysis above, spatial distance between sites
within regions, which would reflect the contribution of spatially-structured unmeasured
environmental variables, did not have a significant effect (adjusted R2=−0.04; p=0.996),
whereas region identity together with local environmental conditions (pH and concen-

48



3 Results

Table 3.1.1: Partition of variation in microbial community composition (abundance-
weighted β-MNTD) and species sorting (β-NTI) between local environmental
conditions (Env ; significant environmental variables are listed in the right-
most column) and region identity (Reg). Env+Reg represents the total
variation explained by both components; Env|Reg (Reg|Env) represents the
marginal fraction of variation explained by each component after controlling
for the other; Env∩Reg represents the fraction of explained variation shared
between both components. The explained variation is given as adjusted
R2. Significance of each component and individual variables was tested us-
ing 10 000 permutations (note: significance of Env∩Reg cannot be tested).
Spatial distance between sites within regions represented by MEMs was not
significant in either case (adj. R2=0, p>0.9) and was therefore not included
in the analyses. (From Fillinger et al., 2019a).

Response matrix Component df Adj. R2 p Significant variables (p<0.05)

β-MNTD Env 5 0.6772 0.0001 pH, O2, ionPC1*, PO
3–
4 , DOC

Reg 3 0.4972 0.0001 Dummy-coded region identity
Env+Reg 8 0.7691 0.0001

Env∩Reg 0 0.4053

Env|Reg 5 0.2719 0.0001 pH, O2

Reg|Env 3 0.0919 0.0001

Residuals 36 0.2309

β-NTI Env 5 0.6618 0.0001 pH, O2, PO
3–
4 , NO –

3 , DOC
Reg 3 0.3747 0.0001 Dummy-coded region identity

Env+Reg 8 0.6238 0.0001

Env∩Reg 0 0.4127

Env|Reg 5 0.2492 0.0001 pH, O2, DOC
Reg|Env 3 −0.0380 0.0022

Residuals 36 0.3762

*Principal component representing 74% of the variance in electrical conductivity
and concentrations of sodium, calcium, magnesium, chloride, and sulfate (all positively
correlated with ionPC1; see Section 2.1.7).

trations of dissolved oxygen, orthophosphate, nitrate, and DOC) explained ∼62% of the
variation in β-NTI. However, the effect of region identity was strongly tied to the effect
of local environmental conditions, such that the variation explained by region identity
alone dropped to zero after controlling for the effect of environmental variables (note
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that negative adjusted R2 although significant is interpreted as zero (Legendre, 2008)).
In contrast, environmental variables alone were still significant (pH, dissolved oxygen,
DOC) and explained almost 25% of the variation in β-NTI after controlling for region
identity. About 38% of the variation was unexplained, representing regionally and spa-
tially unstructured, unmeasured factors that imposed species sorting.
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3.2 Assembly and succession of microbial communities
during the colonization of groundwater sediments

3.2.1 Temporal dynamics of microbial cell numbers and alpha diversity
of sediment-attached and planktonic microbial communities

Despite the spatial distance between the two sites, the microbial communities that de-
veloped on the initially sterile sediments followed identical trends in alpha diversity and
cell numbers (Fig. 3.2.1). Already after the first 49 days, cell numbers of sediment-
attached microbial communities at both sites had reached a plateau of ∼107 cells cm−3

of sediment, followed by a slight decline for the remaining time of the experiment. Al-
though cell densities of the sediment-attached communities stayed more or less constant,
noticeable changes still occurred in the communities as indicated by OTU richness and
diversity, which steadily increased by about 50% and 25%, respectively, from May un-
til December, followed by a decline of both parameters in February. The changes in
cell numbers and alpha diversity observed for the newly colonized sediments appeared
to be independent from the changes that occurred in the planktonic microbial commu-
nities suspended in the surrounding groundwater, which were more variable over time
and less comparable between the two sites. Moreover, microbial cell numbers measured
in the groundwater were about one to two orders of magnitude lower compared to the
sediments.

3.2.2 Establishment and persistence of newly-arriving OTUs in
sediment-attached microbial communities

To assess the impact of early colonizers on microbial community succession, we looked
at the number of newly-arriving OTUs (i.e OTUs that showed an abundance of >0% for
the first time at a given time point) that had entered the developing sediment-attached
communities at each time point over the course of the experiment (Fig. 3.2.2). At
both sites, the percentage of newly-arriving OTUs declined over time, showing that
the majority of OTUs had established on the sediments during the initial phase of the
incubation of the in situ microcosms. Despite this declining trend, the fraction of newly-
arriving OTUs relative to the total OTU richness at the end of the incubation was still
relatively high with ∼15% to 20%. However, looking at the changes in the cumulative
relative abundances of the newly-arriving OTUs over time revealed that OTUs that had
arrived towards the later stages only accounted for a relatively small fraction of the
final communities. Even though the cumulative relative abundances of OTUs that had
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Figure 3.2.1: Temporal dynamics of microbial cell numbers and alpha diversity for
sediment-attached and planktonic microbial communities at MIT052 and
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the equivalent volume of sediment (cm3). The time in days for each time
point is given in parentheses. (From Fillinger et al., 2019c).

established in the communities within the first 49 days steadily declined over time, these
OTUs still made up 36% and 47% of the final communities at MIT052 and MIT039,
respectively. At MIT052, these OTUs together with those that emerged at the following
time point in July comprised the majority of the final community at the end of the
incubation (together 85%), while OTUs that arrived at the final time point accounted
for only 5%. At MIT039, OTUs that had arrived at the first two time points made up for
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68% of the final community, whereas OTUs that had arrived in December and February
comprised 12% and 20%, respectively.
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Although these observations suggest the dominance of early-colonizer OTUs in the
final communities, a closer look at how many of these OTUs actually persisted until
the final time point showed that only ∼12% of newly-arriving OTUs from each time
point were still present in the final communities (data not shown). Looking at the
taxonomies of the OTUs that persisted until the end of the incubation again revealed
highly similar patterns for both sites (Fig. S2.3). At each time point, the most dom-
inant groups were OTUs affiliated with Comamonadaceae, mainly Aquabacterium and
Polaromonas spp., in addition to Oxalobacteraceae, mainly consisting of Duganella, Mas-
silia, and Undibacterium spp., as well as Pseudomonas spp. and diverse Caulobacteraceae
and Sphingomonadaceae.

3.2.3 Microbial community composition and beta diversity

Similar to the alpha diversity patterns, the microbial communities on the newly colonized
sediments displayed comparable compositions at the two sites (Fig. 3.2.3). Especially
during the initial phase of the incubation in May, sediment-attached communities at
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both sites were dominated by Oxalobacteraceae as well as Comamonadaceae and smaller
fractions of Flavobacteriaceae and Caulobacteraceae. Over the further course of the in-
cubation, these taxonomic groups were in part replaced mainly by increasing numbers
of Comamonadaceae (mostly Aquabacterium spp.), Pseudomonadaceae, Nocardiaceae,
and Rhodocyclaceae especially at MIT052, in addition to Sphingomonadaceae, uncul-
tured Deltaproteobacteria, and Moraxellaceae at MIT039. Moreover, OTUs affiliated
with diverse low-abundant families (<10% in the entire dataset) gradually increased
in abundance over time. In contrast, planktonic communities were mainly dominated
by members of the Rhodocyclaceae, Caulobacteraceae (mainly Curvibacter, Simplicispira,
and Rhodoferax spp.), and Leptospiraceae.

To get a better understanding of the organisms that were responsible for differ-
ences between sediment-attached and planktonic communities, we used SIMPER analysis
across all samples on relative abundances of OTUs grouped at genus level. Interest-
ingly, we found high agreement between the genera that significantly contributed to
the observed dissimilarities between community types and taxa identified as successful,
persistent colonizers in the analysis discussed above and shown in Figure S2.3. Aquabac-
terium, Massilia, and Duganella ranked among the genera with the highest individual
contributions to the dissimilarity (together >15%; all p<0.002) and were highly differen-
tially abundant in sediment-attached communities, next to Flavobacteria, and uncultured
members of the Oxalobacteraceae (Figure S2.4).

Changes in microbial community composition over time as well as differences be-
tween sediment-attached and planktonic communities in the groundwater were revealed
by NMDS performed on abundance-weighted β-MNTD (Fig. 3.2.3). At all measured time
points, sediment-attached and planktonic communities clustered separately from each
other as reflected by the distinct separation of the two types of communities along the
first NMDS axis. Changes in microbial community composition over time were reflected
by the separation of samples along the second NMDS axis. PERMANOVA revealed that
community type (i.e. sediment-attached vs. planktonic) explained most of the variance
in β-MNTD between communities (R2=0.626; p=0.001), followed by sampling time point
(R2=0.104; p=0.001), whereas site location was not significant (R2=0; p=1), showing
that communities across sites were similar within each community type and time point.
However, temporal variation in community composition could not be related to changes
in physicochemical conditions in the groundwater, as fitting environmental variables to
the NMDS ordination with permutations stratified within community types did not re-
veal significant correlations between changes in community composition and any of the
measured physicochemical variables (all R2<0.32; all p>0.1).
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Since community type explained most of the variance in differences between com-
munities, we applied beta diversity partitioning to identify the underlying causes of the
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differences between sediment-attached and planktonic communities within sites and time
points. The analysis showed that turnover (i.e. replacement of OTUs in one community
relative to another) was the dominating process behind the differences between the two
types of communities, accounting for >97% of pairwise differences between communities
for all time points (Fig. S2.5). Thus, both types of communities were to a large extent
composed of distinct OTUs rather than being subsets of each other.

We applied the same approach to the dissimilarity between sediment-attached com-
munities at different time points within sites to investigate the extent to which nestedness
and turnover contributed to changes in community composition over the course of the
sediment colonization. Also in this case, turnover dominated over nestedness in all com-
parisons, especially over long time scales (i.e. comparing communities between May and
February; 95% to 97%), and with a slightly weaker effect over short time scales (i.e.
comparing communities between consecutive time points; 74% to 90%) (Fig. S2.6).

3.2.4 Impact of species sorting, dispersal, and drift on community
assembly and succession inferred from null models

We again applied the null model approached used above (Section 3.1.2) to study the role
of species sorting, dispersal, and drift on three levels: first, spatial community turnover
between the two sites within community types and time points; second, turnover between
sediment-attached and planktonic communities within sites and time points; and third,
temporal turnover between communities at consecutive time points within community
types and sites (Fig. 3.2.4).

Species sorting and dispersal processes had different impacts on differences between
communities across sites for sediment-attached and planktonic communities, respectively.
For planktonic communities, pairwise comparisons between sites for each time point re-
sulted in β-NTI values that were not significantly different from the null expectation,
indicating that differences between communities were not the result of species sorting.
Pairwise comparisons based on RCbray hinted at homogenizing dispersal as the domi-
nating process (all RCbray=−1; data not shown), except for December, where dispersal
limitation in combination with dirft was indicated to be responsible for differences be-
tween planktonic communities at the two sites (RCbray=+0.99; data not shown). In
contrast to the lack of significant effects of species sorting on planktonic communities
suspended in the groundwater, pairwise comparisons of sediment-attached communities
clearly tended towards homogeneous selection (β-NTI<− 2; Fig. 3.2.4) as main cause of
the similarities between sediment-attached communities from the two sites. The only ex-
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ception was observed for July, where β-NTI was not significant, but a slightly significant
deviation of RCbray from the null expectation hinted at dispersal limitation together with
drift to be responsible for the observed differences (RCbray=+0.97; data not shown).

Since the sediments had to be colonized by microorganisms that were recruited from
the surrounding groundwater, even though beta diversity partitioning revealed little over-
lap between these two types of communities as described above, we tested for the effect
of species sorting on the assembly of sediment-attached communities from planktonic
microorganisms suspended in the groundwater. The differences between the communi-
ties on the newly colonized sediments and the planktonic communities at each site were
indicated not be caused by species sorting during the first 115 days of the incubation
(|β-NTI|<2; Fig. 3.2.4). Instead, pairwise comparisons based on RCbray pointed towards
dispersal limitation acting together with drift as processes responsible for the observed
differences (all RCbray=+1; data not shown). This trend changed at the later stage in De-
cember after 263 days. At this time point significantly positive values of β-NTI indicated
variable selection of phylogenetically distinct OTUs in sediment-attached communities
compared to the microorganisms in the surrounding groundwater.

Unlike the trends observed for spatial community turnover, the influence of species
sorting, dispersal, and drift on changes in community composition over time was much
more variable and no clear trends could be observed. Although species sorting appeared
to have played a role, this effect mostly did not occur consistently at both sites for neither
sediment-attached nor planktonic communities (Fig. 3.2.4).

We used Mantel correlation analysis to investigate whether changes in physicochemi-
cal parameters in the groundwater (Fig. S2.1) had an effect on changes in species sorting
based on β-NTI. Similar to the lack of correlations between environmental variables and
differences in community composition mentioned above (Section 3.2.3), we did not find
significant correlations for planktonic (all |Spearman’s ρ|<0.34; p>0.08) or sediment at-
tached communities (all |Spearman’s ρ|<0.27; p>0.1).
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3.3 Ecological groundwater monitoring based on
microbiological parameters

3.3.1 Using the D-A-(C) index to detect disturbances

Case study 1: organic contamination

For simplicity, and for reasons that will be discussed in Section 4.3, the analysis was
based only on the variables cell density and activity to introduce how disturbances can be
detected based on the identification of outliers. All contaminated samples were correctly
identified as outliers by the multivariate approach using the D-A index, which exceeded
the critical value of the chi-squared distribution for all contaminated samples (Fig. 3.3.1).
In general, the contaminated samples showed higher activity levels and cell densities
compared to the non-contaminated samples. However, if both variables were considered
separately in univariate analyses, only 83% of the contaminated samples would have been
correctly identified as outliers based on cell density; based on activity, the fraction would
have been even lower with only 53%. Even if the outcomes of the two separate univariate
analyses were to be considered together, still 17% of the contaminated samples would not
have been detected as outliers. This is apparent from the bivariate plot where a group of
contaminated samples clearly deviates from the distribution of non-contaminated samples
indicated by the confidence ellipse, but still falls within the univariate thresholds for cell
density and activity (Fig. 3.3.1). In fact, by looking at the bivariate plot it is becomes
clear that, in principle, any sample that would lie to the top left or the bottom right of
the confidence ellipse would not be detected as an outlier using the univariate approach
if it still fell within the range defined by the univariate thresholds, even though it would
clearly deviate from the distribution of the rest of the data along the two variables. This
distribution is not only shaped by the variances of the variables but also by their mutual
covariance, which is ignored with the univariate approach. Thus, by making use of the
additional information about covariance, the multivariate approach fully exploits the
information gained from the two variables. Thereby it is able to provide a more accurate
picture about the available data and accordingly allows for a more accurate identification
of outliers.

To assess the impact of the fraction of contaminated samples in the dataset on the
ability of the two approaches to detect those contaminated samples as outliers, we re-
peated the analysis from above with datasets containing different fractions of contami-
nated samples, ranging from 10% to 60%. For each fraction, we constructed 100 datasets
with a total of 70 samples that were randomly selected from the non-contaminated site
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Figure 3.3.1: Detection of disturbances related to organic contamination based on mi-
crobial cell density and activity. A) Bivariate plot showing the distribu-
tion of samples along the variables cell density (measured as prokaryotic
cells L−1) and activity (measured as prokaryotic intracellular ATP con-
centrations). Dashed lines represent the univariate thresholds calculated
as median ± 2.5 ×MAD for each variable. The ellipse shows the 0.975
confidence ellipse calculated from the robust estimates of the center and
covariance matrix of the data (note: all calculations were done on log10-
transformed data; values were converted back to the original scale to allow
for a more intuitive representation of the data). B) D-A index values (ro-
bust Mahalanobis distances) for the samples shown in A. The dashed line
represents the critical value of the chi-squared distribution at a 0.975 con-
fidence level with two degrees of freedom. (From Fillinger et al., 2019b).

and the hydrocarbon-contaminated site, respectively. For each dataset, we calculated
the average fraction of contaminated samples that were correctly identified as outliers
using the univariate approach, where a sample was declared an outlier if it fell outside
the thresholds of median±2.5×MAD for either of the two variables, and the multivari-
ate approach, respectively (Fig. 3.3.2). In datasets that contained 10% contaminated
samples, both approaches were equally reliable, detecting >99% of the contaminated
samples as outliers (Welch’s t-test, t99 =1.42, p=0.16). However, already at 20% con-
taminated samples, the multivariate approach detected the contaminated samples sig-
nificantly more reliably (98.5%) compared to the univariate approach (93.7%) (Welch’s
t-test, t140 =6.21, p�0.0001), and was able to correctly identify >96% of the contami-
nated samples as outliers up to a fraction of 30% contaminated samples in the dataset,
above which also the multivariate approach started to noticeably lose its reliability.
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taining 70 samples in total with different fractions of contaminated samples.
Error bars show the standard deviation of the averages. (From Fillinger et
al., 2019b).

Case study 2: surface water intrusion

As for the previous example, the analysis was based only on the variables cell density and
activity. Out of the total of 108 samples, nine samples were identified as outliers using
the multivariate approach as indicated by the D-A index for these nine samples, which
exceeded the critical value of the chi-squared distribution at a 0.975 confidence level
(Fig. 3.3.3). The presence of these outliers coincided with the period of the increased
surface water intrusion, and seemed to reflect the spatiotemporal impact of this event as
revealed by stable isotope signatures of the groundwater (Fig. S3.1). In January, at the
early stage of the event, the effect of the surface water intrusion was only apparent close
to the river as indicated by the outlier from a well at a distance of 2m from the river.
However, at the later stage in March, when the surface water had reached the areas more
distant from the river, outliers were also detected 60m and 75m away from the river.
After the surface water had receded, the system appeared to have recovered from the
disturbance. The only exception was a single well 60m away from the river that was still
identified as an outlier in April, June, and October, which, however, did not seem to be
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directly related to the surface water intrusion (Fig. S3.1).
Similar to the results for the first disturbance case study, the multivariate approach

detected outliers more sensitively compared to the univariate approach. Only four sam-
ples that were identified as outliers in the multivariate analysis also fell outside the range
defined by the median± 2.5×MAD for cell density as well as activity if both were con-
sidered separately. If the information for both variables were to be combined, still one
outlier would not have been detected, which was however detected by the multivariate
approach.
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Figure 3.3.3: Detection of disturbances related to surface water intrusion based on mi-
crobial cell density and activity. A) Bivariate plot showing the distribu-
tion of samples along the variables cell density (measured as prokaryotic
cells L−1) and activity (measured as prokaryotic intracellular ATP con-
centrations). Dashed lines represent the univariate thresholds calculated
as median ± 2.5 ×MAD for each variable. The ellipse shows the 0.975
confidence ellipse calculated from the robust estimates of the center and
covariance matrix of the data (note: all calculations were done on log10-
transformed data; values were converted back to the original scale to allow
for a more intuitive representation of the data). B) D-A index values (ro-
bust Mahalanobis distances) for the samples shown in A. The dashed line
represents the critical value of the chi-squared distribution at a 0.975 con-
fidence level with two degrees of freedom. (From Fillinger et al., 2019b).

Case study 3: impact of different types of land use

Considering only cell density and activity in the multivariate analysis, no significant
outliers were detected for any of the three types of land use, although the D-A index

62



3 Results

value of a single sample from the agricultural land was close to the critical value of the
chi-squared distribution (Fig. 3.3.4). However, if AOC concentrations were additionally
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Figure 3.3.4: Detection of disturbances related to different types of land use based on
microbial cell density and activity, and additionally AOC. A and C ) Distri-
bution of samples along the variables cell density (measured as prokaryotic
cells L−1) and activity (measured as prokaryotic intracellular ATP concen-
trations), and additionally carbon (measured as AOC concentrations) (C ),
for the different types of land use with 0.975 confidence ellipse (A)/ellipsoid
(C ) calculated from the robust estimates of the center and covariance ma-
trix of the data. B and D) D-A-(C) index values (robust Mahalanobis
distances) of the samples shown in A and C, respectively. Dashed lines
represent the critical values of the chi-squared distribution at a 0.975 confi-
dence level with two and three degrees of freedom in B and D, respectively.
(From Fillinger et al., 2019b).
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included in the analysis, five outliers could be clearly identified based on the D-A-C index,
three of which derived from the agricultural land, showing lower AOC concentrations than
the majority of the samples, and two from the grassland, which showed higher AOC
concentrations. Similar to the first two disturbance case studies, these outliers would not
have been detected based on separate univariate analyses (except for one sample from
the agricultural land, which fell below the lower threshold for activity; Fig. S3.2). The
hydrochemical data revealed that the three outlier samples from the agricultural land
displayed exceptionally high nitrate concentrations (>100mgL−1) as well as unusually
high dissolved oxygen concentrations for the region, and were among the samples with
the lowest pH in the entire dataset (Fig. S3.3). For the two outliers from the grassland,
the chemical data revealed unusually high concentrations of dissolved organic carbon,
corresponding to the high AOC concentrations for these samples, as well as relatively
low pH values (Fig. S3.3).

3.3.2 Regional differences in D-A-(C) signatures

For simplicity of display, the signatures of the nine different regions are shown in Figure
3.3.5 only based on the two variables cell density and activity. The signature of each
region is defined by the center (i.e. mean values of each variable) and the covariance
matrix, which both are graphically captured by the confidence ellipse. Already based
on visual comparison of the confidence ellipses, clear differences were apparent between
each region and the full dataset as well as between the individual regions, both in terms
of variable means and covariances. Significant differences in covariance matrices between
regions were confirmed using Box’s M test on the robust estimates of the covariance ma-
trices (χ2

24 =76.5, p�0.0001). For the comparisons of variable means, only samples were
considered that were not indicated to be outliers for a given region based on their robust
Mahalanobis distances at a confidence level of 0.975. As seen for the covariance matri-
ces, significant differences were also found for the means of cell density (Welch’s ANOVA,
F8;75.5 =44.3, p�0.0001) and activity (Welch’s ANOVA, F8;75.8 =14.0, p�0.0001). Un-
fortunately, AOC concentrations were not available for all samples. We repeated the
analyses only considering regions for which at least 10 samples were available with data
for all three D-A-C variables (Table 2.3.1). The results were in agreement with the
previous analyses, showing significant differences between covariance matrices (Box’s
M, χ2

36 =133.8, p�0.0001) and average AOC levels (Welch’s ANOVA, F6;27.5 =12.9,
p�0.0001).

Additional pairwise comparisons of means for each variable revealed that although
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Figure 3.3.5: Signatures along the variables cell density and activity of the nine non-
contaminated aquifers at the regions indicated in the upper left corner of
each plot. Open symbols represent the full dataset comprising all nine re-
gions and the corresponding 0.975 confidence ellipse calculated from the
robust estimates of the center and covariance matrix of the data; colored
symbols represent data for an individual region (note: all calculations were
done on log10-transformed data; values were converted back to the origi-
nal scale to allow for a more intuitive representation of the data). (From
Fillinger et al., 2019b).

the overall differences were significant, differences between pairs of regions were relatively
small, mainly occurring within one order of magnitude for each variable (Fig. 3.3.6; sum-
mary statistics for each region are given in Table S3.1). Moreover, even though there
were significant correlations between the D-A-C variables considering the full dataset
(Pearson’s rcell density-activity=0.463, p�0.0001; ractivity-carbon=−0.285, p=0.008; not sig-
nificant: ractivity-carbon=0.191, p=0.08), the pairwise comparisons further showed that
these variables are not mutually redundant, as significant differences between two re-
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gions in one variable did not necessarily coincide with significant differences in another
variable for a given pair of regions.
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4 Discussion

4.1 Ecological drivers of differences in microbial community
composition across geographically distinct aquifers

The aim of this study was to establish the relative contributions of processes that cause
variation in microbial community composition in groundwater environments across dis-
tinct aquifers located in different regions. We hypothesized that variation in community
composition can be due to species sorting imposed by local environmental conditions
measured at the time of sampling, and potential broad-scale region-specific factors like
climate, geology or historical events, in addition to processes related to dispersal and
drift within as well as across regions. Our analyses showed that differences in local
environmental conditions were well reflected by differences in microbial community com-
position within regions. This observation points towards the influence of species sorting,
where stronger environmental gradients within a region are predicted to increase niche
diversity, and hence cause different species to sort into local communities along these
environmental gradients (Langenheder and Lindström, 2019).

The results obtained from the null models only partially agreed with this observation.
On the one hand, the different degrees to which selection was indicated to be respon-
sible for the differences in community composition in the NOR region compared to the
AUG and MIT region did match the observed differences in environmental heterogene-
ity for these regions. This would support the hypothesis outlined above that stronger
environmental gradients increase the influence of species sorting. On the other hand,
contradictory results were found for the WUR region, which showed the second largest
environmental differences, but exhibited the lowest contribution of selection. However, it
has to be mentioned that parts of the aquifer in the WUR region are artificially recharged
with treated river water during the summer months (i.e. May to October) but not during
the rest of the year. The samples for this study were collected at the early stage about
two weeks after the start of the annual infiltration period, which may have constituted a
perturbation to the microbial communities. It has been shown that random colonization
through dispersal and drift can gain importance on community assembly in disturbed
environments (Ferrenberg et al., 2013; Zhou et al., 2014; Fukami, 2015; Langenheder and
Lindström, 2019), which could explain the relatively low contribution of species sorting in
the WUR region. Furthermore, the null models indicated relatively strong contributions
of dispersal limitation acting alongside drift, especially in the WUR and AUG region.

68



4 Discussion

Although comparable results have been obtained in previous studies on microbial com-
munity assembly in groundwater environments (Stegen et al., 2013; Beaton et al., 2016;
Graham et al., 2017), this is at odds with our observation that spatial distance within
regions did not have a significant effect on differences in community composition in the
db-RDA.

Such apparently conflicting results between distance-based regression approaches and
ecological null models have previously been reported by Langenheder et al. (2017) in a
study on community assembly in lake biofilms. There are two possible explanations for
these observations. One is that the inferences drawn from the null models might be an
oversimplification of the actual ecological processes that shape microbial communities.
The approach by Stegen et al. (2012, 2013) assumes that species sorting causes stronger
or weaker phylogenetic community turnover than expected by chance (i.e. significant
values for β-NTI). The basic assumption that phylogenetic relatedness tends to approxi-
mate ecological similarity between microbial taxa has been confirmed by previous studies
(Peay et al., 2012; Stegen et al., 2012; Tan et al., 2012; Wang et al., 2013; Dini-Andreote
et al., 2015; Martiny et al., 2015; Liu et al., 2017), and was further suggested by a signif-
icant phylogenetic signal of environmental differences between ASVs in our dataset (Fig.
S1.1). In the light of these findings, inferring the effect of selection from phylogenetic
community turnover seems valid. However, it is also known that certain microbial traits
are phylogenetically not well conserved (Martiny et al., 2015), and therefore selection
involving such traits would not be reflected by phylogenetic turnover metrics like β-NTI,
but could still result in higher than expected community turnover reflected by RCbray,
which does not consider phylogenetic relationships. Thus, a significant deviation from
the null expectation of RCbray could still be the result of selection processes even if
phylogenetic community turnover does not deviate from the null expectation of β-NTI
(Langenheder et al., 2017).

Alternatively, it is possible that mere spatial distance does not appropriately reflect
actual groundwater flow paths via which microorganisms may disperse in porous aquifers
(Freimann et al., 2015; Schmidt et al., 2017; Smith et al., 2018). In this case, differences
in community composition would not necessarily correlate with spatial distance even if
dispersal was limited between local communities. For our study, this seems to be the
more likely explanation, as we did not find significant correlations between changes in
RCbray and differences in environmental conditions within the individual regions (based
on Mantel correlation tests with 10 000 permutations; all p>0.05; data not shown). This
suggests that we may have underestimated the effect of dispersal limitation between local
communities in the db-RDA, although we cannot fully rule out that selection involving
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phylogenetically non-conserved traits may have played a role as well.
Even though we might have missed the variation in community composition caused

by dispersal limitation between local communities, the majority of the total variation in
community composition evaluated across all regions (>75%) could still be explained by
local environmental conditions and region identity. Variation partitioning of β-MNTD
revealed a larger marginal effect of local environmental conditions (27%) compared to
the effect of region identity (9%). This strongly indicates that microbial communities
were shaped by these local environmental conditions, whereas dispersal limitation be-
tween regions, and potential species sorting due to region-specific factors, only played
a secondary albeit still significant role. This was furthermore supported by the large
contribution of selection to differences in community composition across regions inferred
from the null models, similar to findings reported by Danczak et al. (2018). It is worth
noting that the four different regions in our study were sampled at different time points
due to logistic constraints, although all sampling campaigns were conducted roughly in
the same season, that is late spring and summer. Still, the variation in community com-
position possibly caused by temporal drift independent of environmental conditions, in
addition to possibly undetected effects of dispersal limitation within regions, which both
would be represented by the residual fraction of unexplained variation, was relatively
small (∼23%).

Interestingly, the effect of environmental conditions and region identity were mainly
reflected by turnover of closest relatives between communities, that is turnover over short
phylogenetic distances measured as β-MNTD, but not by turnover of deeper branching
phylogenetic lineages measured as β-MPD. Responses of microbial communities to envi-
ronmental conditions have previously been shown to affect turnover across short phylo-
genetic distances, which indicate evolutionary relatively recent adaptations (Wang et al.,
2013; Liu et al., 2017). Deep phylogenetic distances on the other hand capture more dis-
tant evolutionary events (Fine and Kembel, 2011), which we hypothesized may include
region-specific adaptations or evolutionary origins of phylogenetic clades within regions
(Ricklefs, 2006). This, however, was not the case as >93% of the variation in β-MPD
could not be explained by region identity and local environmental conditions, which both
had equally minuscule individual effects.

The dominance of species sorting by local environmental conditions is in line with
the meta-analysis by Hanson et al. (2012), who compared studies on microbial commu-
nities across various habitats and spatial scales and found that environmental conditions
explained most of the variation in microbial community composition in the majority of
analyzed studies. Similar conclusions were drawn from a literature review by Lindström
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and Langenheder (2012). Additional evidence for the importance of local environmental
conditions on microbial community structure in groundwater environments in particular
was provided by Ben Maamar et al. (2015) who reported similarities in microbial commu-
nity composition in relation to similar environmental conditions across three unconnected
fractured groundwater aquifers, as well as by other studies on single aquifers within a
region (Stegen et al., 2013; Beaton et al., 2016; Graham et al., 2017). Nevertheless, region
identity still explained a significant fraction of the variation in community composition
after controlling for local environmental conditions in our study, comparable to previ-
ous studies that compared microbial community composition over broad spatial scales
in various aquatic and terrestrial habitats (Souffreau et al., 2015; Power et al., 2018;
Plassart et al., 2019), or similar examples from studies on larger organisms (Declerck
et al., 2011; Viana et al., 2016; Heino et al., 2017). However, in these studies it largely
remained unclear whether such large-scale distance decay relationships were the result
of dispersal limitation across regions or selection by regionally structured factors. Using
the standardized effect size of differences in community composition obtained from null
models like β-NTI in addition to raw metrics like β-MNTD allows making such a distinc-
tion, because β-NTI quantifies the degree to which the phylogenetic turnover between
two communities is stronger than expected given the observed differences in species rich-
ness, occupancy, and abundance caused by dispersal and drift (Stegen et al., 2013; Wang
et al., 2013). By partitioning the variation in β-NTI between region identity and local en-
vironmental conditions, we could show that environmental conditions, both explained by
measured variables and by unmeasured, spatially unstructured variables represented by
the residual fraction, explained most of the variation in selection, whereas region identity
alone did not have a significant effect. Combined with the results obtained for β-MNTD,
this leads to the conclusion that the variation in β-MNTD explained by region identity
was mainly due to dispersal limitation and drift across regions rather than species sorting
imposed by broad-scale regional factors.
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4.2 Assembly and succession of microbial communities
during the colonization of groundwater sediments

The objective of this study was to shed light on the processes that determine microbial
community assembly on groundwater sediments, and to compare patterns of microbial
community succession to those previously observed for biofilms in other aquatic habi-
tats or sediment-attached communities in comparatively more dynamic surface water-
groundwater mixing zones. Our study showed that the changes in alpha diversity over
the course of the colonization of initially sterile sediments followed similar trends as
those predicted by the conceptual model for the formation of biofilms on empty surfaces
outlined by Jackson (2003) (Fig. 1.2.3). According to this model, the early stage of
biofilm development is characterized by large niche space offered by empty surfaces that
allows for the establishment of diverse microorganisms, resulting in a steady increase in
community richness and diversity. This increase subsequently levels off and eventually
declines due to niche depletion and the loss of less competitive species as the biofilm
grows over the course of the succession. However, at the final stage, the mature biofilm
becomes increasingly spatially and chemically heterogeneous, which opens new niches for
specialized species to thrive, thereby fueling a renewed increase in alpha diversity.

Our results were in agreement with these predicted trends, with the exception that
we did not observe an increase in species richness and diversity towards the final stage
of the incubation. However, the framework by Jackson (2003) was conceptualized for
biofilms in resource-rich, high-productivity environments like activated sludge, wetlands,
and lakes. Although we cannot rule out that alpha diversity may have increased again
with a prolonged incubation time, we may hypothesize that diverse, specialized niches
that develop in mature, spatially heterogeneous biofilms may not form to such an ex-
tent in the small, patchily distributed microcolonies that typically colonized groundwater
sediments (Schmidt et al., 2017; Smith et al., 2018). Hence, total niche space in such
microcolonies might be smaller compared to mature biofilms in other environments, sim-
ilar to what Graham et al. (2016a) have proposed for sediments in the hyporheic zone.
Moreover, although the general pattern of decreasing fractions of newly-arriving OTUs
could also be observed from our data, reflecting the saturation of niche space according
to Jackson’s biofilm model (2003), we noticed that the fraction of these OTUs at the end
of the incubation was still 5 to 10 times higher compared to findings on biofilms in other
environments (e.g. Brislawn et al., 2019). These deviations of our results from assembly
patterns of biofilms, together with the findings made for sediment-attached communities
in the hyproheic zone (Graham et al., 2016a), could point towards important differences
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in ecological niche structures between biofilms in resource-rich non-subsurface environ-
ments and sediment-attached microbial communities in the typically more energy-poor
subsurface.

Considering the abundance changes of newly-arriving OTUs over time, our data
showed that OTUs colonizing the sediments during the early stage of community as-
sembly (i.e. the first 49 to 115 days) largely dominated the final communities at the
end of the incubation. However, at the same time, these OTUs represented only a small
fraction of newly-arriving OTUs that were found at each time point. This was further-
more reflected by the large dominance of turnover over nestedness between successional
stages in the sediment-attached communities inferred from beta diversity partitioning,
showing that the majority of OTUs that had established in the communities at a given
time point were not very persistent, but were in fact replaced to a large extent by other
OTUs over the course of the succession. Therefore, in agreement with findings made by
Brislawn et al. (2019), the mere timing of OTU arrival did not seem to be a determining
factor for the final community structure. Instead, the consistent dominance of specific
taxa among the few OTUs that were persistent—mainly genera within the Oxalobac-
teraceae, Comamonadaceae, Caulobacteraceae, and Sphingomonadaceae, in addition to
Pseudomonas spp.—suggests the involvement of certain traits that enable these taxa to
sustainably colonize and thrive on sediment surfaces.

Interestingly, we found the same genera as the ones listed above among the most im-
portant contributors to differences between sediment-attached and planktonic communi-
ties inferred from SIMPER analysis, and to be highly differentially abundant in sediment-
attached communities. The association of these organisms with biofilms and traits that
facilitate surface colonization like motility or production of extracellular polysaccharides
have been reported before for other environments (Kalmbach et al., 2000; Baldani et al.,
2014; Bižić-Ionescu et al., 2015; Niederdorfer et al., 2016, 2017), supporting the hypothe-
sis about their importance for the development of sediment-attached communities in our
study. Over the course of the succession, these dominant OTUs may have facilitated the
recruitment of other more diverse taxa that were observed towards the later stages of the
colonization (Battin et al., 2007; Nemergut et al., 2013; Fukami, 2015).

Comparisons of differences in microbial community composition revealed that sediment-
attached and planktonic communities, respectively, were similar across the two sampling
locations at each time point. Using the null model approach by Stegen et al. (2012,
2013) suggested that different processes were responsible for the observed similarities.
Whereas similarities between planktonic communities between the two locations were
mainly driven by homogenizing dispersal, the high similarities between sediment-attached
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communities at both sites were mostly indicated to be caused by species sorting selecting
for similar OTUs in the two communities. We are aware that our study consisted of only a
relatively limited number of observations, and therefore the results should be interpreted
with the necessary caution. Nevertheless, our results fit observations on assembly pro-
cesses for sediment-attached communities in the hyporheic zone (Graham et al., 2016a,
2017; Stegen et al., 2016b) as well as biofilms in surface water streams (Besemer et al.,
2012; Veach et al., 2016), suggesting that species sorting not only plays a determining
role in the assembly of surface-attached microbial communities in those more energy-rich
environments, but also in pristine groundwater aquifers, despite the comparatively more
oligotrophic conditions. However, we were unable to establish which factors may have
been responsible for species sorting, as we did not find significant correlations between
changes in β-NTI and any of the measured environmental parameters. Mineral compo-
sition has previously been demonstrated to be a driving factor for microbial community
composition and assembly (Grösbacher et al., 2016; Stegen et al., 2016b; Jones and Ben-
nett, 2017). Given that the in situ microcosms that were incubated at the two sites for
our experiment were filled with sediment that originated from the same source, it is likely
that identical sediment properties might have selected for the highly similar communities
at the two sites.

In the same vein, assembly processes behind changes in the composition of sediment-
attached communities were highly variable over time without a clearly discernible trend
in favor of a single process, and without apparent associations to changing environmental
conditions. This could suggest that the changes in community composition over time and
the influence of species sorting were determined by unmeasured environmental variables
(Stegen et al., 2013). Alternatively, the observed lack of correlations between changes
in environmental conditions and the processes that determined community assembly
can also hint at the impact of endogenous factors like species interactions (Konopka
et al., 2015; Battin et al., 2016; Cordero and Datta, 2016). Recently, Danczak et al.
(2018) could show that interaction network structures can affect assembly processes in
pristine groundwater environments. Although our results showed that the succession of
OTUs in sediment-attached communities was highly reproducible between the two sites,
and that similarities between communities were mostly higher than expected by chance
(β-NTI<− 2), the compositions of the communities at both sites for each time point—
and therefore possibly interaction networks—were not fully identical. Hence, variable
patterns of processes that determined changes in community composition over time at
each site might, at least in part, be attributed to potential differences in interaction
networks within the communities between the two sites.
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An additionally important factor for the assembly and succession of surface-attached
communities in aquatic environments is the recruitment of species from the surrounding
water phase (Battin et al., 2016). The establishment of recruited species in a biofilm
community depends on both dispersal as well as interactions with already established
species (Battin et al., 2007, 2016). Beta diversity partitioning showed that sediment-
attached and planktonic communities were composed of distinct OTUs. We again used
the null model approach to test to what extent species sorting and dispersal contributed to
these differences. We found that over the first successional stages, the differences between
sediment-attached and planktonic communities were driven by dispersal limitation acting
alongside drift and later on shifted towards species sorting selecting for significantly
different OTUs in both types of communities. The latter observation could be explained
in the light of previous studies which have suggested that species with similar ecological
niches as resident species have a lower chance of successfully invading a community than
species that have less niche overlap with already established ones (Fargione et al., 2003;
Tilman, 2004; Peay et al., 2012; Tan et al., 2012).

However, the processes that were indicated to have determined differences in com-
munity composition between groundwater and sediments at the earlier stages—that is,
dispersal limitation in combination with drift as indicated by significantly positive val-
ues for RCbray—were counterintuitive. Multiple causes could explain these unexpected
results. For one, it has to be noted that the sediment microcosms were incubated in
groundwater monitoring wells, which is a relatively artificial environment that is not
necessarily fully representative of the actual groundwater in an aquifer. Consequently,
communities found directly inside the well water may differ from the communities in the
surrounding groundwater (Griebler et al., 2002; Korbel et al., 2017). In fact, previous
analyses of our samples by T-RFLP fingerprinting did indeed reveal some differences be-
tween groundwater and well water microbial communities (Zhou et al., 2012). However,
considering the relatively high groundwater flow velocities in the investigated area, and
the fully screened monitoring wells that readily enable water exchange, dispersal limi-
tation appears unlikely to have caused the observed differences between planktonic and
sediment-attached communities in our study.

As discussed earlier (Section 4.1), apart from dispersal limitation, significantly posi-
tive values for RCbray might also occur if differences between communities are the result
of species sorting involving phylogenetically non-conserved traits. Revisiting the frame-
work regarding the dominance of different assembly processes in relation to spatial scale
presented in Figure 1.2.2, the processes that determined differences between sediment-
attached and planktonic communities in this study can be expected to have operated
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over small distances (on the scale of A to B shown in Fig. 1.2.2), where biotic factors are
predicted to be the main drivers of species sorting. Strong biotic factors like competition
between species can cause communities to be more different than expected by chance
(Chase et al., 2011). We may hypothesize that competition involving phylogenetically
non-conserved traits could have been responsible for the differences between sediment-
attached and planktonic communities during the early stage of the colonization (i.e. that
is the first 115 days), which would not necessarily result in a deviation from the null
expectation in phylogenetic null models (i.e. β-NTI), but could still cause significantly
positive values for RCbray. Only at the later stage, when the communities on the sedi-
ments had matured further (i.e. after 263 days), phylogenetically more conserved traits
may have gained importance as suggested by significantly positive values for β-NTI.
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4.3 Ecological groundwater monitoring based on
microbiological parameters

Despite the fact that policy makers in different parts of the world have started to acknowl-
edge the ecosystem status of groundwater aquifers, and therefore no longer consider them
merely as a storage of freshwater, ecological aspects still have received little attention in
groundwater monitoring to date. One of the main reasons for the currently still lacking
implementation of ecological criteria is certainly the lack of suitable tools that can be eas-
ily incorporated into already existing routine monitoring practices. The approach based
on the microbiological parameters that are analyzed simultaneously using the D-A-(C)
index as presented in this study was developed to fill this gap. Previous studies have an-
alyzed responses of prokaryotic microorganisms to different disturbances in groundwater
environments. For instance, increased microbial activity and growth have been reported
in response to increased concentrations and fluxes of carbon caused by groundwater
recharge with surface water (Foulquier et al., 2011b; Mermillod-Blondin et al., 2013; van
Driezum et al., 2018) or suddenly occurring contamination with aromatic hydrocarbons
(Herzyk et al., 2017). These general trends are in line with our observations for the first
two disturbance case studies. However, in contrast to the monitoring of drinking water
distribution systems (FDHA, 2012; van Nevel et al., 2017), most of the studies that have
investigated these parameters in relation to different disturbances of groundwater ecosys-
tems so far have mainly been descriptive and did not provide a practical framework of
how these parameters could be integrated into monitoring protocols.

Our approach uses an integrated analysis of multiple microbiological variables to de-
tect disturbances. Although it has been shown that for example microbial activity corre-
lates positively with microbial cell numbers (Eydal and Pedersen, 2007; van der Wielen
and van der Kooij, 2010; Foulquier et al., 2011b; van Nevel et al., 2017), a pattern that
was also reflected in our data, these variables should not be regarded as mutually redun-
dant. Our analyses showed that disturbances were not equally mirrored by these two
variables, and furthermore, that significant differences between regions in one variable
did not necessarily coincide with significant differences in another variable. It is cru-
cial to realize that total prokaryotic cell counts are a measure of the total number of
cells in a sample, while only the active fraction of these cells contributes to the activity
measured as intracellular ATP concentrations. These two variables can be affected dif-
ferently by different disturbances or over different time scales. For instance, it could be
shown that microbial cell density can exhibit a delayed response to increased nutrient
inputs (Foulquier et al., 2011b), while intracellular ATP concentrations can react almost
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immediately (Hofmann and Griebler, 2018). Moreover, although such a pattern was not
observed in our particular example of the surface water intrusion event, it is easy to
imagine how surface water intrusion could result in an increase in microbial cell numbers
without causing changes in activity. This would be the case if cells from the surface wa-
ter were transported into the groundwater, but were inactivated by the characteristically
lower nutrient levels in the groundwater compared to surface water. Hence, considering
multiple variables can allow for a more nuanced approach to detect different types of
disturbances.

We additionally demonstrated the advantages of a simultaneous, multivariate analysis
of the considered microbiological variables compared to separate univariate analyses of
each variable. The main advantage of the multivariate approach is that correlations be-
tween the variables are also taken into account, thereby capturing the actual distribution
of samples along the measured variables, unlike univariate approaches where each vari-
able is analyzed separately and thereby possible correlations are ignored (Manly, 1994).
Our analyses showed that disturbances were not only detected more sensitively by the
multivariate approach, but also that it was more robust by being able to detect distur-
bances more reliably in datasets with higher fractions of contaminated samples compared
to the univariate approach. Moreover, using the D-A-(C) index (i.e. robust Mahalanobis
distances) as indicator of disturbances offers an easy interpretation of the data based on
a single value which integrates the signals from multiple variables. The power of this ap-
proach to detect anomalies (i.e. outliers) has already been successfully demonstrated in
various contexts, ranging from finance to astronomy and biotechnology as well as quality
monitoring of industrial manufacturing processes (Rousseeuw and Van Driessen, 1999;
Cohen Freue et al., 2007; Hubert et al., 2017), which allows for a seamless transfer of
this approach into the context of ecological monitoring.

As another advantage, the multivariate analysis approach can be easily extended by
additional variables that may be identified in the future as sensitive indicators of dis-
turbances without compromising the simplicity of the analysis, since the interpretation
would still be based on a single index value regardless of the number of variables consid-
ered in the analysis. For example, additional information such as cell size distributions,
numbers of phototrophic cells, ratios of live over dead cells, or ratios of cells with high
nucleic acid content over cells with low nucleic acid content, can be directly derived
from flow cytometry measurements used to determine cell densities (Hammes and Egli,
2010; Wang et al., 2010; Hammes et al., 2011; van Nevel et al., 2017). This enables a
straightforward amendment of the analysis which may further increase the sensitivity of
detecting disturbances.

78



4 Discussion

We have illustrated how the analysis can be extended, and its sensitivity can be in-
creased, by including additional variables based on the example of the third disturbance
case study related to the impacts of different types of land use. In this example, distur-
bances related to agricultural land use that were not identified by only looking at cell
density and activity could be identified by additionally including AOC concentrations in
the analysis. Although a higher sensitivity was achieved in this particular example by
amending the analysis with AOC, there are certain pitfalls associated with this variable
that need to be considered. It is important to remember that AOC concentrations are
derived indirectly from the increase in cell numbers in a sample over a certain amount of
time during batch incubation under in situ groundwater conditions, that is in the dark
and at the according temperature (Hammes and Egli, 2005). However, from our own
experience, this measure is only applicable under certain conditions. For instance, we
have frequently noticed that the cell density decreases over the course of the incubation
resulting in calculated negative AOC concentrations. This is mainly the case for surface
water samples, where phototrophic cells die and decay during the incubation in the dark,
or for groundwater samples that are strongly affected by surface water and may have
contained phototrophic cells. Moreover, we can think of cases where the presence of
toxic compounds like heavy metals can lead to growth inhibition (Şengör et al., 2009).
In such a case, the cell density in a sample would not increase, or only increase slightly,
during the incubation, which would be falsely interpreted as low AOC concentrations.
Similar situations would arise in cases where carbon is not the limiting resource, but the
cell growth is constrained by the availability of other essential nutrients like nitrogen or
phosphate (Hofmann and Griebler, 2018), or electron acceptors, as is often the case for
organically contaminated groundwater (Meckenstock et al., 2015). In the light of these
pitfalls, we recommend the use of AOC as an additional variable only for groundwater
samples in absence of strong surface water impacts. Furthermore, protocols to measure
AOC could be adjusted by amending samples with additional nitrogen and phosphate
sources to overcome potential biases of AOC estimates caused by nutrient limitations
(Trimbach et al., unpublished).

Certain shortcomings may also be encountered if only cell density and activity are
considered. The disturbance case studies that we investigated to test our approach could
all be roughly categorized as disturbances that affect organic carbon and nutrient levels
in the groundwater. Even though we could clearly demonstrate that these disturbances
can be detected by the multivariate analysis of prokaryotic cell density and activity, there
are other potential impacts which might not be detected using this approach. One ex-
ample could be groundwater contamination with micropollutants like pharmaceuticals
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or pesticides, which has become a growing concern over the past years (Lapworth et al.,
2012; Fenner et al., 2013). Since these compounds typically occur in groundwater only at
concentrations of a few nanograms to micrograms per liter—often much lower than am-
bient AOC concentrations—they usually do not serve as substrate for microbial growth
(Helbling, 2015) and, from a critical point of view, might not be expected to have toxic
effects on microorganisms that would cause noticeable changes in intracellular ATP con-
centrations. Whether impacts caused by micropollutants can be detected at all based on
microbiological parameters needs to be assessed in future research. However, in general,
certain other drawbacks of our approach could be alleviated by incorporating additional
variables in the analysis as discussed above.

Looking at the regional D-A-(C) signatures of non-contaminated aquifers across Ger-
many, we noticed significant differences in terms of average levels of prokaryotic cell
density, activity, and AOC, respectively, as well as covariance matrices. A detailed dis-
cussion of differences between individual regions would exceed the scope of this study.
However, the main implication of these findings for groundwater monitoring is that these
differences between regions need to be taken into account for data collection and interpre-
tation by analyzing data on a suitable regional scale. Furthermore, our analysis revealed
that disturbances can only be reliably detected up to a certain fraction of disturbed sam-
ples in the dataset. Therefore, in practice, a number of known reference monitoring wells
should be routinely included in the analysis that are well protected against disturbances
and provide a representative estimate of D-A-(C) signatures for a given region. A step
towards the biogeographical classification of groundwater ecosystems has been made by
Stein et al. (2012), who showed that the distribution of metazoan groundwater fauna
across Germany does not agree with conventional classifications based on hydrogeology,
geochemistry, or bioregions defined based on surface water fauna. In the light of these
findings, we suggest that also the definition of suitable biogeographical boundaries for mi-
crobiological parameters should be guided by ecological criteria rather than being solely
based on hydrogeology or geochemistry.
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In this thesis, I set out to provide a better understanding of the processes that shape
microbial community composition in groundwater environments, and to exploit the po-
tential of data on these ubiquitously distributed microorganisms to meet the pressing
demand for a monitoring scheme that allows for the ecological-biological assessment of
groundwater ecosystems.

The first principal goal was to shed light on the yet little understood relative contri-
butions of species sorting, dispersal, and random drift to microbial community assembly
in pristine groundwater aquifers. This goal was tackled in two separate studies addressing
distinct key objectives: first, to uncover the driving factors that impose species sorting by
distinguishing between selection effects caused by local environmental conditions in the
groundwater relative to potential broad-scale region-specific factors that may determine
microbial community composition within different regions, and to differentiate between
the effect of species sorting potentially caused by such broad-scale factors and dispersal
limitation across regions; second, to establish to what extent species sorting determines
microbial community assembly on groundwater sediments in particular, since sediment-
attached communities are assumed to play a critical role in groundwater environments,
given that they typically represent the majority of the microbial biomass in aquifers, and
often display higher activity levels compared to planktonic communities in the surround-
ing groundwater (Alfreider et al., 1997; Lehman et al., 2001; Lehman and O’Connell,
2002; Griebler et al., 2002; Zhou et al., 2012; Smith et al., 2018).

Our results showed that differences in microbial community composition across dis-
tinct aquifers from different geographic regions were mainly the product of species sorting
imposed by local environmental conditions, with a relatively smaller—but still signifi-
cant—contribution of dispersal limitation and drift across regions. However, we did not
find evidence for significant selection effects caused by region-specific factors indepen-
dent of local environmental conditions, represented by both measured and unmeasured
environmental variables. Although species sorting also played a determining role in
structuring local microbial communities within the individual regions, we found partially
inconsistent results between distance-based regression analyses and ecological null models
regarding the contribution of dispersal limitation and drift within regions. Hence, com-
bining microbial community analyses with hydrological models to map groundwater flow
paths, and to identify possible dispersal routes for microorganisms, will be important for
future research to allow for more accurate estimates of the contribution of dispersal to
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microbial community assembly in groundwater environments.
Furthermore, we could show that species sorting also plays a determining role for the

assembly of microbial communities on groundwater sediments. Our analyses revealed
that taxa in sediment-attached communities that developed in in situ microcosms were
not simply a random subset of the taxa found in the surrounding groundwater. Thus,
differences between sediment-attached and planktonic communities often reported for
groundwater environments do not seem to be the result of purely stochastic arrival of
taxa on the sediments and random drift. Instead, sediment surfaces appear to select
for specific groups of microorganisms that assemble over time in a reproducible, non-
random way. Moreover, the colonization of the sediments in several aspects followed
general patterns that have also been described for the development of biofilms in other,
comparatively more energy-rich, non-subsurface aquatic habitats, as well as the assem-
bly of sediment-attached microbial communities in more dynamic hyporheic zones. This
might indicate that the assembly of microbial communities on surfaces is governed by sim-
ilar underlying mechanisms across a wide range of different habitats. Although we found
that OTUs that had established on the initially sterile sediments during the early stage of
the colonization dominated the final communities at the end of the experiment, the mere
timing of OTU arrival was likely not a determining factor for the subsequent community
succession, considering that the majority of these early-colonizing OTUs were not very
persistent over time. Rather, traits associated with identified key taxa seemed to have
been a more decisive factor for the persistence of these OTUs. However, the ecological
processes behind the temporal succession of OTUs during the colonization still remained
unclear and might be influenced by species interactions. In addition, we hypothesized
that different traits with different degrees of phylogenetic conservation may have deter-
mined the establishment of OTUs in the developing sediment-attached communities from
the surrounding groundwater at different stages of community development. A better
understanding of these traits, and how they integrate into species interaction networks,
will be an important aspect for future research. Computational modeling of microbial
communities based on meta-omics data, albeit still in its infancy, offers a promising tool
to unravel complex species interactions within microbial communities and thus could
provide a means to illuminate these open questions (Faust and Raes, 2012; Hanemaaijer
et al., 2015; Muller et al., 2018).

It is important to realize that the conclusions from these two studies were derived
from 16S rRNA amplicon sequence data. Consequently, the effect of species sorting
and dispersal on microbial community assembly inferred from those studies was limited
to differences in community composition that could be resolved based on 16S rRNA
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sequences. It has been shown that even closely related strains of the same species, with
near identical 16S rRNA genes, can differ significantly in their ecological preferences
and show distinct biogeographic distributions (Hahn et al., 2016; Larkin and Martiny,
2017; Chase et al., 2018; Choudoir and Buckley, 2018). Therefore, our results need to be
interpreted with some caution, bearing in mind that the high degree of conservation of
16S rRNA genes may not have allowed for a complete differentiation between microbial
ecotypes beyond the level of ASVs or OTUs, respectively, in the two studies. Advances in
assembling high-quality draft genomes from metagenomic data could offer deeper insights
into microbial community diversity at a higher resolution beyond the variation captured
in 16S rRNA genes (Parks et al., 2017, 2018; Wilkins et al., 2019), and thus may deliver
a more detailed picture of the processes that determine microbial community assembly
in the future.

The dominating effect of species sorting on the assembly of microbial communities
in groundwater environments indicated by our findings leads to the question about the
implications for community functioning and stability. We may hypothesize that strong
species sorting leads to communities that are composed of microorganisms which are well
adapted to their local environment. As a consequence, these organisms might have to
invest less energy into maintenance, leaving more energy available for the synthesis of
enzymes that can catalyze biogeochemical processes. Therefore, communities primarily
assembled by species sorting could be expected to catalyze these processes at higher rates
as opposed to communities that are predominantly assembled by dispersal (Wallenstein
and Hall, 2012; Graham and Stegen, 2017). However, at the same time, the strong
adaptation to local environmental conditions could come at the cost of a low resistance
to changing environmental conditions, which could cause inactivation and replacement of
organisms in a community, and thereby disrupt community functioning, if the magnitude
of the environmental changes exceeds the range of fluctuation to which these organisms
have adapted (Shade et al., 2012; Graham and Stegen, 2017). Indeed, low resistance of
groundwater microbial communities to perturbations and subsequent rapid replacement
of resident taxa has been documented in previous studies (Zhou et al., 2014; Herzyk et al.,
2017). However, whether the strong influence of species sorting presented in this thesis
translates into high performance of groundwater microbial communities awaits detailed
experimental testing in future research.

In addition to these fundamental ecological aspects, the second main goal of this thesis
was the development of an assessment scheme for the ecological monitoring of ground-
water ecosystems that is compatible with existing routine monitoring practices. Based
on the presented case studies, we could show that prokaryotic cell density and activity
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can be used as reliable and sensitive indicators of disturbances of groundwater ecosys-
tems. These parameters can be easily integrated into existing groundwater monitoring
schemes as they are simple and inexpensive to measure, and furthermore can be analyzed
in samples that can be directly collected along with samples for the routine monitoring
of conventional physicochemical parameters. Furthermore, we have demonstrated that
the multivariate analysis of these variables using the D-A-(C) index not only allows for
a higher sensitivity, but also increases the robustness of the analysis compared to sep-
arate univariate analyses of the individual variables. An even higher sensitivity might
be achieved by including additional parameters in the analysis such as AOC concentra-
tions. However, optimization of this particular parameter may be required under certain
conditions to overcome biases associated with limitations of nutrients other than organic
carbon. Further evaluation of our approach is underway to assess its potential as well as
limitations to detect disturbances that go beyond the types of disturbances presented in
the three case studies. However, in theory, potential limitations of our approach can be
overcome by amending the analysis with additional parameters that might be identified
as potent indicators of various types disturbances in the future. These parameters could
be directly integrated in the analysis without compromising its simplicity, as the interpre-
tation would still be based on a single index values (i.e. robust Mahalanobis distances)
that integrates the signals of all variables included in the analysis. Significant differences
in the multivariate D-A-(C) signatures of the microbial variables between regions stress
the importance of analyzing data and selecting reference wells at a suitable regional scale,
the definition of which should not only be guided by hydrogeology or geochemistry, but
primarily by ecological criteria.

In summary, the results presented in this thesis contribute to a better understanding
of the fundamental processes that shape microbial community composition in ground-
water by revealing a strong effect of species sorting on microbial community assembly in
these environments. Furthermore, a practical approach has been introduced that allows
for the implementation of ecological criteria in routine groundwater monitoring that is
increasingly required under modern environmental law in Europe and worldwide.
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SI.1 Ecological drivers of differences in microbial
community composition across geographically distinct
aquifers
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Figure S1.1: Test of the presence of a significant phylogenetic signal using Mantel cor-
relograms. The correlograms show Pearson correlations between phyloge-
netic distance separating ASVs evaluated at distance class steps of 0.02
and Euclidean distances of ASV environmental optima, based on relative
abundance-weighted means for pH, ionPC1, and concentrations of dissolved
oxygen, orthophosphate, and DOC. Correlograms were computed for the
full dataset (A) and each region separately (B). Solid symbols indicate sig-
nificant correlations based on p-values obtained from 10 000 permutations
after Holm correction for multiple testing (see Section 2.1.7 for detailed
information). (From Fillinger et al., 2019a).

85



Supporting information

NOR

WUR

AUG

MIT

NMDS1

N
M
D
S
2

stress = 0.163

Region
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weighted β-MPD. (From Fillinger et al., 2019a).
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87



Supporting information

NOR WUR AUG MIT

A
ve

ra
g

e 
re

la
tiv

e
 a

bu
nd

an
ce

0.00

0.25

0.50

0.75

1.00

Bacilli

Clostridia

Acidobacteriia

Parcubacteria

Saccharimonadia

Actinobacteria

Bacteroidia

Dehalococcoidia

Nitrospira

Omnitrophia

Verrucomicrobiae

Nitrososphaeria

Woesearchaeia

Diverse others

Subgroup 6

NC10

Group 1.1c

Alpha-

Delta-

Gamma-

Proteobacteria

Firmicutes

Acidobacteria

Patescibacteria

Actinobacteria

Bacteroidetes

Chloroflexi

Nitrospirae

Omnitrophicaeota

Rokubacteria

Verrucomicrobia

Thaumarchaeota

Nanoarchaeaeota

unclassified Bacteria

Figure S1.4: Taxonomic microbial community composition summarized at class level
(based on taxonomic assignments using SILVA SSU reference database re-
lease 132). Relative abundances were averaged across samples within re-
gions. Individual classes with an average relative abundance <2% were
grouped as ‘Diverse others’ for clarity of display. (From Fillinger et al.,
2019a).

1.0

0.8

0.6

0.4

NOR WUR AUG MIT

0.2

0.0

E
ve

nn
e

ss
 (
J'

)

Figure S1.5: Community evenness (Pielou’s J’ ) calculated based on ASVs within regions.
(From Fillinger et al., 2019a).

88



Supporting information

1.1

0.9

0.7

0.5

β
-M
P
D

NOR WUR AUG MIT

*

***
** ***

***
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Figure S1.7: Faith’s phylogenetic diversity within regions. Asterisks indicate significant
differences inferred from Dunn’s rank sum tests (p<0.01). (From Fillinger
et al., 2019a).
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Table S1.3: Partition of variation in microbial community composition (abundance-
weighted β-MPD) between local environmental conditions (Env ; significant
environmental variables are listed in the rightmost column) and region iden-
tity (Reg). Env+Reg represents the total variation explained by both com-
ponents; Env|Reg (Reg|Env) represents the marginal fraction of variation
explained by each component after controlling for the other; Env∩Reg rep-
resents the fraction of explained variation shared between both components.
The explained variation is given as adjusted R2. Significance of each com-
ponent and individual variables was tested using 10 000 permutations (note:
significance of Env∩Reg cannot be tested). Spatial distance between sites
within regions represented by MEMs was not significant (adj. R2=0, p=0.79)
and was therefore not included in the analysis. (From Fillinger et al., 2019a).

Response matrix Component df Adj. R2 p Significant variables (p<0.05)

β-MPD Env 5 0.0422 0.0001 pH, K+, ionPC1*, NO –
3 , DOC

Reg 3 0.0480 0.0001 Dummy-coded region identity
Env+Reg 8 0.0683 0.0001

Env∩Reg 0 0.0220

Env|Reg 5 0.0203 0.0011 pH, NO –
3

Reg|Env 3 0.0261 0.0001

Residuals 36 0.9317

*Principal component representing 74% of the variance in electrical conductivity
and concentrations of sodium, calcium, magnesium, chloride, and sulfate (all positively
correlated with ionPC1; see Section 2.1.7).
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Supporting information

SI.2 Assembly and succession of microbial communities
during the colonization of groundwater sediments

First figure on next page.
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Figure S2.1: Changes in physicochemical parameters over time measured in the ground-
water at the two sites. (From Fillinger et al., 2019c).
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Supporting information
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Figure S2.2: Test of the presence of a significant phylogenetic signal using Mantel cor-
relograms. The correlograms show Pearson correlations between phyloge-
netic distance separating OTUs evaluated at distance class steps of 0.01
and Euclidean distances of OTU environmental optima, based on rela-
tive abundance-weighted means for environmental variables shown Figure
S2.1. Correlograms were computed separately for OTUs found in sediment-
attached (A) and planktonic (B) communities. Solid symbols indicate sig-
nificant correlations based on p-values obtained from 10 000 permutations
after Holm correction for multiple testing. (From Fillinger et al., 2019c).
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Figure S2.5: Beta diversity partitioning of differences between sediment-attached and
planktonic communities showing the relative contributions of turnover and
nestedness to the Jaccard dissimilarity between community types at each
site per time point. (From Fillinger et al., 2019c).
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Figure S2.6: Beta diversity partitioning of differences between sediment-attached com-
munities showing the relative contributions of turnover and nestedness to
the Jaccard dissimilarity within sites across time points. (From Fillinger et
al., 2019c).
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SI.3 Ecological groundwater monitoring based on
microbiological parameters

-10

-9

-8

-7

January
March
April
May
June
July
September
October

δ1
8 O

 (
‰

)

0 m
(Rhine River)

75 m60 m20 m2 m

Distance to river

Figure S3.1: Stable oxygen isotope ratios at different time points for the surface water
intrusion data (disturbance case study 2) measured in the Rhine River and
groundwater monitoring wells located at different distances to the river.
Grey arrows indicate samples identified as outliers based on the D-A index
(see Section 3.3.1). No corresponding isotope data was available for data
presented in the main text for August. (From Fillinger et al., 2019b)
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Figure S3.2: Separate univariate analyses of cell density (measured as prokaryotic
cells L−1), activity (measured as prokaryotic intracellular ATP concentra-
tions), and carbon (measured as AOC concentrations) for different types
of land use (disturbance case study 3). Dashed lines represent the uni-
variate thresholds calculated as median ± 2.5 × MAD for each variable.
Samples identified as outliers based on the D-A-C index are highlighted
with grey rectangles (see Section 3.3.1; note: all calculations were done on
log10-transformed data; values were converted back to the original scale to
allow for a more intuitive representation of the data). (From Fillinger et
al., 2019b)
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Figure S3.3: Boxplots of hydrochemical variables for different types of land use (distur-
bance case study 3). Samples identified as outliers based on the D-A-C
index are highlighted with grey rectangles (see Section 3.3.1). For nitrate,
the majority of samples exhibited concentrations below the detection limit
(<0.5mgL−1) represented by the dashed line. (From Fillinger et al., 2019b)
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Numerical example of the calculation of Mahalanobis distances

The analysis shown in Figure S3.4 is a fictive example of a dataset containing 20 undis-
turbed samples and a single disturbed sample. For simplicity, the example only deals with
two variables representing log10-transformed prokaryotic cell density (D) and activity (A)
similar to the data presented in the main text.
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Figure S3.4: Example to illustrate the concept of Mahalanobis distances for multivariate
outlier detection. A) Distribution of samples along the variables cell density
and activity. The center defined by the variable means is represented by the
black square. The distances to the center for samples i and j are indicated
by the dashed lines. B) Mahalanobis distances calculated for the samples
shown in A. The dashed line represents the critical value of the chi-squared
distribution at a 0.975 confidence level with two degrees of freedom. (From
Fillinger et al., 2019b)

Cell density and activity have mean values of 7.81 and 0.48, and variances of 0.12
and 0.05, respectively. The covariance between cell density and activity is 0.03. Hence,
the vector µ defining the center of the group of samples and the covariance matrix S are
as follows:

µ =

[
D

A

]
=

[
7.81

0.48

]
(S3.1)

S =

[
var(D) cov(D,A)

cov(D,A) var(A)

]
=

[
0.12 0.03

0.03 0.05

]
. (S3.2)

Thus, the inverse of S is:

S−1 =

[
9.80 −5.88
−5.88 23.53

]
. (S3.3)
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The values of cell density and activity for the disturbed sample i are 9.00 and 2.00,
respectively. Hence the vector Xi giving the coordinates for that sample in the bivariate
plot is:

Xi =

[
Di

Ai

]
=

[
9.00

2.00

]
. (S3.4)

Based on this the Mahalanobis distance for sample i is calculated as:

MDi =
√
(Xi − µ)′ × S−1 × (Xi − µ) (S3.5)

=

√√√√[
(9.00− 7.81) (2.00− 0.48)

]
×

[
9.80 −5.88
−5.88 23.53

]
×

[
(9.00− 7.81)

(2.00− 0.48)

]
= 6.85.

Because the analysis comprised two variables, the critical value derived from the chi-
squared distribution with two degrees of freedom at a 0.975 confidence level is:√

χ2
(0.975,df=2) = 2.72. (S3.6)

Since the Mahalanobis distance of sample i exceeds this critical value, that sample is
considered an outlier. For comparison, doing the same calculation for the undisturbed
sample j with

Xj =

[
Dj

Aj

]
=

[
8.42

0.38

]
(S3.7)

gives
MDj = 2.14, (S3.8)

which is smaller than the critical value of the chi-squared distribution and therefore
sample j is not considered an outlier at a 0.975 confidence level.
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ANOVA Analysis of variance
AOC Assimilable organic carbon
ASV Amplicon sequence variant
ATP Adenosine tirphosphate
β-MNTD β-mean nearest taxon distance (phylogenetic beta diversity metric)
β-MPD β-mean pairwise distance (phylogenetic beta diversity metric)
β-NTI β-nearest taxon index (standardized effect size of β-MNTD)
DNA Deoxyribonucleic acid
Diversity (H’ ) Shannon diversity (taxonomic alpha diversity metric)
DOC Dissolved organic carbon
Evenness (J’ ) Pielou’s evenness (taxonomic alpha diversity metric)
Faith’s PD Faith’s phlyogenetic diversity (phylogenetic alpha diversity metric)
MAD Median absolute deviation
MEMs Moran’s eigenvector maps
NMDS Non-metric multidimensional scaling
OTU Operational taxonomic unit
PCA Principal component analysis
PCIA Phenol:chloroform:isoamyl alcohol
PCR Polymerase chain reaction
Pearson’s r Pearson correlation coefficient
PERMANOVA Permutational analysis of multivariate variance
PERMDISP Permutational analysis of multivariate dispersion
PTN buffer Phosphate-Tris-NaCl buffer
RCbray Extension of Raup-Crick metric using Bray-Curtis dissimilarity
(db-)RDA (distance-based) Redundancy analysis
Richness (S ) Number of taxa in a community (taxonomic alpha diversity metric)
rRNA Ribosomal ribonucleic acid
SIMPER analysis Similarity percentage analysis
Spearman’s ρ Spearman’s rank correlation coefficient
TE buffer Tris-EDTA buffer
VIF Variance inflation factor
v/v volume-volume ratio
w/v weight-volume ratio
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