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Problem description:

The CubeSat MOVE-II, built by students of TUM, uses a multi-dimensional statefeedback controller [2] for
attitude control. This controller uses only the output of the sun sensor, the gyroscope, and the magnetometer.
The attitude control system relies only on magnetic coils for actuation [3]. Therefore, we cannot apply a
torque vector parallel to Earths magnetic feld vector, resulting in reduced controllability. Still, the current
controller shows satisfying results in Hardware-in-the-Loop simulations.
Recent developments of the MOVE-II team resulted in an Extended Kalman Filter (EKF) for attitude estima-
tion and an approach to compensate the disturbance torque introduced by the parasitic dipole of the satellite.
These approaches need to be characterized and tested in an integrated setup before they can be implemented
on the satellite flight model.
Alternative controllers might be far better suited for attitude control with nonlinear characteristics and reduced
controllability. A variety of control approaches shall be evaluated for implementation on MOVE-II.
Attitude control of satellites relying only on magnetic coils for actuation is widely covered in diferent Ph.D.
theses [5, 4] but the in-flight application of the discussed controllers is not covered in many cases. Some
satellites do not achieve stable pointing at all [1] and augment the magnetic coils with reaction wheels in
subsequent revisions.
The high reliability requirements of a satellite mission necessitate thorough testing in Software-in-the-Loop,
and Hardware-in-the-Loop requirements. If these tests are successful, the controller implemented in this thesis
may be uploaded on the satellite and evaluated in-flight.

Tasks:

• Evaluate the old controller in critical scenarios
• Extend the current controller with the EKF and parasitic dipole compensation
• Evaluate alternative control strategies in a simulation environment
• Select and implement a suitable controller for use on the satellite
• Verify the implemented controller in SiL and HiL environments
• Comparison of old and new controller
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Abstract

This thesis evaluates an existing state feedback controller designed for the CubeSat
MOVE-II. In addition, the control system is further developed and a variety of
control strategies are evaluated. The goal is to achieve a pointing accuracy of 5◦

and a guaranteed convergence to the desired attitude within the domain of the
nonlinear system. The evaluated concepts are restricted to low earth orbits for
small satellites utilizing magnetic actuation only. Furthermore, a spin stabilization
around a non-principal axis of inertia is assumed. The presence of sensor noise and
external disturbances, especially the residual magnetic dipole, are considered.
The existing controller is analyzed for different orbits and the convergence rate for
randomized initial conditions is obtained in a Monte Carlo simulation. A new gain
is developed for the state feedback controller under consideration of the system
requirements for MOVE-II. Furthermore, the concepts of residual magnetic dipole
moment compensation, the use of an Extended Kalman Filter and a new operation
point switching strategy are proposed in order to increase the pointing accuracy
and convergence rate. Three nonlinear control laws based on different Lyapunov
functions are evaluated. One of them is selected as an implementation candidate.
A Software-in-the-Loop and a Hardware-in-the-Loop simulation successfully verifies
this candidate for use on the flight hardware as part of the control firmware.
It is found that the existing controller is sensitive to inclination changes of the
orbit. Furthermore, with an average pointing accuracy of 5.8◦ and a corresponding
variance of 4.3 deg2 it does not fulfill the stated goal. In total, 69% of the evaluated
cases converge to the desired attitude. The linear controller with the new gain and
extensions attains a pointing accuracy of 3◦ with a variance of 0.38 deg2. It converges
in 80% of the cases. The nonlinear implementation candidate shows convergence
in all Monte Carlo simulation runs and achieves a final pointing accuracy of 3.3◦

with a variance of 2.3 deg2. Furthermore, a Hardware-in-the-Loop simulation shows
that this controller is stable in the presence of large delays and with low numeric
precision. It also shows to be compatible with the existing firmware of MOVE-II.
Dynamically updateable control parameters render this implementation interesting
to satellite operators.
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Chapter 1

Introduction

1.1 Motivation

The Munich Orbital Verification Experiment (MOVE) program was initiated in 2006
with the goal to launch the satellite First-MOVE. It is built by TUM students who
are part of the student society WARR (Wissenschaftliche Arbeitsgemeinschaft für
Raketentechnik und Raumfahrt; English: Scientific Workgroup for Rocketry and
Spaceflight). First-MOVE is a one unit CubeSat with the capability to deliver pic-
tures from Earth and features a scientific payload, which evaluates experimental
solar cells [LOH+15]. CubeSats are nanosatellite with well defined design speci-
fications [Pro14]. They are partitioned into units, where the maximum mass per
unit may not exceed 1.33 kg and the size of one unit is restricted to a volume
of 10 cm× 10 cm× 11.35 cm. Up to 6 units can be combined in order to build a
larger CubeSat. This standardized specification allows for a simple integration pro-
cess with the satellite deployer and leads to reduced launch costs [SMA+11]. There-
fore they are popular for educational and experimental missions. First-MOVE was
launched in 2013 and operated for the duration of a month. Although the mission
ended preliminary due to a failure of the on board computer, the satellite’s main
purpose of student education was achieved [LOH+15].

Due to this success, a second mission started in 2015 with the satellite
MOVE-II [LAD+15]. Like First-MOVE, it is a one unit CubeSat launched into
a low earth orbit. Its mass of 1.2 kg is close to the CubeSat specification limit. The
system design of MOVE-II includes several enhancements compared to the first mis-
sion. An on board computer for computationally intensive tasks was designed. The
MOVE team also developed a new communication protocol for MOVE-II, which
ensures a reliable communication link when the signal quality is weak [ARL16]. The
satellite features Flappanels, which form an increased solar cell area after deploy-
ment. Figure 1.1 illustrates MOVE-II with deployed Flappanels. The Toppanel,
which is located in the middle between the four Flappanels, features several experi-
mental solar cells. This scientific payload of MOVE-II has the the goal to evaluate
the novel multi-junction solar cell design with on-orbit verification [RKS+16]. Point-
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Figure 1.1: Computer generated graphic of MOVE-II with deployed Flappan-
els [ARL16].

ing the Flappanels and the Toppanel towards the sun is critical for the mission. One
reason is that the scientific payload needs to be directed towards sun for meaning-
ful measurements. The other reason is that evaluations of the power system show
that the power budget is only slightly positive, if the Flappanels are not facing sun
directly [Nag18], and becomes negative in low temperatures.

In order to achieve this, MOVE-II needs an active Attitude Determination and
Control System (ADCS). The requirement ADCS-01.1 defined in the Critical Design
Review (CDR) of MOVE-II [MBC+16] states that the ADCS must provide a pointing
accuracy of at least 10◦, and should have a pointing accuracy of 5◦. These challenges
are new for the MOVE team, as First-MOVE does not have an active ADCS.

The ADCS team decided to use sun sensors, magnetometers and gyroscopes for at-
titude determination, and to use magnetic actuation for attitude control [MCN+17].
This control concept utilizes electric coils in order to generate a magnetic dipole,
which interacts with the Earth magnetic field. This concept has an inherent lim-
itation in controllability, but it is cheap and lightweight and therefore attractive
for small satellites. Two control modes are available for MOVE-II. One detumbling
mode and one sun pointing mode. For detumbling, a B-dot controller is implemented
by the ADCS team, which reduces the initial angular velocity of the satellite to a
small magnitude. It reduces the kinetic energy by providing negative feedback from
the derivative of the Earth magnetic field. For the sun pointing mode, a linearized
state feedback controller for stabilization of the operation point is implemented.
Recent evaluation of the ADCS team shows that MOVE-II benefits from spin sta-
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bilization, although the pointing axis of MOVE-II does not align with the principal
axis of inertia. In the scope of this thesis, only sun pointing controllers are evaluated.

1.2 Goal of the Thesis

This thesis aims for further development of the ADCS. The existing state feedback
controller shall be evaluated in critical and non-nominal scenarios and in the presence
of disturbances. Particularly the convergence behavior starting from an arbitrary
attitude towards the desired attitude is of interest, since the initial attitude after
launch cannot be influenced.
The existing controller should be extended with an Extended Kalman Filter (EKF)
and a residual magnetic dipole moment compensation, both methods recently devel-
oped by the ADCS team. The performance of the controller with these extensions
has to be evaluated and compared.
Alternative nonlinear control approaches should be investigated. An evaluation has
to be performed in order to show, if the examined approaches provide a benefit in
performance or convergence behavior for the special challenges imposed by the design
of MOVE-II. One challenge consists of the inherent controllability limitation of the
magnetic actuation. The other challenge is the fact that the pointing axis is not a
principal axis of inertia, and furthermore is close to the intermediate principle axis,
which is known to be unstable for rotations around it. This makes spin stabilization
difficult. There is a trade-off between the positive effects of an increased spin rate and
the nutation torque, which grows with increasing spin rate around a non-principal
axis of inertia.
Eventually, one controller shall be selected and evaluated in a Software-in-the-
Loop (SiL) and Hardware-in-the-Loop (HiL) environment. A successful pass of
these simulations is a requirement for every piece of software that is uploaded onto
the flight hardware.

1.3 State of the Art

The two most popular actuation systems among CubeSats are reaction wheels and
magnetic actuation [XSZ+17]. Reaction wheels transfer angular momentum from
the satellite to flywheels. Usually there is a reaction wheel mounted on every axis
of the satellite, which allows full three axes control. Magnetic actuation, however,
can generate torques in a plane perpendicular to the Earth magnetic field only,
and therefore has an inherent controllability limitation. Using magnetic actuation
instead of reaction wheels has several advantages, however. The electric coils to
generate the magnetic dipole are lightweight, cheap to implement and they utilize
no moving parts, which are more error prone than electric coils.
Bouwmeester and Guo [BG10] analyze CubeSat missions launched until 2009, which
amounts to about hundred satellites in total. The data for 94 of those CubeSats is
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publicly available and included in their statistics. They find that in this early stage
of CubeSat history, most satellites use a passive attitude stabilization system, or no
attitude control at all. Passive attitude stabilization is obtained for example with
a permanent magnet, which aligns the satellite along the magnetic field of Earth.
They further state that the major number of attitude control systems implement
the B-dot controller in order to detumble the satellite. Only 15% of the analyzed
satellites feature an ADCS which is capable of pointing the satellite towards a desired
direction. However, the pointing accuracy of the reviewed CubeSats is low.
Xia et al. [XSZ+17] provide an extended analysis of CubeSat attitude control systems
for satellites launched between 2003 and 2016. Their analysis includes 357 CubeSats.
They find that more than half of all analyzed satellites feature reaction wheels
for high accuracy pointing, mostly utilizing proportional-derivative control laws.
Only 11% utilize a solely magnetic based actuation system, which mostly aims
for a pointing accuracy of around 15◦. A recent mission relying solely on magnetic
actuation is the AntelSat [TMP13]. Its ADCS utilizes a linear state feedback control
law for three axes stabilization and aims for a pointing error of less than 10◦.
Student groups which start follow-up missions often include reaction wheels in their
next-generation satellites. For example the AAU-cubesat, being among the first five
launched CubeSats, features a solely magnetic based actuation system utilizing a
constant gain control law [ABV+03]. In their next-generation CubeSat AAUSAT-II,
however, they include experimental reaction wheels [NLG+09].
One student-built CubeSat needs to be highlighted within this context. The satellite
ESTCube-1 is solely based on magnetic actuation and aims for a pointing error of
less than 3◦ [SKK+14]. They use a control law based on a Lyapunov function, which
is originally designed for the JC2Sat-FF mission. This accuracy, however, is achieved
only with spin stabilization using a high spin rate of about 360 ◦/s. Such high spin
rates are not feasible for satellites, like MOVE-II, where the pointing axis is not
equal to a principal axis of inertia. Furthermore, in their next mission, ESTCube-2,
they also include reaction wheels and aim for a pointing error of below 0.1◦ [ESI+16].
Solutions to the problem of high accuracy pointing with magnetic actuation only,
which do not rely on high spin rates for spin stabilization or adress satellites where
the pointing axis is not equal to a principal axis of inertia, are not found in litera-
ture. The topic of attitude control systems for CubeSats is divided into two distinct
fields: Magnetic actuation if low pointing accuracy is sufficient, and actuation using
reaction wheels, when high accuracy is required. If, however, a high pointing accu-
racy can be achieved with magnetic actuation only, future missions relying on high
pointing accuracy can also benefit from the advantages of magnetic actuation.
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1.4 Methodology and Structure

This thesis is structured as follows: Chapter 2 covers the theoretical background of
orbital mechanics and introduces the system equations for the attitude of a space-
craft. Furthermore, the limitations of the MOVE-II actuation system are stated
and the controllability limitation caused by magnetic actuation is covered. Also,
the major disturbance effects for MOVE-II are presented.
Chapter 3 deals with the analysis of the existing controller. The theoretical back-
ground of state feedback controllers and the corresponding stability analysis within
time varying systems are introduced. The performance of this controller is analyzed
with regards to orbit changes and sensitivity to initial conditions. The latter is
evaluated with a Monte Carlo simulation.
In Chapter 4, an extended linear controller is developed. The EKF and the residual
magnetic dipole moment compensation are included among further extensions. The
extended controller is evaluated in similar conditions as in Chapter 3 and the results
are compared to the existing controller. An enhancement to the residual magnetic
dipole moment compensation is provided and the performance of this extension is
analyzed in terms of pointing accuracy and power consumption.
Chapter 5 reviews popular nonlinear control concepts used in space, which results in
the decision to focus on Lyapunov based control laws only. Three different control
laws are described and analyzed. The sensitivity to initial conditions and the long-
term behavior of the nonlinear controllers is evaluated and compared to the results
of the linear controllers in Chapters 3 and 4. Furthermore, one appropriate nonlinear
controller is selected and evaluated within a SiL and HiL simulation.
Chapter 6 discusses the results and provides a comparison of the different controller
characteristics. Chapter 7 summarizes the obtained results, and Chapter 8 states
future work to be done.
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Chapter 2

Space Environment

2.1 Coordinate Systems

Throughout this thesis we use different coordinate systems to express physical values.
The following sections define and explain them.

Earth Centered Inertial Frame

The Earth Centered Inertial Frame (ECI) is an inertial system, thus its orientation
is fixed in space. The center of Earth is the origin of the corresponding coordinate
system. The Z-axis aligns with the Earth’s rotational axis. The X-axis is defined
by the line resulting from the intersection of equatorial and ecliptic plane, directed
from sun towards the vernal equinox. The vernal equinox describes the point in
space where the earth is located when in spring of the northern hemisphere day
and night are the same length. The Y-axis completes the orthogonal basis of the
right-hand-side coordinate system. See Figure 2.1 for illustration.

Figure 2.1: Illustration of the ECI
and the vernal equinox. [Earth
by David Courey from thenounpro-
ject.com]

Figure 2.2: Body Frame (BF) of
MOVE-II. [Internal graphic of the
ADCS team]
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Body Frame

The Body Frame (BF) is used to express the variables as the satellite observes them,
therefore it is fixed to the structure of MOVE-II. In order to define coordinate axes
it is important to know about this structure. As every CubeSat, MOVE-II has a
cubical form with a panel at each side of the cube. The panel located on the top is
called Toppanel and the four panels on the side are called Sidepanels. Attached to
the Toppanel are four additional solar panels. During launch they lie flat against the
Sidepanels and during deployment they are folded out to form a plane together with
the Toppanel. Due to the deployment mechanism they are called Flappanels. Since
these solar cells are the main energy source of the satellite, it is important to have
them aligned with the sun. Therefore, the axis of most relevance is the Z-axis, which
points away from the Toppanel. The X- and Y-axis point out of an arbitrary but
well defined Sidepanel to complete a right-hand coordinate system. The geometric
center defines the origin of this coordinate system. For illustration see Figure 2.2.

2.2 Orbit Characteristics

This section describes the classical orbital elements and how they define the move-
ment of a satellite around its celestial body. Furthermore the target orbit of MOVE-II
will be defined, which serves as foundation for all further analyses.
The orbit of a satellite around another celestial body is completely defined by six
elements. There are several different ways of expressing them, in this thesis the
classical orbit elements will be used. They can be divided into two groups. The
dimensional elements define the size of the orbit and the position of the satellite on
the orbit. The orientation elements define the orientation of the orbit with respect
to the ECI. Table 2.1 introduces these elements.

Dimensional Elements Orientation Elements

Semimajor axis a Inclination i

Eccentricity e
Right Ascension of
the Ascending Node (RAAN) Ω

Mean anomaly M Argument of perigee ω

Table 2.1: Classical orbit elements.

These elements are always connected with an epoch E0, which specifies to which
point in time these elements refer. An orbit is always subject to changes caused by
various disturbances [Cho02]. The meaning of each of these elements will now be
discussed briefly, see also Figure 2.3 for illustration.
The semimajor axis a defines the size of the orbit. Closed Keplerian orbits around
a celestial body always form an elliptical shape, and the largest possible diameter
divided by two is called the semimajor axis.
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XECI

YECI

ZECI

Ω

ω

i

i

r

v

n

Vernal equinox

Ascending node

Earth’s north polar axis

Earth’s equatorial plane

Perigee
Satellite

M

Figure 2.3: Illustrating the classical orbit elements [Cur14, p. 196]. The gray
disc illustrates the equatorial plane, the blue trajectory is the orbit, n defines the
normal of the orbital plane, r is the position vector of the satellite and v is the
instantaneous velocity vector.

The eccentricity e defines, how much the orbit plane deviates from a circular shape.
It is defined by

e =
ra − rp

ra + rp

, (2.1)

where ra is the radius of apogee, the radius at the point on the orbit farthest away
from the celestial body, and rp is the radius of perigee, the radius at the point on the
orbit closest to the celestial body. It follows from this formula, that e = 0 defines a
perfectly circular orbit, and that 0 ≤ e < 1 for any closed Keplerian orbit.

The mean anomaly M describes the position of the satellite on its orbit. Let t
be the time elapsed since the satellite passed perigee. Then the mean anomaly
is defined as the angle between perigee and an imagined point in space where the
satellite would be after time t, if it was orbiting the celestial body with the same orbit
period on a circular orbit, starting from the perigee. The mean anomaly increases
linearly over time. Given an initial mean anomaly M0 valid at initial time t0, the
mean anomaly M for any other time t can be calculated by

M = M0 +

√
µB

a3
· (t− t0) mod 2π, (2.2)

where µB is the gravitational constant of the celestial body.

The inclination i describes by what angle the orbit plane is tilted with respect to
the equatorial plane. The inclination is defined in the range from −90◦ to +90◦. An
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inclination of 0◦ describes an orbit around the equator while |i| = 90◦ describes an
orbit passing the poles of the celestial body.
The Right Ascension of the Ascending Node (RAAN) Ω is defined as the
angle between the X-axis of the ECI and the ascending node, which is the point
where the satellite is passing the equator from south to north. For i = 0◦, the
RAAN is not defined and thus set to 0◦.
The argument of perigee ω describes the location of apogee and perigee. It is
defined as the angle between the ascending node and the perigee. For circular orbits
where e = 0, the argument of perigee is undefined and thus set to 0◦.
Another parameter of interest often needed is the orbit period

T = 2π ·
√
a3

µB

. (2.3)

It is not part of the classic orbit elements since it can be determined from the
semimajor axis and the gravitational constant of the celestial body. This value
describes, how long the satellite needs for one revolution around its orbit. The orbit
period defines the orbit rate

ωo = 2π/T , (2.4)

which describes the average angular velocity of the position of the satellite around
its orbit.
The Earth is not perfectly round, its equatorial radius is a bit larger than its polar
radius. This oblateness disturbs satellites on their orbits around Earth and causes
their orbit planes to rotate. When the orbit plane rotates with the same angular
velocity in an inertial coordinate system as the Earth rotates around the sun, it is
called a sun-synchronous orbit. As a result, the ascending node lies at a fixed local
time, and the orbit plane maintains a constant angle relative to the sun [Cur14].
MOVE-II is launched into such an orbit.
The parameters for the target orbit of MOVE-II as provided by the launch provider
are summarized in Table 2.2. The epoch E0 is chosen such that the satellite leaves
eclipse in the first 20 s of the simulation. This orbit is assumed in all simulations
and analysis of this thesis, if not stated otherwise.

Parameter Default Value

Semimajor axis a = 6953.1 km
Eccentricity e = 0.00001
Mean anomaly M0 = 0◦

Inclination i = 97.78◦

RAAN Ω = 97.78◦

Argument of perigee ω = 0◦

Epoch E0 = 21.01.2017 00:21:25 UTC
Orbit period T = 5770 s

Table 2.2: Target orbit of MOVE-II.
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2.3 System Equations

The behavior of a free-floating spacecraft is determined by its equations of motion
and its dynamic equations. The equations of motion depend strongly on the rep-
resentation of attitude. In application, various different attitude representations
can be found. Popular representations are quaternions, Euler angles, Euler angle-
axis representation, the direction cosine matrix and modified Rodriguez parame-
ters [OB12].
When using quaternions as attitude representation, the equations of motion are
written as [Yan12]

q̇0 = −1

2
%Tωb

ib (2.5)

%̇ =
1

2
(q0 · 13×3 + [%×])ωb

ib, (2.6)

where 13×3 represents the three-dimensional identity matrix, ωb
ib denotes the angular

velocity of the BF in relation to the ECI expressed in the BF, the notation [v×] for
an arbitrary three-dimensional vector v = (v1, v2, v3)T represents the cross-product
operator

[v×] ≡

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2.7)

and
qib = (q0,%

T)T (2.8)

identifies the unit quaternion representing a rotation of BF with respect to ECI,
where q0 is the scalar part of the quaternion, and

% = (q1, q2, q3)T (2.9)

is the vector part with its three components, such that

qib = q0 + q1i + q2j + q3k. (2.10)

In general the superscript b indicates that a vector is represented in the BF, while
a superscript i indicates vectors that are represented in the ECI.
MOVE-II uses a direction vector for attitude representation. The sun plays an
important role for MOVE-II, since the Flappanels have to be aligned to the sun for
optimal power generation. Therefore, the attitude is represented as a unit vector sb

in BF pointing towards the sun. This vector is called sun vector. The equations of
motion can be written as

ṡb = −ωb
ib × sb

= ms(s
b,ωb

ib),
(2.11)



16 CHAPTER 2. SPACE ENVIRONMENT

where ṡb denotes the differential change of the sun vector. The sun vector does not
represent the full attitude, since a rotation of the satellite around the sun vector will
be unobservable. For the attitude controller of MOVE-II the representation with
the sun vector is advantageous over the quaternion representation, since we are not
interested in the rotational angle around the sun vector, but rather in the pointing
angle between the sun vector and the Z-axis of the BF [MCN+17].
The equation of dynamics are characterized through the change of angular momen-
tum

ḣ = −h× ωib + τ (2.12)

where h is the angular momentum of the satellite, ωib the angular velocity vector
and τ is the vector of torques acting on the satellite [Wer02]. The term h × ωib

shows that, even if the applied torques are zero, h is not constant. This term can
be interpreted as an additional torque acting on the satellite, called nutation torque

τ n = −h× ωib, (2.13)

which causes a tumbling motion. This motion appears as long as the angular velocity
vector and the angular momentum vector are not parallel. Knowing that

h = I · ωib, (2.14)

we can replace the angular momentum with the angular velocity, introducing the
inertia tensor I. In case the angular momentum and angular velocity vectors are
parallel, we call the rotation axis ωib a principal axis of rotation. This happens, if
and only if ωib is an eigenvector of I.
We can evaluate (2.14) in any coordinate system. It is convenient to evaluate it in
the BF

hb = Ib · ωb
ib, (2.15)

where the inertia tensor of the satellite in BF is given as

Ib =

3.08e-3 4.57e-5 7.58e-6
4.57e-5 2.96e-3 −1.78e-5
7.58e-6 −1.78e-5 3.01e-3

 kg m2. (2.16)

This inertia tensor is used for all further analysis and simulations, if not stated
otherwise. It is calculated from the computer generated model of MOVE-II provided
by the structure team of MOVE-II.
In case a spin stabilizing controller is selected, it is of interest to consider the behavior
when the satellite rotates around its Z-axis. This is the axis which should point
away from the sun in order to align the Flappanels. Calculating the normalized
eigenvectors, which equal the principal axes of inertia

pb
1 =

0.95
0.32
0.02

 , pb
2 =

 0.31
−0.91
−0.27

 , pb
3 =

 0.07
−0.26
0.96

 , (2.17)
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and the corresponding eigenvalues, which equal the principal moments of inertia

m1 = 3.1e-3 kg m2, m2 = 2.9e-3 kg m2, m3 = 3.0e-3 kg m2, (2.18)

from Ib, we find that the Z-axis is not a principal axis of inertia. This means that we
observe a nutation motion for a spin around this axis. We also find that the principal
axis of inertia closest to the Z-axis, pb

3, belongs to the intermediate eigenvalue m3.
A rotation around a principal axis of inertia with an intermediate eigenvalue is not
stable [VDMS17], and thus needs active stabilization to maintain spin around this
axis.
Recalling (2.12), we can also split up the torque vector

τ = τ c + τ dist (2.19)

into a control torque τ c and a disturbance torque τ dist. The composition of τ dist

and the origin of the individual disturbance torques are discussed in Chapter 2.6.
Substituting (2.14) and (2.19) into (2.12), we obtain

I · ω̇ib = −I · ωib × ωib + τ c + τ dist, (2.20)

where τ n = −I · ωib × ωib is the nutation torque. After solving for ω̇ib we end up
with the dynamic equations for the spacecraft in the BF

ω̇b
ib = (Ib)−1(Ibωb

ib × ωb
ib + τ b

c + τ b
dist)

= d(ωb
ib, τ

b
c ).

(2.21)

For a linear control approach, these system equations have to be linearized around
an operation point. Let

xf =

[
sb

ωb
ib

]
=


sx

sy

sz

ωx

ωy

ωz

 (2.22)

be the full state vector, where the first three entries represent the components of
vector sb and the last three entries represent the components of vector ωb

ib. Then
we define an operation point for the sun vector sb as

sb
OP = (0, 0,−1) (2.23)

such that the Flappanels of MOVE-II point towards the sun in operation mode. The
operation point for the angular velocity is defined as

ωb
ib,OP = (0, 0, ωs). (2.24)
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With the free variable ωs it is possible to define a spin stabilizing around the Z-axis
in operation mode. This gives us the state vector for the operation point

xf,OP = (0, 0,−1, 0, 0, ωs)
T. (2.25)

Calculating the Jacobian of the system equations and applying the operating point xf,OP,
we obtain the full system matrix

Af,d =

δ

[
ms(s

b,ωb
ib)

d(ωb
ib, τ

b
c )

]
δxf

∣∣∣∣∣∣∣∣
xf,OP

=


0 ωs 0 0 1 0
−ωs 0 0 −1 0 0

0 0 0 0 0 0
0 0 0 0 ωsσ1 0
0 0 0 −ωsσ2 0 0
0 0 0 0 0 0

 (2.26)

with σ1 =
Ib

22 − Ib
33

Ib
11

, σ2 =
Ib

11 − Ib
33

Ib
22

,

where we use a diagonal inertia tensor for simplification, with the principal moments
of inertia identifying the diagonal elements Ib

11 = m1, Ib
22 = m2, Ib

33 = m3 and all
off-diagonal elements equal zero.
We find that the third row and the third column of the system matrix Af,d consists
of zeros, which means that the sz component of sb does not affect nor is affected
by any other state variable. Furthermore, since the sun vector is a unit vector, the
component sz is fully determined by the other two components sx and sy. Since
also no input nor disturbance can influence sz directly, we can reduce the system
matrix and the state vector by one variable to obtain the reduced state vector and
the reduced system matrix [MCN+17]

xr =


sx

sy

ωx

ωy

ωz

 , Ar,d =


0 ωs 0 1 0
−ωs 0 −1 0 0

0 0 0 ωsσ1 0
0 0 −ωsσ2 0 0
0 0 0 0 0

 . (2.27)

This observation also holds when we use the true inertia tensor instead of the sim-
plified diagonal one. The resulting system matrix

Ar =


0 ωs 0 1 0
−ωs 0 −1 0 0

0 0 1.52e-2 · ωs −1.54e-2 · ωs −1.15e-2 · ωs

0 0 −2.45e-2 · ωs −1.52e-2 · ωs −4.94e-3 · ωs

0 0 5.74e-3 · ωs 2.37e-3 · ωs −3.16e-7 · ωs

 (2.28)

features more nonzero entries, expresses the real system dynamics more accurately
and still allows the modification for an arbitrary spin stabilizing angular velocity ωs.
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2.4 Actuation Model

MOVE-II relies solely on magnetic actuation for attitude control. This means that
the satellite produces a magnetic control dipole moment mc. Together with the
ambient magnetic field of Earth b it produces a control torque

τ c = mc × b = [b×]Tmc, (2.29)

which causes a change in the angular momentum h [SL05].

Three coils aligned with the axis of the satellite’s body frame X, Y and Z produce
the dipole moment

mc = ic · nc · Aeff, (2.30)

which depends on the control current ic through the coils as well as the number of
windings nc of each coil and the effective area Aeff of the windings. The product of
the latter two quantities is constant and takes the value

nc · Aeff = 13 · 6 · 0.0039 m2 = 0.3042 m2 (2.31)

for every coil used by the actuation system of MOVE-II [MGC+17].

Magnetic actuation has a severe limitation: The generated torques always lie in the
plane perpendicular to the magnetic field of Earth [MC14, p. 307]. This is also
clear from (2.29). Thus it is not possible to generate an arbitrary control vector in
the three-dimensional space. It seems plausible that this limitation could make the
system uncontrollable. However, the satellite is moving around the Earth and so
the magnetic field observed by the satellite changes. The change is also periodical
with the orbit period. Assuming that the magnetic dipole of Earth aligns with its
rotation axis, [BD03] proves, under certain restrictions for the orbit of a satellite,
that the 3-axis attitude dynamics are fully controllable for the nonlinear system.
The restrictions mentioned above are that the orbital plane must not coincide with
the magnetic equatorial plane nor must it include the magnetic poles. With a target
inclination of 97.78◦, MOVE-II is far away from the magnetic equatorial plane, but
the satellite might come close to the magnetic poles. Therefore special attention has
to be paid to the points where the satellite approaches the poles.

Since dipole moments parallel to the magnetic field b produce no torque, it is a waste
of energy to generate them. To ensure that the control dipole moment mc has no
parallel components to b, it is calculated in a way that enforces its perpendicularity
to the magnetic field:

mc =
u× b

||b|| =
1

||b|| [b×]Tu, (2.32)

where u is the control input [MCN+17]. The physical meaning of u can be inter-
preted as the magnitude of the desired dipole moment multiplied by the reverse
direction of the desired control torque vector.
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Combining (2.29) and (2.32), we obtain the equation for the control torque as a
function of the control input

τ c =
[b×]T[b×]T

||b|| u. (2.33)

This function is valid for any single point in time only, since the magnetic field is
time dependent. Considering this and (2.21) we obtain the time dependent input
matrix

B∗r (t) =

[
02×3

I−1 [b(t)×]T[b(t)×]T

||b(t)||

]
(2.34)

for the reduced state, where 02×3 is a matrix of size 2× 3 filled with zeros.
To determine the magnetic field of Earth, the International Geomagnetic Reference
Field (IGRF) [IAG14], 12th generation can be used. This is an accurate model
which suits fine for simulations. For controller design and analysis, a simpler ap-
proach is used. Assuming a magnetic dipole mE at the center of Earth with dipole
moment ||mE|| = 7.7 · 1022 A m2 pointing to the south celestial pole, the magnetic
field

bi(ri) =
µ0

4π · ||ri|| · [3(mi
E
◦ ri) · ri −mi

E] (2.35)

can be approximated [Wer02], where µ0 is the vacuum permeability, (v1 ◦ v2) de-
scribes the dot product of two vectors and ri the position vector of the point of
interest in ECI coordinates.

2.5 Properties of the MOVE-II ADCS

In this chapter, the limitations due to hardware, software and system constraints
are presented, as well as the default settings for the controller.
For a desired control dipole moment mc the necessary current

ic =
mc

n · Aeff

(2.36)

can be calculated through rearranging (2.30). Due to design limitations, the current
for each coil can either be off or in the range between Imin = 50 mA to Imax = 300 mA.
If one coil current exceeds the maximum, a firmware algorithm accordingly scales
the currents for the other coils down, too. This coil scaling ensures that the desired
direction for the control torque is maintained and is not distorted by the current
limit of one coil. However if one component of ic is less than Imin, the actuation
hardware will ignore this actuation command and the according coil is not actuated.
To calculate the desired control moment from (2.32), it is important to accurately
measure the Earth’s magnetic field. However, this is not possible while the satellite
actuates, since the generated magnetic field superposes the Earth’s magnetic field.
To solve this issue, a duty cycle is introduced for the actuation system of MOVE-II.
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Parameter Name Default Value Description

Imin 0.05 A Minimum possible coil current.

Imax 0.3 A Maximum possible coil current.

Ta 500 ms Active time of the coils.

Tam 1 s Actuation-measurement period.

Coil scaling on Keep direction of control torque,
if at least one coil exceeds Imax.

Controller mode
Default

Controller
B-dot for detumbling or
Default Controller (see Chap. 3.2)
for sun pointing.

ωs 0.1 rad/s Spin rate for spin stabilization.

Table 2.3: Standard parameter set for the MOVE-II controller.

During the magnetometer measurement phase of 500 ms, MOVE-II deactivates its
coils, so that the measurements are not influenced by the magnetic field produced by
the coils. Then there follows an actuation period Ta = 500 ms. This cycle repeats,
and thus the actuation-measurement period is Tam = 1 s. With these values, a duty
cycle

D =
Ta

Tam

(2.37)

can be defined. For MOVE-II we obtain a duty cycle of D = 50%.

As sun pointing controller, a linear state feedback controller with gain Kdef called
Default Controller is implemented, which transfers the satellite into a sun pointing
mode after launch. This gain is designed for a spin stabilized satellite with ωs =
0.1 rad. This control law is analyzed in more detailed in Chapter 3.2.

A dedicated microprocessor runs the controller software and sets the right currents
and actuation times for the individual coils. Via a daemon running on the board
computer of MOVE-II, this controller software can be configured with various pa-
rameters. The relevant parameters as well as the system limitations are summarized
in Table 2.3. This parameter set is referred to as the standard parameter set. Every
simulation will be run with these parameters as default, unless stated otherwise.

Furthermore it is possible to upload a firmware update during the operation phase
of MOVE-II. This makes it possible to extend the controller software with new
controller modes to implement new control strategies. It is therefore possible to
select one controller evaluated within the scope of this theses and evaluate it on-
orbit.
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2.6 Disturbances

Three main disturbance torques

τ dist = τ d + τ g + τm (2.38)

are considered for this low earth orbit, which are caused by atmospheric drag (τ d),
gravity gradient (τ g) and the residual magnetic dipole moment (τm). The following
chapters will describe them in more detail.

2.6.1 Drag

The drag torque results of the forces acting on the satellite when it moves through
the residual atmosphere of Earth. This torque is determined through the integral
of all forces df acting on an infinitesimal surface element dA and its corresponding
lever arm l, which is the distance vector between the point of attack of the force
and the center of mass of the satellite.
The drag torque is not constant and varies significantly over time and with attitude.
Sun intensity influences atmospheric density, which introduces time dependency,
and the attitude of the satellite defines how many Flappanels are exposed to the
atmospheric flow and offer an additional attack surface.
In the simulation models, the time dependency of this disturbance torque is not
taken into account. We use a simplified model with a constant air density value
of ρa = 2.639e-13 kg/m3. However, the attitude dependency is considered in the
simulation. A simplified estimation is used, where the surface of the satellite is
decomposed into several panels. An algorithm recognizes which panels are exposed
to the air flow and at what angle they are exposed to it. The overshadowing effect
of the protruding Flappanels is also approximated, but not analytically determined.
From this a force fi is calculated for each panel, and together with its corresponding
lever arm li the drag torque

τ i = fi × li (2.39)

of each panel can be determined. Summing up the torques of all panels we obtain
the total drag torque

τ d =
∑
∀i

τ i (2.40)

acting on the satellite [MCN+17].

2.6.2 Gravity Gradient

The gravity gradient disturbance torque is caused by the gravitational field of Earth.
A satellite with not evenly distributed moments of inertia aligns its minimum mo-
ment of inertia axis with r̂, which is the normalized position vector of the satellite
with respect to the center of Earth. For the gravity gradient disturbance torque

τ g = 3 · ω2
o · (r̂× Ir̂), (2.41)
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an analytical formula can be obtained [MCN+17]. Here, ωo is the orbital rate of the
satellite’s orbit and I is the inertia tensor. Recalling the inertia tensor from (2.16),
we find that the deviation moments are small compared to the principal moments,
and that the principal moments are approximately of the same size in numbers.
This means that the gravity gradient torque is expected to be small.

2.6.3 Residual Magnetic Dipole Moment

Due to magnetizable and magnetic materials as well as current loops, the satellite
produces its own magnetic field which interacts with the Earth magnetic field. This
disturbance is the most significant. Figure 2.4 illustrates this in a semi-logarithmic
plot by showing all occurring disturbance torques for the time span of 2 orbits in
the simulation of a standard scenario for MOVE-II. In comparison to the maxi-
mum possible control torque τ c,max, which varies along the orbit between 13e-6 N m
and 6.4e-6 N m due to the changing magnitude of the magnetic field of Earth, the
disturbances are still more than one order of magnitude smaller.
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Figure 2.4: Comparison of disturbance torques in the simulation of a standard sce-
nario of MOVE-II in a semi-logarithmic plot. We note that the residual magnetic
dipole moment has the greatest influence, while the gravity gradient is negligible.

The residual magnetic field produced by the satellite can be approximated by a
constant residual magnetic dipole moment mres, which is inherent to the satellite
and causes a disturbance torque

τm = mres × b (2.42)
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by interacting with the magnetic field b of Earth.

Characterization of the Residual Magnetic Dipole Moment of MOVE-II

The ADCS team measured the residual magnetic dipole moments for MOVE-II
at the facility of IABG. In this setup, three magnetometers measure the magnetic
field of the satellite in distances of 28, 48 and 68 cm and for every measurement a
corresponding magnetic dipole and quadrupole moment is calculated. These three
results are averaged to obtain the estimated residual magnetic dipole moment for
MOVE-II. Three testcases are analyzed: Testcase 1 is recorded with the satellite
switched off, Testcase 2 is recorded with the satellite switched on, but the Commu-
nication System (COM) switched off, and Testcase 3 is recorded with all systems
on and COM constantly transmitting packages. Table 2.4 shows the results of these
measurements: The magnitude of the magnetic dipole and quadrupole moments, as
well as the component of the dipole moments in every axis of the BF.

State of Satellite XBF, di. YBF, di. ZBF, di. Di. mag. Quad. mag.

Testcase 1:
Off

6.21 2.48 2.58 7.17 0.11

Testcase 2:
On, COM off

6.23 2.47 1.79 6.94 0.07

Testcase 3:
On, COM constantly

transmitting
6.18 2.48 1.47 6.82 0.20

Table 2.4: Components of the magnetic dipole (di.) moments and magnitude
(mag.) of dipole and quadrupole (quad.) moments in [mA m2] for MOVE-II, in
the BF.

Mehlem [Meh78] proposes a method to calculate a more accurate magnetic field
model for a satellite, consisting of several magnetic dipoles at different positions.
He assumes a certain number of dipoles N and places the positions and magnitudes
of these dipoles such that the error between the modeled magnetic field and the
measured magnetic field becomes minimal. For this process a least squares fit algo-
rithm in a two part iterative process is used. It is considered to use such a dipole
model with N = 2, to reflect also the quadrupole moment for modeling the mag-
netic dipole disturbance of MOVE-II. However, since the measurements from IABG
indicate a low quadrupole moment, the decision for the scope of this thesis is to
neglect the quadrupole moment and stick with the simplified dipole moment model.
In the worst case, which is Testcase 3, the ratio of the quadrupole magnitude to the
dipole magnitude is below 3%.
All simulations in this thesis, if not stated otherwise, assume a magnetic dipole
moment with values according to Testcase 2. This decision is reasonable, since in
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nominal mode the satellite only transmits data packages for a duration of 5 seconds
every minute.
Another observation one obtains from these measurements is that the dipole moment
in the X- and Y-axes is approximately constant over the three testcases, but varies
significantly in the Z component. With increasing power consumption, contingent on
additionally activated modules, the Z component of the magnetic dipole decreases.
One way to explain this behavior is with current loops. When the currents in the
loops increase, also the residual magnetic dipole moments increase in the normal
direction of the loops. Since most of the satellite’s boards are mounted in the X-Y-
plane, the magnetic dipole moments generated by such current loops point along the
Z-direction. If they predominantly point in the negative Z-direction, it explains why
the Z component of the residual magnetic dipole moment decreases with increasing
currents, compared to the measurement with the satellite switched off.
For the next generation of MOVE it is therefore suggested to keep possible current
loops as small as possible to avoid that the residual magnetic dipole moment becomes
depended on the current consumption of the individual hardware boards.

Methods for On-Orbit Estimation

The residual magnetic dipole moment is not only influenced by the current draw of
the satellite. Busch et al. [BBDS15] observe, that the constant part of the dipole
still can change after launch of the satellite. They assume that certain materials are
magnetized during the launch process. Therefore it is important to measure and
verify the residual magnetic dipole moment after launch with on-orbit methods. In
literature, different approaches to this task can be found.
Huang and Jing [HJ06] present a method where a magnetometer attached on a pole
measures the magnetic far field of the satellite. From this measurement, an estima-
tion of the residual dipole moment is calculated. This method has several drawbacks:
First, the satellite needs a mechanism or construction to place a magnetometer far
from the center of the satellite. Second, the sensor bias must be low in comparison
to the magnetic field produced by the residual magnetic dipole. Third, this method
assumes the dipole to be in the center of the satellite, which is not true for every
case. These three restrictions make this method unattractive for CubeSats, whose
requirements often are geometric compactness and cheap production costs, which
result in cheap sensors with a higher sensor noise and bias.
However, Busch et al. [BBDS15] present a different method to estimate the resid-
ual magnetic dipole on-orbit. They evaluated the satellite’s rotational rate ωib and
measure the Earth magnetic field b at the corresponding time points. The only
requirement for this method is, that the data must be sampled at sufficient resolu-
tion compared to the spin rate of the satellite. They then calculate the rotational
acceleration ω̇ib with numerical methods and ascertain the torque τ acting on the
satellite with help of Euler’s equation

τ = I · ω̇ib + ωib × (I · ωib). (2.43)
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With a least square fit algorithm for (2.43) in combination with (2.42), the residual
magnetic dipole moment mres can be calculated. When the satellite is not actu-
ated, one can assume the magnetic disturbance torque to be the dominant one,
and therefore this method is a good estimation of the real residual magnetic dipole
moment.
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Chapter 3

Linear State Feedback Controller

This chapter describes the sun pointing controller as is currently implemented in the
ADCS firmware of MOVE-II. Section 3.1 presents the necessary theory about state
feedback controllers, the Linear Quadratic Regulator (LQR) design algorithm and
the Floquet theory. Section 3.2 defines the Default Controller which is implemented
in the firmware at the time of launch. It is also shown how the feedback gain for the
Default Controller is derived. Section 3.3 evaluates the Default Controller in various
different scenarios and its limitations are shown. In Section 3.4 these limitations are
discussed.
In this and the following chapters, the pointing error ep of the satellite is of great
interest. This is the angle between the negative Z-axis of the satellite and the sun
vector s, usually expressed in degree. It is defined with help of the dot product

cos(ep) = sb ◦ (0, 0,−1)T = (sx, sy, sz)
T ◦ (0, 0,−1)T = −sz (3.1)

of the sun vector in the BF and the negative Z-axis. Therefore we define the pointing
error as

ep = cos−1(−sz). (3.2)

3.1 Theoretical Background

Linear state feedback controllers utilize the full state vector x = x(t) to calculate a
control input u = u(t). Linear state feedback control laws

u(t) = −Kx(t) (3.3)

consist of a matrix multiplication with a control gain K, which is assumed to be
constant over time for the scope of this thesis.
A popular approach to find such a feedback gain in the field of aerospace is the use
of the LQR algorithm [Yan12, Yan17, SAS16]. The reason for its popularity is the
fact that one can penalize high input signals and system state deviations from the
operation point with individual weights, which allows to custom tailor a gain to a
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specific use case. Another advantage of gains developed this way is the insensitivity
of the closed loop system to disturbances and parameter variations, as Kwakernaak
and Sivan [KS72, Chap. 3.9] show. The LQR algorithm returns a gain matrix K,
which guarantees to minimize the cost functional

J(u,x0) =

∞∫
t0

(xTQx + uTRu) dt, (3.4)

where x0 = x(t0) is the initial state of the system [KS72]. The weight matrices Q ≥ 0
and R > 0 can be used to specify to what extent a deviation from the equilibrium
state and to what extend a system input is penalized respectively. The off-diagonal
elements of both matrices are usually set to 0, but this is not necessarily required.
It is required however, that Q and R are positive definite and positive semi-definite
respectively. Another requirement for the LQR algorithm to be successful is that
the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t) (3.5)

with system matrix A and input matrix B must be stabilizable.

Definition Stabilizability. The linear time-invariant system (3.5) is stabiliz-
able, if its unstable subspace is contained in its controllable subspace. That is, any
vector x in the unstable subspace is also in the controllable subspace [KS72, p. 62].

This definition implies that a completely controllable system is also stabilizable.
Therefore it is sufficient to show that a system is controllable in order to apply the
LQR algorithm successfully.

Definition Controllability. The linear system with state differential equation (3.5)
is said to be completely controllable if the state of the system can be transferred
from the zero state at any initial time t0 to any terminal state x(t1) = x1 within a
finite time t1 − t0 [KS72, p. 54].

Controllability of a system can be checked with the controllability matrix

S = (B,AB,A2B, ...,An−1B), (3.6)

where n is the dimension of the state vector x. If the rank of S is equal to n, the
system is completely controllable.
Without loss of generality one can set t0 = 0. The feedback gain matrix K which
fulfills this equation is obtained by

K = R−1BTP, (3.7)

where P is the unique positive definite solution of the algebraic Riccati equation

PA + ATP−PBR−1BTP + Q = 0. (3.8)
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Within this context, both the system and the input matrices are time invariant.
In the case of a time periodic input matrix like it is the case for a magnetically
actuated spacecraft, the input matrix B∗(t) from (2.34) can be averaged over one
period system Ts to obtain a time invariant system with a time invariant input
matrix

B =
1

Ts

t0+Ts∫
t0

B∗(t) dt, (3.9)

as Wisniewski [Wis97] and Graversen et al. [GFV02] demonstrate. However, this
time averaged system is not equivalent to the periodic system. This means that we
must check for stability of the closed loop periodic system with the feedback gain
obtained by solving the Riccati equation using the time averaged input matrix.
Stability of a periodic system can be analyzed by the Floquet theory [BC09]. Con-
sider a closed loop system with the system matrix

Ac(t) = A−B(t)K. (3.10)

Then a solution to the homogeneous differential equation

ẋ(t) = Ac(t)x(t) (3.11)

with the initial condition x0 = x(t0) is obtained as

x(t) = ΦAc(t, t0)x0, (3.12)

where ΦAc(t, t0) is the transition matrix of the closed loop system, which describes
how the state vector changes moving from time t0 to time t. The state transition
matrix ΦAc(t, t0) is obtained by the solution X(t) of the differential matrix equation

Ẋ(t) = Ac(t)X(t0) (3.13)

with initial condition X0 = X(t0) = 1n×n, where 1n×n describes the n×n-dimensional
square identity matrix.
The transition matrix ΦAc(Ts + t, t), which transfers a state vector x exactly one
system period Ts forward in time, is also called monodromy matrix

Ψ(t) = ΦAc(Ts + t, t). (3.14)

Bittanti and Colaneri [BC09] show that the eigenvalues of Ψ(t) are not time depen-
dent. They are called characteristic multipliers of Ac. If all characteristic multipliers
lie within the unit circle of the complex plane, the system state approaches zero as
time approaches infinity, and thus the system is stable. When at least one charac-
teristic multiplier lies outside the unit circle, the state vector grows without bounds,
thus the system is unstable.
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3.2 The Default Controller of MOVE-II

This section derives the gain for the state feedback controller used for sun pointing,
which is active at the time of launch of MOVE-II. Together with the parameter
table for the ADCS, namely Table 2.3, the gain developed in this section defines the
Default Controller.

The results of Sections 2.3, 2.4 and 3.1 are used to obtain the system and input
matrices A and B, as they are needed to construct the gain Kdef, which is the gain
for the Default Controller. It is also shown how the weighting matrices Q and R are
designed. The decisions to achieve this gain are made entirely by the then ADCS
team. The author merely presents these decisions in a comprehensible way.

The system matrix A = Ar,d is the reduced system matrix from (2.27), calculated
with the diagonal inertia tensor. The advantage of this decision is the easy computa-
tion and simple structure of the system matrix. The downside of this simplification
is that the nutation torque introduced in Section 2.3 is not included in the model.
Therefore, the LQR algorithm does not take into account this torque and it appears
as an additional disturbance to the controller.

For spin stabilization an angular velocity ωs = 0.1 rad/s is chosen, which equals
approximately ninety times the orbital angular velocity ωo = 2π/T . This choice
shows promising results in several simulations [Kie17].
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Figure 3.1: Visualizing two selected elements of the input matrix B∗r (t) over the
time of one orbit.

The input matrix B is time averaged as in the Section 3.1 presented. For this
averaging process, the reduced input matrix B∗r (t) is calculated from (2.34) with the
diagonal inertia tensor, with the Earth dipole magnetic field model from (2.35) and
with the satellite orbit described in Table 2.2. Since this magnetic field model is
symmetric with respect to the Z-axis of Earth, the system period Ts = 2885 s is half
of the orbit period T . This is also evident from Figure 3.1, where the elements [3, 3]
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and [5, 3] of the time dependent input matrix B∗r (t) are visualized over the time of
one orbit. The resulting constant input matrix is

B =


0 0 0
0 0 0

−6.0e-3 5.0e-6 1.7e-6
4.5e-6 −8.2e-3 −5.5e-7
1.5e-6 −5.7e-7 −8.5e-3

 . (3.15)

The controllability matrix associated with A and B is of rank 5, therefore the
system is completely controllable and the requirement for using the LQR algorithm
is fulfilled.

In order to obtain a feedback gain, the input weighting matrix R = 13×3 is fixed as
identity matrix, while the state weighting matrix

Q(q) =


q · e-10 0 0 0 0

0 q · e-10 0 0 0
0 0 q · e-5 0 0
0 0 0 q · e-5 0
0 0 0 0 q · e-5

 (3.16)

is parameterized by q, which is swept through a range from 100 to 3e6. For each
realization of this matrix, a corresponding gain matrix K and the eigenvalues of
its monodromy matrix are calculated. For Q = Q(2.28e6), a minimum value of
the largest normed eigenvalue among all the corresponding monodromy matrices
is found. This process of finding appropriate weighting matrices is adopted from
Graversen et al. [GFV02]. Choosing a feedback gain, which produces a monodromy
matrix with low eigenvalues, means that a disturbed state vector will approach zero
faster compared to a monodromy matrix with higher eigenvalues.

With these weighting matrices, the LQR algorithm provides a feedback gain. Since
the LQR algorithm assumes a continuous actuation, but the MOVE-II ADCS actu-
ates only 50% of the time due to the duty cycle, the resulting matrix is multiplied
by 2 in order to compensate for the time when the coils are disabled. The resulting
gain matrix with minimal maximum eigenvalue is

Kmin =

−2.72e-2 9.00e-3 −11.0 −1.22 −2.88e-5
−1.56e-2 −3.45e-2 −1.68 −11.0 −2.94e-4
3.32e-6 −6.07e-6 1.71e-4 2.93e-5 −10.6

 . (3.17)

The only non zero eigenvalues of its monodromy matrix is the complex conjugated
pair λ1,2 = 6.56e-2± 2.8e-3 i with a magnitude of |λ1,2| = 6.6e-2.

However, in simulations this feedback gain does not perform as desired. Espe-
cially with high residual magnetic disturbance torques, this gain does not achieve
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Figure 3.2: Comparing the pointing error of the algorithmically derived gain Kmin

to the heuristically modified gain Kdef.

a pointing error within the system requirements. Therefore, the gain is modified
heuristically by iteratively changing and simulating, until a gain

Kdef =

−6.8e-2 0 −20 −1.0 5.0e-3
0 −6.2e-2 −1.4 −20 4.0e-3
0 0 8.0e-4 4.0e-4 −3.4

 (3.18)

is found, which has a lower pointing error under the presence of high magnetic
dipole moments in simulations. This gain is configured as default gain into the
ADCS firmware for the launch of MOVE-II.

Figure 3.2 shows a comparison between these two gains for the duration of one or-
bit, where the residual magnetic disturbance is multiplied by 3 to amplify the effect
of this disturbance. One obtains that the gain Kmin, after settling, diverges again
until it reaches a pointing error of approximately 25◦, while the gain Kdef is able
to hold the pointing error within the 10◦ bounds for most of the time. Calculat-
ing the monodromy matrix of Kdef, the only non zero eigenvalues one obtains is
the complex conjugated pair λ1,2 = 8.0e-3± 2.6e-2 i with magnitude |λ1,2| = 2.7e-2.
This proves that the heuristically found gain is also stabilizing. The magnitude of
the largest eigenvalue is even lower compared to Kmin, which makes the improved
performance reasonable. However, the resulting gain is not an LQR gain any more,
therefore there is no guarantee that it provides a good disturbance rejection to other
disturbances than the constant residual magnetic dipole disturbance, for which it is
custom tailored.



3.3. SIMULATION RESULTS OF THE DEFAULT CONTROLLER 33

3.3 Simulation Results of the Default Controller

This section evaluates the Default Controller. First it is analyzed how the controller
performs in orbits different from the target orbit. Then, a Monte Carlo simulation
is performed with random initial attitude and angular velocity. The results show
the extent to which the controller is suitable to acquire the operation point from an
arbitrary initial state.
For the simulations other than the Monte Carlo simulation, two different sets of
initial conditions are used throughout this thesis. They are presented in Table 3.1.

Name qib,0 ωb
ib,0

Standard initial conditions (0, 0, 0, 1)T (5, 5, 5)T · 1e-3 rad/s

Optimal initial conditions (0.22, 0.53, 0.47,−0.67)T (0, 0, ωs)
T rad/s

Table 3.1: Initial condition sets.

The standard initial conditions are applied if not stated otherwise. They are con-
structed such that the satellite starts with an initial pointing error of approxi-
mately 70◦. This allows to observe the settling behavior of the satellite. The initial
velocities in each direction are small non-zero values. Therefore, the satellite has to
spin up to reach its operation point.
The optimal conditions are designed for special benchmarks. The satellite starts in
the operation point which implies a pointing error of 0◦. When one is not interested
in the settling behavior but only in the average pointing error during the simulation
run, the optimal initial conditions are advantageous.
The simulation is implemented as a Matlab Simulink model. It is described in
more detail in Appendix A. All relevant disturbances are included in this simulation
model, as well as the characteristic sensor noise for the sensors of MOVE-II.

3.3.1 Sensitivity to Orbit Changes

This section analyzes the sensitivity of the Default Controller with respect to or-
bit parameter variations. It is not guaranteed that the satellite is launched into
the desired orbit. Indeed, the satellite can end up in an entirely unexpected and
unsuitable orbit. The two Galileo satellites FOC-FM1 and FOC-FM2 are good ex-
amples [GAC+15]. Thus it is of interest, how the satellite performs in different orbits
and if it is robust to parametric changes.
Figure 3.3 shows the pointing error of four simulations over the time of more
than 3.5 orbits with different inclinations i. The eclipse time is illustrated as gray
area. During this time no information about the sun position is available to the
satellite and the sun sensors return a zero-vector as sun vector. Therefore, the
controller assumes the pointing error to be zero during eclipse. A moving average
filter of window size 5e3 is applied to the results of this and the following figure,
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Figure 3.3: Pointing error achieved with the Default Controller for differently
inclined orbits. The graphs are smoothed with a moving average filter.

where the data is sampled at 10 Hz. This smooths out high frequency oscillations
and illustrates the longterm behavior of the pointing error. One obtains that the
controller keeps the pointing error within the 5◦ boundary most of the time for high
inclination orbits.

However, for orbits with inclination 0◦ and 45◦, the pointing error increases sig-
nificantly. Especially during eclipse, where no sun vector information is available
and the attitude can be attained only through spin stabilization and driving the
state components ωx and ωy to zero. The must requirement for the pointing error
to be less than 10◦ is therefore violated during eclipse. For the equatorial orbit
with inclination 0◦, the controller is not able to decrease the pointing error by the
same amount it increases during eclipse. The pointing becomes greater in numbers
every orbit and eventually violates the pointing error requirement also when not
in eclipse.

Figure 3.4 shows the results of simulations in different orbit heights and with a highly
eccentric orbit. The semimajor axis is set to a = RE + hE, where RE = 6378 km is
the radius of Earth and hE is the height of the orbit above ground for the circular
orbits. The forth simulation is performed in a highly elliptical orbit with eccen-
tricity e = 2/3. The semimajor axis is defined such that the apogee is at 2000 km
and the perigee is at 400 km above ground. The time axis cannot be expressed in
terms of orbits this time, since the different semimajor axes also imply different orbit
periods of T = 5770 s, 5553 s, 7632 s, 6565 s respectively. The results show that the
performance of the controller is not significantly affected by orbit height or shape.
The orbit with height 2000 km above ground shows a slightly higher peak pointing
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Figure 3.4: Pointing error achieved with the Default Controller for different orbit
sizes and shapes. The graphs are smoothed with a moving average filter.

error than the other orbits. This is related to the longer orbit period, which im-
plies that the satellite also spends more time consecutively in eclipse. Other orbit
parameters variations show no significant impact on the controller behavior.

In Section 2.4 we state that controllability might be limited for equatorial orbits and
for orbits including the magnetic poles of Earth. While we can observe an unstable
behavior for the equatorial orbit, passing by close at the poles with high inclination
orbits does not affect the pointing error in these simulations.

3.3.2 Sensitivity to Initial Values

This section analyzes the sensitivity of the Default Controller with respect to ini-
tial conditions. After launch or after reactivation of the ADCS after a black-
out, the controller has to deal with an arbitrary initial attitude qib,0 and an ar-
bitrary initial angular velocity ωb

ib,0. A Monte Carlo simulation with a number
of n = 100 different testruns with simulation time 2500 s is performed to investi-
gate the behavior of this controller with respect to random initial values of qib,0

and ωb
ib,0. The initial attitude takes any possible value, restricted to a unit quater-

nion, while the initial angular velocity is restricted to a range from −0.085 rad/s
to +0.085 rad/s in each axis. This means a maximum magnitude of the angular
velocity of ||ωb

ib,0|| =
√

3 · (0.085 rad/s)2 = 0.15 rad/s is possible. This assumption
is based on the fact that the ADCS features a detumbling controller, which reduces
the magnitude of the angular velocity vector to this level, before the sun pointing
controller is activated [MCN+17].
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Behavior Description Times Observed In Percent

b1 Nominal behavior 49 49%
b2 Slow convergence 20 20%
b3 & b4 Oscillation 24 24%
b5 Anti-pointing 7 7%

Table 3.2: Frequentness analysis of the five distinct behaviors in the Monte Carlo
simulation of the Default Controller with n = 100 runs.

In Figure 3.5 we see the result of this Monte Carlo simulation. In total, five different
behaviors are observed, which are categorized in Table 3.2. This table also states
the frequentness of each behavior that is observed.
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Figure 3.5: Results of the Monte Carlo simulation with five selected outcomes for
the Default Controller.

The most often occurring behavior is the nominal behavior, labeled with b1. It
is characterized through a fast convergence. The pointing error must decrease be-
low 10◦ within a time limit of 1500 s, which equals 0.26 orbits, to be characterized as
nominal behavior. As Table 3.2 shows, nearly half of the simulation runs converge
within this time.
An example for a simulation run where the pointing error shows a converging be-
havior, but where it takes longer than 1500 s to reach the 10◦ pointing error margin,
is labeled with b2. In simulation runs of this category, the pointing error can still be
more than 20◦ after nearly half an orbit.
A special case is observed especially for initial conditions where the Z component of
the initial angular velocity ωz,0 is negative. In this case, the satellite shows an oscil-
lating behavior. Two examples can be seen in Figure 3.5 labeled as b3 and b4. One
observes that unlike the other behaviors, with this starting condition the satellite is
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not able to change ωz from the negative initial value to the desired 0.1 rad/s. It is
important to note that this behavior is observed without exception only when the
initial value of ωz is negative. However, there are also scenarios where the initial
value of ωz is negative and the satellite is not trapped in an oscillating behavior,
but succeeds in achieving a low pointing error and the desired spin rate of 0.1 rad/s
without difficulty. Therefore, we assume that the condition ωz,0 < 0 is a necessary,
but not a sufficient condition to observe such an oscillating behavior.

The behavior b5 prevents the satellite from working as expected and leads to a
blackout of the satellite sooner or later due to lack of power supply from the solar
cells. The satellite spins up to ωz = 0.1 rad/s and is spin stabilized, but it points
away from the sun by about 160◦, the exact pointing error varying slightly within
this category of behaviors. In this anti-pointing mode, the satellite cannot charge the
batteries. After the batteries are drained, the systems shuts down and the satellite
starts to tumble without control. Due to the reduced power consumption with shut
off systems, the batteries charge again while the satellite is tumbling, as simulations
performed by Nagy [Nag18] show. When the batteries reach a voltage threshold
value, the satellite is activated again and it gets another chance to acquire the sun
pointing attitude.

In order to evaluate, if the non-nominal behaviors b2 to b5 eventually converge to a
low pointing error, the initial conditions that produce such behaviors are selected
and a simulation run with length 3.5 orbits is performed. Figure 3.6 illustrates the
results.
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Figure 3.6: Long-term simulation with initial conditions that cause anti-pointing,
oscillating behavior or slow convergence with the Default Controller.

Testcase t1 starts with an initial condition which causes anti-pointing. It can be seen
that eventually the satellite changes from anti-pointing to sun pointing. However,
this happens only close to the end of the simulation after a time of about 3 orbits.
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Testcase t2 shows a scenario with a slow converging pointing error. One obtains that
it can take more than one orbit for the pointing error to converge to less than 10◦.
Compared to the definition of nominal behavior, this convergence time is nearly
four times greater. However, since the pointing error decreases continuously, the
light intensity onto the Flappanels and therefore the power generation increases
during this time. This increases the chance that the batteries stay charged until the
pointing error converged.
The Testcases t3 to t5 are examples for the oscillating behavior. One observes that
it is possible for an oscillating behavior to end up either in a sun pointing mode, like
Testcase t4, or in an anti-pointing mode, like Testcases t3 and t5. For Testcase t5, the
satellite performs a second transition from anti-pointing to sun pointing within the
simulation time, whereas for Testcase t3, the satellite is still stuck in anti-pointing
after 3.5 orbits. The time how long the satellite spends in an oscillating mode varies
greatly, and during this time the Z component of the angular velocity converges only
slowly towards the desired value. However, at some point the satellite acquires the
desired angular velocity fast, which is seen in Figure 3.6 as a jump in ωz, and ends
up either in sun pointing or anti-pointing mode.

3.4 Discussion of the Results for the Default Con-

troller

The Default Controller converges to a sun pointing state with a probability of
only 49% within half an orbit. Therefore, the controller is not reliable for conver-
gence from an arbitrary initial condition. By adding the probabilities of the nominal
behavior and the slow convergence behavior we obtain a probability of 69%. This
is the probability for a successful convergence from an arbitrary initial condition.
However, the slow convergence runs show a high pointing error for half an orbit and
therefore the solar cells generate not much power during this time.
There is a chance with a probability of 24% that the satellite is stuck in an oscillating
behavior. This behavior only occurs when the satellite starts with a negative ωz,0.
In this case the operation point for ωz with a positive value is not optimal, since
the controller has to reduce the spin of the Z-axis and then generate a spin in the
opposite direction.
There is also a chance that the controller ends up in anti-pointing. This means
that the batteries almost certainly are drained and the satellite experiences a black
out. This state produces less power than a free tumbling satellite which occasionally
points the Flappanels with the solar cells towards the sun. Furthermore, additional
coil power is consumed while attaining the anti-pointing attitude.
The conclusion is that the Default Controller is not able to converge to a sun pointing
state satisfyingly for arbitrary initial conditions. However, in most cases the con-
troller achieves sun pointing eventually. Furthermore, the controller is insensitive to
orbit parameter variations, as long as the orbit is far from an equatorial orbit.
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Chapter 4

Developing an Extended LQR
Controller

This chapter proposes a new controller design for MOVE-II called Extended LQR
Controller. The first section proposes a new algorithm for calculating an LQR
state feedback gain. New design criteria are presented and the gain matrix for the
Extended LQR Controller is defined. A first comparison to the gain of the Default
Controller is performed.

Sections 4.2 to 4.5 propose specific extensions to the ADCS which are included in the
Extended LQR Controller. Section 4.2 suggests to switch the operation point and
invert the spin around the Z-axis, if the initial Z component of the angular velocity
is negative. Section 4.3 proposes a magnetic dipole correction method adapted to
the ADCS of MOVE-II. Section 4.4 describes how low currents calculated by the
controller can be applied to the satellite, considering the hardware limitation of the
coils. Section 4.5 summarizes the results of the EKF developed by the ADCS team
and how it is used together with the Extended LQR Controller.

Section 4.6 features simulations of the Extended LQR Controller with similar set-
tings as in Section 3.3. The simulation results are compared to those of the Default
Controller. Section 4.7 summarizes the results and discusses their impact on the
MOVE-II mission.

4.1 New Algorithm for Developing an LQR Gain

In Section 3.2 we state that Kdef cannot be guaranteed to show the properties of a
gain designed with the LQR algorithm. Although this gain is stabilizing the satellite,
it is advantageous to utilize a gain constructed with the LQR algorithm, due to its
insensitivity to disturbances and parameter changes. Therefore a new algorithm is
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proposed and elaborated in this section that is used to design a gain with new design
criteria and the LQR technique. We use a state weighting matrix

Q =


qsx 0 0 0 0
0 qsy 0 0 0
0 0 qωx 0 0
0 0 0 qωy 0
0 0 0 0 qωz

 , xr =


sx

sy

ωx

ωy

ωz

 , xr,OP =


0
0
0
0
ωs

 (4.1)

with diagonal weight entries only and the corresponding state vector xr whose de-
viation of the components from the operating point xr,OP is to be weighted. The
weights define how serious we consider the deviation of each state component with
respect to the system requirement. The weights influence the cost functional in
the minimization process. It is therefore important to design the weighting matrix
carefully with regards to the system requirements, which call for a pointing error
of 10◦ or less as a must requirement and a pointing error of 5◦ or less as should
requirement. These requirements are directly connected with the sun vector com-
ponents sx and sy in the state vector. They define by how much the pointing is off
in the X- and Y-direction respectively. Therefore we like to have high values for the
weight components qsx and qsy.
There is no requirement which demands spin stabilization for the satellite, or a
certain angular velocity around the Z-axis. However, simulations show that spin
stabilization is advantageous for MOVE-II [Kie17]. Hence, we are not interested in
a high precision of the value ωz or its settling time, but we want the satellite to
reach a spin stabilized state eventually. Thus a low weight qωz is targeted for this
component. The remaining two components of the state vector, ωx and ωy, do not
contribute directly to these goals. Furthermore, they have to approach zero as the
pointing accuracy improves, since an increasing rotation around the X- or Y-axis
reduces the pointing accuracy. Since we are not interested in any specific deviation
boundary for these two components, and since they are indirectly forced to approach
zero, we set the corresponding weights qωx = qωy = 0 to zero.
Based on these considerations, we introduce two design parameters

α = 5◦ and (4.2)

β = 50% · ωs, (4.3)

which specify the weight ratio between pointing error and angular velocity for spin
stabilization. With the values for α and β we express that a 5◦ pointing error is as
undesirable as a deviation of 50% from the desired spin stabilization rate. These are
the only parameters needed for this proposed algorithm, and they may be fine-tuned
to redefine the importance between sun pointing and spin keeping.
Since the pointing error is not directly part of the state vector, we have to identify
a deviation of the state vector that corresponds to α. The definition of the pointing
error in (3.1) shows that the pointing error is completely defined by the Z component
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of the sun vector. This component is not part of the reduced state vector xr, but it
is part of the full state vector xf. For this reason it would be helpful to utilize the
full system description with the full state vector for designing a new gain matrix.
However, when analyzing this system one obtains an uncontrollable subspace with
the eigenvalue zero. Thus the system described by the full system description is
not stabilizable and we must find a way to express the pointing error in terms of sx

and sy.
The sun vector is defined as a unit vector, therefore we have√

s2
x + s2

y + s2
z = 1. (4.4)

We make the assumption that whenever we observe a pointing error, this error is
related to an equal deviation sxy in the X- and Y-direction. This serves as a worst
case estimate. Combining this assumption with (4.4) and (3.1), we obtain√

2s2
xy + cos2(α)− 1 = 0, (4.5)

which we solve for sxy. This is the deviation for the components sx and sy that should
be treated equally as a deviation of β for the component ωz. The solution to this
equation can be found numerically by the bisection algorithm in the interval [0, 1].
Similar to the example from Kwakernaak and Sivan [KS72, p. 227], we define a ratio
for the weights

σr =
s2

xy

β2
=

qs

qωz

(4.6)

where qs stands for both qsx and qsy. Choosing qsx = qsy = σr, qωs = 1 and reducing
the weighting matrix to this three components results in a reduced weighting matrix

Qr =

qsx 0 0
0 qsy 0
0 0 qωz

 (4.7)

with determinant equal σ2
r . In order to compare the impact of this weighting ma-

trix to the input weighting matrix R, it is advantageous to keep the determinant
of Qr constant at 1, regardless of the tuning parameters α and β. This is done by
multiplying all three diagonal entries with the factor

ζ = 3

√
1

σ2
r

. (4.8)

Therefore, we obtain the weights

qsx = qsy = 3
√
σr and (4.9)

qωz = σ
− 2

3
r . (4.10)
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The input weighting matrix R = γ13×3 is again defined as identity matrix, only
scaled by a scalar factor γ. With this factor, the influence of both weighting ma-
trices can be shifted. If the generated control inputs exceed their limits, γ must
be increased, if the control inputs are too small, γ must be decreased. Simulations
show that for MOVE-II, γ = 1 generates control inputs in the desired range. It is
sufficient to use the identity matrix instead of weighting the individual entries of R
differently, since the utilized coils all have the same characteristics.
Using the parameters α, β and γ as defined above and ωs = 0.1 rad/s, we calculate
a feedback gain with the LQR method. After multiplying the gain by the factor 2
for the same reasoning as in Section 3.2, we obtain the LQR gain

KLQR =

 −1.54 1.46 −31.6 3.49e-1 3.15e-1
−1.52 −1.59 3.71e-1 −31.2 1.90e-1
−3.22e-3 −1.94e-2 7.49e-2 2.37e-2 −1.76

 , (4.11)

which is the state feedback gain associated with the Extended LQR Controller.
For the LQR design, the system matrix A = Ar from (2.28) with true inertia
tensor from (2.16) is used. The input matrix B is obtained in the same way as
in Section 3.2, with the difference that again the true inertia tensor instead of the
diagonal approximation is used.
The only non-zero eigenvalue of the monodromy matrix for KLQR is λ = 1.06e-11,
which is an order of 9 magnitudes smaller than for the gain Kdef from Section 3.2.
This is an indicator that the settling time with the LQR gain is lower than with the
gain of the Default Controller.
This paragraph analyzes the effect of different spin rates ωs onto the resulting con-
trol gain. Spin rates lower than 0.072 rad/s result in monodromy matrices with
eigenvalues, whose norm is greater than one. Those gains are not stabilizing.
From (2.12) and (2.14) it is clear that increasing the spin rate results in an increased
nutation torque τ n = ωib × Iωib, as MOVE-II does not spin around a principal axis
of inertia. Therefore, the value ωs = 0.1 rad/s selected by the then ADCS team is
found to be reasonable for MOVE-II.
Figure 4.1 compares the performance of the default gain Kdef to the LQR gain KLQR.
The pointing error with the LQR gain settles twice as fast as with the default
gain. The default gain is able to maintain a pointing error of less than 10◦, but it
crosses the 5◦ line occasionally. With the LQR gain the pointing error stays within
the 5◦ bounds from settling time for nearly one orbit, except for one moment at
time t = 0.28 orbits, where the controller corrects a large angular velocity error in
a short time. It stays within the 10◦ bounds during this maneuver though.
With regards to the angular velocity, the Default Controller reaches the operation
point fast. When using the LQR gain, the ωx and ωy components are driven towards
zero fast while the ωz component has a settling time of about 0.6 orbits. The
corrections of this component take place stepwise at time points 0.3 and 0.5 orbits.
The Default Controller settles fast with respect to the angular velocity and minimizes
the pointing error afterwards. With the LQR gain in contrast first the pointing error
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Figure 4.1: Comparing the pointing error and the angular velocities with the
default gain and the LQR gain.

is reduced below the must requirement limit. While maintaining the sun pointing,
the controller then achieves the desired angular velocity.
Figure 4.2 shows the reason for the stepwise change in the spin rate. Here the Z
components of the angular velocity and of the normalized magnetic field

b̂b =
bb

||bb|| (4.12)

are compared, both expressed in the BF. In order to drive ωz towards ωs, an angular
momentum in Z-direction must be generated. Since the required torque is perpen-
dicular to the desired angular momentum and the magnetic field, the controller can
only generate such torques, if the Z component of the normalized magnetic field is
close to zero. The corresponding regions are highlighted in gray and the change
of ωz becomes big where this is the case.
The negative Z-axis of the satellite is directed towards sun in nominal mode, it
rotates with respect to the Earth only slowly. The Z-axis is also the rotation axis
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in nominal mode, therefore the Z component of the magnetic field in the BF is not
dependent on the satellite spin and it is periodic with half the orbit period T . This
means there are four points per orbit where the Z component becomes zero. This
results in four possibilities per orbit for the controller to correct the spin rate, if it
deviated from the operating point due to disturbances.

The pointing error, on the other hand, can be controlled at any time. For correction,
torques in both X- and Y-directions are necessary. This requires a magnetic field
perpendicular to these directions. Since the satellite rotates in the X-Y-plane with
angular velocity ωz, it is ensured that each of those axes observe a perpendicular
magnetic field twice per rotation, regardless of the direction of the magnetic field in
the ECI.

4.2 Operation Point Switching Strategy

In Section 3.3.2 we observed unstable and oscillating behaviors for the case where
the initial value of state ωz is negative. This is reasonable since the controller is
linearized around the positive value ωs. Furthermore, it needs additional energy to
turn around the spin direction around the Z-axis from clockwise to counterclockwise.
This applied energy is spent unnecessarily, it provides no benefit if the satellite
is spinning clockwise or counterclockwise. Consequently, to save energy and to
develop a controller which is able to deal with a broad variety of initial conditions,
a control strategy is suggested for spinning around the Z-axis in either clockwise or
counterclockwise direction, whatever state is easier to achieve.

In order to realize this, we need to linearize the system around a second operation
point

xr,OP− = (0, 0, 0, 0,−ωs)
T (4.13)



4.2. OPERATION POINT SWITCHING STRATEGY 45

with negative target spin. By doing so as described in Section 2.3 and by applying
the algorithm described in Section 4.1 using this new operation point, we obtain the
gain

KLQR− =

 1.58 1.45 −31.0 −3.34e-1 −3.55e-1
−1.51 1.53 −3.59e-1 −31.5 −1.02e-1
−1.65e-2 1.09e-2 −5.37e-1 −5.27e-1 −1.79

 , (4.14)

which stabilizes the satellite for a spin around the Z-axis in clockwise direction with
magnitude ωs. The Floquet analysis presented in Section 3.1 shows a single non-
zero eigenvalue of the monodromy matrix in the same order of magnitude as for the
gain KLQR.
For applying this strategy, we must perform a case differentiation. Depending on
the desired direction of rotation, the operation point and the gain must be switched.
A simple approach would be to apply the operation point xr,OP− and gain KLQR−
when ωz is negative, and switch to xr,OP and KLQR respectively when ωz becomes
positive. This case differentiation has one drawback. When ωz is close to zero and
the controller improves pointing accuracy or compensates disturbances, ωz could
start oscillating between positive and negative values, which would switch from one
operating point to its contrary operating point back and forth. With this method it
is likely to introduce an oscillating behavior, which we are trying to prevent in the
first case.

ωz

Gain

0

Hysteresis Curve for Gain Switching

h− h+

KLQR

KLQR−

Figure 4.3: This figure illustrates the hysteresis curve of the operation point
switching strategy. The blue horizontal lines represent the domains of ωz for
the corresponding gain. Whenever ωz leaves the domain of a gain, the gain and
the operation point is switched.

To solve this problem, a hysteresis is introduced. We chose the hysteresis values

h+,− = ±20% · ωs = ±0.02 rad/s, (4.15)

which are determined empirically. This means that whenever ωz crosses either of this
values with increasing magnitude, the gain and operation point is switched accord-
ingly, depending on the current sign of ωz. This allows for a margin of 0.04 rad/s
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in which the state ωz can oscillate without switching the gain. Figure 4.3 illus-
trates this process. This strategy is evaluated together with the other extensions in
Section 4.6.2 with a Monte Carlo simulation for various initial conditions.

4.3 Residual Magnetic Dipole Compensation

In Section 2.6.3 we state the residual magnetic dipole moment for MOVE-II mea-
sured on Earth, and how to estimate it on-orbit. Knowing an estimation for the
dipole moment, one can compensate it when applying the control torques. Huang
and Jing [HJ06] describe such a method. This section presents this method and
proposes an adaptation which makes it more efficient for the ADCS of MOVE-II.
The authors show that the pointing accuracy can be improved by a factor of two,
when subtracting the residual dipole moment mres from the desired control mo-
ment mc and applying the obtained result m = mc−mres by commanding the cor-
responding control currents ic to the coils. Even with a model uncertainty of 20%,
they show that the pointing accuracy improves significantly. However, satellites
which do not actuate constantly over time, but rather apply the control torque in
time intervals, cannot fully benefit from this method. In the non-actuation intervals,
the residual magnetic dipole moment is not compensated and thus causes a change
in rotational velocity of the satellite. To overcome this disadvantage, we propose
the following adaptation.
Recalling the duty cycle D = 50% for MOVE-II presented in Section 2.5, it becomes
clear that the correction term of the magnetic dipole applied by the coils acts only
for 50% of the time, while the residual magnetic dipole itself acts 100% of the time
due to its intrinsic nature. To revert the effect of the residual magnetic dipole
moment completely, we must multiply it by the compensation factor

C =
1

D
, (4.16)

which is defined by the inverse of the duty cycle D, before we subtract it from the
control dipole and apply a resulting commanding dipole moment

m = mc −mcomp = mc − C ·mres (4.17)

to the satellite, where mcomp = C ·mres is the applied magnetic dipole moment com-
pensation. This means that for MOVE-II the optimal compensation factor is C = 2
and that the estimated residual dipole moment is multiplied by 2 before it is sub-
tracted. With this formula it is possible to calculate the optimal correction term for
any other duty cycle as well. However, this derivation is based on the assumption
that the torque caused by the residual magnetic dipole moment is constant during
the actuation-measurement period Tam. If the satellite changes its attitude signif-
icantly during one period, also the magnetic field in the BF changes significantly,
and thus the torque generated by the residual dipole moment is not constant any
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more. Therefore, this assumption is fulfilled in the first approximation, if the change
of attitude is small during the period Tam. The nominal rotation rate of MOVE-II
is ωs = 0.1 rad/s, which means that the satellite turns 6◦ during one period. This is
a small angle, thus the assumption is fulfilled in this case.

4.4 Actuation at Low Currents

In Section 2.5 we state that there is a minimum current Imin which the hardware
can handle. The coils cannot actuate lower currents and will stop actuating, if the
commanded current is lower than this value. The Default Controller actuates the
control currents ic for a fixed period of time Ta. However, the firmware allows to
actuate a constant current for a shorter period of time. In this section we propose
a concept which makes it possible to actuate the equivalent of low currents.
From (2.29) and (2.30) in Section 2.4 we obtain the control torque

τ c = mc × b = n · Aeff · ic × b (4.18)

dependent on the control current ic. From (2.21) in Section 2.3 we see that this
control torque affects the derivative of the angular velocity. Let

ω̇ib,τ c = I−1τc (4.19)

be the change in angular velocity caused by the control torque only. Then for
controlling the satellite we are interested in the difference of angular velocity

∆ωb
ib,τ c

=

∫
Ta

ω̇b
ib,τ c

dt ≈ (Ib)−1 · n · Aeff ·
∫
Ta

ibc dt× bb (4.20)

during one actuation period caused by the control torque, where the approximately
equal sign holds for a slow spinning satellite and thus the magnetic field bb expressed
in the BF is assumed to be constant during the time over the integral. We make
this assumption already in Section 4.3.
Let ic,j be a component of the current vector ic which corresponds to a specific coil.
Then for every ic,j of the three actuator coils it is checked, if the current is less
than Imin. If so, the coil is actuated with the current Imin and a shorter period of
time ∆tc,j instead. To achieve the same effect in change of angular velocity as with
the lower current, the integrals∫

Ta

ic,j dt = ic,j · Ta
!

=

∫
∆tc,j

Imin dt = Imin ·∆tc,j ∀j = 1, 2, 3 (4.21)

must be constant. The actuation time for currents below Imin therefore is

∆tc,j =
ic,j · Ta

Imin

. (4.22)
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Figure 4.4: Two long-term simulations starting from optimal initial conditions
evaluating the effect of the minimum current limitation.

To simulate this proposed extension, the simulation value for Imin is set to zero.
Figure 4.4 shows the comparison between two simulation runs, one applying this
proposed extension, and the other one without, starting from optimal initial condi-
tions. One obtains that with Imin = 0, there is less overshooting and less fluctuation
of the pointing error. The mean pointing error with this extension is µp,on = 0.5◦

and without µp,off = 0.8◦, while the variance σ2
p = 0.04 deg2 is equal for both simu-

lation runs. The mean pointing error decreases by 0.3◦, which is greater in numbers
than the standard deviation.

4.5 Utilizing the Extended Kalman Filter

The Default Controller relies solely on the instantaneous sun sensor and magne-
tometer measurements in order to obtain information about the sun vector and the
Earth magnetic field. This means the Default Controller has to deal with the full
unfiltered sensor noise. Also, it does not utilize sensor fusion. The most serious
disadvantage however is, that during eclipse no sun vector information is available.

The Extended LQR Controller shall utilize the Extended Kalman Filter (EKF)
developed by the ADCS team to determine its attitude in order to solve these issues.
Meßmann [Meß18] provides a thoroughly analysis of the performance of the EKF.
According to Meßmann, the mean absolute difference of the attitude estimation error
amounts to 0.16◦ for a realistic testrun. He also states the necessary conditions for
the EKF to achieve a low estimation error.

For the EKF to function as expected it is important that the magnetometer and
the sun sensors are calibrated properly. Uncalibrated sensors lead to a large error.
Calibration is performed thoroughly on ground before the launch of MOVE-II by
the ADCS team. Additionally there is the possibility to recalibrate the sensors on-
orbit.

It is needless to say that the sensors also must be functional. In case of a faulty
sun sensor, this sensor can be deactivated manually to not disturb the EKF with
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faulty measurement data. If the faulty sun sensor is located at the Sidepanel and
the sun faces this panel, no sun vector information is available. Since this is not an
operation point, the absence of a sun vector measurement is only temporary and the
EKF is able to interpolate the attitude during this time with sensor fusion from the
magnetometer data. A faulty sun sensor located at the Toppanel however is critical
for the mission. Since this is the operation point, it is not expected that the sun
sensors located at the Sidepanels provide information about the sun position. They
are overshadowed by the Flappanels in this case. If the magnetometer is faulty,
another one of the five redundant magnetometers can be enabled manually during
the next overpass of MOVE-II.

It is also important for the functionality of the EKF that the realtime clock of
MOVE-II does not diverge too fast. The clock time can be updated on an overpass
of the satellite, thus this will not be an issue if a stable communication link can be
established.

Another important factor is the initialization of the EKF. If no sun vector is available
during initialization and the initial estimated attitude is far from the real attitude,
the EKF can become unstable.

If all these conditions are fulfilled, namely functional and calibrated sensors, an
accurate on-board real-time clock and a proper initialization of the EKF, it provides
an accurate attitude information through sensor fusion. More than that, the ADCS
has access to the sun vector information during eclipse. In Section 3.3.1 we obtain an
increasing pointing error during eclipse. Utilizing the EKF, we expect the pointing
error not to increase during eclipse. The attitude information is provided by the EKF
in terms of a unit quaternion calculated by sensor fusion from the magnetometer
and sun sensor measurements as inputs. The state vector contains the sun vector,
but not the unit quaternion. Therefore the sun vector has to be calculated from the
unit quaternion provided by the EKF. This is performed by a sun position model,
which is already part of the firmware implementation. The EKF also estimates the
angular velocity of the satellite and updates the bias calibration of the gyroscopes.

4.6 Simulation Results of the Extended LQR Con-

troller

This section evaluates the Extended LQR Controller with respect to orbit changes,
random initial conditions and under the presence of different residual magnetic
dipole moments. It is also evaluated to what extend the magnetic dipole com-
pensation is suitable, and general limitations of the Extended LQR Controller are
shown. Whenever appropriate, a comparison is made to the Default Controller.
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4.6.1 Sensitivity to Orbit Changes

This Section evaluates the Extended LQR Controller with gain KLQR and all its
proposed extensions in different orbits. The orbit parameters and other simulation
settings are the same as in Section 3.3.1, which allows to compare the results from
the Extended LQR Controller to the results of the Default Controller.
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Figure 4.5: Pointing error achieved with the Extended LQR Controller for differ-
ently inclined orbits. The graphs are smoothed with a moving average filter.

Figure 4.5 shows the pointing error with the Extended LQR Controller in orbits
of different inclinations. The eclipse time is again illustrated with gray areas. As
for the results of the Default Controller, the results of this and the next figure
are smoothed with a moving average filter of window size 5e3, while the data is
sampled at 10 Hz. One obtains that the eclipse has no negative effect any more on
the pointing error. The use of the EKF is mainly responsible for this by providing
the controller with sun position information even during eclipse. The results also
show that the pointing error converges fast for a broad spectrum of inclinations.
Only the orbit with inclination of 45◦ needs more than four times as long as the
others to converge, but it does converge eventually. The average pointing error after
convergence for all four simulations is in the range of 2.6◦ to 2.8◦, with variances in
the range of 7e-3 deg2 to 8e-3 deg2.
In Figure 4.6 we see the results for simulations with different orbit heights and
shapes. Again, the parameters chosen are the same than in the simulations for
the Default Controller in Section 3.3.1. The results show that the Extended LQR
Controller is not sensitive to large orbit size or shape changes. In every of these
simulations the average pointing error converges to a value of less than 2.6◦ with a
variance of about 6e-3 deg2. Only the highly elliptic orbit with eccentricity e = 2/3
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Figure 4.6: Pointing error achieved with the Extended LQR Controller for different
orbit sizes and shapes. The graphs are smoothed with a moving average filter.

seems to have minor difficulties. The convergence time to a pointing error below 5◦

for this orbit is four times greater than for the other orbits, and there occur small
spikes periodically. However, this is not reflected in the mean pointing error.

4.6.2 Sensitivity to Initial Values

In the following we compare the sensitivity of the Extended LQR Controller to the
Default Controller with respect to initial values. The setup of the Monte Carlo
simulation is the same as described in Section 3.3.2, including the range of the
varied parameters and the number of runs, which is n = 100. The magnetic dipole
moment, however, is overcompensated by 20% to simulate the inaccuracy of the
dipole estimation on-orbit. Therefore, we have mcomp = 1.2 ·mres. The simulation
length is 2500 s, which is approximately 42 min or 0.43 orbits.

Figure 4.7 illustrates four different behaviors, which can be observed in the Monte
Carlo simulation. Table 4.1 categorizes each observed behavior and states their
frequentness.

Behavior Description Times Observed In Percent

bE,1 Nominal behavior 49 49%
bE,2 & bE,3 Slow convergence 27 & 4 31%
bE,4 Unstable behavior 20 20%

Table 4.1: Frequentness analysis of the four different outcome categories in the
Monte Carlo simulation with n = 100 runs for the Extended LQR Controller.
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Figure 4.7: Results of the Monte Carlo simulation for the Extended LQR Con-
troller show four different possible outcomes.

Behavior bE,1 is the desired nominal behavior. The pointing error converges fast,
stays low and the angular velocity in Z-direction converges to one of the two oper-
ating points. The categorization of this behavior is according to the definition used
in Section 3.3.2. Therefore, a testrun is only categorized as nominal behavior, when
the pointing error falls below 10◦ within a time of 1500 s, or 0.26 orbits, and does
not exceed this boundary afterwards.

Thus, behavior bE,2 is not categorized as nominal behavior, since it exceeds the 10◦

boundary after 0.3 orbits again. This observed behavior belongs to the settling time,
because the state component ωz reaches the operation point only afterwards. When
comparing the pointing error of bE,2 to the change in the Z component of the angular
velocity, one obtains that this distortion appears when the controller minimizes the
magnitude of the Z component of the angular velocity until it reaches its operation
point. This spike in the pointing error usually is not large. In order to be classified
as bE,2, the spike must be below 20◦.

Occasionally, however, the spike can become large and exceed this boundary as well.
All those runs are categorized as behavior bE,3. The illustration of behavior bE,3 in
Figure 4.7 is the largest distortion that is observed within these 100 simulation runs.
Both observed behaviors bE,2 and bE,3 are categorized as slow convergence, since the
settling time is long, but eventually they reach the desired operating point.

This is not the case for behavior bE,4, at least not within half an orbit. One observes
that the pointing error is converging for the first 750 s, but then the pointing error
increases in a sudden movement up to nearly 180◦. Simultaneously the spin rate of
the satellite changes its sign. Figure 4.8 depicts all components of the angular ve-
locity together with the control torque τ c and the nutation torque τ n. One observes
that the nutation torque grows until it exceeds the magnitude of the control torque.
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Figure 4.8: Comparing the components of the angular velocity, the control
torque τ c and the nutation torque τ n of one of the outcomes of the unstable
behavior category bE,4.

The simulation data shows that this is the maximum possible control torque the
satellite is able to generate at that moment, since at least one coil is limited by the
maximum current. This means that the nutation torque becomes greater than the
maximum possible control torque, caused by the high spin rate around the Z-axis.
This effect only occurs, because MOVE-II spins around an unstable, intermediate
principal axis. The sudden 180◦ flip of the angular velocity vector around the other
two non-spinning axes of the satellite, like it is observed in Figure 4.8, is a telltale
sign for unstable behavior caused by spinning around the intermediate principle axis
of inertia.

Comparing the outcomes to the results of the Default Controller, one obtains that
about the same amount of simulation runs show a nominal behavior, this is 49% in
both cases. However, the sum of nominal behavior and slow convergence increased
with the Extended LQR Controller from 69% to 80%.

In Figure 4.9 the performance of all nominal behavior runs of both controllers are
compared. Part (a) illustrates the results for the pointing error with the Default
Controller, part (b) with the Extended LQR Controller. Part (c) illustrates the Z
component of the angular velocity for the corresponding simulation runs with the
Extended LQR Controller.

One obtains that the Extended LQR Controller has a significant shorter conver-
gence time than the Default Controller. After 12.5 min, the must requirement for
the pointing error to be below 10◦ is fulfilled by all nominal behavior runs with the
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Figure 4.9: Comparison of the nominal behavior runs from the Monte Carlo sim-
ulations with the Default Controller and the Extended LQR Controller. Part (a)
shows the pointing error with the Default Controller, part (b) with the Extended
LQR Controller. Part (c) shows the Z component of the angular velocity with the
Extended LQR Controller.

Extended LQR Controller, whereas for the Default Controller many runs have a
pointing error between 20◦ and 50◦ at the same time. Only after 25 min, all simula-
tion runs with the Default Controller fall below a pointing error of 10◦. Therefore,
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the Extended LQR Controller converges approximately twice as fast as the Default
Controller in the nominal behavior category.

Another result obtained is that eventually after 31 min all of the simulation runs
with the Extended LQR Controller fall below the 5◦ pointing error boundary for all
nominal behavior runs, which is a should requirement for MOVE-II. It is observed
that with the Default Controller the maximum pointing error among all simulation
runs within the nominal behavior category falls below 10◦ after 31 min only.

To analyze this in more detail, statistics are calculated. For every individual run,
the average pointing error µp and its variance σ2

p are calculated within different
time intervals. The mean pointing error µp,n is the mean over the number n = 49 of
all those average pointing errors in the nominal behavior category, and σ2

µp,n is its

variance. The mean variance µσ2
p

is the mean value of all the variances σ2
p from the

individual simulation runs. It is a measure of how much the instantaneous pointing
error is fluctuating in average. Table 4.2 presents the results.

Controller Statistic 12.5− 42 min 25− 42 min 31− 42 min

Default
Controller

µp,n [◦] 5.5 3.3 3.0

σ2
µp,n [deg2] 6.6 0.37 0.14

µσ2
p

[deg2] 27 2.1 1.7

Extended LQR
Controller

µp,n [◦] 2.9 2.7 2.3

σ2
µp,n [deg2] 0.32 0.14 0.11

µσ2
p

[deg2] 1.5 1.5 0.075

Table 4.2: Statistics for the Default Controller and the Extended LQR Controller
over multiple different time spans.

One obtains that the Default Controller settles after 25 min. The statistics do not
change significantly afterwards. Before this time however, one obtains from the
high values for the variance and mean variance that the mean pointing error and
the instantaneous pointing errors respectively are varying strongly.

The Extended LQR Controller shows a convergence after 12.5 min already. The
statistics do not change significantly in the intervals afterwards and the mean point-
ing error, its variance and the mean variance are low. The only exception is the
mean variance in the time interval 31− 42 min. This value is reduced significantly
after the 31 min mark. This means that the fluctuation of the pointing error is re-
duced significantly and the satellite does not wobble as much as with the Default
Controller. The confidence interval µp,n ± 2σµp,n with confidence level 95% shows
that the mean pointing error lies between 1.3◦ and 3.0◦ for the Extended LQR Con-
troller. The mean variance shows that the instantanous pointing error fluctuates
with ±0.55◦ for the same confidence level.



56 CHAPTER 4. DEVELOPING AN EXTENDED LQR CONTROLLER

For the Default Controller, the confidence interval of the mean pointing error ranges
from 2.3◦ to 3.7◦, and the instantanous pointing error fluctuates with ±1.3◦. We
conclude that the Extended LQR Controller is able to reduce both the mean pointing
error and the pointing error fluctuation significantly.
However, this performance improvement comes at a cost of increased power con-
sumption. In the time interval 12.5− 42 min, the coils consume 27 mW in average,
when using the Default Controller, whereas with the Extended LQR Controller, the
coils need 32 mW. This is an increased power consumption of 19%. Also, the fast
convergence time comes at a cost. In the first 12.5 min of the simulation, the power
consumption of the coils with the Extended LQR Controller amounts to 248 mW
in average, compared to 156 mW with the Default Controller. This is an increase
of 59%.
Part (c) of Figure 4.9 shows that the operation point switching strategy is working
as expected. When the initial Z component of the angular velocity lies below 0, the
negative operation point is targeted, otherwise the positive. Both operating points
are stable, since for each operation point a unique stabilizing gain is used.

4.6.3 Evaluating the Magnetic Dipole Compensation

This section evaluates the influence of the magnitude and direction of the residual
magnetic dipole moment with and without the compensation technique presented
in Section 4.3. This method is analyzed in detail using the Default Controller with
gain Kdef. It is also verified in operation with the entire Extended LQR Controller,
including all extensions proposed in Chapter 4. Furthermore, we state the effective-
ness and investigate the limitations of this method.
The following simulations use the Default Controller, extended with the EKF and Imin

set to zero. Figure 4.10 (a) shows the pointing error dependent on the magnitude
of the residual dipole without compensation. The dipole takes magnitudes in the
range of 0 to 10 times the residual dipole moment evaluated in Section 2.6.3, while
retaining its direction. A moving average filter over 10e3 data points, which are
sampled at 5 Hz, is applied to the results in order to smooth out the oscillations
caused by the satellite spinning around its pointing axis. This filter is applied to all
figures in this section. This helps in understanding the long-term behavior of the
pointing error. In Figure 4.10 (a), the time points when the satellite passes by close
to the Earth magnetic poles are marked with vertical gray lines.
One obtains a significant influence of the dipole magnitude onto the pointing error.
All statistics in this section are calculated from the settling time ts = 0.5 orbits un-
til the end of simulation tE = 2.6 orbits. While the pointing error without residual
dipole converges to a mean error µp,0 = 2.3◦ with a variance of σ2

p,0 = 0.9 deg2, with
a dipole magnitude of 55 mA m2 the mean pointing error increases to µp,55 = 22◦

with a variance of σ2
p,55 = 62 deg2. With higher dipole magnitudes, the controller

becomes unstable and is not able to align itself towards the sun. Another ob-
servation is the fact that the pointing error becomes smaller for dipole magni-
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Figure 4.10: Pointing error with respect to different residual magnetic dipole
moment magnitudes ||mres||, (a) without and (b) with compensation. The graphs
are smoothed using a moving average filter.

tudes ||mres|| ≤ 55 mA m2 when passing by close to the poles of Earth. The residual
dipole moment of MOVE-II affects the pointing error stronger when close to the
equator than close to the poles. We see furthermore that the mean pointing er-
ror for ||mres|| = 6.9 mA m2 with µp,6.9 = 2.7◦ is similarly low compared to the
case without a residual dipole, though the corresponding variance σ2

p,6.9 = 1.8 deg2

is doubled.

Figure 4.10 (b) shows the pointing error dependent on the magnitudes of the residual
dipole with the compensation activated and the for MOVE-II optimal compensation
factor C = 2. The same values for the dipole magnitudes as in Figure 4.10 (a)
and the same legend is used. Dipoles with magnitudes of up to 55 mA m2 can be
compensated. For low dipole magnitudes, the mean pointing error does not increase
significantly. For example, with ||mres|| = 21 mA m2 we obtain a mean pointing
error of µp,21,c = 2.6◦ with a variance of σ2

p,21,c = 0.9 deg2. The variance does
not increase and the mean pointing error increases only slightly compared to the
uncompensated case without a residual dipole. For ||mres|| = 55 mA m2 we obtain a
slightly higher mean pointing error µp,55,c = 3.1◦ with a variance of σ2

p,55,c = 3 deg2.
The compensation method reaches a limit for a dipole magnitude of 62 mA m2. We
obtain a mean pointing error of µp,62,c = 16◦ with a variance of σ2

p,62,c = 127 deg2.
However, the figure shows a converging trend in this case, whereas the same dipole
magnitude causes the controller to become unstable in the uncompensated case.
Increasing the dipole magnitude further, the controller becomes unstable even with
the compensation method.
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Figure 4.11: Comparing the mean pointing error and the corresponding standard
deviations with the compensation method to the uncompensated case with respect
to the magnitude of the residual magnetic dipole moment.

Figure 4.11 summarizes these results and adds more data points from simulation
runs with dipole magnitudes in the range of 0 to 55 mA m2. The mean pointing
error is plotted against the dipole magnitude for both cases with and without com-
pensation. The error bars visualize the standard deviation of the pointing error.
One obtains that small dipole magnitudes have no significant impact on the mean
pointing error, but starting from a dipole magnitude of 7 mA m2, the mean pointing
error increases linearly with the dipole magnitude, if not compensated. Using the
proposed compensation technique however, the dipole moment can be compensated
up to a value of 55 mA m2, which means that both the mean pointing error and
the standard deviation do not change significantly compared to the case without a
residual dipole up to this value.

These results come at a cost however. The actuation coils of the ADCS need more
current to compensate the dipole, which increases the power consumption of the
satellite. Figure 4.12 shows the total power consumption Pc of all three actuator
coils for varying dipole magnitudes for both cases, compensation deactivated and
activated. These results are also filtered by a moving average filter over 3e3 data
points which are sampled at a frequency of 10 Hz. One obtains that with an increased
dipole magnitude also the power consumption increases, even when compensation
is not active. With active compensation however, the power consumption increases
significantly. The coil power is calculated assuming a coil resistance of R = 13 Ω
and a coil driver loss of 30%. The control currents are increased accordingly, to
compensate for the loss of the coil driver. Taking this into account and the maximum
control current Imax = 0.3 A for each coil as stated in Section 2.5, this yields a
maximum possible effective power consumption of Pc,max = 1.7 W per coil.
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Figure 4.12: Power consumption of the actuator coils with respect to different
residual magnetic dipole moment magnitudes ||mres||, (a) without and (b) with
compensation. The graphs are smoothed with a moving average filter.

C Stat. 0 mA m2 6.9 mA m2 14 mA m2 21 mA m2 27 mA m2

0 µPc [mW] 32.7 41.4 68.9 115 178
Increase wrt.
||mres|| = 0 0% 26.6% 111% 251% 444%

2 µPc [mW] 32.7 45.9 85.1 150 241
Increase wrt.

C = 0 0% 8.70% 23.5% 31.0% 35.6%

Table 4.3: Mean power consumption of the coils without and with the compensa-
tion method for different magnitudes of the residual dipole moment mres.

Table 4.3 gives an overview over the mean power consumption µPc measured for dif-
ferent dipole magnitudes. The first line gives the mean power consumption in mW
without compensation, dependent on the dipole magnitude. The second line com-
pares each measurement to the value without residual dipole and without compen-
sation in the first row and first column. This provides information about how strong
an increase in the dipole magnitude affects the mean power consumption. While the
dipole magnitude increases linearly, the mean power consumption increases stronger.
The third row repeats the measurements with dipole compensation activated. The
fourth row compares each measurement with the corresponding value in row one.
This provides information about the additional cost of the compensation method,
when the dipole magnitude is fixed. For the estimated dipole of MOVE-II with
magnitude 6.9 mA m2, this means the dipole causes the actuator coils to increase
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their mean power consumption by 26.6%. Activating the compensation method, the
mean power consumption is additionally increased by 8.7%.
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Figure 4.13: The mean pointing error is evaluated for different directions of the
residual magnetic dipole for both (a) the Default Controller and (b) the Extended
LQR Controller. The result is plotted on the sphere at the direction of the dipole
in BF coordinates.

Figure 4.13 compares the impact of different directions of the residual dipole onto
the mean pointing error. Both controllers, the Default Controller and the Extended
LQR Controller, are evaluated. In total, 58 different simulations are performed per
controller, with the dipole direction varying around the unit sphere. The magni-
tude of the dipole is set to ||mres|| = 6.9 mA m2, as evaluated for MOVE-II. The
simulation lengths is 2500 s, and the pointing error is averaged over the complete
simulation time. Optimal initial conditions are applied, meaning that the initial
pointing error is zero and the spin rate is ωz = ωs. Thus, the settling time is zero
in these cases. The results show that the mean pointing error with the Default
Controller is strongly dependent on the direction of the dipole. With a stronger
Z component of the dipole, the pointing error increases. It ranges from 2◦ in
the X-Y-plane to 8◦ along the Z-axis. In contrast, with the Extended LQR Con-
troller the mean pointing error does not significantly vary with the direction of the
dipole.
In the following paragraphs we show that the in Section 4.3 proposed compensation
factor of C = 2 is indeed optimal for MOVE-II. Figure 4.14 compares the pointing
error and the coil power to different compensation factors, simulating with a residual
dipole of magnitude ||mres|| = 35 mA m2. The simulation, which converges towards
the lowest pointing error, is in fact the simulation with C = 2. The exact values of
the mean pointing error and its variance can be found in Table 4.4. Figure 4.14 (b)
shows that a higher compensation factor results in a higher power consumption for
the simulated setting. One obtains that there periodically appear points, where the
curves overlap. This means that at these points, the dipole has no effect on the



4.6. SIMULATION RESULTS OF THE EXTENDED LQR CONTROLLER 61

0 1 2

0

5

10

15

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in orbits, 1 orbit =̂ 5770 sTime in orbits, 1 orbit =̂ 5770 s

Comparison of Different Compensation Factors C

(a) Pointing Error (b) Coil Power

0
0.5
1.0
1.5
2.0
2.5
3.0

C
oi
l
p
ow

er
P
c

[W
]

P
oi
n
ti
n
g
er
ro
r
e p

[◦
]

Figure 4.14: Pointing error and coil power consumption with respect to different
compensation factors.

satellite and the controller does not need to compensate it. This happens when the
Earth magnetic field aligns with the residual dipole. Due to the calculation formula
for the magnetic control moment (2.32), currents which have no actuation effect are
suppressed automatically.

The same simulation is also performed with the measured dipole magnitude of
MOVE-II, namely ||mres|| = 6.9 mA m2. The results can also be found in Table 4.4.
When looking for an optimum compensation factor with regards to the pointing
error, one obtains C = 1.5 as an optimum and not C = 2.0. However, the pointing

||mres|| Statistic C = 0 0.5 1.0 1.5 2.0 2.5 3.0

6.9 mA m2 µp,6.9,c 2.71◦ 2.36◦ 2.19◦ 2.15◦ 2.26◦ 2.49◦ 2.86◦

σ2
p,6.9,c [deg2] 1.8 1.3 0.82 0.62 0.89 1.5 2.2

35 mA m2 µp,35,c 12.6◦ 9.29◦ 6.07◦ 3.22◦ 2.26◦ 4.35◦ 7.37◦

σ2
p,35,c [deg2] 23 13 6.0 2.3 0.91 5.1 12

0 mA m2 µp,0 2.25◦

σ2
p,0 [deg2] 0.87

Table 4.4: Mean pointing errors µp and corresponding variances σ2
p in dependency

of different compensation factors C and the magnetic dipole moment.
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error for C = 2 is very close to this result and the deviation is not statistically
significant. For a more convincing result, more simulation with different initial con-
ditions need to be performed. In conclusion we see that with a compensation factor
of C = 2 the mean pointing error and its variance do not change, regardless of the
dipole moments considered.

4.7 Discussion of the Results for the Extended

LQR Controller

The simulation results show that the Extended LQR Controller is an enhancement to
the ADCS. It shows a satisfying performance and outperforms the Default Controller
in every simulated aspect.
The way we design the gain KLQR forces the controller to prioritize for the pointing
error. In this sense, the design choice for the Default Controller in having the
weights related to the angular velocity five orders of magnitude greater than the
weights related to the sun vector, is a suboptimal choice. With design choices
closely oriented to the system requirements, the mean pointing error is decreased
by 0.7◦. This is an improvement of 23% with respect to the Default Controller.
Additionally, the convergence time of the pointing error is decreased significantly
from 25 min to 12 min with the Extended LQR Controller.
However, paying less attention to the angular velocity leads to the problem that the
satellite spins up around the intermediate principal axis for certain initial conditions,
such that the nutation torque becomes greater than the maximal possible control
torque. This results in an unstable motion and the satellite turns around 180◦ to
anti-sun-pointing. While it can be observed from selected simulation runs that the
satellite is able to reach a sun pointing state eventually, a lot of energy is wasted
during this process, and the solar panels are rotated away from the sun. Energy
however is a critical and limited resource in space. The probability of 20% for this
behavior to occur is high.
Considering this, the results of the Monte Carlo simulation are not satisfying. But
they also show that the Extended LQR Controller is an improvement to the Default
Controller nonetheless. Apart from introducing this new problematic behavior, the
total number of converging and slow converging runs in the Monte Carlo simulation
with 100 testruns increases from 69 to 80 with the Extended LQR Controller. In
addition, the slow converging runs with the Extended LQR Controller are less critical
than with the Default Controller. While the slow converging runs of the Extended
LQR Controller achieve a low pointing error within 10 min and only show a pointing
error peak with a maximum observed pointing error of 60◦ for about 10 min, the
slow converging runs with the Default Controller do not reach a satisfying pointing
error for the first 40 min.
It is also advantageous to use the true inertia tensor for the system matrices, instead
of the diagonal approximation. With this step, the nutation torque is included into
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the model and the LQR algorithm pays attention to this torque when optimizing
for a minimal cost functional. It is assumed that this measure reduces the pointing
error fluctuation of ±1.3◦ in average with the Default Controller to only ±0.55◦ in
average with the Extended LQR Controller.
With regards to the angular velocity it is obtained that the Extended LQR Controller
drives the ωx and ωy components fast towards zero, as does the Default Controller.
But the Extended LQR Controller utilizes its freedom with respect to ωz to achieve
a low mean pointing error and to converge fast with respect to the pointing error.
The Default Controller on the other hand never deviates much from the target spin
rate ωs. Thus the Extended LQR Controller fulfills all design goals. It minimizes the
pointing error fast while obtaining a spin stabilization. The spin rate is corrected
only when the magnetic field of Earth allows for corrections along the Z-axis. The
spin rate ωs = 0.1 rad/s is found to be reasonable for MOVE-II. It provides enough
safety margin to the unstable gain matrices with characteristic multipliers greater
than 1, and it is still small enough such that the nutation torque is low around the
operation point.
The Monte Carlo simulation also shows that the hysteresis of ±20% for the op-
eration point switching strategy is sufficient. No simulation runs with an oscilla-
tion around ωz = 0 is observed, and the oscillating behavior for initial conditions
with ωz < 0 is eliminated.
Furthermore, simulations show that the residual magnetic dipole has a significant
impact onto the Default Controller. Especially a dipole moment along the Z-axis
increases the pointing error. With the dipole compensation it is possible to com-
pensate the effect of the dipole for magnitudes of up to 55 mA m2. This is a strong
dipole moment, considering that the Default Controller is designed to achieve a low
pointing error in the presence of a dipole moment of about 20 mA m2. This is only
achieved by tuning it heuristically.
The improved sun pointing with the dipole compensation method comes at the cost
of an increases the power consumption. However, the main cause for the power
consumption is the presence of the dipole itself, and the way the controller has to
deal with it. For low dipole magnitudes, the additionally power consumption is in
the range of a few mW.
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Chapter 5

Evaluating Nonlinear Control
Strategies

In Sections 3.3.2 and 4.6.2 it becomes clear that linearized control laws are not
able to converge from any initial condition to the desired attitude in an appropriate
amount of time. Much research therefore deals with nonlinear controllers for the
satellite attitude to ensure a successful attitude maneuver from an arbitrary initial
condition.
This chapter is organized as follows: First, in Section 5.1 related work about nonlin-
ear controllers for the attitude control problem of CubeSats is presented. The section
concludes that controllers based on Lyapunov functions are advantageous for the spe-
cific problem of this thesis. Three controller for further analysis are selected, namely
the Delta-H, the JC2Sat and the Modular Controller. Then, the theoretical concept
of Lyapunov stability and the theorem of Lyapunov are presented in Section 5.2.
Sections 5.3 to 5.5 present the Delta-H Controller, the JC2Sat Controller and the
Modular Controller in more detail. Finally, Section 5.6 presents the simulation re-
sults of the nonlinear controllers and evaluates their performance. We analyze their
convergence behavior and compare their pointing accuracy after convergence with
those of the linearized controllers. Furthermore, a Software-in-the-Loop (SiL) and
a Hardware-in-the-Loop (HiL) simulation are performed for the Delta-H Controller
in order to show that this control law performs as expected on the flight hardware
and therefore can be implemented on MOVE-II.

5.1 Related Work

Shen and Tsiotras [ST99] propose an algorithm for numerically solving the time
optimal control problem for a maneuver from an arbitrary attitude and an arbitrary
angular velocity around a spin axis to a target attitude and a target angular velocity.
This algorithm can be applied to spin stabilized satellites. An optimal trajectory is
computed by solvers for the described boundary value problem. The drawback of this
method is the high computational complexity, which makes it hard to calculate it on
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board. Also no disturbances nor sensor feedback during the maneuver is considered,
which makes the controller sensitive to disturbances. This is critical especially for
CubeSats, where the disturbances are high compared to passive stabilizing effects
like spin stabilization or gravity gradient stabilization.
Biggs and Horri [BH12] propose an algorithm with similar goals, which features an
analytical solution. This decreases the computational complexity and they propose
their algorithm suitable for on-board calculation. They also show how to track mo-
tions using an augmented quaternion feedback law. They assume, however, that the
satellite features reaction wheels, which allow to generate torques in any direction, as
opposed to magnetic actuation where torques can be generated only perpendicular
to the magnetic field.
Louembet et al. [LCZ+09] take a different approach. They transform the nonlinear
optimal control problem into a geometric programming problem. One advantage
of their approach is that they allow for an arbitrary inertial tensor with diagonal
entries, like the inertia tensor of MOVE-II. However, they also assume that the
satellite is able to use reaction wheels, which is not the case for MOVE-II.
One method focusing specifically on satellites depending on magnetic actuation im-
plements a neural network in order to deal with the nonlinearities. Sivaprakash and
Shanmugam [SS05] present a two layer neuronal network, which receives the system
state, consisting of the attitude quaternion, the angular velocities and their deriva-
tives, as input and calculates the control currents for the coils as output. They
train the weights of the neural network with backpropagation, using data generated
from conventional proportional-derivative controllers for different initial conditions.
While the results look promising, there is no thorough analysis of convergence for
arbitrary initial conditions and no proof of stability.
There are other researches, however, which focus on or include magnetic actuation
and which have a sound theoretical foundation [RC01, dR11, OB12]. This chapter
focuses on these concepts specifically. The Global Spin Rate Controller proposed by
Reynolds and Creamer [RC01] and the JC2Sat Controller described by De Ruiter
are based on Lyapunov functions. Ousaloo and Badpa [OB12] do not state a Lya-
punov function for their modularly constructed control law, which we call Modular
Controller. However, a corresponding Lyapunov function for the derived controller
can be constructed, and therefore stability can be proven. While the Global Spin
Rate Controller is able to spin the satellite around its major principle axis only, more
recent research by Shah [Sha11] extends this controller with the possibility to define
a specific rotation axis for the satellite. Shah calls his algorithm Delta-H Controller.
Therefore, the Delta-H Controller and the Global Spin Rate Controller are treated
together in this chapter. All these controllers have one common drawback, however,
which is the assumption that either the inertia tensor is diagonal or the spin axis is
identical to a principal axis of inertia.
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5.2 Lyapunov Stability

Stability always refers to an equilibrium point x∗, which is any point in the system
domain where the time derivative of the state vector ẋ equals zero. It is easy to
see that the desired operation point (2.25) is an equilibrium point for the nonlinear
system with system equations (2.11) and (2.21), when the nutation torque τn is
considered as an additional disturbance torque instead of considering it as a part
of the system equations. This assumption can be safely made since all control laws
evaluated in this chapter assume an operation point where τn = 0.

An equilibrium point x∗ of a system is stable according to Lyapunov [Kha02], if a
trajectory starting close to x∗ stays close to x∗ for all t > t0. This is the case, if for
each ε > 0 there is a δ = δ(ε) > 0 such that

||x(0)− x∗|| < δ =⇒ ||x(t)− x∗|| < ε, ∀t ≥ 0. (5.1)

The equilibrium point is asymptotically stable, if a trajectory starting close to x∗

converges to x∗ eventually. This is the case if x∗ is stable and there is a δ such that

||x(0)− x∗|| < δ =⇒ lim
t→∞

x(t) = x∗. (5.2)

Lyapunov proposes a method to test stability for an arbitrary equilibrium point,
which we call the theorem of Lyapunov [Kha02, p. 114]. This theorem is based on
the consideration of the potential energy in the system. When the potential energy
is zero, the system must be at rest. This means that the equilibrium point must
be asymptotically stable, if the potential energy is strictly monotonically decreasing
and becomes zero at the equilibrium point. It is not always simple or even possible
to construct such an energy function however. Lyapunov shows that it is sufficient
to find a pseudo energy function V (x) which replaces the potential energy function.
The theorem of Lyapunov states that the equilibrium point x∗ is asymptotically
stable, if there is a positive definite pseudo energy function V (x−x∗) such that the
time derivative V̇ (x) is negative definite. Any pseudo energy function V (x) fulfilling
these criteria is called Lyapunov function.

5.3 Delta-H Controller

This section presents the Delta-H Controller introduced by Shah [Sha11]. The foun-
dation for this controller is the Global Spin Rate Controller proposed by Reynolds
and Creamer [RC01]. They introduce an approach which provides nutation, preces-
sion and spin rate control within a single control law, which only depends on the
angular velocity rate error. This is convenient to implement, since the ADCS can
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measure this value directly. The control law is based on a Lyapunov function and
its time derivative

VG =
1

2
· (hb − hd · sb)T(hb − hd · sb) +

1

2
· (hb)T(λmax · (Ib)−1 − 13×3)hb (5.3)

V̇G = λmax · (ωb
ib − ωd · sb)Tτ b

c , (5.4)

which guarantees the convergence to a unique global minimum in the specified cost,
where λmax is the maximum eigenvalue of the inertia tensor Ib and hd is the desired
magnitude of the angular momentum hb in the direction of the sun vector sb. The
first term of VG implies that the spin axis of the satellite aligns with the sun vector
after settling, and the second term implies that the satellite spins around its major
principle axis after settling. When these two criteria are fulfilled, the Lyapunov
function becomes zero.

The time derivative is calculated under the assumption that the desired spin axis of
the spacecraft is the major principle axis of inertia, therefore ωd = hd/λmax is the
desired magnitude of the angular velocity in the direction of the sun vector. For
MOVE-II we chose the value evaluated in Section 4.1 as desired spin rate ωd = ωs.
It is assumed that the control torque τ c is the only torque acting on the satellite,
disturbances are not considered for stability analysis.

Reynolds and Creamer show that VG is indeed a Lyapunov function, when choosing
a control law such that the control torque always points in the opposite direction of
the rate error vector (ωb

ib − ωd · sb). For a magnetic actuated satellite, the authors
state that this is the fact when choosing the magnetic control dipole moment such
that

mb
c = k · sign((ωb

ib − ωd · sb)× bb), (5.5)

where k is an arbitrary positive constant. The function sign(x) is defined as

sign(x) =

{
−1 if x < 0

+1 else
(5.6)

and is applied component wise for vectorial input. Due to this sign function, the
control law is a discrete control law with respect to the direction of mb

c . The control
dipole moment can only take 23 = 8 different directions.

Shah [Sha11] however shows that this control law has an ambiguity in attitude.
Instead of spinning around an axis with angular velocity ωd and pointing this axis
towards the sun vector, it is also possible that the satellite spins around an axis
with angular velocity −ωd and points away from the sun vector. Both constella-
tions make VG zero. Therefore Shah introduces another term, appending it to the
Lyapunov function, in order to solve this ambiguity. He specifies a spin axis pb,
around which the satellite has to rotate and which is constant in the BF. Therefore
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the rotation axis of the satellite is well defined and the Lyapunov function of the
Delta-H Controller becomes

VD =
kD,1

2
· (hb − hd · sb)T(hb − hd · sb) +

kD,2

2
· (hb − hd · pb)T(hb − hd · pb) +

kD,1 + kD,2

2
· (hb)T(λmax · (Ib)−1 − 13×3)hb (5.7)

V̇D = λmax · (kD,1 + kD,2) ·
(
ωb

ib − ωd ·
kD,1 · sb + kD,2 · pb

kD,1 + kD,2

)T

τ b
c . (5.8)

As proposed by Shah, the tuneable gains kD,1 and kD,2 are chosen such
that kD,1 + kD,2 = 1, where kD,1 ∈ [0; 1] is the free variable and kD,2 is defined
as kD,2 = 1− kD,1. The time derivatives of VD and VG are obtained in a similar
manner and under the assumption that the desired spin axis of the of the spacecraft
is the major principle axis. A step by step derivation is found in [Sha11].
Shah provides no control law for magnetically actuated satellites. He assumes that
the spacecraft features reaction wheels. However, similar to the considerations of
Reynolds and Creamer, a control law for magnetically actuated spacecrafts can be
derived from the Lyapunov function. To stabilize the operation point, a control
dipole moment

mb
c = gD · sign(eb

c,D × bb) (5.9)

with control error vector

eb
c,D = ωb

ib − ωd · (kD,1 · sb + kD,2 · pb) (5.10)

is selected, which ensures that the satellite points the angular momentum axis to-
wards the sun and rotates around the specified body axis pb. With this new vari-
able pb it is possible to select a different axis than the major principle axis as spin
axis. For MOVE-II we chose the spin axis pb = (0, 0, 1)T to be the positive Z-axis.
This means, however, that VD becomes not zero at the operation point due to the
nutation reduction term (hb)T(λmax ·(Ib)−1−13×3)hb and strictly speaking VD is not
a Lyapunov function any more. Since the principal moments of inertia of MOVE-II
are about the same size in numbers due to the cubic shape of the satellite and the
desired spin axis is close to a principal axis of inertia, it is assumed that this control
law will work good enough in practice.
The gain factor gD in (5.9) extends the original Delta-H controller. It must always
be positive, in order for the resulting control dipole moment to be stabilizing. If gD is
a constant, due to the sign function returning only the values 1 or −1, the controller
generates a constant control dipole moment at all times. This resulting bang-bang
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control is not energy efficient. In an example for the Global Spin Rate Controller,
Reynolds and Creamer propose a gD which becomes smaller with a smaller pointing
error. In the scope of this thesis, however, a different approach is taken. Assuming
that the control error eb

c,D aligns with the magnetic field bb, then the cross product
becomes zero and small random fluctuations in the measurements cause the control
dipole moment to flip the sign. The closer the angle between eb

c,D and bb, the less
effective is the resulting mb

c and the greater is the influence of sensor noise. The
gain factor

gD = (||b̂b × êc,D|| · sD + bD) ·mc,max · c (5.11)

accounts for this by scaling down the control dipole moment mb
c depending on the

angle between eb
c,D and bb. The constant mc,max = Imax ·nc ·Aeff is the maximum pos-

sible control moment for every coil. Control moments exceeding this value are limited
to mc,max automatically by the MOVE-II firmware. The values b̂b and êb

c,D describe

the normalized vectors of bb and eb
c,D respectively. The expression ||b̂b × êb

c,D|| is
identical to sin(α), where α ∈ [0◦; 180◦] is the angle between eb

c,D and bb. The
scaling factor sD = 1.6 and the bias bD = 0.2 are chosen such that

gD ≥ mc,max for 30◦ ≤ α ≤ 150◦, (5.12)

gD = 0.2 ·mc,max if α = 0◦ or α = 180◦. (5.13)

Therefore, if the error vector direction is close to the magnetic field direction and
thus the direction of mb

c is prone to errors due to noisy measurements, the control
dipole moment is reduced. The factor c = 1 · A m2 s

rad T
in (5.11) corrects the unit

mismatch in (5.9) between mb
c and the result of the sign function.

The tuning value kD,1 = 0.015 is found heuristically with the help of several simu-
lations. Increasing the value of kD,1 puts more weight on the pointing error while
at the same time decreasing the weight of the angular velocity error. For values
above 0.75, the characteristic of the Delta-H control law approaches the character-
istic of the Global Spin Rate Controller. The influence of the term defining the spin
axis is low, which causes the satellite to spin around a different axis more easily. For
values of kD,1 below 0.001, the influence of the term driving the spin axis towards
the sun vector is too low, which causes the pointing error to increase after conver-
gence. Varying kD,1 between these two boundary values has no significant impact

Parameter Value

kD,1 0.015
sD 1.6
bD 0.2

Table 5.1: Default tuning parameters for the Delta-H Controller.
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onto the controller performance. However, it is obtained that low values tend to re-
sult in a decreased settling time, therefore a value from the lower range is selected.
Appendix B.1 provides the results of the simulations leading to this decision.
The default gains and tuning parameters for this controller as used for simulations,
if not stated otherwise, are summarized by Table 5.1.

5.4 JC2Sat Controller

This section introduces the controller used by the Japan Canada Joint Collaboration
Satellite-Formation Flying (JC2Sat-FF) mission as presented by De Ruiter [dR11].
This mission launches two nano satellites, each with a mass of 15 kg. These satellites
rely solely on magnetic actuation like MOVE-II and the mission goals are similar.
Spin stabilization is required as well as pointing the spin axis towards an inertially
fixed point. The control law is derived from a Lyapunov function and its time
derivative

VJ =
1

2
· [(hb − hd · sb)T(hb − hd · sb) + kJ,1 · (hz − hd)2 + kJ,2 · (ωb

ib)TPIbωb
ib]

(5.14)

V̇J = [(hb − hd · sb) + kJ,1 · (hz − hd) · (0, 0, 1)T + kJ,2 ·Pωb
ib]Tτ b

c (5.15)

with P =

1 0 0
0 1 0
0 0 0


and where hz describes the Z component of the angular momentum vector hb. VJ is
adapted for a spin around the Z-axis of the satellite, De Ruiter proposes originally a
controller designed for a spin around the Y-axis. De Ruiter shows that the resulting
control dipole moment

mb
c =

kJ,0

||bb||2 · e
b
c,J × bb (5.16)

calculated from the control error

eb
c,J = (hb − hd · sb) + kJ,1 · (hz − hd) · (0, 0, 1)T + kJ,2 ·Pωb

ib (5.17)

is asymptotically stabilizing the operation point, even under the failure of up to two
coils and in presence of coil saturation. To show this he assumes an orbit not lying
in the equatorial plane of Earth. This assumption is justified for MOVE-II.
The tuneable gains kJ,0, kJ,1 and kJ,2 characterize the behavior of the controller.
Increasing kJ,0 decreases the convergence time. A high value of kJ,0 however results
in a bang-bang controller, which increases the convergence time. In simulations, a
value of kJ,0 = 0.008 · 1/s is found to provide reasonable magnitudes of the control
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current. In order to converge to a spin around the desired body axis, the term
amplified by kJ,1 is needed. Simulations show that changing this value does not
change the behavior of the controller significantly, as long as the value is greater
than 1. De Ruiter states that a low value for kJ,1 is sufficient, therefore kJ,1 = 5 is
chosen. The term amplified by kJ,2 provides nutation damping. De Ruiter states
that some nutation damping is needed, but a high value of kJ,2 is counterproductive.
This observation is confirmed by simulations with MOVE-II. For kJ,2 < 0.01 kg m2

the angular velocity components ωx and ωy are not damped effectively which results
in an increased pointing error. Values of kJ,2 > 0.2 kg m2 slow down the pointing
error convergence, since the controller does not allow for high angular velocities in
the X- and Y-direction, which are needed to adjust the Z-axis correctly. A value
of kJ,2 = 0.1 kg m2 shows a satisfying performance for MOVE-II. Appendix B.2
provides the simulation results on which these decisions are based. The value for hd,
which, unlike with the Delta-H Controller, appears in the control law, is obtained
from the operation point as hd = ||Ib · ωs(0, 0, 1)T||.
De Ruiter also shows that the satellite converges to the specified attitude, when the
tuneable gains fulfill the criteria

kJ,1 > 1 (5.18)

kJ,2 > 0 (5.19)

VJ < VJ.max = 2 · kJ,1

kJ,1 + 1
· h2

d. (5.20)

Criteria (5.18) and (5.19) are fulfilled. Criterion (5.20) is also fulfilled for MOVE-II
in all relevant cases. This is because MOVE-II features a detumbling controller,
which reduces its angular velocity to a magnitude ||ωb

ib|| below 0.15 rad/s, be-
fore the attitude controller is activated. Due to the low weight of MOVE-II, the
inertia tensor features low values and the initial values of VJ are approxi-
mately of magnitude 10−6 kg2 m4 s−2 for the worst case scenario. In contrast
to VJ,max = 0.017 kg2 m4 s−2 the typical initial value of VJ is several magnitudes
lower and criterion (5.20) is fulfilled. A more than worst case approximation
with the maximum magnitude of the angular velocity as angular velocity
value in every axis ωb

ib = −(0.15, 0.15, 0.15)T rad/s and sb = (0, 0, 1)T resulting
in VJ = 7.7e-6 kg2 m4 s−2 underlines this observation. This means, MOVE-II always
ends up in the desired configuration utilizing this control law.
Table 5.2 summarizes the tuning gains which are used in simulations with the JC2Sat
Controller per default.

Parameter Value

kJ,0 0.008 s−1

kJ,1 5
kJ,2 0.1 kg m2

Table 5.2: Default tuning parameters for the JC2Sat Controller.
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5.5 Modular Controller

Ousaloo and Badpa [OB12] present an algorithm to control the spin rate, the nuta-
tion and the spin axis individually. To every coil located on each axis of the satellite
an individual control law is applied with different goals. They propose two different
control laws and both have to be applied to a number of coils simultaneously, since
the spin rate and the spin axis control influence each other through side effects and
vice versa. Due to this modular character, we name this controller the Modular
Controller.
The authors build this controller with fail safety in mind. It is most efficient to
control the spin axis with the coil placed along the spin axis. The other two trans-
verse coils are controlling the spin rate. When the axial coil fails however, one of
the transverse coils takes over to control the spin axis instead. Therefore, they show
that full attitude and spin rate control can be obtained even when the axial coil is
shut off.
They also propose a mode to speed up the attitude acquiring process. When ad-
ditionally to the axial coil one transverse coil is used for spin axis control, the
convergence time can be reduced.
They propose the control laws

mR,i = mc,max · ai ◦ sign((hb − hd · pb)× bb) (5.21)

mA,i = mc,max · ai ◦ sign((ĥb − sb)× bb), (5.22)

where for every coil i with alignment axis ai one of the control moments mR,i or mA,i

is selected. The vector ĥb describes the normalized angular momentum hb, the vec-
tor pb = (0, 0, 1)T is the desired spin axis fixed in the BF and mc,max is the maximum
momentum which each coil can generate. The spin rate control moment mR,i ac-
quires the desired spin rate around the body axis pb, while the attitude control
moment mA,i points the spin axis towards sun. From these two laws a third control
law, the combined control moment

mC,i = mc,max · ai ◦ sign((hb − hd · pb + ĥb − sb)× bb) (5.23)

can be constructed, which combines both goals within one control law. Due to the
sign functions, these control laws are also discrete with respect to direction, like the
control law of the Delta-H Controller. Since the control moments always take the
magnitude mc,max, this control law implements a bang-bang controller.
To show that these control laws are stabilizing the operation point, consider the
Lyapunov functions

VR = 1/2 · (hb − hd · pb)T(hb − hd · pb) (5.24)

VA = 1/2 · (ĥb − sb)T(ĥb − sb) (5.25)

VC = VR + VA (5.26)
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and their derivatives

V̇R = (hb − hd · pb) ◦ τ b
c (5.27)

V̇A = (ĥb − sb) ◦ τ b
c (5.28)

V̇C = (hb − hd · pb + ĥb − sb) ◦ τ b
c . (5.29)

The derivative of VC follows from linearity of the derivative and the dot product. The
derivative of VR is shown by Ousaloo and Badpa under the assumption that the iner-
tia tensor is diagonal, and the derivative of VA follows similarly. With τ b

c = mb
c × bb

it follows that the control moments mR,i, mA,i and mC,i make the corresponding
derivatives negative and therefore stabilize the operation point.
Depending on the selection of the control law for every coil, different modes can be
defined. Table 5.3 gives an overview of the considered modes. To every coil located
at the X-, Y- and Z-axis, one control law is assigned.

Mode Control Moment mb
c

Mode 1 (mR,x,mR,y,mA,z)
T

Mode 2 (mR,x,mA,y,mA,z)
T

Mode 3 (mR,x,mR,y,mC,z)
T

Mode 4 (mC,x,mC,y,mC,z)
T

Table 5.3: Assigment of control laws to every coil located on the axes X, Y and Z
for the different modes.

Mode 1 is proposed by Ousaloo and Badpa for nominal operation. The axial coil,
which is the coil aligned with the Z-axis for MOVE-II, is used for attitude control,
while the transverse coils are used for spin rate control. Mode 2 is the proposed
acceleration mode, which speeds up the convergence of the spin axis towards the
sun. Therefore, the transverse coil located on the Y-axis is assigned the attitude
control moment mA,y. Mode 3 and 4 utilize the combined control moment mC,i,
proposed by the author of this thesis. Mode 3 enhances the focus on angular velocity
control by replacing the attitude control moment for the axial coil with the combined
control moment. This increases the capability of the controller for nutation damping.
Mode 4 assigns to every coil the combined control moment and therefore accounts
for spin rate and attitude control equally.
Simulations show, that Mode 3 is advantageous over the other modes, thus this mode
is used for further simulations. Appendix B.3 contains the results of the simulations
which leads to this decision.

5.6 Simulation Results

This section evaluates the performance of the nonlinear controllers and compares
them to the Default Controller and the Extended LQR Controller. Section 5.6.1
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evaluates the convergence of the nonlinear controllers with respect to initial condi-
tions in a Monte Carlo simulation. Section 5.6.2 analyzes the long-term performance
of linear and nonlinear controllers. It is also evaluated, how the sensor noise and
the estimation error affects the performance of the controllers. Finally, Section 5.6.3
concludes with the SiL and HiL simulation results of the Delta-H Controller.
The residual magnetic dipole compensation, the actuation at low currents and the
use of the EKF introduced in Chapter 4 for the Extended LQR Controller are also
utilized for the nonlinear controllers.

5.6.1 Sensitivity to Initial Conditions

In this section the convergence behavior of the nonlinear controllers is evaluated. A
Monte Carlo simulation with n = 100 testruns and a simulation time of 2500 s is
performed for the randomly initialized values qib,0 and ωb

ib,0. Like in previous Monte
Carlo simulations, the initial attitude takes any possible values of a unit quaternion
while the initial angular velocity takes values with magnitudes of up to 0.085 rad/s
in each axis.
Figure 5.1 presents the results. Part (a) shows the pointing error ep and the angular
velocity in Z-direction ωz for runs with the Delta-H Controller, part (b) and (c) with
the JC2Sat and the Modular Controller respectively. The graphs for the pointing
error are smoothed with an moving average filter of window size 500 for data points
sampled at a frequency of 10 Hz.
One obtains that the Delta-H Controller is the only one for which all 100 simulation
runs converge below a pointing error of 15◦. The convergence time is strongly
dependent on the initial conditions. Most runs show a convergence time of less
than 25 min (=̂ 0.26 orbits), equal to the convergence time for the Default Controller.
However, after only 12.5 min (=̂ 0.13 orbits), several runs are not converged, which
equals the convergence time of the Extended LQR Controller.
With the JC2Sat Controller, two things are observed. Firstly, the runs which are
converging show the lowest pointing error among all three controllers. And secondly,
there is a significant amount of runs, which do not converge within the simulation
time. These runs show also a negative Z component of the angular velocity ωz.
This behavior looks similar to the behaviors b2 and b3 observed with the Default
Controller in Section 3.3.2.
Figure 5.2 analyzes three testruns with the JC2Sat Controller during an extended
simulation time of 1.5 orbits with initial conditions that lead to a not converging
behavior in the Monte Carlo simulation. The reason, why these runs do not converge
at first can be seen by the control error angle βe, which is the angle between the
control error (5.17) and the magnetic field vector bb. When these two vectors align,
the angle between them is either 0◦ or 180◦ and the cross product in (5.16) becomes
zero. From the graph of βe it becomes clear that the controller maneuvers itself into
a deadlock which it is not able to leave within a reasonable time span. While the
magnetic field vector is rotating along the orbit, the control error is rotating in the
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Figure 5.1: Results of the Monte Carlo Simulation with n = 100 testruns for
the Delta-H (a), the JC2Sat (b) and the Modular Controller (c) with orbit pe-
riod T = 5770 s. The pointing error is smoothed with a moving average filter.

same manner, which keeps the control error angle constant. The two runs r2 and r3

however converge eventually. Figure 5.2 shows that the control error angle leaves
the deadlock after approximately 0.8 orbits and 1.4 orbits respectively for those two
runs. This means that the controller is able to produce a control moment again,
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Figure 5.2: Analysis of three testruns with the JC2Sat Controller with initial
conditions such that the pointing error ep does not converge within half an orbit.
The value βe describes the angle between the magnetic field vector bb and the
control error vector eb

c,J, and VJ is the Lyapunov function.

which decreases the pseudo energy function VJ immediately by a large factor. The
operation point of ωz is obtained eventually and the pointing error starts to decrease.
It is not for certain however, that the controller leaves the deadlock eventually. The
two runs r1 and r3 have similar initial conditions and show similar trajectories of ωz

and ep. However, r1 does not converge and remains in the deadlock scenario for the
complete simulation time, while r3 is able to converge eventually, at which point the
trajectories of r1 and r3 start to diverge.
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Figure 5.3: The number of testruns for which the average pointing error µp over
the last 500 s lies below a certain upper limit.
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The Modular Controller shows convergence for all 100 simulation runs. The pointing
error after convergence varies greatly. The majority of runs converge to a pointing
error of less than 45◦, and the operation point of the angular velocity is obtained.

Table 5.4 shows a summary for the results of the Monte Carlo simulation. For
each controller an average pointing error µp over the last 500 s in the Monte Carlo
simulation is calculated. The value µp,n shows the mean value of these average
pointing errors over all n = 100 simulation runs, and σ2

µp,n is the corresponding
variance. Furthermore, the number of runs for which the average pointing error µp

converges to a value lower than 5◦ and 10◦ respectively is given, which are the
pointing errors limits specified by the MOVE-II requirements, as well as the total
number of the converging testruns. Figure 5.3 illustrates this data. The graphs show
for each of the nonlinear controllers how many runs converge to a pointing error of
less than a specific value µp.

Controller µp,n [◦] σ2
µp,n [deg2]

Runs with
µp below 5◦

Runs with
µp below 10◦

Converging
runs

Delta-H 4.46 4.98 62 97 100

JC2Sat-FF 4.63 235 75 76 78

Modular 20.6 253 15 33 100

Table 5.4: Statistics of the Monte Carlo simulation with n = 100 testruns for the
nonlinear controllers.

5.6.2 Long-Term Behavior and Noise Sensitivity

This section analyzes the long-term behavior of the nonlinear controllers and com-
pares them to the behavior of the Default Controller and the Extended LQR Con-
troller.

A simulation with standard initial conditions is performed for the time of four orbits.
Figure 5.4 shows the results. Part (a) shows the pointing error ep for a simulation
with standard settings. Also the estimation error ee is presented. This is the angle
between the true sun vector sb and the sun vector sb

meas that is obtained by the
satellite through sensor measurements and, if activated, processed by the EKF.

Part (b) repeats the simulation from (a) but with deactivated sensor models. This
implies ee = 0 and the satellite obtains the environment through ideal sensors, where
the sun vector is available even during eclipse. All other disturbances discussed in
Section 2.6 are still simulated. This setup is not realistic, but a comparison to
the scenario with activated sensor models reveal how sensor distortions affect the
control algorithm. Furthermore a best case approximation can be obtained for each
controller in this idealized scenario.

In Figure 5.4 (a) in the estimation error diagram, the time when the satellite is in
eclipse is visualized by gray areas during this time span. It can be seen that the



5.6. SIMULATION RESULTS 79

(a) Long-Term Simulation with Sensor Models
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Figure 5.4: Results of the long-term simulation (a) with and (b) without sensor
models. The grayed out area visualizes the time during eclipse, and the vertical
dashed lines visualize the time points when the satellite passes close by to the
poles of Earth. The legend is valid for both parts of the figure. The graphs
for the pointing error ep and the estimation error ee are smoothed out using an
moving average filter.

estimation error centers around ee ≈ 0.25◦ when the sun is visible and peaks at
about ee ≈ 1.5◦ in eclipse.
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With sensor models Without sensor models
Controller µp [◦] σ2

p [deg2] µp [◦] σ2
p [deg2]

Delta-H 3.3 2.3 1.4 0.60
JC2Sat 3.0 2.0 1.8 0.29
Modular 10 99 3.1 5.6
Extended LQR 3.0 0.38 0.60 0.073
Default 5.8 4.3 1.8 0.73

Table 5.5: Statistics of the long-term simulation. For both a simulation with
and without sensor models the average pointing error µp and the corresponding
varricance σ2

p is given.

The graphs for the pointing error, which is sampled at 10 Hz, in Figure 5.4 is
smoothed with a moving average filter of window size 5000, while the estimation
error is sampled at a frequency of 100 Hz and a moving average filter with window
size 5e4 is applied.

Table 5.5 accompanies Figure 5.4 and provides the average pointing error µp and
the corresponding variance σ2

p over the last two orbits. The variance of the pointing
error is a measure of how much the pointing error is fluctuating, caused through
nutation and other disturbances.

From the results it can be seen that the Extended LQR Controller shows the low-
est average pointing error and the lowest variance. All nonlinear controllers show
a higher variance and two of them show a higher pointing error. The Extended
LQR Controller is sensitive to sensor noise however. The simulation without sensor
models leads to a significantly reduced average pointing error and variance. From
Figure 5.4 (b) it can be seen that the Extended LQR Controller obtains such a
low pointing error by a relaxed handling of the angular velocity. This results in
an observable fluctuation of ωz. This is exactly what is intended by designing this
controller. It is also obtained that a change in ωz occurs four times per orbit, where
the changing points coincide with the points where the satellite passes close by the
poles and the equator.

The Modular Controller has the highest average pointing error and the highest
variance among the analyzed controllers. In the presence of sensor noise the pointing
error is too high to be visible in Figure 5.4 (a). The behavior of this controller in
presence of sensor noise can be seen in Appendix B.3. In absence of sensor noise
however, the controller fulfills the must requirement of MOVE-II. The pointing error
stays below 10◦ for the time of three orbits.

The JC2Sat Controller shows a similar behavior to the Extended LQR Controller
in the presence of sensor noise. It shows a reduced average pointing error and
variance compared to the Default Controller. It also fulfills the should requirement
of MOVE-II, since the pointing error stays below 5◦ after convergence.
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The Delta-H Controller shows a slightly increased pointing error and variance com-
pared to the JC2Sat Controller. It fulfills the must requirement, but not the should
requirement for MOVE-II. Between orbits 2 and 3 it shows a peak in the pointing
error of about 6◦. Using the Delta-H Controller instead of the Default Controller
results in a decreased average pointing error and variance.
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Figure 5.5: Visualizing the pointing error and standard deviation of the previously
analyzed controllers.

Figure 5.5 wraps up the results. The controllers are sorted from left to right with
ascending average pointing error. The error bars visualize the standard deviation of
the average pointing error. Due to the big value of the standard deviation for the
Modular Controller, the corresponding error bar is cut off at the upper part.

5.6.3 HiL Verification of the Delta-H Controller

In the previous section we stated that the Delta-H Controller has a smaller average
pointing error and a lower pointing error fluctuation than the Default Controller.
Furthermore, the Delta-H Controller solves the problem of not converging runs with
arbitrary initial conditions. It is therefore an appropriate candidate to be imple-
mented on the MOVE-II satellite. In order to verify if the control law is able to
run on the flight hardware with limited calculation capacity, less numeric precision
and in interaction with the other firmware parts, a HiL simulation is performed. A
detailed description of the HiL setup is provided by Kiesbye [Kie17].
The control law of the Delta-H Controller is first implemented in C++. To check
the correctness of the implementation, this C++ function is embedded into the
Matlab simulation, where it replaces the Matlab implementation of the Delta-H
Controller within a SiL simulation. Then the C++ implementation is embedded
into the existing firmware of MOVE-II, which is flashed onto a hardware setup
which equals the flight hardware. Via a network connection, the Matlab simulation
sends the virtual sensor measurements to the HiL hardware, which calculates the
control currents and sends them back to the Matlab simulation.
Figure 5.6 illustrates the results, comparing the pointing error and the Z component
of the angular velocity for the Matlab implementation and for the C++ implemen-
tation in a SiL and HiL setup. For all simulations the residual magnetic dipole
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Figure 5.6: Comparing the Matlab implementation of the Delta-H Controller with
the C++ implementation in a SiL and HiL setup.

compensation is used, with an overcompensation of the residual magnetic dipole
by 20% in order to simulate the estimation uncertainty of the dipole.
Part (a) of Figure 5.6 shows the pointing error over the time of 2 orbits. It becomes
clear that all implementations show a similar behavior. Part (b) shows a magnified
segment of part (a), where the pointing error is smoothed with a moving average
filter of window size 500 for data points sampled at 10 Hz. The HiL simulation shows
a smoother pointing error than the other simulations. This difference is caused by
the network connection, which delays the transmission of the measurements to and
the transmission of the control dipole moment from the HiL hardware significantly.
The delays are in the range of several hundred milliseconds, whereas the update cycle
of the controller is 5 Hz. Apart from that one obtains that the Delta-H Controller
performs as expected being a part of the firmware on the flight hardware.
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No significant differences between the Matlab implementation and the C++ imple-
mentation in the SiL and HiL setup can be obtained. However, it is remarkable
that the pointing error trajectories start to diverge after initial convergence for the
Matlab implementation and the SiL setup. This difference is not significant but
observable. The only reason to explain this is the sensitivity of the Delta-H con-
troller to numerical errors close to the operation point. Other reasons cannot be
identified. Usual causes for randomness can be excluded. The seeds for the random
generators of the sensor models are equal in both setups and no additional delays
are introduced in the SiL setup.
Another aspect can be tested concerning the HiL setup. The MOVE-II firmware
features a daemon which sets control and sensor parameters for the ADCS at run-
time. In the implementation for the HiL setup of the Delta-H Controller, the pa-
rameters ωs, kD,1, sD and bD, as well as the value for the maximum control mo-
ment mc,max are realized as variables, which can be dynamically updated by the
daemon. Simulations which vary these parameters during a simulation run show
to be successful. It is therefore possible during one simulation to switch from the
Delta-H Controller with a strong focus on the angular momentum error in the BF to
the Global Spin Rate Controller, which solely controls the sun pointing and nutation
damping. Also, the spin rate for spin stabilization can be increased during simula-
tion, and the value for which the controller becomes instable due to strong nutation
torques can be determined experimentally within the HiL setup. It is obtained that
values of ωs > 0.25 rad/s start to become critically and should be avoided, due to
the growing nutation torque. At this limit, the satellite starts to flip the pointing
axis away from sun.
The capability of updating control parameters on-orbit via the daemon is valuable
for the satellite operators. In case of unforeseen circumstances, the operators are
able to adjust the control law for the current needs. Furthermore, if the satellite
behaves on-orbit differently than in the simulations, it is easy to adjust for this
with a simple update command of the daemon. The implementation proves to be
compatible with the other parts of the MOVE-II firmware and also is stable in the
presence of reduced numeric precision and increased delays. It is therefore suitable
to be implemented on the actual flight hardware.
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Chapter 6

Discussion

This section discusses the obtained results and provides an interpretation to the
observed phenomena. Major insights are presented and elaborated.

One statistic we state throughout the thesis for every simulation is the variance of
the average pointing error. This variance describes how the instantaneous pointing
error fluctuates. This fluctuation is an oscillation of the pointing error around its
average value and can only be observed in graphs which are not smoothed with a
moving average filter, due to the high frequency of oscillation. Figure 4.1 shows
the fluctuation of the pointing error for the Default Controller and the Extended
LQR Controller. We observe that the amplitude of this oscillation is lower for the
Extended LQR Controller than for the Default Controller. The reason is that the
Extended LQR Controller utilizes the real inertia tensor with the non-zero diago-
nal entries for linearization of the model, while the Default Controller assumes a
diagonal inertia tensor. Thus the Extended LQR Controller includes the nutation
disturbance in its model and is able to counteract it to some extent. However,
it cannot completely counteract it because of the actuation limitation inherent to
the magnetic actuation. The nonlinear controllers, as well as the Default Controller,
show an increased pointing error variance, since they do not include the non-diagonal
inertia tensor in their control models.

The Lyapunov functions of the nonlinear controllers Delta-H and JC2Sat feature
both, a term for nutation compensation which penalizes a deviation from zero for
the the angular velocity components perpendicular to the desired spin axis, and a
term which penalizes the deviation from the desired angular momentum. In order to
rotate about a fixed spin axis which is not identical with a principle axis of inertia,
the angular momentum has to rotate around this spin axis. A constant angular
momentum is therefore not desired for the controller of MOVE-II. This is another
reason, why the nonlinear controllers show an increased pointing error fluctuation
as well, with a variance of σ2

p ≈ 2 deg2. This value is significantly higher than the
variance for the Extended LQR Controller (σ2

p = 0.38 deg2), which accounts for the
nutation torque, but it is lower compared to the Default Controller (σ2

p = 4.2 deg2).
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Constructing a Lyapunov function based on a fixed spin axis instead of a fixed
angular momentum could potentially decrease the pointing error fluctuation.

In Section 5.2 we state that we consider the nutation torque as a disturbance and
not as part of the system equations. If we consider the nutation torque as part
of the system, however, the operation point is not an equilibrium point any more.
Furthermore, since the desired spin axis of the Delta-H Controller is the major
principle axis, its Lyapunov function is strictly speaking not a Lyapunov function for
the use case of MOVE-II with the spin axis close to the intermediate principal axis.
However, the results show that the pointing accuracy and the convergence rate are
increased for those two controllers compared to the Default Controller nonetheless,
and therefore the assumption of the nutation torque being a disturbance is justified.
This also justifies the assumption from Section 5.3 that choosing a spin axis which
is not the major principle axis has no big impact in the behavior of the controller
due to the similar values of the principle moments of inertia.

Another observation is addressing the convergence behavior of the JC2Sat Con-
troller. We observe that this controller ends up in a deadlock for some initial con-
ditions, where the angle between the magnetic field and the control error vector is
zero and thus the controller cannot generate a control moment. In Figure 5.2 the
simulation runs r1 and r3 proceed on a similar trajectory for nearly 1.5 orbits. With
proceeding time, the trajectories become even more similar, meaning that the dis-
tance between the Z component of the angular velocities ωz shrinks and the pointing
error trajectories start to overlap. However, at one point the trajectories start to
diverge suddenly with great steps. This leads to the insight that this controller
shows a chaotic behavior, where similar trajectories lead to completely different re-
sults. This property and the fact that this controller ends up in 22% of the cases
in a deadlock leads to the understanding that the JC2Sat Controller is not reliable
in terms of global convergence and therefore is not suited for acquiring the desired
attitude from an arbitrary initial attitude.

For this task, the Delta-H Controller seems suitable with a convergence rate of 100%.
This controller features an increased convergence rate, an increased pointing accu-
racy and a reduced pointing error fluctuation compared to the Default Controller. A
HiL simulation shows that it also works well on the flight hardware and in interaction
with the ADCS firmware. Therefore, it is suitable as a replacement for the Default
Controller, although the Extended LQR Controller and the JC2Sat Controller have
a slightly lower average pointing error after convergence.

The comparison simulations with and without activated sensor models reveal which
controllers are prone to sensor noise. Table 5.5 provides the average pointing er-
rors for both cases. One obtains that the JC2Sat Controller is least susceptible to
noise, since the ratio between the average pointing error for the simulation with and
without the sensor models is low. The noise sensitivity of the Delta-H controller is
higher compared to the JC2Sat Controller, but it is still in the lower range. In con-
trast to this, the two linearized controllers, the Extended LQR Controller and the
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Default Controller, show a high sensitivity to noise compared to those two nonlinear
controllers.
Chapter 4 presents several extensions to the state feedback controller and develops
a new LQR gain. Due to available interfaces on the current ADCS firmware, the
extensions for correcting the dipole moment and using the EKF can be activated via
uplink commands. The new gain can also be uploaded as a parameter to the state
feedback controller. The other extensions need a firmware update in order to be used
on the actual flight hardware. It is possible to upload an updated firmware onto
the satellite, this requires a stable and continuous communication link, however.
This cannot always be achieved, thus updating parameters like the gain matrix or
activating the EKF with a short command is the preferred way of operating the
satellite, rendering these extensions more valuable to the satellite operators. The
satellite can benefit directly from uploading the new LQR gain since this shows to
reduce the pointing error fluctuation. It also fulfills the design goal to achieve a
decreased pointing error at the cost of a less accurate spin rate. However, as long
as the satellite spins around the desired axis, the exact spin rate is not important
for the mission of MOVE-II.
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Chapter 7

Conclusion

The goal of this thesis is to find the weaknesses of the existing Default Controller
and to develop new control strategies, which fix these weaknesses and which improve
the overall pointing accuracy.

It is found that the Default Controller fulfills the must requirement for the pointing
accuracy in simulations with the target orbit, but for orbits deviating from the target
inclination i ≈ 98◦, the must requirement is violated by a pointing error becoming
greater than 10◦. Another weakness of the Default Controller is the unreliability in
terms of convergence starting from arbitrary initial conditions. A Monte Carlo sim-
ulation reveals that the controller converges only in 49% of the cases within 25 min,
and shows a converging trend only in 69% of the cases. The other cases show an
oscillating behavior or converge to an attitude pointing the solar panels away from
the sun.

To solve the shortcomings of the Default Controller, a new LQR gain for the state
feedback controller is developed and the following extensions to the control algorithm
are proposed. An operation point switching strategy is proposed, which allows to
spin around the Z-axis with a positive or negative spin value, depending on which
state is obtained more easily from the initial condition. The residual magnetic dipole
moment compensation is presented and extended to compensate for the duty cycle
of MOVE-II. Furthermore, a strategy to actuate at low currents and the use of the
recently developed EKF are suggested. The new gain together with these extensions
for the state feedback controller are summarized under the term Extended LQR
Controller.

With the Extended LQR Controller, the should requirement for the pointing error
is fulfilled. The pointing accuracy is increased by 2.8◦ in average and the instan-
taneous pointing error fluctuation is more than halved. This fluctuation is mainly
caused by nutation torques due to the spin axis not being a principle axis of iner-
tia. A Monte Carlo simulation shows that the Extended LQR Controller converges
twice as fast as the Default Controller, considering the fast converging cases only.
However, the probability of convergence within 25 min cannot be increased with the
Extended LQR Controller and stays at 49%. The rate of runs which show a con-
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verging trend increases from 69% to 80%, compared to the Default Controller. This
means however, there is still a chance of 20% that the Extended LQR Controller
does not converge after launch or after a system blackout.
The main reason to evaluate nonlinear control laws is to find a controller which is
able to converge to the desired operation point starting from an arbitrary initial
condition. This is an important property of the controller for a CubeSat, since the
initial condition of the satellite after launch cannot be influenced. From the three
analyzed controllers in Chapter 5, only the Delta-H Controller shows this property.
It converges from an arbitrary initial condition in 100% of the cases within half an
orbit. The average pointing error of the Delta-H Controller is increased by 0.3◦ with
respect to the Extended LQR Controller, while the instantaneous pointing error
fluctuation is increased by a factor of 2.5. The nonlinear controller JC2Sat shows
slightly less fluctuation and a slightly increased pointing accuracy compared to the
Delta-H Controller, but shows convergence only in 78% of the runs in the Monte
Carlo simulation.
Furthermore, a Software-in-the-Loop and a Hardware-in-the-Loop simulation prove
the Delta-H Controller to be suitable for implementation on the flight hardware. No
significant differences are obtained between the Matlab and the C++ implementa-
tion. The controller also shows to run stable on the flight hardware in the presence of
large delays and decreased numerical precision. Control parameters configurable at
run-time during on-orbit maneuvers make this controller implementation interesting
for satellite operators.
From these results we draw the conclusion that for converging towards the oper-
ating point, the Delta-H Controller is suited best. This controller also works as
expected in a HiL simulation. In order to stabilize the operating point, the Ex-
tended LQR Controller is advantageous, however. Chapter 8 states the limitations
to this conclusion and suggests further work to be done.
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Chapter 8

Future Work

This thesis does not investigate failure scenarios, when one or more coils or sensors
are not working properly. The results of this thesis are based on the assumption that
the coils and sensors work as expected within their accuracy. However, fail safety is
of interest for a spacecraft which can only be controlled remotely. If a coil or sensor
is not working any more, it cannot be fixed and therefore it is important to know
what the effect of a faulty coil or sensor is and if the impact onto the control behavior
can be reduced. This issue needs to be addressed in future controller analyses.

Similar concerns are true for unexpected disturbances. For the linearized controllers,
the impact of a residual magnetic dipole moment is analyzed. The results yield a
good approximation about what impact to the controller behavior a certain distur-
bance magnitude causes, and how the pointing accuracy decreases with increasing
disturbance magnitude. For the nonlinear controllers however, no such analysis is
performed within this thesis. Therefore, no statement can be made about the sen-
sitivity to disturbances for the nonlinear controllers. However, this is an important
decision criterion, when choosing a controller for stabilizing the operation point. A
controller with less disturbance sensitivity is preferred. Future work needs to ana-
lyze selected controllers with respect to different disturbances and to figure out, up
to which disturbance magnitude the must requirement for the pointing error still
can be fulfilled.

The Conclusion states that the Delta-H Controller is suited best for global conver-
gence and the Extended LQR Controller is suited best for stabilizing the operation
point. If these two control laws are implemented on the flight hardware, this needs
still the manual decision about when to activate which controller. Monitoring a
satellite continuously and being able to send commands to the satellite at any time
is difficult, for many CubeSat teams this is even impossible. It is therefore sug-
gested to combine those two controllers in a single hybrid controller. This can be
implemented similar to the operation point switching strategy used for the Extended
LQR Controller. An algorithm measures the distance of the current state from the
state of the operation point. When the satellite is far from the operation point, the
Delta-H Controller is activated. When the satellite state is converged close enough
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towards the operation point, the controller is switched in favor of the Extended
LQR Controller. What exactly far and close enough means, as well as an appropri-
ate margin for a hysteresis between the switching points, need to be investigated by
further simulations and observations.
Inspired by the neuronal network controller proposed by Sivaprakash and Shan-
mugam [SS05], another control concept can be investigated as well. This thesis
shows that the linearized LQR controller has the lowest pointing error and fluctu-
ation when close to the operation point, and also has the lowest convergence time,
considering successfully converging runs only. Therefore, the state space can be
divided into multiple partitions, for which each a linearized LQR controller is de-
veloped. These linearized controllers generate data to train the neuronal network,
which then is able to interpolate between those linearized control laws and to mimic
the appropriate linearized controller within each partition of the state space. It
is suggested to perform an analysis in order to investigate, if this control concept
decreases the time for global convergence. Also, some kind of stability analysis for
this kind of control needs to be developed.
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Appendix A

Matlab Simulation

In order to analyze the system and to verify the controller, a Matlab Simulink
simulation is used. The the core part of this simulation was created by the ADCS
team of MOVE-II. This simulation consists of a Simulink model which can be seen in
Figure A.1, and of a Matlab script which allows automated testruns and variation of
several parameters. Parameters which can be modified include orbit properties (see
Chapter 2.2 for more details), control gains, controller flags, mechanic properties of
the satellite and initial conditions like initial attitude and initial angular velocity.

In the following, all top level blocks and its functionality in the simulation are be
explained. For better legibility, block and signal names are printed in italics.

Sensor	Data	
Attitude

System	Active
Control	Current

Controller

Torques Environment

Space	Environment	and	Dynamics

Actuator	CurrentsControl	Torque

Actuators

EnvironmentDisturbance	Torque

Disturbances

Environment Measurements

Sensors

Currents Under	Voltage	Protection

Power	Estimator

Measurements Attitude

Attitude	Estimation

Figure A.1: Simulink Model used for analyzing the system and verifying the
control strategies.
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Space Environment and Dynamics

In this block, the nonlinear dynamic and kinematic system equations are imple-
mented. It receives the torque vector acting on the satellite and calculates the
current attitude and angular velocity of the satellite.

This block also includes an orbit propagator, which calculates the track of the satel-
lite around the earth, given the orbit characteristics and an initial position. The
commonly used SGP4 (Simplified General Perturbations) model is used for this
purpose.

The position above the Earth affects the magnetic field to which the satellite is
exposed. To determine the magnetic field, the IGRF-12 (International Geomagnetic
Reference Field, 12th generation) model is used.

Furthermore there is a sun model which calculates the true sun vector in the BF for
the satellite.

All this data is bundled together in the Environment bus and is passed forward to
the Disturbances and Sensors blocks.

Sensors

The Sensors block receives the environmental data and applies the specific sensor
characteristics of the sensors of MOVE-II to it.

First, the data is sampled with a sample rate of 0.2 s. Then the noise and bias
components for every sensor is added. The bias and noise characteristics of the
sensors are determined from the flight model of MOVE-II, so that this simulation
accurately imitates the real sensors. The sensor characteristics are discussed in more
detail in [Meß18].

MOVE-II has three different types of sensors available: A sun sensor which measures
the sun vector in body coordinates, a magnetic field sensor, and a gyroscope, which
measures the angular velocity.

This sensor data data is bundled in the Measurement bus, which is used by the
Attitude Estimation and the Controller block.

Attitude Estimation

The Attitude Estimation block implements the EKF (Extended Kalman Filter) de-
scribed by Messmann [Meß18] and uses the Measurements of the Sensors block to
calculate the estimated attitude. The attitude is represented as a unit quaternion.
This allows to rely on a more accurate information about the current attitude than
if only the noisy and biased sensor measurements were available.

This information then is forwarded to the Controller block.
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Controller

The Controller block can rely on both, the sensor Measurements and the estimated
Attitude. Depending on the control strategy, it calculates and outputs the Control
Currents.
In this block the various different control strategies are implemented. It features
the Default Controller as well as the other controllers evaluated within this thesis.
They can be activated, deactivated and configured with the simulation script via the
parameter settings. For example, the Default Controller does not use the EKF and
relies only on sensor measurements to determine the satellite’s attitude. However, by
setting the corresponding flag, the controller is made to use the estimated Attitude
instead of the noisy sensor Measurements.
This block also offers an interface to which the flight controller hardware can be
connected. With this possibility, a HiL (Hardware in the Loop) simulation can be
performed. Before new software is permitted to be uploaded onto the satellite, it
must prove to run stable on the flight controller hardware. Thus, for promising
control strategies, it is mandatory to implement these strategies in C++ and to
verify them in a HiL environment.

Power Estimator

The Power Estimator keeps track of the consumed energy of the satellite. The major
components are the Control Currents. It also keeps track of the power generated
by the solar panels. A proper sun pointing ensures more power generation due to
the good alignment of the solar panels to the sun and thus allows a higher current
consumption of the satellite.
With this block it can be verified, if a controller is power positive. If the simulated
battery becomes empty, the Power Estimator deactivates the Controller block to
simulate a blackout. The satellite then starts to tumble freely and to recharge
its battery. When the battery reaches a threshold level, the Controller block gets
activated again and it takes over the control of the satellite.
Like the Controller block it is possible to simulate this block also in a HiL simulation.
A solar array simulator developed by Nagy [Nag18] calculates the information about
the sun intensities of the solar panels and charges a real battery. The systems of the
satellite including the control hardware is connected to this battery. If this battery
is empty, a real blackout is emulated.

Actuators

This block models the actuator characteristics of the actuation coils. The Control
Currents flow through the coils subject to physical properties and produce a mag-
netic field. This magnetic field then interacts with the Earth magnetic field and
produces a Control Torque acting on the satellite. This torque is forwarded to the
Space Environment and Dynamics block to close the loop.
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Disturbances

Several Disturbance Torques affect the motion of the satellite in space. They depend
strongly on the current position and attitude of the satellite. These disturbance
torques are modeled in this block and are fed back to the Space Environment and
Dynamics block.
Chapter 2.6 discusses the disturbance models in detail.
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Appendix B

Gain Selection of the Nonlinear
Controllers

This appendix presents the rationals behind the selection of the gains and tuning
parameters for the nonlinear controllers. Section B.1 deals with the Delta-H Con-
troller, Section B.2 presents results for different gains of the JC2Sat Controller and
Section B.3 shows the results for different modes of the Modular Controller.

B.1 Parameter for the Delta-H Controller

The Delta-H controller features only one relevant parameter which can be tuned.
This is the value kD,1 ∈ [0; 1], which defines the relation of how much the sun
pointing error is weighted versus the weighting of the angular velocity errors. A
value of kD,1 = 1 means, only the sun pointing error is considered, and a value
of kD,1 = 0 means, only the angular velocity errors are considered in the control law.

Figure B.1 shows the pointing error for different values of kD,1. The pointing error
is sampled at 10 Hz and smoothed with a moving average filter of window size 5000.
One obtains that for values kD,1 ≥ 0.8, the controller does not converge to a small
pointing error. Values of kD,1 ≤ 0.001 result in a high pointing error, since the
weighting of the pointing error gets too low and the controller focuses more on the
angular velocity errors. Values of kD,1 somewhere in between show a converging
behavior with a low final pointing error. However, one obtains that low values, for
example kD,1 = 0.01, tend to converge faster to a low pointing error.

B.2 Gains for the JC2Sat Controller

The JC2Sat Controller has three different gains which can be tuned, within the
limitations of (5.18), (5.19) and (5.20). The gain kJ,0 controls the magnitude of the
control dipole moment. It is selected to ensure reasonable magnitudes of the control
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Figure B.1: Simulating the Delta-H Controller with different values for kD,1. The
graphs are smoothed with a moving average filter.

currents during and after convergence. Currents between 100 mA and 300 mA are
considered to be reasonable for MOVE-II.
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Figure B.2: Simulating the JC2Sat Controller with different gains. Part (a)
varies kJ,1 while keeping the other parameter constant at kJ,2 = 0.05 kg m2.
Part (b) varies kJ,2, expressed in the unit kg m2, while having kJ,1 = 2. The
graphs are smoothed with a moving average filter.
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In order to select the gains kJ,1 and kJ,2, several simulation series are performed.
Figure B.2 shows the result of two series. The graphs are smoothed with a moving
average filter of window size 5000, while the pointing error is sampled at a fre-
quency of 10 Hz. Part (a) of the figure illustrates that the choice of kJ,1 > 1 has
no impact on the general behavior of the controller. However, values of kJ,1 greater
than 1 are required in order to converge to the desired spin axis, as shown by De
Ruiter [dR11]. Part (b) of the figure evaluates the impact of different values for kJ,2.
This gain influences the nutation damping. It is obtained that low values of kJ,2 are
counterproductive for convergence and cause a high pointing error. On the other
hand, high values increase the convergence time. The lowest pointing error and the
fastest convergence is obtained with values in the magnitude of 10−2 kg m2 for kJ,2.

B.3 Modes of the Modular Controller

This section evaluates the modes of the Modular Controller, which are described in
Section 5.5 and defined by Table 5.3. Figure B.3 presents the pointing error, using
different modes. The graphs are smoothed using a moving average filter of window
size 5000, and the pointing error is sampled at 10 Hz.
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Figure B.3: Simulating different modes of the Modular Controller. The graphs
are smoothed with a moving average filter.

It can be obtained that all modes start converging equally fast. However, after the
pointing error graphs diverge, each mode starts to show a different characteristic
behavior. Mode 4, which utilizes the combined control moment only, is not able to
attain a low pointing error. With Mode 2, the pointing error is enclosed within the
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range of 15◦ to 90◦, but oscillating with a high amplitude and consistent frequency.
This behavior increases the average pointing error.
Mode 1 and 3 are able to reach low pointing errors, however they show high peaks
up to 140◦ occasionally. It is found that Mode 3 less frequently shows peaks and
reaches a lower pointing error between the peaks.
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skis. ESTCube-2 Mission and Satellite Design. In Proceedings of the
Small Satellites Systems and Services – The 4S Symposium 2016, Val-
letta, Malta, May 2016.

[GAC+15] S. Gaglione, A. Angrisano, G. Castaldo, P. Freda, C. Gioia, A. Innac,
S. Troisi, and G. Del Core. The First Galileo FOC Satellites: From
Useless to Essential. In 2015 IEEE International Geoscience and Re-
mote Sensing Symposium (IGARSS), pages 3667–3670, Milan, Italy, July
2015. IEEE. doi:10.1109/IGARSS.2015.7326618.

[GFV02] T. Graversen, M. K. Frederiksen, and S. V. Vedstesen. Attitude Control
System for AAU CubeSat, 2002. Master Thesis, Department of Control
Engineering, Aalborg University, Aalborg, June 2002.

[HJ06] L. Huang and W. Jing. Correction of Remanent Disturbance Torque. In
2006 1st International Symposium on Systems and Control in Aerospace
and Astronautics, pages 164–168, Harbin, China, January 2006. IEEE.
doi:10.1109/ISSCAA.2006.1627603.

[IAG14] IAGA. International Geomagnetic Reference Field, December 2014.
Retrived 08.03.2019. URL: https://www.ngdc.noaa.gov/IAGA/vmod/
igrf.html.

[Kha02] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River,
New Jeresey, USA, 3rd edition, 2002.

[Kie17] J. Kiesbye. Hardware-in-the-Loop Verification of the Distributed,
Magnetorquer-Based Attitude Determination & Control System of the
CubeSat MOVE-II, 2017. Master Thesis, Chair of Astronautics, Tech-
nische Universität München, Garching, 2017.

[KS72] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-
Interscience, New York, 1972.

[LAD+15] M. Langer, N. Appel, M. Dziura, C. Fuchs, P Günzel, J. Gutsmiedl,
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