$\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ - A PbFCl-related Polyantimonide, and Structure Relations of Zirconium-Transition Metal Polyantimonides

Magnus Greiwe and Tom Nilges
Fachgebiet Synthese und Charakterisierung innovativer Materialien, Deptartment Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany

Reprint requests to Prof. Dr. Tom Nilges. Fax: +49 89289 13110. E-mail: tom.nilges@lrz.tum.de
Z. Naturforsch. 2014, 69b, 1124-1130 / DOI: 10.5560/ZNB.2014-4115

Received May 29, 2014

Dedicated to Professor Hubert Schmidbaur on the occasion of his $80^{\text {th }}$ birthday

Single crystals of tetrazirconium copper heptaantimonide were obtained by arc-melting and annealing from the elements in ideal ratios including a 10% excess of Sb . The excess of Sb is needed to compensate for the evaporation loss during arc-melting synthesis. $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ crystallizes tetragonally, space group $P 4 b m$ (no. 100) as a racemic twin. It adopts a unique structure that can be regarded as a composite of a PbClF unit and a layered, partially copper-substituted polyantimonide substructure. $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ represents a filling and substitution variant of the $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ structure type. The copper atoms fill voids and partially replace antimony atoms in the $4.8^{2} \mathrm{Sb}$ net of the $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ polyantimonide substructure to form a distorted 4^{4} net in $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$. Structure relations to known zirconium-transition metal polyantimonides are given, and new structures are predicted based on these relations.

[^0]
Introduction

Binary $\mathrm{Zr} / \mathrm{Hf}$ polyantimonides and ternary Zr transition metal polyantimonides have been subject to structure- and electrochemical investigations during the last 10 to 15 years. In 2004 Assoudet al. [1] reported on a new binary phase in the $\mathrm{Hf}-\mathrm{Sb}$ system which is characterized by two building blocks, a $\mathrm{PbFCl}-$ related $\mathrm{Hf}-\mathrm{Sb}$ substructure which is separated by a 4.8^{2} net of Sb (for the PbFCl structure type see [2]). This structure was reported as $\sqrt{5} \times \sqrt{5}$ superstructure of the ZrSiS type [3] where a 4^{4} net of Si is separating the PbFCl block formed by Zr and S atoms [4]. This structure principle of an almost non-distorted PbFCl block, separated by a complex polyantimonide or antimonide net, is common and widespread for zirconium-transition metal polyantimonides. Examples are $\mathrm{Zr}_{2} T \mathrm{Sb}_{3}$ (with $T=\mathrm{Cu}, \mathrm{Pd}$) [5, 6] and $\mathrm{Zr}_{3} \mathrm{TSb}_{7}$ (with $T=\mathrm{Ni}, \mathrm{Pd}$) [6, 7]. The separating unit in $\mathrm{Zr}_{2} \mathrm{TSb}_{3}$ is a planar, non-corrugated 4^{4} net formed by T and Sb atoms while in $\mathrm{Zr}_{3} T \mathrm{Sb}_{7}$ the same 4^{4} net is only generated by Sb atoms. Recently, review articles on structure-chemical properties and the electrochemical performance of antimonides and polyan-
timonides have been published summarizing the intriguing structural chemistry and the performance of antimony-containing compounds as anodes for batteries $[8,9]$.

Results and Discussion

A crystal of the title compound suitable for singlecrystal X-ray diffraction was separated directly from the annealed sample. The composition of the crystal was determined by energy dispersive X-ray spectroscopic analysis (EDS). Data were collected and averaged from three different points on the crystal surface resulting in $34(1)$ at- $\% \mathrm{Zr}, 8(1) \mathrm{at}-\% \mathrm{Cu}$, and $58(1)$ at$\% \mathrm{Sb}$. This composition is in good agreement with the composition derived from the structure refinement (see below). According to the empirical formula $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$, a composition of $33.3 \% \mathrm{Zr}, 8.3 \% \mathrm{Cu}$ and $58.3 \% \mathrm{Sb}$ is expected.

Crystal structure of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$

$\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ represents a derivative of the $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ structure type where the Zr and Sb atoms form

Fig. 1. Structure sections of transition metal polyantimonides $T \mathrm{Sb}_{2-x}$ with $x=0.5$ to 1 . Examples are $T \mathrm{Sb}_{1.5}\left(\mathrm{CeCrSb}_{3}\right.$ and $\mathrm{Zr}_{5} T \mathrm{Sb}_{9}$ of $T_{6} \mathrm{Sb}_{9}$ type), $T \mathrm{Sb}_{1.4}\left(\mathrm{Zr}_{4} \mathrm{CuSb}_{7}\right), T \mathrm{Sb}_{1.25}$ $\left(\mathrm{Zr}_{3} T \mathrm{Sb}_{5}\right)$, and $T \mathrm{Sb}\left(\mathrm{Zr}_{2} T \mathrm{Sb}_{3}\right)$ featuring $\mathrm{PbFCl}-$ related $\mathrm{Zr} / \mathrm{Sb}$ blocks and $T / \mathrm{Sb} 4^{4}$ nets with various compositions.
a $\mathrm{PbFCl}-$-related block, and the Cu and Sb atoms build up a distorted 4^{4} net. The Sb substructure is related to the Sb substructure of $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ where a 4.8^{2} net is present, separating a PbFCl unit. The Cu atoms located in close neighborhood to Sb in $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ are filling a) all empty voids within the $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$-related $4.8^{2} \mathrm{Sb}$ net and b) partially replace Sb atoms within the 4.8^{2} net to generate a distorted 4^{4} net. A section of the structure of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ and the Sb substructure of $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ are given in Figs. 1 and 2, respectively. As a result of this partial Sb substitution, attractive $\mathrm{Sb}-\mathrm{Sb}$ contacts of 2.976 (1) and 2.990(1) A remain within the distorted 4^{4} net. Crystallographic data and atomic coordinates are summarized in Tables 1 and 2.
The Cu atoms are surrounded by Zr and Sb atoms with $\mathrm{Cu}-\mathrm{Sb}$ distances of $2.587(1)$ to $2.622(1) \AA$ and with $\mathrm{Cu}-\mathrm{Zr}$ distances of 3.010 (4) \AA. In $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ four

Table 1. Crystallographic data of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$.

Empirical formula	$\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$
$T, \mathrm{~K}$	$298(2)$
M_{r}	1280.7
Crystal size, mm^{3}	$0.40 \times 0.27 \times 0.02$
Crystal system	tetragonal
Space group	$P 4 b m$
a, \AA	$11.1384(4)$
c, \AA	$8.6813(3)$
V, \AA^{3}	$1077.04(7)$
Z	4
$D_{\text {calcd. }}, \mathrm{g} \mathrm{cm}^{-3}$	7.90
$\mu\left(\mathrm{MoK}_{\alpha}\right), \mathrm{cm}^{-1}$	23.2
$F(000), e$	2184
$h k l$ range	$\pm 15,-15$ to $+13, \pm 11$
$((\sin \theta) / \lambda)_{\text {max }}, \AA \AA^{-1}$	0.694
Refl. measured $/$ unique $/ R_{\text {int }}$	$28520 / 1246 / 0.098$
Param. refined	68
$R(F) / w R\left(F^{2}\right)^{\text {a }}($ all refl. $)$	$0.0395 / 0.0922$
Inversion twin ratio	$0.53(5): 0.47(5)$
$G o F\left(F^{2}\right)$	1.31
$\Delta \rho_{\text {fin }}($ max $/$ min $), e \AA \AA^{-3}$	$4.64 /-3.89$

different Zr positions are realized which are nine-fold coordinated by neighboring atoms. All coordination polyhedra of Zr to either $M=\mathrm{Sb}$ or Cu are given in Fig. 3. The $\mathrm{Zr}-M$ distances between 2.925 (3) and $3.160(2) \AA$ are in good accordance with the respective $\mathrm{Hf}-\mathrm{Sb}$ distances in $\mathrm{Hf}_{5} \mathrm{Sb}_{9}(2.8884(5)$ to 3.1792(5) \AA).

All relevant distances are summarized in Table 3. Phase purity has been substantiated by powder X-ray diffraction. A representative powder diffractogramm of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ is given in Fig. 4 .

Structure relations of zirconium-transition metal polyantimonides and related compounds

At first glance ZrSb_{2} [10, 11], $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ [1], $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$, or $\mathrm{Zr}_{2} \mathrm{CuSb}_{3}$ [5] seem to have nothing in common but this is not true if one takes a detailed look on the structural features of each phase (Figs. 1 and 2). The structural chemistry of the title compound and related ternary zirconium-transition metal polyantimonides is dominated by a PbFCl -like substructure, separated by a complex antimony-containing network. A prototype of a zirconium compound with non-corrugated PbFCl -like building blocks separated by a planar 4^{4} net is ZrSiS [3]. Silicon is forming a regular 4^{4} net, while the PbFCl units are constructed by Zr and S atoms (see Fig. 2). Based on these structural features the whole series of compounds $T \mathrm{Sb}_{2-x}$ with

Fig. 2. Structure relations between the polyanionic substructures of $\mathrm{Hf}_{5} \mathrm{Sb}_{9}[1]$ or $\mathrm{ZrSb}_{2}[10,11]$ and regular 4^{4} nets, realized e. g. in ZrSiS [3]. Systematic generation of voids in a 4^{4} net (left) by removal of grey atoms or atoms underneath the lines (left) leads directly to the polyantimonide substructures of $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ or ZrSb_{2} (TiAs_{2} type [11]). The polyanionic substructure of PbCl_{2}-type ZrSb_{2} [10] can be derived from a 4^{4} net by shearing fractions towards each other. A fully filled unit cell with completed polyantimonide substructure is given for each compound on the right hand side.

Atom	Wyckoff Site	x / a	y / b	z / c	$U_{\text {iso }}$
Sb1	$2 b$	$1 / 2$	0	$0.93403(15)$	$0.0046(4)$
Sb2	$2 a$	0	0	$0.94763(19)$	$0.0036(3)$
Sb3	$4 c$	$0.24692(6)$	$0.25308(6)$	$0.94293(17)$	$0.0033(3)$
Sb4	$4 c$	$0.39123(5)$	$0.10877(5)$	$0.5578(2)$	$0.00605(16)$
Sb5	$8 d$	$0.00282(6)$	$0.24923(4)$	$0.17470(12)$	$0.0052(3)$
Sb6	$8 d$	$0.85823(5)$	$0.12484(5)$	$0.55606(14)$	$0.00594(14)$
Zr1	$2 a$	0	0	$0.3010(2)$	$0.0024(4)$
Zr2	$4 c$	$0.75362(8)$	$0.25361(8)$	$0.2931(2)$	$0.0031(4)$
Zr3	$2 b$	$1 / 2$	0	$0.2848(3)$	$0.0040(5)$
Zr4	$8 d$	$0.49535(9)$	$0.25114(6)$	$0.82117(15)$	$0.0036(4)$
Cu1	$4 c$	$0.62598(10)$	$0.12598(10)$	$0.5512(6)$	$0.0102(4)$

Table 2. Atomic coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ for $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ at 298 K .

Zr1 polyeder

Zr 2 polyeder

Zr3 polyeder

Zr4 polyeder

Fig. 3. Zr coordination polyhedra in $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$.
$x=0$ to 1 and T being one or two transition metals can be explained. In the following we discuss the structural similarities of the whole structure family $\left(T \mathrm{Sb}_{2-x}\right.$ with $x=0$ to 1) in more detail, in order to systemize the structural chemistry and to unify or simplify the description of such complex structures. We also use this systematic approach to predict unknown phases. De-
tails of all realized and predicted compounds are given in Table 4.

Different approaches like void generation in the 4^{4} net, substitution within the 4^{4} net or a combination of both are needed to fully understand the formation of polyantimonide networks in such transition metal polyantimonides $\left(T \mathrm{Sb}_{2-x}\right.$ with $x=0$ to 1$)$.

Fig. 4. Powder X-ray pattern of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$. A calculated powder pattern derived from the single-crystal structure determination is drawn with negative intensities. No crystalline impurity was detected.

Table 3. Selected interatomic distances $(<3.1 \AA)$ of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ at 298 K . Standard deviations are given in parentheses.

$\mathrm{Sb} 1-\mathrm{Zr} 3$	$3.045(3)$	$\mathrm{Sb} 5-\mathrm{Zr} 1$	$2.985(1)$
$\mathrm{Sb} 1-\mathrm{Zr} 4(2 \times)$	$2.9643(9)$	$\mathrm{Sb} 5-\mathrm{Zr} 2$	$2.960(1)$
$\mathrm{Sb} 1-\mathrm{Zr} 4(2 \times)$	$2.9643(9)$	$\mathrm{Sb} 5-\mathrm{Zr} 2$	$2.977(1)$
$\mathrm{Sb} 2-\mathrm{Zr} 1$	$3.068(3)$	$\mathrm{Sb} 5-\mathrm{Zr} 3$	$2.9523(9)$
$\mathrm{Sb} 2-\mathrm{Zr} 4(4 \times)$	$2.982(1)$	$\mathrm{Sb} 5-\mathrm{Zr} 4$	$3.070(1)$
$\mathrm{Sb} 3-\mathrm{Zr} 2$	$3.042(2)$	$\mathrm{Sb} 6-\mathrm{Zr} 1$	$3.054(2)$
$\mathrm{Sb} 3-\mathrm{Zr} 4(2 \times)$	$2.962(1)$	$\mathrm{Sb} 6-\mathrm{Zr} 2$	$2.937(2)$
$\mathrm{Sb} 3-\mathrm{Zr} 4(2 \times)$	$2.995(1)$	$\mathrm{Sb} 6-\mathrm{Zr} 4$	$3.088(2)$
$\mathrm{Sb} 4-\mathrm{Zr} 2$	$3.159(2)$	$\mathrm{Sb} 6-\mathrm{Zr} 4$	$2.967(2)$
$\mathrm{Sb} 4-\mathrm{Zr} 3$	$2.925(3)$	$\mathrm{Sb} 6-\mathrm{Cu} 1$	$2.587(1)$
$\mathrm{Sb} 4-\mathrm{Zr} 4(2 \times)$	$3.014(2)$	$\mathrm{Zr} 2-\mathrm{Cu} 1$	$3.010(4)$
$\mathrm{Sb} 4-\mathrm{Cu} 1(2 \times)$	$2.622(1)$		

Starting with a regular 4^{4} net as shown in Figs. 1 and 2, voids can be generated in an ordered way to create the polyantimonide substructures of $\mathrm{ZrSb}_{2}\left(T \mathrm{Sb}_{2}\right)$ or $\mathrm{Hf}_{5} \mathrm{Sb}_{9}\left(T \mathrm{Sb}_{1.8}\right)$. Dimorphic ZrSb_{2} crystallizes in the PbCl_{2} [10] and the TiAs_{2} [11] structure types. In the PbCl_{2}-type ZrSb_{2} a $4^{4} \mathrm{Sb}$ net fragment is realized. This fragment can be directly derived from a 4^{4} net where the Zr atoms cut the entire 4^{4} net into smaller fragments which are then shorn towards each other This process is illustrated in Fig. 2. The Sb substructure in TiAs_{2}-type ZrSb_{2} seems to be more complex, and a $4^{4} \mathrm{Sb}$ net fragment connected via a $\mathrm{Sb}-\mathrm{Sb}$ dumbbell is present. The polyantimonide substructure can be
regarded as an arrangement of interpenetrating 4^{4} networks where two different sets of voids are generated in each of them. Such a removal of atoms from a 4^{4} net leads to the formation of six-membered rings neighbored to four-membered ones. One half of these voids is empty, and the other half is hosting the interpenetrating second 4^{4} net. A structure section is given in Fig. 2.

If the Sb content is reduced from $T \mathrm{Sb}_{2.0}$ to $T \mathrm{Sb}_{1.8}$, the PbFCl -related block formed by T and Sb is separated by a $4.8^{2} \mathrm{Sb}$ net as represented by the binary polyantimonide $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$. From a formal point of view the 4.8^{2} net can be derived from a 4^{4} net by removing 20% of the atoms according Fig. 2.
$\mathrm{Zr}_{3} T \mathrm{Sb}_{7}$ (with $T=\mathrm{Ni}, \mathrm{Pd}$) [6,7] are representatives featuring a general composition of $T \mathrm{Sb}_{1.75}$. Two slightly corrugated building blocks, a $4^{4} \mathrm{Sb}$ net and a PbFCl -related section formed by T, Zr and Sb atoms are present. These compounds are the only examples discussed herein where the replacement of transition metal atoms takes place in the PbFCl block (see Fig. 1). The Zr substitution within the PbFCl block obviously results in a slight corrugation of the two building blocks. From now on, the PbFCl block is the dominant structural feature in all further transition metal polyantimonides under discussion.

Table 4. Zirconium-transition metal polyantimonides $T \mathrm{Sb}_{2-x}$ with $x=0$ to 1 and structurally related compounds. The basic empirical formula, the T to Sb ratios of the different structure units, and predicted and realized compounds are denoted. Predicted compounds are written in italics, and the amount of voids within the structure units is given in roman numbers.

Basic formula	$T: \mathrm{Sb}$ atomic ratio in PbFCl block ${ }^{\text {a }}$	$T: \mathrm{Sb}$ ratio in Sb net, structure ${ }^{\mathrm{b}}$	Compound realized	Compound predicted
$T \mathrm{Sb}_{2}$	$\mathrm{n} . \mathrm{a}$.	0:1, f	$\mathrm{ZrSb}_{2}\left(\mathrm{PbCl}_{2}\right.$ type)	
		$\mathrm{I}: 3$, interpen. c_{0}	ZrSb_{2} (TiAs_{2} type)	
$T \mathrm{Sb}_{1.8}$	5:5	I: 4 , defect p or	$\mathrm{Hf}_{5} \mathrm{Sb}_{9}$	
$T \mathrm{Sb}_{1.75}$	n. a.	$0: 1, \mathrm{c}_{\mathrm{o}}$ and c_{i}	$\begin{aligned} & \mathrm{Zr}_{3} \mathrm{NiSb}_{7} \\ & \mathrm{Zr}_{3} \mathrm{PdSb}_{7} \end{aligned}$	-
$T S b_{1.6}$	3:3	1:5, c_{o} or c_{i}		$\mathrm{Zr}_{3} \mathrm{TSb}_{8}$
$T \mathrm{Sb}_{1.5}$	$5: 5$	$1: 4, \mathrm{p}$ and c_{i}	$\mathrm{Zr}_{5} \mathrm{NiSb}_{9}$	$\mathrm{Zr}_{5} \mathrm{TSb}_{9}$
$T \mathrm{Sb}_{1.5}$	$1: 1(\mathrm{Ce}: \mathrm{Sb})$	$0: 1, \mathrm{p}_{\mathrm{e}}$	CeCrSb_{3}	
	1:1 (Cr: Sb)			
	PbCl_{2} block			
$T \mathrm{Sb}_{1.4}$	4:4	1:3, p and c_{i}	$\mathrm{Zr}_{4} \mathrm{CuSb}_{7}(\mathbf{1})$	
$T S b_{1.33}$	2:2	$1: 2, p, c_{i}$ and c_{o}		$\mathrm{Zr}_{2} \mathrm{TSb}_{4}$
$T S b_{1.25}$	3:3	$1: 2, p, c_{i}$ and c_{o}		$\mathrm{Zr}_{3} \mathrm{TSb}_{5}$
$T S b_{1.2}$	4:4	$1: 2, p, c_{i}$ and c_{o}		$\mathrm{Zr}_{4} \mathrm{TSb}_{6}$
$T \mathrm{Sb}_{1.0}$	2:2	1:1, p_{e}	$\begin{aligned} & \mathrm{Zr}_{2} \mathrm{CuSb}_{3} \\ & \mathrm{Zr}_{2} \mathrm{PdSb}_{3} \\ & \hline \end{aligned}$	

${ }^{\text {a }}$ The atomic ratio is calculated for compounds featuring a PbFCl -like substructure and taking into account the side condition of a $1: 1$ ratio between the Sb network and the PbFCl block. Example calculation for $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$: a Sb net with $T: \mathrm{Sb}$ ratio $=1: 3$ results in a partial composition of CuSb_{3}. For the PbFCl block which itself always realizes a $1: 1 T: \mathrm{Sb}$ ratio, an atomic ratio of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}-\mathrm{CuSb}_{3}=\mathrm{Zr}_{4} \mathrm{Sb}_{4}$ or $4: 4$ results; ${ }^{\mathrm{b}}$ structure description codes: $\mathrm{c}_{\mathrm{i}}=$ corrugated 4^{4} network with different bond lengths within the network; $c_{o}=$ corrugated 4^{4} net with distortion of the whole net along the net plane; $p=$ planar 4^{4} net, non-corrugated in the direction of prolongation; $p_{e}=$ planar 4^{4} net, non-corrugated in the direction of prolongation, equidistant; $\mathrm{f}=$ fragmented 4^{4} net.

A $T \mathrm{Sb}_{1.5}$ representative with a closely related structure is CeCrSb_{3} [12]. Herein, an undistorted $\mathrm{Sb} 4^{4}$ net is present. Beside this net, a PbFCl -related $\mathrm{Ce} / \mathrm{Sb}$ substructure ($1: 1 \mathrm{Ce}: \mathrm{Sb}$ ratio) can be found where a $\mathrm{Cr} / \mathrm{Sb}$ substructure with a $\mathrm{Cr}: \mathrm{Sb}$ ratio of $1: 2$ is inserted. A structure section of CeCrSb_{3} is given in Fig. 1 including the structural features of the $\mathrm{Cr} / \mathrm{Sb}$ and $\mathrm{Ce} / \mathrm{Sb}$ substructures. The $\mathrm{Cr} / \mathrm{Sb}$ substructure shows similarities to the PbCl_{2} structure.

Another possibility to build new structures is to fill voids in existing structures. Existing voids within the $4.8^{2} \mathrm{Sb}$ net in the $\mathrm{Hf}_{5} \mathrm{Sb}_{9}$ structure type might be fully filled by additional atoms, resulting in a compound with the general formula $T_{6} \mathrm{Sb}_{9}$ (or $T \mathrm{Sb}_{1.5}$). The ratio of voids to atoms is $1: 4$. A possible structure model for such a filling variant is given in Fig. 1. We found strong evidences for the existence of $\mathrm{Zr}_{5} \mathrm{NiSb}_{9}$, following this suggested structure model.

The title compound $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ represents a $T \mathrm{Sb}_{1.4}$ phase. Four Zr and Sb atoms per formula unit form the PbFCl block leaving one Cu and three Sb atoms per formula unit behind to form the separating network.

The Cu atoms fill voids and partially substitute Sb in a 4.8^{2} net. This substitution pattern can also be derived from a common 4^{4} net by an ordered substitution of Sb by Cu on neighboring atom positions. Each pair of substituted atoms is perpendicularly oriented towards each other as shown in Fig. 1. The atomic ratio of copper to antimony within the 4^{4} net is $1: 3$.

Taking one of the interpenetrating Sb nets of the TiAs_{2}-type ZrSb_{2} as a possible candidate to fill voids into account, we can predict another polyantimonide featuring a PbFCl block of Zr and Sb atoms, separated by a partially substituted polyantimonide 4^{4} net. The voids of the six-membered rings (see the polyantimonide substructure of the TiAs_{2}-type ZrSb_{2} in Fig. 2) can be fully filled leading to a compound of the $T \mathrm{Sb}_{1.4}$ type, but with a different substitution pattern within the 4^{4} net. Here a linear arrangement of substituted atoms might be present where every third row of Sb atoms is replaced (see Fig. 1). The void to atom ratio is also $1: 3$ in the case of the TiAs_{2}-type ZrSb_{2} nets, and we can therefore expect an overall composition of $T_{5} \mathrm{Sb}_{7}$. It is possible that a second polymorph
of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ might exist, or that the predicted phase can be realized with different transition metals like Pd or Ni beside Zr . Investigations in this direction are currently underway.

A further reduction of the antimony content between $T \mathrm{Sb}_{1.4}$ and $T \mathrm{Sb}$ in line with comparable structurechemical features might be possible. If we stay with a non-substituted PbFCl block and reduce the T to Sb ratio within the 4^{4} net from $1: 3$ to $1: 2$, we end up with a substitution pattern where every second row of Sb atoms is substituted by T. A structure model is given in Fig. 1. Following the observed trend from the known compounds $\mathrm{Zr}_{5} T \mathrm{Sb}_{9}, \mathrm{Zr}_{4} T \mathrm{Sb}_{7}$ and $\mathrm{Zr}_{2} T \mathrm{Sb}_{3}$ (or $T_{6} \mathrm{Sb}_{9}, T_{5} \mathrm{Sb}_{7}$ and $T_{3} \mathrm{Sb}_{3}$, respectively), we expect a composition of $\mathrm{Zr}_{3} T \mathrm{Sb}_{5}\left(T_{4} \mathrm{Sb}_{5}\right.$ or $\left.T \mathrm{Sb}_{1.25}\right)$ for the missing compounds.

Known polyantimonides with antimony contents of $T \mathrm{Sb}_{1.5}$ and below show a systematic ratio of T to Sb within the 4^{4} net from $1: 4\left(\mathrm{Zr}_{5} \mathrm{NiSb}_{9}\right), 1: 3$ $\left(\mathrm{Zr}_{4} \mathrm{CuSb}_{7}\right)$ to $1: 1\left(\mathrm{Zr}_{2} T \mathrm{Sb}_{3}\right)$. Only integer quantities of antimony are realized for this set of compounds. If we step away from integer numbers for the antimony content, a less systematic or disordered distribution of T in the compounds must be taken into account. Till now, we did not find any hints for a random distribution of the T (or Zr) atoms in our samples but such a possibility must be considered. According to our postulated formalism, phases like $T \mathrm{Sb}_{1.33}, T \mathrm{Sb}_{1.2}$ or $T \mathrm{Sb}_{1.1}$ might be accessible. For $T \mathrm{Sb}_{1.33}$ a general formula of $T_{3} \mathrm{Sb}_{4}$ can be predicted if the PbFCl block is formed by two Zr and two Sb atoms leaving one T and two Sb behind for the 4^{4} net, and $\mathrm{Zr}_{2} T \mathrm{Sb}_{4}$ results as the target composition. In the case of $T \mathrm{Sb}_{1.2}$ one can expect $T_{5} \mathrm{Sb}_{6}$, leading to a composition of $\mathrm{Zr}_{4} T \mathrm{Sb}_{6}$. In both predicted structures the T to Sb ratio of the 4^{4} net is $1: 2$.

Finally, when the antimony content is reduced to equimolar amounts ($T \mathrm{Sb}$), the resulting phases $\mathrm{Zr}_{2} \mathrm{TSb}_{3}$ (with $T=\mathrm{Cu}, \mathrm{Pd}$) [5, 6] are antimonides without any covalent $\mathrm{Sb}-\mathrm{Sb}$ bonds. The PbFCl -like $\mathrm{Zr} / \mathrm{Sb}$ substructure is neighbored by a 4^{4} net of alternating T and Sb atoms in a ratio of $1: 1$.

Experimental Section

Synthesis of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$

1.1 g of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ was synthesized by arc-melting under dry high-purity argon on a water-cooled copper hearth. The
starting materials were used without further purification in form of shots for $\mathrm{Zr}(99.8 \%$, ABCR), shots for $\mathrm{Cu}(99.999 \%$, Chempur) and shots for Sb (99.999%, Chempur). A ratio of $\mathrm{Zr}: \mathrm{Cu}: \mathrm{Sb}=5: 1: 8.3$ (in at-\%) and a $10 \mathrm{wt}-\%$ excess of Sb was used for the synthesis. Approximately the same Sb weight loss was found during the melting process in the arc furnace. The sample was melted three times, after each melting step the regulus was turned around in order to yield a homogeneous sample. The metallic bulk regulus was finely ground, and the resulting powder was annealed at 1123 K for three days in evacuated quartz tubes.

Semi-quantitative EDS analysis of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$

A crystal of the title compound suitable for single-crystal X-ray diffraction was separated directly from the annealed sample. The chemical composition of the crystal was determined by energy dispersive X-ray spectroscopy (EDS) using a SEM 5900LV (Jeol) scanning electron microscope. The acceleration voltage was 15 kV . The results averaged from three different randomly selected points of the crystal surface are in good agreement with the composition calculated from the structure refinement. We found a ratio (in at-\%) of $\mathrm{Cu}: \mathrm{Zr}: \mathrm{Sb}=8(1): 34(1): 58(1) \mathrm{Sb}$, in good accordance with the calculated ratio of $33.3: 8.3: 58.3$.

X-Ray structure determination of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$

A single crystal of $\mathrm{Zr}_{4} \mathrm{CuSb}_{7}$ suitable for structure determination was separated from the bulk residue. Intensity data were collected on a Stoe IPDS II diffractometer fitted with a Mo source $\left(\mathrm{MoK}_{\alpha 1}, \lambda=0.71079 \AA\right)$. Data were corrected for Lorentz and polarization effects prior to the cell refinement using the X-AREA program suite [13]. The crystal structure was solved by the Superflip routine [14], implemented in the program JANA2006 [15, 16], and was refined as a racemic twin using the non-centrosymmetric space group $P 4 b m$. A twin ratio of $0.53(5): 0.47(5)$ was found. A centrosymmetric space group can be ruled out due to the orientation of the PbFCl blocks relative to each other within the unit cell.

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fizkarlsruhe.de/request_for_deposited_data.html) on quoting the deposition number CSD-427673.

Acknowledgement

The authors acknowledge funding from the German Science Foundation (DFG) within the PAK 177 project and grant Ni1095/4-1.
[1] A. Assoud, K. M. Kleinke, N. Soheilnia, H. Kleinke, Angew. Chem. Int. Ed. 2004, 43, 5260-5262.
[2] W. Nieuwenkamp, J. M. Bijvoet, Z. Kristallogr. 1932, 81, 469-473.
[3] H. Onken, K. Vierheilig, H. Hahn, Z. Anorg. Allg. Chem. 1964, 333, 267 - 279.
[4] J. Xu, K. M. Kleinke, H. Kleinke, Z. Anorg. Allg. Chem. 2008, 634, 2367-2372.
[5] N. Koblyuk, G. Melnyk, L. Romaka, O. I. Bodak, D. Fruchart, J. Alloys Compd. 2001, 284-286.
[6] M. Greiwe, M. Krause, O. Osters, A. Dorantes, M. Piana, T. Nilges, Z. Naturforsch. 2013, 68b, 979-986.
[7] V. Romaka, A. Tkachuk, L. Romaka, Acta Crystallogr. 2008, E64, 147.
[8] M. Greiwe, T. Nilges, Prog. Solid State Chem. 2014, doi:10.1016/j.progsolidstchem.2014.04.012.
[9] F. Winter, R. Pöttgen, M. Greiwe, T. Nilges, Rev. Inorg. Chem. 2014, doi: 10.1515/revic-2014-0003.
[10] E. Garcia, J. D. Corbett, J. Solid State Chem. 1988, 73, 452-467.
[11] D. Eberle, K. Schubert, Z. Metallk. 1968, 59, 306-308.
[12] M. Brylak, W. Jeitschko, Z. Naturforsch. 1995, 50b, 899-904.
[13] X-Area (version 1.52), Stoe \& Cie GmbH, Darmstadt (Germany) 2011.
[14] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786-790.
[15] V. Petříček, M. Dušek, L. Palatinus, Jana2006, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic) 2006.
[16] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.Cryst. Mater. 2014, 229, 345-352.

[^0]: Key words: Transition Metal Polyphosphide, Sb-Sb Bonding, Structure Chemistry of Polyantimonides

