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1 Introduction

The most widely studied and arguably most natural mechanism of generating the present-

day abundance of dark matter (DM) is its thermal production in the early Universe followed

by chemical decoupling (freeze-out) of the DM particles from the background plasma. For

temperatures much higher than the mass of the DM particles the dark matter component

remains in both chemical and kinetic equilibrium. When the temperature of the plasma

drops, the interactions are not strong enough to keep the dark matter component in chem-

ical equilibrium and the DM particle number freezes out.

The precise moment when chemical decoupling happens is determined by two different

physical processes: the expansion of the Universe governed by the Hubble rate H and

the annihilation rate Γ of the DM particles. The precise description of the decoupling

process is possible in kinetic theory, where the evolution of the system is given by the

transport equations for the phase-space distribution functions f(p). If one assumes that

i) the Compton wavelength of DM particles is small with respect to inhomogeneity scale

– 1 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
5

and ii) one can adopt the quasi-particle approximation, one arrives at a semi-classical

description. In this case the transport is governed by the Boltzmann equation and its

solution can be used for the determination of the DM relic density for a given particle

physics model. The DM particle number density then follows the simple equation

dnχ
dt

+ 3Hnχ = 〈σχχ̄→ijvrel〉
(
neqχ n

eq
χ̄ − nχnχ̄

)
, (1.1)

where H denotes the Hubble rate, and 〈σχχ̄→ijvrel〉 the thermal average of the sum over

all annihilation cross sections to two-particle final states ij.

In recent years there has been an increasing interest in higher-order corrections to

scattering and annihilation processes involving DM particles. The main phenomenological

importance of such corrections is related to the modification of the annihilation spectra

relevant for the indirect searches. Quite generally, the increasing precision of dark matter

observations will require more accurate computations of the scattering and annihilation

processes, in some cases at full next-to-leading order (NLO) in the coupling constant.

In particular, it has also been noted recently that corrections to the annihilation rate

can affect non-negligibly the relic density computation [1–8]. With this in mind the first

numerical codes including the higher-order corrections are being developed, SloopS [9–11]

and DM@NLO [12, 13]. What is usually done is to compute the virtual and real radiation

corrections to the two-particle processes χχ̄ → ij using standard quantum field theory

methods at zero temperature.

This procedure raises a number of questions, especially for relic density computations,

since freeze-out occurs when the temperature of the Universe is small, but non-negligible

compared to the DM particle mass.

• Why should the time evolution of nχ be described by inclusive two-particle cross

sections and a Boltzmann equation of the form applicable to 2 → 2 reactions? The

real radiation amplitude involves three-particle final states, typically containing an

additional photon or gluon, which are themselves abundant in the plasma. Moreover,

absorption processes exist, but are neglected in the computation.

• How do the soft and collinear infrared (IR) divergences cancel at finite temperature?

It is well-known that IR divergences are more severe at finite temperature due to

the enhancement from the Bose distribution at small momenta. Moreover, virtual

and real scattering matrix elements, which are separately divergent, appear to be

multiplied by different statistical factors in the full Boltzmann equation.

• Assuming IR finiteness can be shown, what are the leading finite-temperature effects

on the annihilation cross sections and the relic density?

• Does the transport equation itself receive quantum corrections when it is derived from

general principles of non-equilibrium quantum field theory (QFT) to NLO accuracy?

In this paper we address these questions. We demonstrate that the IR cancellation happens

in the sum over “cuts” of individual self-energy diagrams similar to the situation at zero
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temperature, but involving the additional processes that occur in the plasma. The form

of (1.1) remains valid under the typical conditions of DM freeze-out, but the annihilation

cross section is modified by a small and calculable finite-temperature correction. Remark-

ably, the final NLO finite-temperature correction has a very simple structure and can be

computed directly from the zero-temperature tree level cross section.

The outline of the paper is as follows. In section 2 we discuss the IR problems that

arise at NLO at finite temperature. Section 3 reviews the well-known derivation of the

Boltzmann equation from non-equilibrium QFT, with emphasis on the application to the

freeze-out process. Next we discuss the computation of the collision term in section 4 and

demonstrate the general procedure for a bino-like DM model. In section 5 we present and

discuss the IR divergences cancellation and the result for the finite correction from thermal

effects. We conclude in section 6.

2 IR divergences and the Boltzmann equation

In general the one-loop scattering amplitudes contain soft and collinear IR divergent terms.

At zero temperature the Bloch-Nordsieck cancellations and Kinoshita-Lee-Nauenberg

(KLN) theorem [14–16] ensure that physical observables are free of both of these diver-

gences, as they involve summation over initial and final degenerate states, in the sense of

inclusiveness or experimental resolution in energy and angles. At finite temperature no

general proof of such a theorem is known, nevertheless the cancellation was observed in all

the particular cases studied in the literature (see e.g. [17–31]). In both situations the main

prerequisite for the cancellation is the inclusion of a soft or collinear gauge boson in the

NLO computation.

Whether and how the cancellation happens in NLO relic density computations has

not yet been investigated.1 To formulate the problem, let us consider a typical freeze-out

scenario of a weakly-interacting massive dark matter particle (WIMP), for which thermal

and chemical equilibrium at temperatures larger than the freeze-out temperature Tf ≈
mχ/20 is maintained by 2 → 2 scattering processes at leading order. In the Friedmann-

Robertson-Walker background the semi-classical Boltzmann equation for the evolution of

the phase-space distribution function reads

E
(
∂t −H~p · ∇~p

)
f = C[f ]. (2.1)

It can be rewritten as an equation for the number density ni(t) ≡ hi
∫ d3~p

(2π)3
fi(p) of given

species i as

dnχ
dt

+ 3Hnχ = CLO, (2.2)

where hi is the number of internal degrees of freedom of particle i and we assume that

the thermal plasma is “unpolarized” with respect to the internal degrees of freedom. The

1We note [32], which, however, addresses the different question whether thermal corrections to mass

and width parameters can have an effect on the relic density value in parameter regions where it depends

sensitively on these parameters, such as in the co-annihilation or resonance region, or when the important

decay channels are helicity-suppressed.
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integrated collision term for the leading-order (LO) annihilation (production) process χχ̄↔
ij is given by

CLO =

∫

dΠχχ̄ij |Mχχ̄→ij |2 [fifj(1± fχ)(1± fχ̄)− fχfχ̄(1± fi)(1± fj)] , (2.3)

where we defined

dΠχχ̄ijk... =
d3~pχ

(2π)32Eχ

d3~pχ̄
(2π)32Eχ̄

d3~pi
(2π)32Ei

d3~pj
(2π)32Ej

d3~pk
(2π)32Ek

. . .

× (2π)4δ(4)(pf − pi), (2.4)

with pf (pi) denoting the sum of the final (initial) state momenta of the process, and

moreover assumed CP invariance, which implies |Mχχ̄→ij |2 = |Mij→χχ̄|2. The ± signs are

chosen according to whether the particle is a boson (+) or fermion (−). Note that here

the squared matrix elements are defined to be summed over the internal (spin) degrees of

freedom of both the initial-state DM and final-state Standard Model (SM) particles. We

shall make the standard assumption that the SM particles are kept in thermal equilibrium

by frequent scatterings and that asymmetries are negligible. Therefore fi,j = f eqi,j , and also

the photon phase-space distribution fγ = f eqγ introduced below, are either Bose-Einstein

or Fermi-Dirac distributions with vanishing chemical potentials. For the DM particles

we assume that kinetic equilibrium is maintained by frequent elastic scatterings with the

particles from the thermal bath, resulting in fχ ∝ f eqχ , where the factor of proportionality

depends on temperature but not on the energy and momentum. Chemical equilibrium

of the DM particles, however, is lost when the temperature falls below the freeze-out

temperature Tf , and DM particle-number changing processes occur at insufficient rates.

Since in the 2 → 2 annihilation reaction all energies are of orderO(mχ), and since Tf ≪ mχ,

all distribution functions are exponentially suppressed, and we can approximate 1± f ≈ 1.

Under these assumptions the integrated collision term (2.3) takes the standard form

CLO = 〈σχχ̄→ijvrel〉
(
neqχ n

eq
χ̄ − nχnχ̄

)
, (2.5)

where

〈σχχ̄→ijvrel〉 ≡
1

neqχ n
eq
χ̄

∫
d3~pχ
(2π)3

d3~pχ̄
(2π)3

f eqχ f eqχ̄ σχχ̄→ijvrel, (2.6)

denotes the thermally averaged cross section times velocity

σχχ̄→ijvrel ≡
1

4EχEχ̄

∫
d3~pi

(2π)32Ei

d3~pj
(2π)32Ej

(2π)4δ(4)(pχ + pχ̄ − pi − pj) |Mχχ̄→ij |2, (2.7)

and we used fχ = nχ/n
eq
χ × f eqχ .

As long as the amplitudes are computed at tree level, the cross section σχχ̄→ijvrel
and hence the collision term is evidently IR finite. When the relic density computation

described above is extended to NLO, what has been done up to now is to compute the

zero-temperature annihilation cross section to NLO, while keeping the form of the remain-

ing equations. This involves the one-loop correction to the 2 → 2 annihilation processes
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χχ̄→ ij, and the tree-level radiation process χχ̄ → ijγ, assuming electromagnetic radia-

tion for definiteness. The sum is IR finite by the usual zero-temperature IR cancellations.

This procedure is conceptually problematic. To see this, consider the NLO colli-

sion term

CNLO =

∫

dΠχχ̄ij

(

|MLO
χχ̄→ij |2 + |MNLO

χχ̄→ij |2
)

[fifj − fχfχ̄]

+

∫

dΠχχ̄ijγ

{

|Mχχ̄→ijγ |2 [fifjfγ − fχfχ̄(1 + fγ)]

+ |Mχχ̄γ→ij |2 [fifj(1 + fγ)− fχfχ̄fγ ]

}

, (2.8)

where again we used 1 ± f ≈ 1 except for the photon distribution function. The collision

term (2.8) contains both annihilation and production contributions, which are however

symmetric and can be described by the same thermally averaged cross section, as long

as the theory is CP invariant and the DM particles are in kinetic equilibrium. It can be

most easily seen by making use of the detailed balance relation for the photon distribution

function

fγ = e−Eγ/T (1 + fγ), (2.9)

the Maxwell approximation for the remaining ones and the energy conservation. It follows,

that the collision term has the form analogous to (2.5) but with the thermally averaged

cross section replaced by

〈σNLOvrel〉 ≡
1

neqχ n
eq
χ̄

∫

dΠχχ̄ij f
eq
χ f eqχ̄ (2.10)

×
{

|MLO
χχ̄→ij |2 + |MNLO

χχ̄→ij |2 +
∫

dΠγ

[
|Mχχ̄→ijγ |2(1 + fγ) + |Mχχ̄γ→ij |2 fγ

]
}

,

with the interpretation dΠχχ̄ijdΠγ = dΠχχ̄ijγ . For this reason also when discussing the

NLO corrections we will consider only annihilation processes.

The problematic approximation corresponds to setting fγ → 0, which amounts to

computing the thermal average of the zero-temperature cross section. This step is not

justified, since there are relevant regions of photon phase space dΠγ , where the photon

energy is small, in which case fγ ∼ E−1
γ is arbitrarily large. However, if one simply keeps

fγ in the expression for the collision term, the virtual one-loop and real terms, |MNLO
χχ̄→ij |2

and
∫
dΠγ |Mχχ̄γ→ij |2, respectively, are multiplied by different factors, and the standard

IR cancellation no longer occurs. Moreover, since fγ ∼ E−1
γ , an additional IR divergence

is generated, which is more severe than the zero-temperature, logarithmic divergences.

It is now important to realize that the photons in the plasma contribute not only to

the 2 → 3 emission and 3 → 2 absorption processes, but also to the virtual, one-loop

two-body amplitude. Indeed, it has been shown in the special cases of muon decay [26]

and the right-handed neutrino production rate [27–31] relevant to leptogenesis, that when

finite-temperature Feynman rules are used in the computation of the decay or production

rate, the additional IR divergence cancels. In particular, leptogenesis also involves a non-

equilibrium situation. The proof of cancellation of all divergences in the general case
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does not seem to exist, though some partial results can be found in [25, 33–35]. Let us

therefore add and make explicit the finite-temperature correction to the virtual correction

by replacing

|MNLO
χχ̄→ij |2 → |MNLO T=0

χχ̄→ij |2 + |MNLO T 6=0
χχ̄→ij |2, (2.11)

likewise for the inverse process.2 Since the SM particles may have masses smaller or of

order of Tf , we also abandon the assumption that fi,j are exponentially small in the 2 → 3

and 3 → 2 processes, where particles i, j need not have energy of order mχ. We can then

extend and reorganize the NLO thermally averaged cross section into the expression

〈σNLOvrel〉T 6=0 =
1

neqχ n
eq
χ̄

∫

dΠχχ̄ij f
eq
χ f eqχ̄ (2.12)

{(

|MLO
χχ̄→ij |2 + |MNLO T=0

χχ̄→ij |2 +
∫

dΠγ |Mχχ̄→ijγ |2
)

+ |MNLO T 6=0
χχ̄→ij |2 +

∫

dΠγ

[

fγ
(
|Mχχ̄→ijγ |2 + |Mχχ̄γ→ij |2

)

+ fi
(
|Mχχ̄i→jγ |2 ± |Mχχ̄→ijγ |2

)
+ fj

(
|Mχχ̄j→iγ |2 ± |Mχχ̄→ijγ |2

)
]}

.

Note that we have neglected terms with more than three distribution functions, as they are

necessarily exponentially suppressed relative to those given, since the kinematics of 2 ↔ 3

processes allows only one particle to be soft. The NLO collision term also includes the

processes χχ̄j ↔ iγ, χχ̄i↔ jγ, which appear first at this order.

In the cross section above there are both T -independent and T -dependent IR diver-

gences. The former are present in the second line on the right-hand side of (2.12). However,

the expression in the parentheses is IR finite by the standard T = 0 KLN cancellations,

and we will not discuss it further in this work. Our main interest is in the remaining

two lines which contain the finite-temperature correction to the one-loop virtual amplitude

and emission and absorption processes multiplied by additional phase-space distribution

functions. Our aim is to show that these terms are IR finite and to evaluate the leading

correction. Indeed, our main result will be that the relic density can be obtained by solving

the equation analogous to (2.5) with collision term

CNLO = 〈σNLOvrel〉T 6=0

(
neqχ n

eq
χ̄ − nχnχ̄

)
, (2.13)

and the NLO thermally averaged cross section replaced by (2.12), which now depends also

on T through a finite-temperature correction.

Owing to the presence of the MNLO T 6=0
χχ̄↔ij term, in order to obtain a meaningful result at

NLO, one needs to perform the computation of the amplitudes in the thermal field theory

formalism. The starting point for a systematic treatment is non-equilibrium quantum

field theory and the closed time-path (CTP) formalism [36, 37]. In the next section we

2Note that for the standard WIMP annihilation scenarios, there are no finite-temperature corrections to

the tree-level amplitudes of 2 → 2 and 2 → 3 or 3 → 2 processes, because at tree level annihilation occurs

through t-channel exchange of a particle with mass larger than mχ, or through highly virtual s-channel

particles.
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C tmax

tmin

t

Figure 1. The contour C in the complex time plane. The value tmax can be taken to be +∞ for

practical computations.

review the derivation of the Boltzmann equation from the Kadanoff-Baym equations [38]

with application to relic density computations. The general strategy of this derivation

is well-known and gives a prescription for the computation of the collision term, which

consistently takes into account all the thermal corrections. We recapitulate it here to set

up the notation for the concrete calculations to follow. These are performed in an example

model for DM annihilation, where we can directly observe the cancellation of both soft

and collinear divergences. As we will show, the IR finiteness of the collision term is related

to the finiteness of DM particle self-energy diagrams in the thermal background. The

formalism allows us to compute the finite-temperature correction and we find that the

naive zero-temperature NLO relic density computations are accurate up to corrections of

order O(ατ2), where τ ≡ T/mχ ≪ 1 and α is the fine structure constant. The correction

has a remarkably simple form.

3 Derivation of the Boltzmann equation

In this section we briefly review the derivation of the kinetic equation for non-equilibrium

propagators, and from this the Boltzmann equation for the phase space density functions by

performing the Wigner transformation and gradient expansion (see, for example, [39–43]).

We start with the closed time-path (CTP) formulation of non-equilibrium quantum field

theory (reviewed, e.g., in the book [44]), where all correlation functions are defined on a

complex time plane along the contour C, see figure 1. The contour Green function for a

fermion is defined as

iSαβ(x, y) ≡ 〈TCψα(x)ψ̄β(y)〉, (3.1)

where TC denotes the time ordering operation along the contour. It corresponds to four

Green functions with real-time arguments:

iS>
αβ(x, y) ≡ 〈ψα(x)ψ̄β(y)〉 iS<

αβ(x, y) ≡ −〈ψ̄β(y)ψα(x)〉 (3.2)

iSc
αβ(x, y) ≡ 〈T cψα(x)ψ̄β(y)〉 iSa

αβ(x, y) ≡ 〈T aψα(x)ψ̄β(y)〉, (3.3)

where T c(T a) denotes chronological (anti-chronological) time ordering in real time.3 The

brackets 〈. . .〉 imply averaging over an ensemble at time tmin. The free-field momentum-

3Often the upper branch is called ‘1’ and the lower ‘2’, and the propagators are denoted as S> = S21,

S< = S12, Sc = S11 and Sa = S22.
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space propagators are summarized in appendix A. The formalism describes a general non-

equilibrium system, where the physical macroscopic observables are averages over an en-

semble. The CTP formulation originates from the need to describe the time evolution of

an operator expectation value (“in-in formalism”) rather than a scattering matrix element

(“in-out formalism”).

In an interacting non-equilibrium system the two-point Green functions depend on

both space-time coordinates, which may be chosen as relative coordinate r = x − y, and

averaged (macroscopic) coordinate X = x+y
2 . In equilibrium the system can depend only

on the relative coordinate due to translation invariance. Therefore, for systems not far from

equilibrium it is useful to perform the Wigner transform and define the Green functions

G(X, p) ≡
∫ tmax

tmin

d4u eipuG (X − u/2, X + u/2) , (3.4)

(and similarly the self-energies). The dependence on p describes the fluctuations on the

microscopic scale of particle interactions, while the coordinate X describes the macroscopic

space-time variations. In equilibrium, the Wigner-space Green functions depend only on

the momentum p.

The contour Green functions obey the Dyson-Schwinger equation

Sαβ(x, y) = S0
αβ(x, y)−

∫

C
d4z

∫

C
d4z′S0

αγ(x, z)Σγρ(z, z
′)Sρβ(z

′, y), (3.5)

where the superscript ‘0’ denotes the free propagators, and Σ is the self-energy. The

Dyson-Schwinger equations lead to the Kadanoff-Baym equations [38]

(i/∂x −mχ)S
<
>(x, y)−

∫

d4z
(

Σh(x, z)S
<
>(z, y) + Σ

<
>(x, z)Sh(z, y)

)

= Cχ , (3.6)

where the collision is defined as

Cχ ≡ 1

2

∫

d4z
(
Σ>(x, z)S<(z, y)− Σ<(x, z)S>(z, y)

)
. (3.7)

Here the subscript h denotes the hermitian part, Σh = Σc − 1
2 (Σ

> +Σ<) and analogously

for the Green functions.4 These equations for the Green functions are exact functional

equations, but too difficult to solve. At this point we apply the approximations described

in the introduction. First, we transform to Wigner space and take tmin = −∞. Then we

perform the gradient expansion up to the first order in gradients, upon which (3.6) becomes

(

/p+
i

2
/∂ −mχ

)

S
<
> − ΣhS

<
> − Σ

<
>Sh +

i

2
{Σh, S

<
>}+ i

2
{Σ<

>, Sh}+O(∇2) = Cχ , (3.8)

where the Green functions now depend on X and p, ∂µ ≡ ∂
∂Xµ , and

{A,B} =
∂A

∂pµ

∂B

∂Xµ
− ∂A

∂Xµ

∂B

∂pµ
, (3.9)

4Note that it is actually γ0Σh which is hermitian, since (γ0Σh)
† = γ0Σh, and the same for Sh.
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denotes an analogue of the Poisson bracket with respect to the coordinates X and p. The

expanded collision term in Wigner space reads

Cχ =
1

2

(
Σ>S< − Σ<S>

)
− i

4

(
{Σ>, S<} − {Σ<, S>}

)
+O(∇2). (3.10)

By performing the gradient expansion we assume that the variations of physical quan-

tities in the coordinate X are small with respect to the typical inverse momenta of the

plasma excitations. The latter are of the order of plasma temperature T . As con-

cerns the former, in the homogeneous Universe, the macroscopic variation of dark mat-

ter particle number density is set by the expansion rate H and the annihilation rate

Γ ∼ nχ α
2/m2

χ ∼ α2T 3/2m
−1/2
χ e−mχ/T , both of which are of the same order, when the

number density freezes out at mχ/T ∼ 20. Thus gradients ∇ ∼ Γ are exponentially

suppressed and it is a good approximation to keep only the zeroth order in the gradient

expansion, which corresponds to neglecting all terms with Poisson brackets in (3.8). In

addition there is also an expansion in the coupling constants of the interactions, as long

as they are weak. As we show below, when the collision term is evaluated at lowest non-

vanishing order (and in zeroth order of the gradient expansion), one recovers the standard

freeze-out equation for the DM number density. Since in the cases of interest

∇
T

≪ α≪ 1, (3.11)

the next order in the coupling expansion is much more important than higher-order gradient

terms, but still allows for a perturbative expansion in α. Thus, in the following, when we

consider relic density computations at NLO, we mean next-to-leading order in the coupling

constants in the collision term, but leading order in the gradient expansion. The relevant

equation is then

(

/p+
i

2
/∂ −mχ

)

S
<
> −

[

ΣhS
<
> +Σ

<
>Sh

]

|NLO
=

1

2

(
Σ>S< − Σ<S>

)

|NLO
. (3.12)

Separating the hermitian and anti-hermitian parts leads to constraint and kinetic equations

2p0iγ0S
<
> −

{
~p · ~γγ0 +mχγ

0 +Σhγ
0, iγ0S

<
>
}
− {iΣ<

>γ0, γ0Sh} = iCχ − iC†
χ, (3.13)

i∂tiγ
0S

<
> −

[

~p · ~γγ0 +mχγ
0 +Σhγ

0, iγ0S
<
>

]

−
[

iΣ
<
>γ0, γ0Sh

]

= iCχ + iC†
χ, (3.14)

where here {·, ·} and [·, ·] denote the anti-commutator and commutator, respectively.

The constraint equation (3.13) to zeroth order takes the simple form

{
(/p−mχ)γ

0, iγ0S
<
>
}
= 0. (3.15)

It describes the spectral properties of the quasi-particles and in particular puts constraints

on the structure of the Green function. Inserting the most general parameterization of the

Dirac matrix structure compatible with spatial isotropy,

iS
<
> = mχ

(

g
<
>

s + g
<
>

p γ
5
)

+ g
<
>

v0 p
0γ0− g<

>

v3 ~p ·~γ+ g
<
>

a0 p
0γ0γ5− g<

>

a3 ~p ·~γγ5+ g
<
>

t [γ
0, ~p ·~γ], (3.16)
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the constraint equation (3.15) leads to the conditions

g
<
>

s = g
<
>

v0 = g
<
>

v3 ≡ g
<
>, g

<
>

p = g
<
>

a0 = g
<
>

a3 = g
<
>

t = 0. (3.17)

Hence the Green function must be of the form

iS
<
> = (/p+mχ)g

<
>. (3.18)

The general solution of the constraint equation (3.15) can also be written in the form of

the Kadanoff-Baym ansatz

iS< = −A0

[
Θ(p0)fχ(~p ) + Θ(−p0)(1− fχ̄(−~p ))

]
, (3.19)

iS> = −A0

[
−Θ(p0)(1− fχ(~p ))−Θ(−p0)fχ̄(−~p )

]
. (3.20)

where A0(X, p) = 〈
[
ψ(x), ψ̄(y)

]
〉0 describes the spectral properties of the quasi-particles in

zeroth order, and is given by

A0(X, p) = 2πδ(p2 −m2
χ)(/p+mχ)ε(p

0), (3.21)

with ε the sign function ε(p0) = Θ(p0)−Θ(−p0). By comparing with (3.18) we identify

g<(X, p) = −2πδ(p2 −m2
χ)
[
Θ(p0)fχ(~p )−Θ(−p0)(1− fχ̄(−~p ))

]
, (3.22)

g>(X, p) = −2πδ(p2 −m2
χ)
[
−Θ(p0)(1− fχ(~p )) + Θ(−p0)fχ̄(−~p )

]
. (3.23)

Finally, the Boltzmann equation follows from combining the kinetic equation (3.14)

in zeroth order of the gradient expansion with the quasi-particle approximation and the

solution (3.18), (3.22)–(3.23) of the zeroth-order constraint equation. We first note that

the term
[
~p · ~γγ0 +mχγ

0, iγ0S
<
>
]
vanishes with the above ansatz for S

<
>. Next we examine

the terms containing commutators with self-energies. We assume that the deviation of

the DM particle distribution from thermal equilibrium is sufficiently small that the self-

energy can be computed with propagators (3.19)–(3.20). Then at one-loop we can use

parametrizations

Σh = αp0γ0 − β~p · ~γ + σmχ, Σ
<
> = a

<
>p0γ0 − b

<
>~p · ~γ + c

<
>mχ, (3.24)

where α,β, σ, a
<
>, b

<
> and c

<
> are scalar functions of the momentum. With this ansatz one

can check that both
[
iΣ

<
>γ0, γ0Sh

]
and

[
Σhγ

0, iγ0S
<
>
]
are proportional to ~p ·~γ and for this

reason, after taking the trace over spinor indices, will not contribute to the Boltzmann

equation.

Then, multiplying (3.14) by 2Θ(p0), taking the trace, and integrating over p0, we

obtain, after using (3.18) with (3.22)–(3.23):

Eχ∂tfχ = −Eχ

∫
dp0

(2π)
Θ(p0)

1

2
Tr{Cχ + C†

χ}. (3.25)

In the FRW background, the time derivative needs to be replaced by the covariant one, from

which we recover (2.1) with the collision term C[f ] given by the right-hand side of (3.25).
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The Boltzmann equation for the number density (2.2) has the integrated collision term

given by

C = −hχ
∫

d4p

(2π)4
Θ(p0)

1

2
Tr{Cχ + C†

χ}. (3.26)

In the next section we will demonstrate the consistency between the above equation

and (2.3), and compute the collision term to NLO.

4 The collision term

In this section we present the computation of the collision term at zeroth order in the

gradient expansion in a “bino-like” DM model. In this model the DM Majorana fermion

χ annihilates at tree-level into SM fermions via a 2 → 2 process, mediated by t- and u-

channel exchange of a heavy scalar particle φ. The collision term is computed including

the thermal NLO contributions to the annihilation process.

After introducing the model, we illustrate explicitly the calculation of the right-hand

side of (3.12) at tree-level in the CTP formalism to show how the collision term can be

expressed in terms of annihilation cross sections and phase-space distributions, as in the

standard expression (2.3). We then proceed to the main part of the paper and compute

the thermal NLO corrections. As we are primarily interested in the infrared divergence

cancellation at finite temperature and the leading finite-temperature correction, we drop

the terms that can be associated with the T = 0 NLO correction to the annihilation cross

section, even though its finite part is parametrically larger than the finite-T correction. The

computation of the zero-temperature cross section is already well understood and could be

straightforwardly included in the formalism. We note that while we focus on a particular

model to perform explicit calculations, the procedure itself is much more general and can

be applied to a variety of different DM scenarios.

4.1 The model

We consider the extension of the Standard Model by an SU(2) × U(1) singlet Majorana

fermion and a scalar doublet φ = (φ+, φ0)T . The relevant terms in the Lagrangian read

L = −1

4
FµνFµν + f̄

(
i /D −mf

)
f +

1

2
χ̄
(
i/∂ −mχ

)
χ

+(Dµφ)
†(Dµφ)−m2

φφ
†φ+

(
λχ̄PLf

−φ+ + h.c.
)
, (4.1)

where the SM fermions form a left-handed doublet f = (f0, f−)T . In this model the only

interaction involving the DM particle χ is the Yukawa interaction with the “sfermion” φ

and SM (light) fermion doublet f , of which we include only the charged component. The

neutral component would affect the inclusive tree-level cross section through the λχ̄PLf
0φ0

interaction, which allows χχ̄→ f0f̄0, however this process receives no radiative corrections

since it contains only electrically neutral particles. The scenario we have in mind, realized

in the minimal supersymmetric SM (MSSM) if the dark matter is the bino, is an electroweak

or TeV scale DM particle, and a scalar (sfermion) with massmφ > mχ ≈ O(0.1−1TeV). In
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Figure 2. The DM self-energy at one loop. The same diagram topology with reversed arrows is

not shown.

this situation the freeze-out occurs after the electroweak phase transition. In the covariant

derivative Dµ = ∂µ − ieAµ we therefore keep only the electromagnetic term.

The motivation for studying this particular scenario follows from its relevance to the

dark matter phenomenology of the MSSM, and from its relative simplicity. Moreover, in

such a model the zero-temperature NLO corrections have been shown to be significant [45],

since they lift the helicity suppression of the LO annihilation process.

4.2 Calculation of the collision term at LO

In the CTP formalism the fermion collision term (3.10) to leading order in gradient expan-

sion is given by

Cχ =
1

2

(
Σ>S< − Σ<S>

)
. (4.2)

In the calculation of the self-energies the phase-space distribution functions of all the

interacting particle species appear in the finite-temperature propagators, see appendix A.

The two terms Σ< and Σ> account for all possible processes involving the interacting

species, which includes annihilation, production and scattering processes for χ, as well

as absorption processes characteristic of the finite-temperature plasma. In the kinetic

equation for the particle number density, the contributions from particle-number preserving

scattering processes χf → χf cancel out after summing over the two terms on the right-

hand side of (4.2) and after taking the trace and performing the integral over the particle

four-momentum in (3.26). These terms will therefore be omitted right away.

We start from the calculation at leading order in the coupling (loop) expansion to show

the correspondence between the self-energy diagrams and annihilation processes. The one-

loop self energy, shown in figure 2, describes 1 ↔ 2 processes, which are not relevant for

the relic-density computation, because they are kinematically forbidden or exponentially

suppressed.5 Therefore, the LO annihilation process χχ ↔ ff̄ must be contained in the

two-loop self-energy diagrams of figure 3. The self energies Σ<,> are computed from the

diagrams discussed above by applying the Feynman rules of the CTP formalism with the

propagators of appendix A, and the proper treatment of the fermion-number violating

interactions for Majorana fermions [46]. We denote the propagator of the charge-conjugate

fermion field as S
′ab(p) ≡ C

(
Sab(p)

)T
C−1, where C is the charge-conjugation matrix and

the transpose is with respect to the spinor indices only.

5The φ co-annihilation scenario can be straightforwardly included in the presented formalism, but is

beyond the scope of this work. In this scenario the diagram of figure 2 describes φ ↔ χf (inverse) decays.
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++t
q

k2k1 − q

k1 k1 − t

q

A B C

Figure 3. The DM self-energy at two loops. The same diagram topologies with reversed arrows

are not shown for simplicity. In the following they are into account and denoted by a superscript

rev.

+ + +iΣ>
A =

AI AII AIII AIV

Figure 4. iΣ>
A as given by the CTP Feynman rules. Uncircled and circled vertices denote type ‘1’

and type ‘2’ vertices, respectively.

Let us consider the contribution to Σ>(q) from diagram A in figure 3. Since Σ> = Σ21,

the left vertex is of the type ‘1’ and the right of type ‘2’, while one has to sum over both

types of internal vertices. This leads to the sum of the four diagrams in figure 4, where

uncircled and circled vertices denote type ‘1’ and type ‘2’ vertices, respectively. Fixing the

fermion flow and assigning the momenta as in figure 3 the whole expression appearing in

the collision term reads

iΣ>
A (q) iS< (q) =

∑

a,b=1,2

−(−1)a+1(−1)b+1λ4
∫

d4t

(2π)4
d4k1

(2π)4
d4k2

(2π)4
(2π)4 δ(4)(q + t− k1 − k2)

×i∆1a (k1 − q) i∆2b (k1 − t)PRiS
′a2
f (−k2)PLiS

ab (t)PLiS
b1
f (k1)PRiS

12 (q) . (4.3)

At this point we note that the thermal part of the sfermion propagator is exponentially

suppressed, since mφ > mχ ≫ Tf . Dropping this part implies that only the 11 and 22

components of ∆ab are non-vanishing, so the ends of a scalar (dashed) line must either

both be circled or not. Hence the only diagram in figure 4 that we have to compute is AIII.

Taking the trace over the spinor indices, which accounts for the polarization sum in the

number density equation, the previous equation simplifies to

Tr{Σ>
AIII

(q)S< (q)} = −λ4
∫

d4t

(2π)4
d4k1

(2π)4
d4k2

(2π)4
(2π)4 δ(4)(q + t− k1 − k2)

× i∆11 (k1 − q) i∆22 (k1 − t)
︸ ︷︷ ︸

≡S

Tr{PRiS
′12
f (−k2)PLiS

12 (t)PLiS
21
f (k1)PRiS

12 (q)}
︸ ︷︷ ︸

≡F

. (4.4)

Since in the scalar part S we need only the T = 0 part of the propagators, we have

S =
i

(k1 − q)2 −m2
φ

−i
(k1 − t)2 −m2

φ

. (4.5)
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In the fermion part F both the T = 0 and the thermal parts contribute, in principle. How-

ever, the expression involves only the purely thermal off-diagonal CTP propagator, leaving

F = Tr{PR (/k2 +mf )PL

(
/t +mχ

)
PL (/k1 +mf )PR

(

/q +mχ

)
} (4.6)

×(2π)4δ(q2 −m2
χ) δ(t

2 −m2
χ) δ(k

2
1 −m2

f ) δ(k
2
2 −m2

f )

×
[

Θ(−k02)ff (−~k2)−Θ(k02)
(
1− ff̄ (

~k2)
)] [

Θ(t0)fχ(~t )−Θ(−t0)
(
1− fχ(−~t )

)]

×
[

−Θ(k01)
(
1− ff (~k1)

)
+Θ(−k01)ff̄ (−~k1)

] [
Θ(q0)fχ(~q )−Θ(−q0) (1− fχ(−~q ))

]
.

The last two lines of (4.6) lead to 16 distinct terms describing different processes in the

thermal plasma. Half of them vanish after multiplying by Θ(q0) as needed for (3.26).

Out of the remaining 8 terms 5 are kinematically forbidden, since they refer to 4 ↔ 0

and 1 ↔ 3 processes. One is left with two terms corresponding to scatterings χf → χf

and χf̄ → χf̄ , which do not contribute to the number-changing processes and cancel out

after including the Σ<S> contribution, and one term describing the annihilation process

χχ→ ff̄ . Only this last term contributes to the integrated collision term. As explained in

the introduction, we assume the background plasma to be in thermal equilibrium with zero

chemical potential and therefore the SM fermion distribution function is the Fermi-Dirac

one for both particle and antiparticle, ff̄ = ff = f eqf and

Θ(p0)f eqf (~p ) =
1

eβp0 + 1
≡ fF (p

0) with p0 ≡
√

~p 2 +m2
f . (4.7)

Finally we get

Tr{Σ>
AIII

(q)S< (q)} =
1

2Eχ1

(2π) δ
(
q0 − Eχ1

)
∫

d3~t

(2π)3 2Eχ2

×
∫

d3~k1

(2π)3 2Ef1

d3~k2

(2π)3 2Ef2

(2π)4 δ(4) (q + t− k1 − k2) |MAIII
|2

×
[

fχ(~q )fχ(~t )
(
1− f eqf ( ~k1)

)(
1− f eqf ( ~k2)

)]

, (4.8)

where all the momenta are on-shell. Adding the hermitian conjugate and integrating this

expression with −hχd4q/(2π)4 1
2Θ(q0) as appropriate to the collision term for the χ number

density (3.26) and accounting for the factor 1/2 in (4.2), the structure of the result is now

manifestly as in (2.3), with a zero-temperature annihilation cross section times velocity

multiplied by the statistical factors corresponding to the process χ1(q)χ2(t) → f(k1)f̄(k2).

The matrix element squared can be recognized as the interference term between the two

tree-level diagrams for the annihilation process χχ→ ff̄ , as shown in figure 5. Specifically,

|MAIII
|2 = −λ4 S Tr{· · · } = Mtree (Mexc

tree)
∗ , (4.9)

where the trace refers to the first line of (4.6). The same procedure applied to the dia-

gram B in figure 3 and to the corresponding diagrams with reversed arrows leads to the
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↔ +

BII Brev
II Mtree Mexc

tree(Mtree)
∗ (Mexc

tree)
∗

+

Arev
IIIAIII

Mtree Mexc
tree(Mexc

tree)
∗ (Mtree)

∗

↔ ++

Figure 5. Tree-level annihilation diagrams for a Majorana fermion and their matching with the

two-loop self-energies. Note the correspondence between reversing the charge flow arrows and

crossing the external legs.

identifications

|MBII
|2 = |Mtree|2,

|Mrev
AIII

|2 = Mexc
tree (Mtree)

∗ ,

|Mrev
BII

|2 = |Mexc
tree|2. (4.10)

Diagram C of figure 3 does not contribute, since as discussed above we can ignore any

contribution with an off-diagonal sfermion CTP propagator.

The calculation of Σ<S> is analogous and reproduces the first term in (2.3), which

corresponds to the production process ff̄ → χχ. We therefore conclude that — as antici-

pated — at LO in the CTP formalism, that is, inserting the DM self-energy at two loops

into (4.2) and (3.26) for the integrated collision term, leads to the standard Boltzmann

equation (2.2). This is true under the assumptions of the gradient expansion and quasi-

particle approximation, which are well-satisfied for the standard scenario of freeze-out of an

initially thermal DM particle population. At LO in the coupling expansion the integrated

collision term is, provided the tree level 2 → 2 processes are χχ↔ ff̄ , as in (2.3).

4.3 Tree-level annihilation cross section

For later reference, we give the tree-level χχ → ff̄ cross section in our model. More

precisely, we give the cross section times velocity expanded in the small velocity (partial

waves) in the non-relativistic regime,6

4E2
χ σχχ→ff̄ vrel = atree + btreev

2, (4.11)

where v is the CM velocity of one DM particle and we extracted the flux factor 4E2
χ so

that atree and btree are dimensionless, and correspond to the s- and p-wave contributions,

respectively. It proves useful to adopt variables rescaled by the DM mass, i.e.

τ ≡ T

mχ
, ξ ≡ mφ

mχ
, ǫ ≡ mf

2mχ
. (4.12)

6We recall that this cross section is summed over both initial and final state polarizations.
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Then

atree =
2λ4

π
ǫ2

√
1− 4ǫ2

(1 + ξ2 − 4ǫ2)2
, (4.13)

btree =
4λ4

3π

1 + ξ4 − ǫ2
(
9 + 8ξ2 + 5ξ4

)
+ ǫ4

(
31 + 46ξ2 + 7ξ4

)
− 8ǫ6

(
9 + 7ξ2

)
+ 112ǫ8√

1− 4ǫ2 (1 + ξ2 − 4ǫ2)4
.

(4.14)

Note that always ξ ≥ 1 and ǫ ≤ 1
2 , but typically ǫ ≪ 1. In the first term the appearance

of the ǫ2 factor implies the well-known helicity suppression of s-wave annihilation of a

Majorana fermion into SM fermions.

4.4 Collision term at NLO

Now that we understand how to match the collision term in the CTP formalism to the form

of the freeze-out equation with the standard computation of annihilation cross sections, we

are ready to consider the NLO thermal corrections. They are encoded in the three-loop

DM self-energy diagrams obtained by adding a photon line to the diagrams A and B in

figure 3 in all possible ways.7 From the annihilation amplitude point of view they can be

arranged into three classes: i) processes corresponding to thermal emission and absorption,

ii) thermal internal virtual corrections and iii) thermal corrections to mass and wave-

function renormalization on the external legs. We use this classification for organizing the

discussion of the computation, even though it is somewhat artificial from the self-energy

diagram point of view. The reason is that we want to show a clear connection between

the usual way of doing calculations and the quantities appearing in the collision term as

derived from CTP formalism. When showing the results for IR divergence cancellation and

leading thermal correction we revert to the more natural classification based on different

self-energy diagrams.

At NLO there are 20 three-loop self-energy diagrams contributing to Σ> of a Majorana

fermion.8 They are given in tables 1 and 2, together with the corresponding processes they

describe after associating the terms in the CTP sums with matrix elements squared. Since

the thermal part of the propagators always contains the on-shell delta function δ(p2 −m2)

we refer to these contributions as “cuts” of the self-energy diagrams.

In the remainder of this section we describe the method of performing the calculations

emphasizing the differences with respect to the T = 0 case. The results and their discussion

will follow in section 5.

As an example we consider the self-energy diagram in figure 6, which corresponds to

the last diagram in table 2. Following the rules described in section 4.2, we note that every

three-loop CTP self-energy contribution to Σ<,> contains 24 = 16 different terms from the

7Diagrams leading to s-channel photon exchange via a loop-induced χχ̄γ coupling of DM to the photon

do not contribute to the thermal correction. The virtual process with the thermal photon is kinematically

forbidden, while with thermal fermion is suppressed by additional power of momentum of the thermal

particle, leading to vanishing correction at the order O(τ2).
8For a Dirac fermion there are only half that number, as no clashing arrows are allowed and hence the

diagrams of type A vanish.
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CTP diagram Real Virtual

MA (Mexc
A )

∗

+ e.c.

MkT
1

(

Mexc
tree

)∗

MC (Mexc
C )

∗

+ e.c.

MkT
2

(

Mexc
tree

)∗

MB (Mexc
B )

∗

MA (Mexc
B )

∗ Mtree (Mexc
1

)
∗

MB (Mexc
A )

∗ M1

(

Mexc
tree

)∗

MC (Mexc
B )

∗ Mtree (Mexc
2

)
∗

MB (Mexc
C )

∗ M2

(

Mexc
tree

)∗

M3

(

Mexc
tree

)∗

Mtree (Mexc
3

)
∗

+ e.c.

MA (Mexc
C )

∗

+ e.c.

M4

(

Mexc
tree

)∗

Table 1. The self-energy diagrams of type A and the correspondence to the diagrams leading to

real emission and absorption, virtual corrections and the correction to the external SM fermion legs.

The e.c. stands for exchanging the DM fermion legs in both parts of the amplitude and complex

conjugation.

CTP sum over circled and uncircled vertices. Most of them, however, do not contribute

as they involve the exponentially suppressed thermal part of the sfermion. In case of the

example shown in figure 6 only four terms remain, which we may associate with virtual and

real photon NLO corrections. To confirm this interpretation, we consider the second cut of
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CTP diagram Real Virtual

MA (MA)
∗

+ c.c.

MkT
1

(Mtree)
∗

MC (MC)
∗

+ c.c.

MkT
2

(Mtree)
∗

MB (MB)
∗

MA (MB)
∗ Mtree (M1)

∗

MB (MA)
∗ M1 (Mtree)

∗

MC (MB)
∗ Mtree (M2)

∗

MB (MC)
∗ M2 (Mtree)

∗

M3 (Mtree)
∗

Mtree (M3)
∗

+ c.c.

MA (MC)
∗

+ c.c.

M4 (Mtree)
∗

Table 2. The self-energy diagrams of type B and the correspondence to the diagrams leading to

real emission and absorption, virtual corrections and the correction to the external SM fermion

legs. The c.c stands for complex conjugation.

the diagram in figure 6, labelled CA, and show that it corresponds to the interference term

of the two real photon emission amplitudes from the different final state legs multiplied by

the associated Bose enhancement factors. Proceeding as in section 4.2 we obtain for this
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−k2−s−k2

↔ + + +

4 t C A A C t 4

M4 (Mtree)
∗ MC (MA)

∗ MA (MC)
∗ Mtree (M4)

∗

↔ + + +
q

k1 − qk1 + s− q

q

k1 + s k1

s

−t

Figure 6. An example three-loop self-energy contribution to iΣ> decomposed into a sum over

“cuts” and the interpreation of the cuts as scattering processes. iΣ> is obtained by taking the sum

over all possible diagrams in which the vertex attached to the external line on the left (right) is

of type ‘1’ (‘2’). The correspondence between reversing the charge flow arrows and crossing the

external fermion legs is the same as displayed in figure 5. For simplicity, from this figure on, we

will denote with a single diagram with no arrows the sum of the two diagrams with and without

reversed arrows.

contribution the expression

Tr{iΣ>
CA (q) iS< (q)} = −λ4e2

∫
d4t

(2π)4
d4k1

(2π)4
d4k2

(2π)4
d4s

(2π)4
(2π)4 δ(4)(q + t− k1 − k2 − s)

× i∆11 (k1 + s− q) i∆22 (k1 − q)
︸ ︷︷ ︸

≡S

Tr{PRiS
21 (−t)PLiS

12 (−k2) γµiS22 (−k2 − s)}
︸ ︷︷ ︸

≡F1

× iD21
µν (s)

︸ ︷︷ ︸

≡V

Tr{PLiS
21 (k1) γ

νiS11 (k1 + s)PRiS
12 (q)}

︸ ︷︷ ︸

≡F2

. (4.15)

In the scalar part S it is again sufficient to keep only the T = 0 part of the propagators,

while the photon propagator V contains only the thermal part. Omitting for brevity the

traces over the numerator Dirac matrices we get

V = −gµν 2π δ(s2)
[
Θ(s0) (1 + fγ(~s )) + Θ(−s0)fγ(−~s )

]
, (4.16)

F1 ∝ 2πδ
(
t2 −m2

χ

) [
−Θ(−t0)

(
1− fχ(−~t )

)
+Θ(t0)fχ(~t )

]

×2πδ
(
k22 −m2

f

) [

Θ(−k02)ff (−~k2)−Θ(k02)(1− ff̄ (
~k2))

]

×
[ −i
(k2 + s)2 −m2

f

− 2πδ
(
(k2 + s)2 −m2

f

)

×
[

Θ(−k02 − s0)ff (−~k2 − ~s ) + Θ(k02 + s0)ff̄ (
~k2 + ~s )

] ]

, (4.17)

F2 ∝ 2πδ
(
k21 −m2

f

) [

−Θ(k01)(1− ff (~k1)) + Θ(−k01)ff̄ (−~k1)
]

×
[

i

(k1 + s)2 −m2
f

− 2πδ
(
(k1 + s)2 −m2

f

)

×
[

Θ(k01 + s0)ff (~k1 + ~s ) + Θ(−k01 − s0)ff̄ (−~k1 − ~s )
] ]

× (2π) δ
(
q2 −m2

χ

) [
Θ(q0)fχ(~q )−Θ(−q0) (1− fχ(−~q ))

]
. (4.18)
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From the above expressions we see that the contributions from the thermal parts of the

S11(k1+s) and S
22(−k2−s) are vanishing, since the combination of δ-functions multiplying

those terms has no support. We are then left with 32 terms, from which again half vanishes

after multiplying by Θ(q0). Out of the remaining terms 8 describe emission and 8 absorption

of a photon attached to the tree-level diagram of type B. Among those terms there are

6 that correspond to processes which are kinematically forbidden and from the remaining

ones 6 describe scatterings and 4 annihilation.

Only the annihilation terms eventually contribute to the Boltzmann equation for χ

particle number, hence (4.15) simplifies to

Tr{Σ>
CA (q)S< (q)} =

1

2Eχ1

(2π)δ
(
q0 − Eχ1

)
∫

d3~t

(2π)3 2Eχ2

×
∫

d3~k1

(2π)3 2Ef1

d3~k2

(2π)3 2Ef2

d3~s

(2π)3 2Eγ

(2π)4 fχ(~q )fχ(~t )

×
[

δ(4)(q+t−k1−k2−s) |MCA(k1, k2, s)|2
(
1− f eqf (~k1)

)(
1− f eqf (~k2)

)(
1 + f eqγ (~s )

)

+ δ(4)(q+t−k1−k2+s) |MCA(k1, k2,−s)|2f eqγ (~s )
(
1− f eqf (~k1)

)(
1− f eqf (~k2)

)

− δ(4)(q+t−k1+k2−s) |MCA(k1,−k2, s)|2f eqf (~k2)
(
1− f eqf (~k1)

)(
1 + f eqγ (~s )

)

− δ(4)(q+t+k1−k2−s) |MCA(−k1, k2, s)|2f eqf (~k1)
(
1− f eqf (~k2)

)(
1 + f eqγ (~s )

)]

, (4.19)

where the equilibrium distribution function for the photon is given by the Bose-Einstein

statistics

Θ(p0)f eqγ (~p ) =
1

eβp0 − 1
≡ fB(p

0) with p0 ≡ |~p |. (4.20)

The factors |MCA|2 collect the traces contained in the definition of F1 and F2, coupling

constants, as well as the non-thermal propagator denominators. The first one (the third line

of (4.19)) can be identified with the interference of zero-temperature emission amplitude,

namely |MCA(q, k1, k2)|2 = MC (MA)
∗. By using the crossing symmetry one can identify

the remaining ones with the parts of the amplitudes for absorption processes:

|MCA(−q, k1, k2)|2 = |Mχχγ→ff̄
CA (q, k1, k2)|2,

−|MCA(q,−k1, k2)|2 = |Mχχf̄→f̄γ
CA (q, k1, k2)|2,

−|MCA(q, k1,−k2)|2 = |Mχχf→fγ
CA (q, k1, k2)|2, (4.21)

where the minus sign comes from interchanging the fermions between initial and final states.

The example shows that the surviving terms from the three-loop CTP self-energy

correspond precisely to the collision term in the form of (2.12). In the following we discuss

the computation of the IR divergent and leading IR finite thermal correction, separately

for the real and virtual cuts. The results are summarized and discussed in the following

section 5.
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4.4.1 Thermal emission and absorption

The computation of the emission and absorption processes at non-zero temperature follows

the same procedure as is well known from the T = 0 case, simply because at NLO all

the contributions from the thermal part of internal propagators are either exponentially

suppressed or kinematically forbidden at this order, as explained for the example above.

The only difference comes from the fact that the external particles can be thermal, in which

case the corresponding external leg is multiplied by the phase-space distribution function.

From (2.12), the thermal emission and absorption contributions to the annihilation process

are given by

Cann
NLOT 6=0, real =−

∫

dΠχχ̄ fχfχ̄

∫

dΠff̄γ

[

fγ
(
|Mχχ̄→ff̄γ |2 + |Mχχ̄γ→ff̄ |2

)
(4.22)

+ ff̄
(
|Mχχ̄f̄→f̄γ |2 ± |Mχχ̄→ff̄γ |2

)
+ ff

(
|Mχχ̄f→fγ |2 ± |Mχχ̄→ff̄γ |2

) ]

.

Let us focus first on photon emission and absorption in χχ annihilation as given by the

first line of (4.22). In the freeze-out situation the phase-space distribution of the photons

is always close to equilibrium, and therefore emission and absorption of hard photons with

energies ω of order of mχ ≫ T ∼ Tf is exponentially suppressed by the distribution

function fγ . The scattering matrix elements can therefore be evaluated in an expansion in

ω ∼ Tf ≪ mχ, that is, in the soft-photon regime. In particular, the leading IR divergence

could be obtained from the amplitudes in the eikonal approximation. However, since we

are interested also in the leading finite thermal correction, which turns out to be of order

O(τ2), we compute the full amplitude. After performing the integration over all phase-

space variables except the energy ω of the emitted or absorbed particle, we are left with

an expression of the form

∫

dΠff̄γfγ |Mχχ̄→ff̄γ |2 =
∫ ωmax

0
dωfγ(ω)Sχχ̄→ff̄γ(ω), (4.23)

where the range of the integration for ω is determined by the phase space delta function

contained in dΠijγ . For absorption ωmax = ∞, while for emission there is a kinematic

limit ωmax. Since ωmax = O(mχ), the upper limit is not relevant, however, because fγ is

already exponentially suppressed, and the limit may be extended to infinity. At this point

we can perform an expansion of S(ω) retaining terms up to linear order in ω,9 and the

final integral over ω can be expressed in terms of

Tn+1Jn ≡
∫ ∞

0
dω ωn fB(ω) =

{
divergent n ≤ 0

O(Tn+1) n > 0 .
(4.24)

The divergence for n = 0 follows from the Bose enhancement fB(ω) ∼ 1/ω of soft photons

and implies a stronger divergence than at zero temperature, where the soft IR divergence

is only logarithmic. There is no such enhancement for fermions, hence when the same

9For Sχχ̄→ijγ(ω) this corresponds to the first two terms in the expansion, since S ∼ 1/ω for small ω.
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considerations are applied to the SM fermion emission and absorption terms in the last

line of (4.22), the relevant integrals are

Tn+1In ≡
∫ ∞

0
dω ωn fF (ω) =

{
divergent n ≤ −1

O(Tn+1) n > −1 .
(4.25)

Of particular relevance will be the integrals

J1 = 2I1 =
π2

6
. (4.26)

In order to obtain the above analytic expression I1 for the leading thermal correction in

the case of thermal fermion emission and absorption, we have to assume that the fermions

are massless. We briefly discuss the size of the corrections from finite fermion masses in

section 5.3.

Returning to photon emission, the amplitude for the annihilation process

χ(pA)χ(pB) → f(k1)f̄(k2)γ(q) can be written as10

Mem ≡ Mχχ→ff̄γ =
eλ2

2
[(MA −Mexc

A ) + (MB −Mexc
B ) + (MC −Mexc

C )] , (4.27)

where the letters A,B,C refer to the amplitudes as given in table 1. After the Fierz

rearrangement the three terms are

MA −Mexc
A =

ū(k1)/ǫ
∗(q)(/k1 + /q +mf )PRγ

µv(k2)

2k1 · q

×
(

v̄(pB)PLγµu(pA)

(pB − k2)2 −m2
φ

− v̄(pB)PRγµu(pA)

(pA − k2)2 −m2
φ

)

, (4.28)

MB −Mexc
B = ū(k1)PRγ

µv(k2)×
(

(pB − pA + k1 − k2) · ǫ∗(q)v̄(pB)PLγµu(pA)

[(pA − k1)2 −m2
φ][(pB − k2)2 −m2

φ]

− (pA − pB + k1 − k2) · ǫ∗(q)v̄(pB)PRγµu(pA)

[(pB − k1)2 −m2
φ][(pA − k2)2 −m2

φ]

)

, (4.29)

MC −Mexc
C =

ū(k1)PRγ
µ(−/k2 − /q +mf )/ǫ

∗(q)v(k2)

2k2 · q

×
(

v̄(pB)PLγµu(pA)

(pA − k1)2 −m2
φ

− v̄(pB)PRγµu(pA)

(pB − k1)2 −m2
φ

)

, (4.30)

For the absorption process, due to the crossing symmetry, the amplitude squared

summed over polarizations can be obtained from the emission process by changing the

sign of the four momentum of the particle emitted and absorbed from the thermal bath,

as in (4.21).

10For the amplitudes we follow the notation of [45].

– 22 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
5

Although the emission and absorption contributions have different phase-space integration

limits, we have already seen that this is irrelevant up to exponentially small terms inmχ/T .

Thus, when the emission contribution is expanded in the form

Sχχ→ff̄γ(ω) =
∞∑

n=−1

S(n)ωn, (4.31)

eq. (4.21) implies

Sχχγ→ff̄ (ω) =
∞∑

n=−1

(−1)n+1S(n)ωn, (4.32)

for the corresponding absorption process. Since (4.22) always involves the sum of emission

and absorption, the even terms in the expansion in ω cancel. Eqs. (4.24), (4.25) then imply

that the leading finite-temperature correction is of order τ2 ∼ T 2/m2
χ.

The contributions from thermal photon emission and absoprtion, though divergent,

can be computed without regularization in four dimensions, since the cancellation of the

linear IR divergence proportional to J−1 with the thermal virtual correction will be shown

algebraically below before integration over the photon energy. The integration over the

remaining phase-space variables that was already done to arrive at the function S(ω) is

finite, since the non-vanishing fermion mass plays the role of the regulator for collinear

divergences. This is no longer the case when the thermal fermion emission and aborption

processes are considered, since the integral over photon energy contained in S(ω) has

to be regularized. In this case we perform the phase-space integration in dimensional

regularization with D = 4− 2η and η < 0.

4.4.2 Thermal virtual corrections

Thermal virtual corrections arise from terms in the CTP sum, to which the thermal parts

of the diagonal 11 or 22 photon and fermion propagators contribute. As the sfermion is at

least as heavy as the DM particle it has a negligible thermal contribution and we do not

consider the corresponding amplitudes. We only need to include the terms when one of the

virtual particles is thermal. When two are thermal this gives the imaginary part, which

does not contribute to the real part of the interference with the tree diagram (see e.g. [47]),

while when three are thermal at least one of them has to have momentum of order mχ and

is therefore exponentially suppressed by the phase-space distribution function.

We denote the relevant amplitudes by Mi with i = 1, . . . , 4, and the contribution from

the thermal part of the photon (SM fermion) propagator by Mγ
i (Mf

i ). The corresponding

diagrams are displayed in table 1. The general form of every virtual contribution is

Mγ,f
i =

∫
d4q

(2π)4
F γ,f
i (q0, ~q ) 2πδ(q2 −m2

γ,f )fB,F (|q0|), (4.33)
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where mγ = 0 and for thermal photons

F γ
1 =−ie2λ2

ū(k1)(2/pA− 2/k1+ /q)(/k1− /q +mf )PRu(pA)v̄(pB)PLv(k2)

[(k1 − q)2 −m2
f ][(pA − k1 + q)2 −m2

φ][(pA − k1)2 −m2
φ]

− (pA↔pB), (4.34)

F γ
2 = F γ

1 , (4.35)

F γ
3 =

ie2λ2

2

(2pA − 2k1 − q)2 ū(k1)PRu(pA)v̄(pB)PLv(k2)

[(pA − k1)2 −m2
φ]

2[(pA − k1 − q)2 −m2
φ]

− (pA↔pB), (4.36)

F γ
4 = ie2λ2

ū(k1)γ
µ(/k1 + /q +mf )PRu(pA)v̄(pB)PL(−/k2 + /q +mf )γµv(k2)

[(k1 + q)2 −m2
f ][(pA − k1 − q)2 −m2

φ][(k2 − q)2 −m2
f ]

− (pA↔pB),

(4.37)

and for thermal fermions,

F f
1 = ie2λ2

ū(k1)(2/pA − /k1 − /q)(/q +mf )PRu(pA)v̄(pB)PLv(k2)

(q − k1)2[(pA − q)2 −m2
φ][(pA − k1)2 −m2

φ]
− (pA ↔ pB), (4.38)

F f
2 = F f

1 , (4.39)

F f
4 = −ie2λ2

ū(k1)γ
µ(/q+mf )PRu(pA)v̄(pB)PL(/q −/k1− /k2+mf )γµv(k2)

[(q − k1 − k2)2 −m2
f ][(pA − q)2 −m2

φ](q − k1)2

− (pA ↔ pB). (4.40)

Note that F f
3 = 0, since there are no internal fermion lines in this diagram, and that F f

4

has to be counted twice, since any one of the two fermion lines in the loop can be thermal.

Given these expressions we first perform the integral over q0, which leads to

Mγ,f
i =

∫
d3~q

(2π)32ω

[

F γ,f
i (ω, ~q) + F γ,f

i (−ω, ~q)
]

fB,F (ω), (4.41)

with

ω ≡
{ |~q | for photons
√

~q 2 +m2
f for fermions .

(4.42)

Changing the integration variable ~q → −~q in the second integral gives F γ,f
i (q) + F γ,f

i (−q)
in the bracket. Then we compute the interference of the resulting expression with the

tree-level amplitude and perform the integration over the two-body phase space together

with the angles of ~q. We are left with an integral over the ω similar to (4.23), which can

be computed in expansion in T/mχ by expanding the integrand in ω. The result involves

the same integrals Jn, In as was the case for the emission and absorption terms.

4.4.3 Thermal corrections to external legs

The remaining part of the virtual correction can be interpreted as a thermal correction

to the mass and wave-function renormalization of the external SM fermion lines. Due to

the universality of the renormalization factor, we can follow the standard procedure (see

e.g. [26, 47]) of computing the one-loop corrected thermal propagator

ST
F (p) =

i

/p−mf − ReΣT
. (4.43)
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When the result for the self-energy at one loop is written as

ΣT (p) = /pcB − 2mf (cB + cF ) + ( /KB + /KF ) , (4.44)

with quantities cB,F , K
µ
B,F to be defined shortly, the propagator is expressed as

ST
F (p) = i

/p (1− cB) +mf [1− 2(cB + cF )]−
(
/KB + /KF

)

p2 (1− 2cB)−m2
f [1− 4(cB + cF )]− 2p · (KB +KF ) +O(α2)

. (4.45)

The subscript B refers to the contribution when the photon propagator in the one-loop

self-energy diagram is thermal and the SM fermion propagator is not. Vice-versa for the

quantities with subscript F . Then

cB = 2e2
∫

d4q

(2π)3
δ(q2)fB(|q0|)
(p+ q)2 −m2

f

, Kµ
B = 2e2

∫
d4q

(2π)3
qµ

δ(q2)fB(|q0|)
(p+ q)2 −m2

f

, (4.46)

for the thermal photon contribution, and

cF = −2e2
∫

d4q

(2π)3
δ(q2 −m2

f )fF (|q0|)
(p+ q)2

, Kµ
F = 2e2

∫
d4q

(2π)3
qµ
δ(q2 −m2

f )fF (|q0|)
(p+ q)2

(4.47)

for fermions.

The wave-function renormalization factor is derived from the expansion of the prop-

agator around the particle pole. Let p̂µ = (p̂0, ~p ) with p̂0 = (m2
f + ~p 2)1/2 be the on-shell

limit of the external momentum p, and let f̂ denote the value f(p̂) of a function f(p0, ~p ).

Then one finds that cB vanishes on-shell by antisymmetry of the integrand under q → −q,
i.e. ĉB = 0, so that its expansion around the on-shell value reads

cB = (p2 −m2
f )ĉ

′
B +O((p2 −m2

f )
2) with ĉ′B = −α

π

J−1

m2
f

, (4.48)

and J−1 the divergent integral defined in (4.24). The explicit calculation of the integral

defining cF in (4.47) shows that the thermal fermion contribution ĉF is only vanishing in

the mf = 0 limit, so that in general

cF = ĉF + (p2 −m2
f )ĉ

′
F +O((p2 −m2

f )
2). (4.49)

The coefficients ĉF and ĉ′F can be obtained in general by solving the integrals numerically.

In the massless case they simplify to

ĉF |mf=0 = 0, ĉ′F |mf=0 =
4α

3π|~p |2 I−1, (4.50)

with I−1 defined in (4.25). The vector contribution from the photon K̂µ
B in the on-shell

limit reads

K̂µ
B =

α

π
J1
T 2

|~p |

(

Lp,
~p

|~p |

[
p̂0

|~p |Lp − 2

])

with Lp = log
p̂0 + |~p |
p̂0 − |~p | , (4.51)
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and J1 given by (4.26). The fermion contribution K̂µ
F in the massless limit is divergent

on-shell. We use dimensional regularization (D = 4− 2η and the MS scheme), which gives

K̂µ
F |mf=0 =

α

π
ID1

T 2

|~p |

(

I(η), ~p|~p |

[
p̂0

|~p |I(η)− 2

])

with I(η) =
√
π eηγE

(−η)Γ
(
1
2 − η

) , (4.52)

where

T 2ID1 = µ2η
∫ ∞

0
dω ω1−2η fF (ω) (4.53)

is the D-dimensional generalization of (4.25). The quantities 2p ·KB, 2p ·KF appearing in

the denominator of (4.45) can be related to cB, cF by

2p ·KB = δm2
B − (p2 −m2

f ) cB, 2p ·KF = δm2
F + (p2 +m2

f ) cF , (4.54)

as follows immediately from the defining expressions (4.46), (4.47). Here

δm2
B =

4α

π
J1 =

2π

3
αT 2,

δm2
F =

4α

π

∫ ∞

mf

dω
√

ω2 −m2
f fF (ω)

mf=0−−−−→ 4α

π
I1 =

π

3
αT 2, (4.55)

contribute to the thermal corrections to the fermion mass.

Expanding the fermion propagator (4.45) around the corrected mass-shell, we obtain,

up to non-singular terms,

ST
F (p) = i (1− 2m2

f (ĉ
′
B + ĉ′F ) + ĉF )

/p+mf (1− 2ĉF )− /̂KB − /̂KF

p2 −m2
f − δm2

B − δm2
F + 2m2

f ĉF
+O(α2). (4.56)

In the massless case mf = 0, this simplifies to

ST
F (p) = i

(

1 +
2α

π
J−1

)
/p− /̂KB − /̂KF

p2 − δm2
B − δm2

F

+O(α2) . (4.57)

In summary, the thermal plasma affects the external SM fermion lines, and therefore the

annihilation cross section computation, in three ways:

1. Modification of the spinor orthogonality relations

∑

s

u(p, s)ū(p, s) = /p+mf (1− 2ĉF )− /̂KB − /̂KF . (4.58)

This contribution to the annihilation cross-section σχχ→ff̄ vrel is simply obtained by

computing the tree-level diagrams with the modified relation (4.58) and taking the

O(α) term. We note from (4.51) and (4.52) that this contribution is finite for thermal

photon, while it contains a 1/η pole for thermal fermion in the massless limit. This

pole cancels when adding the corresponding real correction “cut”.
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2. Temperature-dependent wave function renormalization

ZT
2 = 1− 2m2

f (ĉ
′
B + ĉ′F ) + ĉF

mf=0−−−−→ 1 +
2α

π
J−1. (4.59)

The contribution is simply the O(α) term in
[
(ZT

2 )
2 − 1

]
(σtree

χχ→ff̄
vrel). We note that

this contribution is divergent only for the thermal photon case, and it vanishes for

the thermal fermion in the massless limit.

3. Shift of the fermion pole mass by the thermal contributions

∆m2
f ≡ δm2

B + δm2
F − 2m2

f ĉF +O(α2), (4.60)

which leads to a change in the phase-space integration. This results in a contribution

to cross section that can be written as

∆σph = σtree(m
2
f +∆m2

f )− σtree(m
2
f )

=
dσtree
dm2

f

∆m2
f +O

(
(∆m2

f )
2
)
, (4.61)

where we used the short notation σtree ≡ (σtree
χχ→ff̄

vrel). This contribution is finite

for both thermal photon and fermion. In the massless limit this is ensured by the

fact that σtree is analytic in m2
f .

5 Results

In this section we summarize the results of the calculation of the thermal correction. We

first note that we are interested in the situation T ≪ mχ (τ ≪ 1). The thermal correction

arises from soft thermal propagators, ω ∼ T up to exponentially small terms, since larger

energies are suppressed by the thermal distribution functions. After expansion in ω/mχ,

all the thermal real and virtual corrections can be expressed in terms of the integrals Jn for

photons, and In for massless fermions, as defined in (4.24), (4.25). Since we are interested

in the infrared divergence cancellation and the leading thermal correction, we only keep

terms to order O(τ2).

The scattering processes depend further on the masses mχ, mf , mφ, and the DM

energy Eχ, or the corresponding dimensionless variables ǫ, ξ and eχ = Eχ/mχ. Freeze-out

occurs when the DM particles are non-relativistic, so that we can expand in eχ ≪ 1. We

performed the calculation for the first two terms of this expansion, which correspond to

the s- and p-wave terms, respectively, keeping the full dependence on the scalar and SM

fermion mass parameters ξ and ǫ. All computations were done in Feynman gauge. In

addition, we also computed the result without an expansion in the non-relativistic DM

kinetic energy, keeping the full dependence on eχ. However, in this case we performed an

expansion for large scalar mediator mass ξ ≫ 1, up to the order O(ξ−10). The large-mass

expansion may be physically motivated, since often (but not necessarily) the scalar particle

in the DM model is significantly heavier than the DM particle itself. Going to high order

in 1/ξ is motivated by the observation that one needs to retain terms up to O(ξ−8) to see

the lifting of helicity suppression of the non-thermal NLO contribution.
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5.1 IR divergence cancellation

As we have seen above, the basic quantities from which the inclusive annihilation cross

section is derived are the CTP self-energies. It is well known that at zero temperature,

off-shell self-energy diagrams are IR finite. The cancellation of divergences between virtual

and real corrections to an inclusive process occurs after summing all possible cuts of the

self-energy diagram. Our first important result is that we find that this is also true at finite

temperature. That is, in the sum of all additional contributions from the thermal part of

the propagators, the IR divergences cancel. Moreover, as at zero temperature, this happens

at the level of individual CTP self-energy diagrams. This ensures that the collision term in

the Boltzmann equation is IR finite, since it is directly built out of the self-energies Σ<,>.

In order to show how the cancellation takes place, we discuss in detail the correction

from thermal photons to the collision term for s-wave annihilation. We also verified the

cancellation for the p-wave term, for the contribution from thermal fermions, and without

partial wave expansion in the large-scalar mass expansion, as discussed above.

At one-loop the amplitude can have singular terms of the order O(ω−1) at small ω,

which at T = 0 lead to the usual logarithmic soft divergence. At finite temperature, the

enhancement of the Bose distribution function fB(ω) for small energies results in linear

and logarithmic divergences, encoded in the singular integrals J−1 and J0, respectively. As

already pointed out, the latter vanishes when both the emission and absorption of thermal

photons are included, due to the different sign of these contributions for even orders in

ω. The results for the remaining part proportional to J−1 are given separately for all

self-energy diagrams in table 3, where the prefactor α/(πǫ2)× atree involving the tree-level

s-wave annihilation cross section (4.13) has been factored out.11 We immediately note the

aforementioned fact that the sum of all contributions cancels for every self-energy diagram

separately. The logarithm present in the last row is defined in table 6 and contains a

collinear divergence L
ǫ→0→ log ǫ in the limit of small SM fermion mass (ǫ = mf/(2mχ)).

This collinear divergence also cancels in the sum.

The tree annihilation cross section is helicity-suppressed, atree ∝ ǫ2. The appearance

of terms in table 3 and tables 4 and 5 below, which are not O(ǫ2) for small ǫ, implies that

individual terms are not helicity-suppressed.

5.2 Finite-temperature correction from thermal photons

Once the divergent J−1 and J0 contributions are cancelled, the remaining finite correction

is necessarily of O(τ2), proportional to the integral J1. Again, we first show the diagram-

by-diagram results for the s-wave contributions, which can be found in tables 4 and 5 for

the diagrams of type A and B, respectively. A common factor πα/(6ǫ2)× atree is left out.

We see that the separate contributions are significantly more complex than was the

case for the divergent parts. The first simplification occurs when summing over the different

cuts of a given self-energy diagram. At this stage all the logarithms L cancel, which is a

sign of cancellation of the collinear divergence on a diagram-by-diagram basis. An even

11The divergence can be factorized from the tree cross section, because it comes from the soft region.

The same structure of the divergence was found for the hard photon scattering in the thermal plasma [35].
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The divergent part J−1

Type A Real Virtual Type B Real Virtual

1− 2ǫ2 −1 + 2ǫ2 −1 1

1− 2ǫ2 −1 + 2ǫ2 −1 1

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

2(1−2ǫ2)
2

√
1−4ǫ2

L −2(1−2ǫ2)
2

√
1−4ǫ2

L −2(1−2ǫ2)√
1−4ǫ2

L
2(1−2ǫ2)√

1−4ǫ2
L

Table 3. Coefficients of the divergent integral J−1 omitting the overall factor α/(πǫ2) × atree.

Here “Real” includes both, emission and absorption, while “Virtual” comprises vertex and external

leg corrections. An empty space means that the corresponding contribution does not exist, while 0

implies that the diagram exists, but is finite. L denotes the logarithm as defined in table 6.

more remarkable simplification occurs upon adding separately all diagrams of type A and

B, respectively (given as “Total” at the bottom of the tables). Finally, helicity-suppression

is recovered after summing over A and B. The thermal correction to the s-wave annihilation

cross section (times velocity, see (4.11)) can be written as

a = atree (1 + ∆a) +O(τ4) with ∆a =
8π

3
ατ2

1

1 + ξ2 − 4ǫ2
. (5.1)

It is worth noting that the leading thermal correction is suppressed not only by ατ2 but

also one power of ξ2, if the mediator mass is large. This is true not only for the s-wave

contributions, but also for all partial waves.

Beyond the s-wave case displayed explicitly in the tables, we computed the thermal

correction to the p-wave cross section; further without the partial wave expansion in the

limit ξ ≫ 1, up to the order O(τ2, ξ−10), retaining full dependence on eχ and ǫ. We find
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The finite part J1

Type A Real Virtual

2(1−ξ2)
D2D2

ξ

+ (1−2ǫ2)p1(ǫ,ξ)
2D2D2

ξ

+ 1
2
√
D
L (1−2ǫ2)(ξ2−3D)

2DDξ
− 1

2
√
D
L

— ” — — ” —

−4(1−2ǫ2)D
D2

ξ

−2(1−2ǫ2)ξ2

D2

ξ

− f1(ǫ,ξ)√
DD2

ξ

L 2(1−2ǫ2)(D−ξ2)
D2

ξ

+ f1(ǫ,ξ)√
DD2

ξ

L

— ” — — ” —

— ” — — ” —

— ” — — ” —

−4(1−2ǫ2)D
D2

ξ

— ” —

2(1−2ǫ2)p2(ǫ,ξ)+(1−ξ2)2

D2D2

ξ

+ 4f2(ǫ,ξ)√
DD2

ξ

L 16ǫ2(2−3ǫ2)−(3−ξ2)2

D2

ξ

− 4f2(ǫ,ξ)√
DD2

ξ

L

Total: − 8(1−2ǫ2)
Dξ

Table 4. Coefficients of the finite O(τ2) correction for the type A diagrams. An overall factor

πα/(6ǫ2)× atree is left out. D, Dξ and polynomials pi and fi are defined in table 6.

that all cases are covered by the remarkably simple expression

σv = [σv]tree −
4

3
πατ2

∂

∂ξ2
[σv]tree +O(τ4), (5.2)

which implies that the totalO(τ2) correction from thermal photons can be obtained directly

from the tree cross section without any explicit calculation. To appreciate the simplicity of

this expression, note the complicated dependence on ξ and ǫ of the tree-level p-wave cross

section given in (4.13). The fact that this formula holds in all limits that we investigated

leads us to conjecture that it is generally valid beyond the non-relativistic approximation

(partial-wave expansion).

The structure of (5.2) is certainly not accidental, and it is not the only example of

“universality” of a finite-temperature correction. In charged particle decay [26] the finite-

temperature correction was found to be related to the tree-level decay width by the simple

factor −π
3ατ

2, while in neutral Higgs decay to two fermions it vanishes [48]. This suggests

that the leading thermal photon correction is related to the coupling to the electric charge

multipoles of the initial or final state. In DM pair annihilation the total charge is zero, but

higher moments are not, which may be the reason for the ξ suppression. Further work in

this direction is in progress.
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The finite part J1

Type B Real Virtual

ǫ2
(

1− 12
D2

ξ

+ 4
DDξ

+ 2ǫ2

D2

)

− 1
2
√
D
L 2

Dξ
− 1

2D+ 1
2
√
D
L

— ” — — ” —

4D
D2

ξ

2ξ2

D2

ξ

+ f3(ǫ,ξ)√
DD2

ξ

L 2(ξ2−D)
D2

ξ

− f3(ǫ,ξ)√
DD2

ξ

L

— ” — — ” —

— ” — — ” —

— ” — — ” —

4D
D2

ξ

— ” —

2(1−2ǫ2)p3(ǫ,ξ)−4(1−ξ2)2

D2D2

ξ

− 2f4(ǫ,ξ)√
DD2

ξ

L (3−ξ2)2−8ǫ2(1−2ǫ2+ξ2)
D2

ξ

+ 2f4(ǫ,ξ)√
DD2

ξ

L

Total: 8
Dξ

Table 5. Coefficients of the finite O(τ2) correction for the type B diagrams. An overall factor

πα/(6ǫ2)× atree is left out. D, Dξ and polynomials pi and fi are defined in table 6.

D = 1− 4ǫ2

Dξ = 1− 4ǫ2 + ξ2

L = log 1−2ǫ2−
√

1−4ǫ2

2ǫ2

f1(ǫ, ξ) = (1− ǫ2)(D − ξ2) + 2ǫ2ξ2 f2(ǫ, ξ) = (1− ǫ2)(D − ξ2) + 2ǫ2

f3(ǫ, ξ) = D(1 + 2ǫ2)− (1− 2ǫ2)ξ2 f4(ǫ, ξ) = (2 +D2

ξǫ
2 − 2ξ2)

p1(ǫ, ξ) = −3 + ξ4
(
1− 4ǫ2 − 4ǫ4

)
+ ξ2

(
6− 24ǫ2 + 120ǫ4 + 32ǫ6

)
− 12ǫ2 − 20ǫ4 − 32ǫ6 − 64ǫ8

p2(ǫ, ξ) = 3 + ξ4
(
−1 + 2ǫ4

)
+ ξ2

(
2− 4ǫ2 + 20ǫ4 − 16ǫ6

)
− 36ǫ2 + 114ǫ4 − 144ǫ6 + 32ǫ8

p3(ǫ, ξ) = −2 + ξ4
(
2 + 5ǫ2 + 8ǫ4

)
+ ξ2

(
−6 + 2ǫ2 − 24ǫ4 − 64ǫ6

)
+ 37ǫ2 − 64ǫ4 + 16ǫ6 + 128ǫ8

Table 6. The definitions used in the results tables 3, 4 and 5.

The leading O(τ2) thermal correction does not lift the helicity suppression of the s-

wave cross section, even though the NLO T = 0 radiative correction does. This is easy

to understand, since it is the hard photon emission from internal bremsstrahlung from

the scalar mediator that lifts the helicity suppression in the T = 0 case, while here such
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contributions are strongly suppressed. Helicity-suppression is absent in the first sub-leading

O(τ4) temperature correction. Explicitly, in the limit of massless SM fermions ǫ → 0,

we find

∆aǫ=0
τ4 =

8π2λ4ατ4

45

1

(1 + ξ2)4
=

4π

45
ατ4

1

(1 + ξ2)2
atree
ǫ2

∣
∣
∣
ǫ=0

. (5.3)

This thermal correction can be larger than the tree-level s-wave cross section atree when

ǫ is very small (e.g., for SM leptons). Nevertheless, it is always parametrically smaller

than the thermal correction to the p-wave cross section, because τ ∼ v2 around freeze-

out. It is also smaller than the zero-temperature O(α) NLO correction, which has no τ4

suppression, while both come from internal bremsstrahlung, and therefore have the same

ξ−8 suppression.

Finally, we note that (5.2) holds also when the DM particle is a Dirac fermion, as can

be expected from the structure of the total result in table 5. The difference between the

Majorana and Dirac cases is that for Dirac fermions the diagrams of type A are absent

altogether, which also implies the absence of helicity suppression.

5.3 The finite-T correction from thermal fermions

Like photons the light SM fermions are very abundant in the plasma around freeze-out and

also contribute to the finite-temperature correction, see (2.12). The method of computa-

tion of these contributions follows the same steps as for thermal photons, and has been

described in section 4. However, the results differ considerably between these two cases.

This is, because at zero temperature soft fermion radiation does not cause IR divergences.

Furthermore, the Fermi-Dirac distribution is finite in the soft limit, hence the degree of

divergence is not changed at finite temperature. As a consequence the thermal fermion

contributions have no IR divergences from soft fermions. However, for massless fermions

there is a divergence from hard-collinear photons, which has the same origin as the cor-

responding T = 0 divergence. When working in the massless limit, we use dimensional

regularization to regulate this divergence. The poles in 1/η cancel in the sum over all cuts

for a given CTP self-energy diagram.

We first discuss the leading finite-temperature correction for the case when DM is

a Dirac fermion, in which case only diagrams of type B are present. Since the light SM

fermion masses satisfy the conditionmf ≪ eT , they can effectively be treated as massless.12

We therefore consider the correction for ǫ = 0. Once again the total result turns out to be

simple once all the cuts from a given CTP self-energy diagram are summed up. The s-wave

contribution vanishes for each self-energy diagram separately, due to an exact cancellation

between real and virtual corrections. The s- and p-wave corrections (for ǫ = 0) that need

to be added to the tree cross section are

∆af = 0 ∆bf =
16

9
ατ2

λ4

(1 + ξ2)3
. (5.4)

12The top quark on the other hand is too heavy to be present in the plasma, unless the DM particle mass

is significantly above 1TeV. The effects of massive thermal particles lead to significantly more complicated

integrals, which can be solved only numerically.
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Turning now to the Majorana case, we find the the s-wave and p-wave O(τ2) contri-

butions from the type A diagrams actually vanish for ǫ = 0. This means that (5.4) also

holds for Majorana DM. However, since atree ∝ ǫ2 the limit ǫ = 0 is not sufficient for the

s-wave contribution, in which case the above only shows that there is no lifting of helicity

suppression from the thermal fermion correction. To analyse the result for finite fermion

mass we computed the thermal correction numerically in the region ǫ, τ ≪ 1. We find

that there is no ǫ2τ2 term in a, which means that indeed there is no leading finite thermal

correction to the s-wave cross section, different from the case of thermal photons. On the

other hand, for the p-wave cross section the thermal correction from fermions is of the

same order as the one from photons.

6 Conclusions

The present work was motivated by the observation that existing approaches to calculating

the DM relic density at NLO are based on zero-temperature calculations of the annihila-

tion cross section in the standard freeze-out equation. This procedure has never been truly

justified. In particular, it ignores the potential presence of IR divergences, which, in indi-

vidual terms, are more severe than at zero temperature. In this paper we showed, using a

realistic example model and the CTP formulation of non-equilibrium quantum field theory,

that for relic density computations at NLO it is indeed sufficient to treat the annihilation

process at the thermal level, leaving the Boltzmann equation intact. That is, under the

usual assumptions, the freeze-out equation

dnχ
dt

+ 3Hnχ = 〈σNLOvrel〉T 6=0

(
neqχ n

eq
χ̄ − nχnχ̄

)
, (6.1)

retains its form, and only the annihilation cross section receives a finite-temperature cor-

rection.

By computing the thermal contributions to the NLO collision term, which includes

emission and absorption as well as thermal virtual corrections, we showed that all soft

and collinear divergences cancel, a prerequisite for 〈σNLOvrel〉T 6=0 to be well-defined. The

cancellation was demonstrated in the non-relativistic expansion for the s- and p-wave cross

sections and, additionally, for the full velocity-dependent process but in an expansion in

the mass of the t-channel mediator up to order 1/ξ10. We find that the cancellations

occur at the level of individual CTP dark-matter self-energy diagrams. To our knowledge,

this is the first time that the IR finiteness of relic density computations at NLO has been

demonstrated.

Finiteness assured, we investigated the leading finite-temperature correction to the

annihilation cross section from thermal photons and light SM fermions in the plasma. The

result can be summarized as follows:

• The leading correction is of order α × (T/mχ)
2. Since T ≪ mχ near freeze-out this

is parameterically smaller than the zero-temperature NLO correction, thus justifying

the naive zero-temperature radiative correction calculations.
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• Helicity suppression, present for Majorana fermion s-wave annihilation, is not lifted

by the T 6= 0 correction at order τ2 = (T/mχ)
2, but only at O(τ4).

• The structure of the O(τ2) correction is remarkably simple. The contribution from

thermal photons can be inferred directly from the tree level annihilation cross section,

and is given by

− 4

3
πατ2

∂

∂ξ2
[σv]tree. (6.2)

The simplicity of this result and the amount of cancellations required to arrive at it call

for a deeper explanation. Work in this direction is in progress.
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A Feynman rules at finite temperature

We summarize our conventions for the Feynman rules for the scalar and fermion propaga-

tors in the CTP formalism. For a given particle species with distribution function f , we

denote here by f̄ the distribution of the corresponding antiparticle.

i∆11(p) =
i

p2 −m2 + iη
+ 2πδ

(
p2 −m2

) [
Θ(p0)f(~p ) + Θ(−p0)f̄(−~p )

]
, (A.1)

i∆22(p) =
−i

p2 −m2 − iη
+ 2πδ

(
p2 −m2

) [
Θ(p0)f(~p ) + Θ(−p0)f̄(−~p )

]
, (A.2)

i∆12(p) = 2πδ
(
p2 −m2

) [
Θ(p0)f(~p ) + Θ(−p0)(1 + f̄(−~p ))

]
, (A.3)

i∆21(p) = 2πδ
(
p2 −m2

) [
Θ(p0)(1 + f(~p )) + Θ(−p0)f̄(−~p )

]
, (A.4)

iS11(p) =
i
(

/p+m
)

p2 −m2 + iη
−2π

(

/p+m
)
δ
(
p2 −m2

)[
Θ(p0)f(~p )+Θ(−p0)f̄(−~p )

]
, (A.5)

iS22(p) =
−i
(

/p+m
)

p2 −m2 − iη
−2π

(

/p+m
)
δ
(
p2 −m2

)[
Θ(p0)f(~p )+Θ(−p0)f̄(−~p )

]
, (A.6)

iS12(p) = −2π
(

/p+m
)
δ
(
p2 −m2

) [
Θ(p0)f(~p )−Θ(−p0)(1− f̄(−~p ))

]
, (A.7)

iS21(p) = −2π
(

/p+m
)
δ
(
p2 −m2

) [
−Θ(p0)(1− f(~p )) + Θ(−p0)f̄(−~p )

]
, (A.8)

The photon propagator in the Feynman gauge is

iDab
µν (p) = −gµν i∆ab(p)|m=0. (A.9)
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