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Abstract
The key dynamic properties of fermionic systems, like controllability, reachability, and
simulability, are investigated in a general Lie-theoretical frame for quantum systems
theory. It just requires knowing drift and control Hamiltonians of an experimental
set-up. Then one can easily determine all the states that can be reached from any
given initial state. Likewise all the quantum operations that can be simulated with a
given set-up can be identified. Observing the parity superselection rule, we treat the
fully controllable and quasifree cases of fermions, as well as various
translation-invariant and particle-number conserving cases. We determine the
respective dynamic system Lie algebras to express reachable sets of pure (and mixed)
states by explicit orbit manifolds.
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1 Introduction
The vast experimental progress in implementing coherent control of ultra-cold gases in-
cluding fermionic systems [–] has also great impact on quantum simulation (e.g., [])
of quantum phase transitions [, ], pairing phenomena [], and in particular for un-
derstanding phases in Hubbard models []. Moreover, digital quantum simulation of
fermionic systems has come into focus [–]. For either way of quantum simulation,
there are important algebraic aspects going beyond the standard textbook approach [],
some of which can be found in [–]. Here we set out for a unified picture of quantum
systems theory in a Lie-algebraic frame following the lines of []. It paves the way for
optimal-control methods to be applied to fermionic systems and leads to a plethora of
new results presented here.
It is generally recognized that optimal control algorithms are key tools needed for fur-

ther advances in experimentally exploiting these quantum systems for simulation aswell as
for computation [–]. In the implementation of these algorithms it is crucial to know
before-hand to which extent the system can be controlled. For instance: which states can
be reached from a given initial state under given controls? or likewise: which quantum op-
erations can be simulated in a given set-up? The usual scenario (in coherent control) is that
one is given a drift Hamiltonian and a set of control Hamiltonians with tunable strengths.
The achievable operations will be characterized by their generators forming the system Lie
algebra. Then the reachable sets of states can easily be given as the respective state orbits
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under the corresponding dynamic group. Dynamic Lie algebras and reachability questions
have been intensively studied in the literature for qudit systems [, –]. However, in
the case of fermions these questions have to be reconsidered mainly due to the presence
of the parity superselection rule. Hence in a broader sense the present work on fermions
can be envisaged also as a step towards quantum control theory for quantum simulation
in the presence of superselection rules.
Apart from discussing the implications of the parity superselection rule we treat the

cases of imposing translation-invariance or particle-number conservation. In particu-
lar, the experimentally relevant case of quasifree fermions (with and without translation
invariance) is discussed in detail. Since we interrelate fermionic systems with the Lie-
theoretical framework of quantum-dynamical systems, at timeswewill be somewhatmore
explicit and put known results into a new frame. The main results thus extend from gen-
eral fermionic systems to the action of Hamiltonians with and without restrictions like
quadratic interactions, translation invariance, reflection symmetry, or particle-number
conservation.
The paper itself is structured as follows: In order to set a unified frame, we resume some

basic concepts of Hamiltonian controllability of qudit systems in Section . Thus the dy-
namic systems approach is presented in a way to address a broader readership, who is
enabled to make quick use of the key results summarized in the tables. These concepts
are subsequently translated to their fermionic counterparts, starting with the discussion
of general fermionic systems in Section .
Then the new results are presented in the following six sections: In Section  we obtain

the dynamic system algebra for general fermionic systems respecting the parity superselec-
tion rule (see Theorem  in Section .). An explicit example for a set of Hamiltonians that
provides full controllability over the fermionic system is discussed in Section .. Some
general results on the controllability of fermionic and spin systems, such as Theorem ,
are relegated toAppendixA. Following the same line, in Section wewrap up some known
results on quasifree fermionic systems in a general Lie-theoretic frame by streamlining
the derivation for the respective system algebra in Proposition  of Section . Corollary 
provides a most general controllability condition of quasifree fermionic systems building
on the tensor-square representation used in []. Furthermore, we develop methods for
restricting the set of possible system algebras by analyzing their rank, see Theorem  as
well as Appendices C and D. The structure and orbits of pure states in quasifree fermionic
systems are analyzed in Section  leading to a complete characterization of pure-state con-
trollability (Theorem ). Sections  and  are devoted to translation-invariant systems.
For spin chains we give in Theorem  the first full characterization of the corresponding
system algebras and strengthen in Theorem  earlier results on short-range interactions
in []. The system algebras for general translation-invariant fermionic chains are given
in Theorem  of Section .. We also identify translation-invariant fermionic Hamilto-
nians of bounded interaction length which cannot be generated from nearest-neighbor
ones (see Theorem  of Section .). The particular case of quadratic interactions (see
Section .) is settled in Theorem . Corollary  considers systems which additionally
carry a twisted reflection symmetry (or equivalently have no imaginary hopping terms) as
discussed in []. Furthermore, we provide a complete classification of all pure quasifree
state orbits in Theorem  of Section .. This leads to Theorem  of Section . pre-
senting a bound on the scaling of the gap for a class of quadratic Hamiltonians which
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are translation-invariant. Section  deals with fermionic systems conserving the number
of particles. Their system algebras in the general case as well as in the quasifree case are
derived in Proposition  and Proposition , respectively. Furthermore, a necessary and
sufficient condition for quasifree pure-state controllability in the particle-number con-
serving setting is provided by Theorem .
In Section , we summarize the main results as given in Theorem , Corollary , as

well as in Theorems , , , , , , , , and . We conclude leaving a number
of details and proofs to the Appendices in order to streamline the presentation.

2 Basic quantum systems theory of N-level systems
As a starting point, consider the controlled Schrödinger (or Liouville) equation

ρ̇(t) = –
[
iHu,ρ(t)

]
:= –

(
iHuρ(t) – ρ(t)iHu

)
()

driven by the Hamiltonian Hu :=H +
∑m

j= uj(t)Hj and fulfilling the initial condition ρ :=
ρ(). Here the drift term H describes the evolution of the unperturbed system, while the
control terms {Hj} represent coherent manipulations from outside. Equation () defines a
bilinear control system � [], as it is linear both in the density operator ρ(t) and in the
control amplitudes uj(t) ∈R.
For a N-level system, the natural representation as Hermitian operators over CN re-

lates the Hamiltonians as generators of unitary time evolutions to the Lie algebra u(N)
of skew-Hermitian operators that generate the unitary group U(N) of propagators. Let
L := {iH, iH, . . . , iHm} be a subset of Hamiltonians seen as Lie-algebra elements. Then
the smallest subalgebra (with respect to the commutator [A,B] := AB – BA) of u(N) con-
taining L is called the Lie closure of L written as 〈iH, iH, . . . , iHm〉Lie. Moreover, for any
element iH ∈ 〈iH, . . . , iHm〉Lie, there exist control amplitudes uj(t) ∈ R with j ∈ {, . . . ,m}
such that (and similarly with a drift term)

exp(–iH) = T
∫ 

t=
exp

[ m∑
j=

–iuj(t)Hj

]
dt, ()

where T denotes time-ordering.
Now taking the Lie closure over the system Hamiltonian and all control Hamiltonians

of a bilinear control system (�) defines the dynamic system Lie algebra (or system algebra
for short)

g� := 〈iH, iHj | j = , , . . . ,m〉Lie. ()

It is the key to characterize the differential geometry of a dynamic system in terms of
its complete set of Hamiltonian directions forming the tangent space to the time evolu-
tions. For instance, the condition for full controllability of bilinear systems can readily be
adopted from classical systems [–] to the quantum realm such as to take the form of

〈iH, iHj | j = , , . . . ,m〉Lie = u(N) ()

saying that a N-level quantum system is fully controllable if and only if its system algebra
is the full unitary algebra, which we will relax to su(N) in a moment. This notion of con-
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trollability is also intuitive (recalling that the exponential map is surjective for compact
connected Lie groups), as it requires that all Hamiltonian directions can be generated.
So in fully controllable closed systems, to every initial state ρ the reachable set is the en-

tire unitary orbit reachfull(ρ) := {UρU† | U ∈ U(N)}. With density operators being Her-
mitian, this means any final state ρ(t) can be reached from any initial state ρ as long as
both of them share the same spectrum of eigenvalues (including multiplicities). Thus the
reachable set of ρ is the isospectral set of ρ.

Remark  Interestingly, this notion is stronger than the requirement that from any given
(normalized) pure state one can reach any other (normalized) pure state, since it is well
known [–] that for N being even, all rank-one projectors are already on the unitary
symplectic orbit

reach
(|ψ〉〈ψ|

)
=
{
K |ψ〉〈ψ|K† | K ∈ Sp(N/)

}
=
{
U|ψ〉〈ψ|U† |U ∈ SU(N)

}
()

and Sp(N/) is a proper subgroup of SU(N).

In general, the reachable set to an initial state ρ of a dynamic system (�) with system al-
gebra g� is given by the orbit of the dynamic (sub)groupG� := exp(g�) ⊆U(N) generated
by the system algebra

reach�(ρ) :=
{
GρG† | G ∈G� = exp(g�)

}
. ()

Thus the system algebra g� can be envisaged as the fingerprint encoding all the dynamic
properties of a dynamic system �. Via the respective reachable sets (see, e.g., []) it is
easy to see that a coherently controlled dynamic system �A can simulate the dynamics
of another system �B if and only if the system algebra g�A of the simulating system �A

encompasses the system algebra g�B of the simulated system �B,

g�A ⊇ g�B . ()

In [], we have analyzed the possibility of quantum simulation with respect to the dy-
namic degrees of freedom and have given a number of illustrating worked examples.
Next we describe dynamic symmetries of bilinear control systems whose Hamiltonians

are given bym := {iHν} = {iH, iH, . . . , iHm}. The symmetry operators s are collected in the
centralizer of m in u(N):

cent(m) :=
{
s ∈ u(N) | [s, iH] =  for all iH ∈m

}
. ()

More generally, let S′ denote the commutant of a set S of matrices, i.e., the set of all com-
plex matrices which commute simultaneously with all matrices in S. By Jacobi’s identity
[[a,b], c] + [[b, c],a] + [[c,a],b] =  one gets two properties of the centralizer pertinent for
our context: First, an element s that commutes with all Hamiltonians a,b ∈ m also com-
mutes with their Lie closure g� := 〈m〉Lie (i.e. cent(m)≡ cent(g�)), as [s,a] =  and [s,b] = 
imply [s, [a,b]] = . Second, for any u ∈ u(N), [s,u] =  and [s,u] =  imply [[s, s],u] = ,
so the centralizer forms itself a Lie subalgebra to u(N) consisting of all symmetry opera-
tors.
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Likewise the symmetries to a given set ρ� of states are given by its centralizer

cent(ρ�) :=
{
s ∈ u(N) | [s,ρ] =  ∀ρ ∈ ρ�

}
= cent

(〈ρ�〉R
)
, ()

where 〈·〉R denotes the real span. Clearly, cent(ρ�) ⊆ u(N) generates the stabilizer group
to the state space ρ� of the control system (�).
Since in the absence of other symmetries the identity is the only and trivial symmetry

of both any state space ρ� as well as any set of Hamiltonians and their respective system
algebra g� , one has cent(g�) = cent(ρ�) = {iλ1N | λ ∈R} =: u(). So there is always a trivial
stabilizer group U() := {eiφ1N | φ ∈ R}. This explains why the time evolutions generated
by twoHamiltoniansH andH coincide for the set of all density operators if (and without
other symmetries only if ) H –H = λ1. As is well known, by the same argument, in time
evolutions

ρ(t) :=U(t)ρU†(t) =AdU(t)(ρ) ()

following from Eq. (), one may take U(t) := exp(–itH) equally well from U(N) or SU(N).
Thus henceforth we will only consider special unitaries (of determinant +) generated by
traceless Hamiltonians iHν ∈ su(N), since for any Hamiltonian H̃ there exists an equiva-
lent unique traceless Hamiltonian H := H̃ – 

N tr(H̃)1N generating a time evolution coin-
ciding with the one of H̃ .
However, the above simple arguments are in fact much stronger, e.g., one readily gets

the following statement:

Lemma  Consider a bilinear control system with system algebra g� on a state space ρ� .
Let iH ∈ g� and iH ∈ u(N)while assuming that [H, 〈ρ�〉R] ⊆ i〈ρ�〉R for all iH ∈ g� , i.e.,
operations generated by g� map the set 〈ρ�〉R into itself. Then the condition

e–iHtρeiHt = e–i(H+H)tρei(H+H)t for all t ∈R,ρ ∈ ρ� ()

is equivalent to iH ∈ cent(ρ�).

Proof Using the formula etABe–tA = exp[adtA(B)] =
∑∞

k= tk/k! ad
k
A(B) we show that Eq. ()

is equivalent to condition (a): adkH (ρ) = adkH+H (ρ) for all non-negative integer k and all ρ ∈
〈ρ�〉R. Moreover, (a) implies condition (b): (adH ◦ adkH )(ρ) =  for all non-negative integer
k and all ρ ∈ 〈ρ�〉R, as [H, adk–H (ρ)] = [H + H, adk–H+H (ρ)] = [H + H, adk–H (ρ)]. Also,
(a) follows from (b) due to adkH (ρ) = [H +H, adk–H (ρ)] = [H +H, [H +H, adk–H (ρ)]] =
· · · = adkH+H (ρ). Applying [H, 〈ρ�〉R] ⊆ i〈ρ�〉R to (b) completes the proof. �

Therefore, let us consider a pair of Hamiltonians iH, iH ∈ g� (fulfilling the conditions
of Lemma ) as equivalent on the state space ρ� , if their difference iH := i(H –H) falls
into the centralizer cent(ρ�).
Finally note that all unitary conjugations of type AdU are elements of the projective

special unitary group PSU(N) = U(N)/U() � SU(N)/Z(N), where the centers of U(N)
and SU(N) are respectively given by U() and Z(N) := {eir1N | r ∈R with rNmodπ = }.
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Moreover, recall Adexp(–itH) = e–it adH , where adH := [H , ·] can be represented as commuta-
tor superoperator adH = 1N ⊗H –Ht ⊗1N . Now, for anyH –H = λ1N , one immediately
obtains adH = adH , which also elucidates that the generators of the projective unitaries
PSU(N) are given by psu(N) = {i adH | iH ∈ u(N)}.

3 Fermionic quantum systems
In this section, we fix our notation by recalling basic notions for fermionic systems. In the
first subsection, we discuss the Fock space and different operators acting on it as given by
the creation and annihilation operators as well as the Majorana operators. We point out
how the Lie algebra u(d) of skew-Hermitianmatrices can be embedded as a real subspace
in the set of the complex operators acting on the Fock space. In the second subsection, we
focus on the parity superselection rule and how it structures a fermionic system.

3.1 The Fock space andMajorana monomials
The complex Hilbert space of a d-mode fermionic system with one-particle subspace Cd

is the Fock space

F
(
Cd) := d⊕

i=

( i∧
Cd
)
=C⊕Cd ⊕ ∧Cd ⊕ · · · ⊕ (∧dCd).

Given an orthonormal basis {ei}di= of Cd , the Fock vacuum 	 := (=  ⊕  ⊕ · · · ⊕ ) and
the vectors of the form ei ∧ ei ∧ · · · ∧ eik (with i < i < · · · < ik and  ≤ k ≤ d) form an or-
thonormal basis of F (Cd). Note that F (Cd) is a d-dimensional Hilbert space isomorphic
to
⊗d

i=C
 ( ∼=Cd ).

The fermionic creation and annihilation operators, f †p and fp act on the Fock space in
the following way: f †p 	 = ep, fp	 = , f †p eq = ep ∧ eq, and fpeq = δpq; while in the general case
of  ≤ � ≤ d, their action is given by f †p (eq ∧ eq ∧ · · · ∧ eq�

) = (ep ∧ eq ∧ eq ∧ · · · ∧ eq�
)

and fp(eq ∧ eq ∧ · · · ∧ eq�
) =
∑n

k=(–)kδpqk eq ∧ · · · ∧ eq(k–) ∧ eq(k+) ∧ · · · ∧ eq�
. By their

definition, these operators satisfy the fermionic canonical anticommutation relations

{
f †p , f

†
q
}
=
{
fp, fq

}
=  and

{
f †p , fq

}
= δpq1,

where {A,B} := AB + BA denotes the anticommutator. Moreover, every linear operator
acting on F (Cd) can be written as a complex polynomial in the creation and annihilation
operators.
Another set of polynomial generators acting on the Fock space is given by the d Her-

mitianMajorana operators mp– := fp + f †p andmp := i(fp – f †p ), which satisfy the relations
(k,� ∈ {, . . . , d})

{mk ,m�} = δk�1.

A product mqmq · · ·mqk of k ≥  Majorana operators is called a Majorana monomial.
The orderedMajoranamonomials with q < q < · · · < qk form a linearly independent basis
of the complex operators acting on F (Cd). Each Majorana monomial acting on d-mode
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fermionic system can be identified with a complex operator acting on a chain of d qubits
via the Jordan-Wigner transformation [–] which is induced by

mp– �→ Z⊗ · · · ⊗ Z︸ ︷︷ ︸
p–

⊗X⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
d–p

and mp �→ Z⊗ · · · ⊗ Z︸ ︷︷ ︸
p–

⊗Y⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
d–p

,

where the following notation for the Pauli matrices X :=
(  
 

)
, Y :=

(  –i
i 

)
, and Z :=

(  
 –

)
is used.
Now we highlight the real subspace contained in the set of complex operators acting on

the Fock space F (Cd) which consists of all skew-Hermitian operators and which forms
the real Lie algebra u(d) closed under the commutator [A,B] = AB – BA and real-linear
combinations. More precisely, u(d) is generated by all operators

L(M) := –


w(M)M, ()

whereM denotes any ordered Majorana monomial and

w(M) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i if [deg(M)mod] ∈ {, },
 if [deg(M)mod] ∈ {, },
–i if [deg(M)mod] ∈ {, },
– if [deg(M)mod] ∈ {, }.

()

Similarly, one obtains a basis of su(d) by excluding – i
1.

3.2 Parity superselection rule
An additional fundamental ingredient in describing fermionic systems is the parity super-
selection rule. Superselection rules were originally introduced by Wick, Wightman, and
Wigner [] (see also [, ]). These rules, in the finite-dimensional definition of Piron
[], describe the existence of non-trivial observables that commute with all physical ob-
servables. The existence of such a commuting observable in turn implies that a super-
position of pure states from different blocks of a block-diagonal decomposition w.r.t. the
eigenspaces of this observable are equivalent to an incoherent classical mixture.
The parity superselection rule identifies among the operators acting on F (Cd) the phys-

ical observables HF as those that do commute with the parity operator

P := id
d∏
k=

mk , ()

where the adjoint action of P on a Majorana monomial is given as

Pmkmk · · ·mk�P
– = (–)�mkmk · · ·mk� .

These physical operators are also exactly the ones that can be written as a sum of products
of an even number of Majorana operators (as P contains all Majorana operators whereof
there exist an even number). They are therefore denoted as even operators for short. If the

http://www.epjquantumtechnology.com/content/1/1/11
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parity is the only non-trivial symmetry, we obtain H′
F = 〈1,P〉, where the bracket stands

for the complex-linear span.
Now we will discuss why the set of all physical fermionic states ρF consists similarly

of all density operators that commute with P, notably ρ ′
F = 〈1,P〉. As we will show, the

parity superselection rule induces a decomposition into a direct sum of two irreducible
state-space components exploitingH′

F ∩ρ ′
F = 〈1,P〉. Recall that P = 1 and the eigenspaces

to the eigenvalues + and – are indeed of equal dimension, as there are exactly d–

even operators which map the vacuum state 	 into the + eigenspace of P. Note that
Peq ∧ eq ∧ · · · ∧ eq�

= (–)�eq ∧ eq ∧ · · · ∧ eq�
. Thus the Fock space can be split up as

a direct sum of two equal-dimensional eigenspaces of P, called the positive and negative
parity subspaces:

F
(
Cd) = [⊕

i even

(∧iCd)]⊕
[⊕
i odd

(∧iCd)].
Note that for clarity we use this notation in contrast to the notation of even and odd sub-
spaces (which is also used in the literature) in order to avoid any confusion with the even
operators.
Now we may write P = 1 = P+ + P– with the orthogonal projections P+ := 

 (1 + P) and
P– := 

 (1–P) projecting onto the respective subspaces. Any physical observable (i.e. even
operator) A has a block-diagonal structure with respect to the above splitting, i.e. A =
P+AP+ +P–AP–. This follows, as the requirement [A,P] = 

 [A,P+] = – 
 [A,P–] =  enforces

P+AP– = P–AP+ =  for any operator A = P+AP+ + P+AP– + P–AP+ + P–AP–. We obtain

Tr(ρA) = Tr(ρP+AP+ + ρP–AP–) = Tr
[
(P+ρP+ + P–ρP–)A

]
. ()

Hence physical observables cannot distinguish between the density operator ρ and its
block-diagonal projection to P+ρP+ + P–ρP– (which is always an even density operator).
In this sense, a physical linear combination (a formal superposition) of pure states from
the positive and negative parity subspaces is equivalent to an incoherent classical mixture.
Equation () also shows that without loss of generality we can restrict ourselves to even
density operators and regard only those as physical.
Finally, we would like to recall three further aspects of the parity superselection rule.

First, without the parity superselection rule, two noncommuting observables acting on
two different and spatially-separated regions would exist which would allow for a violation
of locality (e.g., by instantaneous signaling between the regions). Second, the parity super-
selection rule, of course, does not apply if one uses a spin system to simulate a fermionic
system via the Jordan-Wigner transformation. This system respects locality, since theMa-
jorana operatorsmk are—in this case—localized on the first [(k + )div] spins; two non-
commuting Majorana operators are therefore not acting on spatially-separated regions.
Third, the parity superselection rule also affects the concept of entanglement as has been
pointed out and studied in detail in [, ].

4 Fully controllable fermionic systems
Here we derive a general controllability result for fermions obeying the parity superse-
lection rule. We illustrate that full controllability for a fermionic system can be achieved
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with quadratic Hamiltonians and a single fourth-order interaction term. For example, in a
system with d modes, the complete fermionic dynamical algebra Ld ∼= su(d–)⊕ su(d–)
(see Theorem ) can be generated by a quartic interaction between the first two modes
ihint = i(f † f –1)(f † f –1) = –immmm combinedwith three quadraticHamiltonians:
the nearest-neighbor hopping term

ihh = –i
d–∑
p=

f †p fp+ + f †p+ fp =
d–∑
p=

–mp–mp+ +mpmp+,

the on-site potential of the first site ih = i(f † f –1) =mm, and a pairing-hopping term
between the first twomodes ih = i(f f – f † f

†
 )– i(f

†
 f – f f

†
 ) =mm (see Proposition ).

Finally, we provide a general discussion about when the commutant of a system algebra
determines the algebra itself.

4.1 System algebra
In the case of qubit systemsmentioned in Section , twoHamiltonians generate equivalent
time evolutions if and only if they differ by a multiple of the identity. This condition can
readily be modified for the fermionic case such as to match the parity-superselection rule
as well.

Corollary  Let H and H be two physical fermionic Hamiltonians, i.e., even Hermitian
operators acting on F (Cd). Then by Lemma  the equality e–iHtρeiHt = e–iHtρeiHt holds
for all even (physical) density operators ρF with ρ ′

F = 〈1,P〉 in the sense that H and H

generate the same time-evolution, if and only if H –H = λ1 +μP = (λ +μ)P+ + (λ –μ)P–

with λ,μ ∈R.

This also implies that for any physical fermionic Hamiltonian H , there exists a unique
Hamiltonian

H̃ :=H –
tr(P+HP+)
dimP+

P+ –
tr(P–HP–)
dimP–

P–

that is traceless on both the positive and the negative parity subspaces, i.e.,

tr(P+H̃P+) = tr(P–H̃P–) = , ()

andmoreover, H̃ andH are equivalent and generate the same time evolution. If necessary,
we can restrict ourselves to the set of Hamiltonians satisfying Eq. (). These elements
decompose as H =H+ ⊕H–, where H+ and H– are generic traceless Hermitian operators
each acting on a d–-dimensional Hilbert space.We explicitly define the linear space Fd of
physical fermionicHamiltonians as generated by the basis of all evenMajoranamonomials
without the operators 1 and P, ensuring that Fd is traceless both on H+ and H–.—We
summarize our exposition on fully controllable fermionic systems in the following result:

Theorem  The Lie algebra corresponding to the physical fermionic (and Hermitian)
Hamiltonians Fd is Ld := su(d–) ⊕ su(d–). The most general set of unitary trans-
formations generated by Ld is given as the block-diagonal decomposition SU(d–) ⊕
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SU(d–). Hence a set {H,H, . . . ,Hm} of Hermitian Hamiltonians defines a fully control-
lable fermionic system iff 〈iH, iH, . . . , iHm〉Lie = su(d–)⊕ su(d–).

Remark  For Lie algebras, k +k will denote only an abstract direct sumwithout referring
to any concrete realization. We reserve the notation k ⊕ k to specify a direct sum of Lie
algebras which is (up to a change of basis) represented in a block-diagonal form

(
k

k

)
.

Proof of Theorem  It follows from Section  that Fd commutes with P and that thematrix
representation of Fd splits into two blocks of dimension d– corresponding to the + and
– eigenspaces of P. As the center of Fd is given by F′

d ∩ Fd = 〈1,P〉 ∩ Fd = {}, the Lie
algebra Fd is semisimple. As there are exactly d– –  linear-independent operators in
Fd , the system algebra could be su(d–)⊕ su(d–). And indeed, all other system algebras
are ruled out as the subalgebras acting on each of the two matrix blocks would have a
smaller Lie-algebra dimension than su(d–). �

4.2 Examples and discussion
We start out with an example realizing a fully controllable fermionic system by adding
only one quartic operator to the set of quadratic Hamiltonians which will be discussed in
Section  below (cf. Theorem ):

Proposition  Consider a fermionic quantum system with d >  modes. The system alge-
bra Ld = su(d–)⊕ su(d–) of a fully controllable fermionic system can be generated using
the operators w := L(v), w := L(v),w := L(v), and w := L(v) with the map L as defined
in Eqs. () and (), where

v :=
d–∑
p=

–mp–mp+ +mpmp+, (a)

v :=mm, v :=mm, v :=mmmm. (b)

Proof It follows from the independent Theorem  (see Section  below) that w, w, and
w generate all quadratic Majorana monomialsmpmq. Consider an evenMajorana mono-
mial s := L(

∏
i∈I mi) of degree d′, where s is defined using the ordered index set I , and

a quadratic operator s := L(mpmq) with p ∈ I and q /∈ I . We can change any index p of s
into q of using L(

∏
k∈(I\{p})∪{q} mk) = ±[s, s]. Therefore, we get fromw and the quadratic

operators all Majorana monomials of degree four.
Using the quartic Majorana monomials we can increase the degree of the monomials

in steps of two: Consider the operators s := L(
∏

i∈I mi) and s := L(
∏

j∈J mj) which are
defined using the ordered index sets I and J and have degrees d′′ < (d – ) and , re-
spectively. Assuming that |I ∩J | = , we can generate an operator L(

∏
k∈Kmk) = ±[s, s]

of degree |K| = (d′′ + ) < d where the corresponding ordered index set is given by
K := (I ∪J ) \ (I ∩J ). By induction, we can now generate all even Majorana monomials
except L(

∏d
q=mq). Note that L(

∏d
q=mq) cannot be obtained as I ∩J �K holds by con-

struction. Thus, we get all elements of Ld (see Section .) and the proposition follows.
�

The proof also implies that all the operators generated commutewith
∏d

q=mq = P/id (cf.
Eq. ()) and the identity operator 1. In addition, all operators commuting simultaneously
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with all elements of Ld can be written as a complex-linear combination of 1 and P. We
thus obtain a partial characterization of full controllability in fermionic systems:

Lemma  Consider a fermionic quantum system with d ≥ modes. A necessary condition
for full controllability of a given set of Hermitian Hamiltonians Hv is that {iHv}′ = 〈1,P〉.

One can expect that the condition of Lemma  is not sufficient under any reasonable as-
sumption by applying counterexamples from spin systems in []. These counterexamples
could be lifted to fermionic systems by providing the explicit form of the embeddings from
su(d–) to the first and second component of the direct sum Ld = su(d–)⊕ su(d–).
We guide the discussion in a different direction by emphasizing that the property

{iHv}′ = 〈1,P〉 does not determine the system algebra uniquely. We define the centralizer
of a set B⊆ su(k) in su(k) (e.g. k = d) as

centsu(k)(B) :=
{
g ∈ su(k) | [g,b] =  for all b ∈ B

}
.

We consider the algebras Ld = su(d–) ⊕ su(d–) and s[u(d–) ⊕ u(d–)], where the
latter algebra is isomorphic to su(d–) + su(d–) + u() and contains the additional
(non-physical) generator L(

∏d
q=mq). Note that centsu(k)(Ld) = centsu(k)(s[u(d–) ⊕

u(d–)]) = L(
∏d

q=mq), i.e., the centralizers of both algebras are equal. However
centsu(k)[L(

∏d
q=mq)] = s[u(d–) ⊕ u(d–)] �= su(d–) ⊕ su(d–). In particular, we have

Ld �= centsu(k)(centsu(k)(Ld)), and Ld does not fulfill the double-centralizer property.
A more general incarnation of this effect in line with a discussion of double centraliz-
ers is given in Appendix A. It leads in the case of irreducible subalgebras to the following
maximality result:

Corollary  Let g denote an irreducible subalgebra of su(k), i.e. centsu(k)(g) = {}. Then
one finds that centsu(k)(centsu(k)(g)) = g if and only if g = su(k).

To sumup, the symmetry properties of a Lie algebra g ⊆ su(k), as given by its commutant
w.r.t. a representation of g, do not determine the Lie algebra g uniquely. Yet the commutant
allows us to infer a unique maximal Lie algebra contained in su(k), which is (up to an
identity matrix) equal to the double commutant of g, but in general not to g itself.

5 Quasifree fermions
Here we present the dynamic system algebras for fermions with quadratic Hamiltonians.
For illustration, also the relation to spin chains is worked out in detail. In this context, we
show by free fermionic techniques that a Heisenberg-XX Hamiltonian of Eq. () com-
bined with the one-site term ih = iZ ⊗ I ⊗ · · · ⊗ I = mm and the two-site interaction
ih = iX⊗X⊗ I⊗· · ·⊗ I =mm gives rise to the system algebra so(d) (see Theorem ),
while the first two operators generate only the subalgebra u(d) (see Theorem ). Further
results along this line are presented in Appendix C.
Finally, we arrive at a very useful general result: In order to decide if a set of opera-

tors generates the full quadratic algebra for d modes, we characterize quadratic opera-
tors by a real skew-symmetric matrix T whose entries are given via – 


∑d

k,� Tk�mkm� (see
Eq. ()). Adapting our tensor-square criterion for full controllability from spin systems
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[] to quasifree fermionic systems, a set of operators Tν generates the full quadratic al-
gebra so(d) if and only if the joint commutant of the operators Tν ⊗ 1d + 1d ⊗ Tν has
dimension three (see Corollary ).

5.1 Quadratic Hamiltonians
A general quadratic Hamiltonian of a fermionic system can be written as (cf. [, –])

H =
d∑

p,q=

Apq

(
f †p fq – δpq

1



)
+


Bpq f †p f

†
q –



B∗
pq fp fq, ()

where the coupling coefficients Apq and Bpq are complex entries of the d × d-matrices
A and B, respectively. The canonical anticommutation relations and the hermiticity of H
require thatA is Hermitian and B is (complex) skew-symmetric. The terms corresponding
to the non-zero matrix entries of A and B are usually referred to as hopping and pairing
terms, respectively. Related parameterizations for quadratic Hamiltonians are discussed
in Appendix B.
In the Majorana monomial basis, the quadratic Hamiltonian H can be written as

–iH =
d∑

k,�=

Tk�

[
–


mkm�

]
()

with

T =



[
Re(A)⊗

(
 
– 

)
+Re(B)⊗

(
 –
 

)

+ Im(A)⊗
(
– 
 –

)
+ Im(B)⊗

(
– 
 

)]
.

The properties of A and B directly imply that the matrix T is real and skew-symmetric.
Using the formula

[mpmq,mrms] = –(δpsδqr1 – δqsδpr1)

+ (δpsmqmr – δprmqms + δqrmpms – δqsmpmr) (a)

= δps(mqmr –mrmq) – δpr(mqms –msmq)

+ δqr(mpms –msmp) – δqs(mpmr –mrmp) (b)

one can easily verify that the space of quadratic Hamiltonians is closed under the com-
mutator. To sum up, we have established the well-known Lie homomorphism from the
system algebra generated by a set of quadratic Hamiltonians (whose control functions are
given by the matrix entries of A and B) onto the system algebra so(d) represented by the
entries of T (cf. pp.- of []):

Proposition  The maximal system algebra for a system of quasifree fermions with d
modes is given by so(d).
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Proof Let the map h transform theMajoranamonomial – 
 (mpmq –mqmp) into the skew-

symmetric matrix epq – eqp where epq has the matrix entries [epq]uv := δpuδqv. We show that
h is a Lie-homomorphism assuming p �= q and r �= s in the following, while the case of
p = q or r = s holds trivially. Note that 

 (mpmq –mqmp) =mpmq. It follows from Eq. (b)
that h([– 

 (mpmq – mqmp), – 
 (mrms – msmr)]) = [(epq – eqp), (ers – esr)] = [h(– 

 (mpmq –
mqmp)),h(– 

 (mrms –msmr))]. �

5.2 Examples and explicit realizations
We start by showing that the full system algebra so(d) of quasifree fermions can be gen-
erated using only three quadratic operators, namely w = L(v), w = L(v), and w = L(v)
from Eqs. (a) and (b) where v =

∑d–
p= –mp–mp+ + mpmp+, v = mm, and

v =mm. The Jordan-Wigner transformation maps these generators respectively to the
Heisenberg-XX term

iHXX = –
i


d–∑
p=

(XpXp+ + YpYp+), ()

– i
Z, and – i

XX, where operators as (e.g.) Z are defined as Z⊗ I⊗ · · · ⊗ I.

Lemma  Consider a fermionic quantum system with d ≥ modes. The system algebras
k and k generated by the set of Lie generators {w,w} and {w,w,w} contain the elements
L(ap) with ap := mp–mp for all p ∈ {, . . . ,d} as well as L(bp) with bp := –mp–mp+ +
mpmp+ and L(cp) with cp :=mp–mp+ +mpmp+ for all p ∈ {, . . . ,d – }.

Note that the elements L(ap), L(bp), and L(cp) are mapped by the Jordan-Wigner trans-
formation to the spin operators –iZp/, –i(XpXp+ +YpYp+)/, and –i(XpYp+ –YpXp+)/,
respectively.

Proof of Lemma  We compute the commutators w := –L(c) = [w,w], w := L(b) =
[w,w], and w := L(a) = [w,w] –w. We can now reduce the problem from d to d – 
by subtracting w from w. The cases of d ∈ {, , } can be verified directly and the proof
is completed by induction. �

This proof also yields an explicit realization for the algebra so(d) while providing a
more direct line of reasoning as compared to our proof of Theorem  in [].

Theorem  Consider a fermionic quantum system with d ≥  modes. The system Lie al-
gebra k generated by {w,w,w} is given by so(d).

Proof The cases of d ∈ {, , } can be verified directly. We build on Lemma  and re-
mark that k ⊆ so(d) as it is generated only by quadratic operators (see Proposition ).
We compute in the Jordan-Wigner picture w := –i(YY – YY)/ = [w, [w,w]], and
w := –iXX/ = L(b) – (w – w – w). This shows by induction that so(d) ⊇ k �

u() + so(d – ). As u() + so(d – ) is a maximal subalgebra of so(d) (see p. of []
or Section . of []), one obtains that k = so(d). Alternatively, one can explicitly show
that k consists of all quadratic Majorana operators, which together with Proposition 
also completes the proof. �
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Note that the generators w, w, and w can be described using the Hamiltonian of
Eq. () while keeping the control functions given by the matrix entries Apq and Bpq in
the real range, see Appendix B for details. This also provides a simplified approach to
Theorem  in [], where only the real case was considered:

Corollary  (seeTheorem in []) Consider a control system given by theHamiltonian
components of Eq. (). The control functions are specified by the matrix entries Apq and
Bpq which are assumed to be real. The resulting system algebra is so(d).

The relations between quasifree fermions and spin systems will be analyzed in Ap-
pendix C.—Next we treat the case of the algebra u(d).

Theorem  (see Lemma  in []) Consider a fermionic quantum system with d ≥ 
modes. The system Lie algebra k generated by {w,w} is given by u(d).

Here we just sketch ideas for the proof of Theorem  while leaving the full details to
Appendix D. Our methods exploit the detailed structure of the appearing Majorana op-
erators while being more explicit than in [] and avoiding obstacles of the spin picture.
Building on the notation of Lemma , we show that the elements L(ap) with  ≤ p ≤ d
together with the elements L(b(i)p ) with b(i)p := –mp–mp+i +mpmp+i– and L(c(i)p ) with
c(i)p := mp–mp+i– +mpmp+i where p, i ≥  and p + i ≤ d form a basis of k. One ob-
tains that dim(k) = d + (d – )d = d. Furthermore, the elements L(ap) form a maximal
abelian subalgebra and the rank of k is equal to d. (The rank of a Lie algebra is defined as
the dimension of its maximal abelian subalgebras.) We limit the possible cases further by
showing that k is a direct sum of a simple and a one-dimensional Lie algebra. A complete
enumeration of all possible cases completes the proof.

Remark  A spin chain equivalent to the fermionic system in Theorem  was also con-
sidered in [], where it was shown how to swap pairs of fermions using the given Hamil-
tonians. As a consequence of Theorem , the Lie algebra in the spin chain of [] can be
identified as u(d). Clearly, its size grows only linearly with the number of modes d. How-
ever, the addition of controlled-Z gates, as discussed in [], already allows for scalable
quantum computation.

5.3 Tensor-square criterion
Consider a control system of quasifree fermions which is represented by matrices Tν in
the form of Eq. (). For more than two modes (i.e. d ≥ ), we can efficiently decide if the
system algebra is equal to so(d). Recall that the alternating square Alt(φ) and the sym-
metric square Sym(φ) of a representation φ are defined as restrictions to the alternating
and symmetric subspace of the tensor square φ⊗ = φ ⊗ 1dim(φ) + 1dim(φ) ⊗ φ.

Theorem  Assume that k is a subalgebra of so(d) with d ≥  and denote by � the
standard representation of so(d). Then, the following statements are equivalent: () k =
so(d). () The restriction of Alt � to the subalgebra k is irreducible and the restriction
of Sym � to k splits into two irreducible components. Each irreducible component occurs
only once. () The commutant of all complex matrices commuting with the tensor square
(�|k)⊗ of k has dimension three.
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Proof Assuming (), condition () follows from the formulas for the alternating and sym-
metric square of so(d) with d ≥  given in its standard representation φ(,,...,) [where
(, , . . . , ) denotes the corresponding highest weight]: The alternating square is given as
Alt φ(,,) = φ(,,) for so() andAlt φ(,,,...,) = φ(,,,...,) for so(d) in the case of d >  (cf.
Table  in [] orTableX in []). The symmetric square Sym φ(,,...,) = φ(,,...,)⊕φ(,,...,)

for so(d) and d ≥  can be computed using Example . of []. We verify the dimen-
sion of the commutant and show that () is a consequence of () by applying Proposi-
tion  which says that the dimension of the commutant of a representation φ is given by∑

i m
i where themi are the multiplicities of the irreducible components of φ. For the rest

of the proof we assume that condition () holds. We remark that the representation �|k
is irreducible as otherwise the dimension of the commutant would be larger than three.
Thus, we obtain that k is semisimple. The dimension of the commutant allows only two
possibilities: one of the restrictions (Alt �)|k or (Sym �)|k to the subalgebra k has to be
irreducible. We emphasize that k is given in an orthogonal representation (i.e. a repre-
sentation of real type) of even dimension, as k is given in an irreducible representation
obtained by restricting the standard representation of so(d). Therefore, we can use the
list of all irreducible representations which are orthogonal or symplectic (i.e. of quater-
nionic type) and whose alternating or symmetric square is irreducible (Theorem . as
well as Tables a and b of []): (a) for su() the alternating square of the symplectic
representation φ = () of dimension two, (b) for so() ∼= su() the alternating square of the
orthogonal representation φ = () of dimension three, (c) for so(�+) with � >  the alter-
nating square of the orthogonal representation φ = (, , . . . , ) of dimension �+ , (d) for
so(�) with � ≥  the alternating square of the orthogonal representation φ = (, , . . . , )
of dimension �, and (e) for sp(�) with � ≥  the symmetric square of the symplectic repre-
sentation φ = (, , . . . , ) of dimension �. Only possibility (d) fulfills all conditions which
proves (). �

Describing the matrices in the tensor square more explicitly along the lines of [], we
present a necessary and sufficient condition for full controllability in systems of quasifree
fermions.

Corollary  Consider a set of matrices {Tν | ν ∈ {; , . . . ,m}} as given by Eq. () gener-
ating the system algebra k ⊆ so(d) with d ≥ .We obtain k = so(d) if and only if the joint
commutant of {Tν ⊗ 1d + 1d ⊗ Tν | ν ∈ {; , . . . ,m}} has dimension three.

Along the lines of Eq. (), one can apply Corollary  to the matrices T corresponding
to the generators of so(d) of Theorem . For d ≥  one can verify that the commutant
of the tensor square has dimension three. But for d =  one computes a dimension of four
as so() = su() + su() is not simple.
For illustration, note that two elements in the commutant are trivial, to wit the identity

and the generator for the swap-operation between the two tensor copies. The third ele-
ment does not yet occur in the unitary case described in []: it is the projector PS onto
the totally anti-symmetric state. To see this, recall that [] implies that if the Hamiltoni-
ans {iHν | ν ∈ {; , . . . ,m}} generate a system algebra of orthogonal type, then there is an
operator S ∈ SL(N) satisfying

SHt
ν +HνS =  ()
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jointly for all ν ∈ {; , . . . ,m} as in []. Using Kronecker products andwriting |S〉 := vec(S)
[], one sees that |S〉 is in the intersection of all the kernels of the tensor squares, so

(Hν ⊗ 1 + 1 ⊗Hν)|S〉 = |〉 ⇔ (Hν ⊗ 1 + 1 ⊗Hν)|S〉〈S| = N

⇔ |S〉〈S|(Hν ⊗ 1 + 1 ⊗Hν) = N ()

and thus PS := |S〉〈S| ∈ (Hν ⊗ 1 +1 ⊗Hν)′ holds jointly for all ν ∈ {; , . . . ,m}; N denotes
the zero matrix of degree N .

6 Pure-state controllability for quasifree systems
In this section, we present a straightforward criterion for pure-state controllability of
quasifree fermionic systemswith dmodes.A fermionic state is called quasifree ifMajorana
operators of odd degree map it to zero and even-degree ones map it to states which fac-
torize into the Wick expansion form (see below). We obtain that quadratic Hamiltonians
act transitively on pure quasifree states, i.e., every pure quasifree state can be transformed
into any other pure quasifree state using only quadratic Hamiltonians (see Theorem ).
In particular, within the Lie algebra of quadratic Hamiltonians a subalgebra isomorphic

to u(d) provides the stabilizer of any pure quasifree state. Thus the set of pure quasifree
states can be identifiedwith a homogeneous space of the type SO(d)/U(d). At first glance,
this might suggest that for full pure-state controllability the system algebra has to be iso-
morphic to so(d). However, the central result of this section shows that this is in general
not necessary: a quasifree fermionic system (with d >  or d = ) is fully pure-state con-
trollable iff its system algebra is isomorphic to so(d) or so(d – ), see Theorem .

6.1 Quasifree states
A fermionic state ρ on F (Cd) is called quasifree or Gaussian if it vanishes on odd mono-
mials of Majorana operators and factorizes on even monomials into the Wick expansion
form

tr(ρmk · · ·mkd ) =
∑
π

sgn(π )
d∏
p=

tr(ρmkπ (p–)mkπ (p) ).

Here the sum runs over all pairings of [, . . . , d], i.e., over all permutations π of [, . . . , d]
satisfying π (q– ) < π (q) and π (q– ) < π (q+ ) for all q. The covariance matrix of ρ
is defined as the d × d skew-symmetric matrix with real entries

Gρ
pq = i

[
Tr(ρmpmq) – δpq

]
. ()

Due to the Wick expansion property, a quasifree state is uniquely characterized by its
covariancematrix. (General references for this section include [, –].) The following
proposition resumes a known result on these covariancematrices (see, e.g., Lemma. and
Theorem . in []), which will be useful in the later development:

Proposition  The singular values of the covariance matrix of a d-mode fermionic state
must lie between  and . Conversely, for any d × d skew-symmetric matrix Gρ with
singular values between  and  there exists a quasifree state that has Gρ as a covariance
matrix.
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6.2 Orbits and stabilizers of quasifree states under the action of quadratic
Hamiltonians

The action of the time-evolution unitaries generated by quadratic Hamiltonians on
quasifree states can be described by the next proposition (see Lemma . in []):

Proposition  Consider a quasifree state ρa corresponding to the (skew-symmetric) co-
variance matrix Ga. The quadratic Hamiltonian

H = i
d∑

p,q=

Tpq

(
–


mpmq

)

is defined using the skew-symmetric matrix T and generates the time-evolution of ρa. The
time-evolved state (at unit time), ρb = e–iHρaeiH is again a quasifree state with a (skew-
symmetric) covariance matrix Gb =OTGaOt

T , where OT := e–iT ∈ SO(d).

Any skew-symmetric matrix G can be brought into its canonical form

OGGOt
G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 ν

–ν 
 ν

–ν 
. . .

 νN

–νN 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
using a (not necessarily unique) element OG ∈ SO(d) where {νi}di= denotes the singular
values of G. This means that a quasifree state can be reached from another one by the ac-
tion of quadratic Hamiltonians if their covariance matrices share the same singular values
(including multiplicities). Let us now recall another result related to the singular values
of the covariance matrices of pure quasifree states (Theorem . in [], and Lemma  in
[]):

Proposition  A quasifree state ρ is pure iff the following (equivalent) conditions hold
for its covariance matrix Gρ : (a) The rows (and columns) of Gρ are real unit vectors which
are pairwise orthogonal to each other. (b) The singular values of Gρ are all .

Applying this result together with Proposition , we obtain the next theorem:

Theorem  The set of quadratic Hamiltonians acts transitively on pure quasifree states,
and the corresponding stabilizer algebras are isomorphic to u(d).

Proof We have already shown that the singular values of the covariance matrices (with
multiplicities) form a separating set of invariants for the orbits generated by quadratic
Hamiltonians over the set of quasifree states. This means, according to Proposition ,
that the pure quasifree states form a single orbit.
As the set of quadratic Hamiltonians generate a transitive action over the pure quasifree

states, the corresponding stabilizer subalgebras are isomorphic to each other. Consider a
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quadratic Hamiltonian H with the coefficient matrices A and B as given in Eq. () and
the Fock state ρ	, which is the projection onto the Fock vacuum vector 	. The state ρ	

is left invariant under the time evolution generated by H (ρ	 = e–iHtρ	eiHt) iff 	 is an
eigenvector of H . We obtain that

H	 =

[ d∑
p,q=

Apq

(
f †p fq – δpq

1



)
+


Bpq f †p f

†
q –



B∗
pq fpfq

]
	

= –
d∑
p=



App	 +

∑
p<q

Bpq f †p f
†
q 	.

By noting that	 and f †p f †q 	 (with p < q) are linearly independent vectors, we can conclude
that a quadratic HamiltonianH leaves the Fock vacuum invariant iffH =

∑d
p,q=Apq(f †p fq –

δpq
1
 ). In Theorem  of Section  we will show that these operators form a Lie algebra

isomorphic to u(d). �

Corollary  Theorem  identifies the space of pure quasifree states with the quotient
space SO(d)/U(d).

6.3 Conditions for quasifree pure-state controllability
According to Theorem , a set of quasifree control Hamiltonians {H, . . . ,Hm} allows for
quasifree pure-state controllability, if the corresponding Hamiltonians generate the full
quasifree system algebra, i.e. if 〈iH, . . . , iHm〉Lie ∼= so(d). It is natural to ask whether this
condition is also a necessary. Remarkably, it turns out that this is not the case, which is
shown by the following lemma:

Lemma  Consider a quasifree fermionic systemwith d > modes. Let K be the subgroup
of SO(d) which is isomorphic to SO(d – ) and stabilizes the first coordinate; its Lie alge-
bra is denoted by k. Then (a) the group K acts via its adjoint action transitively on the set of
all skew-symmetric covariance matrices of pure quasifree states (whose singular values are
all ) and (b) the quasifree system is pure-state controllable if its system algebra is conjugate
under SO(d) to k.

Proof We prove (a) by showing that all pure quasifree states can be transformed under
K-conjugation to the same pure state. We employ an induction on d. The base case d = 
can be directly verified. It follows from Proposition (b) that the skew-symmetric covari-
ance matrix of a pure quasifree state can be written as Gρ =

(  vt
–v A

)
, where v denotes a

normalized (d – )-dimensional vector and A denotes a (d – )× (d – )-dimensional
skew-symmetric matrix. We consider the action of a general orthogonal transformation
⊕O with O ∈ SO(d – ):

(


O

)(
 vt
–v A

)(


Ot


)
=

(
 vtOt



–Ov OAOt


)
.

Since any (d – )-dimensional vector v with unit length can be transformed by an or-
thogonal transformation to (, , , . . . , ), we can chooseO such that vtOt

 = (, , , . . . , ).
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We have (OAOt
) =  as the transformed matrix is skew-symmetric. Again by Proposi-

tion (b) we obtain the transformed matrix as

⎛⎜⎜⎜⎝
 
– 

 vt
–v A

⎞⎟⎟⎟⎠ ,

where v is a d –  dimensional unit real vector and A is a (d – ) × (d – ) skew-
symmetric matrix. Now the proof of (a) follows using the induction hypothesis. The state-
ment (b) is a consequence of (a). �

We relate Lemma  to what is known about transitive actions on the coset space
SO(d)/U(d). Only Lie groups isomorphic to SO(d – ) and SO(d) can act transitively
(i.e. in a pure-state controllable manner) on the homogeneous space SO(d)/U(d) assum-
ing d ≥ . The case d ≥  is discussed in []. For d =  we have SO() ∼= SU() and
SU()/U() = CP (where CP denotes the complex projective space in four dimensions),
and it is known that only subgroups of SU() isomorphic to SU() or Sp() ∼= SO() can
act transitively on CP (see p. of [] or p. of []; refer also to []).
In most cases the so(k – )-subalgebras of so(k) are conjugate to each other. More pre-

cisely, Lemma  of [] states that for ≤ k /∈ {, } all subalgebras of so(k) whose dimen-
sion is equal to (k – )(k – )/ are conjugate to each other under the action of the group
SO(k). In particular, it follows in these cases that all subalgebras of so(k) with dimension
(k – )(k – )/ are isomorphic to so(k – ). Interestingly, the last statement holds also for
k ∈ {, } (see Lemma  of []); however not all of these subalgebras of so(k) are conju-
gate. We obtain the following theorem providing a necessary and sufficient condition for
full quasifree pure-state controllability in the case of d >  or d =  modes:

Theorem  A quasifree fermionic system with d >  or d =  modes is fully pure-state
controllable iff its system algebra is isomorphic to so(d) or so(d – ).

Proof “⇒”: Note that Theorem  identifies the space of pure quasifree states with the ho-
mogeneous space SO(d)/U(d). Assuming d ≥ , we summarized above that a group act-
ing transitively on this homogeneous space is isomorphic either to SO(d) or SO(d – ).
Thus only the full quasifree system algebra so(d) or a system algebra isomorphic to
so(d – ) can generate a transitive action on the space of pure quasifree states.
“⇐”: As discussed, all so(d – )-subalgebras are conjugate to each other for d >  and

d = . Lemma (b) then implies that any set of Hamiltonians generating a system algebra
isomorphic to so(d – ) will allow for full quasifree pure-state controllability. �

Note that the cases d =  and d =  are well-known pathological exceptions. The algebra
so() breaks up into a direct sumof two so()-algebraswhich hence cannot be conjugate to
each other. For d = , there are three classes of non-conjugate subalgebras of type so() in
so() where two classes are given by irreducible embeddings and the third one is conjugate
to the reducible standard embedding fixing the first coordinate. (For details, refer to the
discussions on the pp.- of [], on the pp.- of [], or on the pp.- of
[]. In addition, this information can also be inferred from the tables on p. of [].)
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On amore general level, Theorem  can be seen as a fermionic variant of the pure-state
controllability criterion for spin systems [–]. We note here that the result for spin
systems has been recently generalized from the transitivity over a set of one-dimensional
projections (i.e. pure states) to the transitivity over a set of projections of arbitrary fixed
rank (i.e., over Grassmannian spaces) []. We will use exactly this generalization in Sec-
tion . in order to find a necessary and sufficient pure-state controllability condition for
particle-conserving quasifree systems.

7 Translation-invariant systems
We study system algebras generated by translation-invariant Hamiltonians of the type
which arises approximately in experimental settings of, e.g., optical lattices. As the nat-
urally occurring interactions are usually short-ranged, we pay particular attention to the
case of Hamiltonians with restricted interaction length. For example, consider a d-site
fermionic chain with Hamiltonians which are translation-invariant and are composed of
nearest-neighbor (plus on-site) terms. All elements in its dynamic algebra can be written
as linear combinations of six types of terms: the chemical potential

h :=
d∑
n=

(
f †n fn –



1

)
, ()

the real and complex hopping Hamiltonians

hrh :=
d∑
n=

(
f †n fn+ + f †n+ fn

)
and hch :=

d∑
n=

i
(
f †n fn+ – f †n+ fn

)
, ()

the real and complex pairing terms

hrp :=
d∑
n=

(
f †n f

†
n+ + fn+ fn

)
and hcp :=

d∑
n=

i
(
f †n f

†
n+ – fn+ fn

)
, ()

as well as a local density-density-type interaction

hint :=
d∑
n=

(
f †n fn f

†
n+ fn+ –



1

)
. ()

The corresponding dynamic system algebras (given in Table ) were computed with the
help of the computer algebra systemmagma [] for up to six modes while distinguishing
nearest-neighbor interactions from arbitrary translation-invariant ones.

Table 1 System algebras of translation-invariant fermionic systems with dmodes for
(a) nearest-neighbor interactions only and (b) arbitrary translation-invariant interactions

d System algebra for (a) System algebra for (b)

2
∑2

i=1 u(1)
∑2

i=1 u(1)

3
∑2

i=1 su(2) +
∑3

i=1 u(1)
∑2

i=1 su(2) +
∑4

i=1 u(1)

4
∑5

i=1 su(2) +
∑4

i=1 u(1)
∑8

i=1 su(2) +
∑6

i=1 u(1)

5
∑2

i=1 su(4) +
∑8

i=1 su(3) +
∑3

i=1 u(1)
∑2

i=1 su(4) +
∑8

i=1 su(3) +
∑8

i=1 u(1)

6
∑4

i=1 su(6) +
∑8

i=1 su(5) +
∑3

i=1 u(1)
∑4

i=1 su(6) +
∑8

i=1 su(5) +
∑10

i=1 u(1)
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In this context, two sets of natural questions arise: (a) How does the dimension of these
dynamic system algebras scale with the number of modes? (b) How do the system alge-
bras generated by the nearest-neighbor terms differ from the general translation-invariant
ones? Can one characterize those elements that are translation-invariant yet not gener-
ated by nearest-neighbor Hamiltonians? Are there, for example, next-nearest-neighbor
interactions of this type? In this section, we will answer these questions partially. We de-
termine the system algebra for general translation-invariant fermionic Hamiltonians, and
conclude that its dimension scales exponentially with the number of modes. We also pro-
vide translation-invariant fermionic Hamiltonians of bounded interaction length which
cannot be generated by nearest-neighbor ones.
The structure of this section is the following: As the structure of system algebras for

translation-invariant systems has only been studied sparsely even for simple scenarios of
spin models, we start by examining this case first. In Sections . and ., we determine
the system algebras of all translation invariant spin-chain Hamiltonians with L qubits. In
particular, we simplify and generalize results of [] concerning finite-ranged interactions.
Finally, we present the corresponding results for the fermionic case in Sections . and ..

7.1 Translation-invariant spin chains
Consider a chain of L qubits with Hilbert space

⊗L
i=C

. The translation unitary UT is
defined by its action on the canonical basis vectors as

UT |n,n, . . . ,nL〉 = |nL,n, . . . ,nL–〉, ()

where ni ∈ {, }. We will determine the translation-invariant system algebra which is de-
fined as the maximal Lie algebra of skew-Hermitian matrices commuting with the trans-
lation unitary UT .

Lemma The translation unitary can be spectrally decomposed as UT =
∑L–

�= exp(π i�/
L)P�, and the rank r� of the spectral projection P� is given by the Fourier transform

r� :=

L

L–∑
k=

gcd(L,k) exp(–π ik�/L), ()

where gcd(L,k) denotes the greatest common divisor of L and k.

Proof The eigenvalues of UT are limited to exp(π i�/L) with � ∈ {, . . . ,L – } as the or-
der of UT is L, i.e. UL

T = 1. Hence, the corresponding spectral decomposition is given by
UT =

∑L–
�= exp(π i�/L)P�. This induces a unitary representationDT of the cyclic groupZL

which maps the kth power of the generator g ∈ ZL of degree L to DT (gk) =Uk
T . Note that

DT splits up into a direct sum DT ∼=
⊕

�∈{,...,L–}(D�)⊕dim(P�) containing dim(P�) copies of
the one-dimensional representations satisfying D�(gk) = exp(π ik�/L). Therefore, we de-
termine the rank of a projection P� by computing themultiplicity ofD� using the character
scalar product

r� =

L

L–∑
k=

tr
[
DT
(
gk
)]
tr
[
D�

(
gk
)]∗ = 

L

L–∑
k=

tr
[
DT
(
gk
)]
exp(–π ik�/L).
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The trace of DT (gk) is equal to the number of basis vectors left invariant since DT (gk) is
a permutation matrix in the canonical basis. From elementary combinatorial theory we
know that a bit string (n,n, . . . ,nL) is left invariant under a cyclic shift by k positions if
and only if it is of the form

(n,n, . . . ,ngcd(L,k), . . . ,n,n, . . . ,ngcd(L,k)).

It follows that the number of Uk
T -invariant basis vectors and—hence—the trace of

DT (gk) = Uk
T is equal to gcd(L,k). Thus, the multiplicities of D� are given accordingly by

r� = 
L
∑L–

k= gcd(L,k) exp(–π ik�/L). �

Note that a Hamiltonian commutes withUT iff it commutes with all spectral projections
P� ofUT . Combining this fact with Theorem  we obtain a characterization of the system
algebra for translation-invariant spin systems:

Theorem The translation-invariant Hamiltonians acting on a L-qubit system generate
the system algebra t(L) := s[

⊕L–
�= u(r�)] ∼= [

∑L–
�= su(r�)] + [

∑L–
i= u()], where the numbers r�

are defined in Eq. ().

In complete analogy one can show that for a chain consisting of L systems withN levels,
the system algebra is equal to s[

⊕L–
�= u(rN ,�)], where rN ,� denotes the Fourier transform of

the function Ngcd(L,k).

7.2 Short-ranged spin-chain Hamiltonians
In many physical scenarios, we may only have direct control over translation-invariant
Hamiltonians of limited interaction range. We will investigate in this section how the lim-
itations on the interaction range constrain the set of reachable operations. In particular,
we provide upper bounds for the system algebras with finite interaction range.
Let us denote the Lie algebra corresponding to Hamiltonians of interaction length less

thanM by tM(L), or tM for short. In other words, tM(L) is the Lie subalgebra of t(L) gener-
ated by the skew-Hermitian operators

i
L–∑
q=

Uq
T

[( M⊗
p=

Qp

)
⊗ 1⊗L–M



]
U–q

T

for all combinations of Qp ∈ {1,X,Y,Z} apart from the case when Q = 1. In this way,
t(L) corresponds to the translation-invariant on-site Hamiltonians, while t(L) is gener-
ated by the on-site terms and the nearest-neighbor interactions, and so on. Finally, we have
tL(L) = tL.
We computed all the algebras tM(L) for  ≤ L ≤  and  ≤ M ≤ L using the computer

algebra system magma []. The results, shown in Table , suggest that for certain re-
strictions on the interaction length (e.g., nearest-neighbor terms), there will be some
translation-invariant interactions that cannot be generated. This is in accordance with the
result of Kraus et al. []. Building partly on their work, we analyze the properties of the
algebras tM(L) for generalM and L values, and then compare our theorems with Table .
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Table 2 System algebras tM(L) of translation-invariant systems with 1≤ L≤ 6 spins and
interaction lengths of less thanM. Refer also to Theorem 25 for the structure of tL(L)

M L = 1 2 3 4

1 su(2) su(2) su(2) su(2)

2 su(3) + u(1) su(4) +
∑2

i=1 su(2) + u(1) su(6) + su(4) +
∑2

i=1 su(2) + u(1)

3 su(4) +
∑2

i=1 su(2) +
∑

i=1 u(1) su(6) + su(4) +
∑2

i=1 su(3) +
∑

i=1 u(1)
4 su(6) + su(4) +

∑2
i=1 su(3) +

∑
i=1 u(1)

M L = 5 6

1 su(2) su(2)

2 su(8) +
∑4

i=1 su(6) + u(1) su(14) +
∑2

i=1 su(11) + su(10) +
∑2

i=1 su(9) + u(1)

3 su(8) +
∑4

i=1 su(6) +
∑

i=1 u(1) su(14) +
∑2

i=1 su(11) + su(10) +
∑2

i=1 su(9) +
∑

i=1 u(1)

4 su(8) +
∑4

i=1 su(6) +
∑

i=1 u(1) su(14) +
∑2

i=1 su(11) + su(10) +
∑2

i=1 su(9) +
∑

i=1 u(1)

5 su(8) +
∑4

i=1 su(6) +
∑

i=1 u(1) su(14) +
∑2

i=1 su(11) + su(10) +
∑2

i=1 su(9) +
∑

i=1 u(1)

6 su(14) +
∑2

i=1 su(11) + su(10) +
∑2

i=1 su(9) +
∑

i=1 u(1)

We first mention a central proposition whose proof can be found in Appendix E:

Proposition  LetM < L denote a divisor of L.Given two elements iHM ∈ tM and iHM+ ∈
tM+, we obtain that tr(UqM

T HM) =  and tr[(UqM
T – U–qM

T )HM+] =  hold for any positive
integer q.

Applying Proposition , we can present upper bounds for the system algebras with
restricted interaction length.

Theorem  Let M < L denote a divisor of the number of spins L, and define R := L/M.We
obtain: (a) The algebra tM is isomorphic to a Lie subalgebra of [

∑L–
�= su(r�)] + [

∑L–R
i= u()]

and does not generate tL. (b) The algebra tM+ is isomorphic to a Lie subalgebra of
[
∑L–

�= su(r�)] + [
∑L––�R/�

i= u()] and does not generate tL. (c) In addition, tM �= tM+.

Proof (a) SinceM is a divisor of L, the equation

UqM
T =

L–∑
�=

exp

(
π iqM�

L

)
P� =

L–∑
�=

exp

(
π iq�
R

)
P�

=
R–∑
�′=

exp

(
π iq�′

R

)[M–∑
p=

PpR+�′

]

holds for any integer q, and one can invert the equation as
∑M–

p= PpR+�′ = 
R ×∑R–

q= exp(
–π iq�′

R )UqM
T . If ih ∈ tM , we obtain by applying Proposition  that

tr

(
ih

M–∑
p=

PpR+�′

)
=  ()

holds for �′ ∈ {, , . . . ,R – }. It follows that tM is a subalgebra of the Lie algebra f which
consists of all skew-Hermitian matrices satisfying the condition in Eq. (). Note that f is
isomorphic to

⊕R–
�′=(s[

⊕M–
p= u(rpR+�′ )]) ∼= [

∑L–
�= su(r�)] + [

∑L–R
i= u()], and part (a) follows.
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(b) For elements ig ∈ tM+, Proposition  and Eq. () imply that

tr

[
ig

M–∑
p=

(PpR+�′ – PpR+L–�′ )

]
= . ()

The maximal Lie algebra consisting of skew-Hermitian matrices which satisfy the condi-
tion in Eq. () is isomorphic to [

∑L–
�= su(r�)] + [

∑L––�R/�
i= u()]. (c) Let

ih = i
L–∑
q′=

Uq′
T
[
X ⊗ 1⊗M–

 ⊗X ⊗ 1⊗L–M–


]
U–q′

T .

Obviously, ih ∈ tM+ holds. Using the formula for F(,M + ) in Appendix E., we obtain
that tr(UqM

T ih) = iL holds for every integer q. Hence, ih /∈ tM . �

In particular, this theorem implies that the algebra t(L) = tL(L) of all translation-invariant
Hamiltonians cannot be generated from the subclass of nearest-neighbor Hamiltonians,
cf. also []. More precisely, one finds:

Corollary  If L is even, t(L) is isomorphic to a Lie subalgebra of the Lie algebra
[
∑L–

�= su(r�)] + [
∑L/

i= u()]. For odd L ≥ , t(L) is isomorphic to a Lie subalgebra of the
Lie algebra [

∑L–
�= su(r�)] + [

∑(L–)/
i= u()].

Let us now compare our upper bounds with the results of Table . Theorem  restricts
the possibilities for the M-local algebras tM(L) only by some central elements u() when
compared to the corresponding full translation-invariant algebra t(L). One can indeed
identify in Table  some missing u()-parts for L ∈ {, . . . , }. In general, the dimensions
of the M-local algebras tM(L) can be even smaller than predicted by the upper bounds of
Theorem  as can be seen in Table  for L = . Theorem  and Table  suggest that the
prime decomposition of the chain length Lwill have strong implications on the dimension
of tM(L).

7.3 Translation-invariant fermionic systems
To determine the system algebra generated by all translation-invariant Hamiltonians of a
fermionic chain, we can follow similar lines as in Section .. Here, however, we addition-
ally have to consider the parity superselection rule. We define the fermionic translation-
invariant system algebra as the maximal Lie subalgebra of su(d–) ⊕ su(d–) [see The-
orem ] which contains only skew-Hermitian matrices commuting with the fermionic
translation unitary U , which is defined below such that it commutes with the parity op-
erator P (see Eq. ()). The standard orthonormal basis in the Fock space for a chain of d
fermionic modes is given by

|n,n, . . . ,nd〉 :=
(
f †
)n(f † )n · · · (f †d )nd |〉 ()

with ni ∈ {, }. Note that for the purpose of unambiguously defining this basis, we order
the operators (f †i )ni in Eq. () with respect to their site index i. The fermionic translation
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unitary U is defined by its action

U |n,n, . . . ,nd〉 = U
(
f †
)n(f † )n · · · (f †d )nd |〉 = (f † )n · · · (f †d )nd–(f † )nd |〉

= (–)nd(n+n+···+nd–)(f † )nd(f † )n · · · (f †d )nd– |〉
= (–)nd(n+n+···+nd–)|nd,n, . . . ,nd–〉 ()

on the standard basis. The adjoint action of U on the creation operators f †� is then given
by

U f †� U† = f †(�+modd).

The superselection rule for fermions splits the spectral decomposition of the translation
unitary into two blocks corresponding to the positive and negative parity subspace. The
translation unitary U commutes with the parity operator P, and hence U = U+ + U– is
block-diagonal in the eigenbasis of P where U+ := P+UP+ and U– := P–UP–. The following
lemma gives the spectral decomposition of the operators U±:

Lemma The unitary operatorsU± can be spectrally decomposed asU± =
∑d–

�= eπ i�/d ×
P±

� , where the rank r̂� of the spectral projection P±
� is given by the Fourier transform

r̂� :=

d

d–∑
k=

h(d,k) exp(–π ik�/d) ()

of h(d,k) where � ∈ {, . . . ,d – } and

h(d,k) :=

⎧⎨⎩ if d/gcd(d,k) is even,

gcd(d,k)– if d/gcd(d,k) is odd.

Proof Wedetermine the spectral decomposition ofU+ andU– along the lines of Lemma.
Let F+(Cd) denote the subspace spanned by those basis vectors of Eq. () for which
n̄ =
∑d

i= ni is even. Likewise,F–(Cd) corresponds to the case of odd n̄. As (U±)d = 1F±(Cd),
the eigenvalues of U± are of the form exp(π i�/d) with � ∈ {, . . . ,d – }. Hence, the spec-
tral decomposition is given by U± =

∑d–
�= exp(π i�/d)P

±
� . We define representations D±

of the cyclic group Zd which map the kth power of the generator g ∈ Zd of degree d
to D±(gk) := U k±. Note that D± splits up into a direct sum D± ∼=

⊕
�∈{,...,L–}(D�)⊕dim(P�)

containing dim(P±
� ) copies of the one-dimensional representations satisfying D�(gk) =

exp(π ik�/d). The rank r±k of the projection P±
� is equal to the multiplicity of D� in the

decomposition of the reducible representation D±. This multiplicity can be computed as
the character scalar product

r±k =

d

d–∑
k=

tr
[
D±
(
gk
)]
tr
[
D�

(
gk
)]∗ = 

d

d–∑
k=

tr
[
D±
(
gk
)]
exp(–π i�k/d).

In the standard basis, all matrix entries ofD±(gk) = U k± are elements of the set {, , –}. It
follows by repeated applications of Eq. () that U k maps the basis vectors |n,n, . . . ,nd〉
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to s|nπ (),nπ (), . . . ,nπ (d)〉 where π is a cyclic shift by k positions and the sign s is given by

s := (–)(
∑d–k

i= ni)(
∑d

j=d–k+ nj). ()

Recall from the proof of Lemma  that a bit string (n,n, . . . ,nN ) is left invariant under
a cyclic shift by k positions iff it is of the form

(n,n, . . . ,ngcd(d,k), . . . ,n,n, . . . ,ngcd(d,k)).

If d/gcd(d,k) is even, the sum n̄ =
∑d

i= ni is even for all of the gcd(d,k) bit strings invariant
under a cyclic shift by k positions. It follows that all the diagonal entries of U k

– are zero,
while U k

+ has gcd(d,k) non-zero diagonal entries. The non-zero diagonal entries of U k
+ are

given by the number s of Eq. (). Note that s is + if
∑d–k

j= nj is even; and – otherwise.
Hence the frequencies of + and – in the set of diagonal entries are equal. In summary,
tr(U k±) =  if d/gcd(d,k) is even.
Assume now that d/gcd(d,k) is odd. The sum n̄ is odd for half of the gcd(d,k) bit strings

and even for the other half. Applying again Eq. (), we obtain always a positive sign.
Hence, both traces tr(U k±) are equal to gcd(d,k)–. This completes the proof. �

Lemma  together with Theorem  implies the following characterization of the sys-
tem algebra for a translation-invariant fermionic system:

Theorem  Let the translation-invariant Hamiltonians act on a fermionic system with
d modes. The corresponding system algebra tf is given by

t
f ∼= s

[ d–⊕
�=

u(r̂�)

]
⊕ s

[ d–⊕
�=

u(r̂�)

]
∼=

[ d–∑
�=

su(r̂�) + su(r̂�)

]
+

d–∑
�=

u(),

where the numbers r̂� are defined in Eq. ().

Remark  Note that r̂ ≥ r̂� holds for any � and that
∑d

�= r̂� = d–. It follows that r̂ ≥
(d– – )/d and hence that the dimension of the system algebra in Theorem  scales
exponentially with d.

Remark  Assuming that the number of modes is given by a prime number p, we can
explicitly determine the numbers r̂� from Eq. (). The corresponding system algebras are

∑
i=

su(Fp + ) +
p–∑
i=

su(Fp) +
p–∑
i=

u(), ()

where Fp = (p– – )/p is guaranteed to be an integer by Fermat’s little theorem.

7.4 Fermionic nearest-neighbor Hamiltonians
For spin systems (see Section .) we verified that the translation-invariant nearest-
neighbor interactions together with the on-site elements will never generate all transla-
tion-invariant operators, i.e. tL �= t (if the number of spins L is greater than two). This
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means that there exist certain translation-invariant elements which cannot be generated
by nearest-neighbor interactions and on-site elements, but we could not identify the ex-
plicit form of these translation-invariant elements for general L. In particular, it would be
interesting to know if tM �= t holds for interaction lengths less thanM ( <M < L), where
M is independent of L.
In the case of fermionic systems, we can provide a result in this direction due to the

restriction imposed by the parity superselection rule, which strongly limits the set of
nearest-neighbor Hamiltonians. As we have discussed at the beginning of this section,
the fermionic translation-invariant Hamiltonians of nearest-neighbor type are spanned
by only six elements: h, hrh, hch, hrp, hcp, and hint as defined in Eqs. ()-(). We can
show that there exist next-nearest-neighbor or third-neighbor interactions for odd d ≥ 
which cannot be generated by these six Hamiltonians, while for even d ≥  we provide a
fourth-neighbor element.
Let t fM denote the subalgebra of t f (see Theorem ) which is generated by all elements

of interaction length less than M. In particular, t f is generated by nearest-neighbor and
on-site elements. The result of this subsection is summarized in the following theorem:

Theorem  Let us consider the Hamiltonian ho :=
∑d

n= i(f †n fn+ – f †n+ fn), and fourth-
neighbor Hamiltonian

he :=
d∑
n=

(
f †n fn f

†
n+ fn+ f

†
n+ fn+ f

†
n+ fn+ f

†
n+ fn+ –




1

)
.

The generator iho ∈ t
f
 is not contained in the system algebra t

f
 generated by nearest-

neighbor interactions and on-site elements if d ≥  is odd, while the element ihe ∈ t
f
 is

not contained in t
f
 if d ≥  is even. Hence t f �= t

f
 (when d ≥ ).

Note that the Hamiltonian ho of Theorem  is a third-neighbor Hamiltonian for d ≥ 
and a next-nearest-neighbor Hamiltonian for d = . The proof of Theorem  is rather
involved. The proof for even d is given in Appendix F, while Appendix G contains the
proof for odd d.

8 Quasifree fermionic systems satisfying translation-invariance
We continue the discussion of translation-invariant fermionic systems from Section  by
narrowing the scope to quadratic Hamiltonians. In Section ., we derive the dynamic al-
gebras for systems with and without (twisted) reflection symmetry. Both of these cases
are summarized for quasifree fermionic systems in Table : the system algebras were
computed using the computer algebra system magma [] for cases with low number
of modes, while the complete picture is provided by Theorem  and Corollary . Sec-
tion . yields a classification of the orbit structure of pure translation-invariant quasifree
states. This allows us to present an application tomany-body physics in Section ., where
we bound the scaling of the gap for a class of quadratic Hamiltonians.

8.1 Translation-invariant quadratic Hamiltonians
A quadratic Hamiltonian H is translation-invariant (i.e. [H ,U ] = ) iff the coefficient ma-
trices A and B in Eq. () are cyclic (i.e. Anm –An+,m+ = Bnm –Bn+,m+ = ). To study such
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Table 3 System algebras of quasifree fermionic systems with dmodes satisfying
translation-invariance

d General case
(see Theorem 34)

(Twisted) Reflection symmetry
(see Eq. (45) and Corollary 35)

2 u(1) + u(1) u(1) + u(1)

3 u(2) + u(1) su(2) + u(1)

4 u(2) + u(1) + u(1) su(2) + u(1) + u(1)

5 u(2) + u(2) + u(1) su(2) + su(2) + u(1)

6 u(2) + u(2) + u(1) + u(1) su(2) + su(2) + u(1) + u(1)
...

...
...

2n – 1
∑n–1

i=1 u(2) + u(1)
∑n–1

i=1 su(2) + u(1)

2n
∑n–1

i=1 u(2) + u(1) + u(1)
∑n–1

i=1 su(2) + u(1) + u(1)

Hamiltonians, it is useful to rewrite them in terms of the Fourier-transformed annihilation
and creation operators

f̃k :=
√
d

d∑
p=

fpe–π ipk/d and f̃ †k :=
√
d

d∑
p=

f †p e
π ipk/d, ()

with k ∈ {, , . . . ,d – }, which satisfy the canonical anticommutation relations

{
f̃ †k , f̃

†
k′
}
= {f̃k , f̃k′ } =  and

{
f̃ †k , f̃k′

}
= δkk′1. ()

A Hamiltonian from Eq. () with cyclic A and B can now be rewritten as

H =
d–∑
k=

Ãk

(
f̃ †k f̃k –

1



)
+


B̃k f̃ †k f̃

†
d–k –



B̃∗
k f̃k f̃d–k ()

applying Ãk :=
∑d

p=Ap exp(–π ipk/d) and B̃k :=
∑d

p= Bp exp(–π ipk/d), as well as the
notation f̃d = f̃. The hermiticity of A and the skew-symmetry of B translates into the
properties Ãk = Ã∗

d–k and B̃k = –B̃d–k . This allows us to decompose the Hamiltonian into
a four-part sum

H =
�(d–)/�∑

k=

Im(Ãk)�1
k +

�(d–)/�∑
k=

Re(B̃k)�Xk /

+
�(d–)/�∑

k=

Im(B̃k)�Yk / +
�d/�∑
k=

Re(Ãk)�Zk , ()

where one has the following definitions

�1
k := i

(
f̃ †k f̃k – f̃ †d–k f̃d–k

)
, �Xk :=

(
f̃ †k f̃

†
d–k + f̃d–k f̃k

)
,

�Yk := i
(
f̃ †k f

†
d–k – f̃d–k f̃k

)
, �Zk :=

(
f̃ †k f̃k + f̃ †d–k f̃d–k – 1

) ()

with k ∈ {, . . . , �(d – )/�} as well as

�Zd/ :=
(
f̃ †d/ f̃d/ – 1/

)
for d even, �Z :=

(
f̃ † f̃ – 1/

)
. ()
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Note that the operators �Zd/ (for d even), �Z , �Zk , �
1
k , �

X
k , and �Yk are linearly independent

and span the (�d – �+ d)-dimensional space of all translation-invariant quadratic Hamil-
tonians. For notational convenience we also introduce the dummy operators �

Q
d/ :=  (as-

suming d is even) and �
Q
 :=  for Q ∈ {1, X,Y}.

With these stipulations, we can characterize the system algebra:

Theorem  Let qd denote the system algebra on a fermionic system with d modes which
corresponds to the set of Hamiltonians that are translation-invariant and quadratic. Then
the Lie algebra qd is isomorphic to [

∑(d–)/
i= u()] + u() for odd d and to [

∑(d–)/
i= u()] +

u() + u() for even d.

Proof If d = m–  is odd, the generators i�1
k , i�

X
k , i�

Y
k , i�

Z
k , and i�Z can be partitioned into

m pairwise-commuting sets, which each span linear subspaces as

L :=
〈
i�Z
〉
R

and Lk :=
〈
i�1

k , i�
X
k , i�

Y
k , i�

Z
k
〉
R

with k ∈ {, . . . ,m – }. The commutation properties [Lk ,Lk′ ] =  (with k �= k′) follow from
Eq. (). Moreover, L is one-dimensional and forms a u()-algebra. Using Eq. (), the
relations [f̃ †a f̃a, f̃ †a f̃

†
b ] = ([f̃ †a f̃a, f̃a f̃b])† = f̃ †a f̃

†
b and [f̃ †a f̃

†
b , f̃b f̃a] = f̃ †a f̃a + f̃ †b f̃b – 1 can be deduced

for a �= b. Substituting k and d – k into a and b in the previous formula, one can verify
directly that the correspondence

i�1
k �→ i1, i�Xk �→ iX, i�Yk �→ iY, i�Zk �→ iZ

provides an explicit Lie isomorphism between Lk and u(). If d = m is even, the system
algebra consists of the above-described generators supplemented with the element i�Zd/.
This additional element commuteswith all the other generators and—therefore—provides
an additional u(). �

The isomorphism between Lk and u() as given in the proof leads to a compact formula
for the time evolution (in theHeisenberg picture) of the elements of Lk . Since the operators
�Xk , �

Y
k , �

Z
k , and �1

k (with k ∈ {, . . . , �(d – )/�}) satisfy the same commutation relations as
the Pauli matrices X, Y, Z, and 1, their time-evolution generated by the HamiltonianH in
Eq. () can be straightforwardly related to a qubit time-evolution

eiHti
(
a1�1

k + aX�Xk + aY�Yk + aZ�Zk
)
e–iHt

= ia1�1
k +

∑
Q∈{X,Y,Z}

iaQ�
Q
k tr
(
eiHsQe–iHsQ

)
, ()

where Hs =Re(Ãk)Z +Re(B̃k)X/ + Im(B̃k)Y/.
The twisted reflection symmetry plays an important role in translation-invariant

quasifree fermionic systems. It is defined by the unitary

R|n,n, . . . ,nd〉 = i(
∑d

�= n�) |nd,nd–, . . . ,n〉 ()

whose adjoint action on creation operators and their Fourier transforms is given by

Rf †� R† = if †(d–�+ mod d) and Rf̃ †k R† = f̃ †(–k mod d). ()
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A given translation-invariant quasifree Hamiltonian is R-symmetric (i.e. [R,H] = ) iff
the coefficient matrix is restricted to be real. In our language, these Hamiltonians are ex-
actly the ones for which Im(Ãk) = , i.e., the corresponding generators are spanned by the
operators i�Zd/ (for d even), i�Z , i�Zk , i�

X
k , and i�Yk . From the proof of Theorem  one can

immediately deduce the corresponding system algebra:

Corollary  Consider a fermionic systemwith d modes and the set of quadratic Hamilto-
nianswhich are translation-invariant andR-symmetric.The corresponding systemalgebra
qRd is isomorphic to [

∑(d–)/
i= su()] + u() for odd d and to [

∑(d–)/
i= su()] + u() + u() for

even d.

Given the system algebras qd and qRd , we investigate the subalgebras generated by short-
range Hamiltonians. It will be useful to introduce for p ∈ {, . . . , �(d – )/�} the Hamilto-
nians

h1
p :=




d∑
�=

i
(
f †� f�+p – f †�+p f�

)
=

�(d–)/�∑
k=

sin

(
πkp
d

)
�1
k , (a)

hXp :=



d∑
�=

i
(
f †� f

†
�+p – f�+p f�

)
=

�(d–)/�∑
k=

sin

(
πkp
d

)
�Xk , (b)

hYp :=



d∑
�=

(
f †� f

†
�+p + f�+p f�

)
=

�(d–)/�∑
k=

sin

(
πkp
d

)
�Yk , (c)

hZp :=



d∑
�=

(
f †� f�+p + f †�+p f�

)
=

�d/�∑
k=

cos

(
πkp
d

)
�Zk , (d)

as well as the additional ones (hZd/ only for even d)

hZ :=



d∑
�=

(
f †� f� + f †� f� – 1

)
=

�d/�∑
k=

�Zk , (e)

hZd/ :=



d∑
�=

(
f †� f�+p + f †�+p f�

)
=

d/∑
k=

(–)k�Zk . (f)

In these definition we used cyclic indices, e.g. fd+a = fa. The operators hZd/ (for d even), hZ ,
hZp , h1

p , hXp , and hYp span qd linearly. Using the identities above, the commutation relations
of the �

Q
k operators, and some trigonometric identities, we obtain

[
ih1

a , ih
Z
b
]
=
[
ih1

a , ih
X
b
]
=
[
ih1

a , ih
Y
b
]
= , (a)[

ihXa , ih
Y
b
]
= –

i

(
hZ(a+b) mod �d/� – hZ(a–b) mod �d/�

)
, (b)

[
ihYa , ih

Z
b
]
= –

i

[
sgn(d – a – b)hX(a+b) mod �d/� – sgn(a – b)hX(a–b) mod �d/�

]
, (c)

[
ihZa , ih

X
b
]
= –

i

[
sgn(d – a – b)hY(a+b) mod �d/� – sgn(a – b)hY(a–b) mod �d/�

]
(d)
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for a,b ∈ {, . . . , �d/�}. In [] it was shown that already the nearest-neighbor Hamiltoni-
ans of qRd generate the whole qRd . Now we are in the position to provide a more systematic
proof of their result:

Lemma  The system algebra qRd can be generated using the one-site-local operator ihZ
and a nearest-neighbor element i(αhZ + αhX + αhY ) with αi ∈R assuming that α �=  or
α �=  for odd d and additionally requiring α �=  for even d.

Proof () From Eqs. (a)–(d) we know that ihZ , ihZ , ihX , and ihY would generate the
whole qRd . () Suppose that α �=  and α

 + α
 �= . From [ihZ , i(αhZ + αhX + αhY )] =

αihY – αihX and [ihZ ,αihY – αihX ] = –αihX – αihY it follows that one can gener-
ate ihZ , ihZ , ihX , and ihY . Hence according to observation (), the whole qRd is generated.
() Suppose now that α = , d is odd, and α

 + α
 �= . From [ihZ , i(αhX + αhY )] =

αihY – αihX one can generate ihZ , ihX , and ihY . From Eqs. (a)–(d) it follows that
these generators in turn generate all ihZpmodd . Since d is odd, ihZ is also generated. Hence
we obtain ihZ , ihZ , ihX , and ihY , and according to (), the algebra qRd is generated. �

For the more general qd , we obtain a slightly larger system algebra when we do not as-
sumeR-symmetry:

Proposition  The elements of qd with interaction length less than M (where  ≤ M ≤
"d/# and d ≥ ) generate a system algebra which is isomorphic to [

∑(d–)/
i= su()] +∑M

i= u() for odd d and to [
∑(d–)/

i= su()] +
∑M+

i= u() for even d.

Proof From Lemma  we know that the operators hQa with Q ∈ {X,Y,Z} already gener-
ate qRd which is isomorphic to [

∑(d–)/
i= su()] + u() for odd d and to [

∑(d–)/
i= su()] +

u() + u() for even d. We haveM –  additional operators h1
q with q ∈ {, . . . ,M – } which

are linearly independent and commuting. These generate the other parts corresponding∑M–
i= u(). �

We illustrate Lemma  and Proposition  with a fermionic ring of d =  modes. Sup-
pose that the drift Hamiltonian of this system is the nearest-neighbor hopping Hamil-
tonian ihZ = i


∑

�=(f� f
†
�+ + f †�+ f�), and that one can additionally control the on-site po-

tential ihZ = i

∑

�=(f
†
� f� –


1), the pairing strength ihY = i


∑

�=(f
†
� f

†
�+ + f�+ f�), and the

magnetic flux ih1
 = – 


∑

�=(f
†
� f�+ – f †�+ f�) in the ring. Lemma  implies that the first

three Hamiltonians generate the Lie algebra qR of all Hamiltonians which are simultane-
ouslyR-invariant, translation-invariant, and quadratic. The magnetic flux term ih1

 com-
muteswith all elements of qR and contributes only an additional u() to the systemalgebra.
Thus, the system algebra generated by all nearest-neighbor quadratic Hamiltonians that
are translation-invariant is given by qR + u() ∼= su() + su() + u() + u() + u(). In order
to achieve full controllability for a translation-invariant and quasifree fermionic system
(which corresponds to the Lie algebra q ∼= su() + su() + u() + u() + u() + u()), one has
to add a next-nearest neighbor Hamiltonian as ih1

 = – 

∑

�=(f
†
� f�+ – f †�+ f�).

8.2 Orbits of pure translation-invariant quasifree states
We characterize now the orbits of pure translation-invariant quasifree states under the
action of translation-invariant quadratic Hamiltonians. Since the operators �1

k = i(f̃ †k f̃k –
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f̃ †d–k f̃d–k) commute with all the other translation-invariant quadratic Hamiltonians (as dis-
cussed in Section .), their expectation values stay invariant under the considered time
evolutions. At the end of the section, we show that these invariant expectation values even
form a separating set of invariants for the orbits of pure translation-invariant quasifree
states.
Let us recall that a quasifree state is fully characterized by its Majorana covari-

ance matrix, defined in Eq. (). The translation unitary U acts on the Majorana op-
erators by conjugation as UmpU† = m(p+modd). It follows that a quasifree state ρ is
translation-invariant (i.e. [ρ,U ] = ) iff its covariance matrix Gpq is doubly-cyclic, i.e.
Gpq = G(p+modd),(q+modd). The double-cyclicity of G implies that it can be expressed
as a block-Fourier transform of a block-diagonal matrix, i.e.

G̃ =UFGU†
F , ()

where UF :=
(  
 

)⊗W withWpq := exp(π i/d)q–p and G̃ =
⊕d–

k= ig̃(k) with g̃(k) being ×
-matrices. The matrices g̃(k) can be calculated by the inverse block-Fourier transform

g̃(k) = –i
d∑

�=

eπk�i/d
(
G,�– G,�

G,�– G,�

)
. ()

The fact that G is skew-symmetric and real implies

g̃(d – k) = –g̃T (k). ()

Moreover, due to Eq. () the set of eigenvalues of all the matrices g̃(k) equals the one
of –iG (including multiplicities). Combining these observations with Proposition  and
Proposition , we obtain the following characterization of pure translation-invariant
quasifree states:

Lemma  A set of ×matrices g̃(k) (with k ∈ {, . . . ,d–}) defines a covariance matrix
of a pure quasifree state through Eq. () iff they satisfy Eq. () and their eigenvalues are
in the set {,–}.

The entries of g̃(k) and the expectation values of the �k operators defined in Eq. () can
be related by

ig̃(k) = 1
〈
�1
k
〉
+ X
〈
�Xk
〉
+ Y
〈
�Yk
〉
+ Z
〈
�Zk
〉

()

using Eq. () and the definitions for �1
k , �

X
k , �

Y
k , and �Zk . Now we can prove the main the-

orem of this subsection:

Theorem  Two pure quasifree states ρ and ρ can be connected through the action of
a translation-invariant quadratic Hamiltonian if and only if tr(ρ�

1
k ) = tr(ρ�

1
k ) holds for

all �1
k with k ∈ {, . . . , �(d – )/�}.

Proof First, we consider the ‘if ’-case: Let H be a translation-invariant quadratic Hamil-
tonians for which ρ = e–iHtρeiHt holds. Since the operators �1

k commute with any
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translation-invariantHamiltonian,wehave tr(ρ�
1
k ) = tr(e–iHtρeiHt�1

k ) = tr(ρeiHt�1
k e–iHt) =

tr(ρ�
1
k ). Second, we treat the ‘only if ’-case: Let g̃(k) and g̃(k) denote the Fourier-

transformed Majorana two-point functions (defined as in Eq. ()) of ρ and ρ, respec-
tively. The action of a translation-invariant Hamiltonian, ρa �→ e–iHρaeiH is represented
by the map

g̃a(k) �→U(k)g̃a(k)U(k)†, ()

where U(k) is given by exp[–iRe(Ãk)Z – iRe(B̃k)X/ – iIm(B̃k)Y/]. Using Eq. (), we
obtain tr(ρa�

1
k ) = i tr[ga(k)] for a ∈ {, }. These expectation values have to be in the set

{–,, }, since the eigenvalues of g̃(k) and g̃(k) are in the set {–, }. Then, it follows
from tr(ρ�

1
k ) = tr(ρ�

1
k ) that the expectation values of g̃(k) and g̃(k) coincide. Thus, we

obtain from Eq. () that ρ and ρ can be transformed into each other. �

Finally, we turn to the R-symmetric setting, as introduced in Section ., and deter-
mine the orbit structure of quasifree pure states which are translation-invariant and R-
symmetric under the action of operators in qRd .

Proposition  The unitaries generated by the Lie algebra qRd act transitively on the set
of quasifree pure states which are translation-invariant andR-symmetric.

Proof Since R�1
kR– = –�1

k , the expectation value of these operators in R-symmetric
states must vanish as tr(ρ�1

k ) = – tr(ρR�1
kR–) = – tr(R–ρR�1

k ) = – tr(ρ�1
k ). Moreover, by

Theorem  we know that two pure translation-invariant states are on the same qd-orbit
iff the expectation values of the �1

k operators coincide for all k ∈ {, . . . , �(d–)/�}. Hence
the translation-invariantR-symmetric states lie on the same qd-orbit. As Eq. () implies
that the qd-orbits are equivalent to qRd -orbits, we have proved the proposition. �

8.3 An application to many-body physics
In many-body physics, one of the important characteristics of quantum criticality is the
closing of the gap. This means that the energy difference between the ground state and
the first excited state goes to zero in the thermodynamic limit, when the number of spins
or fermionic modes goes to infinity. Quasifree fermionic models can display both gapped
and gapless behavior. Using the techniques developed in the previous subsections, we will
prove that the gap always disappears (i.e. closes) for translation-invariant quasifreemodels
if the coefficient matrix A of Eq. () is purely imaginary while B is an arbitrary, complex
skew-symmetric matrix. Different cases have been considered in [].
To formalize this statement, let us consider a set ar of fixed (finite) real numbers with

r ∈ {, . . . ,M – } and a set br of fixed complex numbers (of finite modulus) with r ∈ {, . . . ,
M–}. With these stipulations, we define for any d ≥ M the cyclic d×dmatrices Ad and
Bd (or A and B for short) by specifying their entries

Apq :=

⎧⎪⎪⎨⎪⎪⎩
iaq–p if q – p ∈ {, . . . ,M – },
–iap–q if p – q ∈ {, . . . ,M – },
 otherwise

()
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and

Bpq :=

⎧⎪⎪⎨⎪⎪⎩
bq–p if q – p ∈ {, . . . ,M – },
–bp–q if p – q ∈ {, . . . ,M – },
 otherwise.

()

By applying these definitions to Eq. () we obtain:

Theorem Given the positive integers d andM with d ≥ M, consider the corresponding
translation-invariant quasifree Hamiltonian

Hd =
d∑

p,q=

Apq

(
f †p fq – δpq

1



)
+


Bpq f †p f

†
q –



B∗
pq fp fq,

where A and B are defined in Eqs. () and (). Assume that Hd has a unique ground
state. Then the gap �d of Hd is bounded by �d ≤ π (M–)

d
∑M–

p= (|ap| + |bp|), i.e. the gap
closes algebraically in the thermodynamic limit of d going to infinity.

Proof Since Hd is translation-invariant and its coefficient matrix is imaginary, it can be
decomposed in terms of the operators �

Q
k with Q ∈ {1, X,Y} and k ∈ {, . . . , �(d – )/�} as

Hd =
�(d–)/�∑

k=

ãk�1
k +



b̃Xk �Xk +



b̃Yk �Yk ,

using ãk := –
∑M–

p= ap sin(–πpk/d), b̃Xk := –Re[
∑M–

p= bp sin(–πpk/d)], as well as b̃Yk :=
–Im[

∑M–
p= bp sin(–πpk/d)]. Let ρd be a pure quasifree state, and let g̃d(k) denote its

Fourier-transformedMajorana two-point functions (see Eq. ()). From Eq. () we know
that ρd is an eigenstate ofHd iff [b̃Xk X+ b̃Yk Y, g̃d(k)] = . The eigenvalue ofHd corresponding
to this state is given by

tr(ρdHd) =
�(d–)/�∑

k=

tr

[
igd(k)

(
ãk1 +



b̃Xk X +



b̃Yk Y

)]
. ()

Let us emphasize that the proof builds on the fact thatM is fixed and finite, while d goes to
infinity in the thermodynamic limit. Among the eigenstates of Hd , consider the (unique)
ground state ρd

gs, whose Fourier-transformedMajorana two-point functions (see Eq. ())
will be denoted by g̃dgs(k). From this ground state let us construct another quasifree state
ρd
e which is defined through its Majorana two-point functions

g̃de () :=

⎧⎨⎩1 if g̃dgs() �= –1,

–1 otherwise,

while for general k �=  we assign g̃de (k) := g̃dgs(k).
The corresponding pure quasifree state ρd

e is an eigenstate of Hd , since according to
Eq. () its Fourier-transformed Majorana two-point function stays invariant during the
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time-evolution generated by Hd . Using Eq. (), we can calculate the difference between
the energies corresponding to ρd

gs and ρd
e as

�d := tr
[(

ρd
e – ρd

gs
)
Hd
]
=

�(d–)/�∑
k=

tr

([
g̃de (k) – g̃dgs(k)

](
ãk1 +



b̃Xk X +



b̃Yk Y

))

= tr

([
g̃de () – g̃dgs()

](
ã1 +



b̃X X +



b̃Y Y

))
≤ 
∥∥∥∥[g̃de () – g̃dgs()

](
ã1 +



b̃X X +



b̃Y Y

)∥∥∥∥≤ 
(

|ã| + 

∣∣b̃X ∣∣ + 


∣∣b̃Y ∣∣)

≤ 

∣∣∣∣∣
M–∑
p=

ap sin(πp/d)

∣∣∣∣∣ + 

∣∣∣∣∣
M–∑
p=

bp sin(πp/d)

∣∣∣∣∣≤ π (M – )
d

M–∑
p=

(|ap| + |bp|
)
.

This completes the proof of the theorem. �

9 Particle-number conserving systems
Finally, we treat fermionic systems whose particle-number is conserved. The correspond-
ing system algebras are given both in the general case as well as in the quasifree case.
Furthermore, a necessary and sufficient condition for quasifree pure-state controllability
in this setting is provided.

9.1 The system algebra of particle-number conserving Hamiltonians
Let Pn denote the orthogonal projection from the Fock spaceF (Cd) =

⊕d
n= ∧nCd onto the

n-particle subspace ∧nCd ⊂F (Cd) of dimension
(d
n
)
. The particle-number operator n̂ of a

fermionic system is defined as n̂ :=
∑d

n= nPn. Note that
∑d

p= f †p fpψn = nψn holds for any
ψn ∈ ∧nCd . Hence, the particle number operator can also be expressed as n̂ =

∑d
p= f †p fp.

A fermionic Hamiltonian H is called particle-number conserving if it commutes with n̂.
Using the general Theorem  of Appendix A, one directly obtains the corresponding sys-
tem algebra.

Proposition  The system algebra of particle-number conserving fermionic interactions
with d modes is s(

⊕
n even u[

(d
n
)
])⊕ s(

⊕
n odd u[

(d
n
)
]).

9.2 Quadratic Hamiltonians
A quadratic Hamiltonian H is particle-number conserving iff its coefficient matrix B of
Eq. () is zero, i.e., iffH =

∑d
p,q=Apq(f †p fq – δpq

1
 ) where A denotes any Hermitian matrix.

The corresponding system algebra is given by the following proposition:

Proposition  The system algebra of the particle-number conserving quadratic d-mode
Hamiltonians is isomorphic to u(d).

Proof Let ι denote the R-linear mapping from the d-mode Hamiltonians which are
quadratic and particle-number conserving to the d×d skew-Hermitian matrices. We de-
fine ι using ι(i(f †p fq + f †q fp –

1
 )) = i(epq + eqp) and ι(f †p fq – f †q fp) = epq – eqp, where epq denotes

a matrix with entries [epq]uv := δpuδqv. Note that the canonical anticommutation relations
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imply that

[
f †p fq, f

†
r fs
]
= δps fq f †r + δqrf †p fs – δpsδqr1 – δpsδqrδpq

(
fq f †r + f †p fs –

1



)
.

Thus, ι is a homomorphism as ι([κ±(f †p fq ± f †q fp – δpq
1
 ),κ±(f †r fs ± f †r fs – δrs

1
 )]) =

κ±ι([δqr(f †p fs∓ f †s fp)±δpr(f †q fs∓ f †s fq), δps(f †q fr ∓ f †r fq)±δqs(f †p fr ∓ f †r fp)]) equals [κ±(epq±eqp),
κ±(ers ± esr)] = [ι(κ±(f †p fq ± f †q fp – δpq

1
 )), ι(κ±(f †r fs ± f †r fs – δrs

1
 ))], where κ+ = i and κ– = .

The map ι is even an isomorphism as its kernel is trivial. The proposition follows as the
Lie algebra u(d) is isomorphic to the Lie algebra of d × d skew-Hermitian matrices. �

Remark  Obviously, the map ι from the previous proof establishes an isomorphism
ih(k) �→ i

∑d
p,q=A

(k)
pq (f †p fq – δpq

1
 ) from the algebra 〈ih(), . . . , ih(�)〉Lie to the algebra 〈iA(), . . . ,

iA(�)〉Lie for any set {A(), . . . ,A(�)} of d × d Hermitian matrices.

9.3 Quasifree pure-state controllability in the particle-number conserving setting
We presented in Section . a necessary and sufficient condition for quasifree pure-state
controllability. Here, we provide an analogous result in the particle-number conserving
setting using a Lie-theoretic result of [].
A quasifree state ρF is called particle-number conserving if [ρF ,Pn] =  holds for all n ∈

{, . . . ,d}. As discussed in Section ., quasifree states are uniquely characterized by the
expectation values of themxmy operators. We obtain in the number-conserving case that
tr(ρF fq fp) =  as the condition [ρF ,Pn] =  implies

∑d
n= PnρFPn = ρF as well as tr(ρF fp fq) =∑d

n= tr(PnρFPn fp fq) =
∑d

n= tr(ρFPn fp fqPn) = . Similarly, one can prove tr(ρF f †p f †q ) = . It
follows that ρF is uniquely determined by the d × d Hermitian matrix Mp,q = tr(ρF f †p fq).
In the literature, this matrix is usually called the one-particle density matrix of ρF . (Note
that in some papers the one-particle density matrix is defined asM/ tr(M).) Let us shortly
summarize three well-known statements about one-particle density matrices of quasifree
states (see [, ]):

Proposition  Consider a particle-number conserving quasifree state ρF of a fermionic
system, and let M denote its one-particle density matrix. The following statements hold:
(a) The eigenvalues of M lie between  and . (b) ρF is pure iff M is a projection. (c) If ρF is
pure, then tr(M) = n is an integer, and ρF is supported on the n-particle subspace ∧nCd of
the Fock space, i.e.

PkρFPk =

⎧⎨⎩ρF if k = n,

 if k �= n.
()

The dynamics of particle-number conserving quasifree fermions can also be represented
using the one-particle density matrices (see [, ]):

Proposition  Consider a particle-number conserving quasifree state ρa correspond-
ing to the one-particle density matrix Ma. Assume that the quadratic Hamiltonian H =∑d

p,q=Apq(f †p fq – δpq
1
 ), which is defined by the Hermitian matrix A, generates the time-

evolution of ρa. The time-evolved state (at unit time), ρb = e–iHρaeiH is again a number-
conserving quasifree state with a one-particle density matrix Mb = UAMaU†

A, where UA =
e–iA ∈U(d).
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Aparticle-number conserving pure quasifree state ρF with tr(M) = n is sometimes called
an n-particle pure quasifree state, since according to Proposition  its state is supported
on the n-particle subspace ∧nCd . We will denote the set of such quasifree pure states by
QFn. A system of number-conserving quadratic Hamiltonians S = {ih, . . . , ih�} is said to
provide quasifree pure-state controllability for a fixed particle number n if there exists an
iH ∈ 〈S〉Lie for any ρa,ρb ∈QFn such that ρb = e–iHρaeiH . To find a necessary and sufficient
conditions for this type of controllability, let us invoke a Theorem . of []:

Theorem  Consider the Lie algebra s� generated by the traceless d×d skew-Hermitian
matrices iB, . . . , iB� and letP(d,n) denote the set of all projections acting onCd whose rank
n lies between  and d – . The Lie group corresponding to s� acts naturally via the adjoint
action onP(d,n). This action is transitive if and only if either (a) s� is isomorphic to su(d)
or (b) d is even, n ∈ {,d – }, and s� is isomorphic to sp(d/).

The theorem implies the following necessary and sufficient condition:

Theorem  Consider the set S = {ih, . . . , ih�} corresponding to number-conserving
quadratic Hamiltonians of a fermionic system with d ≥  modes. The set S generates a
particle-number conserving system giving rise to full quasifree pure-state controllability
on the n-particle subspace with  ≤ n ≤ d – , iff either (a) d is odd and 〈S〉Lie is isomor-
phic to u(d) or su(d) or (b) d is even, n ∈ {,d – } and 〈S〉Lie is isomorphic to u(d), su(d),
u() + sp(d/), or sp(d/).

Proof We consider the set A = {iA(), iA(), . . . , iA(�)} of skew-Hermitian matrices which
correspond to the generators in S , i.e. ihk = i

∑d
p,q=A

(k)
pq (f †p fq – δpq1/). We apply Re-

mark  and obtain that 〈S〉Lie is isomorphic to 〈A〉Lie. We combine this result with
Propositions  and : There exists an ihab ∈ 〈S〉Lie for each pair ρa,ρb ∈QFn such that
e–ihabρaeihab = ρb, iff there exists an iAab ∈ 〈A〉Lie for each pair Ma,Mb ∈ P(d,n) such that
e–iAabMaeiAab =Mb. Thus we have to find necessary and sufficient conditions under which
〈A〉Lie generates a transitive action onP(d,n) for a given d and n. For any skew-Hermitian
iA and M ∈ P(d,n), we have that exp(–iA)M exp(iA) = exp[–i(A – tr(A)1/d)]M exp[i(A –
tr(A)1/d)]. Hence we can infer that 〈A〉Lie generates a transitive action iff the system al-
gebra generated by the set A′ := {i(A() – tr(A())1/d), . . . , i(A(�) – tr(A(�))1/d)} also gives
rise to a transitive action. Since A′ contains only traceless skew-Hermitian operators, we
know from Theorem  that it can act transitively on P(d,n) if and only if either 〈A′〉Lie
is isomorphic to su(d), or d is even, n ∈ {,d – }, and 〈A′〉Lie is isomorphic to sp(d/).
On the other hand, if 〈A′〉Lie = su(d) or 〈A′〉Lie = sp(d/) then 〈A′〉Lie is a simple irre-

ducible Lie subalgebra of su(d). It follows that 〈A〉Lie is either isomorphic to 〈A′〉Lie if
tr(A(k)) =  for all k ∈ {, . . . ,�} or to u() + 〈A′〉Lie if there exists a k such that tr(A(k)) �= .
This proves the theorem. �

10 Conclusion
We set out to answer the questions () which states can be reached from a given initial
state under given controls and () which quantum operations can be simulated in a given
Hamiltonian set-up for fermionic quantum systems in a plethora of scenarios imposing
various superselection rules.
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Table 4 System algebras for d-mode fermionic systems

Symmetriesa System algebra Details

General systems: su(2d–1)⊕ su(2d–1) Theorem 4

{T} s[
⊕d–1

�=0 u(r̂�)]⊕ s[
⊕d–1

�=0 u(r̂�)] Theorem 30

{N} s(
⊕

n even u[
(d
n

)
])⊕ s(

⊕
n odd u[

(d
n

)
]) Proposition 42

Quasifree systems: so(2d)b Proposition 9

{T}, d odd [
∑(d–1)/2

i=1 u(2)] + u(1) Theorem 34

{T}, d even [
∑(d–2)/2

i=1 u(2)] + u(1) + u(1) Theorem 34

{T,R}, d odd [
∑(d–1)/2

i=1 su(2)] + u(1) Corollary 35

{T,R}, d even [
∑(d–2)/2

i=1 su(2)] + u(1) + u(1) Corollary 35

{N} u(d) Proposition 43

aBesides parity superselection rule P we have translation-invariance T, twisted reflection symmetry R, and particle-number
conservation N.
bThe orthogonal algebra is represented as direct sum of two equal copies given as irreducible blocks of dimension 2d–1 ; the
system algebra so(2d) itself was determined already, e.g., in [38].

Therefore we have put dynamic systems theory of coherently controlled fermions into a
Lie-algebraic frame in order to answer problems of controllability, reachability, and sim-
ulability in a unified picture. As summarized in Table , to this end we have determined
the dynamic system Lie algebras in a comprehensive number of cases, illustrated by exam-
ples with andwithout confinement to quadratic interactions (quasifree particles) as well as
with and without symmetries such as translation invariance, twisted reflection symmetry,
or particle-number conservation. Once having established the system algebras, the group
orbits of a given (pure or mixed) initial quantum state determine the respective reachable
sets of all states a system can be driven into by coherent control. Here different types of
pure-state reachability and their relation to coset spaces have been treated with particular
attention.
There are illuminating analogies and differences between spin and fermionic systems.

For quasifree systems, this has been discussed in Section  and in Appendix C, while the
translation-invariant case is addressed in Section . In particular, translation-invariant
Hamiltonianswhich cannot be generated fromnearest-neighbor ones appear both for spin
systems (Section .) and for fermionic systems (Section .).Moreover, for fermionic sys-
tems some of these Hamiltonians have bounded interaction length. It is an open question
if the same also holds for spin systems.
On a general scale, the system algebras determined serve as a dynamic fingerprint. Their

application to quantum simulation has been elucidated in a plethora of paradigmatic set-
tings. Hence we anticipate the comprehensive findings presented here will find a broad
scope of use.

Appendix A: Discussion of double centralizers
Motivated by Section ., in this appendix we discuss how the form of the double central-
izer of a Lie algebra g ⊂ su(k) limits the possibilities for g:

Proposition  Let g denote a subalgebra of su(k). There exists a set A ⊂ su(k) such that
g = centsu(k)(A), if and only if centsu(k)(centsu(k)(g)) = g.

Proof First, assume that A exists. As centsu(k)[centsu(k)(centsu(k)(A))] = centsu(k)(A) holds
for any set A, which can also be inferred from [, Proposition ...(iii)], we obtain
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centsu(k)(centsu(k)(g)) = g. Second, we assume that centsu(k)(centsu(k)(g)) = g holds. We
choose A := centsu(k)(g) and verify its existence. �

To further analyze the influence of symmetry properties on the system algebra, we recall
some elementary representation theory (see, e.g., Theorem . of []):

Proposition  Consider a completely reducible complex matrix representation �(g) of
a group G, where k is the degree of �. Let comm(�) = �′ denote the commutant alge-
bra of all complex k × k-matrices simultaneously commuting with �(g) for g ∈ G. Then,
�(g) is equivalent to

⊕w
j=[1ej ⊗ φj(g)], where φj denote for j ∈ {, . . . ,w} distinct inequiva-

lent irreducible complex matrix representations of G with degree kj, occurring with multi-
plicity ej in �. In particular, (a) dim comm(�) =

∑w
j= ej , (b) dim center(comm(�)) = w, (c)

k =
∑w

j= kjej.

Obviously, the same is true for representations of a compact Lie group or its Lie algebra.
Given a subalgebra g of su(k) (or respectively of u(k)) and a representation � of g with
degree k, we discuss the easiest case of Proposition  where w =  and e = . Hence, � is
irreducible and g is an irreducible subalgebra of su(k) (or respectively of u(k)). But g is not
necessarily equal to su(k) (or respectively to u(k)). Irreducible simple subalgebras of su(k)
were studied extensively in this regard in []. Note that the irreducible subalgebras of u(k)
are of the form g or g+u() where g denotes any irreducible subalgebra of su(k) (cf. pp.-
 and p. of []).—A slight generalization is given by the case of an abelian commutant
algebra, i.e. dim comm(�) = dim center(comm(�)) and ej =  for all j ∈ {, . . . ,w}. One may
thus apply the spectral theorem (see, e.g., [–]) simultaneously to all the elements of
the commutant algebra:

Theorem Consider a Lie algebra g ⊆ su(k) and its representation� of degree k.Assume
that the corresponding commutant algebra C = comm(�) is abelian. One obtains that g
is a subalgebra of s[

⊕dimC
j= u(kj)] and it is equivalent to s[

⊕dimC
j= gj], where k =

∑dimC
j= kj

and gj are irreducible subalgebras of u(kj). Furthermore, one finds kj = dim(Pj), where Pj

are the orthogonal projection operators given by the joint spectral decomposition of C with∑dimC
j= Pj = 1k and PiPj =  for i �= j. If g is the maximal Lie algebra with these properties,

then g = s[
⊕dimC

j= u(kj)].

Using Proposition  one can directly characterize a maximal Lie algebra g contained in
su(k) which is defined by all its symmetries including cases where the commutant to g is
not necessarily abelian. Observe the notation of Remark  and the one of Proposition .

Theorem Consider a Lie algebra g ⊆ su(k) and its representation� of degree k. Let C =
comm(�) denote the commutant of g. If g is the maximal Lie algebra with these properties,
then g = s[

∑ω
j= u(kj)] where ω = dim[center(C)] and

∑ω
j= kj ≤ k.

Proof UsingProposition  (and its notation) one obtains that g is equivalent to
⊕w

j=[1ej ⊗
φj(g)]. Therefore, g is a subalgebra of s[

∑ω
j= u(kj)] with

∑ω
j= kj ≤ k. The maximality of g

completes the proof.
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In a dual approach, one could start froma set S of symmetries of g. Due to themaximality
of g, the set S has to comprise all symmetries of g. Next, one can apply Proposition  to
the subalgebra of su(k) generated by the linear span intersected with su(k), i.e. 〈S〉∩ su(k).
The theorem then follows directly using Schur’s lemma and the maximality of g. �

The reader familiarwith the double-commutant theorem in algebraic quantummechan-
ics will wonder about the different power of symmetries for characterizing algebras of ob-
servables on the one hand and Lie algebras on the other: a von-Neumann algebra A is
entirely determined by its commutant A′, since A′′ =A [, ]. In this sense, there is a
duality between the algebra A and its commutant A′ encapsulating all symmetries. On
the other hand, consider the illustrative case of an irreducible Lie subalgebra g of su(k),
which is semisimple (or even simple) and whose centralizer centsu(k)(g) is trivial (i.e. zero).
This centralizer is shared with all irreducible Lie subalgebras of su(k). So in turn, the dou-
ble centralizer in su(k) to all these subalgebras is su(k) itself. We thus obtain the following
corollary to Proposition  andTheorem,where the double centralizer gives amaximal-
ity criterion ensuring that an irreducible subalgebra g of su(k) is in fact fulfilling g = su(k).
(Note that the condition centsu(k)({}) = g is not easily tested using only a set of generators
of g.)

Corollary  Let g denote an irreducible subalgebra of su(k), i.e. centsu(k)(g) = {}. Then
one finds that centsu(k)(centsu(k)(g)) = g if and only if g = su(k).

Note that Corollary  can be readily generalized: Let g,h denote two irreducible sub-
algebras of su(k) with g ⊆ h ⊆ su(k) so that centh(g) = {} = centh(h). Then one finds
centh(centh(g)) = g if and only if g = h.
Summarizing the general case, the symmetry properties of a Lie algebra g ⊆ su(k), as

given by its commutant w.r.t. a representation of g, do not determine the Lie algebra g

uniquely. Yet the commutant allows us to infer a unique maximal Lie algebra contained
in su(k), which is (up to an identity matrix) equal to the double commutant of g, but in
general not to g itself. Although all representations of compact Lie algebras, such as su(k)
and its semisimple subalgebras, are completely reducible, the situation for Lie algebras also
differs from the case of associative algebras: here complete reducibility of a representation
implies the double-commutant theorem (see Theorem (..D) of [] or Theorem.. of
[]), whereas the double-commutant theorem does not apply to Lie algebras as discussed
above.

Appendix B: Parameterizations of quadratic Hamiltonians
In this appendix, we discuss various parameterizations of quadratic Hamiltonians related
to the one of Eq. () in Section . We start with the parametrization

H :=
d∑

p,q=

Cpq fp fq +Dpq fp f †q + Epq f †p fq + Fpq f †p f
†
q

by complex d × d-matrices C, D, E, and F . Hermiticity of H requires C = F†, D = D†,
and E = E†, while the (anti-)commutator relations enforce C = –Ct , D = –Et , and F = –Ft .

http://www.epjquantumtechnology.com/content/1/1/11


Zimborás et al. EPJ Quantum Technology 2014, 1:11 Page 41 of 53
http://www.epjquantumtechnology.com/content/1/1/11

Setting A := E and B := –C∗, we recover the notation of Eq. () and obtain

H =



d∑
p,q=

–B∗
pq fp fq –A∗

pq fp f
†
q +Apq f †p fq + Bpq f †p f

†
q

=



d∑
p,q=

–B∗
pq fp fq + Apq

(
f †p fq – δpq

1



)
+ Bpq f †p f

†
q

=



d∑
p,q=

Re(Bpq)
(
f †p f

†
q – fp fq

)
+Re(Apq)

(
f †p fq – fp f †q

)
+ Im(Bpq)i

(
f †p f

†
q + fp fq

)
+ Im(Apq)i

(
f †p fq + fp f †q

)
.

Note Re(A) = Re(A)t , Im(A) = –Im(A)t , Re(B) = –Re(B)t , and Im(B) = –Im(B)t which
is a consequence of A = A† and B = –Bt . We rewrite the Hamiltonian using Majorana
operators such that

–iH = –



[ d∑
p=

–Re(App)mp–mp +
d∑

p,q=;p>q

Vpq

]
,

whereVpq = –Re(Bpq)[mp–mq–mq–mp]–Re(Apq)[mp–mq+mq–mp]–Im(Bpq)×
[mp–mq– –mpmq] – Im(Apq)[mp–mq– +mpmq]. By applying the Jordan-Wigner
transformation we obtain the Hamiltonian for the corresponding spin system (for better
readability, the tensor-product symbol is omitted, e.g., IXY := I⊗X⊗ Y) as

–iH = –
i


[ d∑
p=

–Re(App) I · · · I︸︷︷︸
p–

Z I · · · I︸︷︷︸
d–p

+
d∑

p,q=;p>q

Wpq

]
,

whereWpq := [Re(Bpq) + Im(Apq)](αpq – βpq) + [Re(Apq) – Im(Bpq)](αpq + βpq),

αpq := I · · · I︸︷︷︸
q–

XZ · · ·Z︸ ︷︷ ︸
p–q–

X I · · · I︸︷︷︸
d–p

and βpq := I · · · I︸︷︷︸
q–

YZ · · ·Z︸ ︷︷ ︸
p–q–

Y I · · · I︸︷︷︸
d–p

.

Appendix C: Applications of quasifree fermions to spin systems
Here we take new fermionic approaches to exhaustively prove and improve some results
of [], where some proofs were still sketchy—thereby also filling a desideratum voiced in
[].

C.1 A spin systemwith system algebra so(2n + 1)
Proposition (see Proposition  in []) Consider aHeisenberg-XX chainwith the drift
Hamiltonian Hd = XX · · · II + YY · · · II + · · · + II · · ·XX + II · · ·YY on n spin-  qubits with
n≥ . Assume that one end qubit is individually locally controllable. The system algebra is
isomorphic to so(n + ) and irreducibly embedded in su(n).

Proof We use the fermionic picture where the number of modes d equals the number of
spins n. The generators are given by w = L(v) with v =

∑d–
p= –mp–mp+ +mpmp+,
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L(m), and L(m). Obviously, the element w = L(v) with v = mm can also be gen-
erated. One can verify that exactly all Majorana operators of degree one or two can be
obtained: One line of reasoning uses Lemma  together with the commutation rela-
tions [L(mp–),L(bp)] = L(mp+) and [L(mp),L(bp)] = –L(mp+) to show that all degree-
one operators can be generated. This immediately gives all quadratic operators as well,
while operators of higher degree are not attainable. Therefore, the dimension of the sys-
tem algebra is d + d. Note that the operators L(mp–mp) form a maximal abelian
subalgebra a which proves that the system algebra has rank d. In the spin picture, we
can directly verify that a = 〈–iZ/, . . . , –iZn/〉Lie by computing the centralizer ca :=
〈– i


∏

j∈S Zj | {} �= S ⊂ {, . . . ,n}〉Lie of a in su(n). Let us compute the centralizer cb of
b = 〈mpmp+, –mp–mp+ | p ∈ {, . . . ,d – }〉Lie in su(n). Note that the generators of
b are given in the spin picture by –iXpXp+/ and –iYpYp+/. One can readily show by
induction that cb = 〈– i


∏n

j= Xj, – i

∏n

j= Yj, – i

∏n

j= Zj〉Lie. It follows that the centralizer c
of the full system algebra in su(n) has to be contained in ca ∩ cb = 〈– i


∏n

j= Zj〉Lie. One
can now easily prove that the centralizer of the full system algebra in su(n) is trivial and
that the system algebra is irreducibly embedded in su(d). As the coupling graph of the
spin system is connected, we conclude with Theorem  of [] that the system algebra is
simple. Listing all simple (and compact) Lie algebras with the correct dimension and rank,
we obtain (a) so(d + ) for d ≥ , (b) sp(d) for d ≥ , (c) su() ∼= so() for d = , and (d) e
for d = . As the system algebra contains also all quadratic operators, it has a subalgebra
so(d) which is of maximal rank. This rules out the cases (b) and (d) (see p. of [] or
Section . of []) for d �= . But the case (b) agrees with (a) for d = . For d = , the cases
(a) and (c) coincide. This completes the proof. �

Note that with our fermionic approach one can readily determine the dimension and
rank of the system algebra. Likewise, we establish that all fermionic operators act irre-
ducibly from which we can infer that the system algebra is simple. The rest of the proof
follows by an exhaustive enumeration.—In more general terms, as in Theorem  and
Corollary  of [], we connect a spin system with a fictitious fermionic system:

Corollary  Consider a fictitious fermionic system with d modes which consists of all
linear and quadratic operators and whose generators can, e.g., be chosen as all Majorana
operators of type L(mp–) combined with the Hamiltonian from Eq. () where the control
functions Apq and Bpq can be assumed to be real. This fictitious fermionic system and the
spin system of Proposition  with n = d spins can simulate each other. In particular, both
can simulate a general quasifree fermionic system with d modes and system algebra so(d)
as presented in Proposition  and Theorem .

C.2 A spin systemwith system algebra so(2n + 2)
Proposition  (see Proposition  in []) Consider a Heisenberg-XX chain with the
drift Hamiltonian Hd = XX · · · II + YY · · · II + · · · + II · · ·XX + II · · ·YY on n spin-  qubits
with n≥ . Assume that each of the two end qubits is individually locally controllable. The
systemalgebra is given as the subalgebra so(n+)which is irreducibly embedded in su(n).

Proof We switch to a fermionic picture where the number of modes d equals the num-
ber of spins n. The generators are w = L(v) with v =

∑d–
p= –mp–mp+ + mpmp+,
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L(m), L(m), L(md–
∏d–

p= mp–mp), and L(md
∏d–

p= mp–mp). One can verify by ex-
plicit computations that exactly all Majorana operators of degree one, two, d – , and
d can be generated. Therefore, the dimension of the system algebra is d + d + . Us-
ing a similar argument as in the proof of Proposition , we conclude that the operators
L(mp–mp) together with the operator L(

∏d
p=mp–mp) form a maximal abelian subal-

gebra which proves that the system algebra has rank d + . One can also show that the
system algebra is irreducibly embedded in su(d). As the coupling graph of the spin sys-
tem is connected, we conclude with Theorem  of [] that the system algebra is simple.
The proof is completed by listing all simple (and compact) Lie algebras with the correct
dimension and rank, i.e. (a) so(d + ) for d ≥  and (b) su() ∼= so() for d = . �

Principle Remark Now we have established a setting that allows for exploiting the pow-
erful general results of [] on the structure of orthogonal groups that provide a second
avenue to Proposition  assumingwehave already established Proposition : Lemmata 
and  of [] show that for k ≥  any subalgebra of so(k) with dimension (k – )(k – )/
is isomorphic to so(k – ); moreover so(k – ) is a maximal subalgebra of so(k). Thus, by
proving that the system algebra has dimension d + d with d ≥ , it can be identified as
the subalgebra so(d + ) of so(d +). We emphasize that this particular proof technique
should be widely applicable in quantum systems theory.

Relying on the proof of Proposition  and building on Theorem  as well as Corol-
lary  of [], we obtain connections between a spin system, a quasifree fermionic sys-
tem, and a fictitious fermionic system:

Corollary  The following control systems all have the system algebra so(k +) and can
simulate each other: (a) the spin system of Proposition  with k spins, (b) the quasifree
fermionic system with k +  modes as presented in Proposition  and Theorem , and
(c) a fictitious fermionic system with k modes which contains all Majorana operators of
degree one, two, k – , and k, and whose generating Hamiltonian can be chosen from
Eq. () where the control functions Apq and Bpq can be assumed to be real.

Appendix D: Proof of Theorem 13
The cases of d ∈ {, , } can be verified directly and we assume in the following that
d ≥  holds. We build on Lemma  and obtain a basis of k consisting of L(ap) with
 ≤ p ≤ d as well as L(b(i)p ) with b(i)p := –mp–mp+i +mpmp+i– and L(c(i)p ) with c(i)p :=
mp–mp+i– +mpmp+i where p, i≥  and p+ i≤ d. One can systematically enlarge the
index (i) starting from the elements L(b()p ) = L(bp) ∈ k and L(c()p ) = (cp) ∈ k and gener-
ate all L(b(i)p ) and L(c(i)p ) by combining the commutator relations [L(cp),L(b(i)p+)] = –L(b(i+)p )
and [L(cp+i),L(b(i)p )] = L(b(i+)p ) with the commutator relations [L(ap),L(b(i)p )] = –L(c(i)p ) and
[L(ap),L(c(i)p )] = L(b(i)p ). It is straightforward to check that no further elements are gen-
erated by commutators starting from the elements L(ap), L(b(i)p ), and L(c(i)p ). We obtain
that dim(k) = d + (d – )d = d. Furthermore, the elements L(ap) form a maximal abelian
subalgebra of k and the rank of k is d. It follows that k is a subalgebra of maximal
rank in so(d). We now show that the center of k is one-dimensional and is generated
by L(c) with c :=

∑d
p= ap. Combining the commutator relations [L(ap+i),L(b(i)p )] = L(c(i)p )

and [L(ap+i),L(c(i)p )] = –L(b(i)p ) with the ones for L(ap) mentioned above, we conclude that
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[L(ap + ap+i),L(b(i)p )] = [L(ap + ap+i),L(c(i)p )] = . In addition, we obtain [L(aj),L(b(i)p )] =
[L(aj),L(c(i)p )] =  if p �= j �= p + i. It follows that [L(c),L(b(i)p )] = [L(c),L(c(i)p )] =  and that
L(c) commutes with all elements of k. We rule out the existence of further elements
in the center by explicitly computing the semisimple part s := [k, k] of k. By applying
[L(b(i)p ),L(c(i)p )]/ = L(ap+i – ap) combined with previously mentioned commutator rela-
tions, we can fix a basis of s consisting of the elements L(b(i)p ), L(c(i)p ), and L(ap–ap+) where
 ≤ p≤ d– and  ≤ i≤ d–p. We proceed to prove in the following that s is actually sim-
ple by showing that s is not abelian (which obviously holds) and that any non-zero ideal i
of s is equal to s. Starting from (ad(L(aq)))L(b(i)p ) = –L(b(i)p ) and (ad(L(aq)))L(c(i)p ) = –L(c(i)p )
for q = p or q = p+ i, we deduce that ad(L(aq))+ad(L(aq)) = . Likewise, y(i)p := [ad(L(ap–
ap+i)) + ad(L(ap – ap+i))]/ annihilates all basis elements of s except for L(b(i)p ) and L(c(i)p )
which are left invariant. Using the definition x(i)p := [ad(L(b(i)p )) – ad(L(c(i)p ))]/ and verify-
ing x(i)p L(ap) = x(i)p L(ap+i) = , we can infer that x(i)p L(aq –aq+j) =  holds for all valid q and j.
Furthermore, we have x(i)p L(b

(j)
q ) = x(i)p L(c

(j)
q ) =  for all valid q and j unless when both q = p

and j = i hold. We obtain x(i)p L(b(i)p ) = L(b(i)p ) and x(i)p L(c(i)p ) = –L(c(i)p ) in this exceptional case.
As s is semisimple, i cannot be abelian andhas to contain an elementwhich is supported on
some L(b(i)p ) or L(c(i)p ). Relying on the ideal property [s, i] ⊆ i and the operators x(i)p and y(i)p ,
we conclude that L(b(i)p ) ∈ i or L(c(i)p ) ∈ i. Obviously, the conditions L(b(i)p ) ∈ i, L(c(i)p ) ∈ i, and
L(ap – ap+i) ∈ i are equivalent. By applying previously mentioned commutator relations,
we can verify that L(b(j)q ) ∈ i holds for all q ≤ p and q + j ≥ p + i. In particular, L(bd– ) ∈ i.
Using the commutator relations [L(cp),L(b(i)p )] = L(b(i–)p+ ) and [L(cp+i–),L(b(i)p )] = –L(b(i–)p )
where i > , we can reach the conclusion that L(b(j)q ) ∈ i for all valid q and j. Thus, we have
shown that i = s and s has to be simple. We summarize that k has dimension d, has rank
d, and is a subalgebra of maximal rank in so(d). In addition, it is a direct sum of a sim-
ple subalgebra and a one-dimensional abelian subalgebra. We list all compact, simple Lie
algebras s of rank k := d –  ≥ : su(k + ) has dimension k + k, so(k + ) has dimen-
sion k + k, sp(k) has dimension k + k, so(k) has dimension k – k, as well as the
exceptional ones. Note that the exceptional cases g, f, e, e, and e are ruled out by their
respective ranks , , , , and  as well as dimensions , , , , and . We obtain
s ∼= su(d) and k ∼=u(d).

Appendix E: Proof of Proposition 26
Here, a proof for the Proposition  of Section . is provided. We start in Section E. by
generalizing a key observation of [] (where the particular case of Proposition  when
K divides L was already considered). This generalization is then applied in Section E. to
the proof of Proposition .

E.1 Generalizing a key observation of [19]
Proposition  The trace of the product of U–K

T with a tensor product of Pauli operators
Qi ∈ {1,X,Y,Z} can be computed as

tr

[
U–K

T

( L⊗
i=

Qi

)]
=

c∏
p=

tr

[L/c–∏
q=

Q(qK+p) mod L

]
, where c := gcd(K ,L). ()

Proof To simplify our calculations, let us introduce the notation v(�) = (K + �) mod

L, note that (v ◦ v)(�) = v(v(�)) = (K + �) mod L, or more generally v◦p(�) = (pK +
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�) mod L. We can now write the action of U–K
T on an arbitrary standard basis vector as

U–K
T |n, . . . ,n�, . . . ,nL〉 = |nv(), . . . ,nv(�), . . . ,nv(L)〉. Without loss of generality we can confine

the discussion to the case where K ≤ L. We complete the proof, by evaluating the trace in
Eq. () as tr[U–K

T (
⊗L

i=Qi)] = tr[(
⊗L

i=Qi)U–K
T ] =

∑
n∈{,}L〈n, . . . ,nL|(

⊗L
i=Qi)U–K

T |n, . . . ,
nL〉 which is equal to the form

∑
n∈{,}L〈n, . . . ,nL|(

⊗L
i=Qi)|nv(), . . . ,nv(L)〉 =∑

n∈{,}L
∏L

�=〈n�|Q�|nv(�)〉 and which can be further simplified as∑
n∈{,}L

∏L
�=〈n�|Q�|n(K+�)modL〉 =

∑
n∈{,}L

∏c
p=
∏L/c–

q= 〈nv◦q(p)|Qp|nv◦(q+)(p)〉. We finally
get tr[U–K

T (
⊗L

i=Qi)] =
∏c

p= tr[
∏L/c–

q= Q[(qL/c+p)modL]]. �

E.2 Details of the Proof of Proposition 26
The Lie algebras tW with W ∈ {M,M + } are generated by the elements i

∑L–
q′=U

q′
T ×

[(
⊗W

p=Qp) ⊗ 1⊗L–W
 ]U–q′

T . Here, we consider all combinations of Qp ∈ {1,X,Y,Z} apart
from the case when Q = 1. We introduce the notation

F(a,W ) := tr

(
UaqM

T i
L–∑
q′=

Uq′
T

[( W⊗
p=

Qp

)
⊗ 1⊗L–W



]
U–q′

T

)

= tr

(
i
L–∑
q′=

Uq′
T U

aqM
T

[( W⊗
p=

Qp

)
⊗ 1⊗L–W



]
U–q′

T

)

= i
L–∑
q′=

tr

(
Uq′

T U
aqM
T

[( W⊗
p=

Qp

)
⊗ 1⊗L–W



]
U–q′

T

)

= i
L–∑
q′=

tr

(
UaqM

T

( W⊗
p=

Qp

)
⊗ 1⊗L–W



)
,

where a ∈ {,–} and W ∈ {M,M + }. Using Proposition , we compute the formu-
las F(,M) = iL

∏M
p= tr[Qp] = , F(,M + ) = iL tr[QQM+]

∏M
p= tr[Qp], F(–,M + ) =

iL tr[QM+Q]
∏M

p= tr[Qp]. It follows that the respective statements in the proposition hold
for the generators of tM and tM+. Now we prove this consequence also for any element in
tM (or tM+). First, let us note that the elements generatedmust be contained in [tM, tM] (or
[tM+, tM+]). Second, since all elements in tM+ (and hence in tM) commute with UqM

T , we
have that tr(UqM

T ih) =  holds for any element ih ∈ [tM+, tM+], as tr([ihM+, ihM+]U
qM
T ) =

tr(ihM+ihM+U
qM
T ) – tr(ihM+ihM+U

qM
T ) which is equal to tr(ihM+ihM+U

qM
T ) – tr(ihM+ ×

UqM
T ihM+) = tr(ihM+ihM+U

qM
T ) – tr(ihM+ihM+U

qM
T ) = . Thus Proposition  follows.

Appendix F: Proof of Theorem 33 for d even
Let us introduce the notation N, which corresponds to the linear space spanned by the
nearest-neighbor (and on-site) operators. Note thatN forms only a linear space and is in
general not equal to the Lie algebra t f generated by its elements.We first prove a fermionic
generalization of Lemma .

Lemma  Consider a fermionic system for which the number d ≥  of modes is even. For
any ih ∈ N the condition tr(ihU–) =  holds if d mod  = , while tr(ihU–) =  holds if
d mod  = .
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Proof By definition, any element ih ∈ N can be written as ih =
∑d–

n=UnihU–n, where
ih is a traceless skew-Hermitian operator acting only on the first two modes of the
fermionic system. Therefore, ih is a linear combination of the elements immmm and
mamb where a,b ∈ {, , , } and a �= b. We obtain that tr(ihU–b) = tr[

∑d–
n=(UnihU–n)×

U–b] =
∑d–

n= tr(UnihU–nU–b) = d tr(ihU–b). If d mod  = , we write out explicitly
tr(ihU–b)/d for b =  by applying Eq. ():

tr
(
ihU–)/d = tr

(
ihU–) = ∑

n∈{,}d
〈n, . . . ,nd|ihU–|n, . . . ,nd〉

=
∑

n∈{,}d
κ(n)〈n, . . . ,nd|ih|n, . . . ,nd,n,n〉, where

κ(n) := (–)(n+n)(n+n+···+nd). ()

In the sum given above, the basis vectors are orthogonal and thus most of the terms are
zero. The only terms with non-zero contributions can occur in the cases of n = n�– and
n = n� with � ∈ {, . . . ,d/}. In particular, we have κ(n,n,n,n, . . . ,n,n) =  as d/ is
an odd number if d mod  = . Hence we obtain that

tr
(
ihU–)/d = tr

(
ihU–) = ∑

n,n∈{,}
〈n,n,n,n, . . . |ih|n,n,n,n, . . .〉

=
∑

n,n∈{,}
〈n,n|ih|n,n〉 = tr(ih) = .

If d mod  = , we can explicitly write out the trace:

tr
(
ihU–)/d = tr

(
ihU–) = ∑

n∈{,}d
〈n, . . . ,nd|ihU–|n, . . . ,nd〉

=
∑

n∈{,}d
λ(n)〈n, . . . ,nd|ih|n, . . . ,nd,n, . . . ,n〉, where

λ(n) := (–)(n+n+n+n)(n+n+···+nd). ()

The basis vectors in the sum are again orthogonal, and most of the terms are zero. The
only terms that can give non-zero contributions are for the cases of n = n�–, n = n�–,
n = n�–, and n = n� with � ∈ {, . . . ,d/}. It follows in these cases that

λ(n) = (–)(n+n+n+n)(d/–) =

⎧⎨⎩ if d mod  = ,

(–)(n+n+n+n) if d mod  = .
()

The notation χ := n,n,n,n,n,n,n,n, . . . ,n is used, and we obtain

tr
(
ihU–)/d = tr

(
ihU–) = ∑

n,...,n∈{,}
λ(n)〈χ |ih|χ〉

=
∑

n,...,n∈{,}
λ(n)〈n, . . . ,n|ih|n, . . . ,n〉. ()
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Apply Eq. () and obtain that Eq. () is zero if d mod  = . We can also prove that Eq.
() is zero for d mod  =  as Eq. () simplifies to [

∑
n,n∈{,}(–)(n+n)〈nn|ih|nn〉]×

[
∑

n,n∈{,}(–)(n+n)] = . �

Lemma  Consider a fermionic system for which the number d ≥  of modes is even. The
properties tr(iheU–) �=  and tr(iheU–) �=  hold for the operator ihe of Theorem .

Proof We proceed similarly as in the proof of Lemma . The operator ihe can be writ-
ten as

∑d–
n=UnihU–n, where ih := (f † f f

†
 f f

†
 f f

†
 f f

†
 f – 1/). Due to this partic-

ular structure of ih, we can simplify the trace tr(iheU–b) = tr[
∑d–

n=(UnihU–n)U–b] =∑d–
n= tr(UnihU–nU–b) = d tr(ihU–b). Let us explicitly write out the trace for b =  by ap-

plying Eq. ():

tr
(
iheU–)/d = tr

(
ihU–) = ∑

n∈{,}d
〈n, . . . ,nd|ihU–|n, . . . ,nd〉

=
∑

n∈{,}d
κ(n)〈n, . . . ,nd|ih|n, . . . ,nd,n,n〉

=
∑

n∈{,}d
θ (n)〈n, . . . ,nd|n, . . . ,nd,n,n〉,

where θ (n) := (δn,δn,δn,δn,δn, – /)κ(n) and κ(n) was defined in Eq. (). Most of
the terms in the sum are zero as the basis vectors are orthogonal. The only termswith non-
zero contributions occur for n�– = n and n� = n with � ∈ {, . . . ,d/}. If d mod  = ,
it follows that θ (n) = / for n = n = , and θ (n) = –/ otherwise. If d mod  = ,
we have θ (n) = / for n = n = , and θ (n) = / for n + n = , and θ (n) = –/ for
n = n = . We obtain

tr
(
iheU–)/d = tr

(
ihU–) = ∑

n,n∈{,}
θ (n)〈n,n,n,n, . . . |n,n,n,n, . . .〉

=

⎧⎨⎩/ if d mod  = ,

 if d mod  = .

Let us now consider the trace with U–:

tr
(
iheU–)/d = tr

(
ihU–) = ∑

n∈{,}d
〈n, . . . ,nd|ihU–|n, . . . ,nd〉

=
∑

n∈{,}d
λ(n)〈n, . . . ,nd|ih|n, . . . ,nd,n, . . . ,n〉

=
∑

n∈{,}d
μ(n)〈n, . . . ,nd|n, . . . ,nd,n, . . . ,n〉,

where μ(n) := (δn,δn,δn,δn,δn, – /)λ(n) and λ(n) was defined in Eq. (). Again,
most of the terms in the sum are zero as the basis vectors are orthogonal. Provided that
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d mod  = , the only termswith non-zero contributions can occur in the case of n�– = n
and n� = n where � ∈ {, . . . ,d/}. In this case μ(n) = / for n = n = , and μ(n) =
–/ otherwise. It follows that tr(iheU–)/d =

∑
n,n∈{,} μ(n)〈n,n,n,n, . . . |n,n,n,

n, . . .〉 = /. If d mod  = , terms with non-zero contributions can occur for n�– = n,
n�– = n, n�– = n, and n� = n with � ∈ {, . . . ,d/}. For these cases we obtain from Eq.
() that

μ(n) =
(

δn,δn,δn,δn,δn, –



)
×
⎧⎨⎩ if d mod  = ,

(–)(n+n+n+n) if d mod  = .

Using χ = n,n,n,n,n,n,n,n, . . . ,n we can simplify the trace to

tr
(
iheU–)/d = tr

(
ihU–) = ∑

n,...,n∈{,}
μ(n)〈χ |χ〉

=

⎧⎨⎩/ if d mod  = ,

 if d mod  = . �

Now we can prove Theorem  for even d as given in the following proposition:

Proposition  Consider a fermionic system for which the number d ≥  of modes is even.
The fourth-neighbor element ihe ∈ t

f
 of Theorem  is not contained in the system algebra

t
f
 of nearest-neighbor interactions.

Proof We introduce the operator

Cd =

⎧⎨⎩U– if d mod  = ,

U– if d mod  = .

It follows from Lemma  that the equality tr(ihCd) =  holds for any ih ∈ N. Since
Cd commutes with all elements of t f and t

f
 = span(N, [t

f
 , t

f
 ]), we have tr(Cd[ih, ih]) =

tr(Cdihih) – tr(Cdihih) = tr(Cdihih) – tr(ihCdih) = tr(Cdihih) – tr(Cdihih) = . This
means that tr(Cdik) =  for all ik ∈ t

f
 . But we know fromLemma  that tr(iheCd) �= which

shows that ihe /∈ t
f
 . �

Appendix G: Proof of Theorem 33 for d odd
The proof of Theorem  for odd number of modes uses an expansion of the translation
unitary U by the Fourier-transformed Majorana operators, which are

m̃k := i
(
f̃k – f̃ †k

)
and m̃k+ := f̃k + f̃ †k . ()

Note that the operators f̃k were defined in Eq. (). The self-adjoint operators m̃x satisfy
again the Majorana anticommutation relations {m̃x, m̃y} = δx,y1. Moreover, the trace of
any m̃x-monomial is zero, since it is a linear combination of Majorana monomials. We
relate these operators to the translation unitary:
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Lemma  The translation unitary U can be written as

U = (–i)d– exp

[
–i

d–∑
k=

πk
d

(
f̃ †k f̃k –



1

)]
()

= (–i)d– exp

[
–

d–∑
k=

πk
d

m̃k+m̃k

]
()

= (–i)d–
d–∏
k=

[
cos

(
πk
d

)
1 – sin

(
πk
d

)
m̃k+m̃k

]
()

using the Fourier-transformed operators f̃k and f̃ †k as well as m̃k and m̃k+.

Proof Let us denote the right hand side of Eq. () by V . We apply m̃k+m̃k = i(f̃ †k f̃k –1)
and obtain that V = (–i)d– exp(–

∑d–
k= πkm̃k+m̃k/d). Since the formula [m̃k+m̃k ,

m̃k′+m̃k′ ] =  holds for all k �= k′, we can split the exponential into the product V =
(–i)d–

∏d–
k= exp(–πkm̃k+m̃k/d). We employ (m̃k+m̃k) = –1 and obtain the formula

exp(–πk
d m̃k+m̃k) =

∑∞
n=

(–πk)n
n!dn (m̃k+m̃k)n =

∑∞
n=

(–)n(πk)n
(n)!dn 1 –

∑∞
n=

(–)n(πk)n+
(n+)!dn+ ×

m̃k+m̃k = cos(πk
d )1– sin(πk

d )m̃k+m̃k . Thus, V is equal to the right hand side of Eq. ().
Similarly, the adjoint of V can be written as

V† = i(d–)
d–∏
k=

exp

(
πk
d

m̃k+m̃k

)
= i(d–)

d–∏
k=

[
cos

(
πk
d

)
1 + sin

(
πk
d

)
m̃k+m̃k

]
.

The commutation relations of Eq. () imply the formula m̃k+m̃k f̃ †k = –f̃ †k m̃k+m̃k = if̃ †k .
It follows that

V f̃ †k V† =
[
cos

(
πk
d

)
1 – sin

(
πk
d

)
m̃k+m̃k

]
f̃ †k

[
cos

(
πk
d

)
1 + sin

(
πk
d

)
m̃k+m̃k

]
= e–π ik/df̃ †k ,

which implies that

V f †n V† = V
[

√
d

d∑
k=

f̃ †k e
–π ink/d

]
V† =

√
d

d∑
k=

f̃ †k e
–π i(n+)k/d = f †n+. ()

Applying the formulas f̃k|〉 =  and [f̃ †k f̃k , f̃
†
k′ f̃k′ ] = , we conclude that exp[–i

∑d–
k= πkf̃

†
k f̃k/

d]|〉 = |〉. This allows us to investigate how V acts on the Fock vacuum |〉:

V|〉 = (–i)d– exp

[
–i

d–∑
k=

πk
d

(
f̃ †k f̃k –



1

)]
|〉

= (–i)d–ei
∑d–

k=
πk
d exp

[
–i

d–∑
k=

πk
d
(
f̃ †k f̃k
)]|〉

= (–i)d–ei
π
 (d–)|〉 = |〉. ()
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It follows from Eqs. () and () that V satisfies Eq. () if we substitute V for U . As
Eq. () defines U uniquely, U = V must hold. �

In the next step, we provide a polynomial of U whichmultiplied by any nearest-neighbor
Hamiltonian gives an operator with zero trace (if the system is composed of an odd num-
ber of modes). One key observation is that the action of the twisted reflection operator on
the translation unitary is

RUR† = U–, ()

which follows directly form the definition of R, see Eq. (). Using this equation and
Lemma , one can prove the following statement:

Lemma  Consider a fermionic system for which the number d ≥  of modes is odd and
introduce the operator

C ′
d = (–)�d/�(U – U–) – (–)d

(
U – U–). ()

The equality tr(ihC ′
d) =  holds for any ih ∈ t

f
 .

Proof We will first prove that tr(vC ′
d) =  holds for all v ∈ N, where N denotes the lin-

ear space spanned by the nearest-neighbor interactions (as in Appendix F). The equation
RC ′

dR† = –C ′
d follows from Eq. (). On the other hand, Eq. () implies that RihR† =

ih holds for any ih ∈ {ih, ihrh, ihrp, ihcp, ihint}, hence tr(ihC ′
d) = tr(RihR–RC ′

dR–) =
– tr(ihC ′

d) = .
In order to calculate tr(ihchC ′

d), we first note that using Eq. (a) the operator ihch can
be written as

ihch = –
d–∑
k=

sin

(
πk
d

)
m̃k+m̃k . ()

Next, let us expand U using Lemma  as

U =
d–∏
k=

[
cos

(
πk
d

)
1 – sin

(
πk
d

)
m̃k+m̃k

]

= λ1 – λ

d–∑
k=

tan

(
πk
d

)
m̃k+m̃k +M, ()

whereM is a linear combination of Majorana monomials of degree greater than two and
λ :=

∏d–
k= cos(

πk
d ). Similarly, let us expand U:

U =
d–∏
k=

[
cos

(
πk
d

)
1 – sin

(
πk
d

)
m̃k+m̃k

]

= λ1 – λ

d–∑
k=

tan

(
πk
d

)
m̃k+m̃k +M,
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whereM is a linear combination of Majorana monomials of degree greater than two. We
employed that

∏d–
k= cos(

πk
d ) =

∏d–
k= cos(

πk
d ) holds for odd d.

We note that all monomials of Fourier-transformedMajorana operators have zero trace
and determine the traces tr(Uihch) and tr(Uihch) by calculating the coefficient of 1 in
Uihch and Uihch:

tr
(
Uihch

)
= dλ

d–∑
k=

tan

(
πk
d

)
sin

(
πk
d

)
= (–)dddλ,

tr
(
Uihch

)
= dλ

d–∑
k=

tan

(
πk
d

)
sin

(
πk
d

)
= (–)�d/�ddλ.

Note that tr(ihchU–�) = tr(RihchR†RU–�R†) = – tr(ihchU �), which allows us to conclude
tr(ihchC ′

d) = (–)�d/� tr(ihchU) – (–)d tr(ihchU). This implies that tr(C ′
dihch) = , and

thus tr(vC ′
d) =  holds for all v ∈N. As C ′

d commutes with all elements of t f , it also follows
that tr(ihC ′

d) =  for any ih ∈ t
f
 . �

After these preparations we can prove Theorem  for odd d as summarized in the
following proposition:

Proposition  Consider a fermionic system with d ≥  odd modes and the Hamiltonian
ho of Theorem .The generator iho ∈ t

f
 is not contained in the systemalgebra t f of nearest-

neighbor interactions.

Proof Using Eq. (a), iho can be written as

iho = –
d–∑
k=

sin

(
πk
d

)
m̃k+m̃k . ()

Observe that tr(ihoU–�) = tr(RihoR†RU–�R†) = – tr(ihoU �) and conclude that the formula
tr(ihoC ′

d) = (–)�d/� tr(ihoU) – (–)d tr(ihoU) holds. Now, the expansion of U given by
Eq. () allows us to calculate the trace of ihoC ′

d as d+(–)�d/�λ
∑d–

k= tan(
πk
d ) sin( πk

d ) –
d+(–)dλ

∑d–
k= tan(

πk
d ) sin( πk

d ) = d+(–)�d/�λ(–)d–d – d+(–)dλ(–)�d/�d =
d+(–)�d/�(–)d–dλ �= . On the other hand, we know from Lemma  that the equality
tr(C ′

dih) =  holds for any ih ∈ t
f
 . Therefore, iho /∈ t

f
 . �
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