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Grid-Based Object Tracking with Nonlinear
Dynamic State and Shape Estimation

Sascha Steyer, Christian Lenk, Dominik Kellner, Georg Tanzmeister, and Dirk Wollherr

Abstract—Object tracking is crucial for planning safe maneu-
vers of mobile robots in dynamic environments, in particular for
autonomous driving with surrounding traffic participants. Multi-
stage processing of sensor measurement data is thereby required
to obtain abstracted high-level objects, such as vehicles. This also
includes sensor fusion, data association, and temporal filtering.
Often, an early-stage object abstraction is performed, which,
however, is critical, as it results in information loss regarding the
subsequent processing steps. We present a new grid-based object
tracking approach that, in contrast, is based on already fused
measurement data. The input is thereby pre-processed, without
abstracting objects, by the spatial grid cell discretization of a
dynamic occupancy grid, which enables a generic multi-sensor
detection of moving objects. On the basis of already associated
occupied cells, presented in our previous work, this paper investi-
gates the subsequent object state estimation. The object pose and
shape estimation thereby benefit from the freespace information
contained in the input grid, which is evaluated to determine the
current visibility of extracted object parts. An integrated object
classification concept further enhances the assumed object size.
For a precise dynamic motion state estimation, radar Doppler
velocity measurements are integrated into the input data and
processed directly on the object-level. Our approach is evaluated
with real sensor data in the context of autonomous driving in
challenging urban scenarios.

Index Terms—Autonomous vehicles, dynamic occupancy grids,
environment perception, object detection, object tracking, radar
Doppler measurements, shape estimation, state estimation.

I. INTRODUCTION

OBJECT tracking is an essential task of environment
perception with the aim of detecting and temporally

filtering surrounding objects based on sensor measurements.
Mobile robots, especially autonomous vehicles, require a
robust object estimation to plan interactive maneuvers and
avoid collisions with other traffic participants or obstacles.
Therefore, measurement data of multiple sensors have to be
processed in different ways. This includes several tasks, such
as object extraction by detecting or abstracting features, sensor
data fusion, data association of measurements and predicted
objects, shape estimation of the spatial extent of an object, and
state estimation with temporal filtering in general.

Objects are often detected and tracked for each individual
sensor type by sensor-specific features. Data fusion is then
realized afterwards based on those filtered high-level objects
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of each sensor, i.e., a high-level fusion, e.g. [1]–[3]. However,
this requires an early-stage abstraction of measurement data to
generalized objects by specific object assumptions, resulting in
information loss and thus a more error-prone data fusion. With
greater computing resources and higher sensor resolutions now
available, low-level fusion approaches are increasingly used,
as they reduce that information loss by fusing measurement
data before object assumptions are made.

We present a new grid-based object tracking approach,
where the input is based on pre-processed measurement data
in the form of a dynamic occupancy grid. The basic concept of
this uniform input representation is to use the spatial grid cell
discretization for a generic cell-wise sensor data fusion and
dynamic estimation, all processed without requiring specific
object assumptions. The low-level dynamic estimation thereby
results in a static/dynamic occupancy classification including
velocity estimates of each grid cell. This enhances and also
simplifies the detection and tracking of moving objects, since
only measurement data classified as dynamic have to be
considered. Parts of our overall grid-based approach have
been presented in our previous work on the dynamic grid
estimation [4], the extraction of new objects by clustering
dynamic cells [5], and the association of dynamic cells with
predicted objects [6]. This paper follows on from those con-
cepts and focuses on the subsequent object state estimation.
The contribution is thereby divided into three parts.

First, we show how the dynamic state of an object, es-
timated by an unscented Kalman filter (UKF), is generally
updated by the associated dynamic occupied cells of the
current measurement. A common box model is used for the
object form and measurement abstraction, but in contrast to
approaches that directly process the raw sensor data, we also
evaluate the freespace information that is contained in the grid
representation. Thereby, a generic orientation estimation based
on minimizing the included freespace is proposed, and the po-
sition is updated by selecting the most visible reference point
regarding the surrounding freespace of the box edges.

Second, the UKF-based dynamic state estimation is ad-
ditionally improved by processing radar Doppler velocity
measurements. A generic radar velocity-based UKF motion
estimation is proposed that directly uses the radar velocity
measurement space for updating the object state by projecting
the UKF sigma points to the expected radial velocities, which
is also applicable to other measured velocity components. The
paper thus also discusses how radar measurements are repre-
sented and associated within our grid-based framework.

Third, the object shape estimation is addressed, i.e., the
size of the selected object box model, which is estimated
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differently with an assumed static state. A new combination
of a histogram filter geometry distribution estimation and an
object classification concept is proposed. This enables us to
model non-Gaussian distributions of the length and width by
distinguishing lower and upper bounds of the measurement,
also evaluated by the freespace, and prior class knowledge
of the assumed length or width if either has not been fully
observed yet.

Overall, this grid-based object tracking has several advan-
tages compared to a high-level fusion with a sensor-individual
object tracking on the raw measurement data, in particular:
• Static/dynamic occupancy classification, simplifying the

object detection and data association problem, since only
measurement data classified as dynamic have to be con-
sidered for estimating moving objects.

• Low-level dynamic estimation, resulting in a filtered cell
velocity estimation and a track-before-detect concept, en-
abling the detection of arbitrarily shaped moving objects,
an object velocity and orientation initialization, and an
improved data association.

• Freespace information, derived by sensor measurement
models, improving the estimation of the object position
by determining the most visible reference point, the ob-
ject shape by distinguishing lower and upper bounds, and
the object orientation by minimizing inside freespace.

• Uniform occupancy grid representation, enabling a
generic multi-sensor object tracking with an implicit low-
level sensor data fusion by the grid cell discretization, but
also extendable with separate layers for sensor-specific
measurements such as radar Doppler velocities.

In combination with the dynamic grid map, this approach re-
sults in a consistent multi-sensor estimation of moving objects,
static obstacles, and freespace. In the context of autonomous
driving, this eventually improves the scene understanding of
the current surroundings and thus the safety and comfort.

This article is organized as follows. Section II discusses
related work, while the specific grid-based estimation of our
previous work that forms the input of this work is summarized
in Section III. The dynamic state estimation of the object track-
ing is presented in Section IV, which is extended in Section V
by the additional radar Doppler measurement integration.
The histogram filter-based estimation of the spatial extent,
combined with the object classification, is discussed in Sec-
tion VI. Our approach is finally evaluated in Section VII with
real sensor data in various challenging scenarios; additional
experimental results are demonstrated in the attached video.

II. RELATED WORK

Object tracking is a broad field of research with various ap-
proaches; a general overview is presented in [7]–[9], for exam-
ple. This section focuses on similar grid-based approaches, as
they enable a generic multi-sensor object tracking, with some
additional relevant work on radar-based motion estimation.

Occupancy grid maps are typically accumulated in a fixed
coordinate system given the odometry of the egomotion. Sen-
sor data can thus be classified into static (stationary obstacles)
and dynamic (moving objects) by evaluating the occurring

measurement position in the accumulated grid map, while
dynamic parts are characterized by inconsistencies of previ-
ously derived freespace and currently measured occupancy or
vice versa [10]–[12]. By clustering measurements classified
as dynamic, moving objects are detected in [12], [13], which
are then filtered using multiple hypotheses tracking (MHT).
Object hypotheses are extracted similarly in [14], [15] with
a global nearest neighbor (GNN) association and a Kalman
filter state estimation. In [16], clusters of dynamic grid cells
are directly tracked as a free-form object model with a particle
filter and a joint probability data association (JPDA). However,
a moving object detection directly based on such occupied/free
inconsistencies is error-prone to measurement inaccuracies of
ranging or odometry sensors.

A more robust strategy requires a recursive dynamic state
estimation of the occupancy grid. First approaches have esti-
mated discrete velocities of each grid cell by neighborhood cell
transition histograms [17], [18], whereas recent approaches ef-
ficiently estimate continuous velocity distributions of each grid
cell using a grid-based particle filter as originally proposed
in [19] and further extended in [20]–[23]. This robust particle-
based dynamic estimation concept also forms the basis of our
work as presented in [4], with a more detailed discussion
on such dynamic occupancy grids. Overall, this temporally
filtered estimation results in an accumulated occupancy grid
map including accurate estimates of the grid cell velocities as
well as a static/dynamic occupancy classification. Those cell
velocity estimates thereby enable a more sensitive cell clus-
tering of neighboring dynamic occupied cells by considering
their velocity difference, which improves the object detection
with dense traffic and also reduces false positives, as proposed
in our previous work [5].

In [5], we also used the mean of the cell velocity estimates
of all associated cells for a direct measurement update of
the object velocity and orientation with a subsequent UKF-
based object tracking. However, this results in correlated input
data of the UKF and thus in a multi-filtering of the velocity
and orientation, which can cause higher filtering latencies in
nonlinear scenarios. In [24], a de-autocorrelation scheme is
proposed to whiten the correlated velocity input of a Kalman
filter object tracking based on such dynamic occupancy grids,
which, however, uses a simplified linear approximation that is
prone to deviations of that model, in particular in scenarios
with critical nonlinear movements.

Other recent approaches [25]–[28] use deep learning tech-
niques for the object detection based on dynamic occupancy
grids. But, in contrast to the generic cell clustering extraction
of arbitrarily shaped moving objects, those machine learning-
based approaches require large labeled training datasets. Fur-
thermore, those approaches describe only a single-frame object
detection without considering the temporal filtering. This is
extended in [29] by a tracking with a recurrent neural network
(RNN), which, however, requires a stationary ego vehicle in
that study and also does not investigate the object state estima-
tion of the velocity, acceleration, or turn rate. Similarly, several
recent vision-based deep learning approaches, e.g. [30]–[34],
achieve promising results in the object detection and tracking,
especially in the object classification as well, but usually
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only in the image space, without a detailed dynamic state or
shape estimation of the object tracks in the Cartesian world or
odometry space. That, however, is necessary for a robust multi-
sensor environment representation and applications such as
maneuver planning of autonomously moving mobile robots. In
addition, those approaches also require large training datasets
with a wide variety of possibly occurring objects.

A different approach is proposed in [35] with virtual rays
of a lidar sensor that are similar to a polar grid representa-
tion. The virtual rays are used to compute the measurement
likelihood with a pre-defined cost function of a box model
object shape, which also considers the expected freespace
around an object. The object state is then estimated by a Rao-
Blackwellized particle filter (RBPF) with a sampling of the
motion state and Gaussian estimates of the geometry. Hence,
that approach introduces using the freespace information for
the object state estimation, but the polar grid structure of the
virtual rays is not directly extendable to a generic multi-sensor
approach and a static/dynamic classification is not used.

The object shape can also be estimated using an object
local grid map [36], [37], enabling a detailed free-form shape
estimation by accumulating occupancy probabilities with an
individual grid for each object, also considering the freespace
information of the grid. However, for most applications, an
abstracted box model is sufficient and more robust, since
such an object local grid map requires complex and error-
prone re-alignment with the movement of the corresponding
object. Furthermore, the memory-intensive representation is
unfavorable for large trucks or in heavy traffic urban scenarios.

An accurate motion estimation requires Doppler radars that
enable directly measuring velocity components. A multi-radar
object tracking is proposed in [38], [39] by deriving the
velocity profile that describes the varying Doppler velocities of
an extended object over the azimuth angle. Depending on the
number of sensors and measurements, a least-squares regres-
sion is used to resolve up to three degrees of freedom of the ob-
ject state, i.e., the velocity, orientation, and turn rate. Similarly,
in [40], the velocity profile is used for a single-radar tracking,
with a separate orientation estimation based on the contour of
all radar detections in the case of a nonlinear motion. In [41], a
Gaussian process is used for the radar-based shape estimation,
combined with an extended Kalman filter (EKF) for the motion
estimation, which, however, results in complex partial deriva-
tives that are prone to linearization errors. But since radars
typically have a lower spatial accuracy than lidar sensors, all
of those radar-only approaches have difficulties in estimating
the object pose and size, which in turn affects the motion
estimation due to the inaccurate center of rotation.

Overall, there are several promising object tracking ap-
proaches that already partly use benefits of the static/dynamic
occupancy classification, the low-level dynamic grid estima-
tion, the freespace information contained in the grid, or radar
Doppler measurements. However, none of these approaches
fully combines the different benefits, which is addressed in
the following, with the aim of achieving a generic and robust
multi-sensor object tracking for challenging urban scenarios.

III. GRID-BASED ENVIRONMENT ESTIMATION

This section gives a brief overview of our overall grid-based
environment estimation approach [4]–[6] in order to under-
stand the input of this work and the pre-processing steps of it.
These processing steps are exemplarily illustrated in Fig. 1.

A. Evidential Grid Representation

The environment is modeled in an evidential occupancy grid
representation that is based on the Dempster-Shafer theory
of evidence (DST) [42], [43]. The DST framework enables
modeling separate hypotheses rather than a single Bayesian
occupancy probability. We use the frame of discernment

Θ = {F, S,D} (1)

with the individual hypotheses freespace (F ), static occu-
pancy (S), and dynamic occupancy (D), as initially proposed
in [20]. In this framework, not only are these individual hy-
potheses taken into account, but also all possible combinations
of them, i.e., the power set 2Θ of all subsets of Θ. This allows
us in particular to model unclassified occupancy O = {S,D},
without further specifying whether it is static or dynamic
as used to represent an occupancy measurement. Moreover,
passable area {F,D} that may be currently free or dynami-
cally occupied, primarily used in the temporal mapping [4],
and the remaining unknown state Θ that models all possible
hypotheses are thus also included in that representation.

In the DST framework, each hypothesis of the power set 2Θ

is estimated by an evidential basic belief mass m(·) ∈ [0, 1],
while the sum of all basic belief masses equals 1. The belief

bel(θ) =
∑

θ̃⊆θ

m(θ̃) ≤ p(θ) (2)

describes the sum of all subsets θ̃ ⊆ θ of a hypothesis θ ⊆ Θ,
which is a lower bound of the Bayesian probability p(θ).
Overall, this evidential grid structure represents a generic,
sensor-independent environment model.

B. Measurement Grid Fusion

The measurements of each sensor, measured at time t, are
abstracted in such a uniform evidential occupancy grid rep-
resentation. Each individual cell c ∈ G of the 2-D grid struc-
ture G thereby contains a cell measurement zct with eviden-
tial beliefs of unclassified occupancy bel(O) = bel(SD) and
freespace bel(F ) = m(F ), as well as the remaining unknown
mass m(Θ) that is implicitly included. The measurement grid
is thus described by

Zt = {zct | c ∈ G}, zct =
[
bel(Ocz,t), bel(F cz,t)

]T
. (3)

All sensor-individual measurement grids are fused to one
fused measurement grid by combining the corresponding occu-
pancy and freespace beliefs for each grid cell with Dempster’s
rule of combination [43]. Thereby, the individual cells of
the different grids exactly overlap with regard to the spatial
cell discretization by avoiding rotations and performing only
integer translations of the cell resolution using the accumulated
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 1. Overview of the different processing steps of the grid-based environment estimation and the subsequent object tracking. (a) Raw measurement data
(black squares: lidar, red squares: radar). (b) Fused 2-D measurement grid. (c) Filtered dynamic grid map. (d) Classified measurement grid. (e) Labeled particle
population. (f) Associated occupied cells and measurement bounding boxes. (g) Filtered object tracks. (h) Camera images (front and rear) of the scene.

odometry as the uniform reference frame, whereas the pose of
the ego vehicle inside the grid varies over time [4], [44], [45].

In this work, different lidar and radar sensors are used,
which are described in more detail in Section VII. To take
the different latencies and asynchronous measurement time in-
stances of the individual sensors into account, all measurement
data are buffered and then fused using an interval alignment
based on a trigger sensor as proposed in [46].

The radar sensors also include a velocity measurement

zcv,t =
[
vrz , θ

r
z , xs

]T
(4)

of the corresponding occupied cells, which contains the mea-
sured scalar radial Doppler velocity vrz , the azimuth angle θrz ,
and the position xs of the current sensor origin. In the case of
multiple Doppler measurements in a cell, the most certain one
with regard to the highest corresponding occupancy belief is
selected in the measurement grid fusion.

C. Dynamic Grid Mapping and Low-Level Particle Tracking

The measurement data of different sensors, all measured
at time t, have been abstracted to the evidential grid repre-
sentation and fused cell-wise to one measurement grid Zt.
The fused measurement grids of different time instances are
temporally accumulated in a dynamic grid map

Mt =
[
m(St), m(Dt), m(SDt), m(Ft), m(FDt)

]T
(5)

by an adapted evidential filtering combined with a low-level
particle tracking as discussed in detail in [4]. Hence, this
temporally filtered estimation enables us to distinguish static
and dynamic occupancy and thus subdivide the unclassified
occupancy belief of the current measurement

bel(Ocz,t) = m(Scz̃,t) +m(Dc
z̃,t) +m(SDc

z̃,t) (6)

into individual basic belief masses for {S}, {D}, and {S,D},
i.e., resulting in a pseudo-measurement z̃ with a static/dynamic
occupancy classification. Therefore, the object tracking of this
work is mostly reduced and thus simplified to the set

GD,t = {c ∈ G | m(Dc
z̃,t) ≥ ΓD} (7)

of currently occupied cells with a dynamic occupancy mass
greater or equal than a defined threshold ΓD > 0.

Dynamic occupancy of the filtered map Mt is initialized
and predicted using a grid-based particle filter as initially
presented in [19] and adapted in other recent approaches [20]–
[23]. Each particle χ ∈ Xt of the population Xt represents
a hypothesis of dynamic occupancy at a particular position
xχ ∈ R2 with velocity νχ ∈ R2 and an occupancy value oχ.
Hence, in addition to the dynamic occupancy prediction, the
filtered particle population also estimates velocity distribu-
tions. The particle velocity initialization and weighting are
thereby enhanced by the radar velocity measurements zcv,t if
available as proposed in [20], [47]. By evaluating all particles
χ ∈ X ct ⊆ Xt in a cell c ∈ G with regard to the current particle
positions xχ, the 2-D weighted mean cell velocity results in

νct =

( ∑

χ∈X ct

oχ

)−1

·
∑

χ∈X ct

oχνχ . (8)

Overall, this particle-based dynamic estimation, as part of
the dynamic grid mapping, enables a robust estimation of
cell velocities and thus the detection of moving parts of the
environment without requiring specific object assumptions.

D. Extraction of New Objects

In order to detect new occurring objects in the current
measurement grid, the static/dynamic occupancy classification
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and the particle-based cell velocity estimates νct are evaluated.
As presented in more detail in [5], a combination of a density-
based and connectivity-based clustering is used to extract new
objects. The basic idea is that clusters of dynamic cells with
similar velocities are compared with the local neighborhood
regarding the velocity variance of the cells, which is less
error-prone to areas wrongly classified as dynamic and thus
reduces false positives.

This object extraction based on clusters of dynamic cells
enables a robust detection of arbitrarily shaped moving objects
without requiring specific features such as L-shapes or large
training datasets for machine learning algorithms, e.g. [25]–
[28]. Furthermore, the particle tracking thereby serves as a
track-before-detect concept, i.e., movements are tracked by
low-level particle velocity hypotheses before high-level objects
are detected. Moreover, only new objects are extracted this
way, whereas existing object tracks that have been extracted
before are directly associated with occupied cells, which is
described in the following. This means that the object extrac-
tion is not applied in areas of predicted tracks, i.e., occupied
cells are associated to those existing tracks before possible new
objects are analyzed in the remaining set of unassociated cells.

E. Particle Labeling Association
The object tracking is updated by a set of associated occu-

pied cells of the current measurement grid. The individual cells
are thereby directly associated to predicted object tracks, i.e.,
information about the existing tracks is considered before
those cells are abstracted by a clustering. We use our particle
labeling association approach as presented in [6]. The basic
idea is to link particles χ ∈ Xt of the underlying low-level
particle tracking with the high-level objects by attaching an
object label to each particle. Dynamic occupied cells are thus
associated to objects by evaluating the particle label distribu-
tion in each cell. This association concept further contains a
subsequent clustering, in which multiple clusters of an object
are extracted and finally checked for plausibility to further
increase the robustness of the association.

Overall, both the extraction of new objects and the associ-
ation with existing ones result in a set of dynamic cells

Cτ,t = {c ∈ GD,t | fa(c) = τ} (9)

that are associated to the corresponding track τ ∈ Tt, with Tt
describing the set of all currently tracked objects including
the newly extracted ones. This mapping of dynamic occupied
cells to the object tracks given the cell measurements and
predicted object track states is thereby formally described by
the surjective function

fa : GD,t → Tt ∪ {ζ∅} : c 7→ τ , (10)

while cells that are not associated to a track are mapped to
an auxiliary variable ζ∅. Up to this point, the measurement
data, including the different processing steps of the dynamic
estimation, the association, and the extraction of new objects,
are still retained in the low-level grid representation. Based on
that pre-processing, the focus of this paper is the object state
estimation, i.e., deriving abstracted high-level information of
the individual objects, including the temporal state filtering.

x

y

l

w
v

ω

ϕ

(xx, xy)a

rear axle

Fig. 2. Illustration of the object state representation used in this work.

IV. DYNAMIC STATE ESTIMATION OF OBJECT TRACKS

The grid-based environment estimation, as described in
the previous section, results in a robust pre-processing of
measurement data in a uniform evidential grid representation.
This also includes the extraction of new object tracks and the
association of measurement data with existing object tracks,
both still retaining the grid cell representation. As discussed
before, those steps of our grid-based object tracking approach
already benefit directly from the dynamic grid estimation. This
section focuses on the high-level object state estimation based
on already associated occupied cells of the current measure-
ment grid, which further benefits from the evidential grid
representation of the input and the low-level particle tracking.

A. Dynamic State Representation

The dynamic state of each object track τ ∈ Tt of all
currently tracked objects Tt at time t is defined by

sτ,t =
[
xxt , x

y
t , vt, at, ϕt, ωt

]T
. (11)

This vector is composed of the 2-D position x =
[
xx, xy

]T
,

the longitudinal velocity v with the corresponding accelera-
tion a = v̇, and the orientation ϕ with the turn rate ω = ϕ̇.
As with the grid representation, the accumulated odometry
is used as the uniform reference frame of the position of all
objects. The position x of an object is fixed at the center of its
rear axle as the assumed center of rotation in normal driving
conditions. It is approximated between the center point and
the middle rear point of the selected box representation for all
object types. Accordingly, the velocity v, the acceleration a,
and the turn rate ω are also referred to that position x. The
selected object state representation is illustrated in Fig. 2.

This dynamic state sτ is filtered by an unscented Kalman fil-
ter (UKF) [48], which is discussed in the following. The object
shape, i.e., the length l and width w of the selected bounding
box representation, is assumed to be static and estimated
differently by a histogram filter combined with an object clas-
sification concept that is presented separately in Section VI.

Regarding the notation, since only a single track τ is
considered in the following state estimation, variables of the
state sτ,t as well as the corresponding current measurement are
denoted without reference to the track τ for better readability.

B. Prediction

The recursive UKF filtering requires a prediction to the
time t of the current measurement, which in turn requires
a motion model of the mean state sτ,t and a process noise
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model of the corresponding covariance Στ,t. The models used
for this procedure are briefly described in the following for
the sake of completeness.

1) Motion Model: The prediction of the state sτ,t−1 is
denoted by ŝτ,t, i.e., predicted variables are characterized by
a hat symbol. The state transition is based on a nonlinear
constant turn rate and acceleration (CTRA) motion model [49]
that enables clothoid trajectories. To increase the overall
robustness, we modify the CTRA motion model slightly

ω̂t = (1− εω)ωt−1 (12)

ât = arg min
a1,a2

(
|a1|, |a2|

)
, a1 = (1− εa)at−1, a2 = −vt−1

thorizon

(13)

by ensuring slow convergence of the turn rate ω and acceler-
ation a toward zero, which is modeled by the two reduction
factors εω, εa ∈ (0, 1). The acceleration is additionally limited
by the term −vt−1/thorizon to prevent a sign change of the
velocity without the object stopping or slowing down. For
example, a fast-moving object with vt−1 � 0 that performs
a full braking with a � 0 would otherwise, due to a too
slowly decreasing absolute acceleration, eventually overshoot
and result in a predicted negative velocity. The parameter
thorizon ≥ ∆t defines the time horizon and hence the smooth-
ness of the limitation. The remaining state is updated by the
default CTRA motion model [49]

ϕ̂t = ϕt−1 + ω∆t (14)
v̂t = vt−1 + a∆t (15)

x̂xt = xxt−1 + 1
ω2

(
ωv̂t sin(ϕ̂t) + a cos(ϕ̂t)

− ωvt−1 sin(ϕt−1)− a cos(ϕt−1)
)

(16)

x̂yt = xyt−1 + 1
ω2

(
− ωv̂t cos(ϕ̂t) + a sin(ϕ̂t)

+ ωvt−1 cos(ϕt−1)− a sin(ϕt−1)
)

(17)

using ω = ω̂t and a = ât. For ω ≈ 0, the position update in
(16)-(17) is replaced by a constant acceleration motion model
to avoid singularities.

2) Process Noise Model: The process noise model used is
based on a Wiener-sequence acceleration model [50], [51]

Qw = σ2
w,ρ̈




∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1


 , (18)

where, for a state [ρ, ρ̇, ρ̈]T, a change of the acceleration ρ̈
is assumed to be an independent white noise process with
variance σ2

w,ρ̈. Applying (18) independently to the tangential
acceleration a and the radial acceleration ω̇ of the state as
defined in (11), the UKF process noise matrix finally results in

Q =

[
Q1 0
0 Q2

]
(19)

with

Q1 = σ2
w,a




∆t4

4
cos2 ϕ ∆t4

4
sinϕ cosϕ ∆t3

2
cosϕ ∆t2

2
cosϕ

· ∆t4

4
sin2 ϕ ∆t3

2
sinϕ ∆t2

2
sinϕ

· · ∆t2 ∆t
· · · 1




(20)

Q2 = σ2
w,ω̇

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]
(21)

lz
1
2 δ
ϕ
d

wz
x̃ϕ,x

x̃ϕ,y

xcenter
z

ϕ

Fig. 3. Transformation of associated grid cells (gray, with crucial cells
highlighted in red) to a box model. The inner dotted rectangle fits the cell
centers, the solid rectangle also considers the cell extent by adding δϕd . All
possible reference points are visualized by yellow squares.

where dots · in (20) represent symmetric entries such that
Q1 = QT

1 . Overall, these motion and process noise models
are used for the prediction of the dynamic state and the
corresponding covariance of the UKF, which represents the
first step of the recursive state estimation. For the second
step, the measurement update, the measurement data of the
grid structure have to be abstracted to the representation of
the object state, which is addressed in the rest of the section.

C. Transformation of Associated Cells to Box Representation

The set Cτ,t of occupied cells of the current measurement
grid that have been associated to the track τ , see (9), is trans-
formed to an oriented minimum bounding box, i.e., occupied
grid cells are abstracted to the same box representation as the
filtered object tracks in this processing step. The length axis
of an object is thereby defined along the orientation ϕ and
the width axis is defined orthogonal to it. Hence, given the
orientation ϕ, the length and width of the measurement box

lz = max
c∈Cτ,t

(x̃ϕ,xc )− min
c∈Cτ,t

(x̃ϕ,xc ) + δϕd (22)

wz = max
c∈Cτ,t

(x̃ϕ,yc )− min
c∈Cτ,t

(x̃ϕ,yc ) + δϕd (23)

are computed as the distance of the maximum and minimum
of the positions xc of the associated cells c ∈ Cτ,t, with

[
x̃ϕ,xc , x̃ϕ,yc

]T
= Rϕ

[
xxc , x

y
c

]T
(24)

describing the cell position xc of the odometry reference frame
mapped to the object coordinate system (x̃ϕ,x, x̃ϕ,y) using the
rotation matrix Rϕ around the angle ϕ. As xc represents only
the center of a cell, similar to a dilation, an additional extent

δϕd = dc
(
| sin(ϕ)|+ | cos(ϕ)|

)
∈ [dc,

√
2 dc] (25)

is added to the length and width to cover the complete
quadratic cell with a size of dc × dc by the extracted ob-
ject size along the orientation ϕ. The orientation ϕ of the
bounding box is determined by analyzing the freespace of the
measurement grid for various box hypotheses with different
orientations, which is described separately in Section IV-F. A
geometric illustration of the transformation to the box model
is shown in Fig. 3.

D. Position Measurements with Reference Point Selection

The associated occupied grid cells have been abstracted
to an oriented measurement box as described above, which
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enables a position update. The position of the center of the
measurement box in the odometry frame is calculated as

xcenter
z = RT

ϕ




min
c∈Cτ,t

(x̃ϕ,xc ) + 1
2 (lz − δϕd )

min
c∈Cτ,t

(x̃ϕ,yc ) + 1
2 (wz − δϕd )


 . (26)

The position of the filtered track is referred to the assumed
center of rotation, approximated as the position between the
center and the middle rear point of the box, see (11). Hence,
a direct position update of x̂t is achieved using the extracted
position with 1

4 lz rather than 1
2 lz in (26). The size of the

measurement box, however, may change through occlusion
or a changing sensor field of view, as it is only a minimum
bounding box. Consequently, the center position xcenter

z may
vary even if the object does not move, with noise-free mea-
surement data as well.

A robust estimate of the position therefore requires using
reference points that describe the position in reference to a
certain fixed point of an object. Thereby, the position update
of the UKF is achieved by transforming the position of
the internal state ŝτ to the selected reference point of the
measurement space, i.e., a predicted measurement is calculated
using the UKF sigma points. In this work, the reference point
can be either at a corner, an edge center, or the center of the
box, see Fig. 3, as also used in [15], [52]. The position in
terms of a reference point is thus defined as

xref
z = xcenter

z +RT
ϕ

[
δref
z,l lz

δref
z,w wz

]
, δref

z,l, δ
ref
z,w ∈

{
0, 1

2 ,− 1
2

}
, (27)

where δref
z,l and δref

z,w have to be selected with respect to the
most robust position estimate.

Rather than using the reference point with the shortest
distance to a certain sensor origin, we consider the surrounding
freespace evidence of the measurement grid to determine the
best reference point. Hence, this concept is suitable for a multi-
sensor setup and takes all current sensor observabilities, mod-
eled in the evidential grid representation, into account. Each
edge e ∈ {front, rear, left, right} of the measurement box is
analyzed with regard to its current visibility ϑez ∈ [0, 1], while
ϑez = 1 means that the edge e is currently a fully visible bound-
ary and thus denotes a true object boundary. Thereto, the ratio

rF (A) =
1

|A|
∑

c∈A
m(F cz,t) , A ⊆ G (28)

defines the sum of the current freespace evidence m(F cz,t) of
all cells c ∈ A ⊆ G in an area A compared to the number of
cells |A| of that area, i.e., its cardinality. Hence, the estimated
edge visibility is approximated by

ϑez ≈ rF (Ae) , (29)

i.e., the surrounding freespace ratio rF (Ae) in an area Ae
around the edge e of the measurement box that is expected to
be freespace in order to represent a visible boundary. In this
work, an outside rectangle area is used, as shown in Fig. 4.

The position along the length axis is finally selected as

δref
z,l =





+ 1
2 , if ϑfront

z ≥ ϑmin ∧ ϑrear
z < ϑmin

− 1
2 , if ϑfront

z < ϑmin ∧ ϑrear
z ≥ ϑmin

0 , else
, (30)

Ae,right

Ae,left

Ae,front
Ae,rear

(a)

Ae,right

Ae,left

Ae,front
Ae,rear

(b)
Fig. 4. Analysis of track edge visibility considering the freespace evidence
in the surrounding striped rectangle areas Ae,τ . Visible edges are highlighted
red, a yellow square denotes the selected reference point. (a) Scenario where
the rear and right edge are visible. (b) Scenario with additional freespace at
the left edge such that the extracted width represents also an upper bound.

meaning that the position is at an edge if the corresponding
visibility is above a defined threshold ϑmin > 0. If both the
front and the rear edge are visible, the center depicts the
most robust position along the length axis. The position δref

z,w

along the width axis is determined equivalently with the
visibilities of the left edge ϑleft

z and the right edge ϑright
z . In

sum, the corresponding corner point is selected if exactly two
orthogonal edges are visible, whereas the in-between edge
center is selected when multiple corner points are available.
This edge visibility ϑez is also considered for the length and
width estimation, which is discussed separately in Section VI.
Overall, this reference point selection with the freespace
evaluation enables a robust position update of the track.

E. Velocity and Orientation Estimation of Particle Tracking
The object position is updated by abstracting a bounding

box of the associated occupied cells. In addition to the oc-
cupancy and freespace evidence of the measurement grid, the
input data also contain 2-D cell velocities νct , estimated by the
low-level particle tracking with the particle population Xt as
defined in (8). Hence, the 2-D weighted mean velocity vector

ν =

( ∑

c∈Cτ,t
m(Dc

z̃,t)

)−1

·
∑

c∈Cτ,t
m(Dc

z̃,t) ν
c
t (31)

of all associated cells of the set Cτ,t, weighted by the cor-
responding dynamic evidence mass m(Dc

z̃,t), represents an
estimate of the velocity and orientation of the object track in
terms of the velocity magnitude and movement direction, i.e.,

vz̃ = ‖ ν ‖ , (32)
ϕz̃ = arctan(ν) . (33)

The corresponding weighted variances are calculated as

σ2
v,z̃ = ησ

∑

c∈Cτ,t
m(Dc

z̃,t) (‖νct ‖ − vz̃)2 (34)

σ2
ϕ,z̃ = ησ

∑

c∈Cτ,t
m(Dc

z̃,t)
(
(arctan(νct )− ϕz̃) mod 2π

)2

(35)

with an unbiased weight normalization [53]

ησ =

∑
c∈Cτ,t

m(Dc
z̃,t)

( ∑
c∈Cτ,t

m(Dc
z̃,t)
)2

− ∑
c∈Cτ,t

(m(Dc
z̃,t))

2

. (36)
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That 2-D velocity ν represents a rough but robust estimate
since it is temporally filtered by the particle tracking using a
simple constant velocity motion model without specific object
assumptions. As described before, the particle tracking thereby
serves as a track-before-detect concept. Hence, the velocity
and orientation, in terms of the movement direction, of a newly
extracted high-level object are directly initialized with that
estimate even without directly measuring those states.

Since the particle tracking is performed permanently, i.e.,
even after objects are extracted, this particle-based estimation
can be extracted in each update step. Hence, vz̃ and ϕz̃ can be
interpreted as pseudo measurements and directly used for the
UKF update as performed in our previous work [5]. However,
these estimates are already filtered by the particle tracking, re-
sulting in a correlation of those pseudo measurements and thus
violating the required uncorrelated input noise of a Kalman
filter. This multi-filtering can increase the filtering latency, i.e.,
the system becomes slower if there are any deviations from
the motion model, which is critical for scenarios with a fast-
changing turn rate or acceleration. Therefore, in this work, the
particle-based velocity and orientation estimates are only used
directly for the object state initialization.

Nonetheless, since the particle-based estimation does not
rely on specific object shape assumptions, the estimated mean
and variance are used to form a confidence interval

IXϕ =
{
ϕ ∈ [−π, π]

∣∣ |ϕ− ϕz̃| mod π ≤ γσϕ,z̃ + σXϕ,min

}

(37)

of the assumed object orientation based on the movement of
the point-mass particles. The parameter γ scales the respective
variance, with defined added uncertainty σXϕ,min of the particle
filtering in general. Hereby, since the UKF state estimation is
not used for determining this orientation interval, a feedback
of the object state and a drift off toward a wrong local
convergence is avoided.

Overall, the low-level particle tracking enables a robust
velocity and orientation initialization of the object state, while
a subsequent direct measurement update is avoided as this
would result in multi-filtering. Instead, the orientation is
further estimated by a local optimization of the filtered state
regarding the currently measured freespace, which is described
in the following, whereas the velocity is only updated with
radar Doppler measurements, as presented in the next section.

F. Orientation Estimation Based on Freespace Evidence
The freespace evidence m(F cz,t) of the measurement grid

is evaluated in terms of the surrounding areas of the box
edges to determine the current visibility of each edge as
used for the reference point selection of the position update.
In the following, this freespace information is also used for
estimating the object orientation by analyzing the inside area
of the object box. For this, the freespace ratio rF (Aϕi ) as
defined in (28) is evaluated with the area Aϕi enclosing all
cells inside the measurement minimum bounding box with
length lz and width wz given the set of associated cells Cτ,t
and the respective evaluated orientation ϕ, see (22)-(23). This
concept is based on the assumption that objects do not contain
freespace inside the object shape.

In other words, this means that a low freespace ratio rF (Aϕi )
implies that the corresponding measurement box fits well
with the data of the measurement grid, whereas an inaccurate
orientation estimate results in a higher freespace ratio. Hence,
this is described by the optimization problem

ϕ∗z = arg min
ϕ∈IXϕ

κ(ϕ), κ(ϕ) = rF (Aϕi ) , (38)

minimizing the cost function κ(ϕ) that equals the ra-
tio rF (Aϕi ) of the included freespace. The possible range of
the orientation ϕ is thereby limited by the particle confidence
interval IXϕ as defined in (37).

If the track τ is not newly extracted and its predicted orien-
tation is within the particle confidence interval, then the opti-
mization starts with that predicted track orientation (ϕ0 = ϕ̂t),
otherwise the mean particle orientation is used (ϕ0 = ϕz̃,τ ). A
hill-climbing optimization with a discrete orientation delta δϕ,
e.g., δϕ = 2◦, is then performed, resulting in the discrete
optimum ϕi∗ with ϕi = ϕ0 + i · δϕ ∈ IXϕ and i ∈ Z. Finally,
a continuous optimum is approximated by the weighted mean
with the two neighbors ϕi∗ ± δϕ, i.e.,

ϕ∗z ≈
(∑

ϕ′

1

κ(ϕ′)

)−1

·
∑

ϕ′

1

κ(ϕ′)
· ϕ′, (39)

ϕ′ ∈ {ϕi∗ , ϕi∗ + δϕ, ϕi∗ − δϕ} . (40)

The corresponding variance

σ2
ϕ,z = (∇r −∇l)−2 (41)

is determined by the right-sided (i > i∗) and left-sided (i < i∗)
gradients with the maxima ϕmax,r

i and ϕmax,l
i , respectively, i.e.,

∇r =
κ(ϕmax,r

i )− κ(ϕi∗)

ϕmax,r
i − ϕi∗

, ϕmax,r
i = max

i>i∗
ϕi . (42)

In contrast to an L-shape fitting, this freespace evaluation
concept does not require a feature-specific extraction. Fur-
thermore, occupancy can occur not only on the outer edge,
but also anywhere inside that object. Moreover, only a local
optimization is performed based on the orientation of the
predicted track and the estimated movement direction of the
particle tracking, thus resulting in an approach that is also
robust against deviations from the box model shape.

In summary, this section has presented a UKF-based dy-
namic state estimation of an object with measurement data
modeled by the dynamic grid representation. The object posi-
tion and orientation are updated by an abstracted measurement
box of the associated occupied cells and an evaluation of the
freespace of the grid. For the object state initialization, the
mean of the 2-D cell velocities of the underlying low-level
particle tracking is used as the initial estimate of the object
velocity and orientation in terms of the movement direction.

V. ADDITIONAL RADAR VELOCITY MEASUREMENTS

The dynamic state of each track, in particular the object
pose, is robustly estimated based on the occupancy and
freespace evidence of the current measurement grid as de-
scribed in the previous section. This section extends that con-
cept by evaluating radar Doppler velocity measurements that
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may occur at a track, which significantly improves the motion
state estimation for highly dynamic movements. A novel radar
velocity-based UKF motion estimation is proposed, which
directly uses the measurement space of the Doppler velocity
measurements for updating the object state by a projection of
the UKF sigma points to expected radial velocity components.
The radar velocity measurements are thereby integrated into
the overall grid-based framework to utilize the advantages
of the fused grid-based input representation, including the
spatially accurate lidar measurements.

A. Association of Radar Doppler Velocity Measurements

The radar velocity measurements zcv,t are represented in
the measurement grid structure as separate layers, as defined
in (4), containing the radial velocity vrz , azimuth angle θrz ,
and the position xs of the corresponding sensor origin at the
current time t. The radar measurements thereby typically have
a higher spatial uncertainty than those of the lidar sensors,
thus resulting in a lower occupancy evidence and multiple
cells containing the same radial velocity measurement, which
in turn is useful for the velocity weighting of the low-level
particle tracking. The particle labeling association [6] used
in this work, however, discards cells with a low dynamic
occupancy evidence, as only cells with a higher occupancy
evidence should be considered to form the measurement
minimum bounding box of the object tracking.

Hence, all occupied cells of the extended set of associated
cells C+

τ,t ⊇ Cτ,t, representing all cells associated to the track τ
by the particle label distributions but without discarding cells
with a low occupancy evidence, are considered in the follow-
ing, while only cells that contain a velocity measurement are
relevant, i.e.,

Crτ = { c ∈ C+
τ,t | ∃ zcv,t } . (43)

This extended association is illustrated in Fig. 5, which forms
the basis for updating the tracks by the associated radar
Doppler measurements.

B. Geometric Relations of the Radial Velocity Component

The velocity of a track τ is represented as a scalar veloc-
ity vτ along the orientation ϕτ with the turn rate ωτ , which
is referenced to the center of the rear axle, see Fig. 2. The
2-D Cartesian velocity vi in the odometry reference frame at
an arbitrary point xi of the object is calculated as

[
vxi
vyi

]
= vτ

[
cos(ϕτ )
sin(ϕτ )

]
+ ωτ

[
−(xyi − xyτ )
xxi − xxτ

]
, (44)

as described in [39] using the instant center of rotation (ICR)
and the assumption of the Ackermann steering geometry with
a drift-free driving state.

The radial velocity regarding the angle θri results in

vri =
[
cos(θri ), sin(θri )

] [vxi
vyi

]

=vτ (cos(θri ) cos(ϕτ ) + sin(θri ) sin(ϕτ ))

+ ωτ
[
cos(θri ), sin(θri )

] [−(xyi − xyτ )
xxi − xxτ

]
, (45)

(a) (b) (c)

Fig. 5. Extended particle labeling association with radar measurements.
(a) Classified measurement grid with radar measurements illustrated by
arrows. (b) Dynamic cells with labeled particles and predicted track. (c) Ex-
tracted minimum bounding box formed by cells with a high dynamic mass.
The remaining cells with radar velocities are considered for the dynamic state
estimation, but not utilized for the extraction of the bounding box.

ωτ

vi

ICR

vτ

xxi − xxτ

xyi − x
y
τ

sensor

vri

x

y

xs

xτ

xi

θri

di

ϕτ

Fig. 6. Geometric relations of the velocity components of a turning object
using the instant center of rotation (ICR) as the stationary rotation point of
the object and the assumption of the Ackermann steering geometry with a
drift-free driving state. The radial velocity vri depends on the angle θri of the
radial component, the dynamic object state sτ , and the position difference
between the track xτ and the evaluated position xi or the sensor position xs.

which depends on the evaluated position xi if ωτ 6= 0. Using
the cell centers xc of zcv,t as the position, however, introduces
a bias error due to the grid discretization and the additional
spatial uncertainty over multiple grid cells as shown in Fig. 5.
The position of the radar detection can also be described

[
xxi
xyi

]
= di

[
cos(θri )
sin(θri )

]
+

[
xxs
xys

]
(46)

relative to the corresponding position xs of the sensor origin at
the time of the measurement with the distance di = ‖xi − xs‖
between the evaluated position xi and the sensor origin xs
and the azimuth angle θri of the measurement. Since (46) also
fulfills the relation
[
cos(θri ), sin(θri )

] [−xyi
xxi

]
=
[
cos(θri ), sin(θri )

] [−xys
xxs

]
,

(47)

the radial velocity of (45) can also be evaluated without any
additional bias error, which finally results in

vri =vτ cos(θri − ϕτ )

+ ωτ
(

sin(θri )(x
x
s − xxτ )− cos(θri )(x

y
s − xyτ )

)
(48)

using the trigonometric addition formula. The different geo-
metric relations of the velocity parts are summarized in Fig. 6.
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previous state sτ,t−1 predicted state ŝτ,t θri

hri (ξ̂ϕτ,t)

x
sensor

ξ̂ϕτ,t

ξ̂ϕ+
τ,t

ξ̂ϕ−τ,t

hri (ξ̂ϕ+
τ,t )

hri (ξ̂ϕ−τ,t )

ξϕ+
τ,t−1 ξϕ−τ,t−1ξϕτ,t−1

Fig. 7. Illustration of different state orientations ϕ of the UKF sigma
points ξ, their prediction ξ̂, and the different expected radial velocity compo-
nents hri (ξ̂τ,t) given the observation angle θri of the radar sensor.

C. Radar Velocity-Based UKF Motion Estimation
Based on the relation between the object state sτ and the

radial velocity vri at a particular position xi as derived in (48),
expected radial velocities can be determined by the predicted
state ŝτ . This forms the basic idea of the measurement
update with radar Doppler measurements, since the innovation
between the predicted state and the measurement is evaluated
in the measurement space for a Kalman filter, while the UKF
sigma points ξ ∈ Ξ enable the nonlinear projection hr(ξ).
Each predicted sigma point ξ̂τ,t of the track τ is projected

hri (ξ̂τ,t) =v̂τ,t,ξ cos(θrz,i − ϕ̂τ,t,ξ)
+ ω̂τ,t,ξ

(
sin(θrz,i)(x

x
s,i − x̂xτ,t,ξ)

− cos(θrz,i)(x
y
s,i − x̂yτ,t,ξ)

)
(49)

to the measurement space of the radial velocity for each
measured velocity vrz,i with azimuth angle θrz,i and the corre-
sponding sensor position xs,i. The predicted radial velocity is
calculated by the weighted sum of all sigma points, i.e.,

v̂ri =
∑

ξ∈Ξ

wξh
r
i (ξ̂τ,t) , (50)

with a total of |Ξ| = 2 · |sτ,t|+ 1 = 13 sigma points for the
dynamic state sτ,t, finally resulting in the innovation vrz,i − v̂ri .

The measured azimuth angle θrz,i is assumed to be noise-free
in this work, i.e., errors of this parameter are not considered
in (49). However, implausible measurements, e.g. caused by
micro-Doppler, Doppler ambiguities, or a wrong association,
are discarded by evaluating the innovation with a 3σ-range of
the predicted measurement variance as the valid gating area.

Overall, this UKF-based measurement update by the radar
Doppler velocities enables a generic dynamic state estimation,
which is also applicable to other measured velocity compo-
nents. Not only is the velocity estimated that way, but all
variables of the dynamic state sτ,t are estimated implicitly,
as they all influence the predicted state ŝτ and the derived
predicted radial velocity v̂ri . For example, a varying track
orientation also results in a different angle difference to the
observation angle, leading to a different radial velocity as
illustrated in Fig. 7. In contrast, an explicit determination
of the velocity, orientation, and turn rate by a least-squares
fitting of the equation set (48) for all measured radial velocities
requires at least three detections of two sensors at the same
measurement time and with varying azimuth angles.

VI. SHAPE ESTIMATION AND OBJECT CLASSIFICATION

This section focuses on the shape estimation in terms of
the length and width of the bounding box of an object track.
Furthermore, an object classification is performed based on
the geometry distribution estimation and the maximum filtered
velocity of the track. Finally, a specific object track size
is extracted using both the geometry distribution and the
object classification. Overall, this combined estimation enables
modeling of prior class knowledge of the assumed length and
width if either has not been fully observed yet.

A. Histogram Filter Based Geometry Distribution Estimation

The length lτ and width wτ of a track τ , with random
variables Lτ and Wτ , respectively, form the geometric shape

gτ =
[
lτ , wτ

]T
(51)

of the selected box model representation. This state is assumed
to be static, i.e., it does not change over time, thus the time
index of gτ is omitted. The box shape is updated iteratively
by the geometry measurement, which primarily contains the
extracted length lz and width wz of the measurement box
as defined in (22)–(23). However, the real length and width
are usually not fully observable, which means that this mea-
surement box generally describes only a minimum bounding
box, i.e., a lower bound of the geometric shape. To determine
whether lz and wz also represent upper bounds and thus the
real size of that track, the visibility ϑez ∈ [0, 1] of each edge
e of the current measurement box is considered, which was
calculated in (29) as part of the reference point selection. For
example, an upper bound of the length lτ is measured if both
edges at the front and the rear are currently fully visible, i.e.,
ϑfront
z = ϑrear

z = 1. Hence, with separation of the length and
width components, the geometry measurement of the current
time instance t is described by the two vectors

zl,ϑt =
[
lz, ϑ

front
z , ϑrear

z

]T
, (52)

zw,ϑt =
[
wz, ϑ

left
z , ϑright

z

]T
. (53)

Overall, the goal is to estimate the geometry of a track τ
given all measurements up to time t, denoted as 1 : t, i.e.,

p(lτ , wτ | zl,ϑ1:t , z
w,ϑ
1:t ) = p(lτ | zl,ϑ1:t ) p(wτ | zw,ϑ1:t ) . (54)

The length and width are estimated separately, assuming
independence of both. In the following, only the estimation
of the length distribution p(lτ | zl,ϑ1:t ) is described, since the
width distribution p(wτ | zw,ϑ1:t ) is determined equivalently.

The inverse sensor model of the length is modeled as a
piecewise function

p(l | zl,ϑt ) ∝ exp

(
− (l − lz)2

2ςl,ϑ σ2
l

)
,

ςl,ϑ =

{(
ϑfront
z ϑrear

z

)−1
, if l ≥ lz

1 , else
,

(55)

i.e., a normal distribution in which the variance below and
above the measured length lz differs by a scaling variable ςl,ϑ.
This scaling variable is used to model the impact of the edge
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visibility. If both edges are fully visible, then the probability
p(lτ | zl,ϑt ) corresponds to an unmodified normal distribution
with lz representing an estimate of the real length. If at least
one edge is not visible, then lz is only a lower bound of the
object track length lτ , in which (55) is modeled similar to a
sigmoid function. This sensor model is illustrated in Fig. 8 for
varying edge visibilities.

The probability distribution of the length p(lτ | zl,ϑt ) is
estimated by a 1-D histogram filter, requiring a decompo-
sition of the continuous state space lτ ∈ R+ into discrete
values {li}Ili=1 = {l1, l2, . . . , lIl}. The probability density
function of the random variable Lτ is thus approximated by the
discrete probability mass function {pilτ ,t} in that interval, i.e.,

p(lτ | zl,ϑ1:t ) ≈
pilτ ,t
δi

, lτ ∈
(
li − δi

2 , li + δi
2

]
, (56)

with δi defining the interval size of the corresponding bin i.
The individual interval size δi can be adapted over time based
on the current distribution using dynamic decomposition [54]
to increase the histogram approximation. However, we use
a constant interval size here, i.e., static decomposition, since
the number of required intervals Il is rather low due to the
accuracy limitation of the input grid resolution and the limited
range of the possible values of the modeled classes.

The posterior probability distribution of the discrete length
intervals {li}Ili=1 is then recursively estimated

pilτ ,t =
p(li | zl,ϑt ) pilτ ,t−1

Il∑
j=1

p(lj | zl,ϑt ) pjlτ ,t−1

(57)

by applying Bayes rule and using the inverse sensor model as
defined in (55). The initial length distribution {pilτ ,0}

Il
i=1 is set

to a uniform distribution with pilτ ,0 = 1
Il
∀i. To ensure con-

vergence toward new measurements and avoid singularities,
the minimum value of each discrete probability pilτ ,t−1 of the
previous time instance is limited to a value εmin > 0 in (57).

Overall, this histogram filter-based length and width esti-
mation enables modeling non-Gaussian distributions, which is
beneficial as lower and upper bounds of the measurement box
are distinguished by the freespace information.

B. Classification Based on Geometry and Velocity Information

In the following, the object track is classified with regard
to the modeled classes k ∈ K of the set

K = {car, truck, pedestrian, cyclist,motorcycle, other} . (58)

This classification is based on the features length l, width w,
and velocity v, resulting in the estimation problem

p(k | l, w, v) =
p(k) p(l, w, v | k)

p(l, w, v)
. (59)

Those features are assumed to be conditionally independent
of each other, i.e.,

p(l, w, v | k) = p(l | k) p(w | k) p(v | k) , (60)

which simplifies (59) to a naive Bayes classifier with

p(k | l, w, v) ∝ p(k) p(l | k) p(w | k) p(v | k) . (61)
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Fig. 8. Inverse sensor model with boundary visibility consideration. Example
shows length distribution with measured length lz = 3.5 m (dashed line).
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Fig. 9. Modeled likelihood p(·|k) of the features length l, width w, and
velocity v given the individual classes k ∈ K. The distributions are illustrated
unnormalized with η indicating different normalization factors.

The modeled likelihood functions of the length p(l | k), the
width p(w | k), and the velocity p(v | k) are shown in Fig. 9
for all classes k ∈ K except the class k = {other}, which is
modeled uniformly for all features. The length is modeled as a
normal distribution N (l; µl,k, σ

2
l,k) with mean µl,k and vari-

ance σ2
l,k for the classes k ∈ {pedestrian, cyclist,motorcycle}.

The car and truck classes are modeled differently due to
their greater variety in the length. Hence, both classes are
represented using lower and upper boundaries of the possible
length, which is modeled

p(l | k) ∝ S(l, lkmin, α
k
l,min)

(
1− S(l, lkmax, α

k
l,max)

)
,

k ∈ {car, truck} (62)

using a combination of two sigmoid (logistic) functions with

S(x, x0, α) =
1

1 + e−α(x−x0)
. (63)

Similarly, the likelihood of the velocity v given a class k is
also modeled as a negated sigmoid function

p(v | k) ∝ 1− S(v, vkmax, α
k
v) . (64)

This means that a class k is unlikely if the observed velocity v
exceeds the maximum velocity vkmax of this class. This feature
is only used as an exclusion criterion, and thus the likelihood
in (64) is not normalized over the individual classes here. For
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example, a velocity of v = 1 km/h does not represent a gain
of information and should result in equal class probabilities
of all classes k ∈ K regarding the velocity feature. This is
equivalent to normalizing (64) and adjusting the individual
class priors p(k) in (61) accordingly.

The best class regarding the maximum a posteriori classifi-
cation given the features (l, w, v) then results in

k∗ = arg max
k∈K

p(k | l, w, v)

= arg max
k∈K

p(k) p(l | k) p(w | k) p(v | k) . (65)

However, rather than classifying the individual measure-
ments and recursively filtering that classification, we perform
the classification directly on the filtered track τ . This means
that the classifier is based on the probability distributions of the
length Lτ and width Wτ , which are recursively estimated by
the histogram filter. Therefore, instead of evaluating a single
length l of the likelihood p(l | k), the expectation

EL[ p(Lτ | k) ] =

Il∑

i=1

p(li | k) pilτ ,t (66)

regarding the likelihood of Lτ that considers all possible
discretized lengths {li}Ili=1 weighted by their corresponding
probability pilτ ,t has to be taken into account. Accordingly,
the expectation EW [ p(Wτ | k) ] of the likelihood for the width
distribution Wτ has to be determined. For the velocity feature
that is evaluated by the classifier, the maximum of the filtered
velocity over all time instances of the track is used, i.e.,

vmax
τ = max

t′=1,...,t
(vτ,t′) . (67)

Overall, based on (65), the best fitting class k∗τ of the track τ
regarding the filtered geometry state and the maximum of the
filtered velocity results in

k∗τ = arg max
k∈K

EL,W [ p(k | Lτ ,Wτ , v
max
τ ) ]

= arg max
k∈K

p(k) p(vmax
τ | k)EL,W [ p(Lτ | k) p(Wτ | k) ]

= arg max
k∈K

(
p(k) p(vmax

τ | k)

Il∑

i=1

p(li | k) pilτ ,t

Iw∑

i=1

p(wi | k) piwτ ,t

)
. (68)

This simple classification concept can further be combined
with other extracted features, especially direct camera-based
classification information, which is addressed in future work.

C. Extraction of Estimated Length and Width of Box Model
The histogram filter-based geometry estimation results in

probabilities {pilτ ,0}
Il
i=1 and {piwτ ,0}

Iw
i=1 of the discrete inter-

vals of the length and width. Overall, however, a specific value
of the assumed length lτ and width wτ is required for the
box model representation of the track. For this purpose, the
estimated length and width distributions are combined with the
best fitting class k∗τ as defined in (68). Thus, an unobservable
full length or width, e.g., a preceding vehicle for which only a
minimum length is observable, is then estimated by evaluating
the corresponding likelihood of the length or width given

the class k∗τ as depicted in Fig. 9 rather than extracting that
observed minimum bounding box. The finally extracted length

l∗τ = li∗lτ , (69)

and equivalently the width, is determined by the length of the
histogram bin

i∗lτ = arg max
i=1, ..., Il

{
pi,lcomb : pi,lcomb >

(
(1 + ε) max

j=1,...,i
pj,lcomb

)}

(70)

with the highest combined probability

pi,lcomb ∝ p(li | k∗τ ) · pilτ ,t (71)

regarding the length likelihood p(li | k∗τ ) of the best class k∗τ
and the length histogram distribution pilτ ,t. In the case of
multiple lengths with similarly high probabilities, the smallest
length is chosen by (70) in order to extract the minimum
bounding box. The factor (1 + ε) with a small ε > 0 increases
the robustness by ensuring that larger values of the length are
only extracted if the corresponding probability is significantly
higher than the previous maximum.

By considering only the best class k∗τ in (71) rather than all
classes weighted by their individual class probability as deter-
mined in (68), it is ensured that the extracted length l∗τ also fits
to the assumed length of the best class k∗τ of that track. The
length can also be calculated by the mean length weighted by
the probability pi,lcomb. However, that weighted mean increases
when only lower bounds of the length are observed, since then
the normalized probabilities of the unobserved larger length
values are higher, resulting in a larger extracted length, which
is unfavorable in that application and thus avoided by (69).

The priors p(k) of the classes k ∈ {pedestrian, cyclist} are
selected higher than the prior of the class car such that slow-
moving small objects – even when no upper boundary of the
length or width has been observed – tend to be classified as
such smaller objects. This means that if none of the evaluated
features contradicts with the class pedestrian, that class should
dominate the others. This results in a more robust association,
since the extracted size is also used for the gating area of the
association [6], which is selected more conservatively that way.

Overall, this approach combines the temporal filtering of
the measured box size, including distinguishing lower and
upper bounds by evaluating the freespace information, with
the corresponding likelihood of the modeled classes, which
results in a robust and reasonable object shape estimation.

VII. EXPERIMENTAL RESULTS

The proposed grid-based object tracking has been tested in
various scenarios in the context of urban autonomous driving.
The sensor setup of the test vehicle as well as the evaluation
setup are briefly described first, followed by qualitative results
in different urban environments. The dynamic state estimation
of an object is then evaluated quantitatively with critical full
braking and turning scenarios using real sensor data with a ref-
erence measurement system. Finally, the geometry estimation
and object classification is evaluated by a simulated overtaking
maneuver by another vehicle with different variants. Further
results are demonstrated in the attached video.
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(a) Scenario at an intersection with a lot of cross traffic.

(b) Scenario with an unknown object (tram) and surrounding vehicles. (c) Scenario with several surrounding pedestrians and a turning car.

Fig. 10. Different complex urban scenarios with real sensor data. The classified measurement grid (without occupancy accumulation) is shown on the ground.
The proposed grid-based object tracking is shown by boxes with the following object classification color coding: car (yellow), truck (orange), pedestrian
(purple), cyclist (cyan), motorcycle (blue), unknown (gray). The scalar object velocity is indicated by a blue arrow, the acceleration by a red arrow, which
also illustrates the yaw rate transformed to the lateral acceleration alat = v · ω.

A. Sensor and Evaluation Setup
The sensor setup of the test vehicle is as follows:
• 5 lidar sensors (1 in front + each corner)
• 3 long-range radars (1 in front, 2 to the rear)
• 4 short-range radars (each corner)

This enables full 360◦ coverage with a multi-sensor fusion of
lidar and radar sensors. The integration of camera information
into the proposed grid-based approach will be addressed in
future work. The test vehicle also consists of high-precision
inertial measurement units (IMU) for the odometry estimation.
Furthermore, for the quantitative evaluation, the observed tar-
get vehicle is equipped with a measurement reference system,
resulting in ground truth data of the dynamic motion state.

The processing pipeline of the preceding grid-based esti-
mation, including object extraction and cell association, was
summarized in Section III. The grid resolution is 1024× 1024
grid cells with a cell size of 0.15 m× 0.15 m, and a maximum
of 100 particles per grid cell for the low-level particle tracking.
The grid fusion is triggered by the front lidar sensor with a
measurement rate of 25 Hz. The implementation is primarily
parallelized for fast GPU computing, enabling real-time appli-
cation of the overall system in our test vehicles with a total
cycle runtime below 40 ms.

(a) (b) (c) (d) (e)
Fig. 11. Moving object with an unstructured shape; the lidar detection pattern
at the sensing height does not fit a rectangular shape. (a) Lidar detections of
front sensor (black: obstacles, gray: ground). (b) Classified measurement grid
(blue lines indicate cell velocities). (c) Associated cells and measurement
bounding box. (d) Grid-based object tracking. (e) Camera image.

B. Qualitative Results

Qualitative results of the proposed approach in three dif-
ferent urban scenarios are highlighted in Fig. 10. The upper
scenario in Fig. 10a shows an intersection with a lot of cross
traffic. All vehicles are correctly detected and their moving
direction is robustly estimated, even though the left-crossing
vehicles in the back are highly occluded by the right-crossing
vehicles in the front. One truck is included in that sequence,
which is correctly classified since the observed length is larger
than those of cars. It can also be seen that stopped vehicles,
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Fig. 12. Full braking scenario with real sensor data. The shown time of all data corresponds to the original measurement time to focus on the filtering
behavior, i.e., sensor and system latencies as well as the processing time are excluded in the comparison with the ground truth data.

directly next to the ego vehicle, remain being tracked since
they have been observed moving and thus extracted before.
Furthermore, a pedestrian who stopped on the right side of
the ego vehicle is also correctly extracted, which is outside
the camera field of view at the shown time instance.

The second scenario in Fig. 10b shows a situation with a
tram, which is classified as unknown as the large length and
small width does not fit the modeled classes. A scooter is
detected on the right side, which is classified as a cyclist,
since the geometry classification of a cyclist and motorcycle
is modeled equivalently with a higher prior of cyclists, i.e., an
object is only classified as a motorcycle when the maximum
estimated velocity is higher than the velocity likelihood of
a cyclist as modeled in Fig. 9, which is not the case in the
slow-moving scenario. Since the extracted object geometry is
determined by the histogram filter distribution combined with
the classification, unobserved parts, like the lengths of the par-
tially occluded vehicles in the front (ID 46) or behind the ego
vehicle (ID 14), are estimated by the classification likelihood,
resulting in reasonable box dimensions of those vehicles.

The third scenario in Fig. 10c includes several slow-moving
pedestrians crossing the road, which are all correctly extracted,
tracked, and distinguished. The vehicle in front performs a
left turn, the occurring turn rate is illustrated by the lateral
acceleration component alat = v · ω.

Another challenging example is presented in Fig. 11, which
contains an object with an unstructured shape of the raw lidar
data, caused by the specific low mounted pipe construction
on the rear of that truck. Since the proposed object tracking
is based on the generic cell movement estimation of the
dynamic grid, even such objects can be initially extracted
by the density-based cell clustering of dynamic occupied
cells [5] and in the following steps temporally filtered by
the cell-individual association with the linked particle label
distribution [6]. Hence, our approach is also suitable for lower
resolution sensor data, whereas, in contrast, an L-shape feature
detection or a box fitting without considering the particle-
based movement direction estimation or the predicted object
track are prone to such deviations of the box shape model.

C. Evaluation of Dynamic State Estimation

The dynamic state estimation is evaluated quantitatively for
a test vehicle in two challenging scenarios:

1) Full Braking Scenario: The first scenario represents an
emergency braking situation with an abrupt high negative
acceleration, up to −9 m/s2, which is presented in Fig. 12. The
target vehicle first increases the velocity up to 10.6 m/s, then
stops by a full braking around t ∈ [6.7 s, 8 s], and finally per-
forms a short slow forward movement around t ∈ [12 s, 16 s].
The ego vehicle also starts moving with a similar velocity, with
a position offset to the right of the target vehicle, and performs
a slightly smoother braking action around t ∈ [8.5 s, 11 s], and
then remains stopped. Three different variants of the UKF
measurement update are analyzed in the following.

The UKF state estimation using the position of the ex-
tracted minimum bounding box as the measurement update is
shown in red. The velocity is implicitly estimated by position
changes, i.e., first order derivative of the measurable position,
whereas the acceleration is determined by the change of the
estimated velocity, i.e., second order derivative of the mea-
surable position. A robust balancing of position measurement
noise and process noise therefore results in a sluggish state
estimation with a higher filtering latency. Moreover, the red
dotted line shows the filtering behavior without the additional
limitation of the acceleration as defined in (13), i.e., without
the time horizon thorizon. Thereby the velocity overshoots to the
negative (up to −1.7 m/s) without that limitation, since the
acceleration converges very slowly toward zero. In contrast,
the estimation with the limitation, with thorizon = 0.25 s, shown
by the red solid line, converges fast toward zero by that
additional constraint.

The multi-filtering approach where the mean cell velocity ν,
see (31), estimated by the low-level particle tracking, is addi-
tionally used as a direct velocity update of the object state is
shown in green. As discussed before, this results in correlated
input data of the UKF, even though the particles are partly
weighted by radar Doppler measurements in the case shown.
That approach is robust against wrong object assumptions and
position updates, e.g., due to an incorrect association, but in
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Fig. 13. Turning scenario with multiple ”figure-eight” trajectories and real sensor data. As with Fig. 12, the shown time of all data corresponds to the original
measurement time by excluding sensor and system latencies as well as the processing time in the comparison with the ground truth data.

that highly nonlinear case, it causes a high filtering latency,
which is unfavorable in such critical situations. Furthermore,
accurately estimating slow velocities, in the case of the slow
forward movement after the full braking, is not possible by
the particles, in particular when primarily the long side of the
vehicle is observed, since that slow movement cannot be fully
resolved for the individual cells of that part without consider-
ing neighboring cells, i.e., the overall object movement.

In contrast to multi-filtering based on the particle estima-
tion, the proposed radar Doppler-based UKF measurement
update directly uses those measured velocity components in
the object state estimation, which is shown in blue. This
results in an accurate estimation of the object velocity and
a significant reduction of the filtering latency, in particular
of the acceleration, which is important for the reaction speed
and thus the safety of autonomous mobile robots. The 3σ-
validation gating of Doppler measurements, i.e., ignoring all
measurements that are implausible with regard to the standard
deviation of the expected measurement, further increases the
system robustness, as it is less prone to outliers. The blue
dotted line illustrates the variant without gating, which in turn
requires increasing the Doppler measurement variance and
thus decreasing the influence of the radar sensors here.

This discussion of the different approaches is confirmed
by the root mean square error (RMSE) of the velocity and
acceleration in that scenario, which is summarized in Table I.

To demonstrate the influence of Doppler measurements on
the object extraction, the position-only approach (red line) is
performed here without using any radar sensors at all, not

TABLE I
ERROR (RMSE) OF DYNAMIC STATE ESTIMATION FOR HIGHLY

NONLINEAR MOVEMENTS WITH REAL SENSOR DATA.

Full braking scenario v-RMSE [m/s] a-RMSE [m/s2]

with UKF-Doppler 0.1902 1.0931 (0.9301)∗

with UKF-Doppler (no gating) 0.4044 1.4730 (1.3499)∗

position-only 0.8641 2.0248 (1.9264)∗

position-only (no acc. lim.) 0.9580 2.4813 (2.3844)∗

multi-filtering 1.1097 1.9468 (1.8341)∗

Turning ”figure-eight” scenario ϕ-RMSE [deg] ω-RMSE [deg /s]

UKF-Doppler + freespace estim. 3.6869 11.4381
freespace estimation 4.8958 15.0031
multi-filtering 9.7007 19.9929

∗ Calculated with moving-average smoothing of the measured ground truth data.

for the underlying grid-based estimation either. For the other
two approaches, in contrast, the dynamic grid estimation is
enhanced by radar measurements, resulting in a faster object
extraction, about 1 s in that configuration. Nonetheless, all
approaches result in a good initial object velocity estimate, as
they all use the mean particle-based cell velocity for the ini-
tialization.

2) Turning Scenario with ”Figure-Eight” Trajectories:
The second scenario focuses on the orientation and turn rate
estimation, which is tested with challenging multiple ”figure-
eight” trajectories as shown by the path in Fig. 13, resulting
in fast changing turn rates with up to 65 deg /s.

The green line shows the multi-filtering approach, where
a measurement update of the object orientation is performed
by the mean movement direction of the particle-based 2D cell
velocity estimation. Even though the vehicle is successfully
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t0=0 s

t1=1.4 s t2=4.25 s t3=4.85 s t4=5.75 s t5=7.3 s t6=9.95 s t7=11.85 s t8=14.75 s

(a) Scenario with a parking vehicle occluding parts of the approaching vehicle.

t0=0 s

t1=1.4 s t2=4.25 s t3=4.85 s t4=5.75 s t5=7.3 s

(b) Scenario without occlusion.

Fig. 14. Simulated scenario of an approaching overtaking vehicle in two variants: with and without a parking vehicle causing partial occlusion of the
approaching vehicle, shown in (a) and (b) respectively. The ego vehicle is stopped in that scenario, the approaching vehicle accelerates in the beginning before
overtaking. In the lower row, only image parts are shown; not shown image parts in (b) are equivalent to those shown in (a).

tracked for the complete sequence, the estimation of the
orientation and in particular the turn rate is rather inaccurate
for that highly nonlinear movement.

The orientation estimation based on the currently measured
freespace, see Section IV-F, is shown in red. That generic
approach results in a robust orientation estimation, which is
primarily based on the high spatial accuracy and thus the
derived freespace information of lidar sensors.

Best results are achieved by combining that freespace-based
orientation estimation with the UKF-Doppler state estimation,
shown in blue, as those radial velocity components at different
parts of the object also implicitly enable measuring the object
orientation and turn rate. Table I also summarizes the RMSE
analysis for the different approaches of that scenario.

D. Evaluation of Shape Estimation and Object Classification

The geometry estimation and object classification are pri-
marily demonstrated by a simulated scenario, whereby the
object classification is additionally evaluated for a real urban
test drive, as included in the attached video.

1) Simulated Scenario: The simulated sequence depicts an
overtaking vehicle with a stopped ego vehicle, which is shown
in Fig. 14. Two different variants are analyzed: The first variant
in Fig. 14a includes an additional parked vehicle that occludes
parts of the overtaking vehicle in the beginning; the second
variant in Fig. 14b is without occlusion. The trajectory of
the overtaking vehicle is equal in both variants, the vehicle
accelerates in the first 4 s of the sequence up to a velocity of
5 m/s and then moves with constant velocity. The simulated
ground truth object box has a length l = 3.9 m and a width
w = 1.8 m. As the focus here is on the shape estimation, only
lidar data are simulated, directly on the edge of the simulated
box, with a small simulated distance error variance of 0.03 m2.
A detailed evaluation of the measured and extracted length and
width as well as the classification is shown in Fig. 15.

The first variant with occlusion, see Fig. 14a, illustrated by
solid lines in Fig. 15, is simulated such that the measured width
of the minimum bounding box in the initial acceleration phase
is about 0.75 m, and a noteworthy length is not observable,
i.e., only the front left corner of that target is visible from the
position of the ego vehicle. As denoted before, the priors of the
pedestrian and cyclist classes are selected higher than the prior

0 2 4 6 8 10 12 14 16
0

2

4

le
ng

th
l

[m
]

measured l max. measured l extracted l

0 2 4 6 8 10 12 14 16
0

1

2

w
id

th
w

[m
]

measured w max. measured w extracted w

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

vi
si

bi
lit

y
ϑ

ϑfront
z

ϑrear
z ϑleft

z ϑright
z

0 2 4 6 8 10 12 14 16
0

2

4

6

v
m

ax
τ

[m
/
s]

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

time [s]

p
(k
|L

τ
,W

τ
,v

m
ax

τ
)

car
truck
pedestrian
cyclist
motorcycle
other

Fig. 15. Evaluation of the geometry estimation and classification of the
overtaking vehicle scenario of Fig. 14 for both variants. Results for the
scenario with occlusion (Fig. 14a) are shown by solid lines and for the scenario
without occlusion (Fig. 14b) by dotted lines, respectively. The simulated
ground truth object box has a length l = 3.9 m and a width w = 1.8 m.
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Fig. 16. Histogram distributions over time of the length and width estimation
for the simulated overtaking scenario with occlusion as shown in Fig. 14a.
All probabilities pi·,t are normalized to the highest probability of all bins i
in each time step t for better representation. The interval size of each bin is
δi = 0.05 m; only a part of the estimated length and width range is shown.

of the class car for a more conservative object size estimation,
since the assumed object size is also used for the gating area of
the association. Hence, in the beginning, the pedestrian class
results in the highest classification probability, since none of
the observed features contradicts with that model.

Around t ≈ 2 s, the accelerating simulated object has a
velocity about 3 m/s and thus the maximum estimated object
velocity vmax

τ also increases to that value. Due to the increasing
velocity, the pedestrian class becomes less probable; the cyclist
class achieves the highest probability. Around t ≈ 5 s, the
vehicle starts overtaking and larger parts of the width are
observable, whereas the cyclist class also becomes unlikely;
the object is then classified as a car, with an increased extracted
length and width given by the likelihood of the class.

While the target drives alongside the ego vehicle, the front
and rear edge are both visible, thus the real length, i.e., not
only a lower bound, is observed, which is selected smaller than
the likelihood of the class car in this simulation. The measured
length, and thus the estimated object size, is slightly higher
than the ground truth box due to the grid cell and histogram
discretization combined with the modeled spatial measurement
uncertainty and the simple measurement simulation directly on
the outer edge of the simulated rectangle. The full object width
is observed near the end of the sequence when the target
continues moving straight forward in front of the ego vehicle.
The geometry estimation is clarified further in Fig. 16 by the
corresponding histogram probability distributions of the length
and width over time for that sequence. Thereby, the inverse
sensor model with the boundary visibility consideration is
also recognizable, as introduced in Fig. 8, which is used to
distinguish whether the current length or width measurement
is only a lower bound or also an upper bound.

The second variant without occlusion, shown in Fig. 14b
and illustrated by dotted lines in Fig. 15, is simpler, since the
full width of the target is visible directly from the beginning.

TABLE II
CONFUSION MATRIX OF THE OBJECT CLASSIFICATION IN A REAL TEST

SEQUENCE. COLUMNS DEPICT THE ACTUAL CLASS, ROWS THE ESTIMATED
CLASS. ALL EXTRACTED OBJECTS ARE EVALUATED EACH TIME THE

OVERALL TRACKING IS UPDATED, ONLY THE BEST CLASS IS CONSIDERED.

Car Truck Ped. (Mot.-)Cycl.∗1 Other (FP)∗2

Car 23781 39 945 1035 114 882

Truck 45 437 0 0 567 324

Ped. 76 0 9530 1792 0 167

(Mot.-)Cycl.∗1 1800 0 834 9888 0 0

Other 294 0 0 0 403 0

# Occurr.∗3 25996 476 11309 12715 1084 1373

Rate 0.915 0.918 0.842 0.778 0.372 0.026 (FPR)

∗1 The cyclist and motorcycle classes are combined here due to slow object speeds.
∗2 FP: false positives (falsely extracted objects).
∗3 Total number of evaluated occurrences of that actual class (sum of column).

Due to the observed width, the object is directly classified as
a car in the initialization, even though the velocity is very
slow at that starting point. The assumed length is directly
adjusted with regard to the likelihood of the class, resulting
in an extracted length of approximately 4.4 m here, which is
much more accurate than the maximum observed length that
is only about 0.5 m up to t ≈ 5 s.

Overall, as shown by the comparison of both variants with
and without high occlusion in the initial phase, the proposed
geometry estimation and object classification adapts as desired
with regard to the measured box size, the observability in terms
of the adjacent freespace, and the target velocity.

2) Object Classification in Real Urban Scenarios: The pro-
posed object classification concept is further demonstrated by
real traffic scenarios in an urban environment as shown in the
attached video. The evaluated sequence has a duration of about
8 min with various vehicles, pedestrians, cyclists, etc. Quan-
titative results are highlighted by the confusion matrix in Ta-
ble II. Thereby only extracted moving objects are evaluated,
since non-moving obstacles or parked vehicles remain in the
static grid representation in our approach. Hence, a simple
ground truth labeling of the actual class of each of the ex-
tracted object tracks is performed, including falsely extracted
objects that are labeled as false positives. All extracted objects
are evaluated each time the overall tracking is updated, while
only the best class k∗τ as determined in (68) is considered.

These classification results are not directly comparable with
other approaches, also since only moving objects are extracted
here, but they indicate that this simple classification approach
achieves promising results with real sensor data. Note that
our approach is based on 2-D measurement occupancy grids,
without additional camera information or height estimation,
and that the lidar sensors used here only contain four vertical
layers, i.e., in total, a limited density of the measurement data.
Thereby the object shape and classification estimation are
implicitly improved with a more detailed occupancy/freespace
derivation of the measurement grid, in particular using lidar
sensors with a high vertical resolution, and also when camera
classification information is integrated into the measurement
grid with a corresponding consideration in the object classifi-
cation concept. Both aspects are addressed in future work.
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VIII. CONCLUSION

This paper presented a new grid-based object tracking
approach. It is based on pre-processed measurement data in an
occupancy grid representation, including low-level data fusion
and dynamic estimation of grid cells, which simplifies the
moving object detection and association.

This approach results in a robust multi-sensor detection and
tracking of surrounding objects, even with many occurring
objects, unstructured shapes, or partial occlusion. The object
position and orientation are accurately updated by additionally
evaluating the measured freespace, which is a generic concept
for determining the most visible reference point and optimiz-
ing the box orientation without requiring an L-shape fitting.
Similarly, the freespace information is used to distinguish
lower and upper bounds of the measurement box, while a
reasonable object size is extracted by further combining the
estimated histogram filter geometry distributions with the
likelihood of an object classification that also considers the
maximum observed velocity.

The approach is also designed for an accurate dynamic
state estimation in critical scenarios by additionally processing
radar Doppler velocity measurements. Those measurements
are thereby evaluated directly in the object tracking, while
the proposed velocity-based UKF update robustly utilizes the
measurement space of the radial velocities. In contrast to
an indirect multi-filtering velocity update by the underlying
dynamic grid, this significantly reduces the filtering latency
and therefore further increases the estimation accuracy of the
velocity, acceleration, orientation, and turn rate.

Experimental results were demonstrated in the context of
autonomous driving with a real test vehicle equipped with
multiple lidar and radar sensors. The robust object tracking
and classification were presented by a test drive in a real
urban environment, while the precise dynamic state estimation
was evaluated quantitatively using a reference target vehicle
performing full braking and turning maneuvers.

Overall, we thereby also combine the advantages of the spa-
tially accurate lidar sensors for the object pose and shape esti-
mation with the direct velocity measurements of radars for the
motion estimation, since occupancy and freespace of the grid
are primarily derived by the lidar data in our approach. Ongo-
ing research focuses on integrating camera classification infor-
mation, thus eventually resulting in a multi-sensor environment
estimation that combines the individual benefits of lidar, radar,
and camera within our generic grid-based framework.
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