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Abstract

Advancements of existing imaging methods and the development of new imaging technologies
require strategies for their clinical evaluation. Besides the technical requirements that a certain
spatial resolution is provided or a certain limit of image noise is guaranteed, especially the diag-
nostic performance of radiologists is of interest. This diagnostic image quality or diagnostic value
is usually investigated for specific clinical tasks. The aim of this cumulative thesis is to investigate
and implement methods for the assessment of diagnostic image quality and the clinical evaluation
of novel imaging methods and devices.

In the first journal publication, model observers–a strategy to perform virtual reader studies–were
investigated. Neural networks and convolutional neural networks (CNNs) were used to implement
novel model observers and compared to a more traditional model observer, the channelized
Hotelling observer (CHO). Traditional model observers, like the CHO, are limited to easy signal
detection tasks due to their mathematical definition. The goal of this work was the development
of a model observer that can be applied to more realistic clinical tasks where the signal size is
varying. Best performance was achieved with a CNN-based model observer that showed strong
correlation with a human observer’s performance in a lesion detection task with varying signal
sizes (Pearson’s product-moment correlation coefficient r=0.918).

A custom-made lung phantom was designed for the clinical evaluation of a spectral photon-
counting CT (SPCCT) prototype. The evaluation was published in the second journal publication.
A digital anthropomorphic lung phantom was created by segmentation of a healthy human lung
from a clinical CT scan. The digital lung phantom was augmented with spheres and spheres with
spikes to simulate benign and malignant lung nodules, respectively. A physical phantom was
created by 3D-printing of the digital phantom. In the journal paper, the SPCCT prototype was
evaluated regarding nodule quantification and in terms of high resolution capabilities. Compared
to conventional CT in high-resolution mode (HR-CT), SPCCT showed superior results in nodule
quantification (mean Dice similarity coefficient: 0.90 (SPCCT); 0.85 (HR-CT)) and volume estima-
tion (root mean square error: 21.3 mm3 (SPCCT); 26.4 mm3 (HR-CT)).

In the third journal publication, simulated sparse-sampling computed tomography (SpSCT) was
evaluated for examinations with suspected pulmonary embolism (PE). Four blinded radiologists
participated in a reader study with 20 CT scans of patients with suspected PE. The evaluation
aims to validate sparse sampling as dose reduction technology by simulating a fast pulsing x-ray
tube. Technical principles of sparse sampling in the frame of CT are presented in this dissertation.
Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were
superior for SpSCT compared to conventional CT at investigated reduced dose levels. With
SpSCT, a dose reduction by 87.5 % of the initial clinical dose was achievable for the investigated
cases with high subjective image quality and high diagnostic performance.

This cumulative dissertation gives an introduction to clinical evaluation of the diagnostic value of
CT imaging modalities and describes materials and methods that were essential for the realization
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Abstract

of the above-mentioned journal publications. The contribution to the CT research community is
discussed in the context of related work.

IV



Zusammenfassung

Um Weiterentwicklungen bestehender Bildgebungsverfahren sowie Neuentwicklungen im Bereich
der medizinischen Bildgebung zu evaluieren werden Strategien benötigt mit denen der klinische
Nutzen bestimmt werden kann. Neben der Einhaltung von technischen Spezifikationen, wie
beispielsweise eine bestimmte Bildauflösung oder einer oberen Grenze für Bildrauschen, ist
insbesondere die Fähigkeit eines Radiologen eine richtige Diagnose auf den Bildern zu stellen von
großem Interesse. Diese diagnostische Bildqualität oder diagnostischer Wert eines Bildes wird
üblicherweise für bestimmte klinische Fragestellungen ermittelt. Ziel dieser publikationsbasierten
Dissertation ist die Erforschung und Implementierung von Methoden zur Bestimmung der diagnos-
tischen Bildqualität und die klinische Evaluierung neuartiger Bildgebungsverfahren.

In einem ersten Zeitschriftenartikel wird eine Strategie zur Durchführung virtueller radiologischer
Studien, sogenannte Model Observer erforscht. Neuartige Model Observer wurden mit neu-
ronalen Netzen und sogenannten "Convolutional Neural Networks" (CNN) implementiert und mit
einem etablierten Model Observer, dem sogenannten "channelized Hotelling observer" (CHO)
verglichen. Aufgrund ihrer mathematischen Definition sind etablierte Model Observer, wie der
CHO, auf einfache Fragestellungen der Signalerkennung beschränkt. Ziel dieser Publikation war
die Entwicklung eines neuartigen Model Observers, der auf realistischere Fragestellungen mit
variierender Signalgröße angewendet werden kann. Die besten Ergebnisse wurden mit einem
Model Observer erzielt, der auf einem CNN basiert. Die diagnostische Leistung korrelierte stark
mit der eines menschlichen Beobachters in einer Fragestellung zur Erkennung von simulierten
Leberläsionen verschiedener Größen (Pearson-Korrelation r=0.918).

Der klinische Nutzen eines spektralen photonenzählenden Computertomographen (SPCCT)
wurde mit einem eigens angefertigten Lungenphantom evaluiert und in einem zweiten Zeitschriften-
artikel veröffentlicht. Die Lunge eines gesunden Menschen wurde aus einer klinischen CT-
Aufnahme segmentiert um ein digitales anthropomorphes Phantom eines Lungenflügels zu er-
stellen. Das digitale Phantom wurde mit Kugeln und Kugeln mit Spitzen erweitert um gutartige und
bösartige Lungenknoten zu simulieren. Das digitale Phantom wurde mit einem 3D-Druckverfahren
gedruckt. In dem Zeitschriftenartikel wurde der SPCCT-Prototyp hinsichtlich der Knotenbewertung
und seiner Fähigkeiten in der hochauflösenden Bildgebung evaluiert. Im Vergleich zu einem kon-
ventionellen CT in hochauflösendem Betriebsmodus (HR-CT) erzielte der SPCCT-Prototyp bessere
Ergebnisse bezüglich Knotenbewertung (mittlerer Dice similarity coefficient: 0.90 (SPCCT); 0.85
(HR-CT)) und Volumenbestimmung der Knoten (root mean square error: 21.3 mm3 (SPCCT);
26.4 mm3 (HR-CT)).

In einem dritten Zeitschriftentartikel wurde simulierte spärlich abgetastete Computertomogra-
phie (SpSCT) für die Erkennung von Lungenembolien bei reduzierter Strahlungsdosis untersucht.
Vier Radiologen nahmen unter Verblindung des klinischen Befundes an einer Studie mit 20 CT-
Aufnahmen von Patienten mit Verdacht auf Lungenembolie teil. Die Evaluierung zielt darauf,
SpSCT als Technologie zur Dosisreduktion durch eine schnellschaltende Röntgenröhre zu vali-
dieren. Technische Merkmale von SpSCT werden in dieser Dissertation dargestellt. Mit SpSCT
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Zusammenfassung

wurden für alle Dosisstufen bessere Werte für Sensitivität, Spezifität, Korrektklassifizierungsrate
und Fläche unter der ROC Kurve gegenüber konventionellem CT erzielt. Für die untersuchten
Fälle wäre eine Dosisreduktion um 87.5 % der ursprünglichen klinischen Dosis umsetzbar, bei
hoher subjektiver Bildqualität und hoher diagnostischer Leistungsfähigkeit.

Diese publikationsbasierte Dissertation gibt eine Einführung in den Bereich der klinischen
Evaluierung des diagnostischen Nutzens von Bildgebungsmodalitäten und beschreibt die Ma-
terialien und Methoden, die für die Umsetzung der eingebundenen Publikationen notwendig
waren. Weiter wird der Beitrag zum CT-Forschungsgebiet im Kontext themenbezogener Arbeiten
diskutiert.
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1 Introduction

1.1 Clinical Motivation

Research and development are valuable divisions in companies producing medical imaging de-
vices. Improvements of existing modalities as well as the development of new and innovative
imaging methods guarantee the success of many companies. However, benefits and clinical
usage of new developments have to be evaluated before they become available in the clinical
practice. Important aspects are especially the diagnostic value and the clinical applicability. In
x-ray computed tomography (CT), one additional issue is the applied radiation dose. Ionizing
radiation is known for its harmful characteristics at high doses [1–3]. Therefore, image quality and
diagnostic value of new developments need to be evaluated with respect to the radiation dose.

For the clinical evaluation of imaging devices, in a first step, physical and technical properties
need to be met [4–6]. For a CT system, beyond others, there are usually requirements like
short scan times and a sufficient detector coverage in the table direction (z-direction) for cardiac
imaging or high spatial resolution for pulmonary imaging. Those physical requirements to a CT
system guarantee a high quality of the acquisition data. However, image quality highly depends
on the applied radiation dose and the reconstruction chain [7]. In general, a reduction of the
radiation dose leads to an increased amount of noise in the acquired measurement data. With
the use of conventional analytical image reconstruction, the low measurement quality is mostly
linearly translated into the image space, allowing a prediction of the image quality before any
reconstruction. With the introduction of iterative reconstruction, image noise and artifacts are
reduced by methods that introduce non-linearity to the reconstruction chain, e.g. edge-preserving
regularization in statistical iterative reconstruction. As a result, objective metrics for image quality
measurements, such as the modulation transfer function (MTF) for the evaluation of the spatial
resolution, may highly depend on the acquired object and specific image properties (e.g. contrast
or location in the image) [8, 9].

The assessment of diagnostic image quality, or the diagnostic value of an image, is usually
based on reader studies where radiologists perform a diagnostic task [10]. The diagnostic per-
formance of the radiologists for a specific imaging modality or image quality gives the diagnostic
value for the specific task. There is a high interest in metrics that allow an automated assessment
of the diagnostic image quality because reader studies are very time-consuming and costly. One
research area that focuses on automated task-based image quality assessment is the field of
model observers, where computer models are implemented to mimic radiologists’ performances
[11, 12].

Another strategy to evaluate new developments for their clinical value is the investigation of
phantom studies. High-precision phantoms are traditionally used to evaluate the physical and
technical properties [6]. For task-based evaluations of the diagnostic value, anthropomorphic
phantoms can be used (Fig. 1.1) [13–16]. Furthermore, there are commercial phantoms available
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that are equivalent to the human body in terms of shape and x-ray attenuation. For more specific
tasks, the production of custom phantoms has the advantage that they can be designed to meet
the individual needs. The broad availability of 3D printing systems has simplified the production
of custom phantoms and, hence, allows the investigation of specific diagnostic tasks in phantom
studies without exposing patients to ionizing radiation.

(a) (b)

Figure 1.1: Anthropomorphic phantoms.

(a) Commercial anthropomorphic abdomen phantom with a cylindrical insert
and rods of different iodine concentrations, e.g. for the evaluation of iodine
quantification with a dual-energy CT (DECT) [13, 14]. A small extension ring is
added to the phantom to simulate obesity. (b) 3D-printed phantom of an aortic
aneurysm simulating the aorta after an endovascular aortic repair (EVAR), e.g.
for the simulation of an endoleak [15].

1.2 Thesis Purpose

The overall purpose of the present dissertation is the implementation of strategies for the clinical
evaluation of new reconstruction algorithms and innovative CT systems like spectral photon-
counting CT (SPCCT) and sparse-sampling CT (SpSCT) and their application.

In the first part of this doctoral project, automated evaluation of the diagnostic value is inves-
tigated. State-of-the-art model observers like the channelized Hotelling observer (CHO) use
mathematical models to calculate decision variables for detection tasks and are known to fail with
variable signal sizes [17]. However, in the clinical routine signals like liver lesions vary in size,
shape and contrast. Machine learning (ML), on the other hand, showed great potential in image
classification tasks [18–20]. Especially, convolutional neural networks were trained to perform
challenging image classifications such as handwritten digit recognition with performances similar
to humans [21]. Therefore, the purpose of the first part of this dissertation is the development
of automated image quality assessment that is robust to signal size uncertainty using ML and
compare the performance with a traditional CHO.

The second part of this doctoral project is focused on the clinical evaluation of a preclinical
SPCCT prototype. In contrast to commercial clinical CT systems, where energy-integrating detec-
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tors (EID) integrate over the incoming photon flux and determine the attenuation, photon-counting
detectors (PCD) measure single photons and the energy of each photon is determined. Due to
its technical advancements, SPCCT offers capabilities to utilize spectral information for material
decomposition and provides the possibility of advanced high-resolution imaging [22, 23]. While
spectral imaging is investigated in the co-authored peer-reviewed journal publications J1, J5
and J14, the purpose of the clinical evaluation in this work is the investigation of high-resolution
capabilities of the preclinical SPCCT prototype.

In a third part of this doctoral project, capabilities of SpSCT are evaluated for its clinical
application. Sparse sampling is inspired by the theory of compressive sampling, or compressed
sensing (CS), where the signal acquisition rate is reduced below twice the sampling frequency
(Nyquist rate), asserting that signals or images can still be fully recovered [24]. For a CT system,
that would mean that the radiation dose of a CT scan could be substantially reduced. However,
hardware modifications are necessary to allow a blocking of the x-ray beam or a fast pulsing of the
x-ray tube [25]. SpSCT has been evaluated for different clinical applications in several publications
and conference abstracts that were co-authored by this author (J3, J10, J21, J15, C1, C3, C6,
C8, C9). The purpose of the third part of the doctoral project is the clinical evaluation of sparse
sampling for the detection of pulmonary embolism by simulating sparse sampling at different dose
levels on clinical CT scans.

1.3 Thesis Structure

The technical and methodological background of the three embedded journal publications of this
cumulative dissertation are presented in Chapters 2 and 3. Short summaries of the included
publications JP-I, JP-II and JP-III are given in Chapter 5, and a discussion of the presented work
in the context of current related work is provided in Chapter 6.
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2 Technical Principles

This chapter gives a basic overview of the technical and physical background of the methodology
used in this thesis.

2.1 Computed Tomography

In x-ray computed tomography (CT) a source, the so-called x-ray tube, and a detector are fixed on
a rotating gantry (Fig. 2.1). X-ray photons with energies of a specific spectrum are emitted by the
tube and the attenuation is measured by the detector. The acquired data is used to reconstruct
volumetric images of the scanned object. In this section, the basic concept of CT is described.
Interested readers find a detailed description of CT in J. Hsieh’s book Computed Tomography:
Principles, Design, Artifacts, and Recent Advances [5].

X-ray source

detector

patient

Figure 2.1: Schematic representation of a CT system.

An x-ray source and a detector rotate around an object .

2.1.1 X-ray Generation

A typical x-ray generator in a CT system consists of a cathode and a rotating anode that are
installed in a vacuum-sealed atmosphere. As a result of electronic heating of the cathode, elec-
trons are emitted and accelerated towards the rotating anode by application of a high voltage
between the cathode and the anode. In clinical CT, voltages range between 80 and 140 kVp. At
the interaction between the electron beam and the anode, a part of the electrons’ kinetic energy is
converted into x-rays [26].
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With about 60 % of the electron energy, the major part is converted into heat. Therefore, a
rotating anode is needed to distribute the heat on the anode plate and to guarantee a stable
x-ray generation. About 39 % of the electron energy is backscattered - that corresponds to about
50 % of the electrons. With about 1 % of the electron energy, only a small part is converted to
bremsstrahlung. The generated x-rays have a continuous spectrum with an upper energy limit
defined by the operated voltage between cathode and anode (80 keV at 80 kV). A minor part of
the electron energy is converted into characteristic x-rays. In CT imaging, the most common target
material of the anode is tungsten. When the x-ray tube is operated with tungsten, about 0.1 %
of the energy is converted to characteristic x-rays that correspond to tungsten. The anode emits
x-rays nearly isotropically (indicated in Fig. 2.2), hence, only a small fraction of the generated
x-rays leave the tube through an x-ray window and is used for imaging (about 1 %) [27]. A
schematic representation of an x-ray tube is visualized in Figure 2.2.

X-rays
electron beam

cooling fluid

rotating anode

cathode

vacuum

Figure 2.2: Schematic representation of an x-ray tube.

A cathode emits an electrons beam towards a rotating anode in a vacuum-sealed
atmosphere. At the interaction between electrons and the cathode, parts of the
electron’s kinetic energy is converted into x-rays. Parts of the x-rays exit the tube
through an x-ray window and are used for imaging. Graphic adapted from [26].

2.1.2 Data Acquisition

In the whole imaging chain, there are numerous technical steps necessary to guarantee a high
quality of the measurements and high dose efficiency. To mention a few, the x-ray spectrum needs
to be shaped by applying material filters, the x-ray beam needs to be shaped by a collimator and
an anti-scatter grid is necessary to minimize the detection of scattered photons at the detector. As
the detailed composition and operation of a CT system is beyond the scope of this work, interested
readers are referred to literature. A detailed explanation of diagnostic x-ray sources is given in R.
Behling’s book Modern diagnostic x-ray sources: technology, manufacturing, reliability [27]. Basic
concepts concerning the data acquisition are explained in this section.
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Interaction with matter

Emitted x-ray photons travel through the CT aperture and are collected by the detector. On their
way to the detector, photons interact with matter that is on their path. In conventional medical CT,
the attenuation of the energy is measured by an energy-integrating detector (EID). EIDs and the
detection process will be explained in the next section. In this section, the basic principles about
the attenuation of the x-ray intensity are briefly outlined.

The energy of x-ray photons in medical CT ranges from about 20 to 140 keV. In this range,
the fundamental physical mechanisms attenuating the photons are the photoelectric effect, the
Compton effect and coherent scattering [5]. As a result of these interactions some photons
are either scattered or absorbed. The attenuation of a monochromatic x-ray beam through a
homogeneous object can be expressed by the Beer-Lambert law:

I = I0e
�µL, (2.1)

where I is the attenuated photon intensity, I0 is the incoming photon intensity, µ is the linear
attenuation coefficient and L is the thickness of the material. The linear attenuation coefficient is
the combination of the different interactions:

µ = ⌧ + � + �r, (2.2)

where ⌧ , � and �r are the attenuation coefficients of the photoelectric effect, Compton effect and
coherent scattering, respectively [5]. Higher µ values indicate a stronger attenuation.

For a non-uniform object where the x-rays pass several materials, modifications of Equation (2.1)
are necessary:

I = I0e
�µ1�xe�µ2�x...e�µn�x = I0e

�
PN

n=1 µn�x, (2.3)

where µn are the linear attenuation coefficients for several materials of thickness �x. By division
of both sides of Equation (2.3) by I0 and by taking the negative logarithm, we obtain:

� ln

✓
I

I0

◆
=

NX

n=1

µn�x. (2.4)

For small �x approaching 0, the sum in Equation (2.4) becomes the integration over the length
of the object:

p = �ln

✓
I

I0

◆
=

ˆ
L
µ(x)�x. (2.5)

The measured projection p is the line integral of all attenuation coefficients along the path of an
x-ray [5]. In CT, such line integrals are saved for each tube position and for each detector element
resulting in a so-called sinogram.
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Detection of X-rays

In conventional medical CT, almost all systems use solid-state scintillator detectors. X-ray photons
are converted into light photons and measured by a photodiode over a defined integration time.
This kind of detector is called energy-integrating detector (EID) and they are the state-of-the-art
in medical CT, today. Scintillator materials are typically cesium iodide (CsI), bismuth germanate
(BGO), cadmium tungstate (CdWO4) and gadolinium oxysulphide (Gd2O2S) [28]. Figure 2.3
illustrates a schematic drawing of an EID. Each detector element consists of scintillator material
surrounded by reflecting material on top of a photon detector (photodiode). Arriving x-ray radiation
is converted to light inside the scintillator and absorbed by the photodiode attached to the crystal.
With the absorption of the photon, an electric charge is generated that is proportional to the x-ray
intensity. The electric charge is integrated over the defined integration time [28]. The electronic
at the detector also generates a low electric field. Due to the concept of EIDs, where the whole
energy is simply integrated, so-called electronic detector noise is present in the measurement
data [5].

photodiods

scintillating

material

light

photons

X-ray photons

reflecting 

material

Figure 2.3: Schematic representation of an energy-integrating detector. Figure
adapted from [5].

2.1.3 Radiation Dose

The radiation dose is primarily given by the operated tube voltage, the tube current and the
radiation time. The more energy is absorbed by the patient, the more harmful the radiation is.
Therefore, the energy of the x-ray photons, the number of x-ray photons and the duration of the
radiation are the main parameters controlling the x-ray dose [29].

Tube voltage

The operated tube voltage defines the highest energy of the produced x-ray photons and is given
as peak kilovoltage (kVp). It defines the x-ray spectrum that is used for imaging. Low-energy
photons (<20 keV) are more attenuated during imaging and have a higher probability not to
reach the detector. Thus, they mainly contribute to the dose applied to the patient but not to the
imaging process. Therefore, the x-ray spectrum is filtered before the radiation is used for imaging
(Figure 2.4). Typical filter materials are aluminum or copper [28]. On the other hand, high-energy
x-ray photons have the potential to transfer more energy to the patient. Therefore, especially for
small patients and pediatric CT, tube voltages of 80 or 100 kVp are used. For big patients or
strong attenuating materials like bone, higher tube voltages like 120 or even 140 kVp are used.
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Figure 2.4: X-ray spectrum for 120 kVp.

X-ray spectrum for a tube with a tungsten anode operated with 120 kVp and with
a 2.5 mm thick aluminum filter. X-ray photons with energies below about 20 keV
are removed from the spectrum. The spectrum was generated with an online
tool [30] that is based on References [31] and [32].

High-energy x-ray photons are less attenuated and produce a better statistic at the detector even
for big patients. This results in less noise in the measurements [29]. In conventional medical CT,
the tube voltage is held constant for the duration of an examination.

Tube current-time product

The tube current is given in milliamperes (mA) and defines the number of produced x-ray photons.
In general, the tube current is proportional to the radiation dose. Keeping every other scan
parameter unchanged, doubling the current e.g. from 100 mA to 200 mA doubles the x-ray output.

The tube current-time product is given in milliampere-seconds (mAs) and is the product of
the operated tube current with the radiation time per rotation. This parameter is often called
x-ray exposure and will be used in this work as a reference for dose. In conventional medical CT,
the radiation time is equal to the rotation time because the x-ray tube is always on during a CT
acquisition. For constant scan parameters, the tube current-time product is proportional to the
dose. In general, short scan times are desired because motion artifacts caused by movement
of the patient or organs (e.g. caused by breathing or the heart beat) are decreased. Moreover,
shorter rotation times and therefore shorter radiation times allow a higher tube current at the same
tube current-time product. This has the advantage that a higher x-ray photon flux results in better
statistics on the detector and reduced noise in the measurements. Therefore, also the noise in
reconstructed images is reduced. Typical rotation times of the gantry for one rotation are between
0.3 to 2 seconds.
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The attenuation profile along a patient changes with the anatomical regions. For example,
x-ray radiation along the shoulder is more attenuated than radiation passing though the chest.
Therefore, tube current modulation (TCM) is applied in medical CT. In contrast to the tube voltage
which is fixed for the duration of an acquisition, the tube current is automatically modulated during
the acquisition to guarantee a nearly constant photon flux at the detector. Therefore, in regions
with higher attenuation (e.g. shoulder), higher tube currents are used than in regions with lower
attenuation (e.g. chest). TCM offers up to 40 % dose reduction per examination [29].

2.2 Sparse-Sampling CT

2.2.1 Background

In conventional CT, the x-ray tube is always on during a CT acquisition and the detector measures
the x-ray radiation intensity. As a consequence, the radiation time for one rotation of the x-ray
tube is equal to the rotation time. Low-dose CT acquisitions are performed by lowering the tube
current, emitting less x-ray photons. As a result, the photon statistics at the detector is degraded
and noise in the measurements as well as image noise increases. In addition, the contribution of
electronic detector noise to the measurement increases. At ultra low tube currents, image quality
is not diagnostic and a boundary is reached [33]. Blocking the x-ray beam at specific positions
for short times would reduce the radiation time during the examination and, hence, allows higher
tube currents at the same or even reduced tube current-time product. This acquisition scheme is
referred to as sparse-sampling CT (SpSCT).

patient

X-ray tube:
on

off

(a)

patient

X-ray tube:
on

off

(b)

Figure 2.5: Conventional CT vs. SpSCT.

(a) In conventional CT, the X-ray tube is always on during a CT examination; (b)
In SpSCT, the x-ray tube can be switched off at any position resulting in a pulsed
x-ray flux.
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2.2.2 Principle

The idea of sparse sampling comes from the signal processing domain. The well-known concept
of compressive sampling, or compressed sensing (CS), uses sparsely sampled data acquisitions
to fully recover the signal or image. The initial idea is to randomly omit sampling points. The
sampling rate can be reduced below twice the sampling frequency (Nyquist rate) while the signal
or image is still correctly recovered [24]. For CT, periodic uniformly-spaced sampling schemes
were investigated that would require a fast pulsing x-ray tube [34–36]. Figure 2.5 illustrates the
schematic operating mode of SpSCT compared to conventional CT. In contrast to conventional CT
where the x-ray tube is always on, in SpSCT the tube periodically changes its state between on
and off. In this work, we refer to two-times sparse sampling (2-times SpS) if the tube is turned
on only at every second angular tube position and four-times sparse sampling (4-times SpS) if
the tube is active at every fourth tube position. 2-times SpS results in a reduction of the radiation
time by 50 %, 4-times SpS reduces the radiation time by 75 %. This would reduce the radiation
dose to 50 % and 25 % of a conventional CT scan, respectively, if other scan parameters remain
unchanged (Table 2.1). On the other hand, SpSCT would allow a higher tube current at the same
radiation dose as conventional CT (Table 2.2). This results in a better statistics at the detector and
reduces noise.

sampling scheme rotation time radiation time tube current tube current-time
product (dose)

conventional CT 0.5 s 0.5 s 200 mA 100 mAs
2-times SpS 0.5 s 0.25 s 200 mA 50 mAs
4-times SpS 0.5 s 0.125 s 200 mA 25 mAs

Table 2.1: Dose reduction with SpSCT.

sampling scheme rotation time radiation time tube current tube current-time
product (dose)

conventional CT 0.5 s 0.5 s 200 mA 100 mAs
2-times SpS 0.5 s 0.25 s 400 mA 100 mAs
4-times SpS 0.5 s 0.125 s 800 mA 100 mAs

Table 2.2: Higher tube current with SpSCT.

However, the application of sparse sampling might introduce undersampling artifacts like aliasing
or streakings and in ultra-low-dose CT there will also be an increase in noise [34]. To compensate
these negative effects, advanced iterative reconstruction algorithms can be used. Statistical
iterative reconstruction (SIR) is known to reduce noise and artifacts by a precise modeling of the
system physics and the measurement statistics [34, 37–39]. These algorithms are computationally
expensive and require long runtimes. Therefore, their availability in the clinical routine is limited,
but might be extended in future, when hardware becomes more powerful.
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2.2.3 Technical Implementation

In this work, sparse sampling is simulated under the assumption of a fast pulsing x-ray tube. One
strategy for the realization of sparse sampling is the modification of the x-ray tube by insertion of a
grid electrode between the cathode and the anode (Figure 2.6). The electron beam is blocked
when a negative potential of about -12 kV is applied to the electrode. Switching the electrode
off or to a slightly positive potential allows the electron beam to reach the anode. With this
technique, a pulsing x-ray tube can be realized. Today, this kind of pulsing x-ray tubes are limited
to interventional imaging systems and would need modifications (faster pulse speed, higher tube
current) for the implementation in medical CT systems [25, 27, 40].

X-rays
electron beam

cooling fluid

rotating anode

cathode

vacuum

grid electrode

-VGS

Figure 2.6: Schematic representation of a pulsing x-ray tube.

A grid electrode is added between the cathode and the rotating anode. When a
negative potential VGS is applied to the electrode, the electron beam is blocked
and no x-ray radiation is produced. Pulsing the electrode between 0 and about
-12 kV is easier to implement than pulsing the x-ray tube itself.

2.2.4 Possible Further Applications

Apart from a reduced radiation dose at the same operated tube current or higher possible tube
currents at the same radiation dose, SpSCT would allow further improvements of the CT workflow.

Scan Planning

Today, scan planning in clinical routine is based on two-dimensional (2D) overview scans, also
known as scout scans. Depending on the intended procedure, one or two 2D scans are performed.
For these scans the x-ray tube is fixed at one position, while the patient table moves through,
resulting in a radiograph of the patient (Figure 2.7). In general, an antero-posterior (A-P, 12 o’clock
position of the tube) scan is sufficient for scan planning, however, for some procedures like imaging
of the spine an additional lateral (3 o’clock position of the tube) scout scan is necessary to define
the exact location of the spine.
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Sparse sampling would enable three-dimensional (3D) overview scans by reducing the projection
views to about 6.25 % of a conventional CT scan with about 3 mAs tube current-time product.
That is in the range of 2D scout scans with about 4.5 mAs [35, 41]. 3D scout scans would allow
more precise selections of the scan regions to scan, e.g. if a specific organ like the liver needs to
be investigated. Safety margins at the beginning and end of the scan regions become obsolete
resulting in a further reduced radiation dose. Moreover, 3D scout scans could allow automatic
organ segmentation in the volume, and suggesting scan regions for a specific procedure reducing
the source of error by incorrect human interaction [35, 42].

(a) (b)

Figure 2.7: Overview scans.

Antero-posterior (A-P) and lateral overview scans for scan planning of the spine.
(a) A-P overview scan; (b) lateral overview scan.

Advanced Dose Modulation

Tube current modulation (TCM) guarantees a better dose efficiency, because only as little dose
is used as needed for a specific body region. In addition, the photon flux at the detector is held
constant resulting in better image quality. In angular modulation, the tube current is modulated
online during the CT scan. According to the measured attenuation at one position, the current at
the position plus 180°is adjusted. This way, different tube currents can be used for the antero-
posterior (A-P, 6 and 12 o’clock position) and lateral position (3 and 9 o’clock position). At the
shoulder, for example, there is a higher attenuation for the lateral position than the A-P position,
hence, higher tube currents are desirable [43].

More advanced z-axis modulation (along the patient) computes the modulation profile based
on a 2D overview scan as shown in Figure 2.7a. Water-equivalent thickness in elliptical shape is
determined for every z-position from the attenuation in the overview scan and needed tube current
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is calculated [43]. However, there are two challenges that could be resolved by sparse sampling.
Firstly, the elliptical water-equivalent thickness is only a rough estimate of the attenuation of a
patient. With sparse sampling and 3D scout scans (as described under Scan Planning), the exact
attenuation profile and thereby an ideal modulation profile could be determined. Secondly, the
realization of an ideal modulation profile requires the x-ray tube to control the electron flux very
fast. Ideally, changes from low tube current to high tube current would be realizable within a few
projection angles.

Conventional x-ray tubes that are used for medical CT allow a tube current slew rate between 1
and 2 % per ms. Assuming a fast rotation time of 330 ms and the scan region at the shoulder, a
high change in current would be desirable within a quarter rotation. For a current of 100 mA at
the 12 o’clock position of the tube, within a quarter rotation (330/4 ms = 82.5 ms) to the 3 o’clock
position only a continuous change of 165 mA would be realizable. With sparse sampling, more
precise modulation could be achieved by controlling the pulse width (the duration of one pulse).
For a conventional CT system with a rotation time of 330 ms and 2400 projection images in one
rotation, the integration time for one projection image is 138 µs. With an x-ray tube that is capable
of 3 µs pulse width, as demonstrated with a prototype by Wiedmann et al. [25], tube current-time
products between about 2 % and 100 % could be achieved for each projection compared to
conventional CT [44].

2.3 Photon-Counting CT

Conventional medical CT is a qualitative imaging modality where the attenuation of the x-ray
radiation results in gray-scale images. With EIDs the energy of single photons is lost and therefore
spectral, material specific information cannot be derived. Moreover, because EIDs simply integrate
over the energy, electronic detector noise contributes to the signal and lower energy photons
contribute less to the signal than higher energy photons resulting in so-called beam hardening
artifacts [45]. However, with photon-counting CT, single photons are counted on the detector
combined with their energy, eliminating electronic detector noise and allowing a correct weighting
of low-energy photons. In addition, quantitative imaging becomes available. In this work, the
basics of photon-counting CT are explained. Willemink et al. give a good overview of the current
state concerning photon-counting CT for medical imaging in Ref. [22].

2.3.1 Principle

Photon-counting CT utilizes a detector which directly converts impinging x-ray photons to electric
charge and captures the energy. Figure 2.8 illustrates a schematic representation of a photon-
counting detector (PCD). The detector has a high bias voltage around 300 V applied [46] and is
made of semiconductor material, such as Si, CdTe or CdZnTe. Each x-ray photon generates an
electron-hole pair at the interaction with the semiconductor and the energy is resolved. Hence,
single photons can be counted by measuring the retrieved energy pulse [5]. Compared to EIDs
(Figure 2.3), in PCDs the reflective coating material of each detector element is not necessary,
allowing smaller detector pixel sizes. The photons are grouped with respect to their energy into
so-called energy bins. The PCD used in the prototype evaluated in JP-II uses a total of five
thresholds to group into the bins [47].
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Figure 2.8: Schematic representation of a photon-counting detector.

An x-ray photon is directly converted into electric charge on the semiconductor
crystal and measured by the detector. Figure adapted from [5].

2.3.2 Advancements

Photon-counting detector technology has the potential to bring several advancements to CT
imaging listed below [46].

Noise and Dose Reduction

The capability to detect single x-ray photons eliminates electronic detector noise from the mea-
surements. Especially low dose scans, e.g. pediatric CT, and scans with high attenuation as
with obese patients benefit from reduced noise and a possibly reduced radiation dose. Moreover,
correct weighting of low energy photons that have a higher contribution to low image contrast
results in a substantial elevation of the contrast-to-noise ratio that could result in 99 % CNR
improvement or 75 % dose reduction [46, 48].

Improved Spatial Resolution

Photon-counting CT is known for its capability of high resolution imaging. Figure 2.9 shows images
of a spatial resolution phantom from a medical CT system (Philips IQon, , Philips Healthcare,
Cleveland, OH, USA) with EIDs compared to a photon-counting CT prototype (Philips Healthcare,
Haifa, Israel). There are bore holes of different sizes and spacing in the phantom representing
1.25, 1.66, 2.50, 3.33, 4.16, 5.00, 5.55, 6.25, 7.14, 8.33, 10.0 and 12.5 line pair/cm spatial
resolution. With photon-counting, the 12.5 line pair/cm pattern can still be resolved while with
the conventional CT, the pattern is washed out. In general, there are two major properties limiting
the spatial resolution of EIDs. Firstly, reflecting material is coated around each detector element to
guarantee that the converted light is not detected by adjacent detector pixels. To keep a certain
ratio between the detector pixel size and the coating material, detector pixels should not get too
small. Secondly, EIDs work better with a higher number of photons reaching each detector pixels
because the contribution of electronic detector noise gets reduced and better statistics can be
achieved [5, 28].

PCDs, on the other hand, require small detector pixel sizes to avoid concurrent events of arriving
photons (so-called pile-up, Section 2.3.3) because arriving photons are better distributed to the
detector pixels. In addition, the semiconductor layer of PCDs is not structured, meaning that there
is no coating material around the detector pixels (see Figure 2.8). Each electrode functions as
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detector pixel with high bias voltages avoiding diffusion of the charge and ensuring a straight path
to the electrodes. Thus, higher spatial resolution is achievable [45, 46].

The spatial resolution capabilities of photon-counting CT, especially for pulmonary imaging, are
investigated in JP-II.

(a) (b)

Figure 2.9: CT images of a spatial resolution phantom.

Data were acquired with a medical CT system (a) and a photon-counting CT
prototype (b). Both CT systems were operated with 330 mA and 1 s rotation
time. Images were reconstructed with filtered back projection (FBP). The bottom
row of the pattern represents 12.5 line pair/cm. Level: -70 HU; window: 950
HU.

Spectral Information

PCDs enable quantitative imaging by resolving the energy of arriving x-ray photons. Because the
attenuation is material-specific and energy-dependent, material quantification becomes available
(also known as material decomposition) [45]. The energy dependence of the linear attenua-
tion coefficient of most clinically relevant materials can be described as a linear combination of
the photo-electric effect and the Compton cross-sections. When materials like gadolinium (Gd)
might be used as contrast agent, the so-called K-edge discontinuity also contributes to the attenu-
ation. With photon counting, these effects can be resolved and materials can be quantified [49, 50].

Spectral capabilities of photon-counting CT were investigated in co-authored publications J1, J5
and J14 and are not directly in the scope of this cumulative thesis. Interested readers are referred
to References [49] and [50] for further reading.

2.3.3 Challenges

Photon-counting CT comes with several challenges. Major challenges are addressed in the
following lines [45, 46].
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2.4 CT Reconstruction

• Pile-up is the effect when two or more photons arrive within one counting rate of the detector.
In this case, only one event is registered and the energies of the arriving photons are
accumulated. As a result, one count with a very high energy is detected.

• Charge sharing is the event, when an x-ray photon hits the semiconductor layer between
two detector electrodes (Figure 2.10 a). The electric charge diffuses and each of the two
adjacent detector electrodes register one count with a fraction of the impinging photon.

• Secondary photons can be a result of the interaction between the incident photon and
the semiconductor layer (Figure 2.10 b). At the interaction, characteristic fluorescent X-
ray photons can be emitted that are detected by an adjacent electrode. Another effect is
Compton scatter. When the photon is scattered, it changes its direction and leaves part of
its energy at the incident position. The photon may then be absorbed by the same detector
pixel, an adjacent detector pixel or even leave the detector.

To overcome the pile-up effect, small detector pixels with high counting rates are beneficial.
Charge sharing, on the other hand, would benefit from larger detector pixel sizes. The photon-
counting prototype evaluated in JP-II is equipped with detector pixels of size 500 µm x 500 µm
and is capable of count-rates exceeding 15 Mcps/pixel [47].

X-ray photon
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+

-- ---
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semiconductor

(a)

X-ray photon

+ +

+
+ +

--- --
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semiconductor

(b)

Figure 2.10: Charge sharing and secondary photons.

(a) Charge sharing: the energy of an incident x-ray photon is diffused to several
detector electrodes. (b) Secondary photon: an incident x-ray photon produces a
characteristic x-ray photon that is detected by an adjacent detector electrode.
Red detector electrodes indicate that it counts a photon.

2.4 CT Reconstruction

CT reconstruction describes the process when CT images are generated from measured pro-
jection data. In general, reconstruction algorithms can be grouped into analytical and iterative
reconstruction. In commercial CT systems, hybrid reconstruction, that is a combination of iterative
and analytical reconstruction, was introduced by vendors as a third group [51]. In medical CT,
these hybrid algorithms are usually referred to as iterative reconstruction. The following sections
give an overview of the three groups of reconstruction algorithms.
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2.4.1 Analytical Reconstruction

The most intuitive approach is simply back projecting the acquired projection measurements from
each angle to the image. All pixels on the path of one ray are increased by the partial value of the
measurement (Figure 2.11). After repetition for all projection angles, the object is visualized by the
image. However, the reconstructed image is a blurred version of the original object (Figure 2.12).

Figure 2.11: Schematic representation of a back-projection process.

The left image illustrates the true object and its forward projection for three
different angles. The second, third, fourth and fifth images represent the back
projection for four different projection angles.

(a) (b) (c)

Figure 2.12: Images of the sinogram (left), back projection (center) and FBP
(right) of module CTP404 of a Catphan phantom.

Over the last decades, filtered back projection (FBP)–an analytical reconstruction algorithm–was
used in commercial medical CT systems. FBP is a simple method that is computationally fast
and, therefore, it is well suited for the clinical routine. In FBP, high-pass filters are applied to the
measurements before back projection to reduce low frequencies that cause blurring in the image
[5]. In general, FBP can be expressed mathematically by:

f(x,y) =

ˆ ⇡

0
d⇥

ˆ +1

�1
P (!,⇥)|!|ej2⇡!(x cos⇥+y sin⇥)d!, (2.6)

where f(x,y) is the reconstructed image; P (!,⇥) is the Fourier transform of the projection at
angle ✓; |!| is the applied filter. The inner integral is the inverse Fourier transform of P (!,⇥)|!|
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that results in a filtered projection in the spatial domain [5].

In commercial CT systems, a variety of different filters are implemented to control the image
quality of FBP. Sharp filters, like the well-known Ram-Lak filter, only filter low frequencies and let
high frequencies pass producing images with sharp edges but with the drawback of high image
noise. Hence, sharp filters require more dose for sufficient image quality. However, for some
clinical indications, like imaging of the bone or lungs, sharp edges are essential. On the other
hand, smooth filters also reduce high frequency signals to a desired degree resulting in smoother
images with less image noise. These filters are preferred in low-dose CT and in examinations with
focus on areas with low contrast, like liver lesion detection [26].

FBP is a reconstruction algorithm whose popularity is mainly based on the fast computation time.
The requirement of low noise in the measurements leads to a relative high radiation dose–with
lower radiation dose, more photons are attenuated and not reaching the detector. With increasing
concerns in the society over the harmful effects of ionizing radiation to the patient, significant
radiation dose reduction was requested.

2.4.2 Iterative Reconstruction

In the CT research community, substantial effort has been spent in the development of iterative
reconstruction (IR) methods for many years [52–57]. There were methods that iteratively filtered
the measurement, that iteratively filtered the image in image space and fully iterative methods
that compared intermediate results with the acquired measurements. These methods allowed
further dose reduction than FBP. However, their clinical application in commercial CT systems was
not feasible for a long time due to long computation times. With the hardware advancements in
computational power and the availability of high parallelizable programmable graphics processing
units (GPU) and their application to IR, computation times were substantially reduced [58, 59]
leading to the first introduction of IR to a commercial CT system in 2009 [60]. While the first
commercial IR algorithm performed iterative de-noising of the image after a single backward
projection (IRIS, iterative reconstruction in image space, Siemens Healthineers), more advanced
reconstruction algorithms were introduced in the following years [51].

Hybrid Iterative Reconstruction

More advanced reconstruction algorithms were introduced that perform iterative image processing
in the sinogram-space and in the image-domain. Iterative filtering of the sinogram results in
reduced artifacts, then a single back projection is performed, followed by iterative filtering of the
image to reduce noise (Figure 2.13) [51]. This group will be referred to as hybrid IR.

Hybrid IR already allowed a substantial reduction of the radiation dose in routine CT exami-
nations [61–63]. iDose4 (Philips Healthcare, Best, the Netherlands), a hybrid IR algorithm was
used for evaluation of a novel model observer in JP-I. While first commercial IR algorithms only
performed adaptive linear filtering in image-space and therefore, reduced the spatial resolution
and are less powerful in artifact reduction, iDose4 has the potential to substantially improve image
quality by its hybrid approach. Spatial resolution uptake of 68 % at the same dose or 80 % dose
reduction at same image quality were reported compared to FBP [64]. In general, the algorithm
identifies projections in the measurement that have very low photon statistics and therefore, are
very noisy. The projections are iteratively corrected using a model with the true photon statistics
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preserving edges (spatial resolution) and reducing noise as well as artifacts without significantly
corrupting the intensity values. After back projection, noise is iteratively removed from the image
volume. In a first step, the noise distribution in the image volume is estimated. The estimate is used
throughout the iterative process to preserve the image noise power-spectrum, that guarantees a
similar look and feel as FBP images, and to preserve true structures. Structural models are then
fitted to the data to reduce noise without removing the true structure [64].

back 
projection

filter

filter

Figure 2.13: Hybrid iterative reconstruction (IR).

In hybrid IR the sinogram is filtered iteratively to reduce artifacts before back
projection. After back projection the image is iteratively filtered to reduce image
noise [51]. Figure adapted from [51].

Statistical Iterative Reconstruction

In model-based statistical iterative reconstruction (SIR) the reconstruction process is handled as an
optimization process where the image is iteratively compared to the measurements (Figure 2.14).
The idea is to minimize a cost function  (u) of the form:

 (u) = �L(Au|y) + �R(u), (2.7)

where L is the likelihood that the image u is a valid representation of the measurement y. A
is the forward projection operation (or system matrix) and R is the regularization term. � is a
parameter that controls the strength of the regularization [65, 66]. Regularization reduces noise in
the reconstructed image by penalizing roughness. The regularization term can be expressed by:

R(u) =
X

j

X

k2Nj

wk (uj � uk), (2.8)

where Nj is the set of neighboring voxels of voxel j, wk is a weight according to the degree of
neighboring and  is the potential function. Although a simple quadratic potential function will result
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in reduced image noise, its application also degrades edges because an edge is interpreted as
roughness between a voxel and its neighbors. Therefore, edge preserving potential functions often
have a threshold value � that defines the roughness (the maximum difference to the neighboring
voxels) that will be penalized, such as the Huber function [67]:

 (t) =

⇢
t2/2, |t|  �
�|t|� �2/2, |t| > �.

(2.9)

A common algorithm to solve the optimization problem is the ordered-subset version of the
separable paraboloidal surrogates algorithm published by Fessler and Erdogan, where the opti-
mization problem is iteratively solved until convergence [56, 68].

In commercial CT systems, fully iterative reconstruction algorithms are inspired by SIR but
substantially reduce the number of iterations by an optimized initialization. Iterative model recon-
struction (IMR, Philips Healthcare, Best, the Netherlands), as an example, uses a Huber penalty
on the projection and image data to generate noise-reduced images as initialization claiming to
reduce the number of iterations by an approximate of 5 to 10 SPS iterations [65, 69].

back 
projection

forward 
projection

Figure 2.14: Statistical iterative reconstruction (SIR).

In SIR there is an initial guess of the image that is forward projected into sinogram
space and compared with the measurement and the error sinogram is back
projected to update the image. A regularization term is applied in the update
process to reduce image noise [51]. Figure adapted from [51].

Non-linearity

FBP is mostly a linear reconstruction process where local resolution and noise measurements
are useful tools for image quality assessment because they give a good indication about the
detectability of image properties like lesions or fractures. With hybrid IR and SIR there are several
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steps introducing non-linearity to the reconstruction process, among others, image processing
steps, non-quadratic regularization and non-negative constraints [8, 70]. As a result, the relevance
of simple noise measurements and spatial resolution for the diagnostic image quality is only limited,
because image quality becomes contrast dependent [9, 71] and noise is often used as a tuning
parameter of IR [72]. Therefore, the CT research community spends considerable efforts on the
investigation of methods for the assessment of diagnostic image quality. In this work, several
approaches for the evaluation of diagnostic image quality are presented including the application
of machine learning, investigation with a custom-made phantom and a reader study with human
observers.
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Different approaches for the clinical evaluation and assessment of the diagnostic value in the
context of CT imaging are described in the following sections.

3.1 Reader Studies

Reader studies, also known as observer studies, are used to investigate the performance of
humans for a given task. They are mostly used to compare new developments and enhancements
with state-of-the-art technologies. Generally, the outcome gives an estimation about the expected
performance of a given technology in clinical routine. Common imaging tasks are [73]:

• Detection tasks require the reader to find abnormalities in the image, but avoiding false
positive findings.

• Classification requires the reader to name an abnormality.

• In staging tasks, the extend of the abnormality is determined.

• Comparison tasks require the reader to determine changes in structures or abnormalities.

• In estimation tasks, the reader is asked to determine the size, shape, intensity, etc.

A reader study can also consist of a combination of different imaging tasks. The reader study
published in JP-III consists of a detection task and a classification task. Firstly, the readers are
required to determine the presence of a pulmonary embolism (PE), secondly, the PE (if present)
has to be classified.

To enable a finer differentiation between different image qualities, the readers are required to give
a confidence rating for their decision. The binary decision (abnormality present/absent) becomes
a rating on a predefined scale. More traditional figures of merit like sensitivity, specificity and
accuracy require a binary decision for their computation. Therefore, a threshold has to be defined
translating the confidence rating into a binary decision. In a receiver operating characteristic
(ROC) analysis, the confidence ratings are directly used to determine the ROC curve and the area
under the ROC curve (AUC) [73]. The different metrics will be explained below. In addition to
the before mentioned performance metrics, subjective image quality can be assessed by readers
evaluating artifacts and the image impression [63, 74].

3.1.1 Binary Performance Classifiers

The most frequently used performance metrics are based on the binary decision abnormality
present/absent. If a reader rates that an abnormality is present, the rating is counted as positive–
else the rating is negative. Ratings of humans are compared to the existing truth for each case.
Correct positive ratings are counted as true positives (TP), incorrect positive ratings are counted
as false positives (FP). True negatives (TN) and false negatives (FN) are determined analogously.
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These terms are used to compute the following figures of merit that are well described in Ref. [75].

Sensitivity, also known as recall, gives the true positive rate of the study. It is defined as the
fraction of TP ratings over all positive cases (TP+FN) in the study:

sensitivity =
TP

TP + FN
. (3.1)

When the sensitivity is very high, almost all abnormalities are rated positive and even some
negative cases may be rated as positive. Only in very rare cases abnormalities would be rated as
negative. As a result, negative ratings almost definitely rule out abnormalities at high sensitivity
[75].

Specificity is given by the true negative rate. Analogously to the sensitivity, it is calculated by:

specificity =
TN

TN + FP
. (3.2)

When the specificity is very high, almost all control cases (cases without abnormality) are rated
negative and even some cases with abnormality. However, only in very rare cases false positives
occur. As a result, positive ratings almost definitely rule in the presence of abnormalities at high
specificity [75].

Accuracy gives the ratio of correctly rated cases over all cases:

accuracy =
TP + TN

P +N
. (3.3)

It gives the fraction of correctly classified cases in the study and is therefore an interesting metric
of the overall performance.

Positive predictive value (PPV), or precision, is defined as the ratio of TP ratings over all positive
ratings:

PPV =
TP

TP + FP
. (3.4)

Hence, PPV gives the probability that a positive rating is truly positive.

Analogous to PPV, the negative predictive value (NPV) is defined as the ratio of TN ratings over
all negative ratings:

NPV =
TN

TN + FN
. (3.5)

Hence, NPV gives the probability that a negative rating is truly negative [75].

3.1.2 Receiver Operating Characteristic

ROC analyses are used to quantify the performance of humans for a clinical task. It gives a
measure of how good a reader can distinguish between positive and negative cases. Therefore,
observers are required to give a confidence rating for a given task. Readers make their binary
decision if an abnormality is present (has to be treated) with the attempt to maximize the benefits
for the patient while costs and risks are minimized. Different readers may estimate the benefit-risk
trade-off differently. With the ROC analysis, not the binary decision is of interest but if the reader
can discriminate between an abnormality and normal cases [73]. The following section explains
the generation of an ROC analysis with help of an example.
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Example

We have a lesion detection task with the images in Figure 3.1. The observer is asked to read the
images clinically and give a confidence rating between 1 and 100 for the presence of a lesion,
where 1 is "negative" (definitely no lesion) and 100 is "positive" (lesion definitely present).

case 1 case 2 case 3

case 4 case 5 case 6

Figure 3.1: Image patches for exemplary ROC analysis.

Image patches simulate images with lesion (cases 1, 2, 4) and without lesion
(cases 3, 5, 6). Simulated lesions are similar to liver lesion in a contrast enhanced
CT examination of the liver.

Lets assume, the observer gives the rating shown in Table 3.1. For positive cases (with lesions)
the reader gives ratings of 100, 90 and 50; for negative cases (without lesion) the reader gives
ratings of 60, 30 and 10 (Table 3.2).

case 1 case 2 case 3 case 4 case 5 case 6

rating 90 50 10 100 30 60
truth positive positive negative positive negative negative

Table 3.1: Exemplary rating in an ROC analysis.

score
positive

score
negative

50 10
90 30
100 60

Table 3.2: Ratings divided into positive and negative cases.
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Figure 3.2: ROC curve.

ROC curve for the given example. Each data point is a (TPF, FPF)-pair for a
different threshold (Table 3.3). The dotted diagonal line is the chance line.

The ROC curve is a plot of the true-positive fraction (TPF) against the false-positive fraction
(FPF) corresponding to each possible threshold [73]. In our example, we get the following possible
thresholds: 0, 11, 31, 51, 61, 91, 101. A threshold value of 11 means that all scores greater
than 11 are considered positive (case 1, case 2, case4, case 5, case 6) and values below 11
are considered negative (case 3). Thus, we have three TP ratings (case 1, case 2, case 4), two
FP ratings (case 5, case 6) and one TN rating (case 3), resulting in TPF = 3/3 and FPF = 2/3
for threshold 11. This procedure is repeated for each possible threshold (Table 3.3). For the
generation of the ROC curve, these pairs (TPF,FPF) are plotted (Figure 3.2).

threshold TPF FPF

0 3/3 = 1.0 3/3 = 1.0
11 3/3 = 1.0 2/3 = 0.67
31 3/3 = 1.0 1/3 = 0.33
51 2/3 = 0.67 1/3 = 0.33
61 2/3 = 0.67 0/3 = 0
91 1/3 = 0.33 0/3 = 0
101 0/3 = 0 0/3 = 0

Table 3.3: True-positive fraction (TPF) and false-positive fraction (FPF) for each
possible threshold.

The plot in Figure 3.2 is an empirical ROC curve without assumption of any distribution. There
are approaches where statistical distributions are assumed that result in smother ROC curves
[73]. However, the empirical ROC curve is very popular due to its easy computation. The figure of
merit of an ROC analysis is the area under the ROC curve (AUC). An AUC of one indicates perfect
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discrimination between positive and negative cases, while an AUC of 0.5 (ROC curve would lie on
the dotted chance line in Figure 3.2) suggests random rating of the cases equal to guessing. In
the example provided above, the AUC is 0.89 indicating a good discrimination between positive
and negative cases.

3.2 Model Observers

The planning and operation of reader studies are very time consuming and expensive. Several
experts are needed to perform observer tasks on a big amount of images to create meaningful
results. Therefore, high effort is spent on the investigation of quantitative image quality metrics to
substitute reader studies. Anthropomorphic model observers are methods to assess task-based
image quality that can be tuned to perform similar to human observers [11, 12]. In JP-I, novel
model observers are implemented with machine-learning approaches and compared to a more
traditional model observer, the channelized Hotelling observer (CHO). This section gives an
introduction of the CHO and machine-learning model observers based on neural networks and
convolutional neural networks (CNN).

3.2.1 Channelized Hotelling Observer

Model observers require training data to build an observer template. Common model observer
tasks are the detection of signals in a signal known exactly/background known exactly (SKE/BKE)
paradigm, meaning that both, images of the background without signal and images of the signal on
top of the background are exactly known and available for the generation of the model observer.

A very popular model observer is the CHO, where images are filtered with frequency channels
before computation of a decision variable. The filtering process simulates the activity of individual
neurons in the visual cortex [11]. For a given image, the CHO returns a decision variable that a
signal is present. The decision variable � can be computed by

� =
MX

m=1

!mgm, (3.6)

where ! is the observer template, g is the filtered image and M is the number of filter channels.
In this work, Gabor channels are used because they showed good results in related work with a
similar signal detection tasks [76, 77]. The implementation of the CHO is based on the description
in References [76, 78]: the observer template ! is built upon the intraclass channel scatter matrix
of the filtered training images when the signal is present and absent. The intraclass channel
scatter matrix is the average of the channel output covariance matrix when the signal is present
and absent.

Model observers showed superior results than humans in signal detection tasks. Therefore,
random noise models were introduced and added to the model observers. These noise models
are commonly called internal noise. In Ref. [79], Brankov gives an overview of different internal
noise strategies. In this work, a proportional internal noise model was implemented. The decision
variable �i with internal noise can be expressed by

�i =
MX

m=1

!m(gm + ✏m), (3.7)
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with

✏m ⇠ N(0,↵ · �m). (3.8)

✏m is a noise vector with normal distribution of zero mean and �m standard deviation. ↵ is tuning
parameter to control the strength. The standard deviation reflects the roughness in signal absent
images and can be derived from

�2m = var{(gb)m}, (3.9)

where var is the variance and (gb)m are the respective channel outputs for signal-absent images.

For the evaluation of the model observer output, it is applied to a large set of images and the
AUC is computed from the obtained decision variables. Therefore, model observers are metrics
for task based diagnostic image quality assessment.

3.2.2 Machine Learning Model Observer

The mathematical principles of traditional model observers don’t allow a high degree of signal
or background uncertainty. For more realistic tasks with signals of varying sizes or shapes and
lumpy backgrounds, the performance is degraded. Machine-learning algorithms, on the other
hand, showed great results in challenging image classification tasks with performances similar to
humans [21, 80]. Therefore, new approaches based on machine learning were investigated in
literature [81–88]. In this work, neural network and CNN-based model observers were investigated.
The principles of these machine learning-based model observers are described in this section and
published in JP-I.

Neural Network Model Observer

The neural network model observer (NN-MO) is illustrated in Figure 3.3 and was implemented
using the TensorFlow framework (TensorFlow version 1.2.1, Google Inc., Mountain View, USA).
The neural-network architecture implemented in this study consists of an input layer and an output
layer with a softmax function. The input image is reshaped to a 1 x M vector, with M being the
total number of pixels. Each pixel xm is an input to each neuron netk, k = 0, ...,K � 1, with K
being the number of neurons. In this setting, the number of neurons is equal to the confidence
rating of a human observer in a reader study. In JP-I, the human observer gave a confidence rating
between one and nine resulting in nine neurons in the NN-MO. After the neurons perform a linear
regression, results of all neurons are normalized by a softmax function returning the likelihood that
the image is of class k–equal to confidence k that the signal is present. The softmax function is
given by

P (y|x) = eny

PK
k=1 e

nk
, (3.10)

with ny and nk being the outputs of neurons nety and netk, respectively. Weights w and biases b
are optimized during training using the Adam optimizer with backpropagation [89].
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Figure 3.3: Neural network-based model observer (NN-MO).

Figure is published in JP-I . Permission to copy was obtained from the publishing
journal.

Convolutional Neural Network Model Observer

The architecture of the CNN model observer (CNN-MO) is based on LeNet-5 which was initially
proposed for handwritten digit recognition [21]. As illustrated in Figure 3.4, the CNN-MO consists
of two convolutional layers, each followed by a max-pooling layer, and two fully connected layers
followed by an output layer and a softmax regression. Analogous to the NN-MO, the result is the
probability P for the confidence rating of a human observer.

The first convolutional layer consists of six filters (dim: 5 x 5) that are applied to the input image
of size 136 x 136. Each filter creates a feature map of the input image resulting in a volumetric
output of dimensions 136 x 136 x 6. Max pooling with size 2 x 2 and a stride of 2 reduces the
dimension of the feature maps to 68 x 68 x 6. Max pooling can be understood as a compression
step: on each feature map, a window of size 2 x 2 slides over the map with a step size (stride) of
two and the maximum value from each window position is preserved (see Figure 3.5). The second
convolutional layer consists of 16 filters (dim: 5 x 5 x 6) resulting in an output of 68 x 68 x 16,
succeeded by 2 x 2 max pooling. Resulting feature maps (dim: 34 x 34 x 16) are reshaped to a
1D-vector and fed into the first fully connected layer with 120 neurons. The second fully connected
layer consists of 84 neurons followed by an output layer with 9 neurons and a softmax regression.
Adam optimizer with backpropagation was used for training.
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3 Strategies for System Evaluation

Figure 3.4: Convolutional neural network-based model observer (CNN-MO).

The architecture of the proposed CNN consists of an input layer, several hidden
layers and an output layer. Filter numbers and resolution of convolutional layers
are indicated on top of the respective layers. For the fully connected layers, the
number of neurons is denoted. Figure is published in JP-I and adapted from [21].
Permission to copy was obtained from the publishing journal.
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Figure 3.5: Max pooling of size 2 x 2 and stride 2.

A window of size 2 x 2 slides over the map with a step-size (stride) of two. The
maximum value from each window position is preserved. The upper row shows
the feature map before max pooling with the bold frame expressing the window
position of each step. The lower row shows the feature map after max pooling
with the bold frame marking the value corresponding to the window in the upper
row. The images on the right show a gray scale representation of the feature
map before and after max pooling (level: 5, window: 10). It can be seen that the
lower image is a compressed version of the upper image.

In JP-I, labeled image data, as shown in Figure 3.1, with the confidence ratings of a radiologist
as labels were used for training. The dataset was split into three sets: 80 % training, 5 %
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validation and 15 % testing. The validation set is used to avoid overfitting: when the validation
accuracy starts to converge or drop, the training needs to be stopped. In JP-I, the validation
accuracy of the CNN-MO converged at about 70 % with a training accuracy of about 90 % at this
point. Hence, training was stopped when the validation accuracy reached 70 % and the training
accuracy was greater than 90 %. Analogous to the CHO, with machine learning-based model
observers diagnostic image quality is evaluated by their application to a large set of images and
the computation of the AUC from the predicted confidence ratings.

3.3 Custom Phantoms for Specific Applications

Another strategy to evaluate the diagnostic value of new imaging techniques is to use anthropomor-
phic phantoms. Due to the ionizing radiation in x-ray CT, new technologies like photon-counting
CT need extensive testing before first experiments with humans are approved. For this purpose,
phantom studies are very useful. With the broad availability of 3D-printers today, the creation of
custom phantoms for specific applications is simplified, leading to increasing numbers of studies
with custom-made phantoms [15, 90–92]. In JP-II, a custom-made lung phantom was used to
evaluate a preclinical SPCCT system. The lung phantom is illustrated in Figure 3.6 and its design
and evaluation is described in the following sections.

a) b) c)

Figure 3.6: Anthropomorphic lung phantom.

a) 3D-printed lung phantom; b) 3D-rendering of the inner structure of the lung
phantom; c) slice of the binary mask used for 3D printing. Red arrows in mark
two inserted nodules–a sphere and a sphere with spikes representing benign
and malignant nodules, respectively. Figure is published in C8. Permission to
copy was obtained from the publishing journal.
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3.3.1 Design of a Custom Lung Phantom

A board-certified radiologist selected a high-resolution CT acquisition of a healthy patient for the
design of the lung phantom. From the scan, the right lung was manually segmented using a
commercial DICOM viewer (OsiriX v.6.0 64-bit, Pixmeo SARL, Bernex, Switzerland). Further
processing steps were performed using MATLAB (version R2017b, MathWorks, Massachusetts,
USA). Inner structure was separated from the background by thresholding. Small parts that are
not connected to the structure were removed by a region-growing algorithm that started in the
boundary of the lung. Lung nodules were simulated and inserted into the lung segmentation.
The experienced board-certified radiologist specified the nodule location to guarantee a realistic
setup. Figure 3.7 shows a CT image of the lungs, the segmented right lung and the segmentation
including simulated nodules. The simulated nodules were mathematically defined as spheres
and spheres with spikes similar to the FDA lung-phantom inserts [93], representing benign and
malignant nodules, respectively. Figure 3.8 illustrates the mathematical definition of the nodules.
Afterwards, the digital lung phantom was loaded into an open source image processing software
(ImageJ v. 2.0.0-rc-49/1.51d) and the ImageJ 3D Viewer plugin was used to create a surface
rendering of the phantom. The surface rendering was exported as STL-file, that is required by most
3D-printing systems. A 3D-printing system with additive manufacturing technique of selective laser
sintering based on polyamide was used to build the phantom. Printed vessels and surrounding
walls were required to match the attenuation of human vessels. As a result of the 3D-printing
technique, the lung phantom is filled with powdered polyamide. Therefore, the background in
the lung has elevated intensity values compared to air. In the high-resolution scan of the lungs,
intensity values of -875 HU were measured for background in the lung; a CT scan of the phantom
showed about -580 HU.

a) b) c)

Figure 3.7: CT of the lungs and segmentation of the right lung.

a) High-resolution CT of a human thorax (level: 400 HU, window: 2400 HU); b)
segmentation of the right lung after removal of small structures; c) segmentation
with inserted lung nodules.
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Figure 3.8: Description of the lung nodules.

Upper row illustrates spheres with spikes simulating malignant nodules; lower
row illustrates spheres simulating benign nodules. Figure is published in JP-II.

3.3.2 Evaluation

Pulmonary structure inside the lung, position and shape of nodules as well as the nodule sizes
are known. The availability of a digital model of the lung phantom that represents the ground
truth enables visual (subjective) and quantitative evaluation. Figure 3.9 shows a comparison of
the lung phantom scanned with different modalities. The green box shows the 3 mm sphere with
spikes (Figure 3.8). Visually, images from SPCCT (G, H) are closer in appearance to the digital
model (A, B) with sharp edges and clear boundaries. Therefore, the malignant nodule could be
identified while in standard CT (C, D) and high-resolution CT (E, F) the spikes and boundaries
are fuzzy. However, the visual impression of the images is a subjective evaluation that might
differ from observer to observer. Therefore, shape and volume of the lung nodules are evaluated
quantitatively. The methodology of the evaluation can be found in JP-II and is described below.

Nodule Segmentation

For the evaluation of nodule volume and shape, the nodule needs to be segmented. One operator
selects manually the center of mass of the nodule and a circular region of interest (ROI) is drawn
around the center. The diameter of the ROI is d+1.5 mm for spherical nodules and d+6.5 mm for
spheres with spikes, where d is the size of the nodule. Based on the selected ROI, a volume of
interest (VOI) is selected around the center of mass. Within the VOI, lung tissue is separated from
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Figure 3.9: Visual comparison of lung images from different modalities.

A, B) Reference image (digital lung phantom); C, D) standard CT acquisition; E,
F) CT acquisition with high-resolution protocol; G, H) SPCCT acquisition. Figure
is published in JP-II.

background using the k-means clustering algorithm provided by MATLAB [94]. Parts that are not
connected to the estimated center of mass are deleted from the segmentation by applying a 3D
region-growing algorithm. In Figure 3.10, the selected ROI and the corresponding segmentation
are exemplarily shown for the 6mm sphere with spikes. Due to the realistic placement of the
nodules into the pulmonary structure, vessels connected to the center of mass are included within
the VOI. To minimize the effect of manually selecting the center of mass in JP-II, results were
reported as average values from three repeated segmentations.

Nodule Volume

The determination of the nodule size is an important task in pulmonary imaging. Size and growth
of nodules are factors that are included in the classification. Nodule volume was determined based
on the segmentation of each nodule by

V = N · s, (3.11)

where N is the number of voxels in the segmentation and s is the size of one voxel. Volumes were
determined for each nodule in the digital lung phantom as reference. Determined volumes for
each modality were compared to the reference with linear regression analysis and a Bland-Altman
plot.
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Figure 3.10: Nodule segmentation for evaluation.

The left image shows the center slice of the 6 mm sphere with spikes. A circular
region of interest (ROI) with diameter 12.5 mm is manually drawn around the
center of the nodule. A spherical volume of interest (VOI) based on the circular
ROI is selected for segmentation. In the selected VOI, tissue is separated from
background using a k-means segmentation. Parts that are inside the VOI but
not connected to the center of the nodule are removed from the segmentation.
The right image shows the final segmentation of the nodule (opaque red) and
the surrounding VOI (light transparent red), that is used for evaluation.

Nodule Shape

Nodule shape is a crucial property in the assessment of lung nodules because it allows the
determination of malignancy. In general, spherical nodules are classified as benign and nodules
with proliferation, simulated by spikes, indicate malignancy. In JP-II, nodule shapes are evaluated
by computing the Dice similarity coefficient (DSC) between nodule segmentations from each
modality and the reference.

For a valid computation of the similarity between two segmentations, a precise registration is
essential. Therefore, segmentations were resized to have an isotropic voxel size (0.14 x 0.14
x 0.14 mm3) and rotation angles were measured with respect to the reference. Segmentations
were rotated by the measured angles around the x-, y-, and z-axis. 2D cross-correlation was
computed between center slices of the rotated segmentation and its reference. Precise alignment
was achieved by rotating the segmentation to the maximum value of the 2D cross-correlation. The
DSC was computed by

dsc(A,Bm) = 2 · |A \Bm|
|A|+ |Bm| , (3.12)

with A being the reference, Bm is the segmentation for modality m, \ denotes the intersection of
two sets and | · | is the cardinal of a set. The result is a value between 0 and 1, with 1 indicating
perfect similarity.
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4 Compliance with Ethical Standards

All investigations performed in studies involving human participants were in accordance with
the ethical standards of the institutional and/or national research committee and with the 1964
Helsinki declaration and its later amendments or comparable ethical standards. Written informed
consent was waived by the institutional review board (Ethikkommision der Medizinischen Fakultät,
Technical University of Munich, Germany) as all patients were included retrospectively.

The animal experiment involving the scan of a New Zealand white rabbit with a SPCCT prototype
in Lyon, France, was approved by the French Department of Education and Research. All
experiments were performed in accordance with relevant guidelines and regulations.
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5 Comprising Journal Publications

5.1 Journal Publication I:
CNN as model observer in a liver lesion detection task for x-ray
computed tomography: A phantom study

The publication entitled CNN as model observer in a liver lesion detection task for x-ray computed
tomography: A phantom study was published in Medical Physics (ISSN: 2473-4209). The
manuscript was authored by Felix K. Kopp, Marco Catalano, Daniela Pfeiffer, Alexander A. Fingerle,
Ernst J. Rummeny, and Peter B. Noël.

5.1.1 Abstract

Purpose

The purpose of this study was the evaluation of anthropomorphic model observers trained with
neural networks for the prediction of a human observer’s performance.

Methods

To simulate liver lesions, a phantom with contrast targets (acrylic spheres, varying diameters,
+30 HU) was repeatedly scanned on a computed tomography scanner. Image data labeled with
confidence ratings assessed in a reader study for a detection task of liver lesions were used to
build several anthropomorphic model observers. Models were trained with images reconstructed
with iterative reconstruction and evaluated with images reconstructed with filtered backprojection.
A neural network, based on softmax regression (SR-MO), and convolutional neural networks (CNN-
MO) were used to predict the performance of a human observer and compared to a channelized
Hotelling observer [with Gabor channels and internal channel noise (CHOi)]. Model observers
were evaluated by a receiver operating characteristic curve analysis and compared to the results
in the reader study. Two strategies were used to train the SR-MO and CNN-MO: A) building a
separate model for each lesion size; B) building one model that was applied to lesions of all sizes.

Results

All tested model observers and the human observer were highly correlated at each lesion size and
dose level. With strategy A, Pearson’s product-moment correlation coefficients r were 0.926 (95%
confidence interval (CI): 0.679–0.985) for SR-MO and 0.979 (95% CI: 0.902–0.996) for CNN-MO.
With strategy B, r was 0.860 (95% CI: 0.454–0.970) for SR-MO and 0.918 (95% CI: 0.651–0.983)
for CNN-MO. For CHOi, r was 0.945 (95% CI: 0.755–0.989). With strategy A, mean absolute
percentage differences (MAPD) between the model observers and the human observer were 3.7%
for SR-MO and 1.2% for CNN-MO. With strategy B, MAPD were 3.7% for SR-MO and 3.0% for
CNN-MO. For the CHOi the MAPD was 2.2%.
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Conclusion

Convolutional neural network model observers can accurately predict the performance of a human
observer for all lesion sizes and dose levels in the evaluated signal detection task.

5.1.2 Author contributions

The first author performed the experiments, implemented the channelized Hotelling observer,
neural network and convolutional neural network, and programmed the reader study assessment
tool. With the help and consultation from the coauthors, the first author designed the experiment,
analyzed and interpreted the data, and wrote the paper.
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5.2 Journal Publication II

5.2 Journal Publication II:
Evaluation of a preclinical photon-counting CT prototype for
pulmonary imaging

The publication entitled Evaluation of a preclinical photon-counting CT prototype for pulmonary
imaging was published in Scientific Reports (ISSN: 2045-2322). The manuscript was authored by
Felix K. Kopp, Heiner Daerr, Salim Si-Mohamed, Andreas P. Sauter, Sebastian Ehn, Alexander
A. Fingerle, Bernhard Brendel, Franz Pfeiffer, Ewald Roessl, Ernst J. Rummeny, Daniela Pfeiffer,
Roland Proska, Philippe Douek, and Peter B. Noël.

5.2.1 Abstract

The purpose of this study was to investigate a preclinical spectral photon-counting CT (SPCCT)
prototype compared to conventional CT for pulmonary imaging.

A custom-made lung phantom, including nodules of different sizes and shapes, was scanned
with a preclinical SPCCT and a conventional CT in standard and high-resolution (HR-CT) mode.
Volume estimation was evaluated by linear regression. Shape similarity was evaluated with the
Dice similarity coefficient. Spatial resolution was investigated via MTF for each imaging system.
In-vivo rabbit lung images from the SPCCT system were subjectively reviewed.

Evaluating the volume estimation, linear regression showed best results for the SPCCT com-
pared to CT and HR-CT with a root mean squared error of 21.3 mm3, 28.5 mm3 and 26.4 mm3

for SPCCT, CT and HR-CT, respectively. The Dice similarity coefficient was superior for SPCCT
throughout nodule shapes and all nodule sizes (mean, SPCCT: 0.90; CT: 0.85; HR-CT: 0.85).
10% MTF improved from 10.1 LP/cm for HR-CT to 21.7 LP/cm for SPCCT. Visual investigation of
small pulmonary structures was superior for SPCCT in the animal study.

In conclusion, the SPCCT prototype has the potential to improve the assessment of lung
structures due to higher resolution compared to conventional CT.

5.2.2 Author contributions

The first author designed and fabricated the lung phantom, acquired conventional CT data,
implemented the analysis software for nodule quantification, and performed the statistical analysis.
With the help and consultation from the coauthors, the first author designed the experiment and
wrote the manuscript.
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5.3 Journal Publication III:
Sparse sampling computed tomography (SpSCT) for detection
of pulmonary embolism: a feasibility study

The publication entitled Sparse sampling computed tomography (SpSCT) for detection of pul-
monary embolism: a feasibility study was submitted to European Radiology (ISSN: 1432-1084)
and published online May 9th 2019. The manuscript was authored by Andreas P. Sauter, Felix
K. Kopp, Rolf Bippus, Julia Dangelmaier, Dominik Deniffel, Alexander A. Fingerle, Felix Meurer,
Daniela Pfeiffer, Roland Proska, Ernst J. Rummeny, and Peter B. Noël. Andreas P. Sauter and
Felix K. Kopp equally contributed with co-first authorship.

5.3.1 Abstract

Objectives

Evaluation of sparse sampling computed tomography (SpSCT) regarding subjective and objective
image criteria for the detection of pulmonary embolism (PE) at different simulated dose levels.

Methods

Computed tomography pulmonary angiography (CTPA) scans of 20 clinical patients were used to
obtain simulated low-dose scans with 100%–50%–25%–12.5%–6.3%–3.1% of the clinical dose,
resulting in a total of six dose levels (DL). From these full sampling (FS) data, every second
(2-SpSCT) or fourth (4-SpSCT) projection was used to obtain simulated sparse sampling scans.
Each image set was evaluated by four blinded radiologists regarding subjective image criteria
(artifacts, image quality) and diagnostic performance (confidence, sensitivity, specificity, accuracy,
and area under the curve). Additionally, the contrast-to-noise ratio (CNR) was evaluated for
objective image quality.

Results

Sensitivity was 100% with 2-SpSCT and 4-SpSCT at the 25% DL and the 12.5% DL for all
localizations of PE (one subgroup 98.5%). With FS, the sensitivity decreased to 90% at the 12.5%
DL. 2-SpSCT and 4-SpSCT showed higher values for sensitivity, specificity, accuracy, and the
area under the curve at all DL compared with FS. Subjective image quality was significantly higher
for 4-SpSCT compared with FS at each dose level (p < 0.01, paired t-test). Only with 4-SpSCT, all
examinations were rated as showing diagnostic image quality at the 12.5% DL.

Conclusion

Via SpSCT, a dose reduction down to a 12.5% dose level (corresponding to a mean effective dose
of 0.38 mSv in the current study) for CTPA is possible while maintaining high image quality and
full diagnostic confidence.

5.3.2 Author contributions

FKK coordinated the study, processed the reconstructed images and created the reader study
assessment sheets. The co-first authors designed the experiment and analyzed the data. With
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the help and consultation from the coauthors, the first authors interpreted the data and wrote the
manuscript.
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6 Discussion

This cumulative dissertation is based on three publications providing clinical evaluation for different
novel imaging procedures in the field of x-ray CT. Following sections discuss the included journal
publications and give a conclusion of this work.

6.1 JP-I

CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom
study evaluates machine-learning approaches for the assessment of task-based diagnostic image
quality. The idea is to implement model observers based on neural networks and CNNs that can
predict the performance of a human observer in a liver lesion detection task. Apart from using
machine learning as model observers, a novelty is the investigation of the performance under
varying lesion sizes. Traditional model observers like the CHO will typically fail with signal size
uncertainty, due to their mathematical definition. However, lesion sizes vary in the clinical routine
with single observers (radiologists) assessing lesions of different sizes. Therefore, new strategies
are needed for the adaption of model observers to more realistic tasks.

Brankov et al. introduced machine learning-based model observers for single photon emission
computed tomography (SPECT) [81, 82, 84]. They showed that nonlinear model observers based
on support vector machines (SVM) [81, 82] and a neural network [84] perform superior to CHO with
the advantage of directly learning from the human’s decisions. While traditional model observers
are built to detect signals and their performance is decreased by adding noise to the decision–as
adaption to human inefficiencies in challenging detection tasks–machine learning-based model
observers can be directly trained from the human’s performance. In a next step, Massanes et al.
evaluated a CNN-based model observer imaging achieving "excellent agreement" with human
observers. They also investigated the effect of reducing the number of training images, concluding
that CNNs need a larger amount of images for excellent results [88]. However, they only inves-
tigated a single signal in different noise realizations for SPECT. In the present thesis, different
signal sizes were evaluated making the detection task more realistic. In addition, the evalua-
tion for CT images verifies the application of machine learning-based model observers for x-ray CT.

Gong et al. proposed a deep learning-based model observer (DL-MO) for CT and introduced
anatomical patient background to the lesions as a follow-up to JP-I. They used the so-called
transfer learning strategy, where an existing CNN that was trained on a huge amount of image data
is fine tuned to a new task. The authors trained an individual DL-MO for each lesion size, dose
level and reconstruction algorithm that were used in the study. DL-MOs were trained to detect
lesions and internal noise was added to reduce the performance [95, 96]. The reported Pearson
correlation coefficient r between DL-MOs and human observers was 0.986 (95 % confidence
interval (CI): 0.950 - 0.996). That is in the same range as for strategy A in JP-I, where a separate
model observer was trained for each signal size (r=0.979; 95 % CI: 0.902 - 0.996). However,
Gong et al. didn’t take advantage of the possibility to directly train the model observer on the data
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of human observers. Moreover, they built a DL-MO for each lesion and image quality. In JP-I,
strategy B is used to train machine learning-based model observers that are capable to work with
different lesion sizes simulating more realistic tasks.

There were limitations in JP-I. The human observer’s performance is based on the results of
a single radiologist in a reader study. Different readers may have different performances on the
same detection task. Therefore, results obtained in this study cannot be generalized. However,
aim of the study was the proof-of-concept if a machine learning-based model observer could
predict the performance of a human observer. In a scenario where the performance of several
radiologists need to be predicted, also several model observers could be trained–one for each
human observer–as proposed by Marin et al. [87]. Another limitation is that neural networks
and CNNs are known to perform better with more training data available. In realistic settings,
the number of images is limited due to data privacy protection leading to a decreased number of
available training images for real scenarios. There are strategies to overcome the requirement of
large datasets, like transfer learning [97] and data augmentation [98, 99]. The application of such
strategies could be part of future work in this research area.

In conclusion, the results of JP-I indicate that neural networks and CNNs might be suitable for
human observer’s performance prediction and the evaluation of diagnostic image quality. However,
limitations show that further investigation is advisable.

6.2 JP-II

Evaluation of a preclinical photon-counting CT prototype for pulmonary imaging investigates the
clinical applicability of SPCCT for imaging of the lung using a custom-made lung phantom. Results
were compared to conventional CT in standard and high-resolution (HR-CT) mode. Higher spatial
resolution could lead to an improved classification of small nodules [100] and allow to assess wall
thickness of large and small airways, enabling an early detection of the destruction of alveolar
architecture which is a direct effect of chronic obstructive pulmonary disease (COPD) [101, 102].
Therefore, high-resolution CT is an important topic in pulmonary imaging.

Pourmorteza et al. evaluated the high-resolution capabilities of a different SPCCT system
[23]. The prototype is based on a SOMATOM Flash scanner (Siemens Healthcare, Forchheim,
Germany) with a binned detector pixel size of 450 x 450 µm2 in high-resolution mode. They
reported improved image resolution compared to standard-resolution photon-counting CT. The
SPCCT prototype evaluated in JP-II is based on a Brilliance iCT (Philips Healthcare, Haifa, Israel)
with a detector pixel size of 500 x 500 µm2. Improved image resolution was measured and
enhanced nodule quantification was observed compared to conventional CT and HR-CT.

Zhou et al. evaluated the Siemens prototype for the quantification of lung nodules. They reported
a root-mean-square error (RMSE) for nodule volume quantification between 21.6 - 28.3 mm3 [103]
and between 21.3 - 22.5 mm3 [16]. In JP-II, the RMSE for nodule volume quantification was in the
same range (21.3 - 28.5 mm3). In addition, JP-II provides a comparison to a state-of-the-art CT
system and subjectively evaluates images of an animal study.

Yanagawa et al. evaluated an ultra-high-resolution CT (U-HRCT) for lung imaging and compared
it to a conventional CT [104]. The U-HRCT is equipped with a detector of similar resolution as
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the presented SPCCT prototype. They reported significantly improved visualization for most
investigations with significantly higher overall image quality compared to the conventional CT.
However, a fair comparison between U-HRCT and SPCCT would require quantitative evaluation of
both systems with the same methodology and should be investigated in future work.

One limitation of the study in JP-II is the use of FBP for image reconstruction. Advanced iterative
reconstruction algorithms might have improved the quantification results in the study for both,
conventional CT [63] and SPCCT [105]. However, iterative reconstruction introduces non-linearity
leading to limited value of the results [9]. Therefore, FBP was used to guarantee a fair comparison.
Another limitation is the uncertainty in the 3D-printing process. Small errors might be introduced
by interpolation when the digital model is 3D rendered and finally 3D printed. These inaccuracies
might contribute to the reported RMSE between 21.3 - 28.5 mm3 (SPCCT: 21.3 mm3; HR-CT:
26.4 mm3; CT: 28.5 mm3). However, Zhou et al. reported similar RMSEs for photon-counting CT.

In conclusion, different studies indicate a great potential of high-resolution photon-counting
CT with systems from different vendors. However, despite the fact that photon-counting CT
systems from different vendors are based on similar concepts aiming the same goal, specific
system parameters differ (like detector pixel size) and therefore, require separate evaluation of
different systems. JP-II showed that the investigated SPCCT prototype allows precise lung nodule
quantification and improved investigation of small pulmonary structures.

6.3 JP-III

Sparse sampling computed tomography (SpSCT) for detection of pulmonary embolism: a feasibil-
ity study evaluates sparse sampling as novel CT acquisition scheme for radiation dose reduction
in examinations with suspected PE. Results on simulated data indicate that a dose reduction
to 12.5 % of the currently used clinical dose would still produce diagnostic image quality for
examinations with suspected PE. However, results are based on simulated data because there is
no medical CT with sparse-sampling capabilities available today.

Wiedmann et al. give a summary of hardware modifications that could allow sparse-sampling
CT [25]. They presented results of a multisource inverse-geometry CT prototype that is capable to
pulse the x-ray flux with a pulse width on the order of 3 µs. This would allow to switch an x-ray
tube on and off at arbitrary positions during one gantry rotation. However, the technique is still
under investigation [106, 107] and not available in commercial medical CT systems. Chen and
Muckley et al. presented first results of a sparse-sampling CT prototype with integration of a
multi-slit collimator between the x-ray source and the patient [108, 109]. The x-ray flux is blocked
row-wise to obtain a sparse data acquisition with reduced dose [110]. Today, presented work only
proves the feasibility of such techniques and shows that more evaluation for the implementation in
commercial medical CT systems is required.

Abbas et al. investigated several sampling schemes on micro-CT data [111]. Sparsely sampled
data is simulated by row- or column-wise blocking of the x-ray beam for every tube position,
periodically sampling one projection after every few tube positions and periodically sampling a
group of projections after every few tube positions. For reconstruction, they used an optimized
SIR algorithm [112, 113]. In their study, periodically sampling one projection after every few tube
positions performs best reaching highest similarity to the fully sampled reference images. In JP-III,
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we used periodically sampling of one projection for the simulation of sparse sampling, resulting in
good image quality supporting the findings by Abbas et al.

One limitation of this study is that it is based on simulations. Low tube current and sparse
sampling was simulated based on real patient scans from the clinical routine. However, evaluation
of reduced tube current would require additional x-ray radiation exposure to patients. Therefore,
a vendor specific low-dose simulation tool was used to obtain virtually reduced tube currents
[114]. The simulation tool was evaluated by Muenzel et al. [115], verifying the validity of simulated
data. Sparse sampling, on the other hand, can only be simulated because there is no medical
CT system available that is capable of performing sparse sampling. Another limitation is the low
number of patients in the reader study. 20 patients with suspected PE were included in the study.
Due to the wide range of parameters that were evaluated (6, 5 and 4 dose levels for full sampling,
2-times SpS and 4-times SpS, respectively) already a huge set of images were generated. With
that amount of patients, the goal was to show the feasibility of sparse sampling for the investigation
of cases with suspected PE. For generalization of the results, follow-up studies should narrow the
parameters (less dose levels) and include a larger patient cohort.

In conclusion, JP-III evaluated sparse sampling for examinations with suspected PE in a reader
study. The results suggest that a dose reduction of 87.5 % could be achieved without loss of
subjective image quality and diagnostic performance.

6.4 Outlook and Conclusion

In this cumulative dissertation, different approaches for clinical evaluation of novel methodologies
in x-ray CT were presented. While the implementation of machine learning-based model observers
aims to provide automatic evaluation of diagnostic image quality, and the use of custom-made
phantoms requires at least some human interaction, subjective evaluation of the diagnostic perfor-
mance in a reader study relies solely on the human performance. Presented strategies for system
evaluation were applied to different novel imaging techniques with the aim to estimate their clinical
value.

The CNN-based model observer showed promising results in predicting the performance of a
radiologist in a simulated lesion detection task with varying signal sizes. Future work should focus
on their application to clinical images with anatomical background and real lesions. Beyond model
observers, diagnostic image quality assessment could be trained by the subjective impression
of radiologists. Lee et al. used transfer learning of a deep CNN with subjective image quality
rating on lung images [116]. Whole images are rated for their visual appearance offering the
advantage that it could be applied to any image without knowledge of present disease (as in model
observers). However, even if radiologists approve the visual appearance of an image, it is not
guaranteed that they have a good diagnostic performance on them. Thus, further research is
needed for automated assessment of diagnostic image quality.

Clinical evaluation of the SPCCT prototype indicates great performance for pulmonary imaging.
The investigated prototype has a limited field of view that cannot cover the whole human body.
However, other prototypes exist that are capable of scanning whole human bodies. Moreover, the
rapid evolution of photon-counting CT indicates a foreseeable clinical introduction within the near
future [22].
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6 Discussion

With the evaluation of sparse sampling for examinations with suspected PE, the dose reduction
possibility of SpSCT was presented. Although great potential of sparse sampling for low-dose CT
was demonstrated, its integration into commercial medical CT systems still requires extensive
research. The technical feasibility was already shown for multi-slit collimator and fast-pulsing x-ray
tubes, but the performance of state-of-the-art detectors when the continuous flux is partly blocked
or pulsed might be problematic. Current EIDs expect continuously impinging x-ray photons, hence,
a change of this behavior needs cautious investigation. Therefore, high effort and extensive
research is still required until the introduction of SpSCT to commercial CT systems.

Summing up, presented approaches and evaluations are a valuable contribution to the CT
research community. While JP-I already builds a basis for ongoing research [95], JP-II and JP-III
contribute to an extensive evaluation of new CT technologies that might promote their clinical
introduction in the future.
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