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ABSTRACT

Breast reconstruction proceeding cancer treatment carries risk, regardless of 
the type of surgery. From fat grafting, to flap placement, to implants, there is no 
guarantee that reconstruction will not stimulate breast cancer recurrence. Research 
in this field is clearly divided into two parts: scientific interventional studies and 
clinical retrospective evidence. The reconstructive procedure offers hypoxia, a 
wound microenvironment, bacterial load, adipose derived stem cells; agents shown 
experimentally to cause increased cancer cell activity. This is compelling scientific 
evidence which serves to bring uncertainty and fear to the reconstructive procedure. 
In the absence of clinical evidence, this laboratory literature landscape is now 
informing surgical choices. Curiously, clinical studies have not shown a clear link 
between breast cancer recurrence and reconstructive surgery. Where does that leave 
us? This review aims to analyze the science and the surgery, thereby understanding 
the oncological fear which accompanies breast cancer reconstruction. 
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INTRODUCTION

Surgical caution surrounding breast cancer 
reconstruction is understandable and rational. Defining 
a site as ‘cancer free’ can be inaccurate, as recurrence is 
common. It is estimated that up to 40% of all breast cancer 
patients will experience relapse, the highest risk of relapse 
being within the first 1–3 years post reconstruction [1]. 
After treatment, many patients take measures to reduce 
recurrence risk into their own hands. This includes 
decreasing alcohol intake [2], prolonged nightly fasting 
(13 hours) [3], and even green tea consumption [4], which 
have all been linked to reducing recurrence. However, 
chance of recurrence is the constant enemy of post-cancer 
patients, no matter what lifestyle measures are taken. For 
this reason, reconstruction is frequently forgone. A review 
of 125 breast cancer patients revealed that while 89% are 
afraid of the appearance post-op, 63% are still afraid their 
reconstruction would mask recurrence [5]. As such, breast 

cancer reconstruction holds uncertainty for both patients 
and surgeons. Here we review the evidence behind the 
‘fear’ of surgically creating a state/condition that will 
cause recurrence secondary to reconstruction. 

UNDERSTANDING THE ZONE TO BE 
RECONSTRUCTED 

Up until the 1980 s, it was not considered safe 
to reconstruct a breast until 2 years after the original 
mastectomy [6]. Nowadays however, there is a wealth 
of evidence supporting immediate reconstruction and 
the oncologic safety thereof. Reconstruction may be 
immediate, delayed-immediate (using a tissue expander), 
or delayed [7]. As a departure from Halsted’s radical 
mastectomy of the late 1800 s [8], the trend of nipple 
sparing mastectomy (NSM) and skin sparing mastectomy 
(SSM) has brought reconstruction from general to plastic 
surgery. Some retrospective studies suggest that NSM 
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does not correlate with cancer recurrence [9, 10], while 
some recommend extreme caution [11, 12]. As for SSM, 
‘skin sparing’ varies from patient to patient, making it 
difficult to apply a standard to retrospective literature 
[13]. However, it was reported that 0 of 44 patients with 
ductal carcinoma in situ (DCIS) relapsed upon SSM, while 
10 out of 177 with invasive ductal carcinoma presented 
relapse within 10 years [14]. When it does occur, DCIS 
relapse with SSM has been correlated with the young age 
of the mastectomy patients [15]. 

Looking microscopically, there are differences 
between the microenvironments of full and partial 
mastectomies. A full mastectomy will not have any ductal 
or glandular tissue remaining. Similarly, large parts 
of the skin including the nipple will be removed. The 
reconstructed area then assumes the microenvironment 
of the transplanted flap/graft/acellular dermal matrix 
(ADM) [16]. Meanwhile, the microenvironment of the 
partial mastectomy will feature surgically disrupted 
lobular tissue, creating the possibility of benign to 
malignant duct conversion [17]. Ligation of vessels 
can lead to downstream hypoxia, a known driver for 
tumor development [18]. Skin that is spared presents 
immunological refuge for remaining cancer cells, which 
preferentially seek shelter in proximal dermis [19]. A 
modified radical mastectomy has markers present in drain 
fluid which can indicate status of microenvironment (IL-
6 and TNF mark a healthy healing process, and IL-4 and 
interferon-g indicate post operative necrosis and seroma) 
[20]. There is no such standard available for partial 
mastectomy, given the variability of underlying tissue 
processes. 

EVIDENCE FOR BREAST CANCER 
RELAPSE POST RECONSTRUCTION

Cancer relapse is a multivariate phenomenon. 
‘Minimal residual disease’ (MRD) is a term encompassing 
local, circulating and disseminated tumor cells [21]. 
Cancer type, stage of development, previous treatment 
history, age, and sensitivity of the diagnosis all play a 
role in portending the cancer relapse [22, 23]. Below, we 
briefly outline the relationships of reconstruction methods 
with relapse occurring after surgical reconstructions 
(Figure 1).

Evidence for breast cancer relapse after flap 
reconstruction

There is long standing evidence for immediate 
reconstruction post mastectomy with flaps and the related 
absence of relapse. Specifically, myocutaneous flaps 
(rectus abdominis, latissimus dorsi (LD)) are quoted as 
safe bloc transplants in a post cancerous setting [24]. 
Immediate primary reconstruction with LD flaps in 51 
patients were followed out for almost 45 months, with 

relapse showing in 4/51 [25]. Similar findings were 
reported in 2013, where immediate reconstruction via 
SSM and transverse rectus abdominus muscle (TRAM) 
flaps showed 55 of the 249 patients relapse, 33 with 
lung metastases [26]. Even in late stage patients, early 
reconstruction with flaps is lauded as an oncologically safe 
procedure [27]. Due to excessive donor site morbidity, the 
DIEP is preferable to the TRAM [28]. In a comparison 
with the older TRAM flap, the DIEP has not exhibited 
greater cancer recurrence [29]. Recurrence with DIEP 
flaps has been reported on the ipsilateral side rather 
than contralateral, 3–5 years post reconstruction [30]. 
Importantly, in a combination therapy of delayed DIEP 
and lipofilling, there was observed no significant increase 
in relapse between DIEP/fat grafting and delayed DIEP 
alone [31]. Myriad other free flaps exist as reconstructive 
options for breast cancer; involving the gracilis muscle 
(transverse upper gracilis, TUG), abdominal (superficial 
inferior epigastric artery, SIEA), and fascio-cutaneous 
infragluteal (FCI) [32], but are rather under-described in 
terms of cancer stimulation during reconstruction.

Evidence for breast cancer relapse after implant 
reconstruction

The literary landscape of breast cancer recurrence 
stimulated by implants is sparse. Breast implants carry 
risk of cancer development in healthy patients, lending 
natural concern to the field of cancer reconstruction by 
implants [33]. Distal pathologies caused by the implant are 
generally instigated by migrating silicone which typically 
settles in pectoral girdle nodes, causing lymphadenopathy 
[34]. Certain existing clinical data indicates no causal 
relationship between implant use and cancer recurrence 
in breast cancer patients [35, 36]. A study involving 176 
subjects and matched controls (mastectomy patients with, 
mastectomy patients without implant) showed a closer 
association between implant failure and scleroderma, 
rather than recurrence [37]. Anaplastic large cell 
lymphoma (ALCL) is a concern associated with breast 
implants. According to the World Health Organization, 
ALCL is not breast cancer, but a category of T-cell 
lymphomas, characterized by cellular CD15-/CD30+/
CD40+ expression and anaplastic morphology [38, 39]. 
The cells make and survive in an immune privileged peri-
implant fibrotic capsule [40]. ALCL presents initially as 
seroma formation between the implant and the fibrotic 
capsule. Early detection is followed by removal of implant 
and capsule, but if the seroma has breached the capsule, 
systemic chemotherapy becomes advisable [41]. So 
far, the literature seems unusually unified in presenting 
rougher implant surface as a cause for ALCL [42, 43]. This 
poses interesting questions regarding increased biofilm 
infection on the large surface area of textured implants 
versus smooth; identified as a precursor to ALCL [44] 
[45]. Speaking in micromorts, the unit measure for risk 
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of death, dying of breast implant associated-ALCL is 0.4. 
To contextualize, driving for eight hours has a micromort 
value of 16; 40 times the risk of BIA-ALCL death [46]. 

Evidence for breast cancer relapse after fat 
grafting

Lipofilling or ‘fat grafting’ is a commonly 
used technique to enhance cosmetic results of breast 
reconstruction and sometimes even as the main 
reconstructive procedure. It involves liposuction of 
peripheral fat, usually from the abdomen, followed by 
subsequent centrifugation/phase separation to isolate 
the layer of tissue to be grafted [47]. It is an especially 
attractive solution to asymmetry/volume loss given 
the simplicity of technique and associated lack of scar. 
However, fat grafting is an imperfect tool. Cysts and 
‘suspicious nodules’ may be observed sonographically 
post-op, resulting in excision of grafted tissue [48]. The 
oncologic safety of fat grafting post cancer treatment was 
a point of discussion in 2009 by the American Society of 

Plastic Surgeons. In a publication called “ASPS Fat Graft 
Task Force” [49], the society investigated the existing 
literature surrounding recurrence and lipofilling. However, 
the work is criticized for lack of attention paid to the 
trophic cancer milieu; there is no direct discussion on the 
impact of transplanted adipose tissue on existing cancer 
cells [50]. For instance, there is evidence of a cancer 
feedback loop involving lipogenesis, whose direction is 
unclear. Cancer tissue exhibits aberrant lipid biosynthesis 
ancillary to cancer proliferation via fatty acid synthase 
(FASN) [51]. The other direction, altered lipid synthesis 
may induce tumor angiogenesis [52]. It appears the role 
of lipid metabolism in cancer development may be greater 
than initially assumed, per metabolomic genome studies of 
nascent and advanced breast cancer [53]. 

In the 8 years which have elapsed since the ASPS 
report, more detailed clinical evidence has been provided 
on the topic of recurrence post-lipofilling. A study 
published in 2016 analyzed 719 breast cancer patients 
whose treatment was either segmental or total mastectomy, 
and whose reconstruction involved lipotransfer. The 670 

Figure 1: This schematic summarizes the main surgical mechanisms of reconstruction (flap, lipofilling/fat grafting, 
implant placement). These can be performed in isolation, but are often used together as combination surgery. 
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matched controls were patients who had identical surgical 
treatment, and a reconstruction which did not feature 
lipofilling (e.g. flap/implant). The study saw no associated 
increased risk of cancer recurrence with lipotransfer when 
compared to the controls [54]. Another retrospective study 
published 4 years earlier reached the same conclusion; 
lipotransfer for repairing tissue deficit post-lumpectomy 
or –mastectomy in 321 patients saw recurrence in 27; a 
statistically insignificant indicator of cancer recurrence 
[55]. Seeing the small and satellite nature of the 
aforementioned studies, a meta analysis was published in 
2017 delineating CRAFT (Cancer Recurrence After Fat 
Transfer), a numerically viable framework established 
for a multi-center case cohort study on breast cancer 
reconstructions [56]. An important inclusion criterion for 
the subjects in this study was immediate reconstruction 
post mastectomy. The authors did not observe increased 
risk with fat transfer in these patients. 

However, in 2013, a self-acknowledged preliminary 
study showed patients with specifically ductal or lobular 
intraepithelial neoplasia having an increased risk of local 
recurrence with lipofilling [57]. The authors hypothesize 
that the low number of acquired genetic lesions on the 
ductal or lobular neoplastic cells means they are more 
receptive to paracrine signaling from grafted fat, as 
opposed to invasive breast cancer cells whose DNA 
is highly mutated, and less reactive to extracellular 
signals. With that in mind, it is of particular interest that 
the chief impact of adipose derived stem cells in the fat 
graft is paracrine [58]. A new approach harnessing these 
ambivalent trophic effects is cell assisted lipotransfer 
(CAL). The process of CAL entails grafting fat which 
is enhanced with a surplus of the patient’s own adipose 
derived stem cells (ASCs) [59]. It is important to note the 
paucity of oncological studies in this field, given that the 
skepticism and lack of knowledge has significantly halted 
the clinical implementation of CAL. In a retrospective 
study of CAL fat grafting clinical papers, there is quoted 
a high level of bias, absence of control groups, and 
widely ranging variation among studies, making parallel 
comparisons impossible [60]. 

WHICH FACTORS MAY DRIVE 
RECURRENCE? 

Clinical observations and scientific research of 
recurrence are not perfectly in sync. However, a range 
of scientific studies point at cancer circuitry within the 
reconstructive procedure (Figure 2). Below, we isolate 
the existing literature that shapes understanding of cancer 
relapse after reconstruction. 

Dermal reservoir of cancer cells

The skin has been quoted as an immune privilege 
area, in ways not dissimilar to the brain. Hair follicle 

Antigen Presenting Cells (APCs) lack MHCII. Potent 
immunosuppressive factors like TGFB1 and a-melanocyte 
stimulating hormone (a-MSH) are present in the dermis 
[61]. These factors create an environment which provides 
shelter for cancer cells during treatment [19]. A separate 
aspect inherent to preserving skin margins (as in SSM), is 
also the potential remaining breast tissue adherent to the 
hypodermis, allowing cancerous breast tissue to remain 
unintentionally [62].

Systemic blood profile alterations

It is important to acknowledge the changing cytokine 
profile of the cancer patient undergoing reconstructive 
surgery, as circulating levels of anti-apoptotic or pro-
angiogenic factors could serve as triggers for remaining 
cancer cells. A hematological study run on 82 breast 
cancer patients at time points one day before and 5 days 
after their TRAM flap reconstructive surgery revealed a 
dip in pro-angiogenic growth factors until day 5, when 
they began to climb again. The authors suggest choosing a 
time for reconstructive surgery when the blood chemistry 
is not so advantageous for cancer [63]. It is commonly 
acknowledged that depleting a tumor of vascularity will 
impede its growth [64], thus there is danger of a surgically 
stimulated increase in angiogenic factors supplied to a 
starved, opportunistic tumor [65, 66]. Surgical tissue 
trauma presents the angiogenic switch as an explanation 
for tumor stimulation, resulting in a local increase in 
pro-angiogenic factors and a key decrease in angiogenic 
inhibitors like TSP-1 [67]. A mouse model of ovarian 
cancer lends some clarity on the potential mechanism of 
surgical stress on cancer; a laparotomy performed on mice 
4 days after cancer cell inoculation revealed larger tumors 
compared to the anesthesia only group (no surgery). 
Moreover, Propranolol dosage lead to a complete block 
of surgical impact on tumor growth, indicating a role for 
b-adrenergic signaling in tumor response to surgery [68]. 

Tissue macro/micro trauma

The act of surgery or the physical breakdown of 
tissue in the breast could be a cause for cancer recurrence. 
A 2016 study focuses on expired time post surgery as a 
function of breast cancer relapse. The authors choose date 
of reconstruction, and date of mastectomy as time zero 
for 2 different plots. They analyze existing literature and 
observe a similar bimodal set of peaks in both graphs, 
showing recurrence at 2 years post surgery, then again 
at 5–6 years post surgery. Both surgical procedures of 
reconstruction and mastectomy therefore appear to induce 
similar biological impacts on subclinical cancer [69]. 
An article in 2007 questioned the cellular culprit for the 
relapse upon physical disturb. Polyak et al. observed 
that the threshold for DCIS becoming invasive ductal 
carcinoma is the physical breakdown of the basement 
membrane and myoepithelial barrier of the cancerous 



Oncotarget27899www.oncotarget.com

milk duct. The nature of this research implies an actual 
mechanical disruption which is to blame for transition of 
cancer from benign to malignant [17]. The authors suggest 
that many DCIS remain dormant, do not need resection 
and yet are still resected. The act of surgical resection 
may lead to malignancy when otherwise they may have 
remained subclinical. 

Genetic mutation

A recent study in 2017 uses a transgenic mouse 
model of tamoxifen induction and subsequent inhibition 
of breast cancer, which leaves cancerous cells behind 
as a faithful recapitulation of human MRD. Gene 

transcriptional studies showed an increased abnormal 
level of lipid metabolism in the mammary epithelial 
cells of regressed tumors; the residual cells of the cancer. 
This led to local DNA damage due to oxidative stress, 
triggering oncologic gene mutation in the hormonally-
induced expanding mammary cell population. Thus, 
inherent irregular energy metabolism within the remaining 
cancer could be an extracellular trigger for relapse through 
stimulation of oncologic gene mutation [70]. Healing the 
surgical incision created by the breast reconstruction is 
a wound microenvironment in which cells face hypoxia 
and DNA damage. Specifically, wound environments are 
a source of pro-inflammatory mediators and chemokines 
locally, and paracrine secretions can cause somatic gene 

Figure 2: Breakdown 5 potential biochemical mechanisms which may cause relapse, and a chart of up/down -regulated 
pro-cancer factors (up = grey, ‘+’, down = white, ‘−’). Pro-cancer factors (diagonal, bottom of chart) were selected based on the 
6 commonly accepted hallmarks of cancer (diagonal, top of chart) [90–117]. Taken in totality, it is noted that the wounds and dermal 
reservoirs possess the most potential relapse mechanisms, with most upregulated options for oncogenic signaling. Adipocytes and ASCs 
have the fewest upregulated pro-cancer genes. References for cancer and relapse literature are numbered within the table.
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mutation [71]. Clinical observations mirror this cellular 
mechanism. A regression analysis on five-year cancer 
survival post-reconstruction for patients without a wound 
complication was 89.2%, compared to 64% for patients 
with complicated, intractable wounds [72].

Hypoxia in the reconstructed breast 

Hypoxia is a process simultaneous with breast 
reconstruction. Flaps which are supplied solely by their 
anastomoses have graft borders which are not immediately 
supplied by native, ingrowing vessels [73]. Implants and 
expanders exert pressure on the breast boundaries, which 
decreases microvasculature efficiency, leading to hypoxia 
[74]. Adipocyte viability based on oxygen diffusion, 
independent of local HIF pathway activation, reaches  
0.2 cm into the grafted tissue from it’s periphery [75]. In 
this hypoxic environment, there are multiple aspects which 
cancer may take advantage of. It is commonly accepted 
that tumor hypoxia correlates positively with increased 
invasiveness and metastatic ability [76]. As a baseline, 
breast cancer biopsies have been shown to contain 
increased levels of HIF-1, and that the overexpression is 
connected with increased metastatic risk and mortality 
[77]. HIF1 expression is directly upstream of L1CAM 
and angiopoeitin-like 4, which are responsible for lung 
metastasis of breast adenocarcinoma cells [78]. Using 
microarrays on biopsy samples from 512 patients, a clear 
upregulation of HIF-2, as opposed to HIF-1 is present 
in breast cancer. This offers a specific molecule which 
the authors propose as a prophylactic target to decrease 
harmful effects of hypoxia [18]. In terms of extracellular 
impact, HIF1 hydroxylates and stiffens collagen matrices. 
Matrix mechanical hardening has been proposed as a 
histopathologic prognosticator of recurring cancer [79].

Adipose derived stem cells in grafted fat 

CAL has been shown in vivo to elicit regenerative 
effects via vascularization of the fat graft in a situation 
of radiation therapy [80]. Studies have shown that ASCs 
in fat have the ability to withstand the initial hypoxic 
environment of the graft, and remain viable to recruit new 
vasculature. This is critical in avoiding necrosis of tissue 
and involution of grafted fat, both of which would defy 
the purpose of fat grafting [81]. However, it is the same 
mechanism for which CAL earns skepticism in planning 
cancer reconstruction. A more recent study examined the 
paracrine impact of ASCs on co-grafted breast cancer cells 
in vivo. Tumors were artificially created in mice by co-
injection of breast cancer cells with ASCs, the latter of 
which had been harvested from human fat and passaged 
in vitro (P3 to P8). Cancer cell to ASC ratios ranged from 
1:1 to 1:3, with larger tumors resulting from the increasing 
ratio. Tumors excised and lysed for chemokine analysis 
showed tumors had high levels of CXCL1 and CXCL8. 

The mechanism was elucidated further using shRNA to 
knock out CXCL1/8 in the supplied ASCs; a co-injection 
which resulted in a smaller, less vascularized tumor 
[82]. This type of targeted research is a step in the right 
direction when considering the safety of CAL in cancer 
patients. 

IS BREAST RECONSTRUCTION POST-
CANCER SAFE, OR NOT?

While it appears that there are multiple mechanisms 
in the reconstruction which create a pro-oncogenic 
environment, their consistent impact has yet to materialize 
in vivo. Indeed, recent research focuses on the risk-
reducing mastectomy (‘oncoplastic surgery’) as the 
first line of defense against recurrence [83, 84]. In one 
study regarding flap surgery, among a list of varied 
complications (infection, abscess formation, skin necrosis, 
hematoma), recurrence is not listed as one of them [85]. 
While delayed wound healing and re-operation rates were 
higher with implant reconstruction, there is no significant 
increased risk of recurrence with implant placement 
compared to mastectomy alone [86]. Recently, it was 
found that lipofilling to augment the shape of an LD flap 
resulted in seromas and wound dehiscence. However, the 
fat grafting brought no recurrence to any patient in the 
study [87]. These reports are snapshots of a wider sample 
of work, partly described in the body of this review, which 
all generally report similar outcomes.

Therefore, it seems that the main risks of 
reconstruction are complications of healing of the 
reconstruction, rather than ipsilateral, local cancer 
recurrence. This review has included conflicting literature 
of breast cancer recurrence and reconstructive surgery. 
An important distinction to look at while assessing 
recurrence, is if the tumor is a true recurrent tumor, or a 
new primary tumor. Existing work has defined the ‘true 
recurrent’ as a tumor being within 3cm of the original 
tumor bed, and consisting of the same cell type as the 
original [88]. In this way, only true recurrent tumors are of 
relevance in reconstruction, as new primary tumors belong 
to phenomena not likely linked to the reconstructive 
procedure [89]. 

CONCLUSIONS

Adverse events following reconstruction, such as 
seromas, hematomas, wound dehiscence, implant failure, 
and/or skin necrosis, can compromise the success of breast 
reconstruction. Patients are not guaranteed ‘safe’ from 
these complications. However, the complication of cancer 
recurrence seems to arise independent of reconstructive 
procedures. Scientific studies which disparage breast 
cancer reconstruction share the fact that they are not 
investigating why recurrence is happening, rather 
proposing mechanisms by which relapse may develop. 
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As such, the field has become clouded by hypotheses and 
doubt. Since much of the surgical caution comes from 
studies based on oncogenic potential, rather than evidence, 
it must be concluded that breast cancer reconstruction is 
not directly linked to recurrence; that reconstruction is 
safe.

Current recurrence research, independent of 
reconstructive surgery, is focused on remaining cancer 
cell activity. By comparison, little attention is paid to the 
remaining stroma created by the cancer, and its power in 
corrupting local cells to stimulate recurrence. A valuable 
new line of research in this field should incorporate the 
remaining extracellular matrix, and the cellular response it 
elicits. Similarly, a rather unreported source of information 
is in the biopsy tissue of the recurrent tumor itself. An 
alternate approach to this field is reflecting on biopsy 
evidence, which can help guide scientific studies. As 
it stands, this field is fractured by conflicting research. 
When the existing clinical data is met with appropriate 
scientific questions, the uncertainty surrounding breast 
cancer reconstruction may be removed. 
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