
PROGRAM LIBRARY "LBS-LIB" FOR AGRICULTURAL BUS SYSTEM
(LBS, DIN9684)- FIRST OPEN SOURCE PROJECT IN AGRICULTURE

A. SPANGLER, H. AUERNHAMMER, M. DEMMEL

Department of Bio Resources and Land Use Technology, Crop Production Engineering,
Technical University Munich, Germany
E-mail : spangler@tec. agrar. tu-muenchen. de

ABSTRACT

Typical European agricultural machine combinations consist of devices of different brands.
To realise electronic control of implements with standard terminals, automatic documentation
and process optimisation, a capable standardised open communication protocol is needed. The
existing standard for an agricultural BUS System DIN 9684 (LBS) needs a software tool,
which enables an affordable, compatible and capable development of devices like tractor,
implement and terminal. The Open Source program library "LBS-Lib" was designed to fulfil
these needs. With the help of suitable interface functions, which serve standard algorithms for
the interactions defined by the published standards, an agricultural equipment manufacturer
can concentrate on creating the special application for his device. Adoption to different
electronic control unit types and quick improvement of the software are supported by Open
Source.

INTRODUCTION-
REQUIREMENTS ON AN IMPLEMENTATION OF STANDARDISED OPEN
COMMUNICA TION PROTOCOL

Complexity of open communication protocol for agriculture

The open communication protocols DIN 9684 and ISO 11783 are designed to enable a
manufacturer and construction independent documentation and process automation function.
Despite closed networks like within a tractor, the configuration ofthe network (which
devices) and each connected device (attributes) isn 't known during development of single
device. Corresponding to the strategies of automatic production planning systems (Siegert et
al, 1996) the interactions should use an abstract view on all devices and their services. So an
effective framework for the communication ofmeasurement values or set-points ofprocess
information like speed, wheelslip and working state is important. Among the flexibility the
process data interactions should be very effective in view of relation between BUS load and
achieved information or control.
Regarding security in open communication networks, each device should be designed as
separated intelligent system (FIG. 1), which:
• provides services (receive set-point and send information)
• uses services of other devices (send set-point andrequest information)
• decide which set-points to accept
• decide how accepted set-points are realised
• decide how sensor values are calculated to process data information

549

' \ ' \ I
,· ·, • ·,. I

\ ,/ \ \ I
physical • ' \ .' • •
..................... ~, ,.., , .. l>., ,

loglcal \ ," '. ; \. •
,

'· ·'
\ ' .'
\ .' ·, ·'

•• ·' •' I

EJ
c:=J physical device t:::7 service - • - connection to service

FIGURE 1: LBS- an open network of services

Need for high grade of compatibility

To reach the needed capability of the network and its components, all interactions must be
implemented with a high grade of compatibility. Beside the formatting of single messages, the
compatibility must be ensured for sequences ofmessages for different Use Cases like setting a
set-point, its answering information (whether accepted or rejected) and automatic solving of
conflicting set-points. Such situation dependent interaction sequences are hard to define in
printed standard sufficiently, because of the size of documentation and arising of new Use
Cases in real configurations.

PROBLEM-
REALISING COMPATIBLE COMMUNICA TION SOFTWARE

The interactions based on process data enable a sophisticated object oriented communication.
Bach information instance like application rate has interface methods for exact, min and max
set-points or retrieving of measurement values with programs. The process data algorithms
should be flexible enough to handle parallel measuring programs independently and should
manage received set-points dependent on sender. For the handling of complicated work
constellations, each device should use compatible interaction sequences.
Keeping these requirements in mind, the development of a complete device is divided in
realising complex base algorithms and algorithms specific for the application. The greatest
part of compatibility and capability issues depends on the base infrastructure, so that a big
need for a standard implementation arises. But at the moment every manufacturer created an
individual and incompatible implementation of the standard for his specific ECU.

SOLUTION IDEA-
ENFORCING COMP ATIBILITY AND QUALITY WITH THE HELP OF OPEN SOURCE

The main reasons for the Iack of a commercial standard implementation for LBS are little
profit expectations for so:ftware developers caused by the administration and support costs and
the high development investment costs to reach commercial quality for such a product.
This is a typical case where Open Source projects can help. First, each user can adopt the
software to the wanted platform on his own (can co-ordinate with others). Second, the more

550

the same software is tested from different people, the quicker and eheaper (in view of one
using company) the needed Ievel of quality can be reached.
If the same algorithms for all communication and interaction tasks can be accessed free of
charge as Open Source from every interested manufacturer, a fundament for compatibility is
created. Regarding financial aspects, such a standard implementation is also affordable for
small projects. This is very important for complex interconnected networks, where the
capability ofthe whole system is dependent from the implementation ofthe weakest part.
Driven by the needs of applications, an Open Source base tool can be extended rapidly to
serve suitable interfaces for interactions to avoid incompatible messages and to allow easy
access to complex interactions and network state interpretations. But such a quick evolution
needn't shrink the quality, if all usersperform co-ordinated tests. This interaction of software
experts of different companies is possible, if everybody accepts the base interest of a well
working compatible tool. A survey about the main reasons for embedded companies in using
Linux revealed, that a "collaborative open source development produces superior software",
"allows fully understanding what's going on inside the OS" and "eliminates dependence on a
single OS vendor" were the main reasons to use Linux (Lehrbaum et al, 2001).

SOLUTION REALISATION-
OPEN SOURCE PROGRAM LIBRARY LBS-LIB

The partial project 2 of the research group IKB-Dürnast has to gather process data
information with LBS. But as there are no flexible enough recording systems and "Implement
Indicators" (IMI) available, they have to be developed. The research aim includes the
recording of working state parameters like working depth, width or state, so that sensors must
be connected to the IMI. The software of both the recording task controller and the IMI must
be able to handle dependent on the configuration a flexible amount of process data values.
Additionally the sensor signals must be interpreted to construction independent values. Last
but not least the ECU of some implements offer only different subsets of the standardised
interpreted information, so that the recording system must adapt the recording to the
connected device.
The development of the software for the different computers can be eased by an appropriate
program library, which isn't available (see above). So it was decided to develop a program
library called LBS-Lib which enables primarily the wanted research and which can be used as
the starting point for a reference implementation of DIN 9684 as an Open Source program
library.

Design of LBS-Lib to work as Open Source project

The LBS-Lib is designed in three layers (FIG. 2), to realise in each of them the individual
maximum code uniformity. The top layer, which contents all algorithms to define the
communication, can be used without any changes on every platform. All hardware
interactions like receiving or sending CAN messages are piped through the hardware
abstraction layer. This serves an abstract platform independent interface to the communication
layer and to the application itself. Each direct hardware access is handled by a hardware
adaption layer, which uses mostly a simple name mapping from BIOS or OS functions and
types. By restricting any hardware adoption changes to some simple header and source files,
the adoption to different ECU types gets easier and most parts ofthe LBS-Lib can profit from
optimisation and peer-review ofthe same code base.

551

As the adoption to a new platform is a change to the LBS-Lib, the "Lesser General Public
License" (LGPL) (Free Software Foundation et al, 1999) enforces the publishing of the
adopted files. This motivates interested people to co-ordinate the adoption, to speed the work.

Communication
Layer

>: iiarilwai~ :
::: :Ailiitricii;oii:::
:::.:.:: Jiiyii~:.:: • ::

Standard unique implemen­
tation with identical software

. :· :· :· :· :·:. •:commori: i'i~riiware i!Bstiaction· :· :· :·:. :·: .:
•::: •: •: •: ••• :• *it~J!~~'~A~•ritraii~~cl•ii~~ption • • ·•: •:: :: ·: · · ·

==> compatibility
==> combined development
==> parallel test

increases stability
==> result > input1 +

input2 + ... +
inputn

==> common strategy for
adoption to different
target systems

==> distributed adoption
open to everybody

FIGURE 2: Layered structure of the LBS-Lib

An Open Source project needs a strict modularised design for the co-ordination of a
distributed development. The LBS-Lib uses objects which are grouped to functional
components. Therefore the evolution and peer-review validation can focus the Ievels object,
functional group, LBS-Lib intemal and interface.
The LBS-Lib communication layer consists of functional components for the different tasks
(FIG. 3) of a device like system management and process data interaction. The hardware
abstraction layer uses functional components for different hardware drivers.
The LBS-Lib was implemented using C++, because it supports an object oriented design and
can be as fast, or faster than C and Partran (Veldhuizen et al, 1998). The objects ofthe

LBS_System: LBS_Process: LBS_ Terminal:
* combinable Ia out

elements

dependent on plotform

(hardware + base system)

dependent on configuration

OIDJ independent

D applicatian specific

':» "knows_a": can access another

ob ject via
pointer

.".u// s'7~/~--:;o~;'~/' 7"1? ~"""r/7"R"7s'723...,2...,~--:l o~/,.,A
~..C//// /::1 ~/ ///// d

FIGURE 3: Modular structure of the LBS program library LBS-Lib

552

LBS-Lib are designed to perform standard actions autonomaus in background, to facilitate the
development of specific applications. Furthermore the LBS-Lib provides an interface
definition for application development. A central configuration file allows the application
specific exclusion of sub-functions like virtual terminal or some hardware drivers.
The modularised design of the LBS-Lib allowed a smooth integration of a DIN 9684
equivalent subset ofthe upcoming ISO 11783 standard, which consists of:
• system management
• periodic send or receive of real and wheel based speed and distance, front and back power

take off(PTO) rounds per minute (RPM), front and back hitch position and engine RPM
• interactions based on process data
Process data messages, whose hosting device is identified by the key <device type, mounting
position>, are routed automatically with the suitable protocol type dependent on the targeted
device. So the application doesn't have to handle the protocol dependency, which is very
important for a smooth combination of DIN 9684 and ISO 11783. To allow this, the DIN
protocol has to use the standard ISO bitrate, as long as no device is using the DIN bitrate.

Open Source organisation ofLBS-Lib

The LBS-Lib was presented within three nationalandinternational worl<:shops in Freising and
Sapporo (Japan), where an organisation ofthe project according to York (2000) was presented
(FIG. 4). Typical for Open Source projects, the free available services need some kind of
sponsoring. This money is needed for running the project and its infrastructure and for paying
a central administrating group, which should stay independent from single manufacturers,
because the decisions about rejecting or accepting changes or extensions must be commonly
accepted as impartial. Lehrbaum (2000) and Staff (2000) describes some reasons, why it
makes businesssense for manufacturers who use an Open Source project to support it either
with resources or with financial donations.
The basic idea of the open services is to share information and knowledge of a basic
communication protocol which must be implemented compatible. This is not a quality feature
on its own, because only the application which uses DIN or ISO offers real services.
Manufacturers who need special service like guaranteed response time limits, training of
developers or project development assistance can get them based on commercial support
contracts, if a company supplies commercial services for the LBS-Lib.

CONCLUSIONS AND OUTLOOK

With the integration of a subset of ISO 11783, the LBS-Lib is a capable tool for
manufacturers, who want to develop one ECU for their machines, which can than be used
with other already existing DIN and future ISO 11783 devices, so that the farmer needn't
change all his equipment afterwards. But there must be also stated, that some developers have
problems to adopt to the object oriented modelling of software.
It is very important for companies considering the use of this project that the LGPL
guarantees a good quality in future in two ways which are stated by Moen (1999). First the
license prevents the LBS-Lib from destructive forks, because the maintainer of the actual
reference version can always take and integrate the changes and extensions of forked variants.
Second the users are not dependent from specific people, because they can always appoint a
new team of maintainers for a new forked reference version, if they are unsatisfied with the
actual development ofthe project.

553

Sourcecode with
stable and

HTML
Documentation of
API and examples

(online or
down Ioad)

Posslble free of charge services financed
by related project or sponsoring

Possible services available for fee

company

Mailing List with
searchable archive for

discussion and
interacting support
(no guarantee for
response time of
software authors)

Handbook with generar
and porting
infonnation

Iist of reference
users ofthe

LBS-Lib

....•.•.......•.•.•.•.•.•.•..•.

Project
development

meetings

Response time
Iimits for treatlng
problern reports

or questions

FIGURE 4: Possible future organization of the Open Source project LBS-Lib (derivated
from Y ork, 2000)

ACKNOWLEDGEMENTS

I give my thank: to the Deutsche Forschungsgemeinschaft (DFG) for financing the research
project and to the personnel ofthe experimental station Duernast.

REFERENCES

Auernhammer, H. (1993) Landwirtschaftliches BUS-System LBS, KTBL-Arbeitspapier 196,
Germany

Deutsches Institut für Normung (1997) DIN9684: Landwirtschaftliches BUS System, Beuth
Verlag GmbH, Berln, Wien, Zürich, Germany

http://www.gnu.orglcopyleft/lesser.html, (11127/2000)

http://www.linuxdevices.com/articles/AT8151978006.html, (01/23/2001)

http:/lwww.linuxdevices.com/articles/AT8842791300.html, (11/06/2000)

http://www.linuxcare.com/viewpointslarticlelll-17-99.epl, (11117/1999)

Siegert, H. J. (1996) Robotik. Programmierung intelligenter Roboter, Springer Verlag, berlin,
Heidelberg, Germany

http://linux.com/jobs/newsitem.phtml?sid=74&aid=7302, (02/19/2000)

Veldhuizen, T. L., Jernigan, M. E. (1998) Will C++ be faster than Fortran?, Department of
Systems Design Engineering, University ofWaterloo, USA

http://www.linux-mag. com/2000-02/trench _ 0 l.html, (0210 1/2000)

554

