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Abstract— Context: With the growing prevalence of machine
learning applications within the automotive domain, we observe
an increase of built-in sensors and generated data. This data
includes complex data such as point clouds for the environmen-
tal model but also less sophisticated data like temperature and
road type. When developing data-driven functions there is often
no need for additional sensors since a huge amount of data is
already sensed, but often hidden. Aim: We aim to discover
vehicle signals that describe a system’s or user’s behaviour
when interacting with vehicle functions. These signals could
directly serve as input for data-driven vehicle functions. Method:
Based on supervised feature selection algorithms we propose
an approach to discover these vehicle signals. This approach
can either be deployed in the backend on test fleet data or
onboard the vehicle. Results: Based on seven test cases, we
evaluated the approach with 17 feature selection algorithms
on eight customer vehicle data sets. To evaluate the resulting
signal subsets, we trained machine learning models that in turn
were able to predict the behaviour of the user. Conclusion:
These trained models achieved high accuracy in the prediction,
which shows that current vehicles already collect enough data
to predict the user’s behaviour and the proposed approach was
able to discover the appropriate vehicle signals. Considering
the huge amount of data and vehicles as well as the highly
diverse behaviour of every user, a scalable discovery approach
considering every user is inevitable.

I. INTRODUCTION

Machine learning is a highly emerging field, with a
variety of applications. In the automotive domain, this trend
drives further development of automated driving, new vehicle
functions, and integration of new sensors. This results in
more generated, processed, and collected vehicle signals.
This sensory data does include not only complex data such
as point clouds for the environmental model but also less
sophisticated data like temperature, torque, and road type.
This enables the development of new, mostly data-driven
functions. Often no additional sensors are required since a
considerable rich source of data is already present and just
needs to be used. These data-driven functions range from
(i) data-driven optimisation of vehicle functions, (ii) predictive
maintenance, (iii) anomaly detection, and (iv) context-aware
functions that adapt to the user’s behaviour. (In this work we
will use the term user instead of driver, since the approach
is extendable to any passenger in the vehicle. Moreover, in
a fully automated scenario, users will only occasionally be
drivers.)

All these applications rely on vehicle data and are executed
within the automotive electric/electronic (E/E) architecture.
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Today’s E/E architectures are highly cost optimised, federated,
highly integrated, and not optimised for data analytics or
machine learning applications. We identified the following
challenges when developing data-driven functions:

(C1) Current vehicles generate up to 12.000 signals (not
including any radar or camera data) and it is not reasonable to
use all signals as input for a single data-driven function. The
high number (i.e. high dimensionality) of signals accessible
in the vehicle leads to the curse of dimensionality [1]. This
curse relates the problem of having a too large amount of data
that may contain irrelevant, redundant, or not suitable data
yielding a reduced accuracy and training efficiency. This does
not only affect algorithms, but also the function developer
who has to select the appropriate input signals for the data-
driven function, and therefore, might miss relevant signals
which are describing the system’s or user’s behaviour.

(C2) Another challenge derives from the high volume of
data. Currently, each vehicle produces up to 25 GiB/h of
data [2]. Limited resources for storing and transmitting data
shows the need for an efficient data selection strategy.

(C3) Another challenge arises when accessing data in the
vehicle. Due to the highly federated structure of the E/E
architecture, there is no central point for data retrieval and
analytics. However, for most algorithms, data needs to be
aggregated from a large number of electronic control units
(ECUs) to a central point.

(C4) Additionally, vehicle signals arrive asynchronously
with different sampling rates. Most machine learning al-
gorithms, however, require synchronous input data, which
becomes more complex the more signals are being used as
input for a data-driven function.

In this paper, we present an approach to minimise these
effects and help function developers to discover all required
signals relevant for a data-driven function under development.
This approach can either be executed in the vehicle itself
or in the backend. To evaluate the approach and to select
the most suitable algorithm, we evaluate 17 state-of-the-art
feature selection algorithms (cf. Table IV) on real customer
vehicle data.

For this work we pose the following research questions:
RQ1 How to identify vehicle signals which are describing a

user’s or system’s behaviour?

RQ2 How to assist the function developer to discover these
vehicle signals which are already measured within high
dimensional vehicle data?

RQ3 How to scale this over large vehicle fleets considering
the characteristics of automotive E/E architectures?

This paper provides the following scientific contributions,
but also contributes to the state of practice:
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(i) Approach for the discovery of vehicle signals which are
describing a user’s or system’s behaviour within high
dimensional automotive data.

(i) Deployment strategy based on a categorisation of signal
subsets in automotive vehicle fleets.

(iii) Evaluation of state-of-the-art feature selection
algorithms on high dimensional automotive signal data.

The remainder of this paper is structured as follows:
Section II summarises related work followed by the primary
approach of this work in Section III. Section IV presents the
evaluation and gained results followed by their discussion in
Section V. Finally, we conclude the paper in Section VI

II. RELATED WORK

With the advance of intelligent systems, customer demand
adaptive and data-driven functions which learn according to
their behaviour. These data-driven functions capture hidden
knowledge for continuously improving their capabilities and
provide a highly personalised user experience and are known
as Context Aware Systems [3]. Their fields of application in
the automotive domain range from intelligent window levers
[4], intelligent in-car infotainment systems [5], intelligent
suspension controls [6] to intelligent cruise controls [7]-[10].
The mentioned works solely focus on the implementation of a
specific function and only use a small number of hand-picked
vehicle signals as input. To the best of our knowledge, we
are not aware of any related work that focuses on discovering
relevant vehicle signals for a variety of vehicle functions
and that considers the characteristics of automotive E/E
architectures.

Feature selection algorithms are widely used to automati-
cally select appropriate input data for data-driven functions in
the field of machine learning/data-mining and to resolve
the curse of dimensionality (cf. C1). Hall gives one of
the most intuitive definitions for feature selection: “Feature
subset selection is the process of identifying and removing as
much irrelevant and redundant information as possible. This
reduces the dimensionality of the data and may allow learning
algorithms to operate faster and more effectively” [11]. A
wide range of applications where large amounts of irrelevant
or redundant information are present use this method. In
early applications, only a few domains used more than 40
features [12]. There was a rapid change, and nowadays, data
mining applications deal with up to hundreds of thousands of
features [13]. Another typical application of feature selection
besides machine learning is gene subset selection in medical
applications. Here, algorithms find a subset of marker genes
for the identification of diseases (e. g. [14]). Other applications
use feature selection in a variety of domains: Distributed P2P
networks [15], data mining for vehicle maintenance [16], or
context reasoning [17].
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Fig. 1: General approach

with the exception that the output performance of the machine
learning algorithm is used for ranking. Embedded methods
are directly embedded into the machine learning algorithm.

In our case, we do not have a machine learning system in
place yet, so only filter methods are suitable for the proposed
approach. These methods can run without a machine learning
system generating output and will provide a subset of relevant
signals as a result. This subset can then be directly read by
a function developer and allows integration of these specific
signals into the data-driven function.

III. APPROACH

The general idea of the presented approach is depicted in
Fig. 1. The perceivable context is at the core of the approach:
the both user U and vehicle V can perceive information from
the context. In this work, we define context according to the
definition of Dey et al.: “Context is any information that can
be used to characterise the situation of an entity. An entity
is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and application themselves” [20].

We distinguish between different rypes of perceivable
context. Table I gives a comprehensive overview including
examples for each type: On the one hand, the user can perceive
a specific set of information from the context upon which
actions are taken (Cy). On the other hand, the vehicle can
perceive a set of information from the context with built-
in sensors (Cy). This context information does not only
include environmental information but also information about
the vehicle’s interior, including vehicle function states. The
context perceived by the user is not necessarily similar to the
set of context information perceivable by the user (Cy \ Cy)

TABLE I: Types of perceivable context

Context set Description and example

Cu Information the user is able to perceive. Example: The user is able to
perceive the current type of road the vehicle is travelling on.
Cy Information the vehicle is able to perceive. Example: The vehicle

measures the current speed of the vehicle with built-in sensors.

Cy \ Cv  Information which only the user is able to perceive and cannot be
In the last years, a vast variety of algorithms has been perceived by any vehicle sensor. Example: The emotions of the co-driver
. . . can only be perceived by other passengers and not by the vehicle.
developed‘ These algorlthms can be categorlsed 1nto ﬁlter’ Cy \ Cy  Information that only vehicle sensors are able to perceive and that cannot
wrapper, or embedded methods [18], [19]. Filter methods be perceived by the user. Example: Night vision systems in vehicles can
. . detect persons or other objects at night, which the user cannot “see”.

act as a filter before the actual machine learnlng task. They Cy N Cy  Information that can be perceived by the user and the vehicle. Example:

process all features, rank them and only forward the selected The user “feels” the temperature within the vehicle and the vehicle itself
s it with a built-i .
features. Wrapper methods work similar to the filter methods can measare 1t With @ bulfin sensor
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and vice versa (Cy \ Cp).

In this work, we focus on interactions of the user with a
specific vehicle function f based on information the user is
perceiving from the context (Cy). The vehicle function f
then controls specific actuators based on user interactions and
vehicle sensors, which in turn, changes the vehicle’s context
and the environment.

In the initial state of the discovery phase, the function f
only uses sensor input predefined by the function developer.
Hence, only this particular part of the context is being used
as input. However, it is not necessarily overlapping with the
context the user is perceiving. The idea of the approach is to
identify the subset of context information Cy NC'y,, on which
users are making their decisions and coincidentally which
is already measured by built-in vehicle sensors from other
functions and are not yet used by the corresponding function
f. This subset Cy N Cy is then used as an additional input
for the function f and allows this function to learn the user’s
behaviour and proactively act based on the learned behaviour.
We then refer to this function as intelligent function .
Vice versa when discovering signals describing a system’s
behaviour we observe the interaction of the system with a
vehicle function instead of the user’s interaction.

A. Signal Discovery

In order to discover the afore-mentioned signal subset
CuyNCy, we use supervised filter feature selection algorithms.
These algorithms rank all available vehicle signals according
to their correlation to a predefined label. A label is the state
of the function f for which the developer wants to identify all
relevant signals to describe the user’s or system’s behaviour
(e. g. seat heating on or off). Based on this ranking, the signal
subset Cy N Cy is identified. Only the best-ranked signals
will then be used as input for fA'.

B. Signal Subset Processing

After the identification of the signal subset Cy N Cly it can
be used in two different ways: (i) As insight for the function
developer for manual development of an intelligent function
A or a non-data-driven function f, or (i) as automatic input
for an intelligent function fA'.

In the first case, the signal subsets are manually integrated
into f or fA. Additional expert knowledge is used during
this manual process to optimise the selected input further;
however, this will not scale for signal subsets varying for
each user. In the automatic case, no manual assessment of
the selected signal subset is required and the signal subset is
automatically used as input for fA'. This allows very user-
specific personalisation, but lacking the manual verification
by the developer the input of the resulting function is not fully
transparent at design-time and therefore requires additional
verification steps within the function fA!.

C. Signal Subset Types & Algorithm Deployment

For this approach, we distinguish between three different
types of signal subsets Cy N Cy,. These subset types range
from intuitive correlations of a system to very user-specific

correlations. This classification is crucial for the deployment

of the approach.

1) Signal Subset Types: We categorised the signal subset
types into the following three categories:

(system) These correlations hold true for all users/systems.
For example, the steering torque of the steering wheel
is only related to the physics of the driving dynamics
and not to any user behaviour. These correlations are
similar among all users.

(group) Correlations of this type are only true for a group of
users, and not for all users. In the data of a field study (cf.
Section IV), we could for example identify for a group of
users a correlation between the driving dynamics control
(i.e., sport, comfort, or eco) and whether a co-driver is
present or not.

(user) These correlations are very user-specific and at the
core of personalisation. An example is parallel usage
of several functions (indicated by the respective signals)
at the start-up of the vehicle, i.e., which functions are
triggered when the user is commuting from home to
work.

2) Algorithm Deployment: For every intelligent function
fA, the signal subset type classification has to be done by the
developer and is relevant for the deployment of the approach.
The simplest deployment is an execution on recorded test
fleet traces in the backend. These traces are already present
in the OEMs (Original Equipment Manufacturer) backend
and are collected from test fleet vehicles which are equipped
with data loggers. By using this data, no additional cost for
the vehicle and the data collection are added. Any algorithm
can be deployed in this case, as computing resources in the
backend can be considered as nearly unlimited. Performing
first analyses on this data allow early signal discovery and fast
development, but will not cover any user-specific behaviour.
In this case, only signal subsets of the type system can be
identified, due to the partly unrealistic interactions of test
drivers with vehicle functions. Only collecting data from test
vehicles and not from real users can be considered is highly
privacy preserving for the user as no actual user data is stored
or processed.

To capture signal subsets of the type group or user
algorithms need to operate on real user data. The transmission
of all data of all vehicles would be highly inefficient and very
costly, even if technically possible (cf. C2), but will only add
slightly more complexity to the vehicle itself. The transferred
amount of data can be minimised by only collecting data of
a subset of users, but will also lead to less accurate results
by not capturing the behaviour of all users. This will only
allow discovering signal subset of the type group and the
results will not fully generalise the behaviour of all users.

By deploying the algorithms directly onboard the vehicle,
no actual user data needs to be transmitted to the backend and
the data collection is much more efficient. However, due to the
deployment in the vehicle, additional computational resources
have to be added to the vehicle and restrict the applicable
algorithms. With the deployment within the E/E architecture,
we also need to consider the characteristics of this architecture
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TABLE II: Deployment comparison

Backend Backend Onboard Onboard
Test Fleet Set of users Set of users All users

Deployment
Data

Complexity vehicle eoe cee ooe ooe

Complexity data collection eoe coe cee cee
Privacy preserving eoe coe cee cee
Algorithm complexity oo oo coe coe
Early validation eoe ooo 000 000
Type system v v v v
Type group x v v v
Type user x x x v

Legend: Good: e @ e, notable: 0 @ @, moderate: 0 0 @, poor: © 0 0; Signal subset type covered: ¥, not covered: X.

(cf. C3, C4). A significant advantage of this deployment is its
privacy-preserving nature by not transmitting any user-related
data and only transmitting the resulting signal subsets. When
trying to identify highly personalised signal subsets of the
type user a deployment in the vehicle is inevitable. If we
additionally consider the case of an automatic selection of
input for fA!, a deployment in the backend would also add
communication overhead by transmitting data back and forth
between backend and vehicle.

Table II provides a rating of the pros and cons of the
before mentioned deployment types. The decision where and
to which extent the signal discovery should be performed is
highly dependent on the intelligent function fA' and cannot be
answered in a general manner. This decision has to be done
by the developer with expert knowledge for their function.

IV. EVALUATION AND RESULTS

In order to evaluate our approach, we have chosen seven
exemplary test cases which we evaluated on real vehicle
data sets from eight customer vehicles by using 17 state-
of-the-art feature selection algorithms. For the evaluation
of the resulting signal subsets, we trained and evaluated a
Support Vector Machine (SVM) classifier on each data set,
test case and algorithm. The evaluation was performed on a
workstation (Intel Core 17-5930K, 64 GiB RAM), but would
not differ from an implementation in the backend or in the
vehicle itself.

A. Evaluation Environment

The evaluation environment is described in the following:
1) Data Sets: The used vehicle TABLE III: Data Sets

data sets were collected during a

field study which has been con-

Data Set Samples Signals

ducted at the BMW Group. These  DataSetl 5652 12011
d . p hicl Data Set 2 28773 12491
ata sets originate from vehicle pose3 24018 11972

traces logged from current genera-  Data Set4 28355 12226
. . Data Set 5 9572 11996
tion BMW 7 Series (G11) and con-  puasei6 6940 11855
tain all vehicle data frames which ~ DataSet7 22372 12128
Data Set 8 7562 12391

were sent over the internal vehicle
communication networks. These vehicle signals were decoded,
scaled in the range of [0, 1], and sampled with a sampling
rate of 30s, resulting in the data sets shown in Table IIIL.
The number of samples per data set varies between around
5.600 and 29.000. The variation originates from the different
durations the cars were driven. The number of vehicle signals
for all data sets is approximately 12.000 and depends on the
car’s options and used functions. All data sets were divided

in a training set (first 66% of the data set) and a test set
(last 33% of the data set). The training set is solely used to
identify the signal subsets and training of the SVM classifier,
whereas the fest set is used to evaluate the classifier including
the signal subsets. This allows a clear distinction between
the signal discovery and the evaluation of the resulting signal
subsets.

2) Test Cases: As exemplary test cases for the evaluation,
we selected one function that is directly controlled by the
vehicle itself (System) and six functions that are controlled
by the user (group or user):

(Day/Night) This first test case is based on the function that
sets the display mode of the navigation system either to
day mode or night mode. Only the vehicle’s brightness
sensor determines this mode without using any user
input (system).

(ACC) This test case is based on the Adaptive Cruise Control
(ACC), which automatically holds a predefined speed
and distance to the preceding vehicle. In this test case
we want to identify all correlating signals (i.e., which
describe the driver’s interaction with this function) if
the function is either switched on or off.

(ACC Gap) Additionally, we have a dedicated test case
for the predefined gap-distance (i.e., distance to the
preceding vehicle) setting for the ACC. The driver can
set this value from the smallest gap setting 1 to the
largest gap setting 4 in steps of 1.

(DDC) This test case is based on the function Driving
Dynamics Control (DDC). This function adjusts various
driving dynamic properties (e. g. suspension, engine) and
can be manually set by the driver. Possible states of this
function are: comfort, sport, and eco pro.

(Seat Heating) For this test case, we observe the current state
of the driver’s seat heating; we only consider the states
on and off.

(Window) This test case is based on the state of the driver’s
window, which can either be opened or closed.

(HVAC) For the last test case, we want to identify all
signals correlating to the currently set temperature of the
Heating Ventilation Air Conditioning (HVAC) system.
The temperature can be set by the user from 16.0°C to
28.0°C in steps of 0.5°C.

The label for each test case is created based on the
associated function signals. For each test case, all output
signals of the function are removed (e. g. in the seat heating
test case, the signals with the current state of the seat heating
and the temperature of the seat are removed). This avoids
identification of circular correlations—output signals that are
directly correlated to input signals. The function developer
already knows them and thus they are not considered for
signal discovery. In the evaluation, these correlations would
also directly affect the training of the SMV classifier and
therefore distort the evaluation results of the signal subsets.

3) Feature Selection Algorithms: The presented approach
heavily relies on the performance of the used feature selection
algorithm. In order to exclude this impact on our evaluation,
we evaluated the presented approach with 17 state-of-the-art
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feature selection algorithms. The selection of the algorithms
is based on the extensive survey paper by Li et al. [19]. The
used algorithms are listed in Table IV. In case the algorithm
requires discrete input data, we extend the preprocessing
pipeline with a discretisation step for each vehicle signal
(cf. Section IV-A.1). In this case, each signal is discretised
into 20 equally sized bins, based on the defined range
of the signals. By evaluating our approach with multiple
algorithms, we can also identify the best-suited algorithms
for automotive signals—at least for the presented test cases.
The implementation of the feature selection algorithms is
partly based on the Python package scikit-feature [19].

4) Evaluation Method: Based on the ranking (i. e., ordered
list of scored signals) of each feature selection algorithm
A, we trained an SVM classifier (SVM 4) with the top
k = {5,10, 15,20, 25,30} ranked signals to predict the func-
tion’s state. We have selected this type of classifier, because of
its robustness to the curse of dimensionality [21] and simple
replication for similar evaluations.! The implementation of
the SVM is based on the python package scikit-learn [22].
To evaluate the performance of the SVM classifier, we only
evaluate the SVM classifier on the test set.

5) Metrics: To asses the results of the evaluation, we
introduce four different metrics:

(Balanced Accuracy) The SVM'’s balanced accuracy using
the signal subset of algorithm A is denoted by bacc(S) 4),
where S|4 = {s € S | s € A(S)}, A(S) returns
the top k rated signals of algorithm A, and bacc is
defined as bacc: 2° — R. We calculate the mean
balanced accuracy bacc(S)4) of the trained SVM 4 with
the selected signal subset S| 4 of the feature selection
algorithm A on the test data over each test case. The
algorithms only provide a signal ranking and no optimal
number of signals to be selected. Therefore, we only
consider the best performing SVM for the different sizes
k of the signal subset k = {5, 10, 15, 20, 25, 30}.

(Difference) Next, we compared each trained SVM 4 with a
trained SVM classifier using all signals as training input
denoted by SVM. We compare the balanced accuracy
bacc(S|4) with the SVM classifier trained with all
signals S, i.e., bacc(S), by computing the difference:
bacca £ bacc(S| 4) —bacc(S). We determine the mean
of the differences for each algorithm and test case
independently. This indicator shows whether the selected
signal subset represents the given information adequately
and whether SVM 4 and SVM performed similarly.

(Count) For this metric, we count the number of runs n
where SVM 4 was at least performing as good as SVM
trained with all signals S, i.e., bacc(S| 4) > bacc(S).

(Median Exe-Time) To illustrate the computational complex-
ity of each algorithm, we measured the execution time ¢
of each algorithm per run. This execution time heavily
depends on the test case, the size of the data set, and
the current workload on the hardware the algorithm is

'As a kernel of the SVM we used a radial basis function kernel with a
kernel coefficient v = l/nsigmls and shrinking heuristic.

executed on. To exclude outliers and to asses a rough
estimate of the computational complexity we only use the
median execution time over all runs per algorithm, i.e., t.
When assessing this execution time, we aim at getting a
feeling of the applicability of the respective algorithms in
an onboard execution scenario. These values are subject
to correction, due to the high dependability of these
values to the implementation of each algorithm.

B. Results

Table IV gives a comprehensive overview of the results of
the 952 runs (7 test cases, 8 data sets, and 17 algorithms)
can be found in Table IV. The top three values per row are
highlighted to indicate the best performing algorithms.

When comparing the balanced accuracy, we observe
different values throughout all algorithms and test cases.
The test cases Day/Night and DDC show the best values
whereas the test cases Seatr heating, Window, and HVAC
show the worst values. When comparing the balanced
accuracy bacc(S)4) with the balanced accuracy bacc(S) (i.e.
bacca), the algorithms DISR, FSCORE, FISHER SCORE,
MRMR, TRACE RATIO FISHER, and CFS show the least
difference bacca and the best performance over all test
cases. In the test cases ACC Gap, DDC, and HVAC these six
algorithms perform even better than the classifier based on
all signals SVM, whereas in all others, they have a similar
performance. Considering the number of runs n in which
bacc(S|4) > bacc(S), we see that DISR, FSCORE, FISHER
SCORE, MRMR, TRACE RATIO FISHER, and CFS show
the best performance throughout all test cases and data sets.
Comparing the execution times only the algorithms CHIZ,
FSCORE, FISHER SCORE, and TRACERATIO FISCHER had a
median execution time lower than one minute. When varying
k for the selected signal subset size and comparing the
achieved balanced accuracy of the respective SVM 4, we
observed that over all runs the best performance is achieved
with a different number of selected signals k. But the values
are similar to each other which results from the used machine
learning algorithm (SVM) and its robustness against redundant
or irrelevant inputs; here redundant or irrelevant signals in
the selected signals subset.

To sum up, the algorithms FSCORE, FISHER SCORE,
MRMR, TRACE RATIO FISHER, and CFS provided signal
subsets that achieved good and robust results for the trained
SVM 4 over all test cases. From those algorithms, only
FSCORE, FISHER SCORE, and TRACE RATIO FISHER in
are addition distinguished by their fast execution.

V. DISCUSSION

We conclude from the evaluation that the proposed ap-
proach is suitable for discovering vehicle signals which are
capable of representing the behaviour of a system or user
interacting with a vehicle function and are already measured
by the vehicle (CyNCy ). Based on the selected signal subsets,
the trained models were able to predict the behaviour of the
system or user and showed a similar performance compared to
a model trained with the full set of signals, which would not
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TABLE IV: Evaluation results — top three values per row are highlighted

Algorithm A CIFE CMIM CHI?> DISR FCBF FSCORE FISHER SC. GINII. ICAP JMI MIFS MIM MRMR RELIEFF SPEC T RaTio CFS NONE
8 [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39]
Balanced Accuracy bacc(S)|4)
Day/Night 0.93 096 097 097 0.89 0.97 0.97 097 096 096 094 0.97 0.97 096 0.50 097 097 0.96
ACC 0.59 0.65 0.72 076  0.68 0.76 0.76 0.74 0.69 0.60 0.72 0.59 0.78 0.74  0.50 0.76 0.78 0.77
ACC Gap 0.52 059 0.65 070 0.62 0.72 0.72 0.70  0.60 0.53 0.67 0.52 0.74 0.60  0.52 072 0.72 0.65
DDC 0.72 0.73 091 099 0.79 0.99 0.99 0.89 0.73 0.80 0.96 0.79 0.99 0.86  0.60 095 093 0.84
Seat heat. 0.50 0.50 0.51 054 0.51 0.54 0.54 0.53 050 0.50 0.52 0.50 0.53 0.54 050 0.53 055 0.51
Window 0.51 0.51 0.61 055 0.57 0.59 0.59 0.62 0.51 051 052 051 0.62 0.57  0.50 0.59 0.63 0.59
HVAC 0.32 0.37 025 042 0.29 0.45 0.45 0.39 037 038 024 037 0.37 0.34 026 041 039 0.27
Difference bacca
Day/Night -0.03 0.00 0.01 0.01 -0.07 0.01 0.01 0.02 0.00 0.00 -0.01 0.01 0.02 0.00 -0.46 0.01 0.01 -
ACC -0.18  -0.12 -0.05 0.00 -0.09 -0.01 -0.01  -0.03 -0.08 -0.17 -0.05 -0.18 0.01 -0.03  -0.27 -0.01 = 0.01 -
ACC Gap -0.13  -0.06 0.01 0.05 -0.03 0.07 0.07 0.05 -0.05 -0.12 0.02 -0.13 0.09 -0.05 -0.13 0.07 0.08 -
DDC -0.13  -0.12 006 0.14 -0.05 0.14 0.14 0.05 -0.12 -0.05 0.12 -0.05 0.14 0.02 -0.24 0.10 0.08 -
Seat heat. -0.01  -0.01 0.00 0.03 0.00 0.03 0.04 0.03 -0.01 0.00 0.02 -0.01 0.03 0.03 -0.01 0.02 0.04 -
Window -0.09  -0.09 0.02 -0.04 -0.03 0.00 0.00 0.02 -0.09 -0.09 -0.07 -0.09 0.02 -0.03  -0.09 0.00 0.03 -
HVAC 0.05 0.10 -0.02 0.15 0.03 0.18 0.19 0.12 0.10 0.12 -0.03 0.10 0.10 0.07 -0.04 0.15 0.12 -
Count n
Day/Night 3 3 3 3 2 3 3 3 3 3 3 3 3 2 0 3 3 -
ACC 0 0 4 6 2 6 6 5 0 0 4 1 5 3 0 6 5 -
ACC Gap 1 3 3 5 2 6 5 4 3 1 4 1 7 2 1 5 7 -
DDC 4 4 5 7 3 6 6 6 4 5 6 6 6 6 3 6 6 -
Seat heat. 0 0 1 5 1 3 4 2 0 0 2 0 3 2 0 4 5 -
Window 0 0 5 1 3 4 4 4 0 0 0 0 4 2 0 4 6 -
HVAC 6 8 6 8 8 8 8 8 8 8 6 7 6 8 5 8 7 -
Sum 14 18 27 35 21 36 36 32 18 17 25 18 34 25 9 36 39 -
Exe-Time 4.0h 40nh 03s 691 27m 0.4s 21s Sm 4.0h 42h 4.0h 4.l1h 3.9h 6m  29m 26s 14.8h -
Algorithm A CIFE CMIM CHI*> DISR FCBF FSCORE FISHER Sc. GINIL. ICAP JMI MIFS MIM MRMR RELIEFF SPEC T RaTiO CFS NONE

be possible in a vehicle due to restrictions of the vehicles E/E
architecture (cf. Section I). Even if it would be possible, our
approach gives the developer the possibility to gain insights
into the used input of the intelligent function fA' and helps
to further optimise this function. Moreover, in all test cases,
the trained model achieved a high balanced accuracy, which
shows that current vehicles already collect enough data to
predict the system’s or user’s behaviour—even with a basic
machine learning algorithm (SVM).

The feature selection algorithms FSCORE, FISHER SCORE,
and TRACE RATIO FISHER showed the best performance in
the signal discovery process and the lowest computational
complexity. This is required for onboard use and also desired
for backend applications. These algorithms show due to a
similar scoring calculation similar results. A drawback of
these algorithms is that they only asses each signal by its
own, and do not consider any interaction among signals. This
can lead to redundant signals not being identified and cross-
correlation between signals not being discovered. But in the
case of an onboard execution, this can also be seen as the
significant advantage of being able to distribute the scoring
of each signal to the point where the signal is generated,
without generating additional communication overhead.

Referring to the limited resources for storing histories of
vehicle signals values, we showed in our previous work [40],
[41] a modification of the FISHER SCORE algorithm which
was able to rank vehicle signals without the need to store
histories of signal values.

To sum up, we propose to deploy the discovery process
directly in the vehicle, considering the best results shown
by algorithms with low computational complexity and the

advantages of an onboard deployment (cf. Section III-C.2).
In the case of early development, we additionally propose to
deploy the process on test fleet data, to gather first insights—
even if no real user behaviour is covered in this case.

Threats to the Validity: A major threat to the validity
of this evaluation results from the selection of the dataset
and test cases. There is a vast amount of in-house test
vehicles data; however, we purposely used real user data to
demonstrate the approach’s practical feasibility. As a premium
car manufacturer, we highly consider the privacy of our
customers. Hence, it is challenging—even as an OEM—to
get a high number of full customer car traces. Due to limited
computational resources and functions accessible in the used
vehicles, we had to limit this evaluation to a selection of test
cases. Therefore, the results of the evaluation are only valid
for these test cases. We tried to select a wide range of user
functions in order to generalise the results for other use cases,
but the results may vary for other use cases and users. We
are aware of these issues and try to gather more data and
consider additional test cases in the future.

VI. CONCLUSION

In this paper, we presented an approach to discover vehicle
signals, that represent a system’s or user’s behaviour when
interacting with functionalities and therefore can be directly
be used as input for data-driven functions to increase their
performance and which are often hidden in the high amount
of vehicle data (cf. RQ1, RQ2). Based on supervised feature
selection algorithms, we proposed an approach discovering
these signals within the vehicle and considering the restric-
tions of automotive E/E architectures. By using the resulting
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signal subsets, we were able to train machine learning models  [19]

which were able to predict the behaviour of the system/user.

The trained model showed high accuracy in the prediction 5

of the behaviour, which shows that current vehicles already

collect enough data to predict a system’s or user’s behaviour, .

but this data has to be discovered first of all. Considering [21]

the vast amount of data and vehicles as well as the highly  [22]

diverse behaviour of every user, we propose to deploy the
discovery approach directly in the vehicle and in the case of

early development additionally on test fleet data, to gather

first insights (cf. RQ3). These results are promising, and we  [23]

try to gather more data and consider additional test cases in

future work.

[24]
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