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aChair of Computational Modeling and Simulation, Technical University of Munich,
Germany

bLeonhard Obermeyer Center, TUM Center of Digital Methods for the Built Environment

Abstract

Image-based object detection provides a valuable basis for site information re-
trieval and construction progress monitoring. Machine learning approaches,
such as neural networks, are able to provide reliable detection rates. How-
ever, labeling of training data is a tedious and time-consuming process, as
it must be performed manually for a substantial number of images. The pa-
per presents a novel method for automatically labeling construction images
based on the combination of 4D Building Information Models and an inverse
photogrammetry approach. For the reconstruction of point clouds, which are
often used for progress monitoring, a large number of pictures are taken from
the site. By aligning the Building Information Model and the resulting point
cloud, it is possible to project any building element of the BIM model into
the acquired pictures. This allows for automated labeling as the semantic
information of the element type is provided by the BIM model and can be
associated with the respective regions. The labeled data can subsequently
be used to train an image-based neural network. Since the exact regions for
all elements are defined, labels can be generated for basic tasks like classifi-
cation as well as more complex tasks like semantic segmentation. To prove
the feasibility of the developed methods, the labeling procedure is applied
to several real-world construction sites, providing over 30,000 automatically
labeled elements. The correctness of the assigned labels has been validated
by pixel based area comparison against manual labels.
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1. Introduction1

Large construction projects require a variety of different manufacturing2

companies of several trades on site (for example masonry, concrete and metal3

works, HVAC, ...). An important goal for the main contractor is to keep track4

of accomplished tasks by subcontractors to maintain the general schedule.5

Additionally, the documentation of correctly executed tasks plays a crucial6

role for all involved parties. In construction, process supervision and moni-7

toring is still a mostly analog and manual task. To prove that the work has8

been completed as defined per contract, all performed tasks have to be moni-9

tored and documented. The demand for a complete and detailed monitoring10

technique rises for large construction sites where the complete construction11

area becomes too large to monitor by hand, and the number of subcontrac-12

tors rises. Main contractors that control their subcontractors’ work need to13

keep an overview of the current construction state. Regulatory issues add up14

on the requirement to keep track of the current status on site.15

The ongoing digitization and the establishment of building information16

modeling (BIM) technologies in the planning of construction projects help to17

establish new methods for process optimization. In an ideal implementation18

of the BIM concept, all semantic data on materials, construction methods,19

and even the process schedule are connected. On this basis, it is possible to20

make much more precise estimations about the project costs and its duration.21

Most importantly, possible deviations from the schedule can be detected22

early, and the resources can be adapted accordingly.23

This technological advancement allows new methods in construction mon-24

itoring. In Braun et al. [1], the authors propose a method for automated25

progress monitoring using photogrammetric point clouds and 4D Building26

Information Models. The central concept is to use standard camera equip-27

ment on construction sites to capture the current construction state by tak-28

ing pictures of the complete facility under construction at regular intervals.29

As soon as a sufficient number of images from different points of view are30

available, a 3D point cloud can be reconstructed with the help of photogram-31

metric methods. This point cloud represents one particular time-stamp of32

the construction progress (as-built) and is subsequently matched against the33

geometry of the BIM (as-planned) on a per-element basis.34

Figure 1 shows the C#-based WPF software tool, developed in the scope35

of this research. The tool visualizes a building information model and all36

corresponding semantic data. Additionally, the observation results can be37
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Figure 1: progressTrack: 4D BIM viewer incorporating detection states, process informa-
tion and point clouds from observations

selected and are supported by the possible overlay of the corresponding point38

clouds.39

The presented approach can be varied in terms of acquisition method40

(laser scanning, manual acquisition, . . . ) and matching methods (as dis-41

cussed in Section 2 - Related work). However, none of the methods is capable42

of providing absolute reliability due to occlusions or other boundary condi-43

tions. To further improve the reliability of the methods mentioned above,44

image-based machine learning techniques offer a promising approach. These45

techniques allow to analyze pictures based on their contents and even mark46

and classify specific regions of pictures. This new information can further47

improve the geometric as-planned vs. as-built comparison based on point48

clouds by increasing the reliability of made assumptions while comparing49

semantic data from the BIM with classified categories on similar pictures.50

Recently, Convolutional Neural Networks (CNN) were introduced in this51

context [2, 3]. These networks require large training sets to learn similari-52

ties of provided data-sets to make assumptions on unknown data. Applica-53

tions of CNNs range from face-detection in security-related applications to54
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autonomous driving [4]. With respect to automated construction monitor-55

ing, these methods can help to detect construction elements on pictures and56

provide an alternative method for detection in case of low point cloud den-57

sities and to improve the overall accuracy of detection [5, 6]. However, data58

pre-processing and labeling of test-sets for the training of said algorithms59

is a laborious and time-consuming task since common CNNs require large60

amounts of labeled data [7].61

This paper presents a method to automate the process of construction-site62

image labeling. The proposed method makes use of available information on63

image localization from the photogrammetric process as well as information64

on the presence of individual construction elements from the as-planned vs.65

as-built comparison by the process described above. The resulting availability66

of training data provides the basis for applying the trained CNN for image-67

based object detection on any construction site, in particular, those where68

a 4D-BIM does not exist or only a limited number of images are taken, and69

the generation of a point cloud is not possible. However, this paper does not70

report on these next stages but focuses on the provision of correctly labeled71

images as an essential first step.72

2. Related work73

2.1. Automated construction monitoring74

Several methods for BIM-based progress monitoring have been developed75

in recent years [8]. Basic methods make use of minor technical advancements76

like introducing email and tablet computers into the manual monitoring pro-77

cess. These methods still require manual work, but already contribute to the78

shift towards digitization. More advanced methods try to track individual79

building components through radio-frequency identification (RFID) tags or80

similar methods (for example QR codes).81

Current state-of-the-art procedures apply vision-based methods for more82

reliable element identification. These methods either make direct use of pho-83

tographs or videos taken on site as input for image recognition techniques84

or apply laser scanners or photogrammetric methods to create point clouds85

that hold point-based 3D information and additionally color information.86

Bosche and Haas [9], Bosché [10] present a system for as-planned vs. as-87

built comparisons based on laser-scanning data. The generated point clouds88

are co-registered with the model using an adapted Iterative-Closest-Point-89

Algorithm (ICP). Within this system, the as-planned model is converted90
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into a point cloud by simulating the points using the known positions of91

the laser scanner. For verification, they use the percentage of simulated92

points, which can be verified by the real laser scan. Turkan et al. [11] use93

and extend this system for progress tracking using schedule information for94

estimating the progress in terms of earned value and for detecting secondary95

objects. Kim et al. [12] detect specific component types using a supervised96

classification based on Lalonde features derived from the as-built point cloud.97

An object is regarded as detected if the type matches the type present in the98

model. As above, this method requires that the model is sampled into a point99

representation. Zhang and Arditi [13] introduce a measure for deciding four100

cases (object not in place, point cloud represents a full object or a partially101

completed object or a different object) based on the relationship of points102

within the boundaries of the object and the boundaries of the shrunk objects.103

The authors test their approach in a very simplified artificial environment,104

which is significantly less challenging than the processing of data acquired105

on real construction sites.106

In comparison with laser scanning, photogrammetric methods are less107

accurate. However, standard cameras have the advantage that they can be108

used more flexibly, and their costs are much lower. This leads to the need109

for other processing strategies when image data is used. Omar and Nehdi [8]110

give an overview and comparison of image-based approaches for monitoring111

construction progress. Ibrahim et al. [14] use a single camera approach and112

compare images taken during a specified period and rasterize them. The113

change between two time-frames is detected using a spatial-temporal deriva-114

tive filter. This approach is not directly bound to the geometry of a BIM and115

therefore cannot identify additional construction elements on site. Kim et al.116

[15] use a fixed camera and image processing techniques for the detection117

of new construction elements and the update of the construction schedule.118

Since many fixed cameras would be necessary to cover a whole construction119

site, more approaches rely on images from hand-held cameras covering the120

whole construction site.121

For finding the correct scale of the point cloud, stereo-camera systems can122

be used, as done in [16, 17, 18]. Rashidi et al. [19] propose using a colored123

cube of known size as a target, which can be automatically measured to124

determine the scale. Additionally, image-based approaches can be compared125

with laser-scanning results [20]. The artificial test data is strongly simplified,126

and the real data experiments are limited to a small part of a construction127

site. Only relative accuracy measures are given since no scale was introduced128
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to the photogrammetry measurements. Golparvar-Fard et al. [21, 22] use129

unstructured images of a construction site to create a point cloud. The130

orientation of the images is computed using a Structure-from-Motion process131

(SFM). Subsequently, dense point clouds are calculated. For the comparison132

of as-planned and as-built geometry, the scene is discretized into a voxel133

grid. The construction progress is determined in a probabilistic approach, in134

which the threshold parameters for detection are determined by supervised135

learning. This framework makes it possible to take occlusions into account.136

This approach relies on the discretization of space as a voxel grid to the137

size of a few centimeters. In contrast, the approach presented here is based138

on calculating the deviation between a point cloud and the building model139

directly and introduces a scoring function for the verification process.140

The mentioned approaches provide valuable enhancements for automated141

construction progress monitoring. However, so far, not all potential benefits142

from using semantic BIM data are unlocked to their full extent. Also, current143

research does not present solutions for occluded elements as well as temporary144

construction elements like scaffolds. These elements cover large parts of145

construction sites and thus cannot be neglected. The presented approach146

tries to solve this issue by analyzing the images taken during the SFM process.147

2.2. Computer Vision148

Computer Vision is a heavily researched topic, that got even more atten-149

tion through recent advances in autonomous driving and machine learning150

related topics. Image analysis for construction sites, on the other hand, is151

a rather new topic. Since one of the key aspects of machine learning is the152

collection of large data-sets, current approaches focus on data gathering. In153

the scope of automated progress monitoring, Han and Golparvar-Fard [23]154

published an approach for labeling based on the commercial service Amazon155

Turk. Chi and Caldas [24] used first versions of neural networks to detect156

construction machinery on images, Kropp et al. [25] tried to detect in-door157

construction elements based on similarities, focusing on radiators. Kim et al.158

[26] used ML-based techniques for construction progress monitoring. They159

analyzed images by filtering them to remove noise and uninteresting ele-160

ments to focus the comparison on relevant construction processes. Other161

publications mainly focus on defect detection (like for example cracks) in162

construction images [27].163

Current research mainly uses manual labels for computer vision. Addi-164

tionally, no construction data set is currently covering the whole amount of165
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construction elements. An automated labeling approach could better this166

lack of data to further improve machine learning methods in this scope of167

application.168

3. Problem statement169

Monitoring of construction sites by applying photogrammetric methods170

has become a common practice. Currently, several companies (for example171

Pix4D, DroneDeploy) provide commercial solutions for end users that allows172

to generate 3D meshes and point clouds from UAV-based site observations.173

All these methods give reasonable solutions for finished construction sites or174

visible elements of interest.175

However, there are still many unsolved problems in monitoring construc-176

tion sites. Photogrammetric methods are sensitive to low structured surfaces177

or windows. Because of the used method, each element needs to be visible178

from multiple (at least two) different points of view. Thus, elements inside of179

a building cannot be reconstructed as they are not visible from a UAV flying180

outside of the building. Monitoring inside a building is currently still under181

heavy research [28] and not available in an automated manner as orientation182

and observation in such mutable areas like construction sites is hard to tackle.183

These problems lead to holes or misaligned points in the final point cloud,184

that hinder accurate and precise detection of building elements. On the other185

hand, laser scanning requires many acquisition points and takes significantly186

more time and manual effort for acquisition. Finally, both techniques remain187

with occlusions for regions that are not visible during construction.188

As can be seen in Figure 2, another problem is elements that are occluded189

by temporary construction elements. Especially scaffolds and formwork ele-190

ments occlude the view on walls or slabs, making it harder for algorithms to191

detect the current state of construction progress.192

This paper proposes a method that is meant to overcome some of the lim-193

itations of the available methods. It contributes to the final goal of exploiting194

images as an information source for construction state detection, either as ad-195

ditional information in case one of the methods mentioned above is applied,196

or even as sole and primary information if a 4D BIM does not exist or an197

insufficient number of images is available for photogrammetric detection. To198

achieve this, the authors propose to apply CNNs for automated object detec-199

tion. However, a huge set of correctly labeled images is required for training200
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Figure 2: Occluded construction elements in generated point cloud caused by scaffolding,
formworks, existing elements and missing information during the reconstruction process

the CNN and achieve high precision and low recall. So far, the labeling pro-201

cess had to be performed manually in a laborious and error-prone process.202

This is why the authors propose to automate this process by making use of203

the methods they originally developed for construction progress monitoring.204

In particular, we use image localization from the photogrammetric process205

as well as information on the presence of individual construction elements206

from the as-planned vs. as-built comparison. This results in the availability207

of the required high quality, high volume training data.208

4. Automated labeling of images209

An essential part of progress monitoring is the detection of an element’s210

status, i.e. to decide whether an element is still under construction (e.g.,211

surrounded by formwork) or finished. Pure point-cloud-to-model matching212

methods are facing difficulties in this regard as temporary and auxiliary con-213

structions (such as formwork) usually are not included in the BIM model. As214

proposed in Braun et al. [29], computer vision based methods can help here215

and significantly improve the reliability of as-planned vs. as-built compari-216

son. The basic idea is to use visual information to decide upon an element’s217

visibility status.218
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The authors propose the use of machine learning (ML) methods for image-219

based detection of a construction element’s status. However, ML techniques220

require a large set of labeled images for training. As currently large labeled221

sets of construction site images or not available, the labeling has to be per-222

formed manually in a tedious and time-consuming process. Generating these223

labels automatically can drastically reduce preparation efforts for training224

and improving such networks.225

The proposed concept of automatic labeling is based on fusing information226

available from the photogrammetric process (images and relative position of227

the camera) and the information available from the 4D BIM (object type,228

object position). Since the BIM and the resulting point cloud are aligned,229

each BIM element can be projected onto the image initially taken for the230

photogrammetric process. This allows to precisely identify the region covered231

by a building element on a picture.232

However, there is a significant problem remaining: Information on the ac-233

tual presence of the element cannot be reliably taken from the 4D as-planned234

BIM, as execution time very often deviates from the original schedule (which235

is the underlying rationale for applying progress monitoring). At this point,236

we benefit from the original point-cloud vs. BIM matching process outlined237

in Section 1: It provides reliable information about the actual presence of an238

element in reality and thus also on the captured images.239

Consequently, the proposed method for automated labeling of construc-240

tion elements uses the data of previously monitored construction sites to-241

gether with the results from the as-planned vs. as-built comparison to gen-242

erate valid data sets for the training of neural networks.243

The proposed workflow is also depicted in Figure 3.244

As soon as the training is successfully completed, these networks can be245

used on any construction site for an image based detection of elements.246

The following subsections describe the process and mathematical back-247

ground for the projection of construction elements into pictures and the la-248

beling procedure using these results.249

4.1. Camera positions250

In the proposed method, the point cloud is produced using photogram-251

metric methods. In this process, pictures are taken, for example by UAVs252

(Unmanned aerial vehicles) from different points of view. These pictures can253

then be used to generate a 3D point cloud if all elements are visible from a254
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Figure 3: Proposed workflow for the automated labeling toolchain

sufficient amount of viewpoints. During the reconstruction process, the cam-255

era positions around the construction site are estimated. This is illustrated256

in Fig. 4. This estimation is refined during the dense reconstruction and can257

get more accurate by using geodetic reference points on site.258

4.2. 4D process data and as-planned vs. as-built comparison259

Building information modeling can be used to combine the geometry of260

construction elements with semantic data such as material information but261

also process schedules. In the scope of this research, the corresponding pro-262

cess schedule is connected to all elements, resulting in a fine-grained 4D-BIM263

model. This allows identifying all elements that are expected to be built at264

each observation time.265

As depicted in Fig. 5, the software tool used in this research is capable of266

integrating the building information model with process data and construc-267

tion elements such as scaffolding and formwork.268

This data is required to define the sets of elements that are used for the269

labeling method described in this paper. Since the process schedule may270

change during construction, it is crucial to update the schedule permanently271

based on the gathered observation data. Since the as-planned vs. as-built272
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Figure 4: Estimated camera positions during point cloud generation (in this example using
VisualSFM [30])

Figure 5: 4D building information model including all additional construction materials
like scaffolding and formwork
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comparison has already been conducted for the construction sites in this273

research, the results are available for all construction elements. This infor-274

mation is crucial since the labeling of elements that were not built yet would275

lead to incorrect labels.276

4.3. Projection277

Based on the gathered information, it is possible to do a visibility de-278

tection by using the camera positions as the point of view, and the process279

information to define the set of construction elements, that are meant to280

be built. To achieve this, the building model coordinate system needs to281

be transformed into the camera coordinate system or vice versa. Several282

parameters are needed for this transformation.283

On the one hand, the intrinsic camera matrix for the distorted images that284

projects 3D points in the camera coordinate frame to 2D pixel coordinates285

using the focal lengths (Fx, Fy) and the principal point (x0, y0) is required.286

Additionally, the skew coefficient sk for the camera is required. This scalar287

parameter defines the relation between x and y axis. It is zero if the image288

axes are perpendicular. The matrix K can be described as defined in equation289

1.290

K =

Fx sk x0

0 Fy y0
0 0 1

 (1)

The translation of the camera is defined as:291

T =

t1t2
t3

 (2)

Additionally, the rotation matrix for each image as defined in equation 3292

is needed.293

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3)

Both, translation and rotation can be described in one 3 x 4 matrix:294
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RT =

r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3

 (4)

Using the model coordinates of all triangulated construction elements,295

it is possible to calculate the projection of each element into the camera296

coordinate system and therefore overlay the model projection and the corre-297

sponding picture taken from the point of observation with equation 5.298

t = K ∗RT ∗ p; (5)

The resulting 2D coordinates that are rendered into the picture are calcu-
lated by using the vector t and getting the x and y coordinates by calculating

x = t[0]/t[2] (6)

and
y = t[1]/t[2] (7)

This is done for each point belonging to the triangulated geometry rep-299

resentation of all construction elements.300

As visible in Fig. 6 for an analytical column, the projection works as301

expected and helps to identify the respective construction element in the302

recorded picture. The mentioned calculations need to include an optional303

transformation and rotation if the model is geo-referenced and thus the two304

coordinate systems differ broadly.305

4.4. Render model based on camera position306

The algorithm introduced in section 4.3 enables the element-wise render-307

ing of all construction elements in the respective coordinate system. To get308

a rendered image of all visible construction elements, the following steps are309

carried out:310

While all geometric information is available, three problems need to be311

solved for an accurate rendering of all construction elements:312

1. For triangulated elements, only the boundaries are known. However,313

the whole surface needs to be rendered correctly.314

2. The rendered surface needs to be connected to the corresponding ele-315

ment since this information is crucial for a proper visibility analysis316
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Figure 6: Sample of projected, triangulated column geometry into a corresponding picture
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Algorithm 1 Pseudo code for rendering an image of all visible elements

1: procedure RenderVisibleElements
2: O← set of all observations of the construction site
3: I← set of all images of current observation
4: E← set of all construction elements
5: C← set of all coordinates of the triangulated surfaces
6: d← distance of element to corresponding camera position
7: for all O do
8: for all I do
9: for all E do

10: for all C do
11: if isvisible(c) then P(x,y,d,color) = projection(c);

12: for all Pixels do
pmin = min(P (d));
p(x, y) = p(color);

3. Elements may blend over from the viewpoint in some circumstances.317

This needs to be addressed to get a correct rendering.318

The first issue is solved by applying necessary inside/outside tests for319

points inside a bounding box around each triangle. This is combined with320

min/max tests to verify that all points are inside the given coordinate sys-321

tem of the current picture. The second issue is addressed by assigning an322

individual color in the RGB color range to every construction element. This323

allows identifying each element after the rendering is finished.324

The third issue is solved by applying the Painter’s algorithm [31] to each325

pixel in the given picture. In the given challenge, the distance to the point of326

view is stored for the current construction element and the color information327

is replaced in case an element has a smaller distance to the point of view and328

is also visible in the same pixel of the picture.329

The applied algorithms result in a rendering as seen in Fig. 7.330

After applying this technique to all observations and all camera positions,331

a distinct list of all visible construction elements can be generated by iterating332

over all pixels of each rendered image. The color of each pixel is assigned to333

a construction element, and since the painters’ algorithm is applied, only the334

element is visible, that has the lowest distance to the point of observation.335

Therefore, all visible, non-occluded elements can be determined with this336
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Figure 7: Using projection methodology for model rendering based on the Painter’s Algo-
rithm and 4D semantic information
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method.337

4.5. Generating Labels for Machine Learning338

Since machine learning tasks require large training sets for the learning339

procedure, the labeling and pre-processing of suitable data play a crucial340

role.341

Labeling for ML depends on the desired output of the ML system. A basic342

ML system for classification is only capable of making general statements on343

the content of an image and hence only requires a set of images containing344

the classification category as training input. On the other hand, a system for345

semantic segmentation can predict the exact location and also the amount of346

(multiple) elements in one image. Labeling for this class of systems requires347

detailed convex hull polygons around all instances of elements. Additionally,348

the category for each label needs to be defined.349

The automated labeling process presented here builds on the previously350

presented projection algorithm and is capable of generating labels for all351

sorts of ML systems starting from necessary bounding boxes up to detailed352

convex hulls around individual element instances. Image-based labeling is353

realized by defining a polygon line around each object and associating a354

corresponding category with this label. The polygon label can be generated355

by the above-mentioned projection and fits precisely around the shape of356

each construction element. The defining element category can be extracted357

from the semantic information provided by the building information model.358

Since geometry and semantic data are connected, any additional information359

can be added to the generated labels.360

Besides using the mathematical algorithms for projection, also the results361

of the visibility analysis are essential. As discussed before and depicted in362

Figure 8, labeling cannot only rely on all available elements. A prominent but363

noteworthy factor is the actual presence of the labeled element. The element364

must have been built to generate an image valid for training or testing. By365

extracting this information from the as-planned vs. as-built comparison, the366

set of available elements is reduced to the set of detected elements. In the367

next step, the set needs to be further reduced to the set of visible elements368

for each picture.369

To sum up the labeling process, the following method is proposed:370

The proposed method works for all kinds of label requirements. To illus-371

trate this, Table 1 shows sample labels for a Classification Network (which372
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Figure 8: Considered set of elements based on previous results from as-planned vs. as-built
comparison. For CV-based methods, visibility plays a crucial role, leading to reduced data
sets from construction monitoring.

Algorithm 2 Pseudo code for labeling all visible elements in an image

1: procedure LabelVisibleElements
2: I← set of all images
3: List < element, List < P >> LabelList← set of all labels
4: for all I do
5: E← set of all construction elements, visible in current picture
6: for all E do
7: List < P > ConvexHull = GetConvexHull();

LabelList.Add(E.elementtype, ConvexHull);

usually requires image snippets with bounding boxes) and semantic segmen-373

tation (which usually requires polygon lines and the corresponding images).374

The sample shown here uses the well known COCO format. For better un-375

derstanding, a graphic labeled image for semantic segmentation is added,376

too.377

Current best practice in machine learning proposes to split the labeled378

data-set into a set of training data for the actual training process, a set of379

validation that does not contain any data from the training set to validate the380

current training rates. Finally, a set for testing that is not used for training381

or validation at all is used for checking the overall performance of the neural382

network without further changing the learning parameters.383

Hence, the labeled images are split randomly into the mentioned cate-384

gories to fulfill this requirement.385

5. Case study386

To prove the introduced methods, the following case studies were con-387

ducted:388
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Category Classification semantic seg. [JSON co-
ords]

seg. image

column [[3778, 1230, 3810, 1230,
3834, 1231, 3837, 1230,
3840, 1230, 3854, 983, 3852,
984, 3848, 984, 3791, 985]]

formwork [[2662, 1662, 2666, 1682,
2703, 1682, 2704, 1323,
2702, 1319, 2699, 1314,
2663, 1314]]

Table 1: Sample labels of two categories for different ML use cases
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5.1. BIM element projection onto images389

The developed methodology has been applied to several construction390

sites.391

As depicted in Fig. 2, most observations lack details at some point and392

have mostly occluded areas due to the observation methods. In very dis-393

advantageous observations, the detection rate can drop down to 50% of the394

overall built construction elements. In this case, the detection rate d describes395

the percentage of elements that the proposed method marked as detected over396

the ground truth of all elements that were built. The latter set of elements397

has been acquired manually in order to verify used algorithms. With the398

help of the presented methods, these rates can be explained since most of399

the undetected elements were not visible from the observation points. To400

quantify the efficiency of an algorithm for as-planned vs. as-built detection,401

it is essential to have a valid ground truth to allow an unbiased evaluation402

of the used methods. This approach helps to quantify the used methods403

correctly.404

Figure 9: Detected construction elements from one observation. Green elements were
successfully detected, yellow elements were not detected but are built.

This concept is illustrated in Fig. 9. The green elements were detected405

correctly. The yellow elements, however, are built but were not detected.406
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This is because the inner walls were not visible from a sufficient number of407

viewpoints. Thus there were not enough points in the corresponding point408

cloud that allowed to validate the existence of the elements. However, these409

elements were identified as not visible using the method introduced earlier410

in this paper.411

5.2. Automated labeling and validation412

After successfully testing the projection, the actual labeling is performed413

being the key contribution of this paper.414

Many currently used CNNs rely on the COCO Data-set [32]. Facebook’s415

Mask R-CNN [33] has provided promising results for machine learning in pre-416

vious applications. The network itself also relies on the COCO data format417

as a basis. Thus, the authors chose this schema as a basis for the generation418

of the labels. This schema requires a defined structure for all labels, including419

information about each image (id, width, height, license, date captured), all420

annotations (id, corresponding image, label category, label polygon, bound-421

ing box, ...) as well as the defined categories (in this case for example walls422

or columns, all represented by individual IDs).423

The construction projects on which the developed methods have been424

applied involve mainly the production of concrete elements. The following425

construction elements and temporary elements were modeled in the corre-426

sponding BIM:427

• columns428

• walls429

• formworks430

• slabs431

• roofs432

• stairs433

The proposed methods were tested on observation data from multiple434

construction sites, resulting in 32,787 labeled construction elements on 1,300435

images. The machine used for this test is a Windows 10 system equipped436

with an Intel Xeon E5-1630 CPU @ 3.70GHz, 16 GB DDR4-RAM, AMD437

Fire Pro W4100 2GB RAM, and a 10GBit network connection. The entire438
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Figure 10: Sample sub-set of auto-labeled columns in one picture from a construction site.

Figure 11: Sample sub-set of auto-labeled columns and walls in another picture from a
construction site.
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automated labeling process took around 20 minutes, outperforming manual439

labeling significantly. During this time, all images (close to 9 GB) were440

downloaded from a NAS (Network attached storage) and randomly added to441

the training, validation, and test data sets. Additionally, the corresponding442

label files in JSON format were generated. A sample visualization of the443

generated labels for one picture is depicted in Figure 10 and 11, showing444

exported columns with their respective convex hull label around them.445

Figure 12: Validation of label correctness with cyan poly-lines representing the automati-
cally generated labels and orange poly-lines representing the manually generated validation
set.

The method was validated through human evaluation on all labels for the446

tested construction sites. The label projection worked without failure for all447

built construction elements in terms of generating a valid convex hull as the448

existing elements have been verified against a manually created ground truth.449

24



Since no issues were found in a set of over 32,000 snippets, the projection450

can be regarded as working correctly. However, as depicted in Fig. 12, the451

automatically generated labels (cyan poly-lines) have a slight deviation from452

the actual construction elements.453

This deviation can have multiple reasons:454

• errors in pose estimation during Structure-from-Motion455

• large scale deviations when using real-world coordinates456

• construction inaccuracies457

• modeling inaccuracies458

Since all elements were validated in the as-planned vs. as-built compari-459

son, allowing for only very minor construction inaccuracies, construction in-460

accuracies can be disregarded in this research. Otherwise, the element would461

not have been classified as ”built” and would not have been labeled at all.462

Thus, the deviations, in this case, are minor and arise from an aggregation463

of the mentioned reasons. To quantify the introduced error, a set of 1.000464

elements have been labeled manually and tested against the automatically465

created labels. The labels were then compared pixel-wise. The overall accu-466

racy of the automated system was measured by calculating the overlapping467

area I of the resulting labels of both labeling methods over the manually468

labeled area:469

po = I/Amanuallabel (8)

with470

I = Aautolabel ∩ Amanuallabel (9)

The resulting accuracy po had an average of 91.7% overlap over all checked471

labels, constantly lying within the bounds of 85% and 97%. The overlap rates472

give promising results and make the labels usable for machine learning tasks.473

Rates could be further improved by taking more pictures for the Structure-474

from-Motion process and enhancing the resulting camera pose estimation.475
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6. Discussion476

For improving the reliability of construction progress monitoring, this477

paper introduces a novel concept for automating the labeling process of con-478

struction site images. It is based on fusing information available from the479

photogrammetric process (images and relative position of the camera) and480

the information available from the 4D BIM (object type, object position).481

Since the BIM and the resulting point cloud are aligned, a digital element482

can be projected onto the image, initially taken for the photogrammetric483

process. Also, matching the point cloud and the BIM allows to make sure484

that only images are considered where the elements under consideration exist485

in reality.486

From the projected BIM elements, it is possible to automatically con-487

nect the covered image segments with the semantic information provided488

by the Building Information Model. Since the introduced as-planned vs.489

as-built comparison also offers valuable information on the presence of all490

elements, the labels can be further refined regarding possible occlusions. As491

a valid label should only be applied to an at least partially visible element,492

the gathered knowledge from the previously applied as-planned vs. as-built493

comparison makes this automated approach even more accurate. Since the494

comparisons’ resulting elements are built at the correct positions, the labels495

are also correct. On the downside, only elements that were built as-planned496

can be labeled.497

The sample-based validation showed over 91% pixel-wise accuracy of the498

automated procedure when tested against manual labeling procedures. A499

previously tested, manual labeling approach took over 100 working hours to500

accurately label only one category of elements. Labeling and generating the501

corresponding images folders for this case study took around 20 minutes,502

including downloading of 9 GB of pictures from a remote NAS folder which503

takes over 90% of the time used. Additionally, several studies show that504

manual labeling is also introducing a range of errors due to missed elements505

or inaccurately labeled elements. As the correct identification of construction506

elements also requires technical personnel [34], labeling is hugely cost inten-507

sive and danger of bore-out to this group of workers due to the repetitive508

work.509

The construction sites used for this process are located in Germany and510

apply in-situ concrete pouring as the primary construction methodology.511

Consequently, the resulting labels and especially the trained network, will512
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only be able to detect construction elements from this domain of manufac-513

turing. However, the presented approach can be easily extended by also514

including construction sites from other countries or other construction tech-515

niques.516

Future steps of this research will focus on creating a CNN for detecting517

the most important construction elements on construction sites. The final518

objective is to enable a utterly image-based construction monitoring process519

in the future.520
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