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Autophagy is a pathway that allows cells to target organelles, protein complexes, or 
invading microorganisms for lysosomal degradation. The specificity of autophagic pro-
cesses is becoming increasingly recognized and is conferred by selective autophagy 
receptors such as Optineurin (OPTN). As an autophagy receptor, OPTN controls the 
clearance of Salmonella infection and mediates mitochondrial turnover. Recent studies 
demonstrated that OPTN is critically required for pathogen clearance and an appropriate 
cytokine response in macrophages. Moreover, OPTN emerges as a critical regulator 
of inflammation emanating from epithelial cells in the intestine. OPTN directly interacts 
with and promotes the removal of inositol-requiring enzyme 1α, a central inflammatory 
signaling hub of the stressed endoplasmic reticulum (ER). Perturbations of ER and auto-
phagy functions have been linked to inflammatory bowel disease (IBD) and specifically 
Crohn’s disease. Collectively, these studies may explain how perturbations at the ER can 
be resolved by selective autophagy to restrain inflammatory processes in the intestine 
and turn the spotlight on OPTN as a key autophagy receptor. This review covers a timely 
perspective on the regulation and function of OPTN in health and IBD.

Keywords: optineurin, inflammatory bowel disease, Crohn’s disease, endoplasmic reticulum stress, selective 
autophagy

inTRODUCTiOn

Autophagy is an evolutionary conserved self-cannibalistic pathway that leads to the degradation 
of bulk cytoplasm (macroautophagy) in order to generate energy and to maintain cell homeostasis 
(1). However, researchers are increasingly appreciating that receptors specifically guide autophagic 
degradation as exemplified by the removal of damaged organelles [e.g., mitophagy of mitochon-
dria, ER-phagy of endoplasmic reticulum (ER), pexophagy of peroxisomes], bacteria (xenophagy), 
lipid droplets (lipophagy), protein aggregates (aggrephagy), and other cytosolic constituents  
(2, 3). This rather selective autophagic process may be controlled by Optineurin (OPTN) besides 
other autophagy receptors including p62/SQSTM1, NBR1, CALCOCO2/NDP52, and TAX1BP1 
(3, 4). These receptors recognize ubiquitinated cargo via their ubiquitin-binding domains (UBA, 
UBZ or UBAN) and tether it to the autophagosomal membranes by their LC3-interacting regions 
(LIRs) (5). However, OPTN does not only guide selective autophagy but also controls tumor 
necrosis factor (TNF), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling (6–8). 
OPTN has been implicated in a variety of human diseases including glaucoma (9), amyotrophic 
lateral sclerosis (10, 11), Paget’s disease (12, 13), and recently, inflammatory bowel disease (IBD) 
(14, 15). IBD comprise a spectrum of complex diseases that affect the gastrointestinal tract and 
organs beyond the intestine (e.g., eye, skin, joints). IBD is clinically distinguished into two major 
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phenotypes: ulcerative colitis (UC) and Crohn’s disease (CD). 
Although these two diseases share some genetic risk they are 
considered separate disease entities due to their localization, 
clinical presentation and response to therapy (16). The patho-
physiology of these diseases involves environmental factors and 
their impact on the intestinal microbiota which may orches-
trate a chronic remittent form of inflammation in genetically 
susceptible hosts (17–19). Genetic variation in the autophagy 
gene ATG16L1 has been linked to CD (20, 21) which leads to an 
impaired autophagic response due to caspase 3-mediated cleav-
age of the mutant ATG16L1 variant (22). Impaired autophagy 
function especially in intestinal epithelial cells results in the sus-
ceptibility to small and large intestinal inflammation (23–27). 
As such, it is conceivable that the selective autophagy receptor 
OPTN may regulate inflammatory processes in the intestine. 
Evidence for the regulation and function of OPTN in intestinal 
inflammation and specifically IBD is covered in this review.

THe SeLeCTive AUTOPHAGY ReCePTOR 
OPTn in HeALTH

The gene encoding OPTN is evolutionary conserved and 
expressed in most tissues of the human body (28). OPTN was 
initially discovered in 1998 in a yeast two-hybrid screen as a 
binding partner of the adenovirus protein E3-14.7K (early region 
3 of group C human adenoviruses 14.7 kDa), and was thereafter 
named as FIP-2 (for 14.7  kDa interacting protein) (28). Later, 
this gene was identified to have a strong homology with NEMO 
(NF-κB essential modulator) and was subsequently denoted as 
NEMO-related protein (29). But it also became known as tran-
scription factor IIIA-interacting protein, Huntingtin-interacting 
protein 7, and Huntingtin yeast partner L (30). Eventually, the 
multifunctional protein was renamed to OPTN (“optic neuropa-
thy inducing”), as it was found to play a major neuroprotective 
role and mutations in this gene were shown to be causative for the 
development of primary open-angle glaucoma, a leading cause of 
blindness (9).

The human OPTN gene is located at chromosome 10 and 
consists of three non-coding exons in the 5′UTR and 13 exons 
that encode a 577 amino acid protein with a size of 66 kDa. The 
mouse Optn gene is located at chromosome 2 and also contains 
13 exons, which encodes a full-length protein of similar size that 
shows 78% sequence similarity to the human protein (6, 30). The 
OPTN protein consists of several functional domains including 
a basic leucine zipper motif (bZIP), a microtubule-associated 
protein 1 light-chain LIR, a ubiquitin-binding domain (UBAN), 
multiple coiled-coil motifs as well as a ubiquitin-binding 
zinc-finger domain at the C-terminus (6). Notably, NEMO, 
a central regulator of NF-κB activation shares 53% similarity 
with OPTN and only lacks a fragment of 166 amino acids at the 
N-terminal region containing a putative leucine zipper domain 
(30). However, despite this similarity, OPTN is (unlike NEMO) 
not a regulatory subunit of the IκB kinase (IKK) complex that is 
essential for NF-κB activation (29). OPTN was shown to block 
the ability of NEMO to bind ubiquitinated receptor-interacting 
protein kinase 1 (RIPK1), which resulted in a suppression of 

TNF-induced NF-κB signaling (8). Similarly, OPTN also inhibits 
NF-κB signaling through interaction with CYLD that leads to 
deubiquitination of NEMO and RIPK1 (31). Notably, OPTN 
is induced by TNF receptor signaling and can thus function as 
a negative-feedback regulator for NF-κB (32). As such, OPTN 
negatively regulates TNFα-mediated NF-κB signaling which is 
critically involved in the regulation of immune responses and 
cell death signaling. In contrast, in vivo experiments using Optn 
knock-out and Optn470T knock-in mice suggest that OPTN plays 
no role in the regulation of NF-κB signaling (33, 34).

Furthermore, OPTN was shown to be regulated by and control 
type I IFN responses (7, 29, 35). Production of type I IFNs is 
the primary response to bacterial and viral infections (36). 
Specifically, upon recognition of pathogen-associated molecular 
patterns by toll-like receptors or RIG-I-like receptors, IFN regula-
tory factor 3 (IRF3) becomes phosphorylated by TANK-binding 
kinase 1 (TBK1) and translocates to the nucleus, which leads to 
the transcription of type I IFN response genes (7). OPTN binds 
to TBK1 to support IRF3 activation and production of type I IFNs 
(34). In contrast to this notion, however, OPTN was shown to 
suppress virus-induced IRF3 signaling (37).

More recently, OPTN was identified as a selective autophagy 
receptor required for autophagic clearance of Salmonella enterica 
(38), removal of damaged mitochondria (39) and degradation 
of protein clusters at the ER (24). Selective autophagy receptors, 
i.e., OPTN, NDP52, p62, and TAX1BP1 recognize ubiquit-
inated cargo and link it to the autophagosomal membrane (3). 
Before autophagic clearance of the ubiquitinated cargo, TBK1 
activates OPTN by phosphorylation in order to enhance its 
binding capacity to LC3, a conjugate of the autophagosomal 
membrane (38, 40). A similar mechanism has for example been 
demonstrated for mitophagy (41). Only recently, a mechanistic 
link between OPTN and autophagy has been provided. Bansal 
and colleagues demonstrated an interaction of OPTN with the 
core autophagy machinery forming around ATG16L1. More 
specifically, the authors demonstrated that OPTN was required 
for the recruitment of the ATG12/ATG5/ATG16L1 complex 
to phagophores for autophagosomal elongation in starvation-
induced autophagy (42).

THe SeLeCTive AUTOPHAGY ReCePTOR 
OPTn in DiSeASe

OPTn is Required for Pathogen Clearance 
and an inflammatory Response  
in Macrophages
The Segal group and colleagues contributed to our understanding 
of OPTN in intestinal disease processes (15, 43). Bone marrow-
derived macrophages from OPTN-deficient mice exhibited a 
decreased capacity to respond with TNF-α and IL-6 secretion 
upon stimulation with heat-inactivated Escherichia coli. Defective 
bacterial handling in OPTN-deficient macrophages was paral-
leled by a more severe Citrobacter rodentium-induced colitis and 
E. coli peritonitis. The more severe phenotype may be explained 
by an inappropriate immune response at the site of infection 
which increased mortality of OPTN-deficient animals in both 
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models (43). In line with this, OPTN-deficient HeLa cells exhib-
ited a bacterial handling defect after Salmonella infection (38) 
similar to a more severe phenotype after Salmonella infection in 
mice that was independent from NF-κB or type I IFN responses 
in macrophages (33). Of note, activation of inflammatory sign-
aling cascades may be determined by distinct ubiquitin chains 
on bacteria as it was recently shown for the ubiquitin coat on  
S. typhimurium that provides a platform for NF-κB (44). Acti-
vation of NF-κB resulted in secretion of pro-inflammatory cyto-
kines and reduced bacterial proliferation (44).

Collectively, these data demonstrate that OPTN limits 
bacterial infection in the intestine likely by mediating selective 
autophagy and pathogen clearance.

Macrophage OPTn expression is Reduced 
in a Proportion of CD Patients
The Segal group also analyzed monocyte-derived macrophages 
from ~40 patients with CD and UC. They noted that—similar 
to their findings in OPTN-deficient mice—CD macrophages 
exhibited impaired immune responses (i.e., TNF-α and IFN-γ 
secretion) upon stimulation with inactivated E. coli when com-
pared to healthy controls which could not be explained by the 
transcriptional profile (15). The authors identified a CD subgroup 
which composed 10% of their cohort that expressed reduced 
OPTN in macrophages. Reduced expression may be explained 
by genetic variation as the authors observed an association with 
a single nucleotide polymorphism rs12415716 that exhibited a 
minor allele frequency of ~18%. Indeed, siRNA silencing reduced 
the inflammatory response of OPTN-deficient macrophages by 
25% (43). These two studies highlight that OPTN is required for 
an appropriate immune response of macrophages upon exposure 
to bacterial antigens. Whether reduced OPTN expression and an 
impaired cytokine response is a cause of or consequence from 
IBDs deserves further attention. Furthermore, it will be interest-
ing to decipher how OPTN modulates immune responses and 
how this may be related to autophagic processes (43).

OPTn Limits the Accumulation of an  
eR-Based inflammatory Signaling Hub  
in intestinal epithelial Cells
The ER is a cellular organelle which hosts protein synthesis 
and folding and which instigates trafficking for secretory pur-
poses (45). These processes are fundamentally important for 
cellular homeostasis which is why they are tightly controlled 
by redundant mechanisms. One of these mechanisms is the 
unfolded protein response (UPR) that is equipped with three 
major sensors of stress at the ER: inositol-requiring enzyme 1, 
protein kinase RNA-like endoplasmic reticulum kinase, and 
activating transcription factor 6. These sensors are engaged 
upon accumulation of unfolded, misfolded, and aggregating 
proteins in the ER, a condition termed endoplasmic reticulum 
stress (ER stress) (46). The UPR generally aims at the resolution 
of ER stress; however, unabated stress at the ER may instigate 
inflammatory (danger) signaling (47–49). This may be executed 
for example by the formation of inositol-requiring enzyme 1α 
(IRE1α) oligomers which cluster and may not be suitable for 

proteasomal degradation (23, 24). IRE1α is expressed in intes-
tinal epithelial cells and particularly Paneth cells that heavily 
rely on the UPR due to a high secretory burden (17, 24). IRE1α 
is a transmembrane receptor that harbors a kinase and endori-
bonuclease domain, which allows splicing and activation of the 
transcription factor X-box-binding protein 1 (Xbp1) to instigate 
the UPR and maintain ER homeostasis (50). In turn, unabated 
ER stress induced by genetic deletion of Xbp1 in Xbp1ΔIEC mice 
hyperactivates IRE1α (23, 51, 52). Importantly, ER stress-induced 
IRE1α hyperactivation is restrained by autophagy as co-deletion 
of autophagy-related 16-like 1 (Atg16l1) increased the level of 
IRE1α activation (Figure 1) (23). Defective removal and hyper-
activation of IRE1α in Atg16l1;Xbp1ΔIEC mice was paralleled by 
a spontaneous CD-like inflammatory phenotype restricted to 
the small intestine with a fissuring transmural character (23). 
Indeed, genetic co-deletion of IRE1α ameliorated CD-like 
inflammation in Atg16l1;Xbp1ΔIEC mice (24) demonstrating 
that autophagy-restricted IRE1α activity critically controlled 
inflammation that emanated from intestinal epithelial cells  
(23, 24). In these studies, the selective autophagy receptor 
OPTN emerged as critical regulator of IRE1α degradation in 
the setting of unabated ER stress (24). These observations sug-
gest that OPTN targets IRE1α, possibly by a ubiquitin signal  
(53, 54), for autophagosomal degradation to remove an inflam-
matory signaling hub from the stressed ER (Figure 1). Notably, 
CD patients harboring the ATG16L1 T300A autophagy-deficient 
variant (22) exhibited increased IRE1α accumulation in Paneth 
cells (24), a site of epithelial ER stress (23, 55). Collectively, these 
data suggest that autophagy controls ER stress and inflamma-
tion specifically in Paneth cells of CD patients harboring the 
ATG16L1T300A variant. This notion is supported by a model of 
Paneth cell-specific ER stress which led to the development of 
a spontaneous enteritis (23). In summary, these studies suggest 
that IRE1α degradation is dependent on ATG16L1-mediated 
autophagy and possibly on OPTN as an autophagy receptor  
(24, 42). These data advocate a role for OPTN in inflamma-
tory processes consequent to ER stress, but further studies are 
needed to corroborate a role for OPTN and selective autophagy 
during intestinal inflammatory processes.

DiSCUSSiOn

Optineurin controls autophagic processes by selectively target-
ing ubiquitinated molecules for autophagic degradation (3, 4). 
A direct interaction of OPTN with IRE1α in intestinal epithelial 
cells and the requirement of OPTN for the removal of this inflam-
matory signaling hub may set a basis for our understanding of 
how autophagy can resolve ER stress-induced inflammation. 
We suggest that IRE1α is targeted by OPTN for autophagosomal 
degradation under conditions of ER stress to restrain IRE1α-
mediated danger signaling and inflammation (24). Similarly, 
ER-phagy of stressed ER membranes also leads to the resolution 
of ER stress (56) which suggests once more that a tight control 
of the ER is indispensable for cellular homeostasis (57–61). 
Furthermore, OPTN is required to target a critical autophagy hub 
containing ATG16L1 to the forming phagophore (42). However, 
we acknowledge that distinct mechanisms other than selective 
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FiGURe 1 | Optineurin (OPTN)-dependent degradation of inositol-requiring enzyme 1α (IRE1α) is abolished in autophagy-deficient Paneth cells resulting in a Crohn’s 
disease (CD)-like inflammation. Under basal conditions, the endoplasmic reticulum (ER) stress sensor IRE1α is recognized by the selective autophagy receptor 
OPTN and is subsequently engulfed by the autophagosomal membrane and targeted for degradation in the autophagolysosome. In individuals harboring a 
homozygous ATG16L1T300A mutation or in mice with an Atg16l1 deletion in the intestinal epithelium (Atg16l1ΔIEC), autophagosomes cannot be formed and hence 
display hypomorphic autophagy. As a result of the defective autophagy as well as a decreased capacity of the unfolded protein response (UPR) with age, ER stress, 
and IRE1α are accumulating in Paneth cells, which concomitantly leads to the development of a CD-like inflammation in the ileum when mice become older. 
ATG16L1 is also involved in Paneth cell granule exocytosis and hence integrity is disturbed in ATG16L1-deficient individuals. Mice with a deletion of the UPR 
transcription factor Xbp1 in the intestinal epithelium (Xbp1ΔIEC) also exhibit elevated levels of ER stress and IRE1α, but which are counteracted by increased formation 
of autophagosomes and OPTN-mediated degradation of IRE1α. In Atg16l1;Xbp1ΔIEC mice in which both compensatory mechanisms (UPR and autophagy) fail, 
unrestrained IRE1α leads to the development of a CD-like inflammation similar to the Atg16l1ΔIEC mice, but earlier in life. Due to prolonged ER stress Paneth cell 
integrity in Xbp1ΔIEC and Atg16l1;Xbp1ΔIEC mice is massively disturbed lacking an expansion of the ER and lacking lysozyme expression due to minuscule Paneth cell 
granules.
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autophagy may control IRE1α activity and an inflammatory 
threshold (62).

Understanding the selectivity of OPTN-mediated autophagy 
would be highly informative. For example, definition of an 
unbiased OPTN interactome could help to understand two 
major biological functions of OPTN (i.e., selective autophagy 
and regulation of inflammatory pathways) and to define their 
relationship in health and disease. More specifically, it may be 
critical to discriminate OPTN-mediated autophagy functions 
from those that are independent of autophagy as it currently 
unclear how they are interconnected. Some literature would 
support the notion that receptors of selective autophagy are 
critically involved in inflammatory processes (63) similar to a 
genetic variant in NDP52 with CD (64). Furthermore, autophagy 
receptors may control microbial dissemination (65, 66),  
a concept that becomes increasingly relevant in dysbiotic situ-
ations as seen in IBD (67). Reduction of OPTN expression in 
macrophages of some CD patients may not just result in dimin-
ished cytokine secretion upon bacterial infections (15), but may 
also lead to a decreased autophagic containment of pathogens 

(or commensals) and degradation of inflammatory molecules as 
exemplified for IRE1α in Paneth cells (24). However, it may well 
be that microbial control and ER stress are interrelated pathways 
(68). The impact of these observations in IBD deserve further 
attention and direct evidence for the regulation and function of 
OPTN in epithelial cells of CD patients is eagerly awaited.

In case of OPTN-mediated autophagy, we are only beginning 
to appreciate a role in intestinal inflammatory disease processes. 
However, we propose broad implications for OPTN in ER stress-
related diseases within and beyond the intestine (24, 69–71).  
A driving force (besides genetic variation and environmental cues) 
may be cellular senescence with a declining capacity of the UPR 
during aging (72).

COnCLUDinG ReMARKS

Evidence accumulates for a role of OPTN in disease processes 
within and beyond the intestine. Direct evidence for a role of 
OPTN in CD is limited. However a concept arises, in which 
OPTN is required for the removal of inflammatory molecules 
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from the ER and invading bacteria (14, 15, 24), which may be 
governed by OPTN-mediated selective autophagy. As such, 
OPTN emerges as a critical link between ER disturbances and 
the resolution by autophagy (24). This observation is of note as 
ER stress is commonly observed in IBD patients and especially 
those harboring prominent genetic risk factors (e.g., ATG16L1 
and NOD2) (22, 73, 74), which reflects one facet in this complex 
inflammatory condition (17, 19). Pharmacologic targeting of 
autophagy may indeed be beneficial in IBD which could depend 
on the ability of the host to launch an appropriate autophagic 
response (75). Moreover, clinically established drugs may exert 
their beneficial effects through modulation of autophagy (75).  
As such, understanding the biology of OPTN in CD may help to 
establish or guide future therapies.
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