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Genetic variants at hundreds of loci associated with cardiovascular phenotypes have

been identified by genome wide association studies. Most of these variants are located

in intronic or intergenic regions rendering the functional and mechanistic follow up

difficult. These non-protein-coding regions harbor regulatory sequences. Thus the study

of genetic variants associated with transcription—so called expression quantitative trait

loci—has emerged as a promising approach to identify regulatory sequence variants. The

genes and pathways they control constitute candidate causal drivers at cardiovascular

risk loci. This review provides an overview of the expression quantitative trait loci

resources available for cardiovascular genetics research and the most commonly used

approaches for candidate gene identification.
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BACKGROUND

The ultimate goal of any genetic association analysis is to identify genetic variation linked to
variation of a phenotype and to elucidate the molecular mechanisms, which are altered by
the sequence variation. Genome wide association studies have been tremendously successful
in identifying thousands of disease-associated loci as documented by the steady growth of the
continuously updated GWAS catalog (1). This progress has also highlighted hundreds of loci
associated with cardiovascular phenotypes: the current GWAS catalog (2) lists 249 distinct
chromosomal regions associated with coronary artery disease with candidate genes and pathways
at many loci summarized in Klarin et al. (3), 138/115 with diastolic/systolic blood pressure, 109
with QT interval, to name just the top three cardiovascular phenotypes. Follow up analysis of
these loci aim to establish the causal mechanisms underlying the statistical associations. In classical
family based linkage studies typically identifying rare variants with very large effect sizes, the causal
variants are typically located in the protein sequence and have a strong impact on protein function
(4), for instance truncatingmutations in the sarcomeric protein TTN cause dilated cardiomyopathy
(5–8). In GWAS however, the identification of causal variants proved to be very challenging, since
the vast majority of these disease-associated variants is located either in introns of genes or in
intergenic regions (2). Therefore the classical approach of identifying the variant with strongest
impact on protein function, such as gained stop codons is not sufficient.

Recent large-scale efforts have annotated a plethora of functional regulatory elements such as
enhancers residing in the non-protein-coding part of the genome (9, 10). Therefore an alternative
mechanism might be that disease-associated regulatory variants alter the sequence and function of
such regulatory elements. Indeed a systematic analysis of the location of disease-associated variants
showed that they preferentially reside in regulatory elements (11, 12). Since regulatory elements
are highly tissue specific, this information can even be used to identify the disease-relevant
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tissues (11, 12). These results from localization analysis are
highly suggestive that disease-associated variants alter regulatory
elements. It now remains to be shown that they indeed are altered
and to identify the respective target gene whose transcription is
controlled by the regulatory element.

Integrated analysis of the genetics of gene expression provides
an elegant way of directly assessing the consequences of putative
regulatory sequence variants on transcription. In this study
design (13), a population cohort is characterized for their
genome wide patterns of genetic variation and also for genome
wide gene expression. Gene expression levels are treated as
quantitative traits and systematically tested for associations
between sequence variants and gene expression. Significant
associations are called expression quantitative trait loci (eQTL).
These eQTL not only identify putative regulatory variants,
but also their target genes as the gene whose expression is
associated with the variant (14, 15). Biological information
processing and regulation is not limited to transcription, so this
approach has also been generalized toward other intermediate
molecular traits such as DNA methylation (16, 17), open
chromatin (18), histone modifications (19–21), gene, exon and
transcript expression levels (22–26) translation and protein
levels (27) as well as metabolites (28, 29). In particular the
information from the epigenome can be used to identify
regulatory variants, and to characterize their role in disease
(11, 18, 21, 27).

eQTL RESOURCES FOR
CARDIOVASCULAR GENETICS

Regulatory elements and also the effects of variants on those
elements can be highly tissue specific, therefore it is key to
investigate the tissue relevant for the disease (11, 12, 25,
30). Because biopsies of tissues relevant for cardiovascular
diseases, in particular of the heart are very difficult to obtain
from humans, it is not surprising, that early applications of
eQTL analysis to identify candidate genes for cardiovascular
phenotypes were reported in animal models (31). To understand
the regulatory impact of sequence variants in humans, samples
of disease relevant tissues are often obtained during surgery,
from organ donors or from post-mortem sections. As a
consequence of these practical considerations, the transcriptome
data might be confounded by differences in tissue composition
(32) or ischemic time of post-mortem samples (25). Therefore
additional care has to be taken in data analysis accounting
for observed and hidden confounders (33). Current reviews
provide an overview of recent human eQTL studies (15,
34). The most comprehensive study to date is the Genotype
tissue expression (GTEx) project, which aims to characterize
regulatory sequence variants across 44 distinct tissues from
post-mortem sections (26). This includes cardiac tissues: left
ventricle, atrial appendage; vascular tissues: aorta, tibial artery,
coronary artery; as well as metabolic tissues: liver, subcutaneous
and viscelar adipose tissue (Table 1). In terms of sample size
and coverage of tissues of interest, the eQTL data generated in
the STARNET consortium is currently the most comprehensive

TABLE 1 | Recent cardiovascular eQTL resources.

References Tissue Sample

size

Population

(35) Left Atrial wall 62 European

(32) Left Ventricle 205 European

(36) Left Atria 329 European/African

American

(37) Left Ventricle 129 European

(26) Atrial Appendage 264 European/African

American

(26) Left Ventricle 272 European/African

American

(26) Aorta 267 European/African

American

(26) Tibial artery 388 European/African

American

(26) Coronary artery 152 European/African

American

(26) Adipose—Subcutaneous 385 European/African

American

(26) Adipose—Visceral 313 European/African

American

(26) Liver 153 European/African

American

(38) Mammary artery 600 European

(38) Atherosclerotic aortic root 600 European

(38) Visceral abdominal fat 600 European

(38) Skeletal muscle 600 European

(38) Liver 600 European

resource (38). It focuses on vascular and metabolic tissues
in patients with coronary artery disease. It has been shown
that eQTL are sometimes dependent on the disease context
(32). This observation is also supported by the finding that
more eQTLs associated with disease SNP can be found in
diseased populations (38). Formation of atherosclerotic plaques
is an inflammatory process, therefore also immune cells such
as monocytes or macrophages are considered disease relevant
tissues and have been extensively profiled (39). Since the disease
relevant tissues are not always known a priori efforts are currently
underway to establish cohorts of induced pluripotent stem cell
that can potentially be differentiated into any cell type for
genetic mapping (40). These eQTL projects are complemented
by large scale projects aimed at creating a reference map of
regulatory elements across an exhaustive set of 111 human
cell types and tissues (10) by annotation with epigenetic
markers of regulatory elements and recent developments of
sequencing based methods (e.g., Hi-C) to study chromosomal
architecture (41) in a wide variety of human tissues (42)
including heart, liver and aorta. These techniques can identify
promoter—enhancer interactions and have already been used
successfully to identify IRX3 as the causal gene underlying
an obesity GWAS hit located in the intron of the FTO gene
(43).
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CANDIDATE IDENTIFICATION STRATEGIES

cis eQTL Candidate Genes
Overlapping eQTL and GWAS SNPs is the most straightforward
approach to identify candidate genes for GWAS hits. If a GWAS
SNP is also an eQTL for a close by gene or in tight LD with an
eQTL, it is conceivable that the SNP indeed affects a regulatory
element controlling the expression the respective gene. These
genes are typically called cis-eQTL when the distance between
gene and variant is not further than 500 kb−1Mb, as opposed
to trans-eQTL, where the distances are greater or the variant
and gene are located on different chromosomes. Cardiovascular
candidate genes such as SORT1 (44) and LIPA (45) have been
identified as cis-eQTL. It has been demonstrated that these
candidate genes frequently are not the genes located closest
to the GWAS SNP for heart related traits (32) and also more
generally for any GWAS trait (25, 26). Nowadays, this candidate
annotation approach is becoming a standard analysis included in
many GWAS papers and can be performed conveniently using
the online software FUMA (46). For instance a recent GWAS on
CAD (47) identified eQTL for 196 genes at 97 of the 161 CAD
loci found in the analysis from GTEx and other eQTL data bases.
This result already demonstrates one caveat of the approach:
several candidate genes might emerge for a locus and might
be inconsistent between tissues or GWAS variants might also
associate with eQTL by chance (26). In this particular example
36 loci have unique candidate genes and additional 24 loci have
candidate genes detected consistently across tissues, so 60 loci can
be annotated confidently. Overall a highly significant enrichment
of trait associated SNPs can be observed among eQTLs as
demonstrated for heart related traits (32). Less frequently also
trans-eQTL are considered for the annotation of GWAS SNPs,
as they do not readily provide a clear mechanistic explanation.
Nevertheless, it has been shown in a systematic analysis of GWAS
variants, that they frequently also associate with expression levels
of genes distant to the GWAS locus (48).

An important limitation of the overlap-based strategy is
that it cannot be used to establish causality. Strictly speaking
the experimental design does only allow inferring causality
in a statistical sense. In genetic associations the direction of
causality is always fixed (Figure 1A). To establish a causal
chain between genetic variation, gene expression and the disease
phenotype in the strict sense, an interventional experiment
would be required, where all other confounding factors that
could determine the phenotype are fixed and only the gene
expression level would be manipulated to test an effect on
the phenotype. If gene expression is indeed causal for the
phenotype, any change of the gene expression necessarily
would cause a change in the phenotype. In the concept of
Mendelian randomization (MR) one is considering a genetic
variant as instrumental variable controlling the levels of gene
expression and observes its effect on the phenotypic outcome
(49). In analogy to randomized control trials, individuals
get assigned to a group based on their genotype. Because
the direction of causality between genetic variant and gene
expression is fixed and the genetic variant is robustly associated
with expression levels, one group will receive a higher

dose of gene expression. Assuming that the genotype is
independent of confounding factors (Figure 1A) changes in
phenotypic outcome can be attributed to the changes in gene
expression.

Classically,MR and similar approaches to statistically establish
causality (50, 51) require to measure all variables in the
same population (Figure 1B). This is often not feasible, as
gene expression profiling in each and every disease cohort is
prohibitively expensive. In practice GWAS SNPs and eQTLs
are identified in separate populations. Because of data privacy
regulations, often a researcher only has access to the full
individual level data of one population and the summary
statistics of the other population. Depending on which full
data set is available there exist several methods allowing to
directly integrate the measured data with summary statistics (52–
55). A Bayesian co-localization approach based on summary
statistics (56) is testing whether the co-localization of two
association signals is compatible with a common underlying
causal variant and has been successfully applied to blood lipid
traits and liver eQTL. An alternative approach is to impute
gene expression levels (57) into a GWAS population (54,
58) using eQTL summary statistics from an eQTL reference
population. Subsequently the imputed gene expression can
be correlated to the disease phenotype to identify candidate
genes (54, 58). Alternatively the transcriptome wide association
study (TWAS) method (54) and other methods (Barbeira et
al. in review) can also work completely without individual
level data by indirectly associating expression and phenotype
using eQTL and GWAS summary statistics and the LD
structure between SNPs. The TWAS approach showed superior
power compared to colocalization analysis and simple overlap
based analysis in cases where the causal variants are not
directly observed, or when multiple causal variants affecting
expression and phenotype exist. Consistent with other candidate
identification strategies, analysis of obesity related traits with
TWAS showed that 66% of identified trait associated genes
were not the closest gene (54). Summary data-based Mendelian
Randomization (SMR) is a method that can be used if
only summary statistics are available from both eQTL and
GWAS results. The method makes use of standard two-
sample MR (59) to identify causal or pleiotropic effects
of sequence variants on gene expression and phenotypes
and distinguishes this situation from overlapping independent
causal variants in LD using a test on multiple SNPs (55).
Similar to results from TWAS analyses, the application of
this method to five common diseases showed that only 60%
of the identified candidate genes are the closest gene to the
GWAS SNP.

Network Based Analysis
Genes are not acting in isolation, but rather form functionally
related pathways and networks. Pathways are usually defined
based on curated prior knowledge about well-studied processes
such as biochemical reactions and signaling pathways (KEGG,
Reactome, GO). Pathways can be represented as sets of genes
of the same process or as networks preserving the topological
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FIGURE 1 | Using eQTL data to identify causal candidate genes at GWAS loci. Integration of eQTL and GWAS data allows for the identification of candidate causal

genes, where the effect of the genetic variant (SNP) on the complex trait is mediated by expression levels of an RNA encoded at the locus (A). Overlapping

associations of gene expression and clinical trait at the same locus are however not sufficient to infer causality, as they might also be explained as independent

pleiotropic effects (A). Depending on the availability of overlapping individual level data sets of genotypes, gene expression and clinical traits there exist several

statistical methods to perform causal inference from the data (B).

information which genes are connected to one another, for
instance by catalyzing adjacent steps in a metabolic pathway.
Alternatively, networks can be derived from high-throughput
experiments such as transcriptome profiling (co-expression
network) or protein-protein interaction (PPI) screening (PPI
network). Pathways and networks defined either from prior
knowledge or from data can subsequently be used for the
interpretation of disease associations derived from GWAS.
Representing pathways as sets of genes, one can ask, whether
a set of genes shows higher evidence of association to disease
than random gene sets of the same size. Because GWAS
test individual SNPs and not genes, a mapping between
SNPs and genes is required, for instance based on genomic
positions. Methods such as SNP set enrichment analysis (60,
61) can then be used to test the statistical significance of
the association between gene sets and the GWAS results by
comparing the distribution of GWAS P-values of SNPs within
the pathway to a background distribution. These methods
have been applied to show the association between CAD
and pathways for lipid metabolism, coagulation, immunity
(62).

Since eQTL experiments require transcriptome profiling in
large cohorts, it is natural to use this data to define data
driven gene co-expression networks and gene sets, so called
co-expression modules. These gene sets are then annotated
according to their gene function or cell type specificity and
then related to disease via GWAS results using SNP set
enrichment analysis. The link between genes and SNPs can
naturally be established via cis-eQTLs of the genes of a co-
expression module. This approach was also used in the CAD
study mentioned above (62). It is important to note that
co-expression modules are not necessarily fully overlapping

with biochemical pathways although they might represent the
same disease process. For instance the modules might contain
transcriptional regulators and parts of a biochemical process that
they control.

Network topology of co-expression networks is often used
to prioritize candidate genes based on the assumption, that
genes with many network connections (so called hubs) are more
important (38, 62–65). A study investigating shared molecular
networks and their drivers between cardiovascular diseases and
type 2 Diabetes applied this strategy (64). Knockout mice for
selected key driver genes show indeed metabolic phenotypes and
gene expression changes in the network neighborhood of the key
drivers. Similarly several studies on CAD identified key driver
genes and provided evidence for their functional implication in
mouse (65) and in vitro studies (62, 65).

CONCLUSIONS

eQTL data provides first leads toward uncovering the
mechanisms underlying the statistical associations observed
between genetic loci and common cardiovascular diseases.
Major challenges for a broad applicability of this approach
need to be overcome. First, regulatory elements and therefore
also the regulatory impact of sequence variation is highly cell
type specific. The GTEx project is addressing this challenge by
providing a large scale cross tissue eQTL data base. However,
not all conceivable tissues and cell types can be systematically
analyzed. In particular transient developmental stages might
leave a lasting phenotypic footprint. Induced pluripotent stem
cells from cohorts offer an elegant solution (40) as they can
potentially be differentiated into any cell type or developmental
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stage (Nguyen et al. in review) and studied for eQTLs. A
second challenge is posed by variability of the genetic effects on
expression between different cells making up a tissue and even
between cells of the same cell type. eQTL mapping based on
single cell transcriptomic data is becoming feasible (66) and can
be used to quantify and map the genetic determinants of cell to
cell variability of gene expression. Lastly the grand challenge is
to move from correlation or co-localization toward causation.
Clearly this is the most difficult task and requires on top of
rigorous statistical approaches such as MR also experimental
validation.
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