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Kurzfassung

Der zunehmende Automatisierungsgrad in den Bereichen von Automobil-, Robotik- und Industrie-

anwendungen erfordert Umfeldsensierungssysteme mit erhöhter Leistungsfähigkeit und Zuverläs-

sigkeit. Schallwandler, die im Ultraschallbereich arbeiten, stellen eine bekannte und weit verbrei-

tete Technik zur Umfeldsensierung dar, welche insbesondere im Nahfeldbereich < 6 m eingesetzt

wird.

Die vorliegende Arbeit untersucht neue Konzepte, um die Leistungsfähigkeit von Ultraschallwand-

lern zu erhöhen. Dies kann sich in unterschiedlichen Eigenschaften widerspiegeln. Dazu zählen

die Überwindung von Designbeschränkungen zur Erzielung anisotroper Richtcharakteristiken, die

Herstellung eines Mehrfrequenz-Ultraschallwandlers mit nur einem elektromechanischen Kopp-

lungselement und die Reduktion des mechanischen Übersprechens in Phased-Array-Wandlern mit

einer gemeinsamen Trägerstruktur.

Die neuen Konzepte werden in numerischen Simulationen mit Hilfe der finiten Elemente Metho-

de untersucht. Anschließend wird die Wirksamkeit mit experimentellen Verfahren nachgewiesen.

Das Wellenausbreitungsverhalten in periodischen Strukturen wird durch das Dispersionsverhalten

innerhalb einer Einheitszelle untersucht. Die Berechnung erfolgt mit der sogenannten wave finite

element method. Die Schallabstrahlung der untersuchten Komponenten wird durch die Kopplung

der Berechnungsergebnisse der finiten Elemente Methode mit dem Rayleigh Integral ermittelt.

Der erste Ansatz, der untersucht wird, beruht auf dem Prinzip lokal strukturierter Faser-Verbund-

Werkstoffe. Dieser Ansatz eröffnet eine neue Gestaltungsdimension im Vergleich zu klassischen

Werkstoffen. Durch die Kombination von faserverstärkten Bereichen mit unverstärkten Bereichen

können lokal verschiedene Materialeigenschaften erzielt werden. Diese ermöglichen die Einstel-

lung anisotroper Richtcharakteristiken bei einer rotationssymmetrischen Gestaltung des Schall-

wandlers. Somit können bestehende Einschränkungen der heutigen Schallwandlergestaltung über-

wunden werden. Im zweiten vorgestellten Konzept wird lokal verteiltes Stopp Band Material un-

tersucht. Ziel ist es, die Herstellung von Mehrfrequenz-Schallwandlern mit nur einem elektrome-

chanischen Kopplungselement zu ermöglichen. Es wird gezeigt, dass bei unterschiedlichen Ar-

beitsfrequenzen Schwingungsformen mit geeigneter Schallabstrahlung für die Umfeldsensierung

erzielt werden können. Im dritten Konzept wird der Einsatz von Stopp Band Material in Phased-

Array-Wandlern zur Reduktion des Übersprechens untersucht. Das vorgestellte Konzept adressiert

insbesondere kompakte, tieffrequente, luftgekoppelte Array-Wandler. Es wird gezeigt, dass bei

korrekter Abstimmung des Frequnzstoppbands auf die Betriebsfrequenz des Schallwandlers eine

signifikante Reduktion des Übersprechens erzielt werden kann.
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Die vorgestellten, neuen Konzepte tragen zur Steigerung der Leistungsfähigkeit und Zuverläs-

sigkeit von Ultraschallwandlern bei. Daraus resultierend können leistungsfähigere Umfeldsensie-

rungssysteme entwickelt werden.
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Abstract

The increasing level of automation in automotive, robotic, and industrial applications requires

growing performance and reliability of surround sensing systems. Sound transducers operating in

the ultrasonic frequency range are a well-known technique for surround sensing purposes. Ultra-

sonic transducers are used for obstacle detection, especially in the short range distance < 6 m.

This work investigates new approaches to increase the performance of ultrasonic transducers. The

increased performance can be reflected in the reduction of design limitations to achieve anisotropic

directivity patterns, in the accomplishment of multi-frequency ultrasonic transducers having only

one electro-mechanical coupling element, or in the reduction of mechanical cross-coupling in

phased array transducers with a common backing.

All presented approaches are studied in finite element simulations as well as experimental testing.

In order to investigate the dynamic behavior of periodic stop band material, the dispersion relations

are calculated in the unit cell. Therefore, the wave finite element method is applied. The sound

radiation behavior and the resulting directivity patterns are determined with an approach coupling

finite element simulation and the Rayleigh integral.

The first approach uses locally structured fiber reinforcement in composite materials as a new de-

sign space. Sections with and without fiber reinforcement are combined resulting in a monolithic

structure with various material properties. This finally enables the design of ultrasonic transducer

with highly anisotropic directivity patterns and a rotationally symmetric geometry at the same

time. The second approach investigates the potential of stop band material to achieve a multi-

frequency ultrasonic transducer. Due to the particular dynamic properties of the stop band mate-

rial, the operational deflection shape of the ultrasonic transducer can be modified within a certain

frequency range. Hence, only one electro-mechanical coupling element is required to achieve a

multi-frequency ultrasonic transducers. It is shown that suitable sound radiation behavior can be

achieved at two operating frequencies. The third approach addresses the field of ultrasonic array

transducers. Mechanical cross-coupling caused by a common backing is a serious issue in com-

pact, low frequency, air-coupled ultrasonic array transducers. The usage of stop band material as

common backing is a suitable solution to overcome this issue.

The approaches presented in this work contribute to increase the performance and reliability of

ultrasonic transducers. Finally, this opens up the possibility to develop more comprehensive sur-

round sensing systems.
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Chapter 1

Introduction

Paul Langevin and Constantin Chilowsky can be denoted as the inventors of modern, technical

ultrasonic transducers in surround sensing applications [1, 2]. However, bats have been using the

principle of echolocating for thousands of years [3]. During World War I, Langevin and Chilowsky

developed an underwater sonar for the purpose of submarine detection. In 1916, they managed to

receive echo signals from a distance up to 200 m. About that time, Chilowsky left the working

group while Langevin continued his work. Two years later, he could increase the detectable range

up to 1500 m [4]. The newly developed transducer was based on a piezoelectric quartz crystal

which was a key element to reach this performance. Even if it took more than 30 years to make

it usable in a real ultrasonic transducer application, the discovery of the piezoelectric effect by the

brothers Pierre and Jacques Curie in 1880 [5] was the main driver for the development, not only for

ultrasonic transducers, but for electroacoustic transducers in general. The term ultrasonic sound or

ultrasound describes sound waves with a frequency above the upper hearing limit of humans. This

is usually denoted to 16 kHz [6].

During the last decades, the automotive and robotic sectors have pushed the development of com-

pact, air-coupled ultrasonic transducer for surround sensing purposes. The increasing automation

level and autonomous driving functions lead to continuous developments in surround sensing sys-

tems. Therefore, ultrasonic transducer with extended functionality are desired. The improvement

of the performance can be defined with different purposes, namely the enhancement of the range

for obstacle detection, the reduction of measurement time, and the achievement of angle informa-

tion between obstacle and transducer. This work addresses the various purposes employing mainly

two approaches. The first approach is related to the usage of fiber reinforced composites. This

class of material offers the possibility to vary the material properties within a monolithic struc-

ture. A novel concept to realize ultrasonic transducers is investigated based on this approach. The
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1 Introduction

aim is to achieve highly anisotropic directivity patterns without restricting the transducer topol-

ogy. The second approach refers to the characteristic property of acoustic metamaterial to exhibit

stop bands. The presented research investigates a possiblity to increase the performance in ultra-

sonic transducers and ultrasonic transducer arrays based on acoustic metamaterial. Thus, existing

approaches for ultrasonic transducers are enhanced and novel concepts are proposed. The investi-

gations comprise numerical simulations and experimental validation. In the first part of this thesis,

an introduction to the topic of structural dynamics of ultrasonic transducers is given. The state

of the art in the field of ultrasonic transducers as well as in the field of the applied approaches is

discussed. Afterwards, the investigated models are presented. Subsequently, a summary is given

for each of the three appended papers. The first part ends with a discussion of the results and a

conclusion. The three papers form the second part of this thesis and have been published in this

context. The papers contain detailed results of the investigated approaches.

1.1 State of the art

1.1.1 Ultrasonic transducers

Ultrasonic transducers can be operated in both, sound emission mode and sound reception mode.

Thus, the term ultrasonic transducer indicates the possible use as a sound radiator as well as a

sensor. For surround sensing purposes, the pulse-echo principle is used to detect the distance

between the transducer and an obstacle, cf Fig. 1.1. Therefore, sound waves are emitted by the

ultrasonic transducer in sound emission mode. These sound waves are reflected by an obstacle and

subsequently are detected by the ultrasonic transducer in reception mode. The distance between

sensor and obstacle is calculated by X = cair · ∆ t
2 with ∆ t and cair being the run time between sound

emission and reception, and the sound velocity in air, respectively [7].

The electro-mechanical coupling of current ultrasonic transducers is realized mainly with the two

following principles:

• piezoelectric effect,

• electrostatic, capacitive coupling.

An overview of electro-mechanical coupling mechanisms and their use in electro-acoustic trans-

ducers is given in fundamental literature of acoustics [7, 8].

In order to attain high sound pressure in emission mode and high sensitivity in reception mode,

ultrasonic transducers are usually used at a resonant operating point. The determination of the op-
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1.1 State of the art

t

ŝ

∆ t

emitted sound wave by transducer

reflected sound wave by obstacle

sound emission

sound reception

Figure 1.1: Illustration of the Pulse-Echo principle with a strongly simplified scheme of the trans-
ducer signal amplitude ŝ and the runtime ∆ t between sound emission and reception,
cf. [7].

erating frequency is a compromise between robustness of the measurement and achievable distance

range. On one hand, a rising operating frequency results in less disturbing signals. On the other

hand, the sound absorption in air increases with a rising frequency [9–11]. Present air-coupled ul-

trasonic sensors usually have an operating frequency between 30 kHz and 500 kHz. In automotive

applications, the use of 48 kHz is very common [12].

In [13], a widely used setup for ultrasonic transducers is described. It is based on a piezoelectric

ceramic assembled in a pot like structure made of metal. The concept of using functionally graded

piezoelectric material is presented in [14]. The purpose of using functionally graded piezoelec-

tric material is the reduction of stress concentration as well as the expansion of bonding strength

and bandwidth. A fundamental investigation on radiation of ultrasonic waves into fluid and solid

media is presented in the work of Kocbach [15]. Therefore, an axisymmetric ultrasonic piezo-

electric transducers is studied employing the finite element method. The different modes of a

piezoelectric disk radiator and the belonging radiated sound fields are calculated. The basic setup

of an ultrasonic transducer using the electrostatic, capacitive coupling between electrical and me-

chanical domains is given in [16]. Due to the manufacturing process, these types of transducers are

called capacitive micromachined ultrasonic transducers (CMUT). They are often used in ultrasonic

phased array transducers, cf. Section 1.1.2.

The space in which obstacles can be detected is called the field of view (FOV) of a sensor. In

order to achieve a considerable FOV and a large detectable distance up to 6 m, the directivity

pattern of the radiated sound is in the focus of research during the last decades. In automotive

and robotic applications, an anisotropic directivity pattern is desired. A wide angular aperture in
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1 Introduction

the horizontal plane is proposed to detect obstacles being situated in the half space in front of the

sensor. In constrast, a narrow angular aperture in the vertical plane is intended. Thus, reflections

from the ground, which decrease the detectable distance, are reduced or avoided, cf. Fig. 1.2. Early

developments use horns to achieve anisotropic directivity patterns like presented in [17]. In 1992,

a new concept is presented by Rapps et al. [18]. The authors purpose a sensor with an embodiment

which is reinforced on two opposite sides. Thus, the resulting operational deflection shape at

the operating frequency leads to an anisotropic directivity pattern. Ho et al. [19] investigate the

influence of altered boundary conditions in a pot like ultrasonic transmitter made of an aluminum

pot and a piezoelectric ceramic. Cheng et al. [20] present a study to increase the anisotropy of

directivity pattern by inserting cutting slots in the cylindrical shell of the ultrasonic transducer.

Figure 1.2: Scheme of directivity pattern of ultrasonic transducer in an automotive application with
a narrow-angled beam (top) and wide-angled beam (bottom).

The rising requirements of the performance of surround sensing applications lead to the develop-

ment of ultrasonic transducers with multiple operating frequencies. Thus, two objectives can be

attained:

• Several sensors can be operated in parallel or in short intervals.

• Various FOV can be realized at different operating frequencies.
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1.1 State of the art

Already in 1948, Bundy [21] presents a stepped frequency transducer with multiple elements. The

elements consist of magnetostrictive laminated nickel stack. They are mechanically isolated and

linked with a common electrical winding. Thus, a broad frequency response is achieved. Depend-

ing on the damping of the system, the presented transducer can be interpreted as a multi-frequency

transducer with separated resonance frequencies. In [22], a split mode ultrasonic transducer is

investigated. Therefore, a two-dimensional periodic structure of poled domains in a ferroelectric

wafer with free surfaces is set up. Thus, an ultrasonic transducer with multiple acousto-electric res-

onances is obtained. Wang and Lee [23] present a multi-frequency piezoelectric micromachined

ultrasonic transducer (PMUT) with multiple electrodes. Due to multiple electrodes, the device pro-

vides high sensitivity at multiple frequencies coinciding with the first, third and fifth fundamental

frequency of the transducer. In [24], a multi-frequency capacitive micromachined ultrasonic trans-

ducer array with acoustic elements of different dimensions is presented. Thus, an array transducer

for multiband operation is designed. Chopra et al. [25] present a multi-frequency transducer real-

ized with one electro-mechanical coupling element. It is achieved with various matching layers. It

is used for interstitial ultrasound thermal therapy. In the same context of medical ultrasonic ther-

apy, a dual-frequency lead zirconate titanate (PZT)-transducer array with fundamental frequency

at 4.1 MHz and third harmonic at 13.3 MHz is characterized in [26]. Muttakin et al. [27] present a

hybrid multi-frequency ultrasonic transducer. It consists of different electro-mechanical coupling

elements. One is a piezoelectric ceramic while the other one is made of PVDF. By hybridization of

both characteristic properties, the transducer enables the usage at multiple resonance frequencies.

In [28], the electrical circuit, which is employed for signal processing of such a transducer, is pre-

sented. In [29], also two electro-mechanical coupling mechanisms are combined. Thus, a CMUT

as well as a PMUT electro-mechanical coupling is realized in one element. The transducer can

be operated at two operating frequencies. Suitable sound radiation properties for surround sensing

can be expected with the obtained mode shapes at both frequencies.

1.1.2 Ultrasonic array transducers

Ultrasonic phased array transducers consist of multiple transducer elements with well defined,

mostly equidistant spacing between the single transducer elements [7]. They are used in medical

diagnostic, non-destructive material testing, and in surround sensing applications. While single

ultrasonic transducers can only detect the distance between the transducer and an obstacle, like

discussed in Section 1.1.1, phased array transducers offer more functions. In transmission mode, it

is possible to electronically bend, steer, and focus the emitted sound wave. Therefore, the excita-

tion signals of the single transducer elements are delayed as shown in Fig. 1.3. Vice-versa, in echo
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reception mode the angle information of an incoming wavefront can be obtained [30]. Ultrasonic

phased array transducers are divided generally dependent on the arrangement of the single trans-

ducer elements. Arrangements with multiple elements in only one direction are called linear arrays.

Thus, electronically bending, steering, and focusing as well as the detection of angle information

from an incoming wavefront can be performed only in one direction. In constrast, 2D arrays have

a certain pattern of elements in two dimensions. This leads to the possibility to steer, bend, and

focus waves within the half-space in front of the phased array transducer. In echo reception mode,

this behavior leads to the ability to obtain 3D positioning information of obstacles. The position

of the obstacle can be described in spherical coordinates with the radial distance, the polar angle,

and the azimuthal angle. An overview of signal processing with focus on non-destructive testing

(NDT) is given in [30]. The process of spatial filtering the sensor data is called beamforming [31].

To obtain the previous described functionality, the single transducer elements are required to work

independently [32]. The property of cross-coupling [32], also known as crosstalk [33], character-

izes that the elements do not work independently. In the literature, it is shown that cross-coupling

between array elements leads to a loss in resolution [34–36]. In [37], the directivity pattern of a lin-

ear array influenced by interaction between the transducer elements is investigated. [38] presents

a basic model for cross-coupling included signals and the effect on the directivity pattern. The

reduction of cross-coupling is one of the major design challenges in ultrasonic transducer arrays.

Firstly, this section reviews studies in design and fabrication of linear and 2D arrays presented in

the literature. Furthermore, a focus is set on investigations in the mechanisms of cross-coupling

and strategies to reduce it. Generally, cross-coupling effects can be classified by the domain in

which they emerge, cf. Fig. 1.4. Thus, cross-coupling is divided in mechanical cross-coupling and

electrical cross-coupling. As this work is only related to the mechanical domain, effects caused by

electrical cross-coupling are not considered. Within the mechanical domain, cross-coupling can be

divided by the paths of inter-element coupling which are the acoustic load medium, the common

backing of the single transducer elements, and an optional common matching layer. Dependent on

• operating frequency,

• acoustic load medium, and

• individual setup of the phased array transducer,

the predominant mechanism varies.

In 1979, Swartz and Plummer [39] present a polymer based ultrasonic transducer array employing

polyvinylidene fluoride (PVF2) as electro-mechanical coupling element. A quite similar poly-

mer based micromachined diaphragm structure for integrated ultrasound transducer arrays is pre-

sented in the studies of Mo et al. [40]. The cross-coupling of this structure is investigated in [41].
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sound recpetion sound emission

plane wavefront

focal point

wavefront

single transducer element

transducer signal

Figure 1.3: Phased array transducer consisting of multiple single transducer elements. Signals
with various time delays in sound reception and sound emission mode. Thus, angle
information can be obtained from an incoming wavefront and emitted waves can be
steered (top) and focused (bottom), cf. [30]

Therefore, different silicon backings are designed. The investigation shows best results for ar-

ray elements having a separated backing for each array element. In [42], piezoelectric multilayer

ceramics are used to form 2D arrays for medical applications. The transducer performance is pre-

dicted accurately with 3D finite element analysis. PZT thin film elements are employed in [43].

Yen et al. [44] present a study on building a 2D array with a large count of elements consisting of

two layers of perpendicular 1D arrays. One array is used for sound emission while the other one is

used for sound reception. An ultrasonic phased array for surround sensing is presented by Harput

and Bozkurt [45]. Therefore, the array device uses six single ultrasonic transducers in a line for

emission and four single ultrasonic transducers in a line for reception. The employed electronic

device for signal processing is presented in [46]. The beamforming algorithm is performed on

a field programmable gate array (FPGA). Further studies on air-coupled, low frequency phased

arrays are presented in [47] and [48]. These ultrasonic transducers are realized with piezoelectric

crystals. Konetzke et al. [49] present an array of ultrasonic transducers which has no grating lobes.
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Therefore, commercially available single element transducers are used to build an array structure.

Each transducer is connected with a shrinking tube to an additional layer which represents the

final sound emitting and receiving layer. The shrinking tube acts as a waveguide in this construc-

tion. In [50], the signal reception performance of this transducer array is investigated. Apart from

the previous piezoelectric based transducers, CMUTs show suitable performance to build trans-

ducer arrays. Jin et al. [51] report a fabrication technique for surface micromachined ultrasonic

immersion transducers. Several issues in this fabrication process, like e.g. membrane formation,

vacuum sealing, and metalization are investigated. A CMUT fabricated with the suggested process

is characterized in [52].

cross-coupling

electrical mechanical

common backingload medium matching layercapacitive inductive conductive

Figure 1.4: Cross-coupling in various domains and media in phased array transducers.

Early studies like [34, 35] and [36] discuss the effect of inter-element cross-coupling in transducer

arrays and first methods to reduce it. [32] presents a quantitative theory for cross-coupling in

ultrasonic transducer arrays. Surface waves in the backing and in the load medium in front of the

transducers are indicated as reason for cross-coupling. This theory assumes a series of uniformly

distributed, unbacked transducer elements. The cross-coupling is caused by interaction through

a semi-infinite substrate, the solid load medium. First asymmetrical lamb wave A0 mode has

been identified as the responsive effect for cross-coupling in a CMUT-array [53]. The first order

resonance frequency of the investigated structure is at 2.3 MHz.

Hofer et al. [54] present a computer-aided engineering (CAE) environment for the design of CMUT

arrays. The tool takes various nonlinearities into account, such as geometric nonlinearity of the

mechanical structures, electrostatic force, and moving body in an electrostatical field. The do-

mains of acoustics, mechanics, and electrostatics are coupled. It is found that the mechanical

cross-coupling increases with an increasing backing thickness for the given setup. Furthermore,
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the acoustical cross-coupling is predominant in the presented investigations. The operating fre-

quency is higher than 200 kHz. In [33], the mechanical cross-coupling through the common back-

ing is focused. A piezoelectric 2D array is investigated with regard to minimize the cross-coupling

between the transducer elements. Therefore, various kerf designs between the elements are investi-

gated. Further studies on kerf design and backing design in piezoelectric phased array transducers

are presented in [55] and [56]. Ji et al. [57] investigate a lightweight, phase-cancelling backing for

the application in ultrasonic transducer arrays. The backing consists of different material layers

with various thicknesses and particular acoustics impedances. The proposed backing structure can

suppress the back-wall echo signals which lead to the possibility to reduce the thickness of the

backing. Yang et al. [58] investigate the influence of different pillars on cross-coupling in PZT 1-3

composite arrays. Arrays with operating frequency at 10 MHz and 15 MHz are presented. It is

shown that a pseudo-random pillar shows best results with respect to cross-coupling.

Khuri-Yakub et al. [59] present a study on cross-coupling in CMUT arrays with operating fre-

quency in the range of a couple MHz. Employing finite element analysis, the dispersive guided

mode propagating in the fluid-solid interface is identified as the main cross-coupling mechanism in

the investigated setup. Stytsenko et al. [60] investigate acoustic cross-coupling through the acous-

tic load medium in piezoelectric based, linear arrays. It is shown that cross-coupling through the

acoustic load medium effects the beam patterns and the frequency response substantially in the

investigated uniformly-spaced array of narrow strip elements. Roh and Khuri-Yakub [61] investi-

gate an underwater CMUT array using FEA. The influence of several structural variations of the

silicon wafer is investigated. The setup uses a couple of transducer elements as transmitter while

another couple of transducer elements act as receiving array. While a trench between these groups

of elements does not show any evidence of cross-talk level reduction, a wall was found to be the

most promising method to reduce the cross-coupling. In contrary to this results, Roh and Kim [62]

found kerfs being an effective method to reduce crosstalk in PMUT arrays for a different array

setup.

In sound transmission mode, cross-coupling can be reduced with appropriate excitation signals.

Cugnet et al. [63] use the finite element method to optimize the far-field pattern by applying an

electrical correction signal to the neighbor elements. Bybi et al. [64] investigate the active can-

cellation of acoustic cross-coupling between array transducer elements through the load medium

in harmonic [65, 66] and transient regime [64]. The active cancellation is also realized by apply-

ing an electrical correction signal to the neighbor elements. Meng et al. [67] present a method

to reduce cross-coupling when using multiple ultrasonic sensors in transmission mode. There-

fore, a novel form of the excitation signal, called frequency hopping pseudo-random pulse width
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modulation, is presented. The signal includes multiple variable-width and fixed-amplitude pulses.

Another approach is presented in [68] and [69]. In order to reduce inter-element cross-coupling in

CMUT arrays in transmission mode, modified waveforms were transmitted at adjacent elements.

The waveforms are calculated employing a transfer function matrix approach.

1.1.3 Acoustic metamaterial

In 1968, Veselago [70] firstly mentioned the idea of material with negative dielectric constant ε and

negative magnetic permeability µ at the same time. This results in a negative index of refraction.

Due to a lack of such materials, the idea of Veselago [70] remained a theoretical study. In the

1990s, first structures with the previous mentioned properties are presented by Pendry et al. [71].

The term metamaterial is coined by John Pendry within the last three decades [72]. It describes

structures which exhibit properties that are not found in nature [73]. The metamaterial consists

of sub-units with a scale much smaller than the entire structure. Thus, effective properties of the

whole structure are attained which cannot be found in nature [74].

In the field of sound and vibration, Liu et al. [75] present a sonic crystal with a lattice constant

being at a subscale of the sonic wavelength of the exhibited band gap for the first time. Therefore,

rigid spheres of lead were coated with rubber and placed in an epoxy plate. Some years before,

Strasberg and Feit [76] investigates the effect of a multitude of small sprung masses attached to

a large main structure and their influence on the vibrational behavior. This is basically what is

described as the principle of tuned resonators in literature.

During the last two decades, a lot of research has been carried out in the field of acoustic meta-

material. Thus, various terms are used to describe the investigated structures. However, certain

terms are used with different meaning. Banerjee [77] distinguishes between metamaterial on the

one hand and phononic and photonic crystals on the other hand. In the group of metamaterial, the

effect couples to waves with resonances and the internal dimensions of the metamaterial are inde-

pendent from the wavelength they interact with. In contrast, phononic and photonic crystals are

characterized by effects which are strongly coupled to the periodicity of the structure, like Bragg

scattering or some other kind of periodic media concept. With respect to the previously discussed

definition of metamaterial as structures which exhibit properties that are not found in nature, it

seems reasonable to handle both groups described by Banerjee [77] with the term of metamaterial.

In the field of vibro-acoustics, the usage of the term stop band material or band gap material seems

suitable as it describes the resulting property. However, it should be pointed out that it is a property

caused by the structural design and not by the pure material properties themselves.
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Most of the metamaterials investigated in literature consist of periodic structures. Nonetheless,

Kaina et al. [78] demonstrated the effect of randomly distributed resonant structures in the field of

electromagnetic metamaterials. A similar investigation is carried out for acoustic metamaterial in

the studies of Rupin et al. [79]. Therefore, long aluminum rods are attached to an aluminum plate

in ordered (periodic) and disordered (non-periodic) form. The band gap behavior, also known as

stop band behavior, is attained by the resonance of the aluminum rods. It is shown that appropriate

wave attenuation can be achieved by both, ordered and disordered resonant substructures. Sugino

et al. [80] investigate the band gap behavior in resonant metamaterial. Uniform distributed and

non-uniform distributed resonators are investigated.

Claeys et al. [81] investigate interference stop bands as well as resonant stop bands regarding their

perspective to create low frequency stop bands. It is shown that periodic tuned resonators are

suitable to create low frequency stop bands with high wave attenuation. The stop band arises at

the resonance frequency of the tuned resonator as long as the resonance frequency is below the

standing wave frequency of the unit cell. The unit cell describes the smallest, periodically repeated

structure.

Olsson III et al. [82] present a microfabricated acoustic crystal in order to obtain an acoustic band

gap. Therefore, tungsten scatters are included in a SiO2 matrix. A band gap around 67 MHz is

achieved. In [83], a study on hybrid elastic solids is presented. Therefore, components of soft

silicone rubber, hard silicone rubber, and steel are placed in a foam host. The presented structure

shows unusual acoustic properties. Within a high frequency band, the elastic metamaterial behaves

in a fluid like manner. In a lower frequency band, the solid shows unusual anisotropy. In certain

directions it behaves like a fluid, while in a certain other direction the structure behaves like an

incompressible solid. Xiao et al. [84] investigate the propagation of flexural waves in thin plates. It

is shown that wave propagation can be attenuated by locally attached spring-mass resonators. The

behavior of different excitations is investigated with regard to the vibration transmission. In [85],

similar structures are investigated with regard to the sound transmission loss (STL). Furthermore,

it is demonstrated that the frequency band of increased STL in a metamaterial-based plate can

be broadened significantly by replacing a single resonator in each unit cell with multiple smaller,

appropriately damped resonators. Oudich et al. [86] present a negative effective mass density of

an acoustic metamaterial plate decorated with low frequency resonant pillars. In [87], the effect

of these acoustic metamaterials is investigated with regard to sound mitigation. In the research of

Claeys et al. [88], the acoustic radiation efficiency of stop band materials based on local resonance

is studied. Song et al. [89] investigates the stop band behavior of a sandwich plate with a stepped

resonator. The influence of the stop band design on the sound transmission properties is studied.
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A widely known demonstrator for acoustic isolation based on resonant acoustic metamaterial is

presented by Claeys et al. [90]. The presented stop band material is extended with microslots

in the study of Ruiz et al. [91]. As a result, acoustic absorption is achieved by viscous losses.

Lewińska et al. [92] investigate locally resonant acoustic metamaterial with viscoelastic material

behavior. A generalized Maxwell model is employed to take the nonlinear, frequency dependent

material properties into account. In [93], the influence of thermal stresses on the band structure of

periodic metamaterials is investigated. It is shown that thermal stresses have significant, nonlinear

effects on the frequency band structure. Kruisová et al. [94] investigate the band gap behavior of

3D-printed periodic ceramic microlattices. Band gaps in the range of several MHz are obtained.

Peng et al. [95] present a theoretical investigation on multi-stop band material. It is designed by

adding two-degree of freedom mass-spring systems to a plate. Chen et al. [96] present a possibility

to widen the band gap of resonant sonic metamaterials by a stacked structure. Therefore, coated-

steel rods are stacked orthogonally and are embedded layer by layer in an epoxy matrix. The

studies [97] and [98] investigate the attenuation of structural vibrations in a duct by applying locally

resonant metamaterial. It is shown that the combination of different resonator configurations in one

structure can lead to combined stop bands if they are appropriately designed.

Trainiti et al. [99] investigate the wave propagation in structures with 1D and 2D periodicity. It

is shown that undulation in beams and plates is an appropriate design parameter to obtain band

gap behavior. In order to maximize the frequency band gap, optimization algorithms are employed

to Bernoulli-Euler beams in the studies of Olhoff et al. [100]. It is shown that maximization

of the frequency gap leads to significant design periodicity within the shape of the Bernoulli-

Euler beams. Lu et al. [101] present a work on topology optimization of acoustic metamaterial

using local resonance in a two-dimensional case. The objective is to minimize the effective bulk

modulus at certain frequencies. As a result, negative effective bulk modulus is reached at a target

frequency. Another study on a design method for locally resonant sonic materials using topology

optimization algorithms is presented by Matsuki et al. [102]. He and Kang [103] present a study

on gradient-based topology optimization of material with microstructural configurations to obtain

directional wave propagation. Therefore, partial band gaps are maximized in two-dimensional,

periodic structures.

Li et al. [104] build a sound absorbing metasurface by coupling multiple Helmholtz resonators.

Over 99 % energy absorption is reached with a thickness of λ/20. Wang et al. [105] investigate

the manipulation of reflected wavefront by structured phase gradient metasurfaces. Therefore,

circular-holed cubes are placed on a surface. It is shown that the hole diameter is an effective design

parameter for the presented metasurface. The use of the metasurface is demonstrated in simulations
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for structures with anomalous reflections, an acoustic focusing lens, and an acoustic carpet cloak.

In the studies of Ma et al. [106], a membrane-type acoustic metamaterial (MAM) is presented in

which the membrane is decorated with a platelet. The presented unit attains over 99 % acoustic

absorption coefficient at a certain frequency. Assembling different units closely together results in

nearly total acoustic absorption at various frequencies. Furthermore, the structure can be employed

as power conversion device from acoustical to electrical energy. A 3D-printed membrane type-

acoustic metamaterial is realized by flexible thermoplastic material in the studies of Ba et al. [107].

In the center of the membrane a center mass is placed. It is shown that the frequency ranges with

high absorption can be tuned by geometrical parameters of the added mass. Langfeldt et al. [108]

present a study on MAM which has adjustable sound transmission properties. Therefore, the

MAM is inflatable with pressurized air to adjust its acoustic properties. Wang et al. [109] present a

MAM for sound absorption. The motion of the membrane is constrained with a stick in the center

position. The achieved band gaps are broaden compared to conventional MAMs. The position,

shape, and thickness of the constraining stick are appropriate design parameters to influence the

vibration modes which are related to peaks and dips in sound absorption.

The influence of defects in 2D periodic structures is investigated in [110]. Another study on point

defects in thin plates with 2D periodic structures is presented by Yao et al. [111]. It is shown that

the defect modes, existing in the first band gap, are strongly dependent on the size of the point

defect and the filling fraction of the system. Defect modes are investigated experimentally by

applying a fiber Bragg grating to a beam with 1D periodicity in [112].

1.1.4 Fiber reinforced composites

Fiber reinforced composites are known from nature for centuries. Probably the most famous and

most used natural fiber reinforced material is wood. It consists mainly of fibers of cellulose and

hemicelluloses embedded in a amorphous matrix of lignin [113]. It has been the state of the art

material to construct ships, vehicles, weapons, and buildings for centuries. This is due to excellent

density to strength ratio. The technique of reinforcing continuous materials with fiber similar

material has already been known by the Egyptians. In order to make clay bricks more durable and

strong, they were reinforced by straw [114]. The reinforcement of clay bricks with straw was even

mentioned in the bible [115, Exodus 5:7].
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A uniform definition of the term composite is complex. According to Rösler et al. [116], modern

composites are characterized by the following properties:

• A second, reinforcing phase is embedded in a continuous matrix.

• The matrix and the reinforcing phase are separated before they are combined in the manu-

facturing process.

• The reinforcing phase has a scale in the range of micrometer or higher.

• The volume fraction of the reinforcing phase is at least 10%.

Today, fiber reinforced composites are widely used in technical applications in nearly all sectors

of engineering such as aerospace, automotive, marine, and industrial equipment to name only a

few. Most important fiber materials for technical uses are carbon, glass, and aramid fiber [117].

Nonetheless, there are a lot of materials suitable to form fiber reinforcements depending on the

requirements of the composite, cf. [117]. A wide overview on fiber materials, fiber construction

and fabric construction of textiles is given in [118] and [117]. In this work, only balanced, plain

woven fabrics and non-crimp fabrics of carbon fiber are relevant. Although there is a lot of liter-

ature in the field of composites, in this thesis, only a small number of publications with focus on

modeling mechanical properties of composites are reviewed. A well-known possibility to describe

the material properties of fiber reinforced composites is the so-called classical laminate theory.

A comprehensive literature is given by Schürmann [119]. Halpin [120] presents a method to ap-

proximate the stiffness and expansion of oriented short fiber composites. A closer look is given

in [121]. Applying this theory, the non-uniform strain in the matrix of fiber reinforced compos-

ites can be taken into account. Foye [122] presents a method to calculate the transverse Poisson’s

ratio of composites using the material data of the single components. In Jacquet et al. [123], it

is demonstrated how to use the rule of mixture in order to obtain transverse and shear moduli of

unidirectional composite material. Akkerman [124] adopts the mechanics of unidirectional lami-

nates to predict the mechanical properties of composites with balanced, woven fabrics. Therefore,

the mechanical behavior of balanced, woven fabric is represented by orthogonal plies with ma-

nipulated properties. In [125], a method to predict the shear modulus of orthotropic materials is

presented. Pal and Haseebuddin [126] present a study on estimation of elastic properties of fiber

reinforced composites using finite element analysis. Therefore, the representative volume element

is investigated in FEA. Afterwards, the results are compared with the analytical solution applying

the rule of mixture and the semi-analytical solution of Halpin-Tsai.
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1.2 Contribution of this work

This work contributes to the field of structural dynamics and acoustics of ultrasonic transducers.

The research questions can be formulated by

1. How to achieve highly anisotropic directivity patterns in ultrasonic transducers with rota-

tionally symmetric geometry? (Paper A )

2. How to operate ultrasonic transducers having one electro-mechanical coupling element at

two or more frequencies with appropriate sound radiation properties? (Paper B)

3. How to reduce mechanical cross-coupling in compact, low frequency, air-coupled ultrasonic

array transducers? (Paper C)

In order to investigate these questions, three papers are appended to this thesis. Each paper ad-

dresses one of the research question. The results offer the possibility to achieve ultrasonic trans-

ducers with an increased performance compared to state of the art concepts.

Paper A The approach of locally structured fiber reinforcements is suggested and investigated. The

fiber reinforcement is used as a design space to achieve sections with different material properties

in a monolithic structure. Different designs and textile fabrics are considered to achieve ultrasonic

transducers with anisotropic directivity patterns. The approach is investigated in a generic model

consisting of the head of an ultrasonic sensor. In order to conduct numerical simulations, an

appropriate material description is required. The employed material model is presented in detail.

It allows the prediction of the homogenized composite material properties knowing the material

properties of the single components and the fiber volume ratio of the structure. The presented

approach of locally structured fiber reinforcements is validated in experimental testing.

Paper B In this study, a novel concept to achieve multi-frequency ultrasonic transducers is pre-

sented. It is based on the modification of the resulting operational deflection shape of the sound

radiating surface in a certain frequency range. This is achieved by the introduction of spatially

distributed stop band material. In a simplified, generic model of an ultrasonic transducer with

only one electro-mechanical coupling element, the approach is examined. It is found that suitable

sound radiating properties can be achieved at two distinctive operating frequencies. Furthermore,

it is shown that the second operating frequency and the corresponding operational deflection shape

are nearly independent from the boundary conditions. They rather depend on the frequency of the

stop band exhibited by the stop band material.

Paper C Cross-coupling in compact, low frequency, air-coupled phased array transducers is in-

vestigated in this paper. The focus is on mechanical cross-coupling caused by a common backing.
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Initially, the relation between backing thickness and cross-coupling is studied. It is found that

weak cross-coupling can be interpreted as a strong cancellation effect between the single bending

elements of the phased array transducer. This cancellation effect is achieved in case the in-phase

and out-of-phase mode of the bending elements exhibit small differences in eigenfrequency. Con-

sequently, weak cross-coupling can be achieved by a backing with high stiffness and by avoiding

the coincidence of a backing dominated mode with the operating frequency. To overcome this

limitation, a novel concept to reduce mechanical cross-coupling is presented. Therefore, 25 beam

resonators are added to the downside of the backing. Due to the behavior of the tuned resonators,

a stop band is exhibited. Consequently, shear and bending waves cannot freely propagate in the

backing. In numerical and experimental investigations, it is shown that a major reduction of cross-

coupling is achieved in case the operating frequency of the phased array transducer is within the

frequency range of the stop band.
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Chapter 2

Applied Methods

In this chapter, the methods applied to investigate the dynamic behavior of ultrasonic transducers

are introduced. In general, the finite element method is used to achieve numerical results for

complex models. Firstly, a brief introduction is given to this method. Afterwards, the wave finite

element method is discussed. This approach offers the possibility to analyze periodic structures in

a unit cell. In order to approximate the sound radiation behavior of an ultrasonic transducer, the

Rayleigh integral is employed. Finally, the applied experimental test methods are described.

2.1 Finite element method

Today, finite element analyses are widely used in the field of engineering. The method is used in

the analysis of structural mechanics, fluid mechanics, and heat transfer analysis. The term finite

element was introduced in 1960 by Clough [127], a pioneer in the development of the finite element

method.

The finite element method is an approach to approximate the solution of a boundary value problem

[128]. This mathematical problem contains a number of dependent variables which must fit spe-

cific conditions at the boundary of the domain. Furthermore, they are governed by a differential

equation which has to be satisfied. The dependent variables are called field variables and represent

the variables of interest. The boundary conditions are specific values of the field variable (Dirich-

let boundary conditions) or its derivatives (Neumann boundary conditions) on the boundary of the

domain. To solve the mathematical problem, the boundary value problem needs to be described by

a closed-form algebraic expression for every point of the domain. In case of complex geometrical

problems, the chance to obtain such an exact closed-form solution is small. Finite element method
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provides an approach to approximate the solution with high accuracy. First of all, the domain is

divided in elements with a finite size. The element consists of exterior nodes and optional interior

nodes. Exterior nodes are located on the boundaries of the finite element and can be connected to

other elements [128]. In the finite element method, the values of the field variable are calculated

at the nodal points of the element. Between the nodal points, the field values are interpolated.

Several literature exists explaining the finite element method. In Bathe [129], a comprehensive

introduction with focus on the use in structural mechanics is given. The following introduction is

based on this work.

2.1.1 Displacement-based formulation

In structural dynamics, a widely used approach is the displacement-based formulation. In order to

explain the general approach, an arbitrarily shaped three-dimensional body is assumed, cf. Fig. 2.1.

It is described in the stationary coordinate system X , Y, Z. The body is deformed by body forces

fB, fS, surface traction, and concentrated loads Ri
C. The vector of the external loads and forces is

given by

fB =




f B
X

f B
Y

f B
Z


 fS =




f S
X

f S
Y

f S
Z


 Ri

C =




Ri
CX

Ri
CY

Ri
CZ


 . (2.1)

The displacement of the body caused by the loads and forces is denoted by

U =




U

V

W


 . (2.2)

The strains ε are related to the displacements U as follows

εT = [εXX εYY εZZ γXY γY Z γZX ] , (2.3)

with

εXX =
∂U
∂X

, εYY =
∂V
∂Y

, εZZ =
∂W
∂Z

, (2.4)

and

γXY =
∂U
∂Y

+
∂V
∂X

, γY Z =
∂V
∂Z

+
∂W
∂Y

, γZX =
∂W
∂X

+
∂U
∂Z

. (2.5)
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2.1 Finite element method

The constitutive relation for linear elastic material following Hooke’s law is stated by

τ = Cε , (2.6)

where C is a fourth-order stress-strain material tensor. Considering initial stresses of the body, τ is

expressed by

τ = Cε + τinitial . (2.7)

The displacement-based formulation employs the principle of virtual displacements, also known

as the principle of virtual work. Thus, for small virtual displacements, the total internal virtual

work equals the total external work. This is stated by

∫

Ω
ε̄TτdΩ =

∫

Ω
ŪTfBdΩ +

∫

S
ŪST fSdS+∑

i
ŪiTRi

C , (2.8)

where the left-hand side and right-hand side represent the internal and external virtual work, re-

spectively. Ω denotes the domain which is physically represented by the body, cf. Fig. 2.1. The

virtual quantities are denoted with a bar, e.g. virtual displacement Ū .

f S
X , f B

X

X ,U

Y,V

Z,W

x
y

z

Ri
CX

Ri
CY

Ri
CZ

f S
Y , f B

Y

f S
Z , f B

Z

S

finite element m

Ω

Figure 2.1: Three-dimensional body with finite element, based on [129].

Assuming the body now as assembly of N finite element nodal points, the displacement u(m) of the
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finite element m expressed in its local coordinate system x, y, z is

u(m)(x,y,z) = Hm(x,y,z)Û , (2.9)

where Hm and Û represent the displacement interpolation matrix and the vector of all nodal dis-

placements, respectively. Consequently, the strain relations are obtained by

ε(m)(x,y,z) = Bm(x,y,z)Û , (2.10)

with Bm being the strain-displacement matrix. The stresses τ(m) within the finite element can be

described by

τ(m) = C(m)ε(m)+ τ(m)
initial . (2.11)

Hence, C(m), ε(m), and τ(m)
initial represent the stress-strain material tensor of the element, the elemen-

tal strain, and the initial stress of the finite element m, respectively. Considering the principle of

virtual work for each element m leads to

∑
m

∫

Ω (m)
ε̄(m)Tτ(m)dΩ (m) = . . .

= ∑
m

∫

Ω (m)
ū(m)TfB(m)dΩ (m)+∑

m

∫

S
ūS(m)TfS(m)dS(m)+∑

i
ūiTRi

C .

(2.12)

The principle of virtual work is the weak formulation of the equation of motion as shown in [130].

Inserting Eq. (2.9), Eq. (2.10), and Eq. (2.11) with the assumption of virtual displacements into

Eq. (2.12) leads to

¯̂U
T
[
∑
m

∫

Ω (m)
B(m)TC(m)B(m)dΩ (m)

]
Û = ¯̂U

T
[{

∑
m

∫

Ω (m)
H(m)TfB(m)dΩ (m)

}

+

{
∑
m

∫

S(m)
1 ...S(m)

Q

HS(m)TfS(m)dS(m)

}
(2.13)

−
{

∑
m

∫

Ω (m)
B(m)Tτ(m)

initialdΩ (m)

}
+Rc

]
,

where the surface displacement interpolation matrices HS(m)T are obtained from the displacement

interpolation matrices H(m) [129]. S(m)
1 . . .S(m)

Q denotes the surface of the body. The vector Rc

contains all loads applied to the nodes of the body. Hence, the ith component of Rc contains the

concentrated force corresponding to the ith displacement component in Û [129]. By introducing
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2.1 Finite element method

the identity matrix I for the virtual displacement ¯̂U, Eq. (2.13) can be written as

KÛ = R , (2.14)

which is the equilibrium equation in the static case. K represents the stiffness matrix of the finite

element assembly and is obtained by

K = ∑
m

∫

Ω (m)
BmTCmB(m)dΩ (m) . (2.15)

The load vector R
R = RB +RS−Rinitial +RC (2.16)

consists of body forces RB

RB = ∑
m

∫

Ω (m)
H(m)TfB(m)dΩ (m) , (2.17)

surface traction RS

RS = ∑
m

∫

S(m)
1 ...S(m)

Q

HS(m)TfS(m)dS(m) , (2.18)

initial stress Rinitial

Rinitial = ∑
m

∫

Ω (m)
B(m)Tτ(m)

initialdΩ (m) , (2.19)

and concentrated loads RC. Employing the D’Alembert’s principle for dynamic analysis, the inertia

force is included to the body forces by

RB = ∑
m

∫

Ω (m)
H(m)T

[
fB(m)−ρ(m)H(m) ˆ̈U

]
dΩ (m) , (2.20)

with ρ(m) and ˆ̈U being the mass density of the element and nodal point accelerations, respectively.

The equation of equilibrium for dynamic analysis can then be written as

M ˆ̈U+KÛ = R . (2.21)

M represents the mass matrix of the body and can be obtained by

M = ∑
m

∫

Ω (m)
ρ(m)H(m)TH(m)dΩ (m) . (2.22)
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Taking energy dissipation into account, a velocity dependent part is included in Eq. (2.20)

RB = ∑
m

∫

Ω (m)
H(m)T

[
fB(m)−ρ(m)H(m) ˆ̈U−κmH(m) ˆ̇U

]
dΩ (m) , (2.23)

which leads to

M ˆ̈U+C ˆ̇U+KÛ = R . (2.24)

It is worth to point out that in Eq. (2.20) fB(m) no longer contains inertia forces and in Eq. (2.23)

fB(m) no longer contains inertia forces and velocity-dependent damping forces. C denotes the

damping matrix including the elemental damping property parameter κ(m)

C = ∑
m

∫

Ω (m)
κ(m)H(m)TH(m)dΩ (m) . (2.25)

2.1.2 Analysis techniques

The finite element formulation, as introduced in Section 2.1.1, allows various analyses in order to

characterize the investigated structure. In the field of vibration analysis, the extraction of vibration

modes is desired in order to characterize the general dynamic behavior of the structure. If damping

is neglected, the vibration mode can be obtained from the generalized eigenvalue problem which

is stated as

(−µM+K)φ = 0 , (2.26)

with µ being the eigenvalues which are related by µ = ω2 to the angular eigenfrequency and φ
being the corresponding eigenvector. Assuming r solutions of the generalized eigenvalue problem,

it can be written as

(−ΛM+K)Φ = 0 , (2.27)

with Λ denoting a diagonal matrix with the dimension r× r containing the eigenvalues and Φ
containing the corresponding eigenvectors Φ = [φ1, φ2, . . .φr]. In practical use, often a certain

number of eigenvalues and corresponding eigenvectors are the subject of interest rather than the

entire number r of possible solutions. In order to obtain the desired solutions, an abundance

of numerical solving approaches exists. Two very common approaches are the Lanczos itera-

tion method [131–134] and the subspace iteration method, also know as Bathe subspace iteration

method [135, 136, 129, 137].

In order to obtain the dynamic response of a system to a load, the equilibrium equation Eq. (2.24)

has to be solved. Similar to the generalized eigenvalue problem, a great amount of approaches to

solve this numerical problem effectively are available. An effective method to solve this problem
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2.2 Wave finite element method

is the approach of mode superposition. Basically, the differential equations of motion are pro-

jected onto the modes obtained from the generalized eigenvalue problem. Thus, n independent

differential equations of motion of the form

z̈i +2ξiωiż+ω2
i zi =

1
mi

fi , (2.28)

with zi, ξi, mi, and fi denoting the generalized modal displacement of the ith mode, the fraction of

critical damping, the generalized modal mass, and the modal load, respectively. In case of n = r,

Û =
n

∑
i

φizi (2.29)

gives the exact solution for the displacement Û. Due to the nature of finite element methods, the so-

lution is an approximation as pointed out previously. Thus, often it is not necessary to consider all

pairs of eigenvalue and the corresponding eigenvectors to achieve an appropriate approximation of

the dynamic behavior of the investigated structure. Consequently, the computational effort can be

reduced by n� r. The number of n which is employed in the mode superposition approach finally

depends on the investigated structure, applied loads, and required accuracy. It can by determined

in a convergence study. A more detailed elaboration of the method is discussed in [129].

2.2 Wave finite element method

Periodic structures consist of a large amount of identical structure elements. The smallest struc-

ture repeated is called unit cell. In order to reduce the computational effort, the wave propagation

properties are characterized in the unit cell rather than in the entire structure. The wave propa-

gation behavior is described by the dispersion relations in the unit cell. The wave finite element

method offers a possibility to achieve the dispersion relations in an unit cell employing classical

finite element method with Floquet-Bloch boundary conditions [138]. In the presented work, two-

dimensional periodicity is most important and is therefore discussed in this section. The theory of

the approach is discussed also in the appended Paper B [139].

Employing the Floquet-Bloch theorem, for time harmonic dependence eiwt , the response function

ψ can be described by

ψ =Wei(ωt−kxx−kyy) , (2.30)

with W , kx, and ky being a function through the solid thickness and the component of the wavenum-

ber in x- and y-direction, respectively. In this work, the wavenumber k is considered as real rather
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than complex or purely imaginary. Thus, it describes the wave propagation in the absence of damp-

ing. Considering a four node-element as given in Fig. 2.2, the vector of generalized displacements

q is defined by

q = [q1 q2 q3 q4]
T . (2.31)

q1 q2

q4q3

x

y
rx

ry

Figure 2.2: Generalized displacements q at various points in case of two-dimensional periodicity
[139].

According to Bloch theorem stated in Eq. (2.30), the generalized displacements are related to q1

by [140]

q2 = λxq1 ,

q3 = λyq1 , (2.32)

q4 = λxλyq1 ,

with

λx = e−ikx·rx and µx = kxrx ,

λy = e−iky·ry and µy = kyry ,
(2.33)

where rx,y and µx,y denote the length of the periodic lattice and the propagation constant in the

direction of periodicity, respectively. In matrix notation it is possible to write

q = ΛRq1 , (2.34)

with ΛR being the right reduction matrix

ΛR = [I λxI λyI λxλyI]T . (2.35)
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2.3 Sound radiation of plain structures

The generalized displacements q are related to generalized forces f in the absence of damping by

[141] [
K−ω2M

]
q = f . (2.36)

For free vibration, the sum of forces at nodal point 1 implies

ΛLf = 0 . (2.37)

In equivalence to Eq. (2.35), the left reduction matrix is formulated by

ΛL =
[
I λ−1

x I λ−1
y I λ−1

x λ−1
y I
]

. (2.38)

Based on these relations, it is possible to formulate a reduced eigenvalue problem

ΛL
[
K−ω2M

]
ΛRq1 = 0 . (2.39)

The obtained eigenvalues ω2 are a function of the propagation constants µx and µy. Thus, it must be

solved for any combination of the propagation constants in the first Brillouin zone µx,µy = [−π,π]
[142]. A typical presentation of the solution is done in three-dimensional surface plots. These

surfaces are called dispersion surfaces. They characterize the free wave propagation in the unit

cell. Frequency ranges, where no dispersion surface is present, are defined as stop bands or band

gaps. In case of symmetric unit cells, the calculation can be reduced from the Brillouin Zone

to the irreducible Brillouin Zone or to the contour of the irreducible Brillouin Zone. Thus, the

dispersion surfaces are reduced to two-dimensional dispersion curves. The conditions for this

reduction are investigated in [143]. The approach of wave finite element method is discussed in

detail in [141, 140, 144, 145]

2.3 Sound radiation of plain structures

Sound radiation and sound detection are the two general purposes of an ultrasonic transducer.

Thus, the characterization of the radiated sound field is of elementary interest when investigat-

ing ultrasonic transducers. Ultrasonic transducers used in automotive applications are desired to

provide a flat surface. Furthermore, they are usually embedded in a mounting structure like a car

bumper. Considering these boundary conditions, the Rayleigh integral [146] provides a suitable

approximation of the sound radiation behavior of an ultrasonic transducer. The theory of the ap-

proach is discussed also in the appended Paper A [147]. The Rayleigh integral provides exact
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solutions in the far-field if the following requirements are fulfilled

• the radiating surface is flat,

• the radiator is embedded in a flat, infinite, and rigid baffle.

For eiωt harmonic time dependence, the Rayleigh integral for a plane surface can be expressed by

[148]

p(~y) =
∫

Γ
−iωρf G(~x,~y)νf(~x)dΓ (~x) , (2.40)

with

G(~x,~y) =
e−ikr

2πr
and r = |~x−~y| , (2.41)

where Γ , k, ω, νf, ρf, i denote the radiating surface, wavenumber, circular frequency, fluid

particle velocity, fluid density, and imaginary unit, respectively. In order to solve Eq. (2.40), an

approximation in the far-field is considered. To fulfill the far-field assumption, three conditions

must hold [149]. Firstly, the distance R between the radiator and the field point has to be much

greater than the dimension l of the radiator

R� l . (2.42)

Secondly, the condition
R
l
� l

λ
(2.43)

must be fulfilled. Consequently, the error caused by phase shifts is small. Finally, the wavelength

λ should be small compared to the distance between the radiator and field point

λ � R . (2.44)

Furthermore, a coordinate transformation from Cartesian to spherical coordinates is applied by

x = Rsin(ϑ)cos(ϕ) ,

y = Rsin(ϑ)sin(ϕ) , (2.45)

z = Rcos(ϕ) .

Finally, the approximation of the Rayleigh integral is stated by [8]

p(R,ϑ ,ϕ) =
iωρf

2πR
e−ikR

∫ ly\2

−ly\2

∫ lx\2

−lx\2
eik(xQ sinϑ cosϕ+yQ sinϑ sinϕ) v(xQ,yQ) dxQ dyQ . (2.46)
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2.3 Sound radiation of plain structures

In [150], it is shown that the particle velocity distribution on the surface of the structure can be

used to estimate the radiated far-field sound pressure. This velocity distribution of the surface can

be obtained from a harmonic analysis employing the finite element method. The exact solution of

Eq. (2.46) can be calculated employing the nodal velocities of the finite element analysis and the

element interpolation functions. Thus, a continuous function of the velocity is derived. However,

as Eq. (2.46) is the approximation of the Rayleigh integral, the calculation can be approximated

as well. Therefore, it is converted in a discrete formulation and the average surface velocity ṽi of

each element is employed. This results in

p(R,ϑ ,ϕ) =
iωρf

2πR
e−ikR

Ns

∑
j

eik(x̃Q j sinϑ cosϕ+ỹQ j sinϑ sinϕ) A jṽ j , (2.47)

where Ns, ṽ j, x̃Q j, ỹQ j, and A j denote the number of finite elements of the surface, the average

surface velocity, the element center x- and y-coordinate, and the element surface area, respectively.
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Rayleigh integral c,R,ϕ,ϑ

ỹQ jA j x̃Q jṽ(ω) j

Post processing

v(ω)node xnode ynode

Finite element model

Material GeometryModeling parameters

Boundary conditions ExcitationDiscretization

Directivity pattern

Figure 2.3: Workflow for calculation of the directivity pattern of an ultrasonic transducer with a
coupled approach of finite element simulation and Rayleigh integral.

The accuracy of the solution depends on the size of the finite element mesh. In order to avoid mesh

dependency, a convergence study can be carried out. Finally, the sound radiation behavior of the

ultrasonic transducer is obtained with the workflow shown in Fig. 2.3. The approach couples the

results obtained from finite element simulation with the Rayleigh integral.

30
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2.4 Experimental testing

Numerical methods, as presented above, are very powerful tools and modern engineering tasks

could be hardly solved without these methods. However, real applications of technical products

are the overall objective of engineering tasks. Experimental testing of the investigated approaches

is an important step. Thus, it is possible to evaluate whether the assumptions and simplifications

made in the numerical investigations are appropriate to predict the behavior of real structures. In

the field of vibration measurements, non-contact methods based on laser Doppler vibrometry are

state of the art in scientific and industrial validation processes. Due to the absence of the contact

between the measuring device and the measured object, the measurement does not affect the struc-

tural behavior. This is essential when investigating structures with low mass. Furthermore, the

dynamic measurement is possible up to several MHz. Using a scanning laser Doppler vibrometer,

the structure can be measured at multiple points with a high spatial resolution. Due to these ad-

vantages, laser Doppler vibrometry is a convenient method to characterize the structural, dynamic

behavior of ultrasonic transducers. Special attention must be paid to the boundary conditions in

experimental testing. In contrast to numerical methods, ideal boundary conditions like free-free,

clamped or fixed cannot be obtained when testing real structures. They can rather be approximated.

Hence, a certain deviation between physical and numerical model is present in any case. In order

to validate the results from numerical simulations by experimental testing, this deviation must be

minimized.

In the present work, mostly free-free boundary conditions are approximated. This is achieved by

placing the test structure on two horizontally tightened yarns. Thus, a good approximation of free-

free boundary conditions is achieved especially for light and small structures. In contrary, fixed

boundary conditions can be approximated by jointing the test structure to a backing with high stiff-

ness and large mass compared to the investigated structure. The excitation is realized be applying

an electrical voltage to the electro-mechanical coupling element contained in the ultrasonic trans-

ducer. The surface velocity is then measured at several points. The obtained frequency response

function offers the possibility to identify resonance frequencies and the corresponding operational

deflection shape. Afterwards, the eigenfrequencies and modeshapes can be identified by an exper-

imental modal analysis. A comprehensive introduction on the topic of modal testing is given by

Ewins [151].
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Chapter 3

Models

In this chapter, the investigated models are presented. Firstly, the finite element models are intro-

duced. Afterwards, the material models are presented which are employed to describe the behavior

of fiber reinforced composites. In Section 3.3, the manufacturing of physical models is discussed.

3.1 Finite element models

The finite element method, as introduced in Section 2.1, is a powerful method the approximate the

behavior of complex structures. Therefore, the structure is discretized by a certain number of finite

elements. The accuracy of the solution strongly depends on the type and size of finite elements. A

detailed elaboration on this topic is given in [152]. It is shown that the convergence behavior of el-

ements with quadratic interpolation formulation is significantly better than of elements with linear

interpolation formulation. For this reason, only elements with quadratic interpolation formulation

are employed in the investigated finite element models. Langer et al. [152] present guidelines to

avoid mesh dependency of the results. The guidelines are applied to the finite element models used

in this work. Afterwards, the mesh dependency is evaluated in a convergence study. Therefore, the

average element edge length is reduced to a half in each step of the convergence study. Different

parts are connected with tie-constraints [153]. In this way, a rigid connection is assumed. This

is valid for monolithic structures. In case of joints in the physical model, an error is introduced.

In order to reduce the influence of these joints on the dynamic behavior of the test structure, in

Section 3.3 a short guideline is given for the model setup of physical models.
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Figure 3.1: Overview of the finite element models investigated in this work. Top row: Sensor
head models to investigate the influence of locally structured fiber reinforcements on
the directivity patterns of ultrasonic transducers. 2nd row: Generic model of multi-
frequency ultrasonic transducer employing stop band material. 3rd row: Generic model
of phased array transducer to investigate the effect of stop band material as common
backing structure in order to reduce cross-coupling. Bottom row: Unit cell models for
calculating the dispersion properties of the above mentioned stop band materials.

Fig. 3.1 shows an overview of the finite element models used in this work. In the first category, a

generic model of an ultrasonic sensor represented by the sensor head is illustrated. This model is

employed to investigate the influence of locally structured fiber reinforcements on the directivity

pattern of the sensor, cf. Paper A. In the second category, a model to investigate the potential
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of spatially distributed stop band material to achieve multi-frequency ultrasonic transducers is

presented, cf. Paper B. The model consists of a plate like structure representing the sound radiating

surface of an ultrasonic transducer. On the downside, 2×56 beam resonators are attached in order

to form a stop band material. Blocks of aluminum are jointed to the structure in order to realize

appropriate boundary conditions.

The model shown in the third category represents a generic model of a phased array transducer with

a backing of stop band material. The single transducer elements are realized by bending elements

of carbon fiber reinforced composite. These are jointed to a common backing. On the downside

of the backing, 25 resonators form a resonant stop band material. Objective of the investigation is

the reduction of mechanical cross-coupling caused by the common backing. The fourth category

shows the unit cells corresponding to the models of category two and three. These are employed

in the wave finite element method, cf. Section 2.2. Hence, the stop band behavior of the unit cell

can be characterized.

3.2 Material models

The appropriate description of the material behavior is a key factor for suitable modeling. As

introduced in Section 1.1.4, composite materials consist of at least two different materials. Fiber

reinforced composites in particular consist of a large amount of fibers which are embedded in

the matrix material. The modeling of the single fiber and matrix elements is not possible for the

structure. In order to achieve an effective and appropriate description of the material behavior, a

homogenization approach is employed to calculate the effective material parameters. Therefore,

the properties of the single components of the composite are used to determine the homogenized

properties. The approach is also known as the rule of mixtures [119]. In the presented work,

carbon fiber reinforced composites are investigated. Due to the anisotropic behavior of the fiber,

an orthotropic material model is employed to predict the dynamical behavior of the carbon fiber

reinforced composite. The material models are discussed also in the appended Paper A [147].

Firstly, orthotropic material behavior is introduced. Afterwards, the homogenization approach is

discussed for two different types of fiber reinforcements.
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3.2.1 Orthotropic material behavior

The description of the behavior is done in a Cartesian coordinate system 1-2-3 related to the fiber

orientation. The general stress-strain relation in an orthotropic material is described by [119]




ε1

ε2

ε3

γ12

γ13

γ23




=




S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66




︸ ︷︷ ︸
[S]

·




σ1

σ2

σ3

τ12

τ13

τ23




, (3.1)

where [S] denotes the compliance matrix. ε , γ , σ , τ denote the normal strain, shear strain, normal

stress, and shear stress, respectively. Assuming linear elastic behavior, the relation can be described

in accordance to Hooke’s law with so-called engineering constants [153] resulting in




ε1

ε2

ε3

γ12

γ13

γ23




=




1/E1 −ν21/E2 −ν31/E3 0 0 0

−ν12/E1 1/E2 −ν32/E3 0 0 0

−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0

0 0 0 0 1/G13 0

0 0 0 0 0 1/G23




·




σ1

σ2

σ3

τ12

τ13

τ23




. (3.2)

Applying the relation νi j
Ei

=
ν ji
E j

, known as the Maxwell-Betti reciprocity relation [119], Eq. (3.2)

can by written as




ε1

ε2

ε3

γ12

γ13

γ23




=




1/E1 −ν12/E1 −ν13/E1 0 0 0

−ν12/E1 1/E2 −ν23/E2 0 0 0

−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0

0 0 0 0 1/G13 0

0 0 0 0 0 1/G23




·




σ1

σ2

σ3

τ12

τ13

τ23




. (3.3)

Finally, nine material properties of the composite are required to characterize the orthotropic ma-

terial stress-strain behavior, the Young’s moduli E1, E2, E3, the Possion’s ratios ν12, ν13, ν23, and
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the shear moduli G12, G13, G23. Besides the stress-strain relation of the material, the mass density

is required to characterize the dynamic behavior of the structure, cf. Section 2.1.1. In order to

achieve the effective mass density of the composite ρC, the rule of mixture is applied to the single

components.

3.2.2 Unidirectional, non-crimp fabric

Unidirectional, non-crimp fabrics are textiles having one distinctive axis of fiber orientation. Ac-

cording to the Cartesian coordinate system 1-2-3 of the material, the direction of fiber orientation

coincides with direction 1. Unidirectional, non-crimp fabrics exhibit symmetry, normal to direc-

tion 1. Thus, the independent variables of material properties are reduced from nine to six by

EUD
2 = EUD

3 , νUD
12 = νUD

13 , and GUD
12 = GUD

13 . Introducing the assumption of GUD
23 =

EUD
2

2(1+νUD
23 )

, the

material model is specified as transversal isotropic material model. The number of independent

material parameters is reduced to five in this case.

The mechanical properties can be represented by applying a rheological model. Fig. 3.2 shows

exemplarily the rheological model to obtain the Young’s modulus in direction 1. It consists of a

parallel circuit out of a spring representing the Young’s modulus parallel to the fiber axis EF,‖ and

a spring representing the Young’s modulus of the matrix material EM.

+ =EM EF,‖

EUD
1

EF,‖EM

Figure 3.2: Rheological model to calculate the Young’s modulus EUD
1 in direction parallel to the

fiber axis for a unidirectional, non-crimp fabric, cf. [147].

The Young’s modulus can be calculated by [119]

EUD
1 = ΦEF,‖+(1−Φ)EM , (3.4)

with Φ denoting the overall fiber volume fraction of the composite. The Young’s modulus trans-

verse to the fiber direction is calculated using the semi-empirical approach of Puck by [119]

EUD
2 =

EM

1−ν2
M

1+0.85Φ2

(1−Φ)1.25 + EM
(1−ν 2

M )EF,⊥

. (3.5)
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The Poisson’s ratio is calculated applying the rule of mixture

νUD
12 = ΦνF,12 +(1−Φ)νM . (3.6)

The transverse Poisson’s ratio νUD
23 is obtained by the approach presented of Foye [122]

νUD
23 = ΦνF,23 +(1−Φ)νM




(
1+νM−νUD

12
EM

EUD
1

)

(
1−ν2

M +νMνUD
12

EM
EUD

1

)


 . (3.7)

The shear moduli GUD
12 and GUD

13 are obtained with the semi-empirical approach of Förster [119]

GUD
12 = GUD

13 = GM
1+0.4Φ0.5

(1−Φ)1.45 + GM
GF,12

Φ
. (3.8)

In order to retrieve the shear modulus GF,12 for anisotropic materials, the approach given by Sum-

merscales [125] is employed

GF,12 =

√
EF,‖EF,⊥

2(1+
√νF,12νF,21)

. (3.9)

Applying the Maxwell-Betti relation, the Poisson’s ratio νF,21 is obtained by

νF,21 = νF,12
EF,⊥
EF,‖

. (3.10)

Due to the assumption of a transversal isotropic material, GUD
23 is determined by

GUD
23 =

EUD
2

2(1+νUD
23 )

(3.11)

as mentioned before.

3.2.3 Balanced, woven fabric

Woven fabrics are textiles formed on a loom. In this work, plain weaves are utilized to reinforce

epoxy resin. The plain weave is formed by shedding after every weft insertion. Thus, the warp

yarn alternates between lifting and lowering after every weft yarn. By this, the warp and weft

yarn are crimped [118]. This has a major effect on the mechanical properties of the woven fab-

38



3.2 Material models

ric, especially for anisotropic materials like carbon fiber. Balanced, woven fabrics exhibit a ratio

of 1 between warp and weft yarn in terms of volume and weight. Consequently, the properties

in warp and in weft direction are equal, corresponding to directions 1 and 2 of the coordinate

system. Balanced, woven fabrics show less anisotropic behavior within one layer compared to

unidirectional, non-crimp fabrics. The required material properties are reduced from nine to six

engineering constants, because of EWF
1 = EWF

2 , νWF
13 = νWF

23 , and GWF
13 = GWF

23 . In contrast to uni-

directional, non-crimp fabrics, the employed material model is not a transversal isotropic material

model as GWF
12 =

EWF
1

2(1+νWF
12 )

does not apply [124].

An orthotropic material model, developed in [154], is applied. Fig. 3.3 shows the rheological

model of the composite to calculate the Young’s modulus in direction 1 for a balanced, woven

fabric. It consists of a series and parallel circuit of fiber and matrix material properties. Two

springs are arranged in a series, one of which representing the Young’s modulus of the matrix

(EM) while the other one describes the Young’s modulus perpendicular to the fiber axis (EF,⊥). In

parallel to this series, another spring element is considered. This is related to the Young’s modulus

of the fiber parallel to its axis (EF,‖).

+ =
EM

EF,⊥
EF,‖

EWF
1,2EWF

1,1 EWF
1

EF,‖

EM

EF,⊥

Figure 3.3: Rheological model to calculate the Young’s modulus EWF
1 , cf. [154].

Applying the rule of mixture, the series of springs is calculated by

EWF
1,1 =

EMEF,⊥
Φ1,1EM +(1−Φ1,1)EF,⊥

, (3.12)

where Φ1,1 denotes the fiber volume fraction of fibers with an axis orientation perpendicular to the

direction 1. In a balanced, woven fabric, it can be calculated by

Φ1,1 =
Φ
2

1− Φ
2

, (3.13)

with Φ representing the overall fiber volume fraction of the composite. The Halpin-Tsai method

introduces a semi-empirical approach to take into account non-uniform strain in the matrix [120].
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Consequently, a correction factor β is inserted into Eq. (3.12), resulting in

EWF
1,1 =

βEMEF,⊥
Φ1,1βEM +(1−Φ1,1)EF,⊥

. (3.14)

As mentioned above, in woven fabrics the fibers exhibit crimp. As a result, the fiber axis is only

in some parts of the fabric parallel to the direction 1. This leads to a reduced stiffness in direction

1 for anisotropic materials like carbon. In the material model, this is considered by introducing a

factor of stiffness reduction η ∈ [0,1]. The second part of the parallel circuit, cf. Fig. 3.3, is then

calculated by

EWF
1,2 = ηEF,‖ . (3.15)

The resulting Young’s modulus for the direction 1 is finally obtained by

EWF
1 =

Φ
2

EWF
1,2 +(1− Φ

2
)EWF

1,1 . (3.16)

In direction 3, there exists only a series circuit out of fibers perpendicular to its axis and matrix.

Thus, EWF
3 is calculated in equivalent to EWF

1,1 by

EWF
3 =

βEMEF,⊥
ΦβEM +(1−Φ)EF,⊥

. (3.17)

Applying the rule of mixture, the Poisson’s ratio νWF
12 is calculated in the same manner like Young’s

moduli by

νWF
12,1 =

νMνF,21

Φ1,1νM +(1−Φ1,1)νF,12
(3.18)

and

νWF
12,2 = ηνF,12 (3.19)

resulting in

νWF
12 =

Φ
2

νWF
12,2 +(1− Φ

2
)νWF

12,1 . (3.20)

Poisson’s ratio ν13 = ν23 is obtained by an approach presented in [124]. The properties of a

balanced, woven fabric are mimicked by unidirectional layers. Thus, Poisson’s ratio is calculated

by

νWF
13 = EWF

1

(
1

E1

E1(ν12 +ν23 +ν12ν23)+ν2
12

E1 +(1+2ν12)E2

)UD

. (3.21)
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The in-plane shear modulus is obtained in the same way as the Young’s moduli.

GWF
12 =

βGMGF,12

ΦβGM +(1−Φ)GF,12
. (3.22)

A method to calculate the transverse shear moduli is presented in [124]. It uses equivalent proper-

ties of a unidirectional reinforced laminate to obtain GWF
13 by

GWF
13 = GWF

23 = (
1+νUD

23

EUD
2

+
1

2G12
)−1 . (3.23)

In [124], inaccuracies for the approach given in Eq. (3.23) are shown. However, in [154] it is

shown that the influence of the transverse shear modulus on the dynamic behavior is small for

mode shapes and frequencies ranges similar to the investigated ones in this work.

3.2.4 Prediction of material properties

The above presented material models are employed to predict the homogenized properties of the

composite material. Therefore, the properties of the single components and the fiber volume frac-

tion are required. Generally spoken, polymer materials show complex material behavior [155].

The material rather exhibits viscoelasticity than linearity as introduced by Hookean stress-strain

behavior. In order to apply Hooke’s law, the material behavior can be linearized at an operating

point or interval with regard to temperature, frequency and deformation. This is done in prelimi-

nary investigations. Thus, effective material properties are determined. The properties of carbon

fibers are obtained from the manufacturer. The Young’s modulus EF,‖ is usually given by the

manufacturer. In contrast, EF,⊥ is mostly unknown. The ratio of
EF,‖
EF,⊥

= 12 gives an appropriate

assumption for the used carbon fiber [154].

Finally, the fiber-volume ratio needs to be calculated. In order to do so, the material properties of

the fiber reinforcement and geometrical parameters of the structure are employed. Usually, textile

fabrics are characterized by the areal density ρ̃Fa, also known as area weight. It describes the mass

per area of two dimensional structures [156]. Knowing the density of carbon fiber ρF and the

thickness of the structure tSt, the fiber volume fraction Φ is calculated by [154]

Φ =
nρ̃Fa

ρFtSt
, (3.24)

where n denotes the number of layers in the structure. The maximum number of layers in the
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structure is limited by the integer quotient

nmax =
tSt

tFa
, (3.25)

with tFa describing the thickness of the fabric layer.

3.3 Physical models

Experimental testing is an important element to verify the numerical investigations as mentioned

in Section 2.4. Consequently, physical models are required to carry out the experiments. In order

to realize these models, different manufacturing techniques are combined. The most important

ones for this work are

• resin transfer molding processes,

• additive manufacturing of polymers, and

• jointing based on adhesives.

Injection molding processes are well-known and widely used manufacturing processes for fiber

reinforced composites [119]. The molding tool consists of at least two parts having a cavity. The

general process to produce a composite structure can be described as follows. Firstly, the fiber

reinforcement is placed in the cavity. Afterwards, the tool is closed and resin is injected. Once

the curing of the resin is completed, the structure of fiber reinforced composite can be demolded.

In practical use, a wide bunch of various injection molding procedures exist which can be distin-

guished by process details, e.g. injection pressure or pressurizing method [157].

Additive manufacturing attracted growing attention during the last years. It offers the possibility

to produce structures by adding material at a defined position. The main advantage of this man-

ufacturing technique is the flexibility and cost effectiveness for rapid prototyping. Hence, nearly

every geometry can be produced directly without any other, design related tools. Furthermore,

current additive manufacturing machines allow a user-friendly direct usage of 3D-CAD data as in-

put. Disadvantages compared to classical manufacturing are mainly a lower accuracy, limitations

in material choice, and lower productivity. However, additive manufacturing is a key enabler in the

scientific and industrial field to shorten investigation and development time. As a consequence, a

large number of different additive manufacturing techniques are developed during the last years,

cf. [158]. In the presented work, the investigated structures are manufactured by PolyJet [159].

This technology offers the possibility to produce fully filled, solid structures. As a result, the ma-
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terial of the structure is homogeneous which allows a straightforward numerical modeling of the

structure. As the physical models are employed to validate the numerical simulations, this is major

advantage of PolyJet technology.

Figure 3.4: Overivew of the pyhsical models employed for experimental testing. Top row: Sensor
head model to investigate the directivity pattern of an ultrasonic transducer. Middle
row: Generic model of multi-frequency ultrasonic transducer employing stop band
material. Bottom row: Generic model of phased array transducer to investigate the
effect of stop band material as common backing structure.

In order to complete the assembling of the physical models, different parts are required to be

jointed. The design, modeling, and applications of proper joints is a separate research field and out

of scope of this work. In numerical simulations, the connection between different parts is assumed

as rigid connections. In order to reduce the influence of joints in experimental testing the following

guidelines are applied:

1. If possible, the test structure is realized as a monolithic part. Influences by joints are avoided.
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2. In case joints cannot be avoided, test structures are designed with joints at locations where

the influence is small. These are locations with small stresses.

3. Joints are realized with thin layers and with an adhesive providing high stiffness. Thus, the

influence on the dynamic behavior is reduced and a rigid connection is approximated.

Fig. 3.4 gives an overview on physical models employed for experimental testing in this work.
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Results and Summary of Appended Papers

In this section, the key results and a short summary for each of the appended papers are presented.

The main contribution of this work is stated as follows:

• A novel approach to realize ultrasonic transducers with anisotropic directivity pattern is

presented. Therefore, locally structured fiber reinforcements are employed. A parameter

study identifies the influence of various design parameters to the eigenfrequency and the

anisotropy factor of the directivity pattern (Paper A).

• The concept of spatially distributed stop band material is presented. It is employed to modify

the operational deflection shape of a structure within a particular frequency range. Based on

this concept, a multi-frequency ultrasonic transducer with only one electro-mechanical cou-

pling element and suitable sound radiation properties for surround sensing at two distinctive

frequencies is achieved (Paper B).

• Mechanical cross-coupling caused by a common backing in phased array transducers is in-

vestigated. It is found that weak cross-coupling is associated to strong cancellation effect

between in-phase and out-of-phase modes of the bending elements. Furthermore, stop band

material is identified as novel solution to reduce mechanical cross-coupling in a phased array

transducer (Paper C).

Fig. 4.1 gives an overview of the field of ultrasonic transducers for surround sensing applications

and indicates to which category each of the appended papers contributes. The presented approaches

can enhance the performance of ultrasonic transducers or transducer arrays. They can be applied

separately as well as in combintation. Hence, this work contributes to achieve more comprehensive

and more reliable surrond sensing systems. Furthermore, the introduced approaches to modify the
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operational deflection shapes of systems as shown in Paper A and Paper B can be transferred to

other applications wherever a certain operational deflection shape is desired.

Increasing performance for surround sensing applications

single-frequency transducer multi-frequency transducer array transducer

• single transducer element

• single operating frequency

• single, predefined
field of view

• single transducer element

• multiple operating
frequencies

• multiple, predefined but
selectable fields of view

• multiple transducer
elements

• single or multiple
operating frequencies

• electronically
controllable field of view

distance between
transducer and obstacle

distance between
transducer and obstacle

3D position information
between array transducer
and obstacle

Paper B Paper CPaper A

Figure 4.1: Overview of the field of ultrasonic transducers for surround sensing applications and
the key performance indicators to distinguish the categories. It is indicated to which
category of ultrasonic transducer each of the appended papers contributes.
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4.1 Paper A

Locally structured fiber reinforcements: An approach to realize anisotropic
directivity pattern in ultrasound transducers

Novelty and key results:

Ultrasonic transducers are desired to exhibit a comprehensive field of view. In order to avoid

ground reflections, the directivity pattern in the vertical plan should be a narrow angled beam. In

contrast, in the horizontal plane, a wide angled beam is desired to enlarge to the field of view.

These two requirements lead to anisotropic directivity patterns. This study addresses the fiber

reinforcement of composite material as a new design space. Thus, anisotropic directivity patterns

can be achieved by locally structuring the fiber reinforcement. As a result, sections with different

material properties are achieved within a monolithic structure.

In this study, a generic model representing the head of an ultrasonic transducer is investigated. The

sound radiation behavior of the generic model is calculated using the Rayleigh integral. Two dif-

ferent designs of fiber reinforcement are considered. Each design is investigated with a balanced,

woven fabric and with an unidirectional, non-crimp fabric. A parameter study is carried out for one

of the two designs. Thus, the influence of various design parameters on the eigenfrequency and

the anisotropy factor of the directivity pattern is identified. In the investigated design, the angle of

fiber orientation is found to have the highest influence on the directivity pattern for both types of

fabrics. Finally, the numerical investigation is validated by experimental testing. Therefore, the

velocity of the sound radiating surface is measured employing laser Doppler vibrometry. Good

accordance between simulation and experiment is found. A modal assurance criterion of 0.93

is determined. The presented approach offers a novel solution to realize anisotropic directivity

patterns in ultrasonic transducers having a rotationally symmetric geometry.

Individual contributions of the candidate: Henneberg introduced the approach of modifiying the

operational deflection shape of an ultrasonic transducer by locally structuring the fiber reinforce-

ment. Hereby, the design of the fiber reinforcement was a key element. In order to evaluate the

directivity pattern, the implementation of the Rayleigh integral was an essential step realized by

Henneberg. The specimen preparation and finally the experimental testing were also conducted by

Henneberg.
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4.2 Paper B

The potential of stop band material in multi-frequency ultrasonic
transducers

Novelty and key results:

Ultrasonic transducers are desired to be operated at two or more distinctive operating frequencies.

Therefore, ultrasonic transducers can be operated in short intervals or in parallel. The sensor

signal can be discriminated by frequency filtering. This study presents an approach to achieve

two well separated operating frequencies with suitable sound radiation behavior using only one

electro-mechanical coupling element. Therefore, the concept of spatially distributed stop band

material is introduced. As a result, the operational deflection shape is modified within a certain

frequency range. The study investigates a plate like structure with 2× 56 resonators attached to

one side of the plate. The resonators form two spatially separated sections of stop band material.

They are designed to exhibit a resonant stop band for shear and bending waves. The other side

of the plate like structure represents the sound radiating surface of an ultrasonic transducer. In

order to achieve a generic model which is comparable to a real ultrasonic transducer, two different

configurations of fixed boundary conditions are investigated. In the first configuration, only the

short edges of the rectangular plate are fixed. In a second configuration, the long edges of the plate

are fixed additionally. The excitation of the structure is realized with a piezoelectric element placed

between the sections of stop band material in the center of the plate. As a result, it is found that a

particular operational deflection shape is obtained in case the excitation frequency coincides with

the frequency of the stop band. In this case, the bending wave, which is introduced in the center of

the plate, is reflected at the boundary of the stop band material. The operational deflection shape

at the middle part of the plate like structure is similar to the first normal mode of a plate with

fixed boundaries while the rest of the plate like structure remains in equilibrium position. Finally,

this results in a directivity pattern without distinctive sidelobes which is suitable for surround

sensing applications. This particular behavior is similar in both configurations. Hence, it is nearly

independent from the boundary conditions of the investigated system. In experimental testing,

the results from numerical simulation are validated. The results show good accordance between

simulation and experiments. Finally, the approach is transferred in the ultrasonic frequency range.

Therefore, material and dimensions of the generic model are adjusted.

Individual contributions of the candidate: Henneberg developed the approach of distributed stop

band material with the purpose to achieve distinctive operational deflection shapes in certain fre-
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quency ranges with the objective to establish a multi-frequency ultrasonic transducer. Numerical

simulations, experimental testing as well as drawing the manuscript was done by Henneberg.
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4.3 Paper C

Reducing mechanical cross-coupling in phased array transducers using stop
band material as backing

Novelty and key results:

Cross-coupling is a characteristic property of phased array transducers. It describes the behavior

that single transducer elements do not work independently which results in a loss of performance.

In this study, the mechanical cross-coupling caused by a common backing is investigated in a

generic model. It consists of two bending elements, representing the single transducer elements,

jointed to a common backing. In the first part of the study, the influence of the backing on cross-

coupling is examined. The backing does not contain an extra lossy region as known from other

researches. Furthermore, the dimensions are small. Consequently, wave reflections must be taken

into account at the edges of the backing. This is especially important in compact, low-frequency,

air-coupled phased array transducers. In this configuration, weak cross-coupling is identified as

strong cancellation effect between in-phase and out-of-phase modes of the bending elements. The

occurrence of these modes is related to the particular dynamic behavior of the backing. Based on

these results, it is possible to minimize mechanical cross-coupling based on a numerical modal

analysis. With regard to an optimization task, this is an advantage in terms of computational effi-

ciency. However, the reduction of cross-coupling by minimizing the difference in eigenfrequency

between the in-phase and out-of-phase mode is connected to avoid the coincidence of backing

dominated modes with the operating frequency. To overcome this issue, the potential of stop

band material in order to reduce mechanical cross-coupling is investigated in a second part of this

work. Therefore, the model of the backing is extended by 25 beam resonators on the downside

of the plate. These resonators are designed to form a stop band which does not allow free wave

propagation of shear and bending waves in certain frequency ranges. It is shown that stop band

material as backing can reduce the cross-coupling in phased array transducers significantly in case

the operating frequency is within the frequency range of the stop band. In order to validate the re-

sults from numerical simulation, a physical model is manufactured. Therefore, an epoxy backing

with 25 beam resonators is prepared in a molding process. Afterwards, the bending elements are

jointed to the backing. The results from experimental testing and numerical simulation show good

accordance.

Individual contributions of the candidate: Henneberg introduced the idea to create a stop band and

match its frequency range with the operating frequency of the ultrasonic transducer array in order
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to reduce mechanical cross-coupling. The design of an appropriate and manufacturable stop band

material was done by Henneberg as well as the numerical simulations. The contribution includes

the development of a process to manufacture monolithic epoxy structures of stop material and the

conduction of the related experiments. The manuscript was drawn by the lead author.
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Discussion of Results

This work is guided by three research questions which have been formulated in Section 1.2. Each

of the appended papers answers one of these questions. Hence, the introduction of locally struc-

tured fiber reinforcements shows a possibility to achieved a highly anisotropic directivity pattern

in ultrasonic transducers with rotationally symmetric geometry. The approach aims to gain sec-

tions with different material properties within a monolithic structure. In this way, the dynamic

behavior of an ultrasonic transducer can be tailored by the design of the locally structured fiber re-

inforcement. The design of the fiber reinforcement, in terms of its geometry as well as of its textile

fabric construction, and the angle of fiber orientation are identified as suitable design parameters

to control the directivity pattern of the ultrasonic transducer. A major difference of the approach

is the use of fiber reinforced composites instead of metal like in many other realizations of ultra-

sonic transducers, e.g. [13]. Known approaches from literature employ the contour geometry of

the transducer as design space in order to achieve anisotropic directivity patterns. [18] shows a

realization where a reinforcement of the pot like structure is achieved with material accumulation

on two opposite sides on the inner side of the transducer. As a result, this approach is accompanied

by design limitations and it is not possible to achieve anisotropic directivity patterns with rotation-

ally symmetric geometry on the inner side of the transducer. However, a rotationally symmetric

contour can be an advantage for certain design aspects. These can be the increase of sensitivity by

employing a larger piezoelectric element, reducing the diameter of the transducer but keeping the

dimension of the piezoelectric coupling element, or adding further design elements as discussed

later in this section. The study presented by Ho et al. [19] employs altering boundary conditions to

modify the directivity pattern of the ultrasonic transducer. Another approach presented by Cheng

et al. [20] introduces penetration slots in the lateral part of the transducer. Thus, the anisotropy

factor is increased from 2.6 to 3.8 by inserting three penetrating slots. These approaches are also
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suitable to achieve anisotropic ultrasonic transducers with a rotationally symmetric contour of the

inner side. However, a modification of the transducer contour is always required to control the

directivity pattern. Furthermore, penetrating the transducer is mostly not permitted as the inner

components of the transducer must be protected against environmental influences like humidity,

dust, and chemicals. The approach of locally structured fiber reinforcement overcomes the above

discussed restrictions as the directivity pattern can be controlled by the design of the fiber rein-

forcement. The high sensitivity of the directivity pattern to the angle of fiber orientation denote

the advantage as well as the weakness of the presented approach at the same time. On the one

hand, this fact allows the adoption of the dynamic behavior of the ultrasonic transducer to the

requirements easily. On the other hand, it requires a reproducible process with tight manufactur-

ing tolerances for production in order to achieve the desired directivity pattern of the ultrasonic

transducer.

In order to increase the performance for surround sensing applications, the research is guided to

multi-frequency ultrasonic transducers by the second research question, cf. Section 1.2. The inten-

tion is the development of ultrasonic transducers which have only one electro-mechanical coupling

element but can be operated at two or more frequencies with suitable sound radiation properties.

The approach presented in this work employs spatially distributed stop band material in order to

achieve the desired behavior. The generic model consists of a section without stop band material

where the excitation is realized by a piezoelectric coupling element. Furthermore, two spatially

separated sections with stop band material are realized by attaching multiple tuned resonators on

the downside of the plate like structure. These two sections exhibit a stop band within a certain

frequency range which is defined by the resonant behavior of the stop band material. The dynamic

behavior can be interpreted as follows. In frequency ranges where the excitation frequency does

not coincide with the frequency range of the stop band, the plate like structure behaves similar to

a plate as described by the classical plate theory [160]. Exciting the first resonance frequency, the

plate like structure shows an operational deflection shape which is dominated by the first normal

mode of the plate. At this frequency, suitable sound radiation properties are achieved. These are

indicated by a directivity pattern similar to monopole or dipole characteristics without distinctive

side lobes. In case the excitation frequency coincides with the stop band frequency range of the

spatially distributed stop band material, the wave gets induced by the electro-mechanical coupling

element in the center of the plate like structure. In the first section, the wave propagates freely

until it reaches the section which exhibits the stop band behavior. As no free wave propagation

is possible in this part of the plate, the wave gets reflected. As a result, an operational deflection

shape is achieved which is mainly dominated by the design of the stop band material. Designing

the plate like structure and the stop band material adequately, an operational deflection shape can
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be achieved where a part of the structure behaves similar to the first normal mode. The rest of

the structure remains in equilibrium position in this case. Due to this behavior, suitable sound

radiation properties are achieved at an additional resonance frequency which can be employed as

second operating frequency of the ultrasonic transducer. Different to approaches known from lit-

erature, the presented approach can realize a multi-frequency ultrasonic transducer with only one

electro-mechanical coupling element. No modification of the coupling element itself is required

which allows the use of simple and cost effective electronics. In the studies of Wang and Lee [23],

multiple electrodes are required to realize multiple operating frequencies. Sun et al. [29] combine

two electro-mechanical coupling elements, a CMUT and a PMUT, into a hybrid one. Another

approach of hybridization is presented in [27, 28]. An ultrasonic transducer array with multiple

operating frequencies is realized in [24]. The various operating frequencies are realized by CMUT

elements of different dimensions.

A disadvantage of the approach presented in this work can be identified in more required space

on the inner side of the ultrasonic transducer to realize the stop band material. The available

space is usually very limited in the application fields of ultrasonic transducers. Facing this issue,

it seems reasonable to direct further investigations in the direction to combine the approaches of

locally structured fiber reinforcement and spatially distributed stop band material. The first one

reduces design restrictions as discussed above while the second one can be employed to achieve a

multi-frequency transducer.

The highest surround sensing performance can be reached with phased array ultrasonic transduc-

ers. Thus, it is possible to electronically control the field of view and to obtain real 3D position

information between the array transducer and an obstacle, cf. Fig. 4.1. However, mechanical cross-

coupling between the transducer elements decreases the performance of phased array ultrasonic

transducers. The reduction of mechanical cross-coupling is addressed by the last research ques-

tion. In the first part of the study, the behavior of mechanical cross-coupling is investigated in a

generic model representing a compact, low frequency, and air-coupled phased array transducer.

Based on the modal behavior of the entire structure, mechanical cross-coupling is identified and

interpreted as follows. The transducer elements exhibit a mode with in-phase motion and a mode

with out-of-phase motion. It is found that a small difference in the eigenfrequency of the in-phase

and the out-of-phase mode leads to weak cross-coupling and is interpreted as strong cancellation of

these modes when considering the transfer mobility between two transducer elements. The drive

point mobility remains nearly unaffected. The description of mechanical cross-coupling by the

modal behavior of the entire structure is different to that known from literature, like [32, 53]. This

is possible as in compact phased array transducers, the dimensions of the backing are small com-

55



5 Discussion of Results

pared to the dimensions of the transducer elements. Furthermore, no extra lossy region on the edge

of the backing is present. Thus, wave reflections on the edges of the backing must be considered in

this type of array transducers. The presented method can be used to qualitatively evaluate mechan-

ical cross-coupling based on a modal analysis and the difference in eigenfrequency between the

in-phase and the out-of-phase mode can be used as an objective function for design optimization.

This is an advantage as a modal analysis requires less computational effort compared to a harmonic

analysis.

The eigenfrequencies of these modes are dependent on the boundary conditions of the transducer

elements and hence on the backing of the phased array transducer. Thus, the particular dynamic

behavior of the backing is identified to have a high influence on mechanical cross-coupling. In

order to achieve compact phased array transducers with weak cross-coupling, a new approach

employing stop band material as backing is introduced. Therefore, a large number of resonators

are attached to the downside of the backing forming a resonant stop band material. The frequency

range of the stop band is tuned by trimming the resonator length. It is shown that mechanical cross-

coupling can be reduced significantly in case the frequency range of the stop band coincides with

the operating frequency of the phased array transducer elements. The influence of the backing on

mechanical cross-coupling is investigated in several studies, e.g. [57, 55]. The possibility to reduce

it by inserting kerfs and perforations into the backing is shown in the studies of Celmer et al. [56].

The approach of using resonant stop band material as backing offers a new possibility to reduce the

mechanical cross-coupling significantly. It can be easily adopted to various phased array ultrasonic

transducers by tuning the frequency range of the stop band to the operating frequency. In compar-

ison to various approaches which modify the excitation signal, e.g. [63, 64, 66–69], the presented

approach in this work is suitable to reduce mechanical cross-coupling in sound emission and re-

ception mode. The limitations of the proposed solution is mainly related to the manufacturability.

However, this limitation holds in general for the realization of resonant stop band approaches.

Summarizing the result discussion, it can be stated that all approaches presented in this work show

good prospects to enhance the performance of ultrasonic transducers. As stated in the discussion

of the individual approaches, the manufacturability and reproducibility are key factors to realize

the shown prospects and to bring the introduced approaches into real industrial applications.
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Conclusion

The presented work contributes to the field of structural dynamics and acoustics of ultrasonic trans-

ducers. New approaches for single, multi-frequency, and phased-array transducers are investigated

with regard to increase the performance of surround sensing systems. Finally, this work is guided

by three research questions.

The first research question addresses the realization of anisotropic directivity patterns in ultrasonic

transducers. In order to increase the surround sensing performance, anisotropic directivity patterns

with wide angled sound radiation in horizontal direction and narrow angled sound radiation in

vertical direction are required. Thus, early ground reflections are avoided and at the same time a

comprehensive field of view is obtained. Known approaches from literature employ asymmetric

topologies of the ultrasonic transducer to achieve the desired behavior. This results in a limitation

of the reachable anisotropy factor within the given sensor dimensions. The approach presented

in this work opens up a new design space to overcome this limitation. Therefore, fiber reinforced

composites are used to realize the ultrasonic transducer. The introduction of locally structured fiber

reinforcements leads to sections with and without fiber reinforcement. Consequently, the material

properties can be varied within a monolithic structure. This approach is suitable to achieve highly

anisotropic directivity patterns in ultrasonic transducers with a rotationally symmetric geometry.

Finally, the field of view of ultrasonic transducers can be enhanced resulting in a better surround

sensing performance.

Besides an enhanced field of view, the number of applied ultrasonic transducers increases contin-

uously. In order to operate a high number of transducers in short intervals or in parallel, a signal

discrimination by frequency filtering is desired. Multi-frequency ultrasonic transducers allow such

a discrimination. However, known approaches from literature suffer at least from one of two dis-

advantages. They employ multiple electro-mechanical coupling elements which lead to more com-
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plex electronics or they show sound radiation behavior which is not suitable for surround sensing

applications at multiple operating frequencies, or both. The approach presented in this work of-

fers a solution to design multi-frequency transducers having only one electro-mechanical coupling

element and exhibiting suitable sound radiation properties at multiple well separated operating fre-

quencies. To do so, the concept of spatially distributed stop band material is introduced. The first

operating frequency does not coincide with the frequency of the stop band. Thus, the structure

shows an operational deflection shape similar to that from state of the art ultrasonic transducers.

Additionally, a particular operational deflection shape is obtained in case the operating frequency

coincides with the frequency range of the stop band. The manner of the operational deflection

shape is similar to that at the first operating frequency and suitable sound radiation properties are

achieved. Finally, the above mentioned drawbacks of known concepts can be overcome with the

presented approach.

Compared to the previous discussed transducer concepts, phased array transducers offer an even

better performance in surround sensing applications. Thus, it is possible to obtain real 3D informa-

tion instead of only the distance between the transducer and an obstacle. The technology of phased

array transducers is well-known and applied in medical ultrasonic application and non destructive

testing. However, the design of compact, air-coupled, low frequency phased array transducers

leads to major design challenges. In the presented work, the issue of mechanical cross-coupling

caused by a common backing is addressed. The cause-effect relationship between the particular

dynamic behavior of the backing and mechanical cross-coupling is investigated. To overcome this

design issue, an approach which employs stop band material is introduced in order to reduce me-

chanical cross-coupling. It is shown that stop band material as backing has a good prospect to

reduce mechanical cross-coupling in compact, air-coupled, low frequency phased array transduc-

ers.

Based on the developed approaches in this work, it is possible to design ultrasonic transducers

with an increased and more reliable performance. Thus, a more comprehensive surround sensing

is possible which can be used to increase safety in automotive, robotic, and industrial applications.
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Abstract

Ultrasonic transducers are widely used in automotive and industrial
applications for surround sensing. Anisotropic directivity patterns
with a narrow-angled beam in the vertical plane and a wide-angled
beam in the horizontal plane are needed in automotive applications
particularly. Today’s ultrasonic transducers for automotive applica-
tions are mainly metal based, pot-like ultrasonic transducers. The
anisotropic directivity pattern is achieved by increasing the thickness
of the vibrating plate-like part of the structure locally. Composites
with locally structured fiber reinforcements open up the possibility to
design the dynamical behavior of components without changing its
contour. Using this new dimension of design to modify the directivity
pattern of sound radiating components is less examined in litera-
ture. In this work, the possibility of creating an anisotropic directivity
pattern by locally structuring the fiber reinforcement is investigated
using a generic ultrasonic transducer model. The structuring is real-
ized by sections of carbon fiber reinforced epoxy and sections made
of epoxy only. Furthermore, the influence of geometrical and mate-
rial uncertainties of the fiber reinforcement on the directivity pattern
is discussed. The authors identify locally structured fiber reinforce-
ments as a suitable possibility to create an anisotropic directivity
pattern of an ultrasonic transducer.

Keywords: ultrasonic transducer; anisotropic directivity pattern; fiber
reinforced composites; sensitivity analysis

Introduction

Ultrasonic transducers are widely used in automotive and industrial
applications for surround sensing. Due to increasing level of auto-
matic driving and robotic applications, there is a huge need for sur-
round sensing sensors. State of the art ultrasonic transducers for au-
tomotive applications are metal based, pot-like structures [1]. The
electro-mechanical coupling is realized with piezoelectric ceramic el-
ements. To achieve a good performance in terms of the measurement
range, these ultrasonic transducers have an anisotropic directivity
pattern. They offer a wide angular aperture in horizontal plane and a
narrow angular aperture in vertical plane. Thus, disturbing reflections
from the ground are reduced. To achieve an anisotropic directivity
pattern, several geometrical designs are suggested in [1]. In former
studies [2], a method is presented to increase the anisotropy of an ul-
trasonic transducer. Therefore, penetrating slots are inserted in the

cylindrical side wall. The influence of altering boundary conditions
on the beam pattern is investigated in [3]. In [4], a possibility is de-
scribed how to sharpen the directivity of radiated ultrasonic waves
in ultrasonic transducer arrays. In [5], the setup and directivity pat-
tern of a thermoacoustic transducer is investigated. Finite element
modeling of an axisymmetric piezoelectric ultrasonic transducer is
described in [6]. The radiation of ultrasonic waves into a fluid or
solid medium is investigated. Therefore, the different modes and the
belonging radiated sound fields are calculated.
In this study, a new concept of ultrasonic transducers based on com-
posite materials is investigated. Instead of metal, a fiber reinforced
composite is used to form the pot-like structure of the ultrasonic
transducer. The electro-mechanical coupling is realized with a piezo-
electric ceramic element as known from state of the art ultrasonic
transducers. Fiber reinforced composites offer the possibility to de-
sign a particular dynamic behavior of structures by modifying the
fiber reinforcement. In literature, a couple of studies regarding sound
radiation and sound transmission of composite plate are presented,
such as [7, 8, 9]. The present study investigates fiber reinforcements
with local structuring in order to obtain an ultrasonic transducer with
an anisotropic directivity pattern. The structuring is realized by sec-
tions with carbon fiber reinforced epoxy and sections made out of
epoxy only. In terms of robustness and feasibility, the sensitivity to
material and geometrical uncertainties is an import aspect. Thus, the
influence of uncertainties is investigated in finite element simulation.
A sensitivity analysis is carried out to identify the influence of differ-
ent parameters on the sound radiation.
In the following section, the applied methods are presented. As the
used material model has high significance for locally structured fiber
reinforced composites, a focus is set on this topic. In a next step, the
investigated models are introduced. Applying finite element methods,
the directivity patterns of different designs and its sensitivity to ge-
ometrical and material uncertainties is presented. Subsequently, the
finite element model is validated by experiments. In the final section,
a conclusion is drawn.

Methods
In this section, the applied methods are presented. To carry out nu-
merical simulations with the finite element method, especially the
applied material models of the fiber reinforced composite have high
importance. Furthermore, the calculation of the directivity pattern
and the experimental testing are discussed.
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Material model
Material properties and their appropriate description are key elements
to investigate locally structured fiber reinforced composites. Compos-
ite materials consist at least out of two different materials. Knowing
the properties of each component itself, it is possible to calculate the
properties of the composite. Therefore, a homogenization approach
is applied, also known as the rule of mixtures (ROM) [10]. The fo-
cus of this work is on carbon fiber reinforced epoxy. Carbon fibers
show anisotropic behavior. Thus, an orthotropic material model is
used to predict the dynamical behavior of the carbon fiber reinforced
composite. Firstly, the general behavior of an orthotropic material
is described. Afterwards the calculation of the required properties
is shown for composites with a unidirectional, non-crimp fabric,
cf. Fig. 1, and a balanced, woven fabric, cf. Fig. 3.
The general stress-strain relation in an orthotropic material is de-
scribed by [10]




ε1
ε2
ε3
γ12
γ13
γ23




=




S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66




︸ ︷︷ ︸
[S]

·




σ1
σ2
σ3
τ12
τ13
τ23




, (1)

where [S] denotes the compliance matrix. ε , γ , σ , τ denote the nor-
mal strain, shear strain, normal stress, and shear stress. Assuming
linear elastic behavior, the relation can be described in accordance to
Hooke’s law with so called engineering constants [11]




ε1
ε2
ε3
γ12
γ13
γ23




=

[
A 0
0 B

]
·




σ1
σ2
σ3
τ12
τ13
τ23




, (2)

with

A=




1/E1 −ν21/E2 −ν31/E3
−ν12/E1 1/E2 −ν32/E3
−ν13/E1 −ν23/E2 1/E3


 (3)

and

B =




1/G12 0 0
0 1/G13 0
0 0 1/G23


 . (4)

Applying the relation νi j
Ei

=
ν ji
E j

, known as the Maxwell-Betti reci-
procity relation [10], leads to

A =




1/E1 −ν12/E1 −ν13/E1
−ν12/E1 1/E2 −ν23/E2
−ν13/E1 −ν23/E2 1/E3


 . (5)

Thus, 9 material properties of the composite are needed to describe
the orthotropic material stress-strain behavior, the Young’s moduli
E1, E2, E3, the Possion’s ratios ν12, ν13, ν23, and the shear moduli
G12, G13, G23. The composite density ρ is calculated with the mate-
rial properties of the single components applying the ROM.

Unidirectional, non-crimp fabric

Unidirectional, non-crimp fabrics are layers with only one axis of
fiber orientation. All fibers are orientated in one direction. Therefore,

unidirectional, non-crimp fabrics made of carbon fibers show highly
anisotropic material properties within one layer. According to the no-
tation of directions implied by Eq. (1), the orientation of the fiber axis
is defined coinciding with the direction indicated by 1. Due to the
symmetry, normal to direction 1, the number of independent material
properties is reduced from 9 to 6 for this composite material. There-
fore, it is assumed that EUD

2 = EUD
3 , νUD

12 = νUD
13 , and GUD

12 = GUD
13 .

By applying GUD
23 =

EUD
2

2(1+νUD
23 )

, the number of independent material

parameters are reduced to 5. Thus, the material model becomes a
transversal isotropic material model.

Figure 1: Unidirectional, non-crimp fabric with fiber orientation in direc-
tion 1. The thin filaments in shape of a rhombus are sewing filaments which
fix the carbon filament to a fabric. The influence on the material properties is
neglected.

The mechanical properties can be achieved by applying a rheological
model. Fig. 2 shows exemplary the rheological model to obtain the
Young’s modulus in direction 1. It assumes a parallel circuit out of
a spring representing the Young’s modulus parallel to the fiber axis
EF,‖ and a spring representing the Young’s modulus of the matrix
material EM.

+ =EM EF,‖

EUD
1

EF,‖EM

Figure 2: Rheological model of the Young’s modulus in direction parallel to
the fiber axis for a unidirectional, non-crimp fabric.

The Young’s modulus is then calculated by [10]

EUD
1 = ΦEF,‖+(1−Φ)EM , (6)

with Φ denoting the overall fiber volume fraction of the composite.
The Young’s modulus transverse to the fiber direction is calculated
using the semi-empircal approach of Puck by [10]

EUD
2 =

EM

1−ν2
M

1+0.85Φ2

(1−Φ)1.25 + EM
(1−ν 2

M )EF,⊥

. (7)

The Poisson’s ratio is calculated applying the ROM

νUD
12 = ΦνF,12 +(1−Φ)νM . (8)

The transverse Poisson’s ratio νUD
23 is obtained by the approach of

Foye given in [12]

νUD
23 = ΦνF,23 +(1−Φ)νM




(
1+νM−νUD

12
EM

EUD
1

)

(
1−ν2

M +νMνUD
12

EM
EUD

1

)


 . (9)
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The shear moduli GUD
12 and GUD

13 are obtained with the semi-empirical
approach of Förster [10]

GUD
12 = GUD

13 = GM
1+0.4Φ0.5

(1−Φ)1.45 + GM
GF,12

Φ
. (10)

To obtain the shear modulus GF,12 for anisotropic materials, in [13]
the following relation is given:

GF,12 =

√
EF,‖EF,⊥

2(1+
√νF,12νF,21)

. (11)

In order to retrieve νF,21, the Maxwell-Betti relation is applied. Thus,
it can be calculated using

νF,21 = νF,12
EF,⊥
EF,‖

. (12)

Due to the assumption of a transversal isotropic material, GUD
23 is

determined by

GUD
23 =

EUD
2

2(1+νUD
23 )

(13)

as mentioned before.

Balanced, woven fabric

Woven fabrics are textiles formed on a loom. Three fundamental
types of weave construction exist: plain weave, twill weave and satin
weave. The investigations in the present study are conducted with
a plain weave. It is formed by shedding after every weft insertion.
Thus, the warp yarn alternates between lifting and lowering after ev-
ery weft yarn. By this, the warp and weft yarn are crimped [14]. This
has a major effect on the mechanical properties of the woven fabric
especially for anisotropic materials like carbon fiber. Balanced, wo-
ven fabrics have a ratio of 1 between warp and weft yarn in terms
of volume and weight. Thus, the properties in warp and in weft di-
rection are equal. Balanced, woven fabrics show less anisotropic
behavior within one layer compared to unidirectional, non-crimp
fabrics. The required material properties are reduced from 9 to 6
engineering constants, because of EWF

1 = EWF
2 , νWF

13 = νWF
23 , and

GWF
13 = GWF

23 . Please note, it is not a transversal isotropic material

model as GWF
12 =

EWF
1

2(1+νWF
12 )

does not apply [15]. Fig. 3 shows a bal-

anced, plain weave made of carbon fiber.

Figure 3: Balanced, plain weave made out of carbon with warp yarn in direc-
tion 1 and weft yarn in direction 2.

An orthotropic material model, developed in [16], is applied. Fig. 4
shows the rheological model of the composite to calculate the

Young’s modulus in direction 1 for a balanced, woven fabric. It as-
sumes a series and parallel circuit of fiber and matrix material proper-
ties. The model consists of two springs in series, one of which repre-
senting the Young’s modulus of the matrix (EM). The second spring
in series describes the Young’s modulus perpendicular to the fiber
axis (EF,⊥). In parallel to this series, the Young’s modulus of the fiber
parallel to its axis (EF,‖) is assigned.

+ =
EM

EF,⊥
EF,‖

EWF
1,2EWF

1,1 EWF
1

Figure 4: Rheological model to calculate the Young’s modulus EWF
1 [16].

Applying the ROM, the series of springs is calculated by

EWF
1,1 =

EMEF,⊥
Φ1,1EM +(1−Φ1,1)EF,⊥

, (14)

where Φ1,1 denotes the fiber volume fraction of fibers with an axis
orientation perpendicular to the direction 1. In a balanced, woven
fabric, it is calculated by

Φ1,1 =
Φ
2

1− Φ
2

, (15)

with Φ representing the overall fiber volume fraction of the compos-
ite. The Halpin-Tsai method introduces a semi-empirical approach
to take non-uniform strain in the matrix into account [17]. Thus, a
correction factor β is inserted into Eq. (14), resulting in

EWF
1,1 =

βEMEF,⊥
Φ1,1βEM +(1−Φ1,1)EF,⊥

. (16)

Due to the crimp of fibers in a woven fabric, the fiber axis is only
in some parts of the fabric parallel to the direction 1. This results in
a reduced stiffness in direction 1 for anisotropic materials like car-
bon. This is considered by introducing a factor of stiffness reduction
η ∈ [0,1]. The second part of the parallel circuit, cf. Fig. 4, is then
calculated by

EWF
1,2 = ηEF,‖ . (17)

The resulting Young’s modulus for the direction 1 is finally calcu-
lated by

EWF
1 =

Φ
2

EWF
1,2 +(1− Φ

2
)EWF

1,1 . (18)

In direction 3, there exists only a series circuit out of fibers perpen-
dicular to its axis and matrix. Thus, EWF

3 is calculated in equivalent
to EWF

1,1 by

EWF
3 =

βEMEF,⊥
ΦβEM +(1−Φ)EF,⊥

. (19)

Applying the ROM, the Poisson’s ratio νWF
12 is obtained in the same

manner like the Young’s moduli by

νWF
12,1 =

νMνF,21

Φ1,1νM +(1−Φ1,1)νF,12
(20)

and
νWF

12,2 = ηνF,12 (21)

resulting in

νWF
12 =

Φ
2

νWF
12,2 +(1− Φ

2
)νWF

12,1 . (22)
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To obtain the Poisson’s ratio ν13 = ν23, the approach given in [15] is
applied. The properties of a balanced, woven fabric are mimicked by
unidirectional layers. Thus, Poisson’s ratio is calculated by

νWF
13 = EWF

1

(
1

E1

E1(ν12 +ν23 +ν12ν23)+ν2
12

E1 +(1+2ν12)E2

)UD

. (23)

The in-plane shear modulus is obtained in the same way as the
Young’s moduli.

GWF
12 =

βGMGF,12

ΦβGM +(1−Φ)GF,12
. (24)

A method to calculate the transverse shear moduli is presented in
[15]. It uses equivalent properties of a unidirectional reinforced lami-
nate to obtain GWF

13 by

GWF
13 = GWF

23 = (
1+νUD

23

EUD
2

+
1

2G12
)−1 . (25)

Even though, there are certain inaccuracies shown in [15] for the
approach given in Eq. (25), the study of [16] shows that the trans-
verse shear modulus has small influence on the dynamical behavior
of composites with comparable mode shapes and frequency ranges
investigated in the presented study.

Prediction of material properties

To predict the dynamical behavior, material properties of the sin-
gle raw materials as well as the fiber volume fraction are needed.
While the Young’s moduli EM and EF,‖ are usually given by the man-
ufacturer, EF,⊥ is mostly unknown. For carbon fibers, the ratio of
EF,‖
EF,⊥

= 12 gives an appropriate assumption [16]. In order to predict
the fiber-volume ratio, material properties of the fiber reinforcement
and geometrical parameters of the structure are needed. A common
material property of fabrics is the areal density ρ̃Fa, also known as
area weight. It describes the mass per area of two dimensional struc-
tures [18]. Knowing the density of carbon fiber ρF and the thickness
of the structure tSt, the fiber volume fraction Φ is calculated by [16]

Φ =
nρ̃Fa

ρFtSt
, (26)

where n denotes the number of layers in the structure. The maximum
number of layers in the structure is limited by the integer quotient

nmax =
tSt

tFa
, (27)

with tFa describing the thickness of the fabric layer.

In the following investigations, the material properties given in ta-
ble 1 are used.

Table 1: Input parameters for the micro mechanical modeling of the
composite.

Epoxy
EM 3815 MPa
νM 0.33
ρM 1.14 g

cm3

Balanced, woven fabric
EF,‖ 230 GPa
νF,12 0.33
νF,23 0.45
ρF 1.77 g

cm3

ρ̃Fa 204 g
m2

tFa 0.30 mm
η 0.826

Unidirectional, non-crimp fabric
EF,‖ 242 GPa
νF,12 0.33
νF,23 0.45
ρF 1.77 g

cm3

ρ̃Fa 396 g
m2

tFa 0.50 mm

Far-field directivity pattern
The directivity pattern of the ultrasonic transducer is calculated in
the far-field. This is done performing the Rayleigh integral [19, 20].
The ultrasonic transducer is assumed as a radiator embedded in a flat,
infinite, and rigid baffle. For this assumption, the Rayleigh integral
gives an exact solution [21]. These boundary conditions are suitable
to approximate the directivity pattern for an ultrasonic transducer
which is embedded in a car bumper in the final application. In [22],
three conditions are mentioned to apply far-field assumptions. Thus,
the distance (R) from the radiator to the field point has to be much
greater than the dimension (l) of the radiator

R� l . (28)

Furthermore, the condition

l
λ
� R

l
(29)

must be fulfilled in order to keep the error caused by phase shifts
smaller than π

4 . Finally, the distance between the radiator and field
point should be large compared to the wavelength

R� λ . (30)

The Rayleigh integral for a plane surface like a plate can by ex-
pressed for eiωt harmonic time dependence by [23]

p(~y) =
∫

Γ
−i ω ρf G(~x,~y) νf(~x) dΓ (~x) (31)

with G(~x,~y) =
e−i k r

2 π r
and r = |~x−~y| , (32)

where Γ , ρf, ω, νf, k, i denote the radiating surface, fluid density,
circular frequency, fluid particle velocity, wavenumber, and imagi-
nary unit. In [24], it is shown that the particle velocity distribution
on the surface of the structure can be used to estimate the radiated
far-field sound pressure. An approximation of the sound pressure in
far-field radiated by a plane surface, expressed in spherical coordi-
nates (R,ϑ ,ϕ) is given in [22]
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p(R,ϑ ,ϕ) =
i ω ρf

2πR
e−ikR · . . .

·
∫ ly\2

−ly\2

∫ lx\2

−lx\2
ei k(xQ sinϑ cosϕ+yQ sinϑ sinϕ) v(xQ,yQ) dxQ dyQ .

(33)

The directivity pattern of the ultrasonic transducer should offer a
wide angular aperture in horizontal plane and a narrow angular aper-
ture in vertical plane. In Fig. 5, the final application of an ultrasonic
transducer (a) in a car bumper (b) is shown with indication of the
vertical (c) and the horizontal (d) angle of aperture. The angle of
aperture is defined as the angle at which the sound pressure level is
reduced to -6 dB. The referenced sound pressure for the sound pres-
sure level is the maximum radiated sound pressure of the ultrasonic
transducer. The angle is defined between a reference axis and a field
point axis. The reference axis is perpendicular to the sound radiating
surface going through its center point, while the field point axis is de-
fined as the vector between field point and surface center point. As a
drop of the sound pressure level to −6 dB occurs twice, the angle of
aperture is calculated as sum of the absolute values these two angles
on both sides of the maximum.

(a)

(b)(c)(d)

Figure 5: Ultrasonic transducer (a) in final application in a car bumper (b).
Narrow angle of aperture in vertical direction (c) and wide angle of aperture in
horizontal direction (d).

As an indicator for the anisotropy of the directivity pattern, an
anisotropy factor α is defined by

α =
φH,−6 dB

φV,−6 dB
, (34)

where φH,−6 dB and φV,−6 dB indicate the angle of aperture in hori-
zontal and vertical direction, cf. Fig. 5.

Experimental setup
The vibrational behavior of the ultrasonic transducer is character-
ized with a non-contact measurement using a scanning laser Doppler
vibrometer. Thus, the resonance frequency and the operational de-
flection shape (ODS) are identified. Free-free boundary conditions
are suitable to obtain reproducible results from experimental test-
ing which are comparable to simulation results. To approximate this
boundary condition, the sensor head is placed on two horizontally
tighten yarns, cf. Fig. 6. The ultrasonic transducer is characterized in
sound radiation mode. Consequently, the excitation is realized with

an electrical voltage applied to the piezoelectric ceramic. A noise
similar, periodic signal, so called pseudo random, is applied in the
range from 40 kHz to 60 kHz. The advantage of this signal type is the
absence of leakage [25]. All frequencies of the spectrum are excited
simultaneously.

(a) (b)

Figure 6: Experimental test setup to characterize the surface velocity of the
specimen. (a) Overview of measurement setup. (b) Specimen placed on hori-
zontal tighten yarn to approximate free-free boundary conditions.

To obtain the eigenfrequencies and eigenvectors of the measured
structure, an experimental modal analysis is performed. The agree-
ment between simulation and experimental testing is determined
using the modal assurance criterion (MAC). The MAC is a common
method to quantify the comparison of mode shapes [26]. It is calcu-
lated by

MAC =

∣∣∣∣∣
n
∑

j=1
(ΦSim)j

(
ΦExp

)∗
j

∣∣∣∣∣

2

(
n
∑

j=1
(ΦSim)j (ΦSim)

∗
j

)
·
(

n
∑

j=1
(ΦExp)j

(
ΦExp

)∗
j

) , (35)

where ΦSim and ΦExp denote the elements of the eigenvectors ΦSim
and ΦExp of simulation and experiment. The conjugate complex
value is identified by *. The MAC is a scalar value MAC ∈ [0,1].
Correlated modes should attain a MAC value greater than 0.9, while
the MAC value for uncorrelated modes should be less than 0.05 [26].

Model description
In this section, the investigated test cases and the belonging models
are presented. The models comprise the virtual models of the finite
element simulation as well as the physical models of the experimen-
tal testing.

Test cases
The dynamical behavior is studied in a generic model representing
the head of an ultrasonic transducer. It consists of three parts: the
sensor head, a piezoelectric ceramic, and a circuit board, cf. Fig. 7.
The sensor head contains sections of epoxy and sections of carbon
fiber reinforced epoxy. The top surface of the plate-like structure,
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cf. Fig. 7 (a), is the sound radiating and receiving intersection in final
applications. Even though, this plate-like structure is not a membrane
within the meaning of a mechanical definition, it is often called mem-
brane, cf [1, 27]. This is due to the similar usage of membranes in
microphones and loudspeakers. Fig. 7 shows the reference model in
cross-section.

(a)

(b)

(c)

Figure 7: Reference model without locally structured fiber reinforcement
in cross-section. (a) Fiber reinforced plate-like structure. (b) Piezoelectric
ceramic. (c) Circuit board.

The sensor head does not contain local structuring of the fiber rein-
forcement. The fiber reinforcement is realized with a balanced, plain
weave of carbon fiber in the plate-like structure. The electromechani-
cal transformation is achieved by a piezoelectric ceramic. It is placed
on the inside of the plate-like structure. Thus, sound can be radiated
by applying an electrical voltage to the piezoelectric ceramic. This
operating mode is called radiation mode or emission mode. In con-
trast, in receiving mode, the plate-like structure is excited by a sound
pressure. Consequently, an electrical voltage results between the
electrodes of the piezoelectric ceramic. The circuit board is jointed to
the next level where the inner diameter increases. This has a stiffen-
ing effect on the sensor head.

To obtain an anisotropic directivity pattern, the carbon fiber rein-
forcement is locally structured as shown in Fig. 8. The first geometry
of structuring contains two semicircular sections where no fiber re-
inforcement is present, cf. Fig. 8 (a) and (b). Model (a) is reinforced
with a balanced, woven fabric of carbon fiber. Warp and weft yarn
of the woven fabric are orientated in direction 1 and direction 2. A
unidirectional, non-crimp fabric is used to reinforce model (b). The
fibers are orientated parallel to direction 2. The second geometry of
locally structured fiber reinforcements is realized by a stripe shaped
section of epoxy in the center of the plate-like structure. The fiber
reinforcement of model (c) is done similar to model (a). In case of
model (d), the fiber orientation axis of the unidirectional, non-crimp
fabric is parallel to the stripe of epoxy, coinciding with direction 1.
The contour of the structured models are equal to the reference
model. The thickness of the plate-like structure is 2.5 mm. In cases
of model (a) and (b), the radius of the semicircular epoxy section is
6.0 mm. Regarding model (c) and (d), the width of the epoxy stripe
is set to 4.0 mm.

(a) (b)

(c) (d)

Figure 8: Models with locally structured fiber reinforcement in order to
achieve an anisotropic directivity pattern. (a) Balanced, woven fabric with
semicircular structuring at the outer area. (b) Unidirectional, non-crimp fabric
with semicircular structuring at the outer area. Axis of fiber orientation in di-
rection 2. (c) Balanced, woven fabric with section of epoxy only in the middle.
(d) Unidirectional, non-crimp fabric with section of epoxy only in the middle.
Axis of fiber orientation in direction 1.

Finite element model
The dynamical behavior is investigated in simulation with a finite
element model. These simulations are carried out with the commer-
cial software Simulia Abaqus 2017. The sensor is modeled with 20-
node brick elements. To avoid mesh dependencies in the results, the
guidelines given in [28] are considered. A maximum element edge
length of 0.5 mm is applied. The piezoelectric ceramic is modeled
with 20-node brick elements with piezoelectric properties. The con-
tacts between sensor head and piezoelectric ceramic, and sensor and
circuit board are realized by tie constraints with a surface to surface
formulation. Thus, an idle joint is assumed.

(a) (b)

Figure 9: Finite element model of ultrasonic transducer head. (a) The mesh is
realized with 20-node brick elements. (b) Mode shape of interest.

Free-free mechanical boundary conditions are applied to the model.
In order to obtain the eigenfrequencies and the belonging mode
shapes, a modal analysis is performed initially. In this case, a
short circuit is applied to the piezoelectric ceramic. Especially, the
mode with a mode shape where the plate-like structure is bended,
cf. Fig. 9 (b), is focused. Afterwards, a harmonic analysis is carried
out. In this case, an excitation is realized by applying an altering volt-
age of 100 V to the electrodes of the piezoelectric ceramic. Due to
the different designs, the eigenfrequency and resonance frequency
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vary between the different test cases shown in Fig. 7 and Fig. 8. The
corresponding eigenfrequencies and resonance frequencies are shown
in table 2. In a post processing step, the directivity pattern is calcu-
lated at the resonance frequency out of the results gained from the
harmonic analysis. The Rayleigh integral is performed on the surface
at the top of the plate-like structure.

Table 2: Eigenfrequencies and resonance frequencies of the different models,
cf. Fig. 7 and Fig. 8.

Eigenfrequency Resonance frequency
[kHz] [kHz]

Reference model 45.6 45.3
Model a 43.8 43.7
Model b 42.5 42.4
Model c 42.9 42.8
Model d 43.2 43.1

Physical models
Physical models are required to validate the results from the finite
element simulation. Furthermore, the feasibility of the proposed so-
lutions can be proved. The specimens of the generic sensor head are
prepared with a resin transfer molding process. The fiber reinforce-
ment is cut and then placed in a molding tool. Cutting and handling
requires high effort, as the fabric is small. Thus, it tends to break eas-
ily, particularly if the cutting and handling is done manually instead
of fully automated. After placing the fiber reinforcement, the tool is
closed and resin is injected. As soon as the resin is cured, the fiber
reinforced composite can be demolded. In a following process, the
piezoelectric ceramic is jointed with epoxy into the sensor head. The
electrical contacts are realized by soldering wires on the piezo. In a
final step, the circuit board is jointed to the sensor head.

Results
In this section, results from finite element simulation and experimen-
tal testing are presented and discussed.

Directivity pattern
The directivity pattern is calculated by performing the Rayleigh in-
tegral as described in the previous section. The reference model is
set up with a non structured fiber reinforcement as mentioned above,
cf. Fig. 7. Thus, the material properties in the plate-like structure are
equal in the whole area.

Figure 10: Polar plot of the directivity pattern of the reference model,
cf. Fig. 7, at resonance frequency 45.3 kHz.

Fig. 10 shows the directivity pattern of the reference model in a polar
plot. The angle of aperture is equal in vertical and horizontal direc-
tion. The reduction of the sound pressure level to −6 dB arises at 55°
in both directions. Thus, the anisotropy factor α of the reference is
unity as expected.

Figure 11: Polar plot of the directivity pattern of the structure model a,
cf. Fig. 8 (a), at resonance frequency 43.7 kHz.

Structuring the fiber reinforcement of the reference model with two
semicircular sections, cf. Fig. 8 (a), the directivity pattern shows a
slight anisotropy, cf. Fig. 11. The anisotropy factor results in α =
1.10. The angles of aperture increase to 68° in horizontal direction
and 62° in vertical direction.

Figure 12: Polar plot of the directivity pattern of the structure model b,
cf. Fig. 8 (b), at resonance frequency 42.4 kHz.

Replacing the balanced, woven fabric with a unidirectional, non-
crimp fabric, cf. Fig. 8 (b), the gained anisotropy of the directivity
pattern is much higher while keeping the same geometry of the fiber
reinforcement, cf. Fig. 12. This is caused due to the higher anisotropy
of the unidirectional, non-crimp fabric itself. The horizontal angle
of aperture increases to 90°, while the vertical angle remains at 62°.
Consequently, the anisotropy factor raises to α = 1.45.
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Figure 13: Polar plot of the directivity pattern of the structure model c,
cf. Fig. 8 (c), at resonance frequency 42.8 kHz.

Dividing the fiber reinforcement in two separate parts and inserting
a stripe of epoxy only, cf. Fig. 8 (c), results in a highly anisotropic
directivity pattern, even using a balanced, woven fabric. Compared to
the results in Fig. 12, the angles of aperture are narrower, with 89° in
horizontal and 58° in vertical direction. The anisotropy factor results
in α = 1.53, cf. Fig. 13.

Figure 14: Polar plot of the directivity pattern of the structure model d,
cf. Fig. 8 (d), at resonance frequency 43.1 kHz

Using the same geometrical design as in the previous model and in-
serting a unidirectional, non-crimp fabric, cf. Fig. 8 (d), increases the
anisotropy of the directivity pattern again. The horizontal angle of
aperture, 100°, is almost twice the vertical one, 51°, cf. Fig. 14 .
Comparing Fig. 10 with Figs. 11 and 13, it is apparent, that an
anisotropic directivity pattern can be achieved by local structuring of
the fiber reinforcement. Replacing the balanced, woven fabric with a
unidirectional, non-crimp fabric, results in a higher anisotropy of the
directivity pattern, as shown in Figs. 12 and 14. Locally structured
fiber reinforcements are identified as a suitable solution to realize ul-
trasonic transducers which have a wide angular aperture in horizontal
plane and a narrow one in vertical plane.

Sensitivity and uncertainties
The aim of a sensitivity analysis is to identify the influence of various
parameters on a certain output. The output can vary depending on
the objective which is investigated. In this study, the objectives are
the eigenfrequency of the ultrasonic transducer and the anisotropy
factor α of the directivity patterns. Thus, the robustness of the de-
sign with regard to uncertain parameters is considered. As the mod-
els c and d show higher anisotropy factors, the sensitivity analysis

is focused on these designs. In case of the reference model, the in-
vestigated geometrical uncertain parameter is the thickness of the
plate-like structure. In cases of models with locally structured fiber
reinforcement, additional geometrical uncertainties of the fiber layers
are investigated. Thus, the sensitivity to changes in the width of the
epoxy stripe and the angle of fiber orientation are studied. Further-
more, the influence of the angle of fiber orientation is investigated
with different fiber volume fractions. To quantify the influence of
material properties, the Young’s modulus of the carbon fiber parallel
to its fiber axis EF,‖, cf. Eq. (6), is varied. Default parameters for the
finite element model are set in accordance to the values presented in
table 1 and in section "Test cases".

2.0 2.5 3.0 3.5

thickness [mm]

42

43

44

45

46

ei
ge

nf
re

qu
en

cy
 f 

[k
H

z]

f
reference

1.2

1.6

2.0

2.4

an
is

ot
ro

py
 f

ac
to

r 
α 

[−
]

α
d

α
c fc f

d

Figure 15: Sensitivity to changes in thickness of the plate-like structure.
Eigenfrequency of the reference model ( freference), eigenfrequency of model
c ( fc), eigenfrequency of model d ( fd), anisotropy factor of model c (αc),
anisotropy factor of model d (αd), cf. Fig. 8.

Firstly, the sensitivity to changes of the thickness of the plate-like
structure is investigated. Therefore, the number of layers of the fiber
reinforcement is held constant. In cases of a balanced, woven fab-
ric, 8 layers are assumed. The thickness varies within a range from
2.4 mm to 3.5 mm. For unidirectional, non-crimp fabrics, 4 layers
are applied in the model. Thus, the thickness is changed in the range
from 2.0 mm to 3.5 mm. Taking Eq. (26) into account, it is obvious
that the fiber volume fraction changes for different thicknesses of
the structure. Fig. 15 shows the results obtained from finite element
simulation. The sensitivity of the eigenfrequency to changes in the
thickness of the plate-like structure increases by applying a locally
structured fiber reinforcement compared to the reference model. A
balanced, woven fabric shows a higher sensitivity in comparison with
a unidirectional, non-crimp fabric. The influence on the anisotropy
factor α is only small. It decreases in case of rising thickness for
model (b), cf. Fig. 8, while using a unidirectional, non-crimp fabric
leads to the opposite behavior. Referenced to 2.5 mm thickness, the
increase to 3.5 mm changes the anisotropy factor less than -6 % in
case of a balanced, woven fabric reinforcement and less than 5 % in
case of a unidirectional, non-crimp fabric reinforcement.
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Figure 16: Sensitivity to width of the epoxy stripe. Eigenfrequency of model
c ( fc), eigenfrequency of model d ( fd), anisotropy factor of model c (αc),
anisotropy factor of model d (αd), cf. Fig. 8.

A geometrical parameter present only in composites with locally
structured fiber reinforcement is the width of stripe made of epoxy.
Fig. 16 shows the results from the sensitivity analysis investigating
the influence of the width. In general, a wider stripe of epoxy results
in a lower eigenfrequency. This is due to a lower overall stiffness of
the plate-like structure. As for changes in thickness, the sensitivity
of balanced, woven fabric reinforcement is higher than of structures
with reinforcements of unidirectional, non-crimp fabric. In the first
case, widen up the stripe of epoxy has only small influence on the
anisotropy factor α . Increasing the width from 4.0 mm to 5.0 mm,
the anisotropy factor rises less than 1 %. The fiber reinforcement
with unidirectional, non-crimp fabric shows the opposite behavior.
Increasing the width of the epoxy stripe from 4.0 mm to 5.0 mm, the
anisotropy factor decreases by approximately 4 %.
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Figure 17: Influence of the angle of fiber orientation. Eigenfrequency of
model c ( fc), eigenfrequency of model d ( fd), anisotropy factor of model c
(αc), anisotropy factor of model d (αd), cf. Fig. 8.

Due to the orthotropic material behavior, the angle of fiber orienta-
tion has significant influence on the dynamical behavior of the ultra-

sonic transducer. As the woven fabric is balanced, the fiber reinforce-
ment is equal in direction 1 and 2, cf. section "Balanced, woven fab-
ric". Thus, the material behavior shows axial symmetry in the range
from 0° to 90° with axis of symmetry at 45° fiber orientation angle.
For unidirectional reinforcement, there is no axis symmetry observed
in this range. Fig. 17 shows the eigenfrequency and the anisotropy
factor α depending on the angle of fiber orientation. At 0° fiber ori-
entation angle, the axis of the unidirectional fiber reinforcement is
parallel to the orientation of the epoxy stripe. Similar to that defini-
tion, the warp yarn in a woven fabric is parallel to the stripe shaped
epoxy section. The influence on the eigenfrequency of the balanced,
woven fabric reinforced structure is quite small. Changing the angle
of fiber orientation from 0° to 45°, the eigenfrequency increases by
only 72 Hz which is less than 0.2 %. The influence on the anisotropy
factor α is much higher. In the same range, it decreases by 15 %
from 1.53 to 1.30. The sensitivity of the unidirectional, non-crimp
fabric is even higher. Nevertheless, the drop in eigenfrequency is only
small. It decreases from 43.3 kHz at 0° to 42.6 kHz at 90° which is
less than 2 %. Meanwhile, the anisotropy is highly sensitive to the
angle of fiber orientation. It decreases by more than 45 % from 1.96
to 1.07.
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Figure 18: Influence of the angle of fiber orientation at different fiber volume
fractions. Eigenfrequency of model d with 5 layers of fabric ( f5 layers), eigen-
frequency of model d with 4 layers of fabric ( f4 layers), anisotropy factor of
model d with 5 layers of fabric (α5 layers), anisotropy factor of model d with 4
layers of fabric (α4 layers), cf. Fig. 8.

The sensitivity analysis on the fiber orientation angle is performed
once again with a unidirectional, non-crimp fabric. This time, an
additional layer of fabric is inserted. Thus, the fiber volume frac-
tion increases from 35 % to 44 %. Due to the increased fiber vol-
ume fraction, the Young’s modulus in direction, parallel to the
fiber axis,cf. Eq. (6) and the longitudinal-transverse shear modu-
lus, cf. Eq. (10) increase by approximately 24 %. The Young’s mod-
ulus perpendicular to the fiber axis, cf. Eq. (7) and the transverse-
transverse shear modulus, cf. Eq. (13) increase by approximately
16 %. The density of the composite material increases by only
4 %. Thus, the eigenfrequency of the plate-like structure rises. The
anisotropy of the directivity pattern increases as well. In general,
the relation between eigenfrequency and anisotropy factor, and fiber
orientation angle remains similar for different fiber volume fractions.
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Figure 19: Sensitivity to changes of Young’s modulus of the fiber reinforce-
ment. Young’s modulus parallel to fiber axis EF,‖ is varied by ±10 % of the
nominal value. Eigenfrequency of model d ( fd), anisotropy factor of model d
(αd), cf. Fig. 8.

Finally, the sensitivity to uncertainties in the Young’s modulus of the
fiber reinforcement is investigated. Therefore, the Young’s modulus
EF,‖ parallel to the axis of the fiber is varied in a range of ±10 % of
the nominal value, given in table 1. As seen in Fig. 19, the sensitiv-
ity to changes of Young’s moduli is very small as the difference in
eigenfrequency is less than ± 0.2 %. The influence on the anisotropic
factor α is negligible.

Concluding the sensitivity analysis, it reveals that the thickness of
the plate-like structure and the width of the epoxy stripe have the
highest influence on the eigenfrequency, while the influence on the
anisotropy factor of the directivity pattern is rather small. High sen-
sitivity of the directivity pattern is identified for the angle of fiber
orientation both for balanced, woven fabric and unidirectional, non-
crimp fabric. Especially, the anisotropy factor of a fiber reinforce-
ment with unidirectional, non-crimp fabric is highly sensitive to
changes in the angle of fiber orientation.

Experimental testing

The results from finite element simulation are validated by exper-
imental testing. Therefore, the physical model according to model
setup (d), cf. Fig.8 is characterized. Performing an experimental
modal analysis, the eigenfrequencies are obtained. The eigenfre-
quency of interest is retrieved at 45.6 kHz. The finite element sim-
ulation shows the eigenfrequency at 43.2 kHz. Thus, the difference
between simulation and experiment is less than 5 %. The agreement
between simulation and experimental testing is determined using the
MAC, cf. Eq. (35). As the radiated sound pressure is characterized
by the surface velocity of the plate-like structure, the mode shapes
of this intersection are compared. Fig. 20 shows the component in
direction 3 of the mode shapes in finite element simulation and in the
experiment. The determined MAC is 0.93. Hence, a good agreement
between finite element simulation and experiment is achieved.

Simulation: Eigenfrequency 43.2 kHz

Experiment: Eigenfrequency 45.6 kHz

Figure 20: Mode shapes of finite element simulation and experiment of
model d, cf. Fig. 8 (d). Displacement normalized component in direction 3
is shown.

To get an additional comparability between finite element simulation
and experimental testing, the velocity distribution in the operational
deflection shape is compared along the horizontal and vertical axis of
the ultrasonic transducer. As in experimental results the orientation
of the resulting ellipse, cf. Fig. 20 is rotated, the orientation of the
horizontal and vertical axis is rotated also. Thus, they coincide with
the major and minor axis of the ellipse. In Fig. 21, the magnitude of
the complex velocity, normalized to its maximum, is plotted versus
the normalized diameter of the sound radiating plate-like structure
of the ultrasonic transducer. The results show good accordance be-
tween finite element simulation and experiment both in horizontal
and vertical direction.
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Figure 21: Surface velocity distribution along vertical and horizontal axis of
the ultrasonic transducer. Comparison between finite element simulation and
experimental testing.
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Conclusion
The authors present a new approach to realize ultrasonic transducers
with an anisotropic directivity pattern based on locally structured,
fiber reinforced composites. In a generic model, representing the
sensor head, the dynamical behavior is investigated. In finite ele-
ment simulation, a homogenization approach is applied to predict
the material properties of the composite using the material proper-
ties of the single components. The dynamical behavior is studied in a
modal analysis and a harmonic analysis. Based on the results of the
harmonic analysis, the directivity pattern is calculated applying the
Rayleigh integral. It is shown that locally structured fiber reinforce-
ments offer a suitable solution to realize ultrasonic transducers with
anisotropic directivity pattern. Depending on the local structuring and
the type of fabric, the anisotropy varies strongly. In general, both bal-
anced, woven fabric and unidirectional, non-crimp fabric are suitable
to accomplish different sound radiation properties in horizontal and
vertical direction. In a sensitivity analysis, the influence of geometri-
cal and material uncertainties is investigated with regard to changes
in eigenfrequency and anisotropy of the directivity pattern. As major
influences on the eigenfrequency, the thickness of the plate-like struc-
ture and the width of the epoxy stripe are identified. The anisotropy
of the directivity pattern is mainly influenced by the angle of fiber
orientation. In experimental testing, the results from finite element
simulation are validated by calculating the MAC and comparing the
surface velocity of the sound radiating surface. The results show
good accordance between finite element simulation and experiment.
The authors conclude that locally structured fiber reinforcements are
suitable to realize an ultrasonic transducer with anisotropic directivity
pattern.
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a b s t r a c t

Ultrasonic transducers play a major role in surround sensing for automotive and industrial

applications. The development of autonomous driving functions is one of the top challenges

for mobility solutions of the 21st century. In this context, surround sensing systems with high

performance serve as a key enabler. This leads to an increasing number of sensors which

are desired to operate in parallel or in shorter intervals. Hence, measurements should be

conducted with two different frequencies to discriminate the sensor signals. Known multi-

frequency ultrasonic transducers mostly employ multiple electro-mechanical coupling ele-

ments which require more complex sensor electronics.

To overcome this issue, the authors present a study on multi-frequency ultrasonic transduc-

ers using only one electro-mechanical coupling element. In order to achieve suitable sound

radiation properties at two well separated operating frequencies, spatially distributed stop

band material is employed. As a result, the operational deflection shape can be controlled at

a certain frequency. In finite element simulation, the relation between spatially distributed

stop band material and the resulting operational deflection shapes is investigated. The sound

radiation behavior is estimated using the numerical results from a harmonic analysis as input

for the Rayleigh integral. In experimental investigations, the presented approach is validated.

Finite element simulation and experimental testing show good accordance. Based on the

results of the presented study, it is possible to realize a multi-frequency ultrasonic sensor

with one electro-mechanical transducer element only and suitable sound radiation behavior

at multiple operating frequencies.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, the development of automatic and autonomous driving function gained rising attention. This requires a more

detailed and reliable surround sensing of the environment than for manual driving. Since decades, ultrasonic sensors are widely

used in surround sensing applications in automotive and industrial sectors. The distance between the sensor and the object is

detected by pulse-echo operation [1]. In order to get a comprehensive resolution of the environment, the number of applied

ultrasonic sensors increases continuously. To operate the sensors in shorter intervals or in parallel, it is desired to use multiple

operating frequencies. Thus, a signal discrimination is possible by frequency filtering.
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In literature, a couple of approaches to realize ultrasonic sensors with multiple operating frequencies are presented. In 1948,

a stepped-frequency transducer consisting of multiple magnetostrictive nickel elements is presented by Ref. [2]. The single ele-

ments are loosely coupled to form a stack. Via a common electrical winding, the simultaneous excitation of the elements is

possible. The aim of that study is to attain transducers with a broader frequency response. However, depending on the damping

of the system, the approach would offer also a possibility to form multi-frequency transducers. It is found that the stepped-

frequency transducers with multiple elements suffer from a lack of efficiency compared to single-frequency equivalents. In Ref.

[3], a split-mode ultrasonic transducer is investigated. A structure with a two-dimensional periodicity of poled domains is cre-

ated in a ferroelectric wafer with free surfaces. As a result, an ultrasonic transducer with multiple acousto-electric resonances

is obtained. A piezoelectric micromachined ultrasonic transducer (PMUT) with multiple electrodes is presented in Ref. [4]. Due

to multiple electrodes, the device provides high sensitivity at multiple frequencies coinciding with the first, third and fifth fun-

damental frequency of the transducer. Capacitive micromachined ultrasonic transducers (CMUT) are employed in Ref. [5]. A

CMUT array with acoustic elements of different dimensions is designed having multiple operating frequencies. An approach

using only one electro-mechanical coupling element is presented in Ref. [6]. The transmission of ultrasound is possible at mul-

tiple frequencies in the range of several MHz by adding an appropriate front layer. It is used for interstitial ultrasound thermal

therapy. In the same context of medical ultrasonic therapy, a dual-frequency lead zirconate titanate (PZT)-transducer array with

fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz) is characterized in Ref. [7]. Ref. [8] presents a hybrid multi-

frequency ultrasonic transducer. It consists of different electro-mechanical coupling elements. One of which is a piezoelectric

ceramic while the other one is made of PVDF. By hybridization of both characteristic properties, the transducers enable the usage

of multiple resonance frequencies. In Ref. [9], also two electro-mechanical coupling mechanisms are combined. Thus, a CMUT

as well as a PMUT electro-mechanical coupling is realized in one element. The transducer can be operated at two operating

frequencies. Suitable sound radiation properties for surround sensing can be expected with the obtained mode shapes at both

frequencies.

However, all presented approaches suffer at least from one of the following lacks:

• The approach is not suitable for surround sensing applications. Especially the sound radiation behavior is not appropriate

at various operating frequencies. It should show directivity pattern without distinctive side lobes. Hence, they are similar to

monopole or dipole behavior at all operating frequencies.

• Multiple electro-mechanical coupling elements are used to realize multi-frequency transducers. This leads to more complex

electronics required for surround sensing and is mostly undesired.

To overcome these issues, the present study investigates a novel approach employing spatially distributed stop band mate-

rial in order to obtain a multi-frequency transducer with only one electro-mechanical coupling element and suitable sound

radiation properties at two distinctive operating frequencies. Stop band materials attract attention within vibroacoustics

recently [10]. Basically, it is possible to attain structures which do not allow free wave propagation in certain frequency

ranges. These frequency ranges are called stop bands or band gaps [11,12]. In 2000, a phononic crystal with particular high

sound transmission loss at certain frequencies is presented by Ref. [13]. The phononic crystal consists of rubber coated

lead spheres which are embedded in epoxy. In Ref. [14], it is shown that stop bands caused by periodic, resonant struc-

tures show good prospect for low frequencies. Furthermore, the band gap behavior can be simply tuned by the periodic

resonator. In Ref. [15], it is shown that stop bands can also be attained with randomly arranged resonant structures. How-

ever, the spacing between the resonators is required to be at a subscale of the wavelength corresponding to the desired

band gap. Due to their ability to generate frequency ranges without wave propagation, stop band materials are predes-

tined to increase sound transmission loss of structures. This is investigated in several studies, e.g. Refs. [16–22]. The possi-

bility of waveguiding Lamb modes within a certain frequency is studied numerically and experimentally in Ref. [23]. In Ref.

[24], the propagation of flexural waves in thin plates is investigated. It is shown that wave propagation can be attenuated

by locally attached spring-mass resonators. The behavior of different excitations is investigated with regard to the vibra-

tion transmission. In Ref. [25], similar structures are investigated with regard to the sound transmission loss. In Ref. [26],

the authors show the good prospect of stop band material in order to reduce mechanical cross-coupling in phased-array

transducers.

In this study, stop band material is investigated with a rather different purpose. The operational deflection shape of a plate

like structure representing a generic model of an ultrasonic transducer is modified within a certain frequency range. Therefore,

sections with and without stop band behavior are spatially distributed. Stop band material shows the advantage that only a

certain frequency range is effected by the particular dynamic behavior. Outside of the stop band, the influence on the dynamic

behavior of the plate like structure is only small. Hence, certain operating frequencies can be tuned mainly independently from

each other. This approach opens up the possibility to achieve a multi-frequency transducer having only one electro-mechanical

coupling element and suitable sound radiating behavior at multiple operating frequencies. Thus, the drawback of known multi-

frequency ultrasonic transducer concepts can be overcome.

This work is structured as follows: initially, we focus on the methods applied in this study. The generic model to investigate

the dynamic behavior is presented in Section 3. The approach is investigated numerically with a finite element model as well

as in experiments with a physical model. The results are presented in Section 4. In Section 5, the approach is transferred to the

ultrasonic frequency range. Finally, a conclusion is drawn.
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2. Methods

In this section, the employed methods are presented briefly. First, the Rayleigh integral is discussed in order to estimate the

radiated sound pressure field generated by the plate vibration. Afterwards, the wave finite element method (WFEM) applying

periodicity conditions is presented. With this approach, it is possible to characterize the wave propagation behavior in periodic

structures. Finally, the experimental validation using laser Doppler vibrometer is described.

2.1. Sound radiation

The sound radiation behavior of sound transducers is usually characterized by the directivity pattern. This can be calculated

in the far-field employing the Rayleigh integral [27,28]. It provides an exact solution under the following conditions:

• the radiating surface is flat,

• the radiator is embedded in a flat, infinite, and rigid baffle.

These assumptions are suitable in order to obtain a reasonable approximation of the directivity pattern for ultrasonic transducers

embedded in a mounting structure like a car bumper. This is discussed in several studies like Refs. [29,30]. However, in Ref. [31]

it is shown that the Rayleigh integral produces reasonable results even for more complex structures. The assumption of a baffled

plate holds for the investigated structures and the ultrasonic transducers for surround sensing applications in automotive and

robotic industries.

In order to fit the far-field assumption, three conditions must be fulfilled [32]. Firstly, the distance (R) between the radiator

and the field point has to be much greater than the dimension (l) of the radiator

R ≫ l . (1)

Secondly, the condition

R

l
≫ l

𝜆
(2)

must be fulfilled. Consequently, the error caused by phase shifts is small [33]. Finally, the wavelength (𝜆) should be small

compared to the distance between the radiator and field point

𝜆 ≪ R . (3)

For ei𝜔t harmonic time dependence, the Rayleigh integral for a plane surface can be expressed by Ref. [34].

p(y⃗) = ∫Γ − i𝜔𝜌fG(x⃗, y⃗)𝜈f(x⃗) dΓ(x⃗) (4)

with

G(x⃗, y⃗) = e−ikr

2𝜋r
and r = |x⃗ − y⃗| , (5)

where Γ, k, 𝜔, 𝜈f, 𝜌f, i denote the radiating surface, wavenumber, circular frequency, fluid particle velocity, fluid density, and

imaginary unit. The particle velocity distribution on the surface of the structure can be used to estimate the radiated far-field

sound pressure as shown in Ref. [35]. In spherical coordinates (R, 𝜗, 𝜑), the Rayleigh integral can be approximated for the sound

pressure in the far-field by Ref. [32].

p(R, 𝜗, 𝜑) = i𝜔𝜌f

2𝜋R
e−ikR ∫

ly⧵2

−ly⧵2 ∫
lx⧵2

−lx⧵2

eik(xQ sin𝜗 cos𝜑+yQ sin𝜗 sin𝜑) v(xQ, yQ) dxQ dyQ . (6)

The transformation from Cartesian to spherical coordinates is realized by

x = R sin(𝜗) cos(𝜑),

y = R sin(𝜗) sin(𝜑), (7)

z = R cos(𝜑).

Analyzing the directivity pattern in polar plots, it is possible to identify the sound radiation behavior of the investigated

generic model.
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2.2. Dispersion in periodic infinite structures

The wave propagation behavior in a periodic structure can be characterized by the dispersion relations in a unit cell. The

Floquet Bloch theorem offers a possibility to handle periodic structure and to determine the wave propagation properties [36].

A freely propagating wave can be described for ei𝜔t harmonic time dependence with angular frequency 𝜔 by

𝜓 = Wei(𝜔t−kxx−kyy), (8)

with W describing the wave mode through the thickness of the structure, 𝜓 being a response variable, and kx, ky being the

components of the wavenumber in x− and y−direction, respectively. This can be obtained by employing finite element methods.

The motion is described by a finite number of generalized displacements q.

In case of two-dimensional periodicity in x− and y−direction, q =
[
q1 q2 q3 q4

]T
contains the generalized displacements

at nodes 1 to 4, cf. Fig. 1. The Bloch theorem states that the relation between the generalized displacements can be described by

Ref. [37].

q2 = 𝜆xq1,

q3 = 𝜆yq1, (9)

q4 = 𝜆x𝜆yq1,

with

𝜆x = e−ikx·rx and 𝜇x = kxrx,

𝜆y = e−iky ·ry and 𝜇y = kyry,
(10)

where rx,y and 𝜇x,y represent the length of the periodic lattice and the propagation constant in the direction of periodicity,

respectively. Introducing the reduction matrix by

ΛR =
[
I 𝜆xI 𝜆yI 𝜆x𝜆yI

]T, (11)

the generalized displacement vector can be described dependent on q1 by

q = ΛRq1. (12)

In the absence of damping, the generalized displacements are related to the generalized forces by
[
K − 𝜔2M

]
q = f, (13)

with K,M, and f being the stiffness matrix, mass matrix, and force vector, respectively. Inserting Eq. (12) into Eq. (13) leads to
[
K − 𝜔2M

]
ΛRq1 = f. (14)

Assuming no external forces, the sum of nodal forces connected to node 1 is zero. Thus,

ΛLf = 0, (15)

with

ΛL =
[

I 𝜆−1
x I 𝜆−1

y I 𝜆−1
x 𝜆−1

y I
]
, (16)

can be written. Premultiplying Eq. (14) with ΛL leads to a reduced eigenvalue problem with

ΛL

[
K − 𝜔2M

]
ΛRq1 = 0. (17)

Fig. 1. Generalized displacements q at various points in case of two-dimensional periodicity, based on [37].
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The solution of the eigenvalue problem from Eq. (17) is a function of the propagation constants𝜇x, 𝜇y .𝜔(𝜇x, 𝜇y) characterizes

the free wave propagation in the structure. It has to be solved for any combination of the propagation constants within the

first Brillouin zone (BZ) with 𝜇x, 𝜇y = [−𝜋, 𝜋] [11]. Usually, the results are depicted in three-dimensional plots showing the

dispersion surfaces. Thus, it is possible to identify omni-directional band gaps where no free wave propagation is possible. In

case of symmetric unit cells, the calculation can be reduced to the irreducible Brillouin zone (IBZ) or to the contour of the IBZ. The

three-dimensional plot of dispersion surfaces is then reduced to a two-dimensional plot of dispersion curves. This is discussed

in detail in Ref. [10]. A detailed elaboration of the theory, known as wave finite element method, can be found in Refs. [37–39].

2.3. Experimental investigation

Experimental investigation is employed to validate the results of the generic model obtained from finite element simulations.

In order to achieve a generic model which is comparable to a real ultrasonic transducer, fixed boundary conditions are required,

cf. Section 3. These are realized by jointing the investigated structure to a backing with high stiffness and large mass compared

to the structure. The velocity perpendicular to the sound radiating surface is measured at 351 scanning points with a non-

contact measurement using a scanning laser Doppler vibrometer. The excitation is realized with an alternating current electric

voltage of 10 V which is applied between the electrodes of the piezoelectric ceramic. Using a so called pseudo-random signal,

all frequencies in the range from 0.3 kHz to 25 kHz are excited simultaneously. Furthermore, no leakage effects are introduced

by this signal [40]. The obtained resonance frequencies and the related operational deflection shape (ODS) from experimental

testing are then employed to validate the numerical simulations.

3. Models

In this section, the investigated models are presented. First, the generic model representing the ultrasonic transducer is

discussed. The used finite element model is presented afterwards. Finally, the physical model used for experimental validation

of the numerical results is described.

3.1. Generic model

A generic model is used in order to investigate the approach of using spatially distributed stop band material to attain multi-

frequency transducers. It consists of a rectangular plate like structure with a sound radiating surface, a piezoelectric ceramic

realizing the electro-mechanical coupling, and 112 resonators forming two sections of stop band material, cf. Fig. 2 (a) (II).

The plate like structure and the resonators are made of plastics. Different configurations of the plate boundary conditions are

realized with blocks of aluminum. In the first configuration CON1 only the shorter edges of the plate like structure are fixed,

cf. Fig. 2 (a). This configuration is comparable to ultrasound transducers presented in Ref. [41]. A second configuration CON2 is

achieved by additional, partial fixing of the long edges of the plate like structure, cf. Fig. 2 (b). Using two different configurations

of the boundary conditions, it is possible to ensure that the behavior at the second operating frequency is caused by the band

gap behavior of the structure. If this is the case, the second operating frequency should be mainly independent of the plate like

structure boundary conditions. With regard to automotive applications, smaller and more complex transducer geometries are

relevant. The authors presented a study with such geometries in Ref. [29]. However, the investigation of the generic model offers

the possibility to separate the effects introduced by the stop band material from other geometrical effects. Once proofed, the

principle of spatially distributed stop band material can be transferred without difficulty.

3.2. Finite element model

The dynamic behavior of the generic model is investigated in a finite element (FE) simulation. The employed model, cf.

Fig. 3, consists of 20-node brick elements with quadratic interpolation functions (Element type in Abaqus: C3D20) [42]. In order

to avoid mesh dependencies, the guidelines given in Ref. [43] are applied. The calculations are carried out with the commercial

software Simulia Abaqus 2017. The contact between different parts is modeled as tie constraint with a surface-to-surface formu-

lation. All materials are assumed to have linear elastic behavior according to Hooke’s law. Table 1 shows the material properties

applied in the FE-simulation. The piezoelectric ceramic is similar to PZT-5a [44]. Hence, the material properties are comparable

to that presented in Ref. [45]. In a harmonic analysis, the forced response function is calculated. As a result, resonance frequen-

cies can be identified. The excitation is realized by applying an electric voltage to the piezoelectric ceramic. Afterwards, the

calculated surface velocity of the plate like structure is used to obtain the radiated sound field using the Rayleigh integral.

3.3. Physical model setup

The experimental validation of the approach requires a physical model, cf. Fig. 4. The plate like structure and the resonators

are manufactured as a monolithic using additive manufacturing techniques. PolyJet [47] technology offers the possibility to

produce fully filled, solid structures. In a following step, the piezoelectric ceramic is jointed to the downside of the plate like
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Fig. 2. Generic model to investigate the behavior of spatially distributed stop band material. It consists of a plate like structure with a middle section (I) containing the

piezoelectric ceramic and two outer sections (II) with 2 × 56 resonators on the downside forming the stop band material. The top side of the generic model represents

the sound radiating surface of an ultrasonic transducer. Two different configurations CON1 (a) and CON2 (b) are realized by assembling aluminum blocks. Thus, different

boundary conditions of the plate like structure are realized. The dimensions of the generic model are given in mm.

Table 1

Material parameters of aluminum and the photopolymer

VeroWhitePlus RGD 835 [46].

VeroWhite Aluminum

Density [ g

cm3 ] 1.17 2.69

Poisson’s ratio [−] 0.33 0.33

Young’s modulus [MPa] 3200 70000

structure. The assembly is finished by jointing the aluminum blocks according to configuration CON1, cf. Fig. 2 (a), to the plate

like structure. In order to realize the fixed boundaries, the entire assembly is jointed to a backing having a large mass and high

stiffness compared to the plate like structure. After the experimental investigation of the test structure, additional aluminum

blocks are added to the plate like structure. Hence, configuration CON2, cf. Fig. 2 (b), is realized using the same specimen. Testing

one and the same structure with both configurations, allows the comparison of the results without additional influences from

manufacturing and assembling of the plate like structure and the piezoelectric ceramic.

4. Results

In this section, the results obtained from the numerical simulations and experiments are presented. First, the operational

deflection shapes of the two configurations are compared. The sound radiation behavior at certain resonance frequencies is

depicted using polar plots. Finally, the numerical results are validated by experimental results. Therefore, the ODSs between
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Fig. 3. Finite element model of configuration CON2. It consists of 20 node brick elements with quadratic interpolation functions.

Fig. 4. Physical model for experimental validation. (a) Assembly of the configuration CON2 with fixed boundary conditions at all edges. (b) Downside of the plate like

structure with resonators as one part and jointed piezoelectric ceramic in the center. (c) Detailed view of resonators.

numerical simulations and experiments are compared.

4.1. Operational deflection shape and stop band behavior

The operational deflection shape of the plate surface characterizes the sound radiation behavior. In order to generate the

desired directivity pattern with small side lobes, the ODS should be similar to the first normal mode. This could be either the

Fig. 5. Frequency response function of normalized velocity at the center point of the sound radiating surface. First and second operating frequencies are identified by × and

◦, respectively. The first operating frequency is influenced by the boundary conditions. In contrary, the second one is mainly independent of the additional boundary

conditions in configuration CON2. Other peaks in the frequency response function correspond to ODSs which do not show suitable sound radiation behavior for surround

sensing purposes.
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entire structure or only a part of the structure while the rest remains in equilibrium position. Achieving the first case is rather

trivial. The operating frequency coincides with the first eigenfrequency of the plate like structure. Due to the different boundary

conditions in configurations CON1 and CON2, the lowest operating frequencies are obtained at 0.83 kHz and 2.9 kHz, respec-

tively. These can be identified in the frequency response function (FRF) shown in Fig. 5 highlighted by × . The corresponding

ODSs are depicted in Fig. 6.

An ODS where a part of the structure behaves similar to the first normal mode while the rest remains in equilibrium position

is achieved at higher frequencies. This frequency is highlighted by ◦ in Fig. 5 for each configuration. At 17.5 kHz and 17.7 kHz

in configurations CON1 and CON2, respectively, the middle section of the plate like structure shows an ODS where almost all

nodes move with the same phase. The outer sections, consisting of stop band material, remain almost without displacement, cf.

Fig. 6. The additional boundary conditions in configuration CON2 have only small influence on the resulting operating frequency.

Hence, the operating frequency OF2 is mainly independent of the additional boundary conditions. This ODS seems suitable to

serve as a second operating point. The ODS of both configurations are pretty similar. However, at the boundary of the plate like

Fig. 6. Operational deflection shape at first (OF1) and second operating frequency (OF2) of the sound radiating surface obtained from finite element simulation. The coloring

shows the normalized displacement perpendicular to the undeformed surface. For a better understanding, the phase angels are shown from 0◦ to 180◦ in steps of 45◦ .

In case of the second operating frequency, the operational deflection shapes are similar in configuration CON1 (a) and configuration CON2 (b) at all phase angels 𝜙. The

middle section shows high displacement while the outer sections remain almost in equilibrium position.
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Fig. 7. Unit cell of the stop band material and dispersion curves to identify stop bands for configurations CON1 and CON2. The dispersion curves are related to different wave

types. Stop band behavior is found for shear waves ( ) and bending waves ( ). Longitudinal waves ( ) can pass the unit cell at all frequencies. The dimensions of

the unit cell are given in mm.

structure a difference in the ODS can be found. This is due to the missing boundary conditions in configuration CON1.

In order to characterize the band gap behavior of the outer plate sections, the dispersion curves are investigated. Fig. 7 shows

the unit cell consisting of a plate like structure and a beam with quadratic cross-section. In order to identify band gaps, the

propagation constants are set to fit the contour of the IBZ ΓXM [11]. This is suitable due to the symmetry of unit cell as shown

in Ref. [10]. The dispersion diagram shows that a partial stop band is achieved with this type of band gap material. In Ref.

[26], a similar unit cell is investigated. It is shown that a band gap is obtained for shear ( ) and bending waves ( ) while

longitudinal waves ( ) can pass the unit cell at all frequencies, cf. Fig. 7.

It is found that the second operating frequency of the transducer emerges within the stop band where bending waves can

not propagate freely through the outer section of the plate like structure. Consequently, the behavior of the plate like structure

at the second operating frequency can be interpreted as follows:

A harmonic dynamic excitation of the plate like structure is introduced in the center using the piezoelectric ceramic. The

excitation frequency coincides with the stop band frequency of outer section. Due to the particular dynamic behavior of this

section, the bending wave is reflected at the boundary of the stop band material. Thus, the dynamic behavior mainly depends

on the stop band material.

4.2. Directivity patterns

The sound radiation behavior is a criterion to assess the usability of the presented approach to achieve multi-frequency

transducers. The directivity pattern should exhibit an even form without distinctive side lobes. Hence, they are desired to behave

similar to monopole or dipole characteristics. The directivity pattern is obtained applying the Rayleigh integral to the sound

radiating surface of the generic model. The visualization is usually done in polar plots, cf. Fig. 8. At the first operating frequency,

both configurations radiate sound without any side lobes. The directivity patterns at the second operating frequency differ

slightly between the two configurations. In case of configuration CON1, the sound pressure level shows a drop to −6 dB in

x−direction at the center point. In configuration CON2, this drop is reduced to−3 dB. This can be ascribed to lower displacements

of the structure at the outer sections due to the additional boundary conditions. In y−direction, configuration CON1 shows

monopole behavior. In contrast, a characteristic similar to a dipole is found in configuration CON2 in y−direction. In this case,

the sound pressure levels shows a drop to −14 dB at an angle of ±71◦. However, in test both cases the directivity pattern does

not show distinctive side lobes.

4.3. Experimental results

From experimental testing, the resonance frequencies and the related ODS are obtained. Comparing these results with

results from numerical simulation, it is possible to validate the employed FE-model. Table 2 shows the operating frequency

from FE-simulation and experimental testing. Regarding the first operating frequency, the deviation between simulation

and experiment is less than 4% in both configurations. Thus, a suitable accuracy of the applied finite element model is

validated.

Considering the second operating frequency, the deviation from numerical results increases to almost 15%. However, the

ODSs of the second operating frequency exhibit equal behavior in FE-simulation and experimental testing, cf. Fig. 9. As the

second operating frequency is equal for both configurations CON1 and CON2, it is experimentally proved that the additional

fixation of the plate like structure has no influence on the second operating frequency for in the investigated configurations.
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Fig. 8. Directivity patterns of configurations CON1 (a) and CON2 (b) at the first (OF1) and second (OF2) operating frequency. The polar plots show the sound pressure level

in x− and y−direction which are defined by𝜑 = 0◦ and 𝜑 = 90◦ , respectively.

Table 2

Results from numerical simulation and experiment.

Simulation [kHz] Experiments [kHz]

CON1 1st operational frequency 0.83 0.8

2nd operational frequency 17.5 20.1

CON2 1st operational frequency 2.9 2.8

2nd operational frequency 17.7 20.2

4.4. Discussion

Summarizing the results, the dynamic behavior can be divided into two categories. In the first category, the excitation fre-

quency does not coincide with the frequency of the stop band. In this case, the vibrational behavior of the plate like structure

is similar to that known from classical plate theory. Thus, the boundary conditions have significant influence on the resonance

frequencies and the corresponding ODSs. In the second category, the excitation frequency is in the range of the stop band. In

this case, a particular dynamic behavior of the system is found. This leads to ODSs where a part of the structure behaves similar

to the first normal mode while the rest remains in equilibrium position. The behavior can be interpreted as follows. The wave is

excited by the piezoelectric ceramic. In section 1, the wave is freely propagated. In contrast, no free wave propagation is possible

in section 2 due to the coincidence of the excitation frequency and the frequency range of the stop band. Thus, the wave gets

reflected at the edge of section 2. Hence, it becomes clear that the operating frequency OF2 is found within the frequency range

of the stop band for bending waves. By the geometrical design of zone I, the resulting ODS as well as the operating frequency

laying within the stop band can be adjusted.

Investigating two different configurations, it is shown that the effect is caused by the stop band behavior of the struc-

ture rather than by the boundary conditions. These findings could also be transferred to other applications where certain

dynamic behavior is desired independently from the boundary conditions. Hence, the same design could be used in var-

ious applications without influencing the dynamic behavior. In the present test case, this effect leads to a suitable sound

radiation for both configurations. The results of the directivity pattern in this study must be seen in the context of the

generic model. As the directivity pattern strictly depends on the operating frequency and the dimensions of the radiator,

the results of the generic model can not be transferred directly to real transducer applications. However, the results are

suitable to estimate the potential of spatially distributed stop band material. Due to the additional boundary conditions in
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Fig. 9. Operational deflection shape at first (OF1) and second operating frequency (OF2) of the sound radiating surface obtained from experimental testing. The results are

similar to that presented in Fig. 6. The coloring shows the normalized displacement perpendicular to the undeformed surface. For a better understanding, the phase angels

are shown from 0◦ to 180◦ in steps of 45◦ . In case of the second operating frequency, the operational deflection shapes are similar in configurations CON1 (a) and CON2 (b)

at all phase angels 𝜙. The middle section shows high displacement while the outer sections remain almost in equilibrium position.

configuration CON2, a more even directivity pattern is obtained. Hence, this configuration is more suitable to build multi-

frequency ultrasonic transducers. In order to achieve more even directivity patterns at the second operating frequency,

fixed boundary conditions along all edges should be considered. The investigation shows that the operating frequencies

are not coupled to each other. Hence, it is possible to tune the operating frequencies mainly independently from each

other.

Furthermore, the piezoelectric ceramic could be surrounded entirely by stop band material. In this case, the waves would

be reflected as well when traveling in y−direction which would reduce the displacement of the outer section of the plate like

structure. As a result, this would generate a more even directivity pattern. Employing the presented approach, it would be

possible to achieve ultrasonic transducers with more than two operating frequencies. Therefore, various types of stop band

material should be spatially distributed. Exhibiting stop bands at different frequency bands, multiple operating frequencies

could be achieved with suitable sound radiation behavior. In experimental investigation, the results from numerical simulation

are validated. Good accordance is found for the first operating frequency in both configurations. The second operating frequency

obtained in experimental testing shows higher deviation from the simulation results. This can be ascribed to a lack of accuracy in

additive manufacturing processes resulting in resonators with a larger cross-section at the plate side and smaller cross-section at

the free end, cf. Fig. 4 (c). Consequently, the center frequency of the stop band is increased in experimental testing in comparison
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Fig. 10. Models of ultrasonic transducers with multiple operating frequencies in ultrasonic range. (a) CON3 with dimensions similar to the dimensions of the generic model,

cf. Fig. 2. (b) CON4 with reduced length in x−direction and reduced width of section 1. The dimensions of the models are given in mm.

to numerical simulation. Finally, this results in an increased second operating frequency. However, the comparison of the ODSs

from numerical simulation and experimental testing shows good accordance for both configurations. It is shown that spatially

distributed stop band material is a suitable approach to achieve multi-frequency ultrasonic transducers. Thus, it is possible to

overcome the drawbacks of known multi-frequency ultrasonic transducer concepts.

Fig. 11. Operational deflection shape at first (OF1) and second operating frequency (OF2) of the sound radiating surface obtained from finite element simulation. The

coloring shows the normalized displacement perpendicular to the undeformed surface. For the sake of brevity, only the phase angles 0◦ and 90◦ are shown.
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Fig. 12. Unit cell of the stop band material and dispersion curves to identify stop bands for configuration CON3 and CON4. The dispersion curves are related to different wave

types. Stop band behavior is found for shear waves ( ) and bending waves ( ). Longitudinal waves ( ) can pass the unit cell at all frequencies. The dimensions of

the unit cell are given in mm.

5. Transfer to ultrasonic frequency range

For practical use, the previously presented results need to be transferred to the ultrasonic frequency range. This can be

achieved by changing the material as well as by adjusting the geometry of the transducer. In this section, two additional config-

urations are presented with both operating frequencies in the ultrasonic range (> 16 kHz [48]). Configurations CON3 and CON4

are introduced in Fig. 10.

In contrast to CON1 and CON2, the configurations for the ultrasonic frequency range are made of aluminum. Due to the high

ratio from Young’s modulus to mass density, the operating frequency increases compared to the previous configurations which

were made of plastics. In order to realize proper boundary conditions of the plate like structure, the blocks are considered to

consist of ceramic material. The geometrical design of configuration CON3 is similar to the one of CON2. Only the plate width

in y−direction is reduced and the corresponding resonators are removed. This is necessary to ensure that the ODS of a part of

Fig. 13. Directivity patterns of configurations CON3 (a) and CON4 (b) at the first (OF1) and second (OF2) operating frequency. The polar plots show the sound pressure level

in x− and y−direction which are defined by 𝜑 = 0◦ and 𝜑 = 90◦ , respectively.
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the structure behaves similar to the first normal mode if the OF2 is increased. In configuration CON4, the length of the plate in

x−direction is reduced additionally and the corresponding resonators are removed. Thus, the OF1 is increased.

The operational deflection shapes of both operating frequencies are shown in Fig. 11. OF1 arises at 18.9 kHz and 23.7 kHz for

CON3 and CON4, respectively. The second operating frequency OF2 is achieved at 55.2 kHz and 58.5 kHz for CON3 and CON4,

respectively. Thus, the results found for the generic model in the previous sections can be reproduced numerically also in the

ultrasonic range. Fig. 12 shows the dispersion curves for the configurations CON3 and CON4. OF2 coincides with the stop band

for bending waves in a similar way as found in the generic model. The dimensions of zone I are different in configurations CON3

and CON4. As a result, the second operating frequency OF2 differs between configurations CON3 and CON4. However, both are

found in the frequency range of the stop band for the bending waves. The resulting directivity patterns show suitable sound

radiation behavior for the use in surround sensing applications, cf. Fig. 13. Thus, it is shown, that spatially distributed stop band

material is a suitable approach to achieve multi-frequency ultrasonic transducers.

6. Conclusion

A study on multi-frequency ultrasonic transducers with spatially distributed stop band material has been presented. The

desired ultrasonic transducer is required to work at different operating frequencies using only one electro-mechanical coupling

element. The directivity pattern of the radiated sound field needs to be even and should not show distinctive side lobes. In a

generic model, the effect of spatially distributed stop band material is investigated in order to fulfill these requirements. The

approach is studied with different boundary conditions of the generic model. Finite element simulation is employed to identify

the operating frequencies and the belonging ODSs. The results are used to calculate the directivity pattern of the radiated sound

field using the Rayleigh integral. In experimental testing, the results of the numerical simulation are validated. The obtained

ODSs show good accordance between simulation and experiment.

The authors conclude that:

(i) spatially distributed stop band material is identified as a suitable solution to achieve multi-frequency ultrasonic trans-

ducers using only one electro-mechanical coupling element,

(ii) the second operating frequency is related to the frequency of the stop band,

(iii) the second operating frequency achieved by the introduction of spatially distributed stop band material and the belonging

ODSs are mainly independent of additional boundary conditions in configurations CON1 and CON2,

(iv) suitable sound radiation behavior is achieved at two well separated operating frequencies, and

(v) distinctive operating frequencies can be tuned mainly independently from each other.

The presented approach offers a possibility to design multi-frequency ultrasonic transducers with only one electro-

mechanical coupling element and suitable sound radiation properties at the same time. Thus, the previously discussed draw-

backs of known concepts can be overcome. This is a major contribution to increase the surround sensing performance and

reliability of ultrasonic transducers.
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a b s t r a c t

Phased array transducers are widely used for acoustic imaging and surround sensing appli-

cations. A major design challenge is the achievement of low mechanical cross-coupling

between the single transducer elements. Cross-coupling induces a loss of imaging resolution.

In this work, the mechanical cross-coupling between acoustic transducers is investigated for

a generic model. The model contains a common backing with two bending elements bonded

on top. The dimensions of the backing are small; thus, wave reflections on the backing edges

have to be considered. This is different to other researches. The operating frequency in the

generic model is set to a low kHz range. Low operating frequencies are typical for surround

sensing applications. The influence of the backing on cross-coupling is investigated numer-

ically. In order to reduce mechanical cross-coupling a stop band material is designed. It is

shown numerically that a reduction in mechanical cross-coupling can be achieved by using

stop band material as backing. The effect is validated with experimental testing.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Phased array structures of acoustic transducers are used for acoustic imaging in medical applications and for nondestruc-

tive testing. Furthermore, there are applications for 3D surround sensing. Depending on the field of use, the typical operating

frequency varies in a range from lower kHz for surround sensing [1,2] up to several MHz for nondestructive testing [3] and

medical applications [4]. One of the characteristic properties of these structures is the cross-coupling between single transduc-

ers. It mainly describes the undesired behavior that array elements are not working independently [5]. In several studies it has

been shown that cross-coupling influences the performance of a phased array by changing its beam pattern and resulting in

a loss of resolution [5–8]. In Ref. [5] a quantitative theory for cross-coupling in ultrasonic transducer arrays is presented. Sur-

face waves in the backing and in the load medium in front of the transducers are indicated as reason for cross-coupling. This

theory assumes a series of uniformly distributed, unbacked transducer elements. The cross-coupling is caused by interaction

through a semi-infinite substrate, the solid load medium. In Ref. [9] a basic model and influence of cross-coupling with focus on

cross-coupling included signals is given. Lamb wave A0 mode has been identified as the responsive effect for cross-coupling in

a CMUT-array (capacitive micromachined ultrasonic transducer) with first order resonance at 2.3 MHz [10]. An air-coupled, low

frequency phased array is presented in the studies [11]. The ultrasonic transducers are realized with piezoelectric crystals. As
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Fig. 1. Investigated generic model with 2 bending elements on a common backing. (a) frontal view, (b) side view.

the used setup with piezoelectric elements and foam as spacer does not cause high cross-coupling, it is not further investigated.

In Refs. [12,13] cross-coupling is investigated in a finite element model of a linear, piezoceramic based phased array transducer.

In this study, we investigate the cross-coupling of a generic transducer array model with a low operating frequency at 5.2 kHz.

We focus especially on mechanical cross-coupling caused by the common backing without extra lossy regions. The realization of

extra lossy regions between every transducer element requires high effort in real structures. Thus, a design without extra lossy

regions is desired. Cross-coupling caused by the common backing is the dominating effect in air-coupled transducer arrays.

The dimensions of the backing are small, thus wave reflections on the edges of the backing have to be taken into account in

simulations of the whole model. This is different to other researches. The design of the backing is a major challenge in phased

array transducers with low operating frequency. To overcome this problem, we show that stop band materials can be used to

reduce mechanical cross-coupling caused by common backing in phased array structures. Stop band materials, also known as

acoustic metamaterials, consist out of periodic structure with particular dynamic behavior in a certain frequency range. Hence

it is clarified that stop band material describes a structural but not a material behavior.

In recent years, stop band materials received a growing attention. In analogy to photonic crystals, Ref [14] presents a study

with experimental investigation on sonic crystals to design band gap behavior. Therefore, rigid spheres of lead were coated with

rubber and placed in an epoxy plate. Stop band materials can decrease acoustical [15] as well as vibrational [16] responses of

components in certain frequency bands. Thus, bragg scattering and local resonant structures can be used. As Bragg scattering

is based on destructive interference effects [17], a periodic lattice is required. In contrary, resonant stop bands can be achieved

by ordered and disordered structures. This is shown for an electromagnetic metamaterial in Ref. [18] and for an acoustic meta-

material in Ref. [19]. However, the scale of the stop band material should be smaller than the wavelength to be attenuated. In

this study, ordered periodic resonant structures are investigated. In Ref. [15], it is shown that resonant stop bands have a good

prospect for low frequency stop bands. In Ref. [20], it is shown that propagation of flexural waves in thin plates can be attenuated

by locally attached spring-mass resonators. In Ref. [21], a possible application for microfabricated phononic crystal waveguides

is named but not investigated in detail. The intention is to route and bend acoustic signals from large electro-acoustic transduc-

ers to be emitted and detected through small apertures. By this, the resolution of phased array structures can be increased.

Initially we focus on a generic model to investigate the relation between dynamical behavior of the backing and cross-

coupling. In finite element simulation, we analyze the dependence of cross-coupling on the backing thickness. Afterwards, we

investigate an extended model with stop band material as backing. In simulation as well as in experimental testing, the effect of

locally resonant structures with regard to mechanical cross-coupling is shown. Finally, a conclusion is drawn.

2. Cross-coupling in phased array transducer

In this section we give an overview of the investigated generic model. The calculation of cross-coupling is defined and its

mechanism is shown for the generic model.

2.1. Generic model setup

In analogy to CMUT-arrays, a generic model is set up with two bending elements bonded on a square, common backing. Each

bending element forms an electrode of a capacitive transducer. The counter-electrodes are realized on the common backing. To

achieve electrical conductivity, the bending elements and the backing are coated with aluminum (5). The cross-section of this

generic model is shown in Fig. 1. The two bending elements (1 + 2) are made of carbon fiber reinforced plastic (CFRP) coated

with aluminum. They are bonded with a cyanoacrylate adhesive to epoxy sockets (4) on a common epoxy backing (3).

The dimensions are given in Table 1. This setup is comparable with the setup up given in Ref. [10]. The main differences are
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Table 1

Dimensions of the generic setup to investigate the influence of backing thickness on cross-coupling in phased array transducers.

Parameter Symbol Value Parameter Symbol Value

Backing thickness tb 1.0–16.0 mm Bending element thickness tm 0.5 mm

width wb 70.0 mm width wm 6.0 mm

Epoxy socket thickness ta 30 μm spacing sm 24.0 mm

length la 4.6 mm length lm 30.0 mm

Fig. 2. Rheological model of CFRP along direction 1 according to [22].

• the ratio between bending element thickness and backing thickness,

• the rectangular shape of the bending element,

• the first resonance frequency is much lower and

• there is no extra lossy region.

These differences lead to a different dynamic behavior. Especially the missing extra lossy region causes wave reflection on

the edges of the backing. Taking this into account is important to overcome design challenges for the backing in air-coupled

phased array transducers with low operating frequency.

All investigations are based on this generic model. The operating frequency in this generic model is set to approximately

5 kHz which is much lower than in surround sensing applications. This finally relieve the specimen preparation for experimental

testing. The results can be transferred to higher frequency ranges easily.

2.2. Material model

Composite materials such as CFRP require higher effort to be simulated in a proper way. They consist at least of two differ-

ent materials and show non-isotropic behavior. Homogenization is a common approach to model these material. By this, the

material behavior is described with surrogate parameters which represent the global behavior of the homogenized material. We

apply an orthotropic material model which is developed in Ref. [22]. The rheological model assumes a series and parallel circuit

of fiber (indexF) and matrix (indexM) material properties. This model is given in Fig. 2.

Eq. (1) describes the behavior as a series circuit of properties of the matrix material and the fiber perpendicular to its axis (⊥).
Φ1,1 denotes the fiber volume ratio of the fibers perpendicular to its axis within the series circuit, see Fig. 2 E1,1. The nonuniform

strain in the matrix is considered by Halpin-Tsai method with the semi-empirical factor 𝛽 [23,24]. Furthermore Eq. (2) describes

the material properties of the fiber along its axis (‖). The ondulation of woven fabric is taken into account by 𝜂 𝜖 [0, 1] which

lowers the Young’s modulus due to the anisotropic material properties of carbon fibers.

E1,1 =
𝛽 · EM · EF,⊥

Φ1,1 · 𝛽 · EM + (1 −Φ1,1) · EF,⊥
(1)

E1,2 = 𝜂 · EF,‖ (2)

The theory assumes a balanced woven fabric. Thus, the resulting Young’s modulus for direction 1 is calculated as given in Eq.

(3), where Φ denotes the overall fiber volume ratio of the composite.

E1 = Φ
2
· E1,2 + (1 − Φ

2
) · E1,1 (3)

Young’s modulus, shear modulus and Poisson’s ratio are calculated for each direction in a similar way as shown above. The

entire description of the applied micro-mechanical material model is extensive. The development of the material model is not

within the scope of this study. For this reason, the authors refer to literature eg. Refs. [22–25].

The epoxy backing and socket are modeled with an isotropic material behavior. All resulting material parameters are given

in Table 2.
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Table 2

Material parameters.

Epoxy backing Epoxy socket CFRP

Density [ g

cm3 ] 1.14 4.3 1.32

Damping [–] 0.035 0.010 0.056

Poisson’s ratio [–] 0.33 0.38 𝜈12 0.15

𝜈13 0.45

𝜈23 0.45

Young’s modulus [MPa] 3500 6094 E1 33424

E2 33424

E3 4976

Shear modulus [MPa] G12 1974

G13 1715

G23 1715

2.3. Finite element simulation

In finite element simulation, the structural dynamic behavior is investigated. Therefore, the backing, bending elements and

epoxy sockets are modeled. The aluminum layer as well as the cyanoacrylate adhesive are not modeled in the simulation. The

thickness of the aluminum layer is only a few hundred nanometers thick. The cyanoacrylate adhesive is also applied as a thin

layer. We assume ideal adhesion behavior between the components and negligible influence on the mechanical behavior. The

load medium is not part of the model. Thus, no fluid-structure interaction is considered. The excitation for a harmonic analysis

is realized by a load applied to one, the active, bending element.

The finite element simulation of the generic model is carried out with the commercial software Simulia Abaqus 6.14. All parts

are meshed with twenty-node brick elements with reduced number of integration points (C3D20R). The bending elements are

modeled with 0.6 mm average element edge length and 5 layers over thickness. The backing is modeled with 1.0 mm average

element edge length and 4 layers over thickness. By this, the guidelines given in Ref. [26] are satisfied. The connections between

bending elements, epoxy sockets and backing are modeled with tie constraints by a surface-to-surface formulation. The backing

has free-free boundary conditions.

2.4. Cross-coupling definition

In a harmonic analysis and in experiment, a load is applied to the active bending element. The cross-coupling between the

active and the passive bending elements is then calculated by

Pn = 10 · lg

(
V̂2

V̂1

)
dB , (4)

where V denotes the integral of squared velocity over the whole area of each bending element. As we assume uniformly dis-

tributed mass for the bending elements, V represents a kinetic energy equivalent value. To calculate the cross-coupling between

the bending elements, the peak at resonance frequency frn
of each bending element n is used with V̂n = V(frn

). It follows that V̂n

appears at different frequencies for each bending element. Fig. 3 shows a schematic drawing of velocity spectra of the bending

elements. In simulation, V̂n appears almost at the same frequency due to ideal conditions in setup accuracy. This is different

from real setups, where small differences during the preparation process can change the resonance frequency of each bending

element. Thus, a comparable and appropriate validation of cross-coupling in the system can be achieved with V̂n = V(frn
) in

simulation as well as in experimental tests.

2.5. Cross-coupling dependence on backing

Firstly, the influence of the backing thickness on the cross-coupling is investigated in finite element simulation. The first

resonance frequency of the bending elements of the investigated generic model is between 4.9 kHz and 5.2 kHz depending on

the backing thickness. The interval to search for V̂n is set from 4.5 kHz to 5.6 kHz. Fig. 4 shows that the cross-coupling is highly

influenced by the backing thickness. A thicker backing, implying higher stiffness, leads to less cross-coupling. Especially in a

range between 2 mm to 6 mm and 9 mm–13 mm, this is not applicable. This is due to the particular dynamic behavior of the

backing.

The modes of the system are not well separated. Hence, cross-coupling strongly depends on the particular dynamic behavior

of the backing. We want to demonstrate this on the example of two different configurations of the backing thickness, tb =
3.0 mm and tb = 4.0 mm. Fig. 5 (a) shows the mode shapes and the associated eigenfrequencies of the system with tb = 3.0 mm

in the range of interest. In the first mode shape, the bending elements move with the opposite phase (out-of-phase). In the

second mode shape they move with the same phase (in-phase). The difference in eigenfrequency between in-phase and out-

of-phase modes is Δf = 208 Hz. In comparison, Fig. 5 (b) shows the modes of the system with tb = 4.0 mm. In this case, the
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Fig. 3. Scheme of velocity spectra to calculated cross-coupling Pn. Frequency of resonance can vary between active (—) and passive bending (- -) element.

Fig. 4. Cross-coupling Pn dependence on backing thickness tb .

difference in eigenfrequency between the in-phase and out-of-phase modes is only Δf = 20 Hz. Weak cross-coupling can be

attributed to the small difference in eigenfrequency of the in-phase and out-of-phase modes. Similar relations between cross-

coupling and difference in eigenfrequency are found in Ref. [27]. Thus, the behavior of weak mechanical cross-coupling caused

by a common backing could be interpreted as low transfer mobility between active and passive bending element, caused by

strong cancellation between the in-phase and out-of-phase mode. Meanwhile, the influence on the point mobility is negligible.

The cancellation effect also depends on the damping of the system. If a system has a certain difference in eigenfrequency Δf

between the in-phase and out-of-phase modes, higher damping causes weaker cross-coupling. This can be explained by a higher

bandwidth of the peak in the harmonic analysis of in-phase and out-of-phase modal contributions. Thus, the magnitudes of the

modal contributions for a certain frequency are more similar than in cases of lower damping. As the phase difference between

the modes remains 180◦, the cancellation effect is higher in systems with higher damping.

Fig. 6 shows the dependence of cross-coupling Pn on the difference in eigenfrequency Δf between the in-phase and out-of-

phase modes. The results are calculated in the generic model with the same data as before. The backing thickness tb is varied

again in the range from 1 mm to 16 mm. With growing difference in eigenfrequency Δf , the cross-coupling Pn raises.

An outlier can be found for Δf = 12.3 Hz with cross-coupling of Pn = −19.4 dB. This point belongs to the generic model with

tb = 4.5 mm. In this case, a weakness of the previous presented method to calculate cross-coupling emerge. In some systems

with weak cross-coupling (< −25 dB) nearby modes, dominated by the particular dynamic behavior of the backing, are excited

quite strong. Thus, the amplitude V̂2 is located at a different frequency. By this, a motion of the whole backing is analyzed rather

than cross-coupling. An even better result can be achieved by reducing the interval of searching for V̂2 in this system. To keep the

calculation of cross-coupling Pn comprehensible, the authors decide to not change the range of searching for V̂2 for this system.

Based on the results presented in Fig. 6, it is possible to evaluate the cross-coupling qualitatively in different phased array sys-

tems with comparable damping by a modal analysis. The objective to minimize is the difference in eigenfrequency Δf between

the in-phase and the out-of-phase modes. This is an advantage for design optimization of phased array structures because a

modal analysis requires less computational effort than a harmonic analysis over a broad frequency band.
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Fig. 5. Modes of interest with backing thickness (a) tb = 3.0 mm and (b) tb = 4.0 mm. Note: For a better visibility, some elements of the backing are not shown in the first

mode shape.

Fig. 6. Dependence of cross-coupling Pn on difference in eigenfrequency Δf between in-phase and out-of-phase mode.

3. Stop band material as backing

Mechanical cross-coupling in phased array transducers is highly influenced by the dynamic behavior of the backing as shown

above. However, the reduction of cross-coupling by minimizing the difference in eigenfrequency between the in-phase and out-

of-phase mode is connected to avoid the coincidence of backing dominating modes with the operating frequency. This leads

to design issues for arrays with a larger number of transducer elements. More transducer elements require a larger backing.

Thus, the modal density increases in the frequency range around the operating frequency. The matter even getting worse if the

operating frequency is increased. To overcome this problem, a stop band material is introduced as a common backing. Stop band

material can attenuate the wave propagation in the backing. Therefore, we create an extended model derived from the generic

model. It contains a large number of small, equal resonators on the downside of the backing. These resonators can be tuned in
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Fig. 7. Finite element model of the backing with a 5 × 5 grid of beam resonators on the downside.

order to change the frequency range where the backing shows a stop band behavior.

3.1. Design of stop band material

Stop band behavior in plates can be obtained if the resonator spacing sres fits the requirement to be small enough in relation

to the wavelength in the backing. Therefore, the ratio of the resonator frequency fres to the frequency where the wavelength

in the backing equals twice the resonator spacing fplate𝜆=2sres
should be equal to or less than 1 [15]. According to Kirchoff plate

theory, the wavelength in infinite plates is calculated by

𝜆 =
cplate

f
, (5)

with

cplate =
√
𝜔 · 4

√
h2 E

12 𝜌
(

1 − 𝜈2
) .

A basic description is given in Ref. [28, p. 146].

Following the guideline given in Ref. [15] for the dimensionless frequency ratio

fres

fplate𝜆=2sres

≤ 1 , (6)

the maximum resonator spacing sres can be calculated by

fplate = 2𝜋
𝜆2

√
h2 E

12 𝜌 (1 − 𝜈2)
, (7)

sres =

√√√√√√𝜋
√

h2 E

12 𝜌 (1−𝜈2)

2fres

. (8)

The resonators will be tuned so that the first resonance frequency fres coincides with the operating frequency of the bending

elements of the phased array transducer fr = 5.2 kHz. The calculated wavelength is 𝜆 = 44.5 mm for the backing without res-

onators at this frequency. This result has been verified in a time domain simulation of the finite element model. Consequently,

the resonator spacing should be less than 22.3 mm. To investigate the influence of stop band material on cross-coupling in the

generic model, a 5 × 5 grid of beam resonators is used as shown in Fig. 7. In order to reduce cross-coupling, a significant wave

attenuation between the bending elements is desired. Therefore, a spatial placement with one row of resonators between the

bending elements is applied. The center to center spacing of the resonators is set to sres = 10.75 mm which corresponds to

sres ≈ 𝜆∕4. The resonators with a diameter of 2.05 mm can be tuned by trimming the beams length. The influence of stop band

material on the cross-coupling is investigated for the system with tb = 3 mm. This system has high cross-coupling. In simu-

lation, the beam resonators are modeled with C3D20R elements with a structured mesh. The average element edge length is

0.2 mm. The beam resonators are connected with a tie constraint by a surface-to-surface formulation to the backing. Studies

show that the error introduced by meshing is negligible for the effect of cross-coupling.
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Fig. 8. Cross-coupling Pn dependence in the extended model on resonator length lres .

3.2. Cross-coupling dependence on resonator length

The beam length is varied in a range between 1 · 10−3 mm and 12 mm. Fig. 8 shows the cross-coupling dependence on the

resonator length. Between 8.9 mm and 9.5 mm a high attenuation in cross-coupling can be achieved. In this range, the band

of resonance frequency of the resonators fits the resonance frequency of the bending elements. The backing shows stop band

behavior and the free wave propagation is attenuated. At a resonator length of 9.4 mm, the system has minimum cross-coupling

with −19.1 dB.

In this configuration, the resonators increase the mass of the backing by 5.3% in comparison to the generic model without

resonators. The influence of increased mass is evaluated in the generic model without resonators. Therefore, the density of the

backing is increased by 5.3% in finite element simulation which leads to Pn = −7.2 dB. In this way, it is shown that the reduction

of cross-coupling is not caused by the added mass but by the dynamic behavior of the stop band material.

3.3. Stop band behavior

Dispersion curves are common to analyze the behavior of periodic structures. The aim is to identify wave propagation in

structures within a certain frequency range. In this study, they are calculated by applying the Floquet Bloch theorem in an

undamped finite element model. The simulations are carried out with the commercial software COMSOL Multiphysics 5.3. As

the theory of calculation is widely discussed in literature and is not on scope of this work, the authors refer to literature, e.g.

Refs. [15,17,29,30].

The dispersion curves are used to proof the stop band behavior of the above described backing with attached beam resonators

of the length 9.4 mm. As a reference, wave propagation is calculated for a unit cell representing the pure backing without a

beam resonator as shown in Fig. 9 (a). The dimensions of the plate-like part of the unit cells are identical. The lattice has a 2D

periodicity. Due to symmetry of the square unit cell, wave propagation has to be calculated along the contour of the triangle

ΓXMΓ, cf. Fig. 9. The triangle represents the so called irreducible Brillouin zone (IBZ) [15].

To identify different types of waves propagating at the operating frequency of the phased array transducer, Fig. 10 shows

the displaced unit cell of the pure backing. The corresponding points are marked in Fig. 11. Analyzing the displacements, three

different wave types are found, an in-plane longitudinal wave ( ), a shear wave ( ), and a bending wave ( ). Comparable results

with regard to a plate-like structure without resonators are described in Ref. [31]. Fig. 11 (b) shows the dispersion curves of the

unit cell with an attached beam resonator. A major influence on the propagation of the shear wave and the bending wave is

obtained. Thus, shear waves and bending waves can not propagate in the backing at the operating frequency of the phased array

transducer. This reduces mechanical cross-coupling caused by a common backing.

To ensure that the stop band is related to the resonant behavior of the beam, dispersion curves of two additional test cases

are calculated. The test cases refer to a beam length of 7.0 mm, cf. Fig. 12 (a) and 11.0 mm, cf. Fig. 12 (b). It is shown that

changing the length of the beam resonator results in a changed stop band. Thus, the stop band with no wave propagation for

shear and bending waves does not coincide with the operating frequency. In the first test case with beam length of 7.0 mm, in-

plane longitudinal wave, shear wave, and bending wave can propagate at the operating frequency. In the second test case, the

dispersion curves present at the operating frequency contain shear wave components. It is shown that the stop band is related

to the resonant behavior of the beam. Due to the small width of the stop band, cf. Fig. 11, and the high sensitivity to the beam

length, cf. Fig. 12, the curve of Fig. 8 shows high sharpness in the range between 8.0 mm and 11.0 mm. Finally, the reducing of

mechanical cross-coupling can be admitted to the application of resonant stop band material as backing.
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Fig. 9. (a) Unit cell without beam resonator. (b) Unit cell with attached beam resonator of 9.4 mm length.

Fig. 10. The displacements of the unit cell without beam resonator are shown for the corresponding points marked in Fig. 11 (a). Three different wave types are identified:

in-plane longitudinal wave (a), the shear wave (b), and the bending wave (c). The undeformed outlines are shown in gray.

4. Experimental validation

In this section, we validate the finite element simulation for the generic model as well as for the extended model by exper-

imental testing. Firstly, we describe the specimen preparation and test setup. Afterwards, the effect of stop band materials on

cross-coupling in a real setup is shown and compared to the results from Section 3. Finally, we compare the frequency response

function (FRF) from the finite element simulation and the experiment to evaluate the differences between numerical and exper-

imental results.

4.1. Specimen preparation and assembling

The experimental validation requires specimens with high geometrical accuracy. A major challenge is the preparation of an

epoxy backing with 25 local resonators. The preparation as one piece is desired to avoid additional joints between backing and

resonators which may have different mechanical properties. The preparation of the backing with local resonators can be done

by casting epoxy in a mold which has the negative form of the backing. Especially the demold process requires high effort since

small and long resonator beams tend to break during demolding. This issue possibly increases in real world applications where

the operating frequency is higher and consequently the dimensions of the stop band material are smaller. To overcome this

issue, it would be possible to assemble separately manufactured beam resonators and backing in an additional process. Fig. 13

(a) shows the prepared backing with 25 beam resonator on the downside. The bending elements and the backing are coated

with aluminum by thermal evaporation to form electrodes. By covering certain areas of the backing, it is possible to separate

the counter-electrodes for each transducer element.
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Fig. 11. Dispersion curves for different unit cells, operating frequency marked by horizontal line at 5.1 kHz (a) without beam resonator. (b) backing with attached, well

tuned beam resonator, length 9.38 mm.

Fig. 12. Dispersion curves for different unit cells, operating frequency marked by horizontal line at 5.1 kHz (a) backing with attached, poorly tuned beam resonator, length

7.0 mm (b) backing with attached, poorly tuned beam resonator, length 11.0 mm.

Another challenging process is the assembling of the bending elements and the backing. The boundary conditions for the

vibrational properties of the bending elements are defined by the length between the epoxy sockets. The bending elements are

jointed with cyanoacrylate adhesive to the epoxy sockets. Thus, a small air gap between the electrodes is realized. The assembly

is finished by connecting electrical wires with copper tape to the electrodes.

The influence of the local resonators on the cross-coupling is investigated with one and the same specimen. By this, differ-

ences in cross-coupling maybe caused by the single parts, preparation and assembly of the specimen can be avoided. The model

is prepared using a backing with local resonators of 12 mm length. The length of the local resonators can be trimmed stepwise

by sanding. In this way, it is possible to measure the cross-coupling influenced by local resonators with different length at one

specimen.

4.2. Test setup for cross-coupling measurement

For experimental testing of cross-coupling, a non-contact measurement is done with a scanning laser Doppler vibrometer.

The specimen is placed on two horizontal tighten yarns. By this, free-free boundary conditions can be approximated. Fig. 13

(b) shows the set up generic model during experimental testing. The active element is excited by an electrical voltage between

the capacitor electrodes. In a range from 4.5 kHz to 6 kHz a periodic signal, called pseudo random, is applied. This signal type

excites all frequencies of the measured spectrum simultaneously and does not cause leakage effects [32]. The signal from the

signal generator is amplified with a high voltage amplifier which amplifies the alternating current (AC) excitation voltage and
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Fig. 13. Backing with beam resonators (a) and experimental test setup (b): (1) backing, (2) beam resonator, (3) active bending element, (4) passive bending element, (5)

tighten yarn.

Fig. 14. Cross-coupling Pn dependence on resonator length lres in the extended model. Comparison of results from simulations and experiments.

generates an additional 200 V direct current (DC) offset. The velocity spectrum is measured at 27 scanning points for each

bending element. Cross-coupling is calculated at the resonance frequency of each bending element like described in Eq. (4).

4.3. Cross-coupling dependence on resonator length

The length of the beam resonators is trimmed to fit the stop band to the operating frequency of the phased array trans-

ducer. Fig. 14 shows the cross-coupling depending on the resonator length. Between 9.0 mm and 10 mm, a major reduction of

cross-coupling is achieved in simulation as well as in experiment. Reasonable agreement between numerical simulation and

experimental testing is attained. The reduction in cross-coupling is attributed to the stop band behavior of the backing achieved

by the local resonators on the downside. The most effective reduction can be achieved at 9.4 mm. The mechanical cross-coupling

is reduced from −10.1 dB to −18.0 dB.

In case of resonators with 12 mm length, the frequency range of the stop band does not coincide with the operating frequency

of the phased array transducer. The mechanical cross-coupling is −11.6 dB. By this, it is verified that the reduction of cross-

coupling is caused by the stop band behavior.

4.4. Harmonic analysis

To evaluate the differences between simulation and experiment, the FRFs of both are compared. Therefore, the generic model

without resonators and tb = 3 mm is analyzed. As the electrodynamic behavior is out of scope of this study, the excitation in

the finite element simulation is applied by a mechanical load. However, the input parameter for the experiment is an electrical
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Fig. 15. Normalized frequency spectrum from simulation and experimental testing of the generic model. Results from numerical simulation active (×) and passive (∗)

bending element. Results form experimental testing ( ) and passive ( ) bending elements.

voltage. To compare the FRFs of the experiment and simulation, they are normalized to 1 at maximum of the active bending

element. Fig. 15 shows a reasonable agreement between simulation and experiment.

In the experiment, a shift in resonance frequency for the passive bending occurs. This can be ascribed to small differences in

free length of the bending element. Due to the rheological behavior, the adhesive easily flows and changes free length between

the epoxy sockets in preparation process. As the resonance frequency is highly sensitive to the free length, this is a major

challenge during the application process of the bending elements. In Section 2, the calculation of cross-coupling Pn is explained.

Analyzing Fig. 15 it becomes clear, that it leads to differences whether Pn is calculated at a fixed frequency by Pn = V2(𝜔1)
V1(𝜔1) , e.g.

the resonance frequency of the active element, or at the resonance frequency of each bending element Pn = V2(𝜔2)
V1(𝜔1) .

4.5. Discussion

The simulations of the generic and the extended models are validated with experimental measurements. In configurations

with resonator length 1 mm–9 mm and 10 mm–12 mm, the frequency range of the stop band is poorly tuned to the operating

frequency. In this cases, less cross-coupling is present in experiments than in simulations. This can be attributed to different

resonance frequencies of the bending elements in experiments. Furthermore, cross-coupling is highly influenced by damping.

As the precise determination of dynamic material parameters, given in Table 2, is complex and influenced by uncertainties,

this can be another reason for this differences. However, the accordance between simulation and experimental measurements

is quite good as the absolute difference in cross-coupling Pn varies between 1.3 dB and 2.2 dB. The frequency range of the stop

band and the operating frequency coincides between 9 mm and 10 mm resonator length. In this case, a major reduction of cross-

coupling is obtained in simulations and in experiments. It is reduced in experiments by 7.9 dB. In contrary to the poorly tuned

configuration, the cross-coupling at 9.4 mm is higher in the experiment than in simulation. The reason for that can be found in

tuning the resonators by sanding. This causes a variance in the length of each resonator. Thus, the effect of wave attenuation

at a certain frequency is smaller than under ideal conditions, where the resonators have all the same length. Nevertheless, the

difference between the simulation and the experimental measurements is only 1.1 dB.

5. Conclusion

The authors presented a study on mechanical cross-coupling in air-coupled phased array transducers with low operating

frequency. In a generic model, the behavior of cross-coupling is investigated with special focus on the influence of the common

backing. In finite element simulation, a generic model with two single transducers is set up. They are realized as capacitive

transducers with bending elements which are bonded on the common backing. In order to reduce mechanical cross-coupling,

stop band material as backing is investigated in this study. Therefore, beam resonators are attached on the downside of the

backing. The frequency range of the stop band is tuned by trimming the length of the beam resonators. The effect on cross-

coupling is investigated in numerical simulation and experimental testing. The authors conclude that in low frequency air-

coupled phased array transducers

(i) mechanical cross-coupling highly depends on the particular dynamic behavior of the common backing,

(ii) the difference in eigenfrequency between in-phase and out-of-phase mode of the bending elements is an indicator of

mechanical cross-coupling. A higher difference in eigenfrequency indicates a stronger mechanical cross-coupling and
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(iii) stop band material realized with local resonators on the downside of the backing is a suitable solution to achieve a major

reduction of mechanical cross-coupling.

The presented results offer a new possibility to estimate mechanical cross-coupling in similar low frequency phased array

transducers with a common backing based on a modal analysis. This is an advantage for optimization problems, as a modal

analysis usually requires less computational effort than a harmonic analysis. In further studies, the influence of uncertainties in

material and geometry should be investigated in detail. Nevertheless, by experimental results of this study it is shown that a

major reduction in mechanical cross-coupling can be achieved with stop band material in a real setup.
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