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Abstract

Technological advances and the need for a low-carbon economy enabled renewable en-
ergy systems to lead the energy transition. Globally, countries are altering their energy
policies and adapting goals on the national and regional levels to support the integra-
tion of renewables and transform conventional consumers to prosumers. However, the
developments in infrastructure cannot keep pace with energy system transformations or
expected goals. Hence, advanced energy management and coordination techniques are
adopted to align the infrastructure capabilities with the rapid growth in renewables and
increase the overall system efficiency. At the level of microgrids, local energy trading
markets can be a key solution to actively involving the prosumers in the local energy sys-
tem through financial incentives. They can offer the grid operators a versatile solution
for energy coordination without violating prosumer privacy.

In this dissertation, a comprehensive solution is offered for a local energy trading
market that bridges the gap between simulation and real-life requirements. Hence, a
bottom-up approach is adopted in designing the market model to identify the technical
system constraints and dynamics at the device, building, and microgrid level. At the
device level, non-linear models are presented and experimentally validated based on
testbeds. Furthermore, a probabilistic forecasting system is integrated that is designed
for small-scale photovoltaic systems of prosumers and microgrids. At the building level,
a home energy management algorithm is presented and evaluated based on multiple
generic loads that represent the current and possible upcoming flexible devices. Based
on these systems, a market model is developed with device-oriented bidding strategies
that are tailored to the technical constraints and limitations of the most common flexible
devices in residential buildings.

Based on intensive scenario analyses, the results show considerable benefits for both
the prosumers and utility. For example, the base scenario indicates that the prosumer
can attain an average yearly cost savings of 23% through energy trading. Additionally,
an experimental demonstration is performed to compare the results and dynamics of the
simulation models to the testbed. The energetic and dynamic analyses of the demonstra-
tion prove that the model is not only capable of enabling energy trading and management
in microgrids but also simulating and representing real-life dynamics accurately.
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Zusammenfassung

Verschiedene technologische Fortschritte und die Notwendigkeit einer Wirtschaft mit re-
duzierten CO2-ausstoß ermöglichten es erneuerbaren Energiesystemen, die Energiewende
voranzutreiben. Weltweit ändern Länder ihre Energiepolitik und passen Ziele auf na-
tionaler und regionaler Ebene an, um die Integration erneuerbarer Energien zu un-
terstützen und herkömmliche Verbraucher zu Prosumenten zu machen. Insbesondere
Entwicklungen in der Infrastruktur können jedoch nicht mit den Veränderungen des
Energiesystems und den erhofften Zielen Schritt halten. Um die Leistungsfähigkeit der
Infrastruktur an das schnelle Wachstum der erneuerbaren Energien anzupassen und die
Gesamtsystemeffizienz zu steigern, werden daher innovative Ansätze im Bereich Energie-
management sowie verschiedene Koordinierungstechniken angewandt. Auf der Ebene
von Microgrids können lokale Energiehandelsmärkte dabei eine wichtige Lösung sein, um
Prosumenten durch finanzielle Anreize aktiv in das lokale Energiesystem einzubinden.
Diese Märkte können dabei Netzbetreibern eine vielseitige Lösung für die Energiekoor-
dination bieten, ohne gleichzeitig die Privatsphäre des Prosumenten zu verletzen.

In dieser Dissertation wird eine umfassende Lösung für einen lokalen Energiehandels-
markt vorgestellt, wodurch die Lücke zwischen Simulation und realen Anforderungen
geschlossen wird. Zu diesem Zweck wird beim Entwurf des Marktmodells ein Bottom-
Up-Ansatz gewählt, wodurch die technischen Systemeinschränkungen und -dynamiken
auf Geräte-, Gebäude- und Microgrid-Ebene ermittelt werden können. Auf Geräteebene
werden dazu nichtlineare Modelle verwendet, die in Versuchen an Prüfständen vali-
diert wurden. Darüber hinaus ist ein probabilistisches Prognosesystem Bestandteil,
das für kleine Photovoltaikanalgen von Prosumenten konzipiert ist. Auf Gebäudeebene
wird ein Algorithmus für ein Haus-Energiemanagement vorgestellt, das mit Hilfe ver-
schiedener generischen Lasten bewertet wird, die aktuelle Geräte abbilden und eine
mögliche zukünftige Flexibilisierung adressieren. Basierend auf diesen Systemen wird ein
Marktmodell mit geräteorientierten Gebotsstrategien entwickelt, die auf technische Be-
dingungen und Einschränkungen der gebräuchlichsten flexiblen Geräte in Wohngebäuden
zugeschnitten sind.

Die Ergebnisse ausführlicher Analysen in verschiedenen Szenarien zeigen, dass der
vorgestellte Ansatz erhebliche Vorteile für Prosumenten und Marktanbieter eröffnet.
Zum Beispiel zeigt das Basisszenario, dass Prosumenten durch den Energiehandel eine
durchschnittliche jährliche Kosteneinsparung von 23% erzielen können. Zusätzlich wur-
den Ergebnisse und Dynamik der Simulation mit Messungen am Prüfstand vergleichen.
Die Ergebnisse daraus zeigen, dass das Modell nicht nur Energiehandel und -management
in Microgrids abbilden kann, sondern auch die reale Dynamik mit hoher Genauigkeit
simuliert und darstellt.
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Progress is made by trial and failure; the failures are generally a hundred
times more numerous than the successes; yet they are usually left unchroni-
cled

by Sir William Ramsay
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1 Introduction

The threats of climate change to the global ecosystem are reshaping the energy policy
globally. Several limitations have been imposed on Greenhouse Gas (GHG) and the use
of fossil fuels. At the EU level, the 2020 climate and energy package set of legislations
was imposed to cut the GHG emissions from 1990 levels and increase renewable energy
generation and efficiency by 20% in 2020 [2]. In Germany, long-term goals were embraced
within the climate action plan program that aim towards reaching at least 55% reduction
of GHG in 2030 [3, 4]. Several regulations were introduced such as Renewable Energy
Sources Act (EEG), Combined Heat and Power Act (KWKG), Energy Conversion Act
(EnEG), and Energy Industry Act (EnWG) to reach these goals [5–8]. These regulations
led to restructuring of the energy sector and changed the pace at which Renewable
Energy Sources (RES) are being exploited.

On the supply side, the electricity grid is facing the outcomes of such energy policy
transformations. Among the several regulations, the EEG has one of the most significant
impacts on the grid. The act prioritizes the RES in the energy market through guar-
anteeing a Feed-in Tariff (FIT) and providing a risk-free environment for the investors.
Enforcing this act along with the continuous decrease in investment costs of renewable
energy systems led to an expansion in the installations of Photovoltaic (PV) systems and
wind turbines. At the end of 2017, the number of PV installations reached 1.6 million
and produced 43 GW. In addition, by the end of the same year, the share of electricity
generation by wind turbines has also grown to constitute 16% of the generated energy,
and a capacity of 5.4 GW. This capacity is expected to increase to 15 GW by the end of
2030 [8]. The investors in renewable energy are not exclusively the conventional energy
sectors stakeholders. The current policies also attracted residential and industrial con-
sumers. For example, 39.4% of the installed PV capacities are owned by the residential
sector, and 19.2% are owned by the industrial and commercial sectors [8]. Hence, the
conventional consumers are gradually being transformed into prosumers.

On the demand side, Heat Pump (HP) and Electric Vehicle (EV) loads are being
continuously integrated into the electricity grid. In 2016, the HP installations in new
buildings reached 31.8% representing a market share of 34% for single-family houses,
16% for multi-family houses and 13.6% for non-residential buildings. Moreover, the
number of EVs as well as their power demand share is growing [9]. In Germany, a target
was set to reach 1 million EVs by 2020, given that EVs are defined as vehicle producing
not more than 50g CO2/km or having an electric drive range of at least 40 km [10–12].
Although HP and EV are major role players in the electrification of the energy system
via coupling the heat and transportation sector to the electricity sector, they introduced
new challenges to the grid operators.
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1 Introduction

The fluctuating RES based supply and the growing loads rendered the conventional
approach of managing the grid obsolete. The conventional approach is suitable for uni-
directional power supply and inelastic demands, yet it is not fit to the modern digitized
grid. The developments in the communication infrastructure, Information and Com-
munication Technology (ICT), and computational powers are enabling a broad range of
possibilities to manage the electricity grid. The digitalization of the grid provides the
basis to connect the different Distributed Energy Systems (DES) and loads to facilitate
an active participation from the prosumer side. Hence, an opportunity is available to
overcome the barriers established by the energy transition if the prosumers’ flexibility
potential is adequately and comprehensively utilized.

Using the flexibility of the prosumers is about “putting people in the loop”[13]. The
idea of using the prosumer’s flexibility to shift a load between two points in time may
sound simple. However, any control method does not only have to address the technical
challenges of the grid but also the people’s need for autonomy and maintaining their data
privacy. Moreover, it has to guarantee proper incentives for the active participation in
the “loop”.

This dissertation presents a market model for microgrid coordination and quantifies
its potential under multiple scenarios from the perspective of the prosumer and the
utility. The study tries to bridge the gap between the numerical simulation and real-
life environment. Hence, a detailed bottom-up approach is followed in modeling and
analyzing the market model. It starts by discussing the smallest unit in the energy
system, a household device, and ends at the microgrid. At the device level, devices are
modeled and optimized based on testbeds to visualize the real-life system dynamics and
assure the quality of the results. Furthermore, a tailored forecasting system is developed
for the Home Energy Management System (HEMS) and energy markets, which addresses
the generation uncertainties of the common small-scale prosumers. At the building
level, the load shifting potential of a HEMS is evaluated using the developed forecasting
system and multiple generic household loads. At the microgrid level, the device models,
forecasting system, and HEMS are integrated into a discrete-timely double-sided auction
with device-oriented bidding strategies to evaluate the market dynamics, utility and
prosumers’ benefits. The model dynamics and results are then demonstrated using
Hardware in the Loop (HiL) real-time simulations to emphasize the practicality and
accuracy of the model.

1.1 Background

This section highlights the most important concepts for the implementation of energy
trading markets in microgrids. The microgrids are defined along with their future role
in the energy systems. The challenges facing the future vision of the microgrids are
discussed. Requirements and criteria for microgrids’ coordination to use the prosumers’
full flexibility potential are defined. Furthermore, the basics of auction markets and the
potential use of their resource allocation power for microgrid coordination are presented.

2
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1.1.1 Microgrid Definition and Evolution

A microgrid is defined as a group of loads and generators that are operating together in
a low or medium voltage grid [14]. This concept of a microgrid is as old as the electricity
network. The earliest electricity grids were microgrids before their expansion to regional
or super grids. However, along with the massive penetration of RES such as PV, battery
systems, in addition to Micro Combined Heat and Power System (Micro-CHP) and their
heat storages, new definitions and roles emerged for the microgrids.

A more recent descriptive definition of a microgrid presented by the workgroup C6.22
of the Conseil International des Grades Réseaux Électriques (CIGRE) is “Microgrids are
electricity distribution systems containing loads and distributed energy resources, (such
as distributed generators, storage devices, or controllable loads) that can be operated in
a controlled, coordinated way either while connected to the main power network or while
islanded,” [15]. A similar definition was also introduced by the U.S. Department of
Energy [16] and other researchers as in [17, 18]. In all these definitions, the microgrid
is no longer an independent entity but rather an active component of the national grid.
Hence, the grid can be seen as a network of mini and microgrids that can be islanded or
connected at any time of the day.

These definitions also fit with the German vision for the role of microgrids in the
national grid. Within the framework of the SINTEG C/sells project [19], the national
grid is seen as multiple cells. The cell size can vary to include an individual site such
as a building, a microgrid, or a whole distribution grid. Each of these cells can balance
their loads and generation, and exchange energy with the other cells in the systems.

Although different roles and functions were discussed in the literature for the micro-
grids that fit the aforementioned definitions [20–24], the goals and expected benefits were
similar. They were all oriented towards the need of minimizing the cost of operation
of the grid, increasing the overall generation efficiency, minimizing energy supply cost,
reducing the environmental impact and assuring the security of supply. These roles can
be summarized in the following points:

• Use and control the local generation resources such as PV, batteries, and Micro-
CHP to maximize the autonomy and self-consumption.

• Act as a virtual resource to deliver ancillary services (i.e., flexibility) to different
locations in the grid, e.g., act as load or virtual power plant to make up for the
fluctuating RES.

• Provide reliability services, such as emergency services, to serve particular sensitive
loads.

Within the framework of this dissertation, a microgrid is defined as a connected entity
to the national grid. In the microgrid, different DES and flexible loads are coordinated
in a way that reduces costs and CO2 emissions, increases efficiency, autonomy, and
self-consumption. Hence, at any point of time, the microgrid is assumed to be able to
exchange energy with the grid, if there is an excess or deficit in generation.

3



1 Introduction

1.1.2 Coordination Requirements

In the literature, several models discussed the optimization techniques required for the
flexible devices coordination at the prosumer and microgrid level. Examples of these
techniques and algorithms are stochastic optimization [25], mixed integer quadratic pro-
gramming [26], mixed integer linear programming (MILP) [27, 28], fuzzy logic [29–31],
and other machine learning techniques [32]. Over the last decade, the optimization tech-
niques did not vary, as much as the use-cases on which the model was based. Each use
case and optimization technique was tailored to address either the prosumers, or utility
requirements. These requirements can be summarized in the following points:

• Scalability: the coordination or control mechanism has to be scalable such that it
guarantees an immediate real-time reaction independent of the number of partici-
pants or devices in the microgrid.

• Decentralization: the prosumer has to be autonomous (i.e., independent). Each
prosumer has to decide about their means of participation for microgrid coordina-
tion.

• Guaranteeing the prosumers’ reaction: the feedback of the prosumer has to be
known to estimate the overall prosumers’ reaction within the microgrid.

• Data privacy: no information should be exchanged about the prosumer or devices
status (e.g., the operation starting time, ending time, manufacture of the device,
or frequency of usage).

• Fair division of economic benefit: prosumers should be monetarily compensated
depending on their active participation (i.e., flexibility) in the microgrid.

A prosumer controlled HEMS reacting to a Real Time Pricing (RTP) seemed to be
satisfying the presented coordination requirements. Figure 1.1 (left) shows the commu-
nication structure between the utility and prosumer using this approach. The utility
sends a RTP that drives the prosumers to shift their load from peak hours to off-peak
hours. Several researchers studied the HEMS load shifting and economic potential of
RTP from different perspectives and household configurations as in [28, 33, 34]. These
studies and models did satisfy scalability, decision decentralization, and data privacy,
but they did not guarantee the prosumers’ reaction to the signal. If each household has
a HEMS that operates autonomously, all the prosumers might switch on their loads or
feed energy to the grid at almost the same time. Consequently, the overall results would
be the formation of another peak, up to 50% higher [35], at another point in time. More-
over, on the prosumer-side, another requirement was imposed by device manufacturers,
which is the need for decentralization at the household level as discussed in [36, 37]
and the e-MOBILie Project [38]. Device manufacturers do not allow direct access to
the household device if the device’s warranty is to be maintained, especially for EVs.
Consequently, another architecture was developed based on the RTP that enables de-
centralized HEMS, where the device itself handles the decision-making process. In this
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case, the HEMS is used only for communicating the user preferences and initiating the
optimization process. Figure 1.1 (left) shows the difference between the centralized and
decentralized HEMS, where I/O is the switching signal forwarded to the device.

At the level of an island or grid-connected microgrids, the Centralized Energy Man-
agement System (CEMS) was introduced to satisfy the requirement of guaranteeing the
prosumers’ reaction. The CEMS receives all the User Preferences (UP) of all prosumers
within the microgrid, then tries to achieve an optimal plan based on the algorithms
mentioned earlier. Such a system can maximize the economic benefits, satisfy the pro-
sumers’ constraints, and exploit the maximum flexibility potential. Nevertheless, since
the CEMS receives all the user information to start the optimization iterations, it violates
the data privacy requirements and exhibits a limited scalability [39,40]. The HEMS, in
this case, acts as a gateway. It provides the UP and receives the switching plan of the
given devices. Figure 1.1 (middle) shows the communication architecture between the
HEMS and CEMS.

Figure 1.1: Development trends of energy management methods in the literature [1].

Energy trading platforms and market models are the decentralized energy manage-
ment systems at the microgrid level. They are not only meant for energy trading but
also coordination of the microgrid as discussed in [35]. These platforms are scalable due
to the absence of a running optimization loop at the microgrid level. They are decentral-
ized as each prosumer decides on their means of participation and optimization strategy.
Moreover, they guarantee the prosumers’ reaction as the platforms receive a feedback
from the prosumer about their intentions and commitment to the communicated offers
as in Figure 1.1 (right). They maintain the data privacy as the prosumer has to only
decide on the time, volume and price of energy offered or asked. Hence, all the detailed
information (e.g., EV start time, end time, load) are encrypted in the economic signal
being communicated. They guarantee a fair division of economic benefit as the incen-
tives received by the prosumers depend on their active participation in the microgrid
coordination and the competitive market equilibrium.

At the prosumer level, these markets can communicate with a centralized or decentral-
ized HEMS as in Figure 1.1 (right). In this dissertation, the market model is designed to
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operate with decentralized HEMS to maintain a realistic communication structure that
fits with the device manufacturer’s requirements as well.

1.1.3 Auction Design and Peer-to-Peer Trading

A market is defined as “a regular gathering of people for the purchase and sale of provi-
sions, livestock, and other commodities,” [41]. Whenever there are supply and demand
for any commodity or service, a market can exist. The primary function of this market
is to define two variables; the unit price p and the quantity q to be traded, such that all
buyers are willing to buy at p or higher and all sellers are willing to sell for p, or lower
can exchange q.

An auction market is managed by an auctioneer who is responsible for clearing the
market [42, 43]. The outcomes of any auction are determined based on three factors:
bidding rules, market-clearing rules, and information dissemination rules [44]. The bid-
ding rules represent the form of the bid. For example, it can be price only, price and
quantity, or quantity only. The market-clearing rules define the timing rules, closing
conditions, rules for bid improvement, and final p and q (winning rules). The informa-
tion dissemination rules limit the available information to the bidders. The information
can be the bid prices or quantities of other bidders.

There are several types of auctions used in trading common commodities. Single-sided
and double-sided auctions represent the two major categories of auction designs. In a
single-sided auction, all buyers or sellers compete at the same time to acquire or sell a
commodity, respectively. A simple example of the single-sided auction is eBay. A seller
offers a product at a specific reserve price, and all buyers compete to get the product. In a
double-sided auction, both buyers and sellers are involved and simultaneously competing
to allocate their share of the available commodities [45]. In the electricity sector, single-
and double-sided auctions are both implemented in wholesale markets in different forms
(e.g., sealed-bid, hybrid or descending) as discussed by [43].

However, double-sided auctions are attracting more researchers for their resource allo-
cation power and applications in online electronic markets. Compared to other auction
types, there are several design parameters or attributes for double-sided auctions. These
parameters directly influence the market-clearing and bidding rules [46]. Among all the
possible parameters, two categorize double-sided auctions: the clearing time and the
pricing mechanism.

The clearing of a double-sided auction can be continuous or discrete-timely. In con-
tinuous double-sided auction, every bid is matched immediately as soon as it is received.
Remaining bids can be kept in an order book until cleared. A discrete-timely double-
sided auction clears the market at fixed time intervals. As indicated by [47], this clearing
can occur multiple times within the same trading period or at the end of the trad-
ing period. Several researchers discussed the advantages and disadvantages of the two
mechanisms in terms of market efficiency and influence on trading behavior as in [48].
However, Haas et al. stated that continuous-time trading in online markets could be
inherently flawed [49]. In a continuous double-sided auction, faster market participants
might have an edge over other competitors, and the trading speed is not only a function
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of the decision-making process but also the communication infrastructure. Hence, a
market participant who has a fiber optic infrastructure might claim more benefits than
other competitors due to a few milliseconds delay or lower latency in communication.

In double-sided auctions, there are two options for setting the market price, either by
the market participants or auctioneers. The seller can indicate the acceptance of a bid
if it has a higher value than the asked value, or the auctioneer can set a market clearing
price for all the market participants depending on the supply and demand. These two
cases are defined as the pay-as-bid or uniform pricing, which are also referred to in the
literature as non-institutional and institutional pricing, respectively. The continuous
double-sided auction inherently has a pay-as-bid clearing mechanism because the market
has to be cleared immediately once two bids can be matched. On the other hand,
the discrete-timely double-sided auction uses a uniform clearing mechanism. In the
literature, several researchers discussed and compared the two mechanisms depending
on the market regulations and the traded commodity as in [46,47,50]. In general, it was
found that the uniform pricing is a fairer clearing mechanism since the set price is the
competitive market clearing price. Hence, it encourages the sellers to bid their lowest
price to increase their possibility of selling.

In auction design, several rules can be changed or imposed to change the market
dynamics and market participants’ trading behavior. These rules can vary depending
on the nature of the commodity, traders, or state regulations. There is no “one-size-fits-
all” design as discussed in [43]. Each design has its own advantages and disadvantages.
Hence, in many cases, the auction design and rules have to be tailored to fit the purpose
of the market.

However, Peer-to-Peer (P2P) can be any of the aforementioned auction designs. A
P2P market is any market that allows two parties, a buyer and a seller, to trade their
commodities [51–53]. The two parties are referred to as peers if the two parties are not
wholesale retailers [53]. Hence, the platforms of Uber, Airbnb, or eBay are referred to as
P2P platforms. The term platform refers to a market that is online and has no physical
marketplace.

In the literature, these platforms are divided into centralized and decentralized. The
centralized platforms have a centralized process to clear the market and match buyers
and sellers, while the decentralized platforms enable individual selection of the peer (e.g.,
Airbnb) [53]. The centralized and decentralized platforms are also referred to as hybrid
and pure peer-to-peer platforms, respectively [54].

The centralized and decentralized P2P platforms coexist and are often used on daily
basis by average consumers, and both of them can be implemented for energy trading
in microgrids. However, their efficiency can be constrained by the ICT infrastructure.
In centralized markets, an auctioneer is present that collects the bids and announces
the market clearing price. Hence, a single communication iteration can be required per
trading period to develop a competitive market clearing price for all market participants.
In contrast, peers in a decentralized market can reach the same price, if each peer can
access and review all the offers of the other peers at each trading period to optimize
the profit or cost. Comparing the two platform types, the decentralized P2P might lead
to a proportional increase in the optimization and communication time depending on
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the number of peers and the communication technology applied. Such a communication
process might still be overburdened if peers are trading in both near real-time and
forwards.

1.2 Research Gaps

The research trends and gaps in the literature can be summarized in the following points:

• Most of the presented market models are real-time, near real-time or hour-ahead
as discussed in [51,55–57], although forward trading is crucial to exploiting the full
flexibility potential of the prosumers. Otherwise, the load shifting capability of the
prosumer will be confined, which can lessen the economic feasibility of the energy
market platforms and their infrastructure. A limited number of studies discussed
forward and real-time trading such as the model of [58], where a bilateral contract
network was developed to enable energy trading between prosumers and fuel-based
generators.

• Complicated bidding strategies were applied to develop an optimal bid. These
strategies can be hardly deployed in a real-life environment on the devices as it
either requires high computational power or long wait times to communicate with
all other market players. Hence, its synchronization with the energy market can
be challenging.

• Most of the research focused on modeling either the electrical side or the thermal
side of the prosumer, but not both. Several models are also oriented towards
the integration of a specific device such as EVs [59, 60], generic consumers and
generators, or aggregators as in [61]. A model that studies the bidding mechanism
and integration of every possible prosumer’s consuming device (e.g., EV, and HP),
generation (e.g., PV and micro-CHPs) or storage to the date of this review is not
present.

• The technical constraints and physical characteristics of market participants (i.e.,
prosumers) are not usually modeled [61]. Consequently, the practicality and the
possibility of implementation of the presented algorithms are hard to evaluate.
Simple models were used for prosumers’ devices in households to minimize the
computational speed of the market, yet these models can directly influence the bid
volume and consequently the market dynamics.

• Forecasting systems were not often integrated into the presented models [51,55,56,
62]. Hence, forecasting uncertainties and their influence on the prosumers’ com-
mitment to the communicated bids were not adequately discussed in the literature.
As a solution to the prosumers commitment, [62] proposed that prosumers who
failed to generate or supply energy have to be either charged a penalty or trade at
lower prices. However, the risk the prosumer is taking and the possible penalties
because of the forecasts were not quantified.
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1.3 Research Objectives, Design, and Questions

In this dissertation, the main objective is to present a model that addresses all the
aforementioned gaps and provide a comprehensive solution for the integration of energy
markets in microgrids that bridge the gap between simulation and real-life environment.
Hence, all the following features should be integrated into a combined model:

• A near real-time and forward trading should be possible with a fast clearing mech-
anism that enables the prosumers to optimize their bids and shift their load de-
pending on their preferences.

• Simple bidding strategies should be implemented that do not require high com-
putational power and are deployable on the current flexible devices. The bidding
strategies should also be tailored to the devices’ technical and physical character-
istics.

• A probabilistic forecast that accounts for the prediction uncertainties should be
integrated in a way that maximizes the prosumer commitment.

• Non-linear experimentally validated models or field measurements data should be
used to represent all devices available in the prosumers’ building such as EV, HP,
Micro-CHP, and PV.

• A decentralized approach (i.e., decentralized HEMS) should be followed at the
prosumer level.

A bottom-up research design approach is used in order to deliver the required features
of the model. Figure 1.2 shows the abstract structure of a microgrid.

Figure 1.2: Microgrid abstract structure for the energy market model.
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The research is designed to start with the device level, which is the bottom level
of the energy system. At this level, the device models and forecasting systems are
studied. Moreover, the operation, control and forecasting requirements are defined. At
the building level, these devices and forecasting systems are integrated with building
models to be controlled by the HEMS. The model is then evaluated given different
system constraints and configurations. At the microgrid level, integration of HEMS and
devices in the market model is studied under different scenarios.

The dissertation is divided into a model and a demonstration as shown in Figure 1.3.
In the model, since a bottom-up approach is followed in developing the market, multiple
research questions can be investigated at the level of the device, building or microgrid.
However, the most representative six questions with significant contributions are selected
and documented in this dissertation. These questions are as follows:

1. What are the optimal control criteria for heat pump operation in buildings based
on experimental analysis?

2. Which forecasting method is optimal and applicable for small-scale PV systems?

3. How can probabilistic forecasts be integrated in home energy management systems?

4. How will home energy management systems react to different generic loads?

5. Which market design can facilitate the integration of prosumers in energy trading
platforms while satisfying the microgrid coordination requirements?

6. What is the potential of energy trading platforms in microgrids under different

a) market design parameters,

b) microgrid configurations,

c) prosumer behavior and energy consumption patterns?

The goal of the demonstration is to validate the results of the market model in order to
guarantee its realization in real-life. Hence, another question is asked, how realistic are
the model outputs and dynamics? Figure 1.3 shows the flow of research questions, and
the relationship between all the aforementioned research questions within the framework
of this dissertation.

1.4 Dissertation Structure

This dissertation is structured as follows: Chapter 2 discusses the different methods
applied at the device, building and microgrid level of this dissertation. In Section 2.1,
the models of the flexible devices are presented. Moreover, the experimental procedure
for analyzing these models are discussed. Section 2.2 method of probabilistic forecasting
for small-scale PV generation systems that is tailored for prosumers’ integrations in
energy markets. Section 2.3 presents a HEMS that enables load shifting based on the
probabilistic forecast. Section 2.4 details the market model design and its operations
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concept. Additionally, the function and bidding strategies of every market component
are described.

Chapter 3 summarizes the results of the models and systems presented in this disser-
tation. Section 3.1 demonstrates a validated heat pump model and discusses the results
of the experimental analyses. Section 3.2 presents the results of the probabilistic PV
forecast and validates it based on a defined set of metrics. Section 3.3 presents two
case studies and compares the behavior of the HEMS with and without the probabilistic
forecast. Section 3.4 presents the results of the market model using a microgrid of single-
family houses. Moreover, it shortly summarizes the results of the scenario analyses.

Chapter 4 presents the demonstration method applied to validate the models in this
dissertation. Section 4.1 presents the developed heat pump testbed and its components.
Moreover, it shortly discusses the HiL method. In Section 4.2, a type day is simulated
and compared to the testbed results. Energetic and dynamic analyses are performed to
demonstrate the accuracy of the presented model.

Chapter 5 answers the research questions, presents a conclusive summary and an
outlook for future research.
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Figure 1.3: Research questions at each level of the model and demonstration.
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1.5 Publication Structure

The content of this dissertation is presented in seven publications. Each publication
is dedicated to answering one or more of the research questions presented earlier in
Section 1.3. Figure 1.4 uses the same structure of Figure 1.3 to demonstrate the research
questions covered by each publication. The seven publications are in the appendix A.1
to A.7.
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Figure 1.4: Appended publications in the dissertation.
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This chapter introduces the models, data, and methods used at the level of device, build-
ing, and microgrid. Section 2.1 presents the experimentally validated heat pump model
discussed in Publication 1. Other flexible devices models are also shortly discussed.
Section 2.2 presents the PV forecasting system presented in Publication 2. Section 2.3
presents the HEMS operating at the building level that is used in Publication 3. Section
2.4 presents the market model where all the outputs of Publications 1-3 are used as in
Publication 4. Additionally, Section 2.4 presents the scenario analysis methodology used
in Publication 5.

2.1 Flexible Prosumer Devices in Buildings

Devices in the prosumers’ buildings can be categorized as flexible and non-flexible de-
vices. Flexible devices can shift their operation within a user-defined time frame, while
non-flexible devices have a fixed time of operation. Hence, they are commonly denoted
in the literature as shiftable and fixed loads, respectively. Among the flexible devices
are white goods (e.g., washing machine, dishwasher or tumble dryer), HP, EV, and
Micro-CHP. The flexibility potential of white goods was studied within the research
project eMOBILie [63], and it was found to be minimal, compared to other devices in
the household (e.g., HP). Hence, in this dissertation, the flexibility of white goods are
neglected.

2.1.1 Heat Pump

HP is one of the flexible devices that plays a major role in sector coupling. One
driver behind this role is the progressive improvement of the Coefficient of Performance
(COP) [64]. Another is the attractive costs of heat storages that maximize the overall
HP system flexibility potential.

Among the HP types, Ground-Source Heat Pump (GSHP) has the highest perfor-
mance. According to [65,66], GSHP has a low operating cost, no outdoor units, longer life,
and a higher CO2 emissions reduction. Hence, this section addresses specifically the
GSHP. A method of experimental testing to identify the real-life optimal control cri-
teria and requirements for GSHP is presented. Furthermore, an experimentally vali-
dated Modelica-based model is demonstrated that is tailored to operate with minimal
computational requirements in a larger system such as microgrid simulations without
compromising the accuracy of the results.
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Control Requirements

Four major experiments were performed on a GSHP in order to identify the control
requirements, as in Figure 2.1. The candidate GSHP has a thermal power of 10.31 kW
and a COP of 5.02 by B0/W35 according to the standard EN 14511. The first group
of experiments is to define the performance map of the heat pump. This group of
experiments analyzes the given heat pump performance under different heat supply
temperatures and brine temperatures.

Figure 2.1: The flow of the experimental procedures presented in Publication 1.

The second group of experiments investigates the optimal Space Heating (SH) and
Domestic Hot Water (DHW) temperature sensor positions and reveals their effect on
the overall system performance in buildings. In the third and fourth group of experi-
ments, the optimal control rules for HEMS are defined through testing the cycling effect.
In cycling effect experiments with constant continuous load, the thermal load is given
to the building emulator (e.g., 5 kW), constant through the whole 24 h, while the heat
pump has to cycle between on and off. Within this group of experiments, four experi-
ments are performed with a duty cycle of 50%. The switching time is varied between 1,
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2, 3, and 4-h. The 6-h duration is not performed in this experiment due to the limited
thermal capacity of the combi-storage. The thermal load of the space heating QSH is
set to 50% of the nominal thermal power of the heat pump QN to maintain the energy
balance. Cycling effect is also tested while trying to maintain a constant return temper-
ature. The QSH is set to 80% of QN . Due to the increase of QSH , the 6-h cycle was
made possible. Thus, six experiments are performed, the 1, 2, 3, 4, 6-h cycles.

Through this set of experiments, the operation characteristics of a heat pump can be
clarified, and a picture can be drawn about the optimal control criteria of the GSHP.
The output of this experimental analysis is used in developing and validating the heat
pump model.

Heat Pump Model

According to [67], the heat pump modeling approaches can be divided into physical,
black box and grey box approaches. The physical approach can forecast the dynamic
behavior of a system. Hence, it is often used for heat pump design and parameter
optimization. Black boxes can be easily computed and are useful for large systems, yet
They usually conceal several system dynamics to maintain simplicity. Grey box models
try to achieve a balance between the two aforementioned approaches. For residential
buildings modeling, three main criteria have to be satisfied:

• Simplicity: the model has to be easily computable as the building modeling soft-
ware such as Modelica and TRNSYS are not yet powerful enough to simultaneously
solve the equations of multiple complicated dynamic systems.

• Accuracy: the model has to minimize the uncertainties of the results.

• Dynamics: the model should not conceal the dynamic behavior of the heat pump
under different operating conditions.

In this dissertation, a semi-empirical dynamic model is presented that was developed
in Modelica as in Figure 2.2. It was designed such that it can be coupled with Open Mod-
elica Libraries [68] or SimulationX “Green City” Package [69]. The simulated thermal
power of the heat pump Qsim and the coefficient of performance COPsim are calcu-
lated empirically based on the four aforementioned experiments. Qsim is calculated as
a function of the brine temperature, Tb, and the heating supply temperature, Ts, as in
Equation (2.1). COPsim is also evaluated based on those two inputs either directly from
the tabulated experimental data or empirically using Equation 2.2. This polynomial
equation is formulated based on data fitting algorithm of the experimental data. R2 is
0.99, while the sum squared error and the root mean squared error is 0.1727 and 0.0759,
respectively. The electrical power of the heat pump, Psim, is then simply calculated
based on Equation 2.3.

Although the power and COP of the heat pump can be accurately calculated using
the presented equation, these data will not be sufficient to present the system dynamics
such as system thermal losses, system inertia, operation time of the brine pump before
the compressor starts, resting time between two consecutive starts, and time to full
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power. Consequently, the calculated full power from Equation 2.1 is given as a prescribed
thermal power to a thermal pipe directly. This pipe represents the outlet pipe of the
heat exchanger of the condenser. Between the pipe and prescribed heat model, there
is a thermal resistor that is empirically calibrated to present conduction losses. The
inertia of the system is represented by a thermal capacitor that can be initialized based
on the system water volume as in Equation 2.4, where Cp is the specific heat capacity
of water, V ol is the internal water volume of the heat pump, and ρ is the density of
water. The convection losses are modeled as shown in Figure 2.2, assuming that the
room temperature is always fixed at a value of 18 ◦C. The convection heat loss factor
was also empirically estimated and set as a fixed value throughout the whole simulation.

Qsim = f(Tb, Ts) (2.1)

COPsim = f(Tb, Ts)

COPsim = 11.16 + 0.2488× Tb − 0.2282× Ts − 0.003031× TbTs + 0.001405× T 2
s

(2.2)

Psim =
Qsim

COPsim
(2.3)

C = Cp × V ol × ρ (2.4)

Figure 2.2: The heat pump model structure presented in Publication 1.

Through this model, the aforementioned criteria for heat pump modeling in building
simulations can be satisfied without adding any additional modeling complexity. Inte-
grating any further details such as a thermodynamics cycle model would not increase
the quality of results.

16



2.2 Probabilistic Forecast for PV Generation

2.1.2 Micro-CHP

As with the GSHP, Micro-CHPs are designed to cover the heat load of a building. How-
ever, they are also capable of supplying electricity. The dynamics and control constraints
of the Micro-CHP are dependent on the engine type (e.g., an internal combustion engine
(ICE), Stirling engine, or fuel cells). In the work of [70], a detailed experimental study
was performed on Stirling engine based Micro-CHP and heat storages. The output of
this study was used to develop the integrated Micro-CHP model.

The same model structure presented in Figure 2.2 was adapted to the Micro-CHP.
Based on the empirically collected data that is a function of the Micro-CHP coefficient
and Ts, the prescribed heat to the hydraulic system was calculated. More details are
presented within the HiL experimental testing in Publication 6.

2.1.3 Electric Vehicle

EV is one of the systems that has a growing influence on the stability of modern grids. It
creates an increase in energy and power demand and consequently has high connectivity
and control requirements. Nonetheless, EV batteries can offer flexibility as long as they
are connected to the microgrid.

In this dissertation, the EV model of [69] is adopted. The EV model is assumed to
be active only when it is connected to the charging station. The implemented charging
station is assumed to have a single-phase power of 3.6 kW [9]. Once the EV is connected,
it acts as a battery system that needs to be charged to a specific State of Charge (SOC).
All battery cells are assumed to be symmetric and have the same characteristics. A
lithium-ion battery profile was chosen as it is the most common implemented system
in the current EVs. Aging characteristics were deactivated to minimize the simulation
time. For more details, please refer to [69].

Vehicle data, driving cycle and usage frequency define the electricity consumption
of the EV and daily SOC before connecting the vehicle to the charging station. The
Worldwide Harmonized Light Duty Driving Test Cycle (WLTC) of class 3 of type 2 EV
was selected. A permanent vehicle usage scenario was selected such that the EV was
used on working days as a private vehicle. More details about the driving cycles and
vehicle usage are documented in the report of [71].

2.2 Probabilistic Forecast for PV Generation

The probabilistic forecast is an intuitive solution to handle the uncertainties and vari-
abilities of PV generation. The deterministic forecast generates a single-value forecast
for every time step in the forecasting horizon, which can easily expose the HEMS and
the market platform to several uncertainties. The probabilistic forecast is capable of
generating a range of values for the HEMS to take the most probable optimal decision.
Within this section, the important features of the probabilistic forecast are compre-
hensively discussed. However, more details about the formulation are documented in
Publication 2.
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The process of generating a probabilistic forecast goes through multiple steps as shown
in Figure 2.4. Before the process starts, three main inputs should be available: the
historical data, weather forecast, and PV plant parameters. The initial process is the
generation of clear-sky power based on the Clear Sky Model (CSM) of Bird and Hulstrom
[72] and nominal PV module efficiency. The system efficiency is calculated empirically
based on historical data to include different losses such as inverter losses, ohmic losses,
and temperature losses, in order to calibrate the CSM.

The second process is partial shading detection. This process also involves an empirical
process which analyzes three consecutive sunny days to determine the Zenith angle, Z,
at which the power drop occurs. Once the right angle is found, the power drop is
calculated and applied to the next days. The partial shading process is activated only
once three consecutive sunny days are detected, yet the frequency of the calibration can
be determined based on the user’s input. Figure 2.3 shows the PV clear sky generation
after calibration using the previously mentioned processes.
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Figure 2.3: Clear sky model output and PV power measurements after the partial shading
detection process as presented in Publication 2.

The following process constitutes of training the regression trees to generate a point
forecast. These regression trees function based on dividing the data available into mul-
tiple sets and fitting them to a simple model based on a given number of branches and
leaves. Such method showed its ability to provide efficient predictions using the mini-
mal computational time. The training variable assigned to the regression trees is Λ(tt),
where Ppccs is the clear sky power after calibration, Pm is the measured power, tt is the
training time and Tn is the end of the training period.

Λ(tt) = |Pm(tt)− Ppccs(tt)
Ppccs(tt)

| ∀ tt ∈ [1, 2, ..., Tn]. (2.5)
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2.2 Probabilistic Forecast for PV Generation

The prediction of the trained regression Λp(tf ) is then used to generate the point forecast
Ppf as per Equation 2.6, where tf is the forecasting time. Resolution of the point forecast
is limited by the resolution of the given weather forecast.

Ppf (tf ) = Ppccs(tf )− |Λp(tf )× Ppccs(tf )| ∀ tf ∈ [1, 2, ..., 24]. (2.6)

The Ppf is the base on which the probabilistic forecast is built. In this model, Ppf has
1-h resolution and hence, it cannot present the PV generation variabilities. Moreover,
it is still exposed to uncertainties. Thus, the relative difference λi between the PV
measurements and the point forecast generated by the regression tree is used to train
the probabilistic forecast. Both of the PV measurements and the point forecasts provided
to the probabilistic forecast model are of 1 min resolution. The point forecast is linearly
interpolated to convert the forecast from 1-h to 1-min resolution.

The relative difference λi is classified into 8 categories i ∈ [1, .., 8], representing the 8
levels of cloudiness [18 , ...,

8
8 ]. Consequently, 8 Cumulative Distribution Function (CDF)s,

Fi(λi), are trained. Once the training is accomplished, the forecasted relative difference
for a specific probability can be calculated as per Equation 2.7.

F−1i(q) = λi, q ∈ Q = {10%, 20%, ..., 90%}. (2.7)

The required probabilistic set of PV power forecast Ppp(tf) can then be calculated based
on Equation 2.8.

pppq(tf) = Ppf (tf)× (1− λi)
pppq(tf) ∈ Ppp(tf) = {ppp10%(tf), ppp20%(tf), ..., ppp90%(tf)}. (2.8)

The reason behind using CDFs to calculate the multiple curves of the probabilistic
forecast is to have an intuitive, simple integration of the forecast with a HEMS. In
buildings, a HEMS does not require an exact PV forecast, but rather a probability
guaranteeing specific power availability at a certain time of the day to prioritize the
device’s scheduling.

The forecast model is validated not only based on the standard metrics but also prob-
abilistic metrics. Among the standard metrics are the normalized Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) and Mean Biased Error (MBE) as in Equa-
tions 2.9, 2.10, and 2.11, respectively. The Forecast Skill (FS) is also used in order to
compare the forecast model RMSE to a persistence forecast RMSEsp, as in Equation
2.12. Cumulative Ranked Probability Score (CRPS) and Brier Score (BS) are used to
evaluate the probabilistic forecast and guarantee its performance as in Equations 2.13
and 2.14, respectively. As with the FS, the CRPS and BS skill score are used to compare
the probabilistic forecast to a persistence ensemble. The CRPS skill score is presented
in Equation 2.15 and the BS skill score is in Equation 2.16.

RMSE =

√√√√ 1

N

N∑

1

(Ppf − Pm)2 (2.9)
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MBE =
1

N

N∑

1

Ppf − Pm (2.10)

MAE =
1

N

N∑

1

|Ppf − Pm| (2.11)

FS = 1− RMSE

RMSEsp
× 100 (2.12)

CRPS =
1

8

8∑

i=1

∫ ∞

−∞
(Fi(λ)− F 0

i (λ))2dλ. (2.13)

BS =
1

N

8∑

i=1

Np∑

j=1

(q − oij)2 (2.14)

CRPSS = 1− CRPS

CRPSPeEn
× 100 (2.15)

BSS = 1− BS

BSPeEn
× 100 (2.16)

Furthermore, the Temporal Distortion Index (TDI) is used to evaluate the temporal
distortion of the forecasting model [73, 74]. The metric is based on the Dynamic Time
Warping (DTW) developed in the 1970s, which is used to evaluate the temporal dis-
tortion between two different time series. The DTW finds the optimal warping path
(i.e., a common set of instants) by minimizing the distance between the two given time
series. Then, the TDI can be calculated as in Equation 2.17, where i and j are the PV
measurements time series index and forecasting model time series index, respectively.

TDI =
1

N2

k−1∑

l=1

|(il+1 − il)(il+1 + il − jl+1 − jl)| (2.17)

The model is available to the open-source community for HEMS applications on [75]
in two different formats. The first format is the initial development format, Matlab
script, for research applications. A GUI is also implemented to ease model use for the
households’ residents. The second format is Python, for the integration with micro-
computers such as Raspberry Pis in smart homes.
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2.3 Energy Management System in Buildings

Figure 2.4: Simplified flow chart describing the process of probabilistic forecast generation as
presented Publication 2.

2.3 Energy Management System in Buildings

The main goal of the HEMS is to integrate the probabilistic forecast output and op-
timize the operation plan based on the different probability curves. An algorithm is
implemented based on the exhaustive enumeration method to evaluate every possible
combination of loads under the given PV generation conditions. Although the exhaustive
enumeration method is computationally intensive, it can guarantee the highest potential
results and can lead to a fair comparison between the reference and probabilistic forecast.
Figure 2.5 shows a simplified flowchart of the load shifting algorithm that is compatible
with deterministic and probabilistic PV forecasts. It starts with PV forecast profiles and
the flexible devices dataset. The flexible devices dataset consists of the load profile of

21



2 Methods

the device Pd(t), earliest starting time, and latest ending time. If the earliest starting
time and the latest ending time are not given, the algorithm optimizes by default over
a 24-hour period, from 00:00 to 23:59.

Figure 2.5: Flow chart of the load shifting algorithm as presented in Publication 3.

Both PV forecast profiles and flexible devices’ loads are sorted. The PV forecast
profiles are sorted based on their probability of occurrence, q, (i.e., 99% comes first in
the queue then followed by the lower probabilities). The flexible devices are sorted based
on given criteria which vary depending on the required scenario.

• Power consumption ⇒ Pd1 > Pd2 > Pd3 .

• Duration of operation ⇒ Dud1 > Dud2 > Dud3 .

• Interruptibility ⇒ Ind1 = 1 > Ind2 = 0.

• Probability of multiple usage ⇒ Prd1 > Prd2 > Prd3 .
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Pd1 , Dud1 , Ind1 , and Prd1 represent the device with the highest power, longest duration,
interruptibility option (Boolean), and highest probability of usage, respectively.

In this dissertation, the dominant criterion being applied is power consumption, i.e.,
the highest power consuming device always has the highest priority. As soon as the de-
vices are sorted, the residual load is calculated for every device under every probabilistic
PV profile curve as per Equation 2.18 till a minimum is reached.

Re(t) = PL(t)− ppp,q(t) ∀ q ∈ Q. (2.18)

Once a minimum is reached, the algorithm attempts to find a starting point for the
next device in the queue until all devices are sorted under all the given probabilistic PV
profile curves.

In the case of the deterministic forecast, the flowchart blocks with dashed lines shown
in Figure 2.5 can be eliminated to operate in the conventional mode without the proba-
bilistic forecast. A detailed comparison between the HEMS operation method using the
deterministic and probabilistic forecast is documented in Publication 3.

2.4 Market Model Architecture

The proposed model is classified as a discrete-timely sealed double-sided auction with
uniform pricing. The market is chosen to be discrete-timely to synchronize all traders
communication with the market trading platform and to provide a fair environment to
all traders where communication speed does not play a role. The market is chosen to be
sealed to maintain the anonymity of the bidder. Consequently, market players cannot
learn about other traders’ bids to preserve their privacy. A uniform pricing mechanism is
applied as it provides a fair competitive price to all the market participants independent
of the given bid price. Moreover, it encourages the suppliers to bid their lowest price to
increase their possibility of selling.

The double-sided auction market is designed to enable prosumers to trade their energy
in the forward, day-ahead, intraday independent of the wholesale market. In a smart
community with an island or a grid-connected microgrid, the number of participants
is denoted by N , where {N ∈ Z+ : N ≥ 2}. A market participant can be either a
prosumer or the utility. A prosumer can demand deficit energy and act as a buyer i, or
supply excess energy and act as a seller j. i ∈ B(t) and j ∈ S(t), where B(t) and S(t)
are the time-dependent sets of buyers and sellers, respectively. t ∈ T = {1, 2, ..., tfh}
is the discrete time-step at which trading can occur, where tfh is the length of finite
trading horizon. Since it is a discrete-timely market, trading can occur at any defined
time interval ∆t. A market participant can communicate multiple bids n to the market
platform equal to bi,n = (pi,n, qi,n, tdi,n), where pi,n is the price of bid n of buyer i, qi,n is
the bid volume, and tdi,n is the delivery time. qi,n must always be greater than or equal
to qmin, where qmin is the constant minimum quantity of energy that can be traded. In
this model, the number of participants is always assumed to be constant at any time
t. A market participant can submit a buying or selling bid for a value of zero if he is
not willing to trade in the market. The bid prices pi,n are formed at the device level
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depending on the technical constraints and dynamic behavior of the device. The bidding
strategy and bid formulation are demonstrated for every device D that can communicate
with the market later in this section. However, a price ceiling and floor is set for all
D participating in the market such that pmin ≤ pi, pj ≤ pmax. For a grid-connected
microgrid, pmax and pmin can represent the conventional utility energy consumption
tariff and feed-in tariff, respectively. pmax can be time-dependent, if RTP is applied.
The intention behind applying a pricing ceiling and floor is to keep the prices higher
than feed-in tariffs for generators and less than the utility prices for consumers at all
times t so that voluntary participation of the prosumers in the microgrid market can be
ensured. The readiness of a prosumer to bid higher prices to use the community energy
may vary depending on the background and culture of the society where the market is
located. Nevertheless, quantifiable economic gain supported by environmental benefits
for the whole society can attract more prosumers to participate in the market.

Figure 2.6 presents a simplified overview of the system design including the market
side and prosumer side. The following steps demonstrate the simplified communication
steps from forming bids to the operation of the device once the bid is accepted.

Figure 2.6: An overview of the market components and communication structure as presented
in Publication 4.
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Step 1: The device controller sends the status of device D to the market agent.

Step 2: Depending on the device status, user preference and designed bidding
strategy, the market agent develops the buy and sell bids, bi and bj , respectively.
Consequently, for each D there is a market agent to maintain a decentralized
structure.

Step 3: The HEMS receives the bids bi,bj from the market agents and modifies
them according to the user operation mode (standard, comfort, or cost saving)
b∗i ,b

∗
j , then sends them to the market platform.

Step 4: Applying a discrete-timely double-sided auction, the market price and
volume at equilibrium are found. The market platform then forwards the market
clearing price back to the HEMS.

Step 5: The HEMS forwards the MCP to the market agents and user through the
user interface.

Step 6: The market agent receives the MCP to identify the accepted bids from
the rejected bids.

Step 7: The device controller receives the operation signal from the market agent
to switch the device at td.

2.4.1 Market Platform

The market platform is the place where all bids are received to clear the market. In this
model, the market platform requires a market coordinator that acts as an auctioneer.
The market coordinator can be the utility or the platform owner. The market coordinator
roles can be summarized in the following points:

• Clearing the market and announcing the market clearing price.

• Rejecting any bid changes after the gate closure time tg.

• Balancing the market to guarantee an equilibrium between supply and demand.

• Breaking the market ties at every trading period.

The first responsibility of the market coordinator is to clear the market. It sorts the
bids such that bi,n ≥ bi+1,n for the buyers, bj,n ≤ bj+1,n for the sellers. The bids are
aggregated as step functions (pi,n, qi,n) and (pj,n, qj,n), whose resolution can be defined
by limiting the maximum bid volume. The intersection of supply and demand step
functions represents the competitive equilibrium and defines the market clearing price
value, pe, and the cleared volume, qe. pe is then communicated to all prosumers so that
they can either operate at td or shift their loads to another time. Since the market price
has a ceiling and a floor, pe ≤ pi,n ≤ pmax for all buyers, and pmin ≤ pj,n ≤ pe for the
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sellers. Hence the prosumers profit $ can be summarized in Equation 2.19, where qα is
the volume of the accepted bid.

$ =

n∑

1

(pmax − pe)qαi,n +
n∑

1

(pe − pmin)qαj,n (2.19)

The second responsibility of the market is to manage the gate closure time. Since
this model enables near real-time and forward trading, a gate closure time has to be
defined as a deadline for any changes in bids or withdrawals. Assuming that tg is set to
30 minutes, a market participant can make a bid at any td in the future and still change
the bid up to 30 minutes before delivery.

The third responsibility of the market coordinator is to balance the market during
each trading period in order to clear the market. The prosumers need to guarantee
that their energy demand will be covered, even if there is no sufficient supply from the
other prosumers in the market. Also, they have to make sure that their non-shiftable
generation can be fed-in to the grid. Consequently, the market coordinator acts as a
seller or buyer at any period: it sells the deficit energy required by consumers or buys
the excess energy produced. Throughout the whole trading time horizon, the market
assures that Equation 2.20 is maintained.

B∑

i=1

n∑

1

qi,n =

S∑

j=1

n∑

1

qj,n (2.20)

The fourth responsibility of the market coordinator is to break the ties to clear the
market. Practically, the probability of having market ties is low, yet it is possible. Hence,
market breaking ties rules have to be defined. In this model, the market model breaks
the ties either randomly, or in favor of agents bidding the highest volume qi or qj . A
minimal value of ς = 1×10−4 is added to the favored agent in order to clear the market.

2.4.2 Decentralized HEMS

Although the centralized HEMS of Section 2.3 could have been used directly in the
model, a decentralized approach is followed to enable the devices to bid directly in the
market. Hence, the role of HEMS in the market model can be summarized as follow:

• Broadcasting pe to market agents.

• Bidding for the non-shiftable (fixed loads) based on the load forecast such that
bi,n = (pmax, qf , t

d
i,n) to guarantee their bids allocation.

• Collecting bids from all market agents (i.e., devices) and forwarding them to the
market platform.

• Adjusting the bid price depending on the user preferences as shown in Equation
2.21.
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p∗i,n =





pi,n if standard

ϕ(pmax − pi) + pi if comfort

max(γ(pmin − pmax) + pi, pmin) if cost saving

(2.21)

ϕ and γ are two variables such that {ϕ, γ ∈ R : 0 ≤ ϕ, γ ≤ 1}. ϕ and γ could be set by
the user to increase or decrease the comfort or cost savings, respectively.

A comparison between the results using the centralized and decentralized approach is
further discussed in Publication 4.

2.4.3 Market Agents

As per [48], double-sided auctions are too complex to output a game-theoretic solution.
In this market model, the market agent has no information about the number of bidders,
the volume of bids, or the identity of bidders at any trading interval because the market
is sealed to maintain the anonymity and data privacy of the prosumers, and also to
avoid collusion. If a game-theoretic approach would be applied, the market agent has
to evaluate all possible actions for all market participants in the microgrids to find
the solution maximizing the prosumer’s benefit. This strategy would lead to limiting
the model scalability given the increasing computational capacity required per market
participant. Moreover, the larger the number of participants in this market type, the
less influential their actions are.

In this model, simple non-predictive bidding strategies are evaluated. Every device
group has a symmetric pure constant bidding strategy that does not need a price pre-
diction or complex learning mechanism to develop the bid. The bidding strategy is
designed to always bid the truthful price depending on its need. Hence, an agent who
is requesting energy in the next hour would bid more than an agent requesting energy
in the next day. The valuation is always time/need dependent. To optimize the bidding
strategy, each agent can submit multiple bids at different time steps within a specific
time frame, then use a simple enumeration search optimization technique to find the
cheapest accept bid and withdraw/sell the remaining additional purchased volume to
the market. This concept is applied to each of the typical prosumer flexible devices and
tailored to its technical and operational constraints.

Electric Vehicle

A user communicating with the HEMS will indicate the desired starting time of the
charging, ts, and the time by which the vehicle shall be charged and ready, tr. The
latest end time is defined as te = tr−do, where do is the operation duration. The typical
charging power is between 3.6 kW (single phase) and 22 kW (three phase) [9].

Assuming a fixed charging power PCEV is required to charge the EV at any time
between ts and te, the EV market agent sends bids at every possible delivery time td
between ts and te. The readiness of the market agent to pay more increases linearly
as the charging time approaches the te as in Equation 2.22. After te, the market agent
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always bids a fixed price of pmax to ensure the acceptance of the bid either from other
prosumers or the utility depending on the market situation.

pi,n =





(
pmax − pmin
te − ts

)td + pmin, if td ≤ te
pmax, if td > te

(2.22)

The set of accepted bids βαi is always larger than the set of required bids βri ⊂ βαi , which
is because the market agent creates bids for every period between ts and te and bids the
maximum price after te.

The market agent selects the most economic bids and withdraws rejected and unneeded
bids. As shown in Equation 2.23, the bids with the lowest costs are selected such that
the number of accepted bids, c(βri ), can satisfy the energy demand , ED, of the charging
station.

min C = minbαi,n∈βri ,βri⊂βαi
∑

bαi,n =
∑

pαi,nq
α
i,n (2.23a)

s.t. βαi = {bαi,1, bαi,2, ..., bαi,n} (2.23b)

c(βri ) < c(βαi ) (2.23c)

bαi,n−1 < bαi,n, ∀ bαi,n ∈ βαi (2.23d)

ED = c(βri )q
α
i,n (2.23e)

Heat Pump

The behavior of heat pumps in the market platform is highly dependent on the heat
pump hydraulic configuration, dynamics, modulation, predefined heating curves, and
building load. Assuming that the heat pump is installed along with a combi-storage
tank that can cover both the SH and DHW demand as described in [76], the capacity
of the storage, Q, is defined according to Equation 2.24 of [77], where ρ is the density
of water, Cp is the heat capacity of water, As is the cross-sectional area of the storage,
Ts(h) is the storage at height h and Tref is the reference temperature. In practice, Ts(h)
can be measured using a set of sensors across the heat storage as in [76].

Q = ρ× Cp ×As ×
∫ h

0
(Ts(h)− Tref )dh

∀ Tst(h) > Tref

(2.24)

Depending on the Q(t), predefined set energy content Qset [76], minimum energy content
Qmin and maximum energy content Qmax, the heat pump can develop a bid. Equation
2.25, 2.26, and 2.27 can summarize the process of defining the bid volume and price. The
market agent then selects the optimal bid to minimize the costs in a manner analogous
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to the EV, as in Equation 2.23.

pi,n =





0, t < trest

(
pmax − pmin

Ψ−
)td + pmin, Q̇ < 0, and Qmin ≤ Q ≤ Qset

−(
pmax − pmin

Ψ+
)td + pmax, Q̇ > 0, and Qmin ≤ Q ≤ Qset

pmin, Qset < Q ≤ Qmax

(2.25)

Ψ− =
Q−Qmin

Q̇SH + Q̇DHW + Q̇losses
(2.26a)

Ψ+ =
Qset −Q

Q̇HP − Q̇SH − Q̇DHW − Q̇losses
(2.26b)

qi,n = COP × Q̇HP ×∆t, (2.27a)

where COP = f(Tsu, Ta) ≈ f(Q,Ta) (2.27b)

Q̇HP = f(Ta) ≈ f(Q) (2.27c)

trest is the resting time required between Off and On switch. Ψ− and Ψ+ is the neg-
ative and positive load shifting potential, respectively. Q̇SH is the space heating load,
Q̇DHW is the domestic hot water load, Q̇losses is the thermal losses, Q̇HP is the heat
pump thermal power, COP is the coefficient of performance of the heat pump, Tsu is
the supply temperature of the heat pump, and Ta is the ambient temperature. More
details about the technical constraints of the heat pump system, its control, and opti-
mization requirements, in addition to its dynamics and validated model, are available in
Publication 1.

Micro-CHP

As discussed in Section 2.1, the micro-CHP is assumed to have the same hydraulic
configuration as the heat pump. The heat storage, Q, defines the flexibility of the
micro-CHP unless the system configuration enables heat dumping. Consequently, the
developed bid price and bid volume can be summarized by Equations 2.28 and 2.29,
where κ is the CHP coefficient, and Q̇CHP is the thermal generation power.

pj,n =





0, td < trest

−(
pmax − pmin

Ψ−
)td + pmax, Q̇ < 0, and Qmin ≤ Q ≤ Qset

(
pmax − pmin

Ψ+
)td + pmin, Q̇ > 0, and Qmin ≤ Q ≤ Qset

(2.28)

qj,n = κ× Q̇CHP ×∆t, (2.29)
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Photovoltaic

Based on the output of the probabilistic forecast presented in Section 2.2, the bid price
and volume are defined. Equation 2.30 summarizes the bidding strategy of the PV
system. The bidding price is formed depending on the probability ζ. The higher the
probability of the generation profile, the lower the price. Figure 2.7 shows the output of
the probabilistic forecast and the measured PV power on a typical transient day.
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Figure 2.7: Selected day of probabilistic forecast output and PV measurements, (a) transient
(b) transient-1 min resolution as in Publication 4.

pj,n = pmax + ζ(pmin − pmax) (2.30)

Batteries

The batteries are considered a backup system to maximize the prosumers’ commitment
in the market. Assuming that the prosumers sent a bid but could not deliver it, the
battery discharges to make up for the unfulfilled bid. Equation 2.31 relates to the
simplified battery charging and discharging behavior depending on the difference between
the generated volume, qg, and the accepted volume,

∑n
1 q

α
j,n, where ηdch and ηch are the

discharging and charging efficiencies of the battery, respectively.

EBatt(t) =





EBatt(t− 1)− 1

ηdch
(
∑n

1 q
α
j,n − qg),

∑n
1 q

α
j,n > qg

EBatt(t− 1)− ηch(
∑n

1 q
α
j,n − qg),

∑n
1 q

α
j,n < qg

EBatt(t− 1), otherwise

(2.31)

Operation of the battery system under these conditions can make up for the forecast
errors and enable the prosumers (i.e., the market agent) to commit to the communicated
bid without violating the market rules.
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2.5 Market Scenarios Design

There is a various number of possible scenarios that can be used to analyze the behavior
of an energy market in a microgrid. These scenarios can vary depending on market design
parameters, microgrid configurations, flexible device loads, or user behavior. Under each
of these categories, several design parameters and variables can be analyzed. However,
calculating the combinations of these variables requires high computational capacity and
time. Thus, specific scenarios are selected to represent the market behavior under the
most probable configurations. Three scenario groups are selected as in Figure 2.8.

Figure 2.8: An overview of scenario groups as in Publication 5.

Group A discusses the market design variables such as the pmin and the trading
intervals. The scenarios of A1 vary the pmin at a constant step size between 0 and
pmax. The goal is to show the influence of different feed-in tariffs and foreseeable market
fees on the benefits of the prosumers and utility. The influence of the trading intervals
is analyzed in A2 to quantify the benefits of higher trading frequency, given the same
system configuration and forecast quality. The trading interval, ∆t, is varied between
15 and 60 minutes.

Group B discusses the microgrid configurations, where the influence of the number
of prosumers and the installed PV capacities are studied. The number of prosumers is
varied between 2 and 15. The PV capacities are varied from 1 kWp to 12 kWp, which
are the expected PV capacities to be possibly installed at a prosumer’s building. The
goal behind these scenarios is to evaluate the influence of over- and under-generation
capacity on the market prices, prosumer, and utility.

The last group, C, evaluates the user behavior. Fixed load consumption is used as an
indicator of the user behavior and lifestyle. Three categories define the user consumption
level: low, average, and high. The range of each level is explained in the next section. The
goal behind this scenario group is to present the influence of the fixed load consumption
magnitude on the prosumer’s profitability and behavior in the market.
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2.6 Market Co-simulation and Input Data

The model is co-simulated between Matlab, and the Modelica based software, Simula-
tionX, as shown in Figure 2.9.

Figure 2.9: Model division on the co-simulation platform between Matlab and Modelica as
presented in Publication 4.

The market platform model, billing systems, HEMS, and market agents are integrated
into the Matlab model, while SimulationX integrates all the models of the physical
devices such as the EV, HP, micro-CHP, or PVs, in addition to the building models
and the device controllers. The current structure of the model emulates the real-life
situation in which a market platform is integrated. All the models running on Matlab
can be assumed to be running in the cloud as a service, while all the Modelica-based
models are real systems.

The integrated building model is configured based on the research project data of [78].
A building of a single floor, a cellar, and an attic is integrated. The construction year
is between 1984 and 1994. It has a heated living area of 150 meters and a room height
of 2.5 meters. The attic and cellar are assumed to be unheated, while the living area
is heated based on a supply temperature curve that varies linearly depending on the
outside temperature. The hot water consumption is defined based on the standard VDI
4655. The hot water circulation consumption is based on the field measurements of [79].

The models of the flexible devices presented in Section 2.1 are integrated with their
experimentally calibrated parameters. The PV system presented in [80] is used and
scaled depending on the simulated scenario. The PV measurements and weather data
of 2017 are used in all the presented scenarios. More details about the input data is
presented in [80].

The fixed electricity profiles are based on the representative load profiles of [81]. The
data includes measured high-resolution profiles of 74 residential houses managed by the
same grid operator. The houses are located in the vicinity of each other. Consequently,
it can be assumed the given houses lie in the same microgrid. No operation patterns
of a heat pump, an EV charging, or a micro-CHP are found in the separate analysis
of the household profiles. Thus, it can be deduced that there are no flexible devices in
these houses and these profiles can be treated as fixed load profiles. Figure 2.10 shows
yearly energy consumption and a load profile of a typical day. The households consuming
between 1000-3000 kWh/a, 3001-7000 kWh/a, and 7001-9000 kWh/a are defined to be
occupied by low, average, and high energy consuming prosumers, respectively.
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Figure 2.10: 74 representative household profile analyses, (a) annual energy consumption (b)
electrical loads on a typical day as in Publication 5.
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3 Results

This chapter presents a summary of the results from Publications 1-5. Section 3.1 sum-
marizes the results of GSHP experimental analysis performed in Publication 1. Section
3.2 summarizes the results of the probabilistic forecast presented in Publication 2. Sec-
tion 3.3 summarizes the evaluation of the HEMS performance using conventional and
generic loads which is thoroughly discussed in Publication 3. Section 3.4 summarizes
the results of the market model and the scenario analysis presented in Publication 4 and
5.

3.1 Experimental Analysis of a Ground-Source Heat Pump

This section discusses the cycling influence on the performance of heat pumps that can
directly demonstrate the control requirements for an optimized heat pump operation.
Furthermore, it demonstrates the sensitivity of the COP and heat pump operation to
SH/DHW sensor position. The validation of the heat pump model is also shortly dis-
cussed. The experimental setup and the validation of the heat pump operation within
the market model are discussed in Chapter 4.

3.1.1 Cycling Influence and Sensors Positioning

Nine experiments were performed with the GSHP testbed to evaluate the cycling in-
fluence. Each experiment was repeated for five days, then the average was calculated.
Within the first four experiments, a constant continuous load on the heat sink side (i.e.,
building side) was set that is equivalent to 50% of the GSHP thermal power as discussed
earlier in Section 2.1.1. Figure 3.1(a) shows the thermal energy generation Eth, elec-
trical energy consumption Eel, brine energy transferred Ebrine, and the average COP
of the GSHP for cycle duration of 1-h to 4-h on/off cycle. The 6-h cycle failed due to
the insufficient capacity of the heat storage. In comparison to the Micro-CHP analysis
performed in [70], the longer cycles show a lower performance compared to the short
cycles. The average COP decreases by 13% from the 1-h cycle to the 4-h cycle.

In the other five experiments, the heat sink load was increased to 80%, and it was
set to be cycling similar to the GSHP. The reason behind increasing the power of the
heat sink and the simultaneous cycling is to consume the delivered power of the heat
pump immediately and to maintain the lowest possible return temperature. Through
this experiment, it can be noticed that the average COP is almost constant and is not
influenced by either the long or short duration of heat pump operation as in Figure 3.1(b).
The energies Eth, Eel, and Ebrine varied only by 2.7%, 1.5%, and 1.136%, respectively.
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This variation is partly due to the measurement errors and the minor difference in the
initial conditions of the experiment.

To summarize the output of these experiments, it can be deduced that if a buffer or
combi-storage are combined with the heat pump:

• The long operation duration to minimize the heat pump number of starts reduces
the average COP and consequently can lead to a lower Seasonal Performance Factor
(SPF).

• If the heat pump is delivering directly while minimally using the heat storage or
without heat storage, the long duration of operation has no impact on the average
COP of the system.

Hence, if a combi-storage has to be installed to minimize the number of starts per day
and increase the lifetime of the heat pump, a cost of start has to be considered within
the optimization. In case the heat pump has to offer flexibility to the grid, the incentives
should make up for the decrease in COP that can lead in this case to a minimum of 13%
increase in costs. Additionally, thermal losses of the storage have to be considered.
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Figure 3.1: Cycling effect on the heat pump system performance, (a) constant continuous load
(b) constant return temperature as presented in Publication 1.

GSHP system setup and configuration have a direct impact on the operation of the
heat pump. SH/DHW sensor location is one of the system configurations that can
significantly affect the system’s operation dynamics, lifetime and efficiency. Hence, it was
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discussed by several researchers such as [82–84]. The sensor position was varied between
the bottom of the tank to approximately the middle of the tank. These positions are
denoted in Publication 1 as T-SP-6 and T-SP-10 for the middle and bottom of the tank,
respectively.

Although theoretical studies recommend installing the sensor at the lowest section of
the tank to maximize comfort, the experimental study shows that this setup leads to
inefficient operation. Having the sensor located at the bottom of the tank leads to a
significant increase in the number of starts as the GSHP tries to maintain the whole tank
capacity at the given set temperature. The higher the sensor is positioned, the lower is
the number of starts per day. Having the sensor at T-SP-6 increases the COP by 21.5%,
which is a significant increase considering that no intelligent control algorithms were yet
deployed.

3.1.2 Heat Pump Model Accuracy

The GSHP model presented in Section 2.1.1 is validated independently using the ex-
perimental testbed. Mean Absolute Percentage Error (MAPE) and RMSE are used as
metrics to quantify the quality of the numerical model. The MAPE and RMSE of the
thermal power are 2% and 0.7 kW, respectively. On the other hand, the MAPE and
RMSE of the electrical power are 4% and 0.23 kW, respectively. The supply and re-
turn temperature are also evaluated using the same metrics in order to give an insight
into the system dynamics. The MAPE and RMSE of the supply temperature are 1.5%
and 0.7 K, respectively. Hence, a minor difference can be noticed on the dynamics of
the supply temperature profile. Similar plausible behavior is maintained by the return
temperature where the MAPE is 4% and the RMSE is 1.7 K.

Energetically, a minor difference can be noticed between the model and testbed. Using
the experimental configuration discussed in Publication 1, a difference of 3% and 4%
can be seen for the heat generation and electricity consumption, respectively. Hence,
the model is reliable for heat pump simulation and further integration in buildings or
market models.

3.2 Day-ahead PV Forecasting

Although the probabilistic forecast represents the main output of the model, the inter-
nally generated point forecast is also validated. The point forecast is validated based on
Equations 2.9-2.12, while the probabilistic forecast is validated based on Equations 2.13-
2.16. PV measurements of a 3 kWp PV system presented in [80] and a multi-purpose
online weather forecast of [85] are used as a reference and input to the forecast model.

3.2.1 Point Forecast

Since the forecast model is designed for real-time HEMS applications, the training pe-
riod is considered continuously growing over time. The initial error after one month of
training had the highest value, 17.3% for the RMSE, 9.3% for the MAE and -1.5% for
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the MBE. After four months of training, the error reached 15.3%, 8.5% and 1.53% for the
RMSE, MAE, and MBE, respectively. Considering that a multi-purpose online weather
forecast is used, the minimal processing power required, and the spatial-temporal resolu-
tion of the forecast, the point forecast has an improved performance compared to other
presented models in the review of [86,87].

A smart persistence model is used to benchmark the point forecast and calculate the
FS. After four months of training, the FS reached 48.6%, which means that the point
forecast excelled the performance of the smart persistence model. According to [88], the
FS of forecasting systems with similar purposes is between 0 and 42%. For example, [89]
reported FS of 31.29% for day-ahead forecast of 1.86 MW plant.

3.2.2 Probabilistic Forecast

Figure 3.2 shows the forecast on a typical winter and summer day. In Figures 3.2(b) and
3.2(d), the 1-min measurements are presented to show the level of variabilities occurring
on these typical days. The 1-h resolution measurements presented in Figures 3.2(a) and
3.2(c) do not show these variabilities. However, the forecast was able to predict these
variabilities in the two typical days. Additional days are analyzed in Publication 2.
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Figure 3.2: Probabilistic forecast output and PV measurements in multiple days in different
seasons, (a) winter (b) winter-1 min resolution (c) summer (d) summer-1 min res-
olution as presented in Publication 2.
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Tables 3.1 shows the results of the CRPS for the different CDFs and training horizons.
For example, having a training horizon of 1 month means that a daily forecast is made
for 11 months with the same trained model. It can be noticed that CRPS’s over the
different training horizons did not vary significantly from the first month, which means
that the model response in real-time is fast and independent of the training time. If no
optimal training period is selected, the average of the CRPS over all the training periods
is 5.56%. Assuming that the maximum variation of λ is 100% and it happens at the
maximal peak power of 3 kW, the 5.56% error will lead to only 0.16 kW.

Table 3.2 shows the calculated BS at the different probabilities, q, against different
training horizons. It can be noticed that the training horizon did not have a significant
influence on the BS. Comparing the BS variation of q = 90% after one month to after
six months, a 6% increase in performance can be noticed. A mean for all the cases q
over the different training months is only 0.12.

A reference probabilistic forecast is used to benchmark the presented forecast and
calculate the Cumulative Ranked Probability Skill Score (CRPSS) and Brier Skill Score
(BSS) as in [90,91]. The results in Tables 3.1 and 3.2 show the capability of the presented
forecast to excel the reference forecast. After six months of training, the CRPSS and
BSS are equal to 90.94% and 39.38%, respectively.

Table 3.1: CRPS of different training horizons as in Publication 2.

Training horizon CRPSi [%] CRPS[%] CRPSS[%]

[month(s)] i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

1 13.99 4.94 5.39 5.41 1.64 2.20 4.54 8.27 5.80 12.51
2 7.64 1.56 7.31 3.56 2.96 3.20 1.92 7.27 4.43 91.07
3 8.46 1.62 7.83 3.02 4.47 2.90 1.26 9.05 4.82 90.05
4 11.26 3.25 10.44 4.53 5.76 3.43 0.96 10.96 6.32 87.52
5 13.06 5.35 9.54 2.99 4.23 3.41 2.01 16.83 7.18 85.87
6 11.64 2.97 10.89 0.89 1.16 7.23 2.41 1.51 4.84 90.94

Table 3.2: BS of different training horizons as in Publication 2.

Training horizon BS [-] BSS[%]

[month(s)] q = 60% q = 70% q = 80% q = 90%

1 0.188 0.139 0.102 0.068 43.41
2 0.195 0.143 0.106 0.072 42.72
3 0.196 0.145 0.108 0.070 40.88
4 0.195 0.144 0.107 0.071 36.29
5 0.193 0.141 0.103 0.068 36.75
6 0.189 0.140 0.09 0.064 39.38
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3.3 Load Shifting Based on Probabilistic Forecast

This section summarizes the performance of HEMS using the probabilistic forecast under
different types of loads. Two cases are presented: in the first case studies the conventional
white goods loads only, while in the second case, multiple generic loads of different sizes
are used along with a 3 kWp PV system. These loads emulate not only the current
flexible devices but all the possible upcoming flexible devices that can be integrated into
a building. In the two cases, the shifting time frame of the loads is set to 24-h in order
to evaluate the potential of the HEMS without the influence of any time constraints or
user behavior.

3.3.1 Conventional Household Loads

This case represents the worst case scenario of a building where there is a low number of
flexible devices. In this building, only a dishwasher, a dryer, and a washing machine are
considered. Fixed loads are ignored within the analysis. Figure 3.3 compares the load
shifting plan of the white goods using the deterministic and probabilistic forecast. In
Figure 3.3(a), the white goods are allocated such that Re is minimized and the earliest
time of operation condition is satisfied as in Equation 2.18. Although this operation plan
looks optimal given the input data and nature of the deterministic forecast, ignoring
uncertainties and generation variabilities could not lead to an optimal operation in real-
time. Using the probabilistic forecast as in Figure 3.3(b), the devices are sorted based
on the certainty of the generation. The dishwasher and the dryer are placed under the
q = 99% curve, while the washing machine is placed under the q = 70% curve. This is
because it could not be set under any curve with a higher probability due to its high
2 kW peak. Hence, a higher self-consumption and self-sufficiency can be reached. Given
this low number of flexible devices, a difference between the median of the self-sufficiency
and self-consumption is 9.1% and 5.0%, respectively. Higher values can be reached if
more flexible devices are going to be integrated.
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Figure 3.3: Comparison between the reference and the probabilistic forecast on a typical day.
White goods optimally shifted based on (a) reference forecast, and (b) probabilistic
forecast as presented in Publication 3.
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3.3.2 Different Generic Loads

Generic loads are created of sizes 0.25 kW up to 1.5 kW and operated for a constant
time of 1-h using the same day presented in Figure 3.3. Consequently, energy blocks
were created that vary from 0.25 kWh to 1.5 kWh. These blocks can represent any of
the current flexible devices such as a heat pump or an EV, and can also provide insight
into the behavior of the HEMS under the influence of possible future flexible loads. The
number of load blocks (devices) within the analysis is limited to 60 for the 0.25 kW
loads, 30 for the 0.5 kW and 1.0 kW loads, and 15 for the 1.5 kW loads to evaluate the
difference between the deterministic and probabilistic forecast.

Figure 3.4 shows the allocation of the different number of loads under the same PV
forecast and generation profile. The loads are allocated such that the first load in the
queue comes to operation first, followed by the rest of the devices. Hence, the first load
is always sorted under the highest probability curves. It can also be graphically noticed
that as the ratio of the load size to the peak load of the PV increases, the efficiency of
the algorithm in managing the loads decreases.
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Figure 3.4: Different generic loads sizes shifted based on the probabilistic forecast - number of
loads (colored). (a) 0.25 kW. (b) 0.5 kW. (c) 1 kW. (d) 1.5 kW as presented in
Publication 3.
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In the analysis presented in Publication 3, the 0.25 kW loads show an increase in the
mean self-sufficiency by 24.2% using the HEMS with the probabilistic forecast. On the
other hand, the mean self-consumption is higher for the 0.25 kW and 0.5 load blocks by
17.7% and 16.2%, respectively. Using the multiple scenarios discussed in Publication 3,
it can be deduced that as the size and number of loads increases, the added value of the
probabilistic forecast and HEMS decreases.

3.4 Market Dynamics and Benefits

This section summarizes the results of the market model. Utility and prosumer benefits,
in addition to the prosumer commitment, are discussed based on a baseline scenario of
10 single family houses located in Munich, Germany. It is assumed that these houses
are occupied by low energy consuming prosumers, and are equipped with a HP, a PV
system, and an EV charging station as described in Section 2.4. Further configurations
are discussed through the selected 98 scenarios in Publication 5 and are summarized in
this section.

3.4.1 Utility and Prosumer Benefits

Within this section, a comparison is made between the reference case, where no market
platform or HEMS is implemented (conventional operation), and the case with the mar-
ket platform. Same configuration and user preferences are used in both cases. Figure
3.5 shows the behavior of the microgrid on a summer and winter day. The case in which
the market is not integrated is denoted by the reference.

In the typical summer day shown in Figures 3.5(a) and 3.5(b), it can be seen that
the loads that conventionally operate before sunrise or sunset are shifted due to the low
market prices to operate during the PV generation hours. Hence, a reduction in peak
loads can be observed. The peak load of the microgrid export is reduced from -58 kW
to -39 kW, while the import peak load is reduced from 44.5 kW to 35 kW. In winter,
almost 100% PV generation power is used as shown in Figure 3.5(d), compared to Figure
3.5(c). The export peak load drops from -46 kW to -11 kW. The import power drops
from 60 kW to 43 kW. Due to the high energy consumption of the heat pump in winter,
the PV generation does not suffice. Thus, some loads, which are mostly heat pumps,
are shifted to a later time of the day.

At the microgrid level, a one-year analysis shows that the market increases the self-
sufficiency of the microgrid by 130% and the self-consumption by 120%. Also, it decreases
the CO2 emissions on average by 21% and the import peak load by 25%. Hence, the
presented results demonstrate not only the capability of the market platform to trade
and shift the loads but also the accuracy of the integrated probabilistic PV forecast in
delivering profiles that maximize the efficiency of the whole model.

At the prosumer level, self-sufficiency, self-consumption, peak loads and CO2 emissions
are also used as metrics to quantify the benefits of the prosumer. Additionally, two cost
metrics are used: cost based on the Conventional Billing (CB) and Market Billing (MB)
system. In the CB system, the current conventional metering systems (no smart meters)
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are used such that the prosumer pays a fixed price for the energy consumed, and earns a
fixed feed-in tariff for all the generated energy. In the MB system, the energy generation
and consumption prices are decided based on the market price given by Equation 2.19.
In both cases, the market operations are precisely the same, and the only fundamental
difference is the billing system. Using all the given metrics to perform a one-year analysis,
it is found that mean self-sufficiency and self-consumption of prosumers increase by 102%
and 80%, respectively. The mean peak load decreased by 16%. Additionally, the CO2

emission are reduced by 26%.
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Figure 3.5: Type day profile of the whole microgrid, (a) summer day - reference (b) summer
day - market (c) winter day - reference (d) winter day - market.

Furthermore, the market demonstrates its ability to minimize costs under both the
CB and MB. The mean costs of the market under CB are 15% lower than the reference
model, which is equal to 360 Euro/a. These costs are based on the current metering
infrastructure. However, if the Information Infrastructure (IIS) is implemented, MB can
be calculated and the market clearing price can be binding. Using the MB, the costs are
23% lower than that of the reference model, and the overall absolute savings are equal
to 530 Euro/a. Thus, the expected savings from IIS could amount to an additional
170 Euro/a. These costs are calculated ignoring the transaction and service fees of the
grid and market platform operator. Other fees might be considered depending on the
regional regulations of the market platform. Further details and type day analyses using
the same metrics are presented in Publication 4.
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3.4.2 Prosumer Commitment

The performed analysis assumes that no penalties are paid if the prosumer does not
commit to the bid. However, if the prosumer submits a selling bid of a PV system with
a ζ = 10, it is probable that the PV system would not be able to deliver the expected bid
volume. As discussed in Section 2.4.3, in this situation, the battery system is responsible
for fulfilling the bids. Based on a complete year analysis, Figure 3.6 demonstrates the
required battery capacity per kWp PV that the prosumer needs to install to avoid any
penalties. For ζ ≥ 58, no batteries are required to be installed, and 100% of the bids
communicated by the PV system can be satisfied. However, the lower the ζ, the higher
the required battery capacity is. The optimal battery capacity can only be determined
based on the expected platform penalty and the readiness of the prosumer to be exposed
to such risks. As discussed, the PV prediction provides an indicator of the certainty of
the prediction but does not decide on the amount of energy that can be traded. If the
prosumer needs to avoid any penalties, it would be advised to trade up to ζ = 60. With
a lower ζ, the profit of the prosumer can be increased as indicated by Equation 2.30,
but penalties might be imposed.
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Figure 3.6: Percentage of unsatisfied bids against the ζ of the PV prediction and the available
battery capacity as presented in Publication 4.

3.4.3 Scenario Analysis

The market platform’s performance is highly dependent on the nature of the market,
microgrids, and prosumers. Although the models presented in the literature discuss
mostly type day analysis, the co-simulation method and the tailored flexible device
models enable a complete year analysis. Several scenarios could be analyzed. However,
98 scenarios are selected to quantify the potential of the market model. These scenarios
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3.4 Market Dynamics and Benefits

are divided into three different groups. The first group studies market design parameters,
the second group studies different microgrid configuration, and the third group studies
the influence of the user behavior. The results of the three scenario groups can be
summarized as follows:

• Market capability to act as a decentralized energy management systems is inde-
pendent of the market price ranges, transaction or service fees imposed by the
service operation. The prosumer profit is the only sensitive output to the market
price ranges. Hence, the utility or market coordinator should make sure that the
prosumer can maintain at least a minimal profit.

• Trading intervals and resolution can improve the market operation, yet the fore-
cast resolutions can limit their impact. Forecast resolution should match trading
intervals to maximize the benefits of the utility and prosumers.

• Number of prosumers directly influences the performance of the market. The
presented model is capable of operating with 2 prosumers (6 devices). As the
number of devices increases, the benefits of the market increase. However, after 15
devices, the benefits of the market reaches a plateau. Hence, it is recommended to
have at least 15 devices to operate the market platform.

• An increase in the installed PV capacity in the microgrid directly influences the
self-sufficiency, and self-consumption, even if no market platform is integrated.
However, the market model can double the self-sufficiency and self-consumption,
decrease the peak loads, and annual costs of the prosumers proportionally.

• Fixed load yearly energy consumption is chosen to reflect the lifestyle and the
consumption habits of the prosumers. Based on the field measurement data, it is
found that the higher the share of the fixed loads, the lower is the efficiency of
the market. Hence, prosumers with the lowest share of fixed loads are expected to
maintain higher profits using market platforms.
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4 Validation and Demonstration

This chapter summarizes the HiL method and heat pump testbed used to validate the
heat pump model operation in the market as in Publication 6 and 7. Testbed hydraulic
system and module components are discussed shortly. Furthermore, a selected type day
is used to show the dynamics of the heat pump testbed using the HiL developed in
Publication 6 against the heat pump model communicating with the market platform.

4.1 Testbed Components and Structure

The testbed consists of three modules: ground-source emulator (A), combi-storage (B),
and the building load emulator (C). The testbed was designed as a modular system
to enable testing multiple hydraulic configurations and integrating additional modules.
Figures 4.1 and 4.2 show the current hydraulic setup and the real implementation of the
testbed, respectively.

Module A includes a ground-source emulator that can provide any required brine tem-
perature to the heat pump. It consists of 300 l heat storage, filled with a water-glycol
mixture as an anti-freezing heat transfer fluid. The storage is heated by a 12.5 kW
electrical heater that is controlled via a hysteresis regulator to maintain the tank tem-
perature during the whole operation time at 40 ◦C. The set temperature of the tank and
the hysteresis bandwidth can be defined by the user depending on the simulation goals.
A mixer, similar to the conventional space heating mixers, is used to mix the supply of
brine tank with the return of the heat pump to reach the required ground-source set
temperature. Depending on the HiL system and the goal of the simulation, the mixer
can maintain a constant brine temperature or a time-dependent temperature profile.

Module B shows the storage system of a conventional residential house. It includes a
749 l combi hygienic buffer storage to cover the space heating and domestic hot water
consumption. A stainless steel heat exchanger extracts heat from the storage to cover
the hot water consumption. Moreover, a coaxial pipe, pipe-in-pipe system, is used to
enable the hot water circulation and maintain the pipe temperatures at a certain level.
An example of the coaxial pipe circulation connection is presented in [92].

Module C is the most complex module as it represents the heat sink of the testbed. It
can emulate the space heating and domestic hot water consumption depending on the
building type and user behavior. The space heating circuit consists of a space heating
mixer, circulation pump, and two heat exchangers. Through the mixer, the supply of the
tank with the return of the space heating is mixed to reach the required space heating
supply set temperature. The circulation pump is controlled according to the set flow
rate, which varies depending on the heat demand. Two heat exchangers of two different
sizes are used to emulate different building loads depending on their required maximum
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heat power. One heat exchanger is dedicated to old building heating loads that can reach
up to 20 kW and have a high flow rate, while the other one is only for new buildings
with a maximum power of 7 kW.

Although this testbed can operate independently and represent a real-system, one
major component and source of uncertainties is missing, which is the building. Hence,
the HiL system introduced in Publication 6 proposed a complete simulation solution
for the integration of building models in the loop. The presented HiL is capable of
minimizing these uncertainties and delivering real-system dynamics. Further details are
presented in Publication 6 and 7.

Figure 4.1: Simplified hydraulic scheme of the testbed.

Figure 4.2: The three modules and the heat pump installation in the lab.
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4.2 Hardware in the Loop (HiL) Type Day Simulation

Using the baseline model discussed earlier in Section 3.4, a single family house is selected
to be validated and demonstrated based on the HiL and the heat pump testbed. The
goal of the demonstration is to compare the operation of the heat pump in the market
model to that of the testbed with HiL. Figure 4.3 shows the output of the model and
the testbed on a winter type day as per the VDI standard 4655. In Figures 4.3(a) and
4.3(b), it can be seen that the space heating with the simulation model and the HiL
are almost identical, even though a power drop occurred around 17:00 due to low heat
storage content. Hence, the model can also predict the behavior of the storage system
correctly. Figure 4.3(c) shows the electrical and thermal power of the heat pump in the
simulation model and using the HiL testbed. Both profiles are behaving similarly in
terms of magnitude and dynamics. In this type day, the energy difference between the
simulation and the HiL is 2% and 5% for the heat generation and electricity consumption,
respectively.
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Figure 4.3: Heat pump dynamics of the testbed operation with HiL and simulation model, (a)
space heating thermal power (b) space heating supply and return temperatures as
presented in Publication 7.

An advantage of the HiL validation is its capability not only to enable energetic
analysis but also dynamic analysis. For the validation of the heat pump operation in the
market platform, it is important to analyze the time and volume of the heat pump bid.
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Hence, TDI is used in this case as a metric as presented in Equation 2.17. The output
of the TDI on this type day is 3%, which means that the temporal distortion is minimal
and the heat pump dynamics and interactions with the market platform are realizable.
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5 Conclusion, Discussion and Outlook

This chapter summarizes the answers to the major research questions raised in Publica-
tions 1-7. It shortly concludes the methods and design strategies followed to deliver this
dissertation. Moreover, it presents an outlook about the potential boundless possibilities
of future research in the field of flexible systems modeling, energy management systems,
and local energy markets.

5.1 Answers to Research Questions

In this section, the research questions are answered briefly in order to provide a com-
prehensive picture of this dissertation.

1. What are the optimal control criteria for heat pump operation in build-
ings based on experimental analysis?
Through the experimental analysis, it was found that the optimal control criteria
are not only dependent on the heat pump, but also on several system setup pa-
rameters. Compared to other heating systems, the heat pump operation is highly
sensitive to the hydraulic setup, storage system or even SH/DHW sensor’s posi-
tion. As in Publication 1, changing the sensor position could lead to an increase
in COP by 21.5% using the same control strategy. For the implemented testbed
setup, it was found that long or short control cycles have no impact on the COP.
In fact, short cycles can increase the system efficiency as they maintain a lower
temperature in the tank. However, these short cycles might decrease the lifespan
of the compressor. Consequently, the optimal control has to include the start cost
to balance the benefits of the higher COP with short cycles.

2. Which forecasting method is optimal and applicable for small-scale PV
systems?
Real-time monitoring over four years of a rooftop PV system of a building shows the
complexity in forecasting the generation variability. These variabilities can be ob-
served using high resolution (<1-h) measurements and is computationally hard to
be deterministically forecasted given the available computational resources. Hence,
the probabilistic forecast was found to be the optimal approach for PV forecasting
with high variabilities. In Publication 2, the day-ahead probabilistic forecast was
proposed as a solution that is currently publicly available as an open-source soft-
ware for buildings [75]. This probabilistic forecast system provides multiple curves
with certainties that are tailored to maximize the operation efficiency of the energy
management systems and avoid misplanning.
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3. How can probabilistic forecasts be integrated in home energy manage-
ment systems?
The home energy management systems in the literature work either based on a
predefined PV curve or a deterministic forecast. Hence, they are exposed to several
uncertainties in real-life operation conditions. Optimization based on probabilistic
forecast was presented in Publication 3. The home energy management system
does not optimize based on one profile but multiple profiles that have different
certainties. Hence, a potential increase in self-sufficiency and self-consumption of
24.2% and 17.7%, respectively, can be realized.

4. How will home energy management systems react to different generic
loads?
This dissertation does not only address the current limited flexible loads but all
possible future loads. Hence, different generic loads were analyzed in Publication
3. It was found that the load power can directly impact the efficiency of the home
energy management system. Independent of the optimization technique or the
forecasting system used, an increase in the ratio of the load to generation power
can directly decrease the self-sufficiency and self-consumption.

5. Which market design can facilitate the integration of prosumers in en-
ergy trading platforms while satisfying the microgrid coordination re-
quirements?
A sealed double-sided auction with uniform pricing was found to be the most suit-
able candidate satisfying the microgrid coordination requirements presented earlier
in Section 1.1.2. A double-sided auction enables the prosumer to act as a buyer
or a seller at any time of the day. Having the market sealed and communicating
only a volume - price signal guarantees the prosumers’ privacy while participat-
ing in the market. The discrete uniform pricing provides a fair environment to
the prosumers and synchronizes all the traded bids within a specific time frame.
This market model shows promising potential for the utility and the prosumers. It
can increase the self-sufficiency and self-consumption of the whole microgrid while
reducing the costs of an average prosumer by 23% (530 Euro/a).

6. What is the potential of energy trading platforms in microgrids?
The potential of energy trading platforms in microgrids cannot be evaluated based
on a single scenario. Hence, three scenario groups are discussed: market design
parameters, microgrid configurations, and user behavior. Through the first group,
it is found that changing the price ranges of the market design cannot influence
the energy management (resource allocation) functionality of the market or utility
benefit, however, it can change the profit of the prosumers. The second group
shows that higher generation capacities can increase the benefits of the prosumers.
However, it reaches a plateau after certain capacities where there is no sufficient
demand. The third group shows that users with lower fixed load consumption can
achieve higher profits as a large share of their energy supply and demand can be
traded at more competitive prices in the market platform.
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5.2 Concluding Remarks

Integration of energy markets in microgrids adds additional design degrees of freedom
for both of the market and energy system designers. In this case, the market design pro-
cess is not bound by defining market rules, bidding rules or pricing mechanism. Several
other factors have to be considered such as the market participants’ technical limitations,
communication latency, or even privacy constraints. In these markets, for example, the
market participant is not an ordinary market seller or buyer as in conventional markets
or even current online market platforms, but a high frequency automated trader of dis-
tributed energy systems that have different operation constraints and system dynamics.
A market design that does not fit the nature of the prosumers and their limitations can
hardly be realizable.

In this dissertation, a detailed bottom-up approach was followed to minimize the
model design uncertainties and guarantee the practicality of the model in real-life. The
approach started with the smallest unit of an energy system, which is the device, followed
by buildings, and finally microgrids. At the three design levels, either experimental
testbed or field measurements were used to maintain realistic system dynamics.

At the level of devices, multiple devices were integrated. However, heat pumps and
PV systems were further discussed. A ground-source heat pump testbed was developed
in order to analyze the system reaction to different operation constraints and system
configurations. Based on these analyses, a non-linear heat pump model was developed
that was tailored to microgrid simulations. The sensitivity of the heat pump and the
model to changes in the hydraulic configurations and system dynamics emphasized the
necessity of the bottom-up approach followed in this dissertation. For the PV systems,
a probabilistic forecast was developed to enable energy management and trading of the
prosumers’ variable generation.

At the building level, the developed device models and forecasts were integrated into a
home energy management system. An optimization algorithm that fits the nature of the
novel probabilistic forecast was implemented. The impact of the forecast was analyzed
in order to quantify its benefits. Within this analysis, not only were the modeled devices
considered but also multiple generic loads of different sizes. Hence, a detailed picture
can be drawn about the behavior of the forecast and home energy management systems
based on the currently available devices and possible upcoming devices in the future.

At the microgrid level, a market model was developed using the data, models, and
forecasting systems available at the building and device level. The presented market
model was tailored to satisfy the coordination requirements of both the prosumer and
utility. Device-oriented bidding strategies were designed to adapt to the operation dy-
namics of the common devices in a household. Using a co-simulation system, the market
model was analyzed over a complete year from both the prosumer and utility perspective
through 98 scenarios. These scenarios showed the market reaction to different design
parameters, microgrid configuration, and even user behavior.

Although each model was independently validated, an additional system demonstra-
tion and validation using a HiL real-time simulation system was performed. A type day
was selected to demonstrate the accuracy of the model and reliability of its dynamics.
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5.3 Outlook

In every aspect discussed in this dissertation, there is still room for research. The field
of energy markets for microgrids is still considered a young field. Earlier, market ap-
plications in microgrids may have been considered ambitious as they need a modern
ICT infrastructure. However, using technology like blockchain, a market platform for
microgrids can be realized in the next few years. Nevertheless, several design options
and applications still need to be identified. These design parameters can vary based on
regional regulations, infrastructure constraints, and above all, the prosumers’ require-
ments.

These regional regulations can be proposed after evaluating the potential of market
platforms at the national energy system level. In the near future, it is possible to have a
local energy market in each microgrid. The impact of these multiple markets is expected
to be plausible. However, no studies quantified this impact so far according to the recent
literature reviews. This could be due to the high computational power requirements of
the current market models.

Nevertheless, the infrastructure constraints can be easily identified through a demon-
stration. This demonstration can easily show the factors that can hinder the applications
of energy markets in microgrids.

The prosumers’ requirements might still influence a few market design parameters
that can only be identified based on surveys or field studies. For example, the level of
automation of the market and its interface with a human being can still be investigated.
Moreover, the minimal required profit or financial incentives needed by the prosumers
to participate have to be quantified. The market coordinator might impose fees on
the prosumers. These fees as discussed in the presented model would not influence the
benefits of the utility but the benefits of the prosumers. Thus, the system operation costs
or fees should be calculated in a way that guarantees the participation of the prosumers
while maintaining at least a minimal financial benefit.

Furthermore, the capability of the prosumer to bid with prices higher than the grid
tariff should be studied. The grid tariff represents a ceiling to guarantee the prosumers’
benefits. However, some prosumers might be interested in buying local energy supply to
support the local community, even if the local supply is more expensive. This bidding
range is variable from one society to another depending on the culture and level of
environmental awareness.
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A Appendix

A.1 Publication 1 — Experimental Study and Modeling of
Ground-Source Heat Pumps with Combi-Storage in
Buildings

Abstract

There is a continuous growth of heat pump installations in residential buildings in Ger-
many. The heat pumps are not only used for space heating and domestic hot water
consumption but also to offer flexibility to the grid. The high coefficient of performance
and the low cost of heat storages made the heat pumps one of the optimal candidates
for the power to heat applications. Thus, several questions are raised about the opti-
mal integration and control of heat pump system with buffer storages to maximize its
operation efficiency and minimize the operation costs. In this paper, an experimental in-
vestigation is performed to study the performance of a ground source heat pump (GSHP)
with a combi-storage under several configurations and control factors. The experiments
were performed on an innovative modular testbed that is capable of emulating a ground
source to provide the heat pump with different temperature levels at different times of
the day. Moreover, it can emulate the different building loads such as the space heating
load and the domestic hot water consumption in real-time. The data gathered from
the testbed and different experimental studies were used to develop a simulation model
based on Modelica that can accurately simulate the dynamics of a GSHP in a building.
The model was validated based on different metrics. Energetically, the difference be-
tween the developed model and the measured values was only 3% and 4% for the heat
generation and electricity consumption, respectively

Author Contribution

I designed the model, performed the experimental analysis and wrote the paper; Pe-
ter Tzscheutschler reviewed the testbed design and provided technical feedback; Ulrich
Wagner provided a detailed critical review on the applied methods.
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1 Introduction

In German power sector, an ongoing increase of renewable energy integration can be
witnessed. In 2016, 29% of gross generated electricity was produced from renewable
energy sources (RES), which represents 192 TWh [1]. Such increase in the RESs inte-
gration is empowered by several policies such as the renewable energy act (EEG) [2].
The act guarantees the generator a fixed price over a specific term, which gives a priority
to the RES in the electricity market. Having such weather dependent fluctuating RES
in the market, raised the demand for flexibility to balance the generation. Sector cou-
pling presented one way to mitigate the fluctuating RES and offer flexibility to the grid.
Hence, it is receiving continuous attention not only within the research communities but
also on the political and industrial level. Coupling the power to the heat sector is seen as
one of the most influential and attractive approaches to decarbonize the heat sector and
gain additional flexibility in power grid [3]. Considering that the consumed heat energy
in Germany within different sectors was 1,373 TWh in 2016 [4], there is a substantial
room for power to heat application integration. An advantage of such applications is its
attractive costs due to its dependency on heat storage that has significantly lower costs
compared to batteries.

The heat pump is a major role player in sector coupling due to the progressive im-
provement of the coefficient of performance (COP) [5]. Hence, the number of heat pumps
installations are on continuous growth on yearly basis, especially in the residential sec-
tor. According to [6], the heat pump installations in new buildings in 2016 reached
31.8%. Heat pump represents 34% of the market share of the single-family houses, 16%
of the multi-family houses and 13.6% of the non-residential buildings. Ground-source
heat pumps (GSHP), market is expected to be largely integrated in the zero emission
buildings (ZEBs). According to [7, 8], GSHP has a low operating cost, no outdoor
units, longer life, and a higher CO2 emissions reduction. Moreover, the high efficiency
of the GSHP is expected to minimize the required photovoltaic installation area and
consequently minimizes the costs of the ZEBs.

The topics discussed within the literature covered large scope such as the thermo-
dynamic cycle and compressor optimizations [9, 10, 11, 12] hydraulic system configu-
rations [13], performance evaluation [14, 15], and integration in district heating and
smart grids [16, 5]. The research presented can be divided into experimental studies and
numerical studies. The experimental studies were mostly oriented towards cycle and
components optimization of the heat pumps. In [17], a carbon dioxide direct-expansion
heat pump was investigated in different operating conditions. [18] studied the perfor-
mance of solar ground source heat pump in dual heat source coupling modes to optimize
the average system COP. Furthermore, [19] experimentally tested a gas engine driven
heat pump for different operation modes. The author developed a prototype to test the
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heating and cooling performance for different evaporator’s inlet temperatures, ambient
temperatures, and gas engine speeds. The numerical studies and simulations were uti-
lized, where experimental studies would be costly. In [20], a heat pump was simulated
to cover the load of a multi-zone office building. While in [21], a simulation model was
developed to analyze the flow pumping of ground source heat pumps. [22] developed a
numerical model for a reversible multi-function heat pump to evaluate its performance
in summer for domestic hot water (DHW) and space cooling. The numerical model was
then evaluated against a model in TRNSYS.

In the residential sector, several studies were performed on GSHPs. The presented
studies were mostly numerical. Also, it is oriented towards optimizing the heat pump
control, system dimension and hydraulics to minimize the operation costs and maximize
the use of renewable energies within the residential building as in [23, 24, 25, 26, 27].
Although numerical studies can provide relatively proper indicator of the behavior of
a system, it is exposed to several uncertainties and its accuracy is always questioned,
especially if the studied object is a thermodynamic system. Studies analyzing large
models on the district level or micro grid levels have mostly 1-h resolution as in the review
of [3], consequently, all dynamics of the heat pump systems are concealed. Moreover, in
several cases, the COP is assumed to be constant and all the nonlinearities are ignored
so that the optimization problem can converge faster. Yet, this exposes the model to
inevitable uncertainties. On the building level, dynamic systems simulation programs are
used such as TRNSYS or Modelica-based software as Simulation X [28]. These programs
can detail the dynamics of the systems, yet as discussed in [29], their calibration is
complicated. Moreover, these models are mostly validated by a plausibility check. Few
research presented models, which were validated based on experimental results such
as [8, 30, 31]. In [8], a simplified model was validated based on the maximum absolute
mean deviation of the COP, thermal power and condenser water temperature. In [31],
a black-box model was validated based on the root mean square deviation of the monthly
efficiency. To evaluate properly a heat pump model, a detailed analysis of the energy
generation and consumption, and system dynamics has to be performed. The energetic
analysis can suffice for models looking forward to heat pump performance estimation,
but dynamics analysis is a necessity for heat pump models integration in building models.
Field tests were also performed to investigate installed heat pump systems [14]. These
studies can provide a realistic investigation of the performance of heat pumps in general
and a good indicator of the factors influencing the operation of heat pumps, yet it does
not offer the flexibility of an experimental system. In a field test, the system parameters
are usually fixed. Thus, there is no room for experimenting, but rather monitoring and
analyzing the current status of a system. An experimental setup enables varying different
parameter to understand the system behavior in any custom configuration. Moreover,
the investment in field tests usually minimize the measurement points, which can lead
to concealing several details that can contribute to a better understanding of the system
dynamics.
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Objectives

To provide realistic, reliable results, numerical studies have to be always supported by
experimental results. Otherwise, any presented control system, mathematical model,
or simulation model might be exposed to imminent uncertainties. In this paper, an
experimental study is performed to validate a numerical model and present the optimal
control requirements for a GSHP in a residential building. The experimental study does
not only include a residential, commercial heat pump and combi-buffer storage but also
a building load emulator to integrate the real space heating (SH) and DHW load of a
building. The objectives of this paper can be summarized in the following:

� Presenting a novel modular heat pump testbed design that emulates a complete
residential house. It includes a ground-source emulator, combi-buffer heat stor-
age, and a building load emulator. The testbed is designed to be integrated with
different heat pump types and hydraulic connections so that it can be used for stan-
dardization applications, control and optimization methods performance testing,
and models validation

� Based on multiple experimental testing, the real-life optimal control criteria for
a commercial, residential GSHP under the given constraints of the heat pumps
manufactures have been identified.

� Demonstrating a Modelica-based heat pump model that can be easily integrated
into building and district simulations due to its minimal computational require-
ments. The model was also validated and calibrated based on the experimental
data of the presented testbed.

The structure of this paper is as follows: Section 2 describes the design and components
of the testbed. Moreover, it introduces the measurements system used and discusses the
testbed control dynamics. Section 3 presents the experimental testing procedure and its
purpose. Section 4 presents the validated Modelica heat pump model and its structure.
Section 5 discusses the results of the experimental testing and the validation of the
Modelica model. Section 6 presents a conclusive summary of the experimental study
and the model performance.
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2 Experimental System Description

2.0.1 Overview

The testbed consists of 3 different modules: ground-source emulator (A), combi-storage
(B), and the building loads emulator (C). Figures 2.1 and 2.2 show a simplified hydraulic
scheme and the real testbed, respectively. The presented hydraulic configuration is not
a permanent configuration, but rather the one used for the experiments documented
in this paper. Other possible configuration can be also implemented such as a direct
connection between the heat pump and module C, replacing module B with a DHW
tank module, or having two separate modules for a DHW tank and a buffer tank. Each
module has its independent control and measurement system to facilitate the integration
of different modules. The GSHP used is a STIEBEL ELTRON WPF10 heat pump with
a thermal power of 10.31 kW and a COP of 5.02 by B0/W35 according to the standard
EN 14511. A brine pump and heating system circulation pump is already integrated
within the GSHP. Moreover, the GSHP is also equipped with an emergency/backup
electrical heater of 8.8 kW.

Figure 2.1: Simplified hydraulic scheme of the testbed.
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Figure 2.2: The three modules and the heat pump installation in the lab.

2.1 Module A: Ground-Source Emulator

Module A emulates a ground-source, which is equivalent to a controlled environment
room for the ASHP. The module consists of 300-liter storage that is heated by a 12.5 kW
electrical heater. This storage is filled with a water-glycol mixture as an anti-freezing heat
transfer fluid. The electrical heater is controlled via a hysteresis regulator to maintain
a maximum set-temperature for the whole tank of 40 ◦C. The hysteresis limits can be
adjusted based on the user settings. To deliver a specific temperature profile to the heat
pump, a conventional SH mixer is used to mix the supply of the storage with the return
of the heat pump till it reaches the required temperature. This types of mixers can lead
to a slow reaction towards changes in the set points but provides a rather stable output
as discussed later in Section 2.5.

2.2 Module B: Combi-Storage Module

This module represents one of the storage system configurations in a residential house-
hold. The storage system consists of a 749 l combi-hygienic buffer storage for SH and
DHW consumption. The cold water is heated via a stainless steel heat exchanger that
goes through the height of the tank to supply DHW. Furthermore, a coaxial pipe is in-
serted in this heat exchanger to enable DHW circulation and maintain proper hot water
temperature in the pipes. An example of the coaxial pipe circulation connection can be
presented in [32].
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To assess the energetic content of the buffer storage over time, ten temperature sensors
are placed over the length of the tank as shown in Figure 2.3. T-SP-1 refers to the sensor
on the top of the tank, while T-SP-10 refers to the sensor at the bottom of the tank.
The sensors are placed at equidistant distances of 15 cm. Through this sensors’ set, the
energy at each layer of the tank as well as the overall tank content can be evaluated. This
data represents a necessary input to the energy management systems (EMS) and control
algorithms to decide on the load shifting potential and the available flexibility that can
be offered to the grid. Further information about the storage management system can
be found in [33]. On the left side of the tank, the heat pump buffer sensor, HP sensor,
is installed. According to the installation manual of the heat pump, this sensor has to
be placed at the bottom of the tank. Within this paper, the sensor position will vary to
show its influence on the system performance as shown in Section 3.

Figure 2.3 shows as well the inlet and outlet pipes of the storage, where 1, 2, 3, 4,
5, and 6 are space heating supply, space heating return, heat pump supply, heat pump
return, fresh water, and domestic hot water, respectively. Those inlets and outlets were
chosen to maximize the stratification efficiency and avoid mixing within the tank.
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Figure 2.3: Inlet and outlet pipes positions of the storage (left) sensors position across the
combi-storage (right). Technical design of the storage [34].

2.3 Module C: Building Loads Emulator

This module is the most complicated as it has to represent the SH and DHW consumption
of a household. The SH circuit consists of a mixer, as in Figure 2.1, that mixes the hot
water supply of the tank with the return of the SH circuit to reach the required set
temperature. The building heating load is then made present via using heat exchangers
that are cooled via a cooling system. The flow rate of the cooling system is the one
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influencing the building load magnitude and defining the return temperature of the SH
circuit. Such flow rate is controlled via a motor control valve that positions the valve
according to the required set point. Within the SH circuit, two heat exchangers are
available of different powers and capacities. One heat exchanger is dedicated to old
building heating loads that can reach up to 20 kW and have a high flow rate, while the
other one is only for new buildings with a maximum power of 7 kW. Two motor valves
are used to switch between the two heat exchanger as per the testbed setup.

The hot water consumption is realized via three magnetic valves representing three
different types of taps within the household. These valves can present various activities
such as showering, washing, and cooking. The flow rate of the valves can be adjusted
manually to match the standard flow rate of the activity. To show the effect of the hot
water consumption on the heat storage, a household profile of hot water consumption can
be delivered to the testbed. The opening and closing time and duration of the water tap-
ping is defined for the different valves based on the given profile. Consequently, a similar
energetic profile can be executed.

The DHW circulation pump is managing the circulation exactly as in a conventional
household circulation pump. The pump can be switched on or off based on a circulation
schedule or hot water temperature in the pipe. The circulated load is presented via
a heat exchanger that is cooled via the cooling system, similar to the SH circuit heat
exchanger. Such design was adopted for different testbeds in the labs of the Institute
for energy economy and application technology (IfE) as shown in [35].

2.4 Measurement System

For the temperature measurements, four wire PT100 sensors are used. The sensors
accuracy class is F0.15 (Class A) according to the DIN EN 60751, which means that the
tolerance is ±(0.15 + 0.002|T |). Hence, for a temperature T of 65 ◦C, the tolerance is
±0.28 ◦C. To maximize the accuracy further, a temperature sensor calibration device of
a higher accuracy was used.

Magnetic inductive flow measurements devices are used to measure the volume flow
rate. The flow measurements devices were already calibrated by the manufacturer.
Consequently, no additional calibration was performed. For the nominal flow rate, the
error of the devices varied between 0.2% and 0.5% depending on the sensor type and the
size of the pipe.

The electrical power of the heat pump is measured via a 3-phase electricity meter
(KDK PRO 380) of class B accuracy, which is 1% according to the EN 50470-1/3. The
meter is connected to the measurement system via MODBUS RTU connection, which
communicates the power, currents, and voltages of the 3 phases each second.

The sensors and actuators of the whole testbed are connected to National Instruments
(NI) compact reconfigurable IO (cRIO) chassis and modules that receive and send dif-
ferent digital or analog inputs and outputs. The control program and data logger are
based on LabVIEW that runs on a conventional PC.
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2.5 System and Control Dynamics

The main purpose of the testbed is to show the detailed dynamics of a heat pump system
to be able to develop and validate a realistic numerical model. In Figure 2.4a, the start
dynamics of the heat pump are shown. As soon as the heat pump starts, the brine
pump operates for 24 s; then the compressor is switched on. It takes the testbed 393 s
to reach the steady state due to the mixer control dynamics, yet it does not influence
the thermal power of the heat pump significantly. The brine power fluctuations between
2.5 till 15.1 kW led only to variations of 10±2.5 kWth, within those 393 s. The brine
power represents the power supplied by the heat source. The mixer controller effect
can be more clearly described in Figure 2.4b. For a set temperature of 0 ◦C, the mixer
started to mix the tank temperature with the return of the heat pump. Due to both of
the start dynamics of the mixer supply and heat pump return, the fluctuations occurred
within the time to steady state. Once a steady state is reached, the mixer controller can
maintain the set temperature, while minimizing the fluctuations.
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Figure 2.4: Starting dynamics of the heat pump testbed, (a) heat pump (HP) thermal and elec-
trical power, in addition to the brine thermal power (b) brine supply temperature
dynamics because of the mixer circuit.

For the control system in module C, Figure 2.5 shows the control dynamics of the
temperature of the flow rate. In Figure 2.5a, the measured and set heating circuit
supply and return temperatures are plotted against two hours of time to show the system
dynamics. The control tolerance of the supply temperature mixer is ±0.5 K, which is
significantly better than the control in realistic buildings, where the tolerance reaches
±3 K. A smaller tolerance was required to accurately emulate a building load profile on
the testbed. The return temperature was more accurately controlled as the motor valve
has a continuous PID controller. Consequently, a tolerance of ±0.1 to ± 0.15 K was
achieved, which is challenging considering the low inertia of the system (i.e., the water
volume of the system is small compared to a real building).

The volume of the flow rate of the heating system circulation pump was also controlled
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via a PID controller. In Figure 2.5b, the measured set and measured flow rate are pre-
sented. It can be deduced that the pump and the controller were able to flow accurately
the set point with a tolerance less than 0.01 l/s. The graph was plotted against the
same time of measurements of the supply and return temperature, to be able to show
the dynamics of the two graphs simultaneously.
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Figure 2.5: Control dynamics of module C, (a) supply and return temperature of the space
heating circuit (b) the flow rate of the space heating circuit.
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3 Experimental Testing Procedure

Four major experiments are covered within the scope of this paper, as in Figure 3.1.
The first group of experiments is to define the performance map of the heat pump. This
group of experiments analyzes the given heat pump performance under different heating
supply temperature and brine temperatures.

Figure 3.1: The flow of the experimental procedures.

The second group of experiments investigates the optimal SH and DHW sensor posi-
tion and reveals its effect on the overall system performance in buildings. In the third
and fourth group of experiments, the optimal control rules for EMS are defined through
testing the cycling effect. In a residential heat pump, the control parameters are limited
to a boolean signal to switch the heat pump on or off. Consequently, an EMS in a resi-
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dential building does not have any influence on other technical parameters such as the
flow rate of brine pump or the controller of the heating circuit between the heat pump
and the combi-storage. Based on these constrains, the heat pump optimal control rules
can be defined. In cycling effect experiment with constant continuous load, the thermal
load is given to the building emulator (e.g., 5 kW), constant through the whole 24 h,
while heat pump had to cycle between on and off. Within this group of experiments, four
experiments were performed with a duty cycle of 50%. The switching time was varied
between 1, 2, 3, and 4 h. The 6 h duration was not performed in this experiment due
to the limited thermal capacity of the combi-storage. To maintain the energy balance,
the thermal load QSH was limited to 50% of the nominal thermal power of the heat
pump QN . Cycling effect was also tested while trying to maintain a constant return
temperature. The QSH was limited to 80% of QN . Due to the increase of QSH , the
6-h cycle was made possible. Thus, six experiments were performed, the 1, 2, 3, 4, 6 h
cycles.

Through this set of experiments, the characteristic of the operation of the heat pump
can be clarified, in addition to the impact of sensor installation position. Moreover, the
results of the cycling effect experiments can provide a clear picture of the optimal control
criteria of GSHP.
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4 Modelica Based Model

According to [36], the heat pump modeling approaches into physical, black box and grey
box approach. The physical approach can forecast the dynamic behavior of a system.
Hence, it is often used for heat pump design and parameters optimization. Black boxes
can be easily computed and are useful for large systems, yet it is usually concealing
several system dynamics to maintain its simplicity. Grey box models try to achieve a
balance between the two aforementioned approaches. For residential buildings modeling,
three main criteria have to be satisfied:

� Simplicity: the model has to be easily computable as the building modeling soft-
ware such as the Modelica and TRNSYS are not yet powerful enough to solve the
equations of multiple complicated dynamic systems simultaneously

� Accuracy: the model has to minimize the uncertainties of the results

� Dynamics: the model should not be concealing the dynamic behavior of the heat
pump under different operating conditions.

In this paper, a semi-empirical dynamic model is presented that was developed on
Modelica. Figure 4.1 shows a view of the structure of the model in Modelica. It was
designed such that it can be coupled with Open Modelica Libraries [37] or Simulation
X “Green City” Package [38]. Consequently, the basic model components were designed
based on an Open Modelica Library, yet a separable interface was included to connect
to the ”Green City” package. The simulated thermal power of the heat pump Qsim and
the coefficient of performance COPsim are calculated empirically based on the collected
experiments performed in Section 3. The Qsim is calculated as a function of the brine Tb
and the heating supply temperature Ts as in Equation (4.1). COPsim is also evaluated
based on those two inputs either directly from the experimental tabulated data or from
the empirical equation given in Equation (4.2). This polynomial equation was formulated
based on data fitting algorithm of the experimental data. The R2 is 0.99, while the sum
squared error and the root mean squared error is 0.1727 and 0.0759, respectively. The
electrical power of the heat pump Psim is then simply calculated based on Equation (4.3).

Qsim = f(Tb, Ts) (4.1)

COPsim = f(Tb, Ts)

COPsim = 11.16 + 0.2488× Tb − 0.2282× Ts − 0.003031× TbTs + 0.001405× T 2
s

(4.2)

Psim =
Qsim

COPsim
(4.3)

A Appendix

76



Although the powers and COP of the heat pump can be accurately calculated using
the presented equation, these data will not be sufficient to present the system dynamics
such system thermal losses, system inertia, operation time of the brine pump before the
compressor starts, resting time between two consecutive starts, and time to full power.
Consequently, the calculated full power from Equation (4.1) is given as a prescribed
thermal power to a thermal pipe directly. This pipe represents the outlet pipe of the
heat exchanger of the condenser. Between the pipe and the prescribed heat model, there
is a thermal resistor that was empirically calibrated to present conduction losses. The
inertia of the system is represented by a thermal capacitor that can be initialized based
on the system water volume as in Equation (4.4), where Cp is the specific heat capacity
of water, V ol is the internal water volume of the heat pump, ρ is the density of water.
The convection losses were modeled as shown in Figure 4.1, assuming that the room
temperature is always fixed at a value of 18 ◦C. The convection heat loss factor was also
empirically estimated and set as fixed value throughout the whole simulation.

Figure 4.1: The heat pump model structure.
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Through the presented model, the aforementioned criteria for heat pump modeling for
building simulations can be satisfied without adding any additional complexity to the
heat pump model. Adding any additional details such as modeling the thermodynamic
cycle would not contribute to the quality of the results in this situation as these variables
are not monitored within the study of the dynamic behavior of a building.

C = Cp × V ol × ρ (4.4)
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5 Results

5.1 Experimental Analysis

5.1.1 System Performance

As explained in Section 3, the initial phase of the experimental study is to analyze
the performance map of the given heat pump. Figure 5.1a shows the behavior of the
COP as a function of the supply temperature and the brine temperature. At each of
the measured points of Tb and Ts, the set points were held constant, and measurement
was taken as an average of 40 minutes of operation to maintain a proper steady and
accurate measurements. The set points are defined as a discrete set of integers such that
Ts ∈ {35, 40, 45, 50, 55, 60, 65} and Tb ∈ {−5, 0, 10, 15, 20}.
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Figure 5.1: Performance map of the integrated GSHP (a) COP (b) electrical power (c) thermal
power.
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In Figure 5.1a, the measurements at 65 ◦C was eliminated, as the heat pump cannot
operate at Tb = −5 ◦C and Ts = 65 ◦C, simultaneously. As shown, the COP increases
as the supply temperature decreases and the brine temperature increases. The range
of the COP is quite wide between 1.6 and 8.0. This means that the costs of operation
of the heat pump to generate 1 kWh of heat can reach up to 500% compared to the
cost of the most optimal possible operation. Consequently, it is a must to supply the
numerical models with an accurate measured data, otherwise building model can be
exposed to high uncertainties. Figure 5.1b,c show the electrical power consumption and
thermal power generation against different supply temperature and brine temperature,
respectively. It can be noticed that the electrical power is not influenced by the brine
temperature as much as the supply temperature. For the same brine temperature of
0 ◦C, the electrical power consumption can vary from 1.8 to 3.6 kW, depending on
the supply temperature. On the other hands, the thermal power generation is more
influenced by the brine temperature. Depending on the brine temperature, the thermal
power can vary between 7 to 16 kW.

5.1.2 Sensors Position

System setup and configuration in the building also has a significant influence on the
behavior of the COP of the heat pump. In the field study of [14], the impact of efficient
planning and installation on the heat pump seasonal performance factor was investi-
gated. The installation process does not only include hydraulic system but also the
DWH and SH sensors positioning on the storage system. Although direct connection of
the SH circuit to the buildings without any buffer storage can lead to the most optimal
operation, buffer storages are necessary to offer flexibility as in [39]. In the literature,
different research discussed the sensor position. In [13], different sensors positions along
a combi-storage were tested based on a simulation model. It was found that as the
distance increases between the DHW sensor and the SH zone, the number of starts per
year decreases. In [40, 28], it was stated that the DHW sensor has no influence on the
performance of the heat pump, yet the higher the position the better. Moreover, the au-
thor stated that sensors at a lower position could help in decreasing the set temperature
while maintaining comfort.

Within this experimental study, one sensor was set in different position across the
combi-storage to analyze the behavior of the heat pump and the heat storage as well.
This sensor is referred to as the HP sensor. Additional sensors connections to the control
of the heat pump manufacturer were not possible. The set temperature of the sensor
was adjusted to a fixed value of 50 ◦C. On the brine side, a constant temperature of
0 ◦C was maintained. Figure 5.2 shows the average number of starts, average COP and
average tank temperature at different sensors positions. The average COP is calculated
according to Equation (5.1), where Eth and Eel is the accumulated thermal and electrical
energy within a defined period, respectively.

COPAverage =
Eth

Eel
(5.1)

The sensor positions on the x-axis can be clarified through Figure 5.2. For each sensor
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position, the measurement was repeated for three consecutive days, then the average of
the three days was taken. At T-SP-10 and T-SP-9 which are the lowest two sensors, the
value of the number of starts is similar and significantly higher than the rest of positions.
This means that if a sensor has to be allocated at a lower position on the tank as per the
theoretical studies, this zone (below T-SP-9) has to be ignored for sensors allocations.
The lowest sections of the tank are the sections which are cooled immediately once the
heat pump switches off. Having a sensor at this position means that the heat pump has
to keep always the whole capacity of the storage at the set temperature. Thus, the heat
pump will not be using the heat storage capacity to increase its resting time. As the
sensor is positioned more towards the upper zone of the tank, the lower is the number of
starts per day. This also means that the storage heat content decreases because the useful
volume that is kept at the set temperature decreases as indicated in Equation (5.2) [41],
where As is cross-sectional area of the storage, Tset is the required set temperature and
Tstorage(h) is the temperature across the height of the storage h.

Estorage = ρ× Cp ×As ×
∫ h

0
(Tstorage(h)− Tset)dh

∀ Tstorage(h) > Tset

(5.2)

On the other hands, as the average tank temperature decreases, the average COP also
linearly increases, which fits the behavior presented by the performance map in Figure
5.1a. Between T-SP-10 and T-SP-6, the average COP increased by 21.5%, which is
a significant increase that influences the economics of the heat pump considering that
no intelligent control algorithms were yet deployed. The direct correlation between the
average COP and the average tank temperature shows that COP is solely dependent on
the tank set temperature.
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Figure 5.2: Sensor location influence on the number of starts, average COP, and average tank
temperature.
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5.1.3 Cycling Influence on the System Performance

In the first experiment, as explained in Section 3, a constant continuous load is set for
SH circuit, which is almost equal to 50% of the nominal heating power of the heat pump.
Hence, the space heating load was set to QSH = 5.0 kW. On the brine side, a constant
temperature of 0 ◦C was maintained. For the combi-storage, an initial heat content was
set for all the experiments of 3 kWh. Figure 5.3a shows Eth, Eel, Ebrine and the average
COP for 1-h on/off cycle till 4-h on/off cycle, where Ebrine is thermal energy extracted
from the brine circuit. 1-h on/off cycle means that the number of starts per day is 12,
where 4-h means three starts per day. A 6-h cycle was not performed in this case due to
the limited storage capacity that does not enable the heat pump to charge the storage
for six hours continuously. In this experiment, the highest average COP was achieved
by the 1-h cycle. It can be noticed that the energy extracted from the brine circuit is
the highest, while the electricity consumed is the lowest. The heat generated is almost
constant. It has varied only between 113.85 kWh to 115.2.

Although 1-h cycle has the highest number of starts, it achieved the highest COP
because it maintained the lowest possible tank temperature. Having the heat pump
operating for four hours then stopping for four hours while having a constant demand
from the SH circuit means that the heat pump has to heat the buffer storage to higher
temperatures to satisfy the demand during the off (i.e., resting time). Although the 4-h
cycle minimized the number of starts to only three times per day, it does not lead to an
optimal, efficient operation. The average COP was lowered by 13%. The lower number
of starts might increase the lifetime of the compressor, yet this is not a measurable factor
that can be assessed easily by a testbed or even within a field study at the moment. If
it would be included, a cost of start has to be evaluated to reach an optimal control
schedule.

In the second experiment, the QSH was increased to 8 kW, and the QSH was not set
to be continuous, but cycling similar to the heat pump. Same initial conditions and
brine set temperature of the constant continuous load were maintained. The reason
behind increasing the power of the load and the simultaneous cycling is to consume
immediately the delivered power of the heat pump and to maintain the lowest possible
return temperature Tr. In this case, 1-h to 6-h cycles were used as the heat storage
was barely used. Through this experiment, it can be noticed that the average COP is
almost constant and was not influenced by either the long or short duration of heat pump
operation. The energies Eth, Eel, and Ebrine varied only by 2.7%, 1.5% ,and 1.136%,
respectively. Such variation is partially due to the measurement errors and the minor
difference in the initial conditions of the experiment.

To summarize the output of these experiments, it can be deduced that if a buffer or
combi-storage are combined with the heat pump:

� The long operation duration to minimize the heat pump number of starts reduces
the average COP and consequently can lead to a lower seasonal performance factor
(SPF)

� If the heat pump is delivering directly while minimally using the heat storage or
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without a heat storage, the long duration of operation has no impact on the average
COP of the system

Consequently, if a combi-storage has to be installed to minimize the number of starts
per day, a cost of start has to be considered within the optimization. In case the heat
pump has to offer flexibility to the grid, the incentives should be making up for the
decrease in COP that can lead in this case to a minimum of 13% increase in costs.
Additionally, thermal losses of the storage have to be considered.
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Figure 5.3: Cycling effect on the heat pump system performance, (a) a constant continuous load
is maintained throughout the day (b) a constant return temperature is maintained
throughout the day.

5.2 Model Validation

To validate the model, the heat pump described in Section 4 was integrated with Sim-
ulationX heat storage and building model described in [38]. Figure 5.4 shows the heat
pump on the right side and the controller. The storage is presented by the storage icon,
which is connected to the heat pump on one side and a mixer on the other side. On
the far right side comes the building model and the weather data. The most impor-
tant parameters of the storage are indicated in Table 5.1. The default parameters have
been used for the rest of the components. The heat pump controller has two different
hysteresis models that control both of Ts and Tstorage. Hence, the heat pump can only
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be switched on when both of the controllers generate a true signal. Different building
models can be integrated from [38], yet a generic model was set to model a cycling load
similar to the one presented in Section 5.1.3 so that the dynamics of both the thermal
and electrical power, in addition to the supply and return temperatures can be visualized
and validated. The cycle period of 1-h was chosen, along with QSH = 5 kW.

Figure 5.4: Modelica heat pump model integrated with the building and storage model of Sim-
ulation X.

Table 5.1: Heat storage parameters.

Description Value Units

Heat storage Volume 749 l
Diameter of heat storage 0.79 m

Heat Conductance of isolation 2 W
K

Number of heat storage layers 10 -
Ambient temperature 18 ◦C

Maximum layer temperature 65 ◦C
Heat transmission coefficient for neighboring layers 465 W

m2.K

Figure 5.5a demonstrates both of the measured thermal and electrical power versus
the simulation. It can be noticed graphically that the model was able to simulate the
dynamics of the heat pump in terms of power amplitudes and switching times. The
dynamics of the start, which is shown as the thermal power spikes at every start, was
also simulated by the model. The model was also able to simulate the electrical power
at every point of that presented day. The stand-by power was neglected as it has a value
of 9 to 10 watts, which represents 0.5% of the nominal power. To quantify the quality of
the model numerically, the mean absolute percentage error (MAPE) and the root mean
square deviation (RMSD) were used as metrics. The MAPE and RMSD of the thermal
power are 2% and 0.7 kW, respectively. On the other hands, the MAPE and RMSD of
the electrical power are 4% and 0.23 kW respectively. To look further into the dynamics,
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it can be noticed in Figure 5.5b that the supply temperature of the heat pump and the
simulation model are graphically simultaneous and fitting. The MAPE and RMSD of
the supply temperature is 1.5% and 0.7 K, respectively. The return showed a plausible
behavior when the heat pump is on, but it deviates when the heat pump is off. The
reason behind this behavior is that the pipe between the heat storage and the heat
pump is not modeled. Thus, the model is using directly the temperature of the tank.
The MAPE and RMSD of the return are 4% and 1.7 K, respectively. The behavior of the
return temperature did not reflect on the quality of the results, as this behavior occurs
only when the system is off. Figure 5.6 shows the energy generated throughout the day.
It can be noticed that the difference between the model and the measurement is only
3% and 4% for heat generation and electricity consumption, respectively. These minor
variations indicate that the presented model can accurately simulate the heat pump and
deliver proper results once it is integrated into a building model.
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Figure 5.5: Temperatures and power dynamics of both the simulation model and the mea-
surements of the testbed, (a) thermal and electrical power (b) supply and return
temperatures.
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Figure 5.6: Comparison between the measurements and the simulation model based on the heat
generation and the electricity consumption.
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The computational speed of the model was also tested on Simulation X. A backward
differentiation formula (BDF) solver was used to compute the model on a personal com-
puter having the minimum calculation step size, maximum calculation step size, absolute
tolerance, relative tolerance, minimum step size, and recording of the results equal to 10
ns, 900 s, 10 µs, 10 µs, 1 ps and equidistant 1 s, respectively The computational time
for one year of one second resolution was only 22.3 s.
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6 Conclusions

In this paper, an experimental investigation on a commercial, residential GSHP in com-
bination with a combi-storage was conducted. The goal of the investigation is to analyze
experimentally the performance of the GSHP under different operation conditions and
system configurations. Through the study, optimal sensors integration, in addition to
different cycling duration impact on the performance of GSHP were investigated. In
the optimal sensors integration experiments, the heat pump buffer sensor was integrated
on different heights to investigate the GSHP performance and reaction to the sensor
position. In the different cycle duration experiment, the heat pump was operated once
against a constant space heating load, and another time against a cycling space heating
load to show their impact on the average COP of the GSHP. The experiments were
performed on a modular testbed that can emulate the behavior of the ground source,
as it can deliver a profile of brine temperatures in real-time. Moreover, it can emulate
loads of space heating and domestic hot water consumption for different building sizes
and ages. Through the experimental investigation, the main findings can be summarized
in the following:

� DHW/SH sensor position influence the number of starts and might lead to short
cycling, yet it is not the main parameter influencing the COP

� Tank set temperature has a direct impact on COP. Thus, for the same required
supply temperature, having a sensor at a higher position along with a high set
temperature could be exactly equal to having a sensor at a lower position with a
low set temperature

� Short cycles do not always lead to a lower COP, it can increase the average COP
of the system as it maintains a lower temperature in the tank

� In case the heat pump is delivering directly to the building without storage, or
once there is a consumption from storage, the long or short cycles do not have an
impact on the COP

� A higher number of starts might lead to a shorter life of the compressor. Con-
sequently, a cost of start has to be included to balance the benefit of the higher
COP with short cycles. Otherwise, the EMS might tend to increase the number
of starts per day of the heat pump, if no flexibility is required from the grid

The aforementioned experimental data was used to develop a Modelica model that
can accurately model the dynamic behavior of the heat pump. Comparing the daily
energy consumption of the measurements of the testbed to the model, it was found
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that the difference in heat generation and the electricity consumption is only 3% and
4%, respectively. The electrical and thermal power, in addition to supply and return
temperatures profiles, were evaluated based on MAPE and RMSD to show the capability
of the model to represent the dynamics of the heat pump testbed. The MAPE and RMSD
of the temperature profiles reached a value of 1.5% and 0.7 K, respectively.

Moreover, the model can be easily solved for a one-year time horizon of one-second
resolution in 22.3 seconds on a personal computer. Thus, it can be easily integrated into
a complete building model without slowing down the solver.

The developed testbed opens the horizon towards several other investigations and
demonstration of multiple methods. As a next step, it is planned to integrate the testbed
as part of hardware in the loop (HiL) system as presented in [42]. Through that HiL
system, a communication can be performed with different models to emulate real-life
conditions.
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A Appendix

A.2 Publication 2 — Day-Ahead Probabilistic PV Generation
Forecast for Buildings Energy Management Systems

Abstract

The photovoltaic (PV) generation forecast is a key element to an efficient building en-
ergy management system (EMS) operation. The forecast’s uncertainties and generation
variabilities exposes the loads to misplanning, and hence decrease building autonomy,
self-sufficiency and potential costs savings. In this paper, a novel approach for a day-
ahead PV power generation probabilistic forecast is proposed that is especially optimized
for building EMS applications. The model consists of several modules to develop the
probabilistic forecast. Initially, a clear sky model is tuned to incorporate the system
and temperature losses and partial shading. The deviation of the PV power from the
clear sky power is used to train a bagging regression tree, which produces a determin-
istic point forecast. The probabilistic forecast is developed based on the probabilistic
analysis of the point forecast and regenerating it based on the given weather conditions.
The model is developed based on the available data in buildings such as the historic PV
measurements acquired from the inverter and the weather forecasts. The probabilistic
forecast was validated over a complete-year data set of a rooftop PV system in Munich,
Germany, where the results showed its capability to provide an accurate and reliable
forecast for EMS applications.

Author Contribution

I collected the data, developed the probabilistic PV prediction algorithm, and wrote the
paper; Peter Tzscheutschler helped in structuring and revising the paper; Ulrich Wagner
provided a detailed critical review.
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1 Introduction

The German energy transition has paved the way towards renewable energy sources’(RES’s)
integration to replace nuclear and fossil energy resources. The current goal for the elec-
tricity consumptions derived from renewables is to reach 40-45% by the end of 2025, and
at least 80% by 2050 [1]. These goals are supported by several policies and regulations
such as the renewable energy act, Erneuerbare Energies Gesetz (EEG), which was intro-
duced in 2000 [2] to support RES penetration to the grid. The EEG was set to guarantee
the RES plant owner an energy purchase at a fixed tariff to give priority access to the
RES in the grid over other energy sources. Consequently, the installed RES capacities
grew between 2002 and 2017 from 18 GW to 111 GW [3]. The share of photovoltaic (PV)
generation within the same time frame grew from 0.3 GW to 42.71 GW to represent a
major share of the installed RES capacities up until this moment. Hence, it is crucial to
maintain a smooth integration of the PV systems in different sectors and to find balance
between an economic operation for both the generator and the power grid.

In the residential sector, the installed PV capacities reached 39.4% [4], thus substantial
research was oriented towards the optimal integration of PV systems in buildings. The
research focused on applying different demand side management (DSM) strategies to
increase self-consumption, self-sufficiency, and to minimize CO2 emissions or costs. In
all the presented cases in the literature, the DSM strategies were applied through an
energy management system (EMS) that is responsible for optimize both the electrical
and thermal heating system plans within buildings.

An accurate PV forecast is generally crucial main input required for optimal load and
resource scheduling and specifically for the operation of the EMS in buildings. As shown
in [5], an improper forecast can significantly influence the battery discharging behavior.
In [6], the researcher showed the necessity of better forecasting for PV generation to
maintain a grid-friendly PV + Battery system. In [7], the influence of a PV forecast
on the EMS was demonstrated. It was found that a less accurate forecast can lead
to different operation plans for households devices and, consequently, higher operation
costs, lower self-sufficiency and lower self-consumption. As a solution, several researchers
developed an online, real-time controller in addition to a battery storage system to make
up for the PV forecasting error [8, 9]. An online controller can increase the efficiency of
the EMS in this case, but the maximal potential still cannot be reached. In addition to
that, the gained economic benefit from the online controller cannot recover the additional
investment costs in the additional battery system.

A better forecast is always the favored economic solution for load scheduling. Several
researchers over the past years focused on improving PV generation forecasts, as in
[10, 11, 12]. The developed forecasts cannot be equally compared, as each depends
on the purpose of the application, the forecasting time horizon, temporal resolution,
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spatial resolution, and, above all, the local climate. For building EMS applications,
the forecast requirements can be deduced out of presented algorithms and methods in
literature. As in [13, 14, 15, 16, 17], the desired forecasting time horizon required is in
range of 6 h up to 48 h for proper resource and load scheduling and optimization. A
shorter time horizon can be only considered if power to heat devices is not integrated
such as, heat pumps, as they always need a relatively longer time horizon for thermal
system optimization. The temporal resolution required is between 15 min to 1 h. Based
on the given time horizon and temporal resolution, the most practical candidate is the
numerical weather prediction (NWP), which is associated with statistical post processing
[18, 19, 20, 21]. Consequently, NWP represented a major component of several models
in the literature. [22] used NWP input data to develop a multi-model ensemble. In [23],
a deterministic approach was implemented using an NWP model, where a transposition
and a power estimation model were used to generate the day-ahead forecast. In [24],
predictors of a NWP model were used to compare several forecasts for a day-ahead hourly
PV prediction. [25] presented a comparison of multiple NWP models performance using
different configuration and in different locations. The goal behind the comparison was to
have a standardized evaluation of the presented forecasting approaches performance, so
that users can choose the most suitable forecasting technique for their application. The
main problem with NWP, as many other point forecasts, is that it is designed for a spatial
resolution greater than 1 km, which is larger than the surface area of a single family
house or even a multi-story building. Thus, the forecasting of a rooftop PV system power
generation would be exposed to relatively higher uncertainties. As mentioned in [18], for
an area as large as Germany, the uncertainty is 64% less than a point forecast. Based on a
questionnaire performed by [18] on different PV forecasting models developed by different
institutes and tested in multiple locations, it was found that the RMSE can reach 72% of
persistence RMSE. Thus, using this approach for Building EMS applications would not
lead to an optimal operation, as it is more oriented to support large scale applications
for the sake of load flow regulation, or unit commitment of regional power as in [26].

Probabilistic forecast is an alternative solution handling the high uncertainty and
variability of PV generation, especially in building EMS applications. Conventional
approach, which is also denoted by deterministic approach, is generating a forecast Ppv

at time t for time t+tf , where tf is the forecasting time horizon. Feeding such single Ppv

value to an EMS, makes the optimization algorithm behind the EMS exposed to the high
uncertainty of the forecasted value. Yet, a probabilistic forecast can generate a range of n
values [Ppv1 , ..., Ppvn ] to give a chance for the EMS, via providing a full information about
the uncertainty, to reach the most probable optimum operation schedule. According to
the review of [27] and [28], the frequency and maturity of research in the probabilistic
solar power forecasting is low compared to the conventional approaches, although the
probabilistic approach was often used for wind and loads forecasting. This trend fits the
text mining review of [29].

In the literature, probabilistic approach was presented in different forms for diverse
applications. In [30], probabilistic approach was implemented to estimate PV production
on the regional scale. Instead of using a set of reference plant models with fixed param-
eters for upscaling the PV production in different control areas, the author estimated
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the plant parameters using the most frequent modules orientation angles. The output
power was then weighted according to its probability of occurrence. The approach re-
sulted in an improvement in the root mean square error (RMSE), although one single
weather model is used. In [31], the probabilistic forecast was implemented for short-term
solar forecasting in the range of 10 min up to 6 hour. The solar irradiance was handled
similarly to financial time series. Hence, a combination of two linear models was used:
the recursive autoregressive moving average (ARMA) and the generalized autoregressive
conditional heteroskedasticity (GARCH). The recursive estimation method was used to
estimate the parameters of the two linear models. Using the ARMA-GARCHA model,
a point forecast was generated with a confidence interval. A normal distribution was
assumed for the point forecast within this model, although, in reality, errors cannot be
represented by the Gaussian law. In [32], a short-term probabilistic forecast was also
developed with a forecasting time horizon in the range of a few minutes to one hour
ahead. The author implemented a nonparametric approach to generate the forecast
density function. An extreme learning machine (ELM) was used as a regression solver
along with a gradient-free optimization to estimate the parameters. In [33], short-term
probabilistic power forecast based on an analog ensemble (AnEn) was presented. The
approach generates a set of the most likely PV predictions using a historical PV mea-
surement in addition to meteorologically forecasted variables such as global horizontal
irradiance, temperature, cloud cover, solar azimuth and elevation. The AnEn showed
better performance than the referenced Persistence Ensemble (PeEn) and quantile re-
gression model, yet it operates with relatively large spatial and temporal resolution,
which can not be suitable building for EMS applications. In [34], the direct normal ir-
radiance was forecasted using a short-term probabilistic approach, but for concentrated
solar power plants. The focus of the model is to generate an intra-hourly forecast within
the time horizon of 5 to 20 min. The author used the k-nearest neighbor (kNN) en-
semble to produce arbitrary probability density functions to estimate the direct normal
solar irradiance. In [35], the capability of probabilistic forecast to estimate the daily PV
energy production was discussed. The forecast was dedicated to facility operations to
optimize maintenance costs. Consequently, the model has a forecasting horizon of two
days to serve that application.

To summarize the current status quo of PV power forecasts in relevance to building
EMS applications, given the required forecasting horizon, spatial and temporal resolu-
tion:

� Deterministic forecasts cannot lead to an optimal solution due to the high uncer-
tainty of the forecast and variability of PV power generation, which leads to a
decrease in the efficiency of the building energy management system or an invest-
ment in additional battery capacities to make up for the forecast error

� Little research was done on probabilistic forecasts compared to the deterministic
forecasts, and the probabilistic approach was not only used to estimate the PV
power output, but also to estimate the most probable PV power plant parameters
for upscaling applications
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� Most research discussing the probabilistic approach is oriented towards short-term
forecast with low spatial resolution (e.g. regional) to maintain the power quality,
regulation costs, or load generation imbalance

Within this paper, a novel probabilistic forecasting model is presented, which features
a complete open-source solution for building EMS applications. The model focuses on a
probabilistic analysis and forecast of high resolution error of a bagging regression trees
point forecast, which is of a lower resolution. It classifies the error depending on the cloud
cover in different cumulative distribution functions to increase the model accuracy and
reliability. Moreover, the model is designed to perform with a high accuracy, even though
the number of input parameters is minimal and a conventional online low spatio-temporal
resolution weather forecast is supplied. The output of the model is prepared to facilitate
the integration of the probabilistic forecasts with the EMS and DSM algorithms, as
further explained in [7]. Furthermore, it can generate results within milliseconds on
personal computers once it is trained to ease its implementation on microcomputer or
cloud EMS.

The paper is structured as follows: Section 2 details the PV measurement and weather
forecast data used to train and validate the forecasting model. Section 3 presents the
approach used to develop the probabilistic forecast. Section 4 presents the validation of
the model based on a defined set of metrics. Section 5 briefly describes the open-source
implementation of the model for different applications. Section 6 presents a conclusive
summary of the whole study.

A Appendix

98



2 Data

In a building with an integrated PV system, two types of data can be available: the
weather forecast and PV measurements. The weather forecast is usually offered by
an online service provider and has to be available for thermal load management and
the optimization of the building. The PV measurements can be acquired either via a
smart meter or directly from the PV inverter depending on the system setup and the
inverter type. Thus, these two data types are already accessible by the EMS nowadays.
Accordingly, only these two data types will be fed to the probabilistic forecast model.

In this study, the data is acquired from a 3 kWp rooftop PV system in Munich,
Germany. The latitude of the power plant is 48.14951◦, the longitude 11.56999◦, and
the elevation 516 m. The system consists of 12 modules, each 1.67 m2. The tilt angle
β is 30◦, while the azimuth angle φ is 200◦. The data is directly called from the PV
inverter, with no additional metering devices, to emulate the situation in a building.
The detailed technical information of the PV system, along with the data, is presented
in the data article [36]. Figure 2.1 shows the measured PV power peak for the year 2016.
The overall electricity generated in that year is 2.85 MWh.
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Figure 2.1: Daily PV power peak for the year 2016.

There are several weather forecast providers who distribute weather forecasts for de-
velopers through a public API. In this contribution, [37] was used, yet data from other
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service providers can be also used. The called data from the API is a 10 days-ahead
weather forecast that includes temperatures, wind direction, wind speed, cloudiness, and
humidity. Data was aggregated on a daily basis to develop a historical forecast database
for the sake of testing the probabilistic forecasting algorithm. Table 2.1 represents the
most import forecast variables delivered by the online forecast.

Table 2.1: Data provided by the online weather forecast.

Description Abbreviation Units

Dew point Dpwf
◦C

Temperature Tewf
◦C

Cloudiness CCwf %
Wind speed Wswf

m
s

Wind direction Wdwf deg
Humidity Hwf %
Mean sea level pressure MSLPwf Pa

Missing or corrupted data from the raw PV measurements is ignored. The reason
behind using the raw data directly is to emulate a real-life situation in buildings, where
EMS or PV forecasting systems are not associated with data treatment modules.
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3 Approach

3.1 Overview

The procedure for generation a probabilistic forecast goes through different processes.
Figure 3.1 shows the simplest form of the model structure to provide an overview of
the forecasting process. The first process is the clear sky model (CSM), which provides
an initial numerical base for forecast generation. The CSM model is calibrated based
on the live PV measurements by specific factors to make up for different system losses.
Following the calibration, the partial shading detection process starts based on the PV
measurements. The next process is bagging regression trees training, where different
trees are trained based on the absolute difference between the PV measurements and
the calibrated CSM forecast. The regression trees enable the model to generate a forecast
for the next 24 hours with 1 h resolution. Eventually, an error analysis of the generated
point forecast is used to set up the cumulative distribution function based on which the
probabilistic forecast is generated.

Figure 3.1: Simplified flow chart describing the process of probabilistic forecast generation.
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3.2 Clear sky model

The initial process of the algorithm is to calculate the clear sky solar irradiation, where
clouds are considered theoretically absent. Thus, the production of the PV system is
calculated under stationary conditions, where PV generation is only affected by the solar
geometry.

To calculate the direct normal irradiance (DNI), the extraterrestrial solar irradiance
I0 has to be calculated using Equation 3.1, where Ic is the solar constant, equals 1360
W
m2 , and where nd is the day number of the year to associate the change of the distance
between the sun and earth.

I0 = Ic × (1 + 0.033× cos360× ny
365

) (3.1)

Applying the simplified Birds and Hulstrom model [38] as in equations 3.2, 3.3 and
3.4, the direct Id, scattered Ias, and total solar irradiance IT can be calculated. Z is
the zenith angle. TR, To, TUM , TW , TA and TAA are the transmittance of Rayleigh
scattering, ozone absorption, uniformly mixed cases absorption, water vapor absorption,
aerosol absorption and scattering, and aerosol absorption, respectively. The rg and rs
are the ground and sky albedo. For the detailed equations of the transmittance factors,
please refer to [38].

Id = 0.9962× I0 × cos(Z)× TRT0TUMTWTA (3.2)

Ias = 0.79× I0 × cos(Z)× T0TUMTWTAA (3.3)

IT = (Id + Ias)/(1− rgrs) (3.4)

Using the calculated solar irradiation, in addition to the orientation angles of the PV
system and an initial module efficiency, PV clear sky power generation Pcs is calculated.

3.3 System efficiency calculation

Since Pcs is calculated based on an initial guess of the module efficiency, it has to be
calibrated to find the correct module efficiency. Moreover, different system losses have to
be included such as the inverter, ohmic and temperature losses [39], yet the integration
of additional models to calibrate Pcs for these losses can lead to a slowing down of
the overall model and hinder its integration with an EMS. Consequently, a simplified
semi-empirical method was used to calibrate the clear sky model and inherit the system
losses in the prediction. κc and κt are the two correction factors used to generate the
calibrated clear sky power of the PV system Pccs as in Equation 3.5, where κt inherits the
temperature losses, when the ambient temperature, Tea, is above 25◦C and κc inherits
other different types of losses for any generic systems.

Pccs =

{
κtκc × Pcs, if Ta > 25◦C

κc × Pcs, otherwise
(3.5)
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Once the algorithm functions in real-time, it aggregates the weather forecast and PV
measurements as indicated in Section 2. Once the algorithm has recognized three consec-
utive clear days as per the given weather forecast and the relative daily measured energy
production, it (re)calibrates the Pccs. The calibration is done via linear minimization of
the mean absolute percentage error (MAPE) over the 3 given days. Equation 3.6 shows
the objective function of the linear optimization, where ΥMAPE(κc, κt) is the MAPE
error, Nd is the number of time steps in the given days, and Pm(t) is the measured
power at time (t).

min ΥMAPE(κc, κt) = min
100

Nd

Nd∑

j=1

|Pccs(t)− Pm(t)

Pm(t)
|,

where 0 < κc < 1, κc ∈ R
and κt = 1

(3.6)

As soon as κc is calculated, κt is optimized using the same equation in 3.6, while main-
taining κc as constant and 0 < κt < 1. It should be noticed that κt is calibrated only
once every three consecutive clear sky days with an average ambient temperature above
25◦C. The process of optimization occurs only a few times per year and can be limited
programmatically to a finite number of times per season.

In the events when the temperature is below the 25◦C and the sky is clear, a higher
PV power can be produced. If these events occurred for three consecutive days, κc is
recalculated to calibrate the clear sky power. Otherwise, it is ignored. Within the testing
phase of this model [40], it was found out that the events where Pccs < Pm occurred
only in 10.2% of the hours of the year with a mean normalized power increase of 3.6%.

The goal behind this optimization is not to reach an accurate forecast for direct
applications, but to feed the best possible data to the regression trees as mentioned in
Section 3.5. In other words, the model tries to solve as much as possible in terms of
what it knows according to the physical properties of the system and solar geometry,
and leaves the rest of the unknowns to the regression trees.

3.4 Partial shading detection

PV installation locations throughout a building are always optimized under specific area
constraints, yet PV modules might still be partially exposed to the building’s shade at
certain times of the day, which can lead to a power drop of more than 50% at a specific
time of the day. Figure 3.2 shows an example of the effect of neighboring buildings’
shading on the 7th of May. The decrease in power, especially between 15:00 to 18:00,
can be noticed. To take into account the partial shading within the clear sky model for
a specific PV system, an empirical estimation can be made for the power drop at specific
Z(t). Yet, the goal of the algorithm is to be generic for buildings with different partial
shading conditions.
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Figure 3.2: PV measurement on 07.05.2016.

Consequently, the first step was to detect such an abrupt change by satisfying the
condition in Equation 3.7. χ is a constant and ∆t is 1 h to avoid the detection of the
PV variability due to weather conditions. Applying Equation 3.7 to three consecutive
clear sky sunny days as in Section 3.3, the algorithm searches for the Z at which partial
shading starts, θ. The algorithms search the three days of measurements Pm1, Pm2, and
Pm3 for a point of time in which the condition in Equation 3.8 applies. κps is calculated
as shown in Equation 3.9 to define the decrease in PV generation due to partial shading.
κps is then used as a constant value to determine the new PV clear sky value while
taking into account the partial shading Ppccs.

|Pm(t+ ∆t)− Pm(t)| ≥ χ|∆t| (3.7)

∆|Pm1(t+ ∆t)− Pm1(t)| ∧∆|Pm2(t+ ∆t)− Pm2(t)| ∧∆|Pm3(t+ ∆t)− Pm3(t)|
−→ θ = Z(t)

(3.8)

κps = |Pm(t+ ∆t)− Pm(t)|/Pm(t) (3.9)

Ppccs =




κps × Pccs, if Z(t) > θ and

dZ

dt
> 0

Pccs, otherwise
(3.10)

Figure 3.3 shows Ppccs of three consecutive days in May, where the last algorithm cali-
bration has been performed earlier in April. It can be shown that the partial shadowing
detection was able to model the shading and associates it to the clear sky model. On
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the other hands, a difference can be noticed in the middle of each day between the Ppccs

and the measured power. Such difference is due to the failure of the weather forecast.
In these three days, the weather forecast provided a lower Ta than the measured values.
Consequently, the Pccs was higher than the measured power, yet the Ppccs was still able
to adapt to the partial shading conditions. Even on days with high variability due to
partial cloudiness and wind speed, as in Figure 3.4, the model was able to forecast the
maximum generation to a good extent.
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Figure 3.3: Clear sky model output and PV power measurements from 06.05.2016 to 08.05.2016.
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Figure 3.4: Clear sky model output and PV power measurements from 26.05.2016 to 28.05.2016.
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In [41, 42, 43], tuning routines were also presented that take into account partial shad-
ing. These methods were targeting regional solar resource assessment for the distribution
system operators (DSO) and transmissions service operators(TSO). Consequently, these
models have a higher complexity as they are dealing with systems of bigger scale and
higher uncertainties. In [41], light detection and ranging data (LiDAR) is required to
estimate PV module orientation and model the possible shading of the nearby buildings
or nearby surrounding objects such as mountains. Another presented approach is the
QCPV-tuning model, which initially performs a data quality control and a parametriza-
tion process to determine the module orientation and loss factors. In this paper, the
PV system installer is assumed to be aware of the module orientation and position.
Consequently, these plant parameters are assumed to be known as in Figure 3.1. The
main advantages of the presented algorithm are the three days persistence technique
to calibrate the forecast which is not computationally intensive, its high performance
without a need to any earlier data processing, or satellite-derived data. On the other
hands, if the calibration was not performed due to the weather conditions, the quality
of the clear sky forecast might decreases.

3.5 Regression trees

In a desert climate zone, the CSM optimized model can be sufficient, as the major days
of the year are clear. In a tropical or a continental climate, PV generation variabilities
increase significantly due to clouds’ motion and speed as in [44], which makes it challeng-
ing to predict or model, especially in systems of a small-scale. As an example, Figure
3.5 shows two different transient days in the fall, 07.10.2016, and in spring, 20.04.2017.
Although the CSM model is able to forecast the maximum power of the PV system, it
can not be used to model the variability or the power decrease due to cloudiness.
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Figure 3.5: PV variability on two different transient days of 1-min temporal resolution, (a)
07.10.2016 (b) 20.04.2017.

Regression trees are used to predict the power drop due to different weather conditions.
They are a machine-learning method used to classify and construct forecasting models
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based on the given data. Regression trees method was developed in 1984 by [45, 46].
The goal behind the regression trees is to predict a variable based on multiple input
variables. Consequently, the regression trees learns through recursive binary splits. It
splits the learning data sample into smaller subsets to answer some basic questions that
can be categorical or numerical. Hence, The output of the regression trees can vary
depending on several parameter such as the tree size, or the splitting criterion [47].

The major benefits of regression trees over other nonparametric methods such as,
nearest neighbors and kernel-based methods, are their ability to generate a fast predic-
tion without computationally expensive calculation, their high performance even if the
dataset is incomplete, and the transparency they provide to track the most important
variables affecting the prediction. Moreover, the regression trees have the ability to split
outliers into separate branch not to increase the accuracy of the predictor. Hence, re-
gression trees is one of the powerful statistical techniques being used for data mining,
analysis and prediction in different research fields [48, 49, 47]

Regression trees are trained based on the absolute difference between the PV mea-
surement and the CSM model, Λ(tt) as in Equation 3.11, where tt is the training time
and Tn is the end of the training period.

Λ(tt) = |Pm(tt)− Ppccs(tt)

Ppccs(tt)
| ∀ tt ∈ [1, 2, ..., Tn] (3.11)

The Λ(tt) was classified based on 2 variables of the weather forecast, Tewf and CCwf .
Other variable combinations were tested in [40], yet it was found that Tewf and CCwf

are the most effective variables in training the given regression trees without increasing
the complexity of the model. Bagging is a technique that is used to improve the perfor-
mance of the regression trees as in [46]. The main idea behind bagging is dividing the
available training data into several bootstrap samples to train various trees instead of
one tree and then averaging the output to generate the main prediction. In [40], other
different methods were tested for the optimization of the presented algorithm, and it
was confirmed that the bagging regression trees lead to the lowest error and highest
efficiency. The prediction of the regression trees Λp(tf ) is then used to generate a point
generation forecast Ppf (tf ) as in Equation 3.12, for the next 24 h. The temporal resolu-
tion is always limited by the temporal resolution of the supplied weather forecast, which
is 1 h.

Ppf (tf ) = Ppccs(tf )− |Λp(tf )× Ppccs(tf )| ∀ tf ∈ [1, 2, ..., 24] (3.12)

3.6 Probabilistic forecast

The difference between the forecasted PV generation provided by the bagging regression
trees and the real PV measurements is the main drive behind the probabilistic forecast.
The relative difference between Ppf and Pm is classified into i = 8 categories depending
on the forecasting cloudiness CCwf [08 , ...,

8
8 ] within the time of the day. It is calculated

such that Ppf and Pm are of 1 min resolution, where Ppf is interpolated linearly to be
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converted from 1 h time step to 1 min, so that PV output variability can be included.
The overall probabilistic forecast relative difference training set can be represented by
λi such that i ∈ [1, .., 8]. Each of the 8 training sets are fitted automatically to different
cumulative distribution functions (CDF) until an optimal distribution Fi(λi) is found.
Having multiple distributions can easily show the λi behavior at each cloudiness condi-
tions for an optimized aggregated forecast. For each Fi(λi), the classification represents
a data filtering of unnecessary information and focuses only on the forecasting behavior
at a specific weather condition. Figure 3.6 shows the 8 different CDFs after a training
period of 4 months between 01.05.2016 till 01.09.2016. The effect of the CCwf over the
relative difference λi can be clearly noticed. Using the presented distributions, it can
be shown that for CCwf = 0/8 (i.e. clear sky), F1(0) = Pr(λi ≤ 0) = 0.7 as in Figure
3.6(a). This value can be compared to F8(0) = 0.05 as in Figure 3.6(h).
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Figure 3.6: The 8 CDFs for different cloud covers over a training period of 4 months (a) CCwf =
1/8 (b) CCwf = 2/8 (c) CCwf = 3/8 (d) CCwf = 4/8(e) CCwf = 5/8 (f) CCwf =
6/8 (g) CCwf = 7/8 (h) CCwf = 8/8. The legend consists of the empirical forecast
and the top 4 matching forecasts.

A.2 Publication 2

109



The range of values of Fi(0) between F1(0) and F8(0) is gradually decreasing, and
the distribution is shifted more towards positive relative difference values (Ppf -Pm / Ppf

> 0). Under-forecasting, as described in the earlier sections, does not occur with a high
frequency compared to the over-forecasting as CCwf increases.

The choice of the best fit to the empirical data is made based on the Bayesian informa-
tion criterion (BIC)[50]. The BIC is capable of fitting and selecting the best distribution
without increasing the model complexity. The lower the BIC, the better the fit of the
model. The general equation of the BIC can be represented in Equation 3.13, where ke
is the number of estimated parameters, F̂i is the maximum value likelihood estimate of
Fi [50].

BIC = −2log(F̂i) + kelog(Nd) (3.13)

The best 4 fitting distributions are presented in Figure 3.6. For each category i, the
fitting distribution can differ from one category to another. Moreover, it can vary over
time. Every day, the model can choose a different distribution with new parameters
depending on the behavior over the point forecast within that day. As an example,
Figure 3.7 shows the best fitting distribution after two different training horizons. Figure
3.7(a) represents the most fitting 4 distributions after one month, and Figure 3.7(b) after
4 months.

Having 8 distributions will help the probabilistic forecast to function under different
conditions. If the weather is mostly clear, only the first distribution F1, where CCwf =
0/8, will be trained and used for prediction. The more overcast, cloudy, or partly cloudy
days there are within the years, the more training data will be available and the more
data can be used to find the best distribution.
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Figure 3.7: CDF after different training times (a) 1 month training time 01.05.2016 to 01.6.2016
(b) 4 months training time 01.5.2016 to 01.09.2016.

The goal of the probabilistic forecast is to deliver a range of values to the DSM
algorithms operating within the EMS to reach the most optimal decisions. The range
that can be supplied by the given CDFs is continuous, yet a discrete set is sufficient
as in [7] for the EMS applications. Within this paper, the discrete range Q is defined
Q = {10%, 20%, ..., 90%}. The λi is calculated using the inverse CDF, F 1

i (q), as shown
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in Equation 3.14, where q is the selected discrete probability at which λi is calculated.
q = 90% represents the highest probability of the the discrete set Q. Thus, it leads to the
highest relative difference and the most guaranteed PV power expected to be generated.
On the other hands, q = 10% would lead to the lowest relative difference and the least
guaranteed PV power.

F−1i (q) = λi, q ∈ Q = {10%, 20%, ..., 90%}
i ∈ [1, .., 8],

and i = 8× (CCwf (tf)) + 1

(3.14)

Using the given λi, the set of probabilistic PV curves Ppp(tf) is calculated as in
Equation 3.15. The set always consists of nQ curves, where nQ is the number of elements
in Q. Each curve in the set varies over time depending on the Ppf , λi, and the CCwf .

pppq(tf) = Ppf (tf)× (1− λi)
pppq(tf) ∈ Ppp(tf) = {ppp10%(tf), ppp20%(tf), ..., ppp90%(tf)} (3.15)

In Figure 3.8, the output of the probabilistic forecast in the different seasons of the
year. The curves of the different q are visualized as stacked bars to easily identify the
available power at each q. It can be noticed in Figure 3.8(e) that the power available with
q = 90% is the highest compared to all other seasons, as the PV variability in that day
was relatively low. In comparison, Figure 3.8(a) and 3.8(g) show a power peak at noon
correlated to q = 10%, due to the high variability on that day. Figure 3.8(b) to 3.8(h)
show the PV power at a higher resolution, 1 min instead of 1 h to show the PV power
variability. These variabilities led to an error in the point forecast that was captured
by the probabilistic PV forecast. In other words, the hardly predictable unrepresentable
variabilities that occur in the point forecast were presented as curves with lower q by
the probabilistic forecast.

The reason for presenting the probabilistic forecast with CDFs and the multiple curves
q is its intuitive and simple possibilities for integration with an EMS. An EMS system
would not need an exact PV forecast at certain time of the day, but rather a guaranteed
power to avoid putting off or rearranging loads. As an example, assuming a heat pump
(HP) or an electrical vehicle (EV), and a mini-washing machine submitted a scheduling
request to an EMS simultaneously, the EMS would choose to place the HP or the EV
under q = 90% or higher , and the mini-washing machine at any lower q. The EMS
prioritized the HP and EV as they work for longer duration and higher power. Conse-
quently, they would need to be scheduled at the most guaranteed PV generation times
with the lowest possible variability. If the PV generation is higher than the highest
probability curve, it would not cause any problem with the plan, as the rest of energy
would be either feed-in to the grid or stored in batteries. On the other hand, having the
mini-washing machine or similar devices with low power and short durations, scheduled
at a lower q would not affect the economics of the schedule or the EMS as a whole.
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Figure 3.8: Probabilistic forecast output and PV measurements in multiple days in different
seasons, (a) Winter (b) Winter-1 min resolution (c) Spring (d) Spring-1 min reso-
lution (e) Summer (f) Summer-1 min resolution (g) Fall (h) Fall-1 min resolution.
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4 Model validation

PV forecast models are usually validated by evaluating the discrepancy between the
forecast and the actual measurement using various statistical metrics such as RMSE,
mean absolute error (MAE), and mean biased error (MBE) [18]. Other factors such
as the continuous ranked probability score (CRPS) and the brier score (BS) are used
to evaluate the probabilistic forecast [51, 52]. Each of these metrics has a benefit in
understanding the characteristics of the developed forecasting model. As an example,
the RMSE measures the quadratic average magnitude of the error and, consequently
gives higher weights to larger errors. The MAE measures the average magnitude without
considering the error direction, while the MBE measured the direction to show whether
the model is over- or under-forecast. Recent metrics were introduced and and discussed
in [53, 54, 55]. These metrics were designed to complement the statistical metrics so
that a precise analysis of the forecast performance can be demonstrated. One of these
metrics is the temporal distortion index (TDI) [53], which can analysis the temporal
distortion due to time shift between the forecast and the actual measured values.

In this section, the forecasting model is validated against the different metrics to
present a comprehensive image of the performance of the model in real-time operation.
Moreover, only daylight hours were considered in the validation to avoid the influence
of the non PV generation hours on the metrics.

4.1 Point forecast

Since the model is tested for real-time EMS applications, the training period of the
regression trees and the whole model is considered, initially, to be continuously growing
on a daily basis from 01.05.2016 to 01.05.2017. The model is meant to run once a day
shortly before midnight to enable the EMS to start the scheduling at 00:00 every day.
Using equations 4.1, 4.2 and 4.3, the RMSE, MBE and MAE are calculated.

RMSE =

√√√√ 1

N

N∑

1

(Ppf − Pm)2 (4.1)

MBE =
1

N

N∑

1

Ppf − Pm (4.2)

MAE =
1

N

N∑

1

|Ppf − Pm| (4.3)
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Figure 4.1 demonstrates the average daily error for different cumulative training periods
of an hourly temporal resolution. The error was normalized to the rated value of the PV
system. The initial value starts in June after one month of training, representing the
highest value, 17.3% for the RMSE, 9.3% for the MAE and -1.5% for the MBE. After
four months of training, the RMSE dropped to 15.3%. On the other hands, the MAE and
the MBE were 8.5% and 1.53%, respectively. Considering that a multi-purpose online
weather forecast is used, the integration of PV plant losses, the minimal processing power
required, and the spatial-temporal resolution of the forecast, the point forecast Ppf has
an improved performance compared to other presented models in the review of [27, 18].
The MBE presented comparative results to short-term forecasts, (10 min to 60 min),
with higher spatial resolutions.
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Figure 4.1: Error against training horizons.

To benchmark the point forecast, a smart persistence model is used as a reference to
calculate the forecast skill (FS) [56]. A persistence model projects the current generation
conditions at time t into the future t+ tf . The smart persistence model shares the same
method of a persistence model, yet it assumes a constant clear-sky index [57, 58]. The
FS is calculated based on Equation 4.4, where RMSEsp is the root mean square error
of the smart persistence model.

FS = 1− RMSE

RMSEsp
× 100 (4.4)

The normalized RMSE of the smart persistence was calculated using the same temporal
resolution, testing horizon and forecasting horizon. After one month of the point forecast
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training, the FS was 44%. After 4 months of training, the FS raised to 48.6%, which
means that point forecast model excelled the performance of the smart persistence model
in all the cases. The FS presented in the literature varied between 0% and 42% according
[59]. In the review of [27], FS of the day-ahead forecasts ranged between 14% to 43%.
[60] reported FS of 31.29% for a day-ahead forecast of a 1.86 MW plant. Considering the
scale of the household PV plant used, temporal resolution and the forecasting horizon
used, the point forecast prediction showed its capability to deliver a proper forecast
to the EMS. Although the point forecast is not the main output of the model, it was
important to show the quality of the forecast used to generate the probabilistic forecast.

To analyze the temporal distortion of the forecast, TDI of [53] is evaluated. This
metric was developed based on the Dynamic Time Warping (DTW) algorithm that was
presented earlier in the 70s, which can quantify the distortion between two time series.
In this case, the two time series are the point forecast and measurements time series,
respectively. Using the DTW algorithm an optimal path is through minimizing the
distances between the two given time series. The optimal warping path is returned as
such that the forecast with index ti and the measurement with index ri have the smallest
distance between them. The TDI can be calculated based on ti and ri according to
Equation 4.5, where k is the length of the index set.

TDI =
1

N2

k−1∑

l=1

|(til+1 − til)(til+1 + til − ril+1 − ril)| (4.5)

The TDI can vary between a value of 0 and 1. The lower the value of the TDI, the lower
is the temporal distortion. Using the fourth month training horizon as a reference for
the required training period, the TDI was calculated to 2.6%. Thus, the forecast showed
a minimal temporal distortion compared to the measurements.

4.2 Probabilistic forecast

The error and uncertainty of the point forecast is the main drive behind of the probabilis-
tic forecast. The point forecast is often evaluated in the literature against measurement
data of the same resolution (between 30 min and 1 h), which hides lots of information
about the PV variability. In this case, the point forecast, which is of hourly resolution,
is evaluated against the minute resolution of the measurement to build an accurate and
reliable error distribution. The probabilistic forecast is usually generated either from a
single distribution based on the error of the point forecast as in [31] or the ensemble
forecast. In this model, 8 different distributions are used to generate the probabilistic
forecast, where each is used to calculate a certain probability at a specific time according
to the weather forecast. Moreover, the fitting distribution to empirical distribution varies
over time depending on the new data sample collected. Consequently, every distribution
has to be validated to show its capability to forecast future errors.

The CRPS is used to compare the CDF against observation to assess the quality and
the integrated accuracy over the complete distribution function as shown in equation
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4.6, where F 0
i (λ) is the empirical distribution

CRPS =
1

8

8∑

i=1

∫ ∞

−∞
(Fi(λ)− F 0

i (λ))2dλ. (4.6)

Considering a complete year of data, the model was trained on different horizons to show
the variation of the CDF depending on the training time, which is a criterion for the
EMS applications. The rest of the year is used for testing. Table 4.1 shows the results for
different training horizons. For example, having a training horizon of 1 month means that
a daily forecast was made for 11 months with the same trained model. It can be noticed
that CRPS’s over the different training horizons have not varied significantly from the
first month, which means that the model response in real-time is fast and independent of
the training time. These variation is mainly due to the change of the training and testing
data set. In the the training horizon of the one to three months, the CRPS variations
were rather close as those three month represent May, June and July. After the fifth
month, the CRPS peaked due to the start of the new season, then it decreased back
after the sixth month. This decrease is due to the availability of a more representative
training data. Such behavior can be analyzed in details for specific i. After fifth month of
training, i = 8, which corresponds to CCwf = 8/8, had the highest CRPS values, because
the training data set was not reliable enough for this CDF to deliver a forecast. After six
months of training, i = {1, 2, 4, 5, 8} dropped compared to the five months of training,
due to the introduction a larger training data set that includes more representative days.
Selective training set can lead to better results, yet it is computationally expensive for
EMS applications. Moreover, the expected improvement would not pay for the additional
required computational capacity. If no optimal training period is selected, the average of
the CRPS over all the training periods is 5.56%. Assuming that the maximum variation
of λ is 100% and it happens at the maximal peak power of 3 kW, the 5.56% error will
lead to only 0.16 kW.

The BS is another metric to measure the accuracy of the probabilistic forecast by
comparing the probability of the occurrence of an event to the forecasted probability as
equation in 4.7. oij is the observation of an event. If the event occurs oij = 1, otherwise
oij = 0. Np is the number of pairs occurring under the given conditions of one of the 8
distributions. An example of event states, λ should be less than or equal to 0.2% at the
given q. A perfect BS is equal to 0; the higher the BS is, the lower the performance.

BS =
1

N

8∑

i=1

Np∑

j=1

(q − oij)2 (4.7)

Table 4.2 shows the calculated BS at the different probabilities q against different train-
ing horizons. It can be noticed that the training horizon did not have significant influence
on the BS. Comparing the variation of the BS of the q = 90% after one month to after
6 months, a 6% increase in performance can be noticed. Moreover, considering the mean
of the whole cases q over the different training months, the mean BS is 0.12.

A reference probabilistic forecast is used to benchmark the presented probabilistic

A Appendix

116



forecasting model and evaluate its skill. Persistence ensemble is a commonly used refer-
ence model for probabilistic forecasts as in [31, 33]. In this paper, the reference is formed
based on the last 20 observations of the same hour. The behavior of the persistence en-
semble cannot be easily foreseen, as the persistence ensemble has to predict the λ of the
point forecast. Based on the performance of the persistence ensemble, the continuous
ranked probability skill score (CRPSS) and the Brier skill score (BSS) are calculated as
in equations 4.8 and 4.9, respectively.

CRPSS = 1− CRPS

CRPSPeEn
× 100 (4.8)

BSS = 1− BS

BSPeEn
× 100 (4.9)

Tables 4.1 and 4.2 present the benchmarking results of the CRPSS and the BSS. For dif-
ferent training horizons, the CRPSS indicates that the probabilistic forecast outperforms
the persistence ensemble. After one month of training, the CRPSS score was 12.51%,
as point forecast was not yet completely trained and the persistence ensemble could still
forecast the error behavior. In the second month of training, the performance of the per-
sistence ensemble decreased dramatically leading to a significant increase in the CRPSS.
The reason behind such a drop is λ’s independence of the time of the day. If persis-
tence ensemble were used to directly forecast the PV power generation, better results
could have been achieved. Persistence ensemble was required to forecast λ, similarly to
the presented model, to be a valid reference. For the BSS, the results showed that the
demonstrated probabilistic forecast model excelled the persistence ensemble even after
one month of training.

Table 4.1: CRPS of different training horizons.

Training horizon CRPSi [%] CRPS[%] CRPSS[%]

[month(s)] i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

1 13.99 4.94 5.39 5.41 1.64 2.20 4.54 8.27 5.80 12.51
2 7.64 1.56 7.31 3.56 2.96 3.20 1.92 7.27 4.43 91.07
3 8.46 1.62 7.83 3.02 4.47 2.90 1.26 9.05 4.82 90.05
4 11.26 3.25 10.44 4.53 5.76 3.43 0.96 10.96 6.32 87.52
5 13.06 5.35 9.54 2.99 4.23 3.41 2.01 16.83 7.18 85.87
6 11.64 2.97 10.89 0.89 1.16 7.23 2.41 1.51 4.84 90.94
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Table 4.2: BS of different training horizons.

Training horizon BS [-] BSS[%]

[month(s)] q = 60% q = 70% q = 80% q = 90%

1 0.188 0.139 0.102 0.068 43.41
2 0.195 0.143 0.106 0.072 42.72
3 0.196 0.145 0.108 0.070 40.88
4 0.195 0.144 0.107 0.071 36.29
5 0.193 0.141 0.103 0.068 36.75
6 0.189 0.140 0.09 0.064 39.38
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5 Open-source software

The model will be available for the open-source community for EMS application on [61] in
two different formats. The first format is the initial development format, Matlab script,
for research applications. A GUI is implemented for ease of application to the households’
residents and a direct integration with open-source energy monitoring societies such as
[62]. The second format is Python, for the integration with micro-computers such as
Raspberry Pis within smart homes.
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6 Conclusions

This paper proposes a probabilistic forecasting model that can provide an EMS with bet-
ter information to avoid failures in load scheduling and reach an efficient, cost-optimal
operation. The model shows different features that make it convenient for EMS appli-
cation. These features can be summarized in the following:

� Forecasting using commonly available data within a building with a PV system,
such as the historic PV measurements and an online weather forecast

� Detecting shading and system losses automatically without any predefined param-
eterization

� Delivering multiple probabilistic curves to the EMS in a form that fits with the
requirements of the DSM algorithms

� Minimal training time, as the probabilistic forecast was able to perform even after
one month of training

� Minimal computational power as it can generate the forecast in milliseconds once
it is trained. Moreover, it can run on microcomputers such as a Raspberry pi

The model was validated via multiple metrics as discussed in Section 4 using real mea-
surements to show its capability to serve EMS’s, yet the most important evaluation
metric is the one evaluating the performance of the forecast once integrated in an EMS.
In [7], the probabilistic forecast and a reference forecast are integrated into the same EMS
to evaluate the influence of the probabilistic forecast on the performance of the EMS. It
was found that the probabilistic forecast led to a significant increase in self-consumption
and self-sufficiency of a building under different load conditions and different PV capac-
ities. Consequently, [7] confirms the capability of the probabilistic forecast to enhance
the EMS decision-making process and performance.

Looking forward, to test the generality of the model, a test of the model in different
climates and locations is planned. Also, the performance of a sensitivity analysis on
the online weather forecast or the use of different forecasts to show how far the online
forecast influences the learning curve of the probabilistic forecast are planned.
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[55] L. Fŕıas-Paredes, F. Mallor, M. Gastón-Romeo, and T. León. Dynamic mean abso-
lute error as new measure for assessing forecasting errors. Energy Conversion and

A.2 Publication 2

127



Management, 162(February):176–188, 2018. URL: https://doi.org/10.1016/j.
enconman.2018.02.030, doi:10.1016/j.enconman.2018.02.030.

[56] C. F. Coimbra, J. Kleissl, and R. Marquez. Overview of Solar-Forecasting Methods
and a Metric for Accuracy Evaluation. In Solar Energy Forecasting and Resource
Assessment, pages 171–194. Elsevier, 2013. doi:10.1016/B978-0-12-397177-7.

00008-5.

[57] A. Kaur, L. Nonnenmacher, H. T. Pedro, and C. F. Coimbra. Benefits of solar
forecasting for energy imbalance markets. Renewable Energy, 86:819–830, 2016.
doi:10.1016/j.renene.2015.09.011.

[58] H. T. C. Pedro and C. F. M. Coimbra. Assessment of forecasting techniques for
solar power production with no exogenous inputs. Solar Energy, 86(7):2017–2028,
2012. doi:10.1016/j.solener.2012.04.004.

[59] R. H. Inman, H. T. C. Pedro, and C. F. M. Coimbra. Solar forecasting methods
for renewable energy integration. Progress in Energy and Combustion Science,
39(6):535–576, 2013. doi:10.1016/j.pecs.2013.06.002.

[60] J. Antonanzas, D. Pozo-Vázquez, L. A. Fernandez-Jimenez, and F. J. Martinez-de
Pison. The value of day-ahead forecasting for photovoltaics in the Spanish electricity
market. Solar Energy, 158(December 2016):140–146, 2017. URL: https://doi.
org/10.1016/j.solener.2017.09.043, doi:10.1016/j.solener.2017.09.043.

[61] W. El-Baz. P3-Probabilisitc PV Prediction Algorithm. URL: https://gitlab.
lrz.de/ga29pos/pvpredictiongit.

[62] OpenEnergyMonitor.org. Open Energy Monitor Website, 2010. URL: https://
emoncms.org/http://openenergymonitor.org/emon/.

A Appendix

128



A.3 Publication 3

A.3 Publication 3 — Impact of Probabilistic Small-Scale
Photovoltaic Generation Forecast on Energy Management
Systems

Abstract

Demand-side Management (DSM) algorithms are exposed to several uncertainties due to
their dependency on renewable energy generation forecasts. On the large scale, genera-
tion and load forecasts can be relatively accurate, yet on the residential scale, forecasting
errors increase due to higher uncertainties. One potential solution is to incorporate a
probabilistic PV forecast into an optimal DSM algorithm instead of the existing deter-
ministic PV forecasting algorithms. Hence, in this contribution, a numerical analysis that
compares the potential of using a probabilistic PV forecast instead of the conventional
deterministic algorithms in a DSM algorithm, is presented. Results show that under dif-
ferent household energy system configurations, the DSM algorithm with the probabilistic
PV generation forecast leads to an increase in self-sufficiency and self-consumption by
24.2% and 17.7%, respectively, compared to the conventional deterministic algorithms.
These results indicate that probabilistic PV forecasting algorithms may indeed have a
higher potential compared to the conventional deterministic ones.
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1 Introduction

Recent energy policies currently play an influential role in reshaping the electricity grid
infrastructure globally. Green energy incentives were introduced over the past 25 years
to enable the integration of more renewables, and embrace a low-carbon economy. In
Germany, the renewable energy sources act Erneuerbare Energien Gesetz (EEG), was
introduced in 2000, along with amendments till 2014 to prioritize the access of renewable
energy sources (RES) to the grid [1]. This act enabled rapid integration of wind energy
and photovoltaics (PV) through guaranteeing the supplier an energy purchase at a fixed
tariff [2]. Enforcing similar acts, along with the consistent decrease of investment costs in
PV systems, led to a boost in the installation of PV systems, especially in the residential
sector. In this sector, the installed capacities represents 39.4% of the overall capacities
compared to 19.2% for the commercial and industrial sectors [3]. Consequently, PV
integration within the residential sector has become a continuous research topic, with
crucial economic implications for single households [4].

For these households, electricity bills need to be minimized to reduce the investment
costs for the residents [5, 6, 7]. In addition, autonomy and self-consumption need to be
considered, yet they are byproducts of cost optimization and electricity bill minimization.
Cost optimization is reached via applying demand side management (DSM), through
which the loads are shifted and coordinated to maximize the use of the available PV
generation within the residential household. Several research projects detailed the type of
shiftable loads that could be integrated such as the white goods (e.g. washing machine,
dish washer and the tumble dryer), heat pumps, or electrical vehicles [EV][8, 9, 10].
Others integrated thermal and electrical storages, or a micro combined heat and power
cycle (micro-CHP) as an additional in-house energy supply source. All these components
are always connected together through an energy management system (EMS), where
the DSM strategy is realized. In all such possible configurations, the PV system was a
dominant component. Thus, PV generation forecast is necessary for shifting the desired
loads to the most suitable time-slot in the future.

Applied DSM strategy performance is highly dependent on the quality of the PV fore-
cast. [11] showed the impact of forecast error on battery discharging behavior, where the
forecast errors in specific days reached twice to ten times the battery energy capacity
and led to a void dispatch schedule. [12] demonstrated the need for a better PV fore-
casting data for a grid friendly PV + Battery system. At the moment, there is a gap
in the research tackling or providing solutions to the small-scale residential PV forecast
implications on DSM. In other words, no clears answers are presented in the literature
addressing and defining the required accuracy for rooftop PV forecast, the variability
and uncertainity effect on the DSM in the residential sector, or the forecast type (i.e.
probabilistic, or deterministic) required for DSM algorithms in real-life conditions.

A Appendix

130



1.1 Study objectives

Hence, the objective of this contribution is to provide answers to these questions via an-
alyzing the potential of incorporating a probabilistic forecast instead of a conventional
deterministic one in the DSM algorithm. This potential is then analyzed based on de-
fined metrics to demonstrate whether the probabilistic forecast would lead to a different
operation plan for the household devices, and whether the new operation plan would
lead to a significant increase in self-energy consumption and autonomy of the household.
To show the effect of the forecast independently on the operation of the DSM algorithm,
a simple algorithm was implemented that can fit to both the probabilistic forecast and
the conventional deterministic forecast. In a separate publication [13], the probabilistic
PV-forecast algorithm was detailed, where multiple PV generation curves were produced
based on a statistical probabilistic analysis. In this contribution, the impact of such an
algorithm on an EMS is presented to evaluate the potential of probabilistic forecast.

This contribution is structured as follows: Section 2 provides a background of the
related literature in the field of DSM and PV generation forecasts. Section 3 presents
the methodology and metrics used to evaluate the potential of DSM. Section 4 presents
the results of a comparison between the potential of DSM under the probabilistic forecast
and a conventional reference forecast. Section 5 provides the concluding remarks.
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2 Background

2.1 DSM in households

DSM was introduced in the late 1970s [14] to encourage consumers to alter their load to
produce a desired load profile for the utility. This means that the customer in this case
needs to alter both the magnitude and the time pattern of the load to fit to the utility’s
plan. Thus, the scope of DSM incorporates several strategies such as peak clipping,
valley filling, load shifting, strategic conservation, strategic load growth, and flexible
load shaping [15]. The utility encourages the consumers to shift their own loads using
financial incentives. Therefore, Real-Time Price (RTP) and Time-of-Use (ToU) tariffs
were introduced so that the customers can shift their load from the peak hours to the
off-peak hours [16].

Several theoretical studies and pilot projects investigated the potential of DSM strate-
gies on different scales [17, 18, 19, 20]. To study the impact of DSM on different electricity
tariffs, [20] developed a model to generate household load profiles and simulated them
under flat-tariffs and time-based tariffs. The author found that several household loads
are available for shifting, which benefit the utility to balance the supply and demand.
To simulate real-world factors, [21] included in his contribution not only the electricity
tariffs, but also the environmental performance and residents’ behavior. The authors
found that a combination of optimal DSM along with local energy supply sources could
significantly reduce the electricity import from the grid and minimize the expenditure.
Storage systems such as batteries and heat storages, in addition to the thermal mass of
the buildings, also play a major role in enabling the DSM. [6, 22, 23] among others used
storages to enable shifting and reducing the loads for extended hours depending on the
consumer’s demand and building type.

Different algorithms were presented in the literature, which applied different tech-
niques such as artificial neural networks (ANN) [24], stochastic optimization [25], mixed-
integer nonlinear programming (MINLP) [26], or greedy approach [23]. Along with the
variations in the algorithms, the combinations with the PV systems varied. PV along
with batteries, EV, or heat pumps were considered. In all these cases, PV forecast was
used for the control algorithm to make DSM decisions 6 h, 12 h or 24 h ahead [24]. These
algorithms are categorized as open-loop: the DSM strategy defined the optimal plan of
the loads in future time-slots based on the current forecast without considering any
uncertainties of supplied forecasts. Few publications tried to consider the effect of un-
certainties in both the PV and demand forecast. [27] implemented an optimal open-loop
control for a PV-Battery hybrid system, and enclosed it within a closed-loop that was
based on model predictive control (MPC) to make up for the disturbances resulting from
the PV forecast and load demand. The forecast supplied to the model was only based
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on the average of winter or summer values of a PV output of hourly resolution. Such
resolution on its own can generate enough disturbances in real-time operation, which is
another reason highlighting the necessity of a closed-loop controller in this case. In [28],
two optimization models were presented: an online and an offline model. The offline
model, a Mixed Integer Linear Programing (MILP) model, acquired all the users’ inputs
along with the forecasts to schedule the loads for the next 24 hours over 96 time-slots
(i.e.,quarter hourly). The uncertainties of the forecasts were then handled by an online
optimization model, which rescheduled the loads in real-time to make the output profile
as close as possible to the one planned by the offline model. In both [27, 28], the battery
system was the key to compensating for the disturbances generated from the forecast
uncertainties and the time resolution of the control or the optimization model.

2.2 PV forecasting for DSM

For an enhanced DSM strategy implementation, real-life dynamics, such as weather and
user behavior, have to be considered. Unforeseeable weather dynamics can lead to sig-
nificant uncertainties in PV generation. Such uncertainties represent the current major
challenges hindering the production of a high quality forecast. This is because their
influence could vary depending on different factors such as the forecasting time horizon,
the temporal resolution, the spatial resolution, and the local climate. Consequently,
developing one single forecasting algorithm serving all applications is rather challenging.

The PV generation variability for a rooftop PV system can only be observed using
continuous high temporal-resolution measurements and it can visually vanish as the
temporal resolution decreases. These variabilities in the PV generation can be attributed
to two phenomena: the first is the sun’s motion across the sky and the distance between
the sun and the earth, and the second is the cloud motion and speed. While the first
phenomenon can be easily foreseeable and integrable in current forecast systems, the
second can be rather challenging to predict [29].

Consequently, for a desert climate with a majority of sunny days, PV generation
variability would be rather low compared to continental or tropical climates. Table
2.1 summarizes the PV output variability based on the weather condition. In case of
an absolute sunny weather with (0/8) cloudiness, a rather stable generation could be
witnessed. Thus, PV clear sky models (CSM) could be useful in this case such as
[30, 31, 32, 33]. Depending on the cloudiness, the solar irradiation intensity is affected
and so is the PV generation power. As the clouds move, especially on a partial-cloudy
day, the power variabilities show up in the generation profile depending on the clouds’
speed.

Variabilities in PV generation were intensively investigated in the literature only be-
cause of their large-scale effects on the grid [34, 35, 36, 37, 38, 39, 40]. According to
[40], it was found that PV variability is highest for a single point, compared to a geo-
graphically dispersed system. Thus, for residential single family homes with a rooftop
PV ranging from 1 kWp to 9 kWp, the variability in PV generation can be significantly
higher compared to the micro-grid or the national grid.

A.3 Publication 3

133



Currently available forecasting algorithms and models try to incorporate all possible
factors affecting PV generation, yet the output is still exposed to considerable uncertain-
ties. According to the IEA PVPS Task 14 [41], the forecasting approaches presented in
the literature are divided into physical or statistical approaches. The physical approach
focuses on using PV models, numerical weather prediction (NWP) or total sky imagery,
while the statistical approach depends primarily on historical data and stochastic learn-
ing techniques. As the DSM algorithms are always operating with 6 h up to 48 h ahead
forecast, the only feasible technique that can be used is the NWP, which is a physical
approach that is commonly combined with a statistical post-processing model [42]. Yet,
these models are designed for a spatial resolution > 1 km, and demonstrated an un-
certainty RMSE of 18% up to 64% for hourly forecasts 24 h ahead, which can even be
significantly higher for a rooftop PV system [41]. According to [43], the uncertainty of
an area size as large as Germany is 64% less compared to a point forecast.

The research towards PV forecasting focuses on serving large PV fleets to support
baseline ramps, regulations load following, and unit commitment of regional power, but
not DSM on the residential level. As explained, for a rooftop integrated PV system,
the forecast is exposed to high variabilities and uncertainties due to the size of the
system. Hence, considering such variability and uncertainty in the forecast supplied to
the DSM algorithms can help realize a better integration of renewables in the household,
an increase in cost savings, and autonomy for the consumer side.

Table 2.1: Effect of cloudiness over PV generation.
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3 Methodology

3.1 Overview

Conventional DSM algorithms operate based on a 15 min to 1 h resolution, depending
on the available computational power and the expected smart metering infrastructure.
Consequently, DSM algorithm developers look for a PV forecast in the same temporal-
resolutions, where generation variability is concealed and uncertainty is rather high, as
mentioned in Section 2. Throughout this section, a methodology of evaluating the DSM
potential based on a statistical probabilistic forecast is described. The forecast supplies
the DSM algorithms with multiple probabilistic PV generation profiles rather than one
deterministic profile, so that the most certain possible decisions for load shifting are
taken.

3.2 Input Data

3.2.1 Real reference measurements

A 3 kWp rooftop PV system was used for the evaluation of this study. The PV system
consists of 2 arrays, each of 6 modules. The first array has mono-crystalline modules
(Solarworld SW 260 Mono), while the second array has poly-crystalline modules (Solar-
world SW 250 Poly). The two arrays are connected to a PV inverter SMA sunnyboy
TL 300. No smart meters were directly installed to monitor the PV system, but the
data were directly acquired from the PV inverter via a UDP connection every 5 seconds.
More technicals details about the PV system and the measurement method are available
in [44].

3.3 Reference forecast

In [45], a PV hourly forecasting algorithm was developed based on a clear sky model for
DSM applications in households. The model estimates the PV generation in the next 24
hours based on the cloudiness data available. The cloudiness of each layer (low, medium,
and high) is given as a value between 0 and 100%. Based on a python program, the
cloudiness values were extracted from an online weather service provider to supply the
algorithm [46]. Equation 3.1 presents how the forecast was developed, where Pcsr is the
PV clear sky power generation, and cclow, ccmed, cchigh are the low-level, mid-level and
high-level cloudiness, respectively. This cloud level classification is based entirely on the
height of the clouds as per table 3.1 [47]. k, f , and j are three empirical coefficients
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that are estimated based on an error minimization optimization between the historical
measured data and forecast data.

Table 3.1: Cloud classification.

Cloud level Height

Low-level clouds 0 - 2 km
Mid-level clouds 2 - 7 km
High-level clouds 5 - 13 km

Pfr(t) = Pcsr × [k × 100− cclow
100

+ f × 100− ccmid

100
+ j × 100− ccHigh

100
]. (3.1)

Based on weighted relative root mean squared error (wrRMSE), the author evaluated
the reference algorithm over 30 days, using an hourly temporal resolution. The wrRMSE
is formulated as per Equation 3.2, where n represents the number of the forecast hours,
Pm is the measured PV power output, and Pdailymax is the maximum PV power on the
evaluated day. The results showed a minimum wrRMSE of 10% and a mean value for
all the input days to be 25%.

wrRMSE =

√√√√ 1

n

n∑

1

(
Pm − Pfr

Pdailymax
)2. (3.2)

This algorithm was used because of its ease of application with DSM algorithms, yet
any alternative favored algorithm can be applied as a reference algorithm.

3.4 Probabilistic forecast

The probabilistic forecast is an intuitive solution to handle the uncertainties and variabil-
ities of the PV generation. The reference deterministic forecast generates a single-value
forecast for every time step in the forecasting horizon, which can easily expose the EMS
to several uncertainties. The probabilistic forecast is capable of generating a range of
values for the EMS to take the most probable optimal decision. Within this section, the
important features of the probabilistic forecast will be comprehensively discussed, as the
detailed formulation is already presented in [13].

The process of generation a probabilistic forecast goes through multiple steps as shown
in Figure 3.2. Before the process starts, 3 main inputs should be accessible: the historical
data, weather forecast and PV plant parameters. The initial process is the generation of
the clear-sky power based on the CSM of Bird and Hulstrom [48] and using the nominal
PV module efficiency. To calibrate CSM, the system efficiency is calculated empirically
based on historical data to include different losses such as the inverter losses, ohmic
losses and temperature losses.
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The second process is the partial shading detection. This process involves also an
empirical process which analyzes 3 consecutive sunny days to determine the Zenith
angle Z at which the power drop occurs. Once the right angle is found, the power drop
is calculated and applied to next days. The partial shading process is activated only
once 3 consecutive sunny days are detected, yet the frequency of the calibration can be
determined based on the user’s input. Figure 3.1 shows the PV clear sky generation
after calibration using the previously mentioned processes.
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Figure 3.1: Clear sky model output and PV power measurements after the partial shading
detection process [13].

The following process is the training of regression trees to generate a point forecast.
These regression trees function based on dividing the data available into multiple sets and
fitting it to a simple model based on a given number of branches and leafs. Such method
showed its ability to provide an efficient predictions using the minimal computational
time as in [13]. The training variable given to the regression trees is Λ(tt), where Ppccs

is the clear sky power after calibration, tt is the training time and Tn is the end of the
training period.

Λ(tt) = |Pm(tt)− Ppccs(tt)

Ppccs(tt)
| ∀ tt ∈ [1, 2, ..., Tn]. (3.3)

The prediction of the trained regression Λp(tf ) is then used to generate the point forecast
Ppf as per Equation 3.4, where tf is the forecasting time. The resolution of the point
forecast is limited by the resolution of the given weather forecast.

Ppf (tf ) = Ppccs(tf )− |Λp(tf )× Ppccs(tf )| ∀ tf ∈ [1, 2, ..., 24]. (3.4)
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The Ppf is the base on which the probabilistic forecast is built. In this model, Ppf has
1 h resolution and hence, it can not present the PV generation variabilities. Moreover,
it is still exposed to uncertainties. Thus, the relative difference λi between the PV
measurements and the point forecast generated by the regression tree is used to train
the probabilistic forecast. Both of the PV measurements and the point forecasts provided
to the probabilistic forecast model are of 1 min resolution. The point forecast is linearly
interpolated to convert the forecast from 1 h to 1 min resolution.

The relative difference λi is classified to 8 categories i ∈ [1, .., 8], representing the 8
levels of cloudiness [08 , ...,

8
8 ]. Consequently, 8 cumulative distribution functions Fi(λi)

are trained. Once the training is accomplished, the forecasted relative difference for a
specific probability can be calculated as per Equation 3.5.

F−1i(q) = λi, q ∈ Q = {10%, 20%, ..., 90%}. (3.5)

The required probabilistic set of PV power forecast Ppp(tf) can then be calculated based
on Equation 3.6.

pppq(tf) = Ppf (tf)× (1− λi)
pppq(tf) ∈ Ppp(tf) = {ppp10%(tf), ppp20%(tf), ..., ppp90%(tf)}. (3.6)

Figure 3.2: Simplified flow chart describing the process of probabilistic forecast generation [13].
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The reason behind using CDFs to calculate the multiple curves of the probabilis-
tic forecast is to have an intuitive simple integration of the forecast with an EMS. In
buildings, an EMS does not require an exact PV forecast, but rather a probability guar-
anteeing specific power availability at certain time of the day to prioritize the devices
scheduling, as discussed in Section 3.5.

The probabilistic forecast model was validated based on different standard metrics
and probabilistic metrics as shown in [13]. Using the standard metrics, the results
shows 15.3%, 8.5% and 1.56%, for the normalized root mean square error (RMSE),
mean absolute error (MAE) and mean biased error (MBE), respectively. Using the
probabilistic metric, the average cumulative ranked probability (CRPS) is as low as
5.56%, while the Brier score (BS) is 0.12. Yet, the real metric based on which the
probabilistic forecast can be truly judged is the real life performance via integrating it
in an EMS. Within the upcoming sections, such performance will be presented.

3.5 Loads planning

As the main goal is to evaluate the potential of the probabilistic forecast compared to
the reference forecast under the same level of intelligence of the load shifting algorithm,
an algorithm was implemented based on the exhaustive enumeration method to evaluate
every possible combination of loads under the given PV generation conditions. Although
the exhaustive enumeration method is computationally intensive, it can guarantee the
highest potential results and can lead to a fair comparison between the reference and
probabilistic forecast. Figure 3.3 shows a simplified flowchart of the load shifting al-
gorithm including the probabilistic PV forecast. It starts with PV forecast profiles as
discussed in the previous section, and the shiftable devices dataset. The shiftable devices
dataset consists of the load profile of the device Pd(t), earliest starting time, and latest
ending time. If the earliest starting time and the latest ending time are not given, the
algorithm optimizes by default over a 24-hour period, from 00:00 to 23:59.

Both PV forecast profiles and shiftable loads are sorted. The PV forecast profiles are
sorted based on their probability of occurrence q, (i.e., 99% comes first in queue then
followed by the lower probabilities). The shiftable devices are sorted based on a given
criteria which vary depending on the required scenario.

� Power consumption ⇒ Pd1 > Pd2 > Pd3

� Duration of operation ⇒ Dud1 > Dud2 > Dud3

� Interruptibility ⇒ Ind1 = 1 > Ind2 = 0

� Probability of multiple usage ⇒ Prd1 > Prd2 > Prd3

Pd1 , Dud1 , Ind1 , and Prd1 represent the device with the highest power, longest duration,
interruptibility option (Boolean), and higest probability of usage, respectively.

Within this contribution, the dominant criterion being applied is the power consump-
tion, i.e. the highest power consuming device always has the first priority. As soon
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as the devices are sorted, the residual load is calculated for every device under every
probabilistic PV profile curve as per Equation 3.7 till a minimum is reached.

Re(t) = PL(t)− ppp,q(t) ∀ q ∈ Q. (3.7)

Once a minimum is reached the algorithm starts to find a starting point for the next
device in the queue until all devices are sorted under all the given probabilistic PV profile
curves.

Figure 3.3: Flow chart of the load shifting algorithm.

The probability curves can be calculated for continuous range of probabilities, yet it
was found in [49] that only q = {70%, 80%, 90%, 95%, 99%} is of an interest for an EMS.
Delivering other lower or continuous probability values would require the EMS to have
a higher computational power and would not lead to better results.

In case of the reference forecast, the flow chart blocks with dashed lines shown in Fig-
ure 3.3 can be eliminated to operate in the conventional mode without any probabilistic
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forecast. Thus, it can be assumed that the two algorithms have the same level of intel-
ligence, as both use the same optimization technique with the difference being only in
the type of forecast used, whether it is the reference or the probabilistic forecast. Thus,
it should be considered that any other DSM algorithm could also be implemented given
that devices are shifted not only on a single given PV forecast profile, but on multiple
probabilistic PV forecast profiles

3.6 Evaluation metrics

To compare the potential of DSM with a probabilistic forecast to a reference conventional
forecast, both strategies have to be evaluated under the same metrics. For a PV system
within a household, self-consumption and self-sufficiency are two of the commonly used
metrics [50]. Self-consumption is defined as the ratio of the self-consumed energy, Esc,
relative to the total production of the PV system, which is the summation of the self-
consumed energy, Esc, and the energy fed-in to the grid, Ef , as shown in Equation 3.8.

esc =
Esc

Ef + Esc
. (3.8)

Self-sufficiency is the other metric used to show the sufficiency of the PV generation to
the consumers’ needs. Thus, it is defined as the ratio of Esc to the summation of Esc

and the energy imported from the grid, Eg, as shown in Equation 3.9.

ess =
Esc

Eg + Esc
. (3.9)

Using those two metrics, a proper indication of the used DSM algorithm and PV predic-
tion efficiency can be obtained. Consequently, another metric is ew, defined as the ratio
between self-consumption and self-sufficiency as shown in Equation 3.10.

ew =
esc
ess

. (3.10)

In Equations 3.8 and 3.9, Esc can be calculated by defining the overlapping profile O(t)
between the generation G(t) and the load L(t) profiles. Consequently, O(t) is defined as
the minimum of G(t) and L(t) as shown in Equation 3.11, since self-consumption will
always be limited to the minimum of the load and the generation, whichever is lower.

O(t) = min(L(t), G(t)). (3.11)

Accordingly, esc and ess can be mathematically formulated as in Equation 3.12 and 3.13.

ess =

∫ t2
t1
O(t)dt

∫ t2
t1
G(t)dt

. (3.12)

esc =

∫ t2
t1
O(t)dt

∫ t2
t1
L(t)dt

. (3.13)
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Substituting Equations 3.12 and 3.13 in Equation 3.10, the ratio of generation to load
can be determined. Therefore, this metric can be also used to indicate whether there is
a sufficient generation capacity or not.
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4 Results and Analyses

Two cases are considered. In the first case, a smart home is considered with the con-
ventional white goods loads. In the second case, multiple generic loads of different sizes
are used along with the 3 kWp PV system. The time horizon of the analysis is 66 days
(07.07.2015 till 29.09.2015) due to the limited availability of the reference forecast data.
This time horizon represents mostly the summer season, which is the worst case for the
analysis of the potential of a PV probabilistic forecast, as most of the days are sunny
and the PV generation variability is lower than other seasons of the year. In the two
cases, the shifting time frame of the loads has been set to 24 hours, so that the maximum
potential of the DSM can be calculated without the influence of any time constrains or
the user behavior.

4.1 Case 1: DSM of Conventional white goods

In this case, the worst case scenario of a smart home is considered, where there is a
low number of smart shiftable devices. In this smart home, only a dishwasher, a dryer,
and a washing machine are considered as shiftable devices. The rest of the loads are
considered fixed. Table 4.1 details the considered loads along with their share in the
overall household energy consumption. In this case, the smart home is of a single family
of two persons, the total shiftable devices’ energy consumption is 40.9% of the overall
energy consumption in typical days according to [51].

Table 4.1: Energy consumption of a single family household (2 persons) on a typical work day
(Mon.-Fri.) [51].

Shiftable devices
Washing Machine 926 10.3
Dryer 1612 18.0
Dishwasher 1121 12.5
Total (Shiftable) 3659 40.9

Fixed Loads
Stove 672 7.5
Microwave 48 0.5
Refrigerator and freezer 1119 12.5
Multimedia (TV, PC, etc.) 2147 24.0
Light 1307 14.6
Total (Fixed) 5294 59.1
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Within the analysis, fixed loads are ignored, and only the shiftable devices are consid-
ered. Figure 4.1 shows the difference between the DSM using the reference forecast and
the DSM using the probabilistic forecast. In Figure 4.1(a), the white goods were sorted
under the day-ahead reference PV forecast, such that Re(t) is minimized and the earliest
end time is reached. Consequently, all the devices were stacked consecutively between
06:30 and 12:00. Although the reference PV forecast can give a proper indication about
the maximum PV generation within the day, it could not yet predict the high variability
of the PV power generation under the weather conditions of that day. However, with
the probabilistic forecast in Figure 4.1(b), the devices were sorted based on the certainty
of the generation. The dishwasher and the dryer were placed under the q = 99% curve,
while the washing machine was placed under the q = 70% curve. This is because it could
not be set under any curve with a higher probability due to its high 2 kW peak.
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Figure 4.1: Comparison between the reference and the probabilistic on a typical day. White
goods optimal shifted based on (a) reference forecast, and (b) probabilistic forecast.

Evaluating the fixed load profile of the given single family house, along with the
shiftable devices under the metrics given in Section 3.6, reveals that using DSM along
with the probabilistic forecast led to a higher self-sufficiency and a higher self-consumption
compared to a DSM with the reference forecast or without using DSM at all, as shown
in Figure 4.2. The difference between the median of the self-sufficiency and the self-
consumption of the DSM using the two forecasting methods is 9.1% and 5.0%, respec-
tively. Higher values can be reached if more shiftable devices are going to be integrated,
but in this case only a washing machine, dishwasher and dryer were considered. Those
devices have a low energy consumption and power peak, consequently having them op-
timally shifted did not make a significant difference. Thus, these results represent the
worst case outcome of using the probabilistic forecast. It can only be seen in Figure 4.2
that the minimum and maximum of the self-consumption is higher for the probabilistic
forecast. Yet in case of the self-sufficiency the minimum and maximum values of the two
forecasts are rather almost equal due to availability of sunny days and full cloudy days
where the performance of the two forecasts is similar using the self-sufficiency metric.
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Figure 4.2: Effect of applying DSM using probabilistic forecast and reference forecast on a
typical single family house.

4.2 Case 2: Different generic load sizes covered by a 3 kWp
PV system

Generic loads were created of sizes 0.25 kW up to 1.5 kW and operated for a constant
time of 1-hour using the same day presented in Figure 4.1. Consequently, energy blocks
were created that vary from 0.25 kWh to 1.5 kWh. These blocks can represent any of
the current smart shiftable devices such as a heat pump or an EV, and also can provide
insight into the behavior of the DSM under the influence of possible future shiftable
loads. The number of load blocks (devices) within the analysis was limited to 60 for the
0.25 kW loads, 30 for the 0.5 kW and 1.0 kW loads, and 15 for the 1.5 kW loads to
evaluate the difference between the reference and the probabilistic forecast based on the
metrics given in Section 3.6.
Figure 4.3 shows how the different probabilistic PV load profiles are packed with differ-
ent generic load block sizes of 0.25 kW, 0.5 kW, 1 kW and 1.5 kW. The generic load
blocks were set according to the algorithm presented in Section 3.5, where every block
had a possible shifting time window of 24 hours to eliminate the time as a constraint.
In Figures 4.3(a), 4.3(b), 4.3(c), and 4.3(d), it can be seen that the first 10 generic
loads are sorted under the curve of the highest probability of occurrence q = 99%, and
the first device comes to operation first, followed by the rest of the devices. In Figure
4.3(a), as an example, the first device comes to operation at 06:30 under the highest
probabilistic curve, which fits with the PV measurement. The 50th to 60th loads were
accumulated on the lower probability curves. As a result, it can be seen that the algo-
rithm is accumulating the loads from the center outward depending on the probabilistic
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forecast curves given. Comparing the behavior of the algorithm in Figure 4.3 to Figure
4.4, it can be noticed that the scheme of sorting is from left to right, where the device
that comes first operates first. Additional loads were placed anywhere else in the curve
trying to minimize the residual load according to Section 3. The behavior of the DSM
algorithm under the reference forecast led to misplacement of shiftable devices in areas
where PV generation is rather low and fluctuating, due to the lack of the reference fore-
cast ability to capture the behavior of the PV generation variability. Thus, applying
the reference (conventional) forecast leads to a significant decrease in the self-sufficiency,
self-consumption and consequently the overall energy bill of the consumer.
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Figure 4.3: Different generic loads sizes shifted based on the probabilistic forecast - number of
loads (colored). (a) 0.25 kW. (b) 0.5 kW. (c) 1 kW. (d) 1.5 kW.
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Figure 4.4: Different generic loads sizes shifted based on the reference forecast - number of
loads (colored). (a) 0.25 kW. (b) 0.5 kW. (c) 1 kW. (d) 1.5 kW.

Figure 4.5 shows that the maximum mean self-sufficiency is 24.2% higher for the 0.25
kW load blocks with the probabilistic forecast than the reference forecast. As the number
of devices increases under the 3 kWp PV curve, the difference between the reference and
the probabilistic forecast decreases due to parallel decrease of the load shifting potential.

As the size of the load block increases, the load shifting potential decreases as well,
leading to a smaller difference between the probabilistic forecast and the reference fore-
cast. Hence, under a 3 kWp PV curve for the 0.5 kW blocks, the number of devices is
limited to 25, for the 1 kW blocks it is 10, and for the 1.5 kW it is 6 devices. Yet, in all
the cases, the probabilistic forecast successfully exceeds the performance of the reference
forecast using the same level of intelligence of the DSM algorithm.
In Figure 4.6, mean self-consumption metric was used to compare the probabilistic fore-
cast to the reference forecast. Focusing on the 0.25 kW and the 0.5 kW load block type,
it can be noticed that the maximum mean self-consumption is 17.7% and 16.2% higher,
respectively. As the number of devices increases or the load block size increases, the
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difference of mean self-consumption between the probabilistic forecast and reference de-
creases. The reason behind this behavior is the ratio of the energy self-consumed to the
overall energy generated. At higher loads, the ratio between the energy self-consumed to
the overall energy generated is already high. As a result, the effect of the probabilistic
forecast diminishes, due to the lack of generated energy compared to the load.
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Figure 4.5: Mean self-sufficiency for different number of devices.
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Figure 4.6: Mean self-consumption for different number of devices.
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Investigating only the energy imports as per Figure 4.7, it can be noticed that in all
the cases of different block sizes, the highest number of occurrences of minimal energy
imports is always achieved by the probabilistic forecast, but not by the reference forecast.
In Figure 4.7(a), the highest number of occurrences is between 0 and 0.5 kW, where
the probabilistic forecast significantly exceeds the reference forecast. The number of
occurrences is 1402 for the probabilistic forecast versus 761 for the reference forecast,
which means using the probabilistic forecast leads to decreasing the energy imports to
values between 0 and 0.5 kW significantly. Between 0.5 to 5.5 kW, the probabilistic
forecast has always a lower number of occurrences than the reference forecast, which
confirms the ability of the probabilistic forecast to minimize energy imports. As the size
of the load blocks increases, the same pattern of occurrences can be witnessed, but with
a decreased magnitude, as shown in Figure 4.7(b), 4.7(c), and 4.7(d).

(a) (b)

(c) (d)

Figure 4.7: Histograms of energy imports of different block sizes. (a) 0.25 kW. (b) 0.5 kW. (c)
1 kW. (d) 1.5 kW.
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5 Conclusions

This contribution presented the output of a numerical study based on real-measurements
tahat analyzed the potential of using probabilistic forecast to enhance the performance
of DSM within households. Three metrics were used to evaluate the difference between
the potential of the probabilistic forecast and the reference deterministic forecast along
with an optimal DSM algorithm: the self-consumption, self-sufficiency, and the ratio
of the self-consumption to the self-sufficiency. A major finding is that the probabilistic
forecast can significantly enhance the performance of DSM algorithms within households
compared to the reference deterministic forecast. The significance of such performance
enhancement varies depending on the available PV generation and shiftable loads within
the household, yet the probabilistic forecast always guarantees a better performance
compared to the given reference forecast. Two cases were presented and can be concluded
in the following:

� In the first case, only shiftable white goods were considered as the worst case
scenario of a single family household. The difference in median of self-sufficiency
and self-consumption between the DSM with the probabilistic forecast and the
DSM with the reference forecast was 9.1% and 5.0%, respectively.

� In the second case, multiple generic loads were used to evaluate the sensitivity
of the DSM with each forecasting method against a different number of devices
of different load sizes. The results emphasize that the DSM with probabilistic
forecast can lead to an increase in self-sufficiency and self-consumption by 24.2%
and 17.7%, respectively.

Consequently, it can be concluded that probabilistic forecast can enhance the DSM
algorithms’ performance under different possible load-generation configuration within
the household. Moreover, it can decrease the burden of attaching additional batteries
to the household to make up for the forecasting errors.
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A.4 Publication 4 — Integration of Energy Markets in
Microgrids: A Double-Sided Auction with Device-Oriented
Bidding Strategies

Abstract

Energy trading markets are one of the most viable solutions to incentivize prosumers in
Microgrids. They offer the utility a versatile access for flexible loads coordination without
violating consumer privacy. In the literature, several models and designs were presented
to address different aspects of energy trading markets, yet there is a gap between these
models and their application in real-life. This paper describes a novel discrete-timely
double-sided auction model that facilitates energy trading between prosumers in near
real-time and forward markets. Since the practical realization of the model represents a
crucial criterion, the market is designed with fast clearing mechanism and simple bidding
rules that guarantee the benefits of the prosumers, their privacy, and consider their
personal preferences. Additionally, a decentralized home energy management approach
is followed at the prosumer level to maximize the system reliability and enable an easy
integration of multiple devices from different manufacturers. Hence, a device-oriented
bidding strategy is demonstrated that considers the physical characteristics and technical
limitations of each device type such as electric vehicles (EV), micro-combined heat and
power systems (micro-CHP) or heat pumps. Furthermore, an open-source day-ahead
probabilistic forecast for the photovoltaic systems (PV) is integrated with a bidding
scheme that maximizes the prosumers’ commitment in the forward market. In the
results, field measurements and testbed data are used to quantify the benefits of the
market model to the utility and the prosumers based on different metrics such as self-
sufficiency, self-consumption, peak load, CO2 emission reduction, and total costs. The
results indicate that the market model can increase self-sufficiency and self-consumption
of a microgrid while reducing the prosumer costs on average by 23%.

Author Contribution

I developed the market model and wrote the paper; Peter Tzscheutschler and Ulrich
Wagner provided guidance in the model conception, revised the paper and prepared a
detailed critical review.
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1 Introduction

The power grid in Germany has been undergoing substantial transitions since the leg-
islative support for the energy transition plan (Energiewende) was passed in late 2010
[1]. The legislation proposed strategies to increase the renewable energy resources share
in energy production and energy efficiency [2]. According to [3], the renewable energy
share should represent 60% and 80% of the gross final energy consumption and elec-
tricity consumption, respectively. Furthermore, primary energy consumption should be
reduced by 20% by 2020 and 50% by 2050. Fixed financial incentives were introduced to
renewable energy resources (RES) to deliver on these goals. Additionally, a priority was
given to feeding renewable sources in the electricity grid, in order to provide a risk-free
environment for investors and new market entrants [4]. Looking at the impact of these
policies, renewable energy represented 31.7% of gross electricity consumption and a ca-
pacity of 103.6 GW in 2016, compared to 4.2 GW in 1990 [5]. These investments in RES
were not led just by the electric power industry, but also by households and small-scale
consumers. In 2016, households and farms investments share in RES reached 42.5% [6].
Consequently, traditional inelastic consumers are gradually transforming into prosumers
and the power flow in the grid is no longer unidirectional, but bidirectional.

Conventional grid control methods are outdated given the constraints of the bidirec-
tional flow and the weather-dependent variability of the integrated renewable energy
resources. Control of both the generation and demand side is seen as essential for main-
taining the stability of the grid. Consequently, demand-side management (DSM) strate-
gies were proposed and evaluated by several researchers to shed or shift consumer loads to
serve various goals such as minimizing costs, CO2 emission or peak loads [7, 8, 9, 10, 11].

Home Energy Management Systems (HEMS) are seen as the key solution that enables
a DSM in microgrids and households. A HEMS is considered the main communication
and control gateway between the device, prosumer, and the utility. Various research
projects discussed the optimization techniques and algorithms needed to be deployed
in the HEMS. Examples of these techniques and algorithms are stochastic optimiza-
tion [12], mixed integer quadratic programming [13], mixed integer linear programming
(MILP) [7, 14], fuzzy logic [9, 15, 16], and other machine learning techniques [15, 17].
Over the last decade, the optimization techniques employed in HEMS applications did
not vary, as much as the use-cases on which the model is based. However, several
challenges arise when moving from the simulation and modeling environment to the
real-life environment. On the utility-side, these challenges relate to scalability, decision
decentralization, and guaranteeing the prosumers’ reaction; on the prosumer-side, data
privacy and fair division of the economic benefit.

At first, a HEMS reacting to real-time price signals seemed to be the optimal solution
for solving the challenges faced both the utility and the prosumer. In such a system,
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the utility sends a real-time price signal (RTP) that drives the prosumers to shift their
load from peak hours to off-peak hours. HEMS load shifting and economic potential
were studied from different perspectives and household configurations as in [14, 18,
19]. These studies and models did address and solve the challenges represented by
scalability, decision decentralization, and data privacy, but they did not guarantee the
prosumers’ reaction to the signal. Assuming that each household has a HEMS that
operates autonomously, all the prosumers might switch on their loads or feed energy
to the grid at almost the same time. Consequently, the overall results would be the
formation of a higher peak at another point in time. Moreover, on the prosumer-side,
another challenge was revealed, which is the need for decentralization at the household
level as discussed in [8] and the e-MOBILie Project [20]. Device manufacturers would not
allow direct access to the household device if the device guarantee was to be maintained,
especially for EVs. Consequently, another architecture was developed based on the RTP
that enables decentralized HEMS, where the device handles the decision-making process
itself. In this case, the HEMS is used only for communicating the user preferences
and initiating the optimization process. Figure 1.1 (left) shows the difference between
the centralized HEMS and the decentralized HEMS, where I/O is the switching signal
forwarded to the device.

Figure 1.1: Development trends of energy management methods in the literature.

At the level of an island or grid-connected microgrids, central energy management
system (CEMS), which is also referred to as local energy management system (LEMS),
was introduced. The CEMS receives all the user preferences (UP) of all prosumers
within the microgrid, then tries, based on the algorithms mentioned earlier, to achieve an
optimum plan. Such a system can maximize the economic benefits, satisfy the prosumers’
constraints, and exploit the maximum flexibility potential. Nevertheless, since the CEMS
receives all the user information to start the optimization iterations, it violates the data
privacy regulations and exhibits a limited scalability [21, 22]. The HEMS, in this case,
acts as a gateway. It provides the UP and receives the switching plan of the given
devices. Figure 1.1 (middle) shows the communication architecture between the HEMS
and the CEMS.

Energy trading platforms and market models are the decentralized energy manage-
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ment systems at the microgrid level. They are not only meant for energy trading but
also for coordination of the microgrid as discussed in [23]. These platforms solves the
privacy challenges faced by the CEMS as they hand the decision-making process with-
out exchanging any detailed information (e.g., EV start time, end time, load). The
prosumer has only to decide on the time, volume and price of energy offered. Although
the technical realization of these platforms was seen to be somewhat sophisticated and
economically infeasible, the development of information and communication technology
(ICT) and the pressure imposed by regulations moved research in this direction. In
Germany, the new regulations for the digitalization of the energy transition [24] led to
investment in the information infrastructure (IIS) and development of the Smart Meter
Gateway (SMGW) for maintaining a secure communication channel between the pro-
sumer and the utility. Also, the development and advancement in Blockchain technology
revealed the potential for realization of energy trading platforms.

In the literature, several models are presented tackling the challenges of the energy
trading markets within microgrids. Each research paper focuses on either a specific de-
vice or aspect [25, 26, 27]. A model that studies the bidding mechanism and integration
of every possible prosumer’s consuming device (e.g., EV, and HP), generation (e.g., PV
and micro-CHPs) or storage was challenging to be realized. In [25] developed a micro-
market for EV in a parking facility. Based on this market, the EVs were allowed to buy
and sell to the micro-market depending on their needs and the market situation. [28]
studied heat boilers and CHP units integration in the distribution system from the mar-
ket perspective. The author implemented an optimization model based on deterministic
inputs to reach market equilibrium. The model did not consider the capability of the
consumers to deliver power, and consequently, the residential users were participating as
consumers in the presented market. [29] discussed the pricing schemes of interruptible
and uninterruptible electrical appliances, yet the heat side of the prosumer was not con-
sidered. Hence, the potential flexibility that can be offered from the heat storage and the
operational constraints of thermal systems such as micro-CHPs or heat pumps were not
present. [30] presented a two-stage aggregated control framework for peer-to-peer energy
trading with a pricing mechanism that ensures the economic benefit of the prosumers.
The author focused on PV-Battery Systems in the assessment process, where a reduction
of 30% of the bills can be expected and an increase in the annual self-sufficiency by 20%.

The technical constraints and physical characteristics of the devices are not usually
modeled [27]. Consequently, the practicality and the possibility of implementation of the
presented algorithms are hard to evaluate. Simplified models of the market participants
were introduced in the literature to increase the accuracy while minimizing the system
complexity. These models lack the dynamics of a real system, which might increase the
results’ uncertainties.

Several researchers focus on studying energy trading method and framework indepen-
dent from the nature of the participating devices. In [31], an auction-based market was
presented for hour-ahead trading. Within this model, a subscription charge is paid by
the user to participate in the platform, which is later used as a price signal to reduce the
load on the grid. [32, 33] applied game theory approaches within their energy trading
models. [32] focused on self-organizing microgrids to balance the distribution network,
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while [33] developed a trading platform (Elecbay) where energy from heterogeneous in-
dustrial and residential sources can be traded without an intermediate supplier. In [33],
the focus is more on the bidding process of the trading, rather than control of the mi-
crogrid. [34] and [35] reviewed the potential of different approaches for energy trading.
[34] focused the game theory approaches in energy trading and applications of coopera-
tive and non-cooperative games, while [35] discussed the current implementation of the
energy trading platforms from an international preservative.

In most of the presented models in the literature, the focus was on real-time, near real-
time or hour-ahead [31, 34, 35, 36]. However, forward trading is crucial to exploit the
full flexibility potential of the prosumers. Otherwise, the load shifting capability of the
prosumer will be confined, which can lessen the economic feasibility of the energy market
platforms and their infrastructure. Only a little research discussed forward and real-time
trading such as the model of [37], where a bilateral contract network was developed to
enable energy trading between prosumers and fuel-based generators. Furthermore, in
the published work, centralized HEMS was integrated as in Figure 1.1 (left). This
architecture, as discussed earlier, is not realizable due to the constraints of the devices
manufacturers and their need to have the control algorithms on their own devices.

The forward market models in the literature did not also discuss the prosumer com-
mitment thoroughly in case of a forecast or technical failure. As a convenient solution,
[33] proposed that prosumers who failed to generate or supply energy have to be either
charged a penalty or trade at lower prices. However, the risk the prosumer is taking and
the possible penalties because of the forecast failures were not quantified.

To summarize the status quo of literature and identify research gaps:

� Simple models were used for prosumers devices in households to minimize the
required computational power of the market, yet these models can influence the
bid volume directly and consequently the market dynamics

� Most of the research was focused on either integration of the thermal side or the
electrical side of the prosumer, but not both

� Complicated bidding strategies were applied to develop an optimal bid. These
strategies can be hardly deployed in a real-life environment on the devices as it
either requires high computational power or long wait time to communicate with
all other market players. Hence, its synchronization with the energy market can
be challenging.

� The reviewed models considered centralized HEMS structure and enabled the cen-
tralized HEMS to bid directly on behalf of the prosumer and all the devices

� In the review research of forward markets, prosumer commitment was not quanti-
fied or evaluated during the operation.

� Possibilities of integration the state-of-the-art forecast such as probabilistic fore-
casts were not presented
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The main goal of this paper is to present a model that addresses all the aforementioned
gaps and provide a comprehensive solution for the integration of energy markets in
microgrids. This model features the following:

� A discrete-timely sealed double-sided auction market with market rules suiting the
German context, and a fast clearing mechanism that enables prosumers to trade
their energy supply and demand in near real-time and forwards.

� Novel simple non-predictive bidding strategies that is constant, symmetric and
pure for each device group to ease its implementation in real-life applications.

� Pricing and bidding scheme for the probabilistic PV prediction systems [38, 39].

� Integration of decentralized EMS for trading fixed prosumers’ loads and updating
the smart devices bids according to the user preferences.

� Experimentally validated devices’ models (e.g.[40]) are integrated to provide an
accurate bid volume and market dynamics.

Within the analysis of the model, the prosumer commitment under different prediction
uncertainties is evaluated. The prosumers and the utility benefits are quantified based
on multiple metrics such as self-sufficiency, self-consumption, peak loads, CO2 emission
and costs. Furthermore, evaluation of the added value of the ICT infrastructure for
energy market applications in microgrids is presented.

The structure of the paper is as follows: Section 2 provides an overview of the mar-
ket design and its operations concept. Section 3 describes the function and bidding
strategy of every market component. Section 4 presents the co-simulation environment,
integrated models, and their input data. Section 5 demonstrates a case study of 10
residential household microgrid and analyzes the potential of the implemented market
model. Section 6 presents a conclusive summary and an outlook for future research.
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2 Market Design and Operations

The literature is rich with multiple markets and auctions design that were discussed and
evaluated numerically and experimentally as early as in [41, 42, 43]. This literature has
set the foundation that is inspiring the recent research developing local energy markets
for microgrids [23, 44, 45, 46, 47]. Although the recent auction-based markets presented
in the literature have several standard features, their impact and operation dynamics can
be defined through three major criteria: market-clearing rules, bidding rules, frequency
and nature of the disseminated information to participants. These criteria define the
difference between two different markets models, even if both lie under the same market
category [48].

The proposed model in this paper is classified as a discrete-timely sealed double-sided
auction with uniform pricing. The double-sided auction by definition is an auction where
both buyers and sellers can communicate their bids and asks of standardized commodi-
ties as per [49]. In this paper, the bid and ask are referred to as buying and selling
bid, respectively. The market is chosen to be discrete-timely to synchronize all traders
communication with the market trading platform and to provide a fair environment to
all traders where communication speed does not play a role. In the work of [50], it was
shown that the continuous-timely trading can be inherently flawed as the traders react-
ing faster has an advantage of other traders. Given the real-life situation in microgrids, it
is practically hard to guarantee a synchronized reaction from all the traders. Hence, it is
considered that the discrete-timely trading is fairer for all the market participants. The
market is chosen to be sealed to maintain the anonymity of the bidder. Consequently,
the market players can not learn about other traders’ bids to preserve their privacy. A
uniform pricing mechanism is applied as it provides a fair competitive price to all the
market participants independent of the given bid price. Moreover, it encourages the
suppliers to bid their lowest price to increase their possibility of selling.

The double-sided auction market is designed to enable prosumers to trade their energy
in the forward, day-ahead, intraday in independently of the wholesale market. In a smart
community with an island or a grid-connected microgrid, the number of participants is
denoted by N , where {N ∈ Z+ : N ≥ 2}. A market participant can be either a prosumer
or the utility. A prosumer can demand deficit energy and act as a buyer i, or supply
excess energy and act as a seller j. i ∈ B(t) and j ∈ S(t), where B(t) and S(t) are
the time-dependent sets of buyers and sellers, respectively. t ∈ T = {1, 2, ..., tfh} is the
discrete time-step at which trading can occur, where tfh is the length of finite trading
horizon. Since it is a discrete-timely market, the trading can occur at any defined
time interval ∆t. A market participant can communicate multiple bids n with market
platform equal to bi,n = (pi,n, qi,n, tdi,n), where pi,n is the price of bid n of buyer i,
qi,n is the bid volume, and tdi,n is the delivery time. qi,n must always be greater than
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or equal to qmin, where qmin is the constant minimum quantity of energy that can be
traded. In this model, the number of participants is always assumed to be constant
at any time t. A market participant can submit a buying or selling bid for a value
of zero, if he is not willing to trade in the market. The bid prices pi,n are formed at
the device level depending on the technical constraints and dynamic behavior of the
device. In Section 3.3, the bidding strategy and bid formulation will be demonstrated
for every device D that can communicate with the market. However, a price ceiling and
floor is set for all D participating in the market such that pmin ≤ pi, pj ≤ pmax. For a
grid-connected microgrid, pmax and pmin can represent the conventional utility energy
consumption tariff and feed-in tariff, respectively. The pmax can be time-dependent, if
real-time tariff (RTP) is applied. The intention behind applying a pricing ceiling and
floor is to keep the prices higher than feed-in tariffs for the generators and less than
the utility prices for the consumers at all times t so that the voluntary participation of
the prosumers in the microgrid market can be ensured. The readiness of a prosumer to
bid higher prices to use the community energy may vary depending on the background
and the culture of the society where the market is located. Nevertheless, quantifiable
economic gain supported by environmental benefits for the whole of society can attract
more prosumers to participate in the market.

Given the high details of the model, Figure 2.1 presents a simplified overview of the
system design including the market side and the prosumer side. It shows the HEMS,
market agent and the device controllers on the prosumer side, in addition to the con-
sumption and generation forecasts. A user interface is also available to maintain and
receive the user’s preferences. IIS is crucial to communicate all the necessary data for
the market operation securely. However, IIS requirements are not discussed within the
framework of this paper. The simplified following communication steps demonstrate the
process from forming the bids to the operation of the device once the bid is accepted.
These steps are marked in Figure 2.1.

Step 1: The device controller sends the status of device D to the market agent

Step 2: Depending on the device status, user preference and designed bidding
strategy, the market agent develops the buy and sell bids, bi and bj , respectively.
Consequently, for each D there is a market agent to maintain a decentralized
structure. The bidding strategies are discussed later in Section 3.3.

Step 3: The HEMS receives the bids bi,bj from the market agent and modifies it
according to the user operation mode (standard, comfort, or cost saving) b∗i ,b

∗
j , as

in Section 3.2, then sends them to the market platform.

Step 4: Applying a discrete-timely double-sided auction, the market price and
volume at equilibrium are found. The market platform then forwards the market
clearing price back to the HEMS. Detailed description is presented in Section 3.1

Step 5: The HEMS forwards the MCP to the market agents and user through the
user interface.
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Step 6: The market agent receives the MCP to identify the accepted and rejected
bids.

Step 7: The device controller receives the operation signal from the market agent
to switch the device at td.

Figure 2.1: An overview of the model structure (main communication loop is in gray), circled
numbers indicate the communication sequence.
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3 Market Model Components

3.1 Market Platform

The market platform is the place where all the bids are received to clear the market. In
this model, the market platform requires a market coordinator that acts as an auctioneer.
The market coordinator can be the utility or the platform owner. The market coordinator
roles can be summarized in the following points:

� Clearing the market and announcing the market clearing price.

� Rejecting any bid changes after the gate closure time tg.

� Balancing the market to guarantee an equilibrium between supply and demand.

� Break the market ties at every trading period.

The first responsibility of the market coordinator to clear the market. It sorts the bids
such that bi,n ≥ bi+1,n for the buyers, bj,n ≤ bj+1,n for the sellers. The bids are aggregated
as step functions (pi,n, qi,n) and (pj,n, qj,n). The resolution of the step functions can be
defined by limiting the maximum bid volume. The intersection of supply and demand
step functions represents the competitive equilibrium and defines the market clearing
price value pe and the cleared volume qe. The pe is then communicated to all the
prosumers so that they can either operate at td or shift their loads to another time.
Since the market price has a ceiling and a floor, pe ≤ pi,n ≤ pmax for all buyers, and
pmin ≤ pj,n ≤ pe for the sellers. Hence the prosumers profit $ can be summarized in
Equation 3.1, where qα is the volume of the accepted bid.

$ =
n∑

1

(pmax − pe)qαi,n +
n∑

1

(pe − pmin)qαj,n (3.1)

The second responsibility of the market to manage the gate closure time. Since this
model enables near real-time and forward trading, a gate closure time has to be defined
as a deadline for any changes in bids or withdrawals. Assuming that tg is set to 30 min,
a market participant can make a bid at any td in the future and still change the bid up
to 30 min before delivery.

The third responsibility of the market coordinator is to balance the market during
each trading period in order to clear the market. The prosumers have to guarantee
that their energy demand will be covered, even if there is no sufficient supply from the
other prosumers in the market. Also, they have to make sure that their non-shiftable
generation can be feed-in. Consequently, the market coordinator acts as a seller or a
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buyer at any period. It sells the deficit energy required by consumers or buys the excess
energy produced. Throughout the whole trading time horizon, the market assures that
Equation 3.2 is maintained.

B∑

i=1

n∑

1

qi,n =

S∑

j=1

n∑

1

qj,n (3.2)

The fourth responsibility of the market coordinator is to break the ties to clear the
market. Practically, the probability of having market ties is low, yet it is possible. Hence,
market breaking ties rules have to be defined. In this model, the market model breaks
the ties either randomly, or in the favor of agents bidding the highest volume qi or qj .
A minimal value of ς = 1e−4 is added to the favored agent in order to clear the market.

3.2 Home Energy Management System (HEMS)

As discussed earlier, a decentralized HEMS is needed to maintain the practicality of the
model. Conventionally, the HEMS are running optimization algorithms for the devices
planning and can be also responsible for the bidding of the prosumer. However, in the
project of [20] at the institute for energy economy and application technology (IfE),
it was found that these methods are not realizable. Assuming that in a single family
household there an EV from manufacturer A and heat pump from manufacturer B.
Manufacturer A would not trust manufacture B managing the EV through his own
EMS. Also, both do not allow a third party to control their devices. That’s why all
the products available in the market at the moment are just an interface between the
prosumer and the manufacturer cloud.

Building over these experiences, a decentralized structure of HEMS is implemented
that allows each market agents to develop its bid independently and communicate it to
the market. Decentralized HEMS can not guarantee a global optimum for the prosumer,
but a near-optimal solution. The role of the decentralized HEMS can be summarized in
the following points:

� Broadcasting the pe to market agents.

� Bidding for the non-shiftable (fixed loads) based on the load forecast at such that
bi,n = (pmax, qf , t

d
i,n) to guarantee their bids allocation.

� Collecting bids from all market agents (i.e., devices) and forwarding them to the
market platform.

� Adjusting the biddings depending on the user preferences.

The users’ preferences can vary depending on their interest. Some users are interested in
decreasing the costs; others can be more interested in increasing comfort [8, 51, 52]. The
HEMS must adapt the bids to the users’ preferences and interests. In this model, the
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HEMS modifies the bid price pi,n received from the market agent to p∗i,n as in Equation
3.3.

p∗i,n =





pi,n if standard

ϕ(pmax − pi) + pi if comfort

max(γ(pmin − pmax) + pi, pmin) if cost saving

(3.3)

ϕ and γ are two variables such that {ϕ, γ ∈ R : 0 ≤ ϕ, γ ≤ 1}. ϕ and γ could be set by
the user to increase or decrease the comfort or cost savings, respectively.

3.3 Market Agents

As per [49], double-sided auctions is too complex to output a game-theoretic solution.
In this market model, the market agent has no information about the number of bidders,
the volume of bids, or the identity of bidders at any trading interval because the market
is sealed to maintained the anonymity and data privacy of the prosumers, also to avoid
collusion. If a game-theoretic approach would be applied, the market agent has to
evaluate all the possible actions for all the market participants in the microgrids to
find the solution maximizing its benefit. This strategy would lead to limiting the model
scalability given the increasing computational capacity required per market participants.
Moreover, as the number of participants increases in this market type, the less influential
is market participant (player) actions.

In this model, simple non-predictive bidding strategies are evaluated. Every device
group has a symmetric pure constant bidding strategy that do not need a price prediction
or complex learning mechanism to develop the bid. The bidding strategy is designed to
bid always the truthful price depending on its need. Hence, an agent who is requiring the
energy in the next hour would bid more than an agent requiring the energy on the next
day. The valuation is always time/need dependent. To optimize the bidding strategy,
each agent can submit multiple bids at different time steps within a specific time frame,
then use a simple enumeration search optimization technique to find the cheapest accept
bid and withdraw/sell the rest additional purchased volume to the market. This concept
is applied to each of the typical prosumer flexible devices and tailored to its technical
and operational constraints.

The bid developing is not only a price but also a value. Using the non-linear experi-
mentally validated models [40] and the novel probabilistic forecast [38] the exact bidding
volume and the corresponding price are evaluated. The accuracy of these models enables
to present the realistic dynamics of the market and deliver results comparable to field
experiments. In the upcoming sections, the formulation of the bid price and volume is
demonstrated for each device type.

3.3.1 Electric Vehicle

In this model, the EV is assumed to operate only in the Grid to Vehicle mode (G2V) (i.e.,
only as a consumer). A user communicating with the HEMS will indicate the desired
starting time of the charging ts and the time by which the vehicle shall be charged and
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ready tr. The latest end time is defined as te = tr − to. The typical charging power is
between 3.6 kW (single phase) and 22 kW (three phase) [53].

Assuming a fixed charging power PCEV is required to charge the EV any time between
ts and te, the EV market agent sends bids at every possible delivery time td between ts
and te. The readiness of the market agent to pay more increases linearly as the charging
time approaches the te as in Equation 3.4. After te, the market agent always bids a
fixed price of pmax to ensure the acceptance of the bid either from other prosumers or
the utility depending on the market situation.

pi,n =





(
pmax − pmin
te − ts

)td + pmin, if td ≤ te
pmax, if td > te

(3.4)

The set of accepted bids βαi is always larger than the set of required bids βri ⊂ βαi , which
is because the market agent creates bids for every period between ts and te and bids the
maximum price after te.

The market agent selects the most economic bids and withdraws rejected and unneeded
bids. As shown in Equation 3.5, the bids with the lowest costs are selected such that
the number of accepted bids c(βri ) can satisfy the energy demand ED of the charging
station.

min C = minbαi,n∈βri ,βri⊂βαi
∑

bαi,n =
∑

pαi,nq
α
i,n (3.5a)

s.t. βαi = {bαi,1, bαi,2, ..., bαi,n} (3.5b)

c(βri ) < c(βαi ) (3.5c)

bαi,n−1 < bαi,n, ∀ bαi,n ∈ βαi (3.5d)

ED = c(βri )q
α
i,n (3.5e)

3.3.2 Heat Pump

The behavior of heat pumps in the market platform is highly dependent on the heat pump
hydraulic configuration, dynamics, modulation, predefined heating curves, and building
load. Assuming that the heat pump is installed along with a combi-storage tank that
can cover both the space heating (SH) demand and the domestic hot water demand as
described in [40], the capacity of the storage Q is defined according to Equation 3.6 of
[54], where ρ is the density of water, Cp is the heat capacity of water, As is the cross-
sectional area of the storage, Ts(h) is the storage at height h and Tref is the reference
temperature. In practice, Ts(h) can be measured using a set of sensors across the heat
storage as in [40]

Q = ρ× Cp ×As ×
∫ h

0
(Ts(h)− Tref )dh

∀ Tst(h) > Tref

(3.6)
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Depending on the Q(t), predefined set energy content, Qset, minimum energy content,
Qmin, and maximum energy content, Qmax, the heat pump can develop a bid [40].
Equation 3.7, 3.8, and 3.9 can summarize the process of defining the bid volume and
price. Then, the market agent then selects the optimal bid to minimize the costs in a
manner analogous to the EV, Equation 3.5.

pi,n =





0, t < trest

(
pmax − pmin

Ψ−
)td + pmin, Q̇ < 0, and Qmin ≤ Q ≤ Qset

−(
pmax − pmin

Ψ+
)td + pmax, Q̇ > 0, and Qmin ≤ Q ≤ Qset

pmin, Qset < Q ≤ Qmax

(3.7)

Ψ− =
Q−Qmin

Q̇SH + Q̇DHW + Q̇losses
(3.8a)

Ψ+ =
Qset −Q

Q̇HP − Q̇SH − Q̇DHW − Q̇losses
(3.8b)

qi,n = COP × Q̇HP ×∆t, (3.9a)

where COP = f(Tsu, Ta) ≈ f(Q,Ta) (3.9b)

Q̇HP = f(Ta) ≈ f(Q) (3.9c)

trest is the resting time required between Off and On switch. Ψ− and Ψ+ is the negative
and positive load shifting potential, respectively. Q̇SH is the space heating load, Q̇DHW
is the domestic hot water load. Q̇losses is the thermal losses. Q̇HP is the heat pump
thermal power. COP is the coefficient of performance of the heat pump. Tsu is the
supply temperature of the heat pump. Ta is the ambient temperature. More details
about the technical constraints of the heat pump system, its control, and optimization
requirements, in addition to its dynamics and validated model, are available in [40].

3.3.3 Micro-CHP

In this model, the micro-CHP is assumed to have the same hydraulic configuration as
the heat pump. Thus, a combi-storage tank is attached to the micro-CHP to cover both
the SH and DHW loads. The heat storage Q defines the flexibility of the micro-CHP
unless the system configuration enables heat dumping. Consequently, the developed bid
price and bid volume can be summarized by equations 3.10 and 3.11, where κ is the
CHP coefficient, and Q̇CHP is the thermal generation power.

pj,n =





0, td < trest

−(
pmax − pmin

Ψ−
)td + pmax, Q̇ < 0, and Qmin ≤ Q ≤ Qset

(
pmax − pmin

Ψ+
)td + pmin, Q̇ > 0, and Qmin ≤ Q ≤ Qset

(3.10)

qj,n = κ× Q̇CHP ×∆t, (3.11)
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3.3.4 Photovoltaic

Integration of small-scale PV systems as market suppliers in a day-ahead trading market
raises several questions concerning the bid commitment. The commitment of HP, micro-
CHP or an EV can be better managed by the prosumer when compared to the PV
system. An over forecast in a day-ahead market can lead to an unrealistic bid and
influence the prosumer’s future ability to profit from the market, which can directly
minimize participation in the market platform.

Typical residential prosumers who have small-scale PV systems with capacities be-
tween 1 kWp and 12 kWp are exposed to the highest uncertainties and generation
variabilities as discussed in [55]. Figure 3.1(b) and 3.1(d) show the 1-min resolution
measurement of a 3 kWp roof-top PV system. It can be seen that in 3.1(b) the PV
generation is not exposed to high variabilities compared to Figure 3.1(d). Even if the
PV forecasting algorithm is able to determine the mean PV profile for days with high
variabilities, it would be rather complicated to forecast these variabilities.
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Figure 3.1: Selected days of probabilistic forecast output and PV measurements in different
seasons, (a) summer (b) summer-1 min resolution (c) transient (d) transient-1 min
resolution [38].

[38] presented a probabilistic PV generation forecast for HEMS applications and en-
ergy market models. The probabilistic PV forecast delivers a range of values depending
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on ζ ∈ [10%, 90%]. Each value represented a probability of generation of a specific vol-
ume as shown in Figure 3.1. For the summer day in Figure 3.1(a), most of the power
forecast lies by ζ = 90% and ζ = 80%. In the transient day shown in Figure 3.1(c), the
probabilistic forecast was able to forecast the variabilities and indicates the expected
power to be generated with lower uncertainties. In [38, 55], the model description, val-
idation and demonstration are detailed. The prediction model is also open source and
available through [39].

Equation 3.12 summaries the bidding strategy of the PV system. The bidding price is
formed dependent on ζ. The higher the probability of the generation profile, the lower
the price. Thus, the less variable generation will be traded more on the market platform,
compared to generation exposed to high variabilities.

pj,n = pmax + ζ(pmin − pmax) (3.12)

Moreover, the prosumer can decide to bid the whole range of ζs or only the guaranteed
range (e.g., 80% to 90%). The forecast delivers only the probabilities, but depending
on the prosumers’ system and configuration, the traded range can be decided. Through
this bidding mechanism, the prosumers commitment to the communicated bids can be
maximized, and certain bids can be traded. A means for increasing the traded range is
discussed in the next section.

3.3.5 Batteries

In this model, the batteries are considered as a backup system to maximize the prosumers
commitment in the market. Assuming that the prosumers have sent a bid, but could not
deliver it, the battery discharges to make up for the unfulfilled bid. Equation 3.13 relates
to the simplified battery charging and discharging behavior depending on the difference
between the generated volume qg and the accepted volume

∑n
1 q

α
j,n, where ηdch and ηch

are the discharging and charging efficiencies of the battery, respectively.

EBatt(t) =





EBatt(t− 1)− 1

ηdch
(
∑n

1 q
α
j,n − qg),

∑n
1 q

α
j,n > qg

EBatt(t− 1)− ηch(
∑n

1 q
α
j,n − qg),

∑n
1 q

α
j,n < qg

EBatt(t− 1), otherwise

(3.13)

Operation of the battery system under these conditions can make up for the forecast
errors and enable the prosumers (i.e., the market agent) to commit to the communicated
bid without violating the market rules.
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4 Model Implementation and
Co-Simulation

To maximize the model accuracy, and at the same time maintain a proper simulation
speed. The model is co-simulated between Matlab, and the Modelica based software,
SimulationX, as shown in Figure 4.1.

Figure 4.1: Model division on the co-simulation platform between Matlab and Modelica.

The market platform model, billing systems, HEMS, and market agents are integrated
into the Matlab model, while SimulationX integrates all the models of the physical
devices such as the EV, HP, micro-CHP, or PVs, in addition to the building models
and the device controllers. The current structure of the model emulates the real-life
situation in which a market platform is integrated. All the models running on Matlab
can be assumed to be running in the cloud as a service, while all the Modelica-based
models are real systems.

The Modelica-based models are developed and calibrated based on either testbeds or
field measurement data. The heat pump model design, and validation, in addition to a
demonstration of the testbed, is given in [40]. The micro-CHP model is developed based
on the study of [56]. The PV measurements and PV system characteristics are detailed
in [57]. The EV models and the buildings used are based on the Green City Package of
[58]. A calibration for the building models depending on the IEE Project TABULA [59]
was performed to maximize the overall model accuracy. Modelica was used to enable
simulating of the non-linear models and present the dynamics of the systems as shown
in the heat pump model of [40]. As an example, the difference between the developed
heat pump model and the measured value revealed an error of 3%.

The integrated building model facilitates the evaluation of user comfort. Throughout
the simulation process, the temperature profile of each zone of the building model is
monitored to make sure that the room temperature never falls below the set temperature
tolerance, which is ±1K

The fixed electricity profiles are based on the representative load profiles of [60]. The
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data includes measured high-resolution profiles of 74 residential houses managed by the
same grid operator. The houses are located in the vicinity of each other. Consequently,
it can be assumed the given houses lie in the same microgrid.

The hot water profiles are developed based on the standard VDI 4655 for each type
day, while hot water circulation load used is based on field measurements of single-family
houses in South Bavaria, Germany [61].
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5 Case Study: Microgrid of Residential
Buildings

5.1 Benchmark

A microgrid of 10 single family households is used, where each household has an EV,
PV system, and a heat pump. The charging station has a maximum 3.6 kW. The PV
system has a 6 kWp. A brine-water heat pump with a thermal power of 10.1 kWth and
a COP of 5.02 is installed. 10 electrical load profiles are selected from [60] to represent
the fixed loads. All the households are assumed to have the same area and thermal load
profile. The building models of the prosumers are parameterized based on 1984 building
standards. The building parameters can be found in [59] and the building’s location is
assumed to be Munich, Germany.

Identical user preferences are used in all the households with all the market partici-
pants operating using the standard mode as per Equation 3.3. The load shifting window
of the EV is the same every day, where the difference between ts and tr is 24-h.

In this section, a comparison is made between the reference case, where no market
platform or HEMS is implemented (conventional operation), and the case with a market
platform and the HEMS. Same preferences and characteristics of the household are used
to illustrate the market behavior, even in a situation of a simultaneous supply and
demand. The comparison is based on a complete analysis of the year 2017.

5.2 Market Dynamics

To illustrate the market dynamics and the influence of the prosumer solely on the market
price, it is assumed that the utility always participates in the market with a fixed tariff
of 0.26 e/kWh and a feed-in-tariff of 0.12 e/kWh as per EEG 2017[62]. Consequently,
pmax and pmin are equal to 0.26 and 0.12, respectively.

In the case study, the PV system is the sole energy generation system in each pro-
sumers’ house. Hence, the MCP is dependent on the PV system as a seller. The MCP
falls or rises, depending on whether there is an underproduction, or overproduction from
the PV system as shown in Figure 5.1. Hence, the mean values of all the summer days
are relatively lower than the transient and the winter days. The standard deviation
shown in Figure 5.1 is in this case dependent on the probabilistic forecast of the given
location.

The presented MCP behavior is not a standard behavior. It is dependent on the
given situation where the utility is providing a fixed tariff, and the prosumers can only
sell the PV energy. The analysis of Figure 5.1 shows that the market is reacting to the
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generation conditions and can indicate the demand and supply situation of the microgrid
while maintaining the prosumers’ privacy. An RTP signal or a whole market price can
be used as an input for this model. Also, the utility could be represented by multiple
market participants bidding at different prices.

Figure 5.1: Market Clearing Price variation in summer days, transient days, and winter days.

5.3 Utility Benefit

The results in Figure 5.2 represent the behavior of the microgrid over different type days:
summer, transient and winter day. It compares the behavior of the microgrid with and
without the market model. The case in which the market platform is not integrated is
denoted by the reference.

In the typical summer day shown in Figures 5.2(a) and 5.2(b), it can be seen that the
loads that conventionally operates before the sunrise or the sunset are shifted due to low
market prices to operate during the PV generation hours. An insight about the types of
load being shifted can be obtained from Figures 5.3(a) and 5.3(b). Hence, a reduction
in peak loads can be observed. The peak load of the microgrid export is from -58 kW
to -39 kW, while the import peak load is reduced from 44.5 kW to 35 kW.

The transient day in Figures 5.2(c) and 5.2(d) exhibits the same behavior seen in
the typical summer day, where the market agents shift the loads to the lowest possible
market prices. On this day, the influence of the probabilistic forecast on energy trading
is more noticeable since the PV generation is exposed to higher generation variabilities.
The probabilistic forecast and its market agent were able to offer the energy with high
variability at a price closer to the pmax so that other market agents could avoid operation
in this period. Hence, it minimizes the exposure of the prosumer to fines for non-delivery.
Figures 5.3(c) and 5.3(d) show a comparison between the behavior of each load in the
reference and market model, respectively. It can be seen that most of the heat pumps
operate and EV charging stations operate during the availability of PV generation.
However, some EVs shifted their loads to a later time starting at 18:30. In this case, the
market agent could not find a cheaper bid less than pmax at the PV generation time.
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Thus, it kept shifting the loads until te, waiting for cheaper bids to be offered in the
market.

In winter, almost 100% PV generation power is used as shown in Figure 5.2(f), com-
pared to Figure 5.2(e). The export peak load drops from -46 kW to -11 kW. The import
power drops from 60 kW to 43 kW. Due to the high energy consumption of the heat
pump in winter, the PV generation does not suffice. Thus, some loads, which are mostly
heat pumps, were shifted to a later time of the day, as shown in Figure 5.3(f). For all
the loads operating after 17:30, the start times are not similar, although they receive the
same price and are locally controlled by the market agent. Thus, it can be concluded
that the trading process occurred during the PV generation hours on that day, desyn-
chronized the loads’ operation later at the end of the day and minimized the peaks, even
though there are no incentives or motivation for load shifting.

In all the reference model cases in Figure 5.3, the heat pumps operates at the same
time as the same building model and DHW standard profile are used. In reality, minor
differences can be found due to the consumer behavior as discussed in [63]. The EVs
daily start charging time is based on a normal distribution between 15:00 and 05:00 of
the next day.

A one year analysis shows that the market increases the self-sufficiency of the microgrid
by 130% and the self-consumption by 120%. Also, it decreases the CO2 emissions on
average by 21% and the import peak load by 25%. The absolute values are discussed for
all prosumers in Section 5.4. The presented results not only demonstrate the capability
of the market platform to trade, shift the loads but also the accuracy of the probabilistic
PV forecast in delivering the profiles that maximize the efficiency of the whole model.
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Figure 5.2: Type day profile of the whole microgrid, (a) summer day - reference (b) summer
day - market (c) transient day - reference (d) transient day - market (e) winter day
- reference (f) winter day - market.
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Figure 5.3: Detailed demand profile of the microgrid, (a) summer day - reference (b) summer
day - market (c) transient day - reference (d) transient day - market (e) winter day
- reference (f) winter day - market.
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5.4 Prosumer Benefit

In this section, a detailed insight into the prosumer benefit is presented. Similarly to
Figure 5.2, the supply and demand of a single prosumer on the same typical days are
presented in Figure 5.4. The same conclusions can be drawn for this typical prosumer,
in comparison with the reference model. Additionally, the amount of energy traded
is shown. The highest energy exchange period was in transient and winter days. In
summer, most of the prosumers in the microgrid are using their own generated energies
and only a few kWhs can be traded as shown in Figure 5.4(b). Furthermore, in transient
and winter days, as in Figures 5.4(d) and 5.4(f), the energy bought and sold are relatively
higher due to the increase in the demand of the heat pumps and the decrease in PV
generation. Hence, it can be deduced that the lower the capacities available on the
prosumer side, the more the prosumers will be depending on each other to trade their
energies and shift their loads. Excess capacities will limit the possible amount of energy
that can be traded.

The trading dynamics and the behavior of the market agent can be further analyzed
based on Figure 5.4(d). On that day, the market agent is not only shifting the load
depending on the prosumer’s own available energy but also depending on the situation
in the microgrid. It can be seen that at around 05:30, the market agent bought energy
to operate earlier, and sold the generated energy later to the microgrid. Moreover, it can
be shown in Figure 5.4(f) that the market agent shifted the load that could be operated
starting from 06:00 and sold the energy to the microgrid, to start later at 08:00. In the
case of the reference model, the prosumers do not contribute to minimizing the peak
load of the microgrid and did not have the opportunity to trade and exchange energy to
maximize their economic welfare.

To quantify the benefits for the prosumer, the self-sufficiency, the self-consumption,
the peak load , the CO2 emission, and costs are evaluated for each prosumer in the
microgrid over a whole year. Two different costs are assessed: the costs based on the
conventional billing systems (CB), and the costs based on the market billing system
(MB). In the CB system, the current conventional metering systems (no smart meters)
are used such that a fixed price is paid by the prosumer for the energy consumed and
a fixed feed-in tariff is received for all the generated energy. In the MB system, the
energy generation and consumption prices are decided based on the market price given
by Equation 3.1. In both cases, the market operations are precisely the same, and the
only fundamental difference is the billing. In the case of the CB, it is assumed that a
non-certified communication to the market is implemented. The reason for comparing
CB and MB is to evaluate the potential added value of the ICT infrastructure (i.e.,
IIS), as discussed earlier. Also, to assess the potential of applying the market platform
immediately (e.g., using micro-computers) without the need of waiting for a smart meter
certified billing in Germany.

Figure 5.5 shows the distribution of the 10 prosumers under the given metrics for
both the market and the reference model. For all the prosumers, the self-sufficiency and
self-consumption are higher compared to the reference model. The mean (green) and the
median (orange) of the self-sufficiency both increased by 102%. The median of the self-
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consumption increased by 80% and the mean is slightly higher. Additionally, the median
of the peak load decreased by 15%, while the mean decreased by 16%. By evaluating the
CO2 emissions within the boundaries of prosumers’ household, the emissions are reduced
by 26%.
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Figure 5.4: Type day profile of a typical household in the microgrid, (a) summer day - reference
(b) summer day - market (c) transient day - reference (d) transient day - market
(e) winter day - reference (f) winter day - market.
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Comparing the values of the self-sufficiency and the self-consumption to the values
produced by the centralized energy management algorithm used in [55]. It is found
that the self-sufficiency and self-consumption are lower using the market platform and
decentralized HEMS by 5% and 7%, respectively. Hence, the solution provided is not a
global optimal, but a near-optimal solution.

Figure 5.5: A comparison between the market and the reference model depending on different
metrics.

Under both the CB and the MB billing systems, the market demonstrates its ability
to minimize prosumer costs. The mean and median costs of the market model are 15%
lower than the reference model using the CB, which are equal to 360 euro/a. These
costs are based on the current metering infrastructure. Using ICT, the market bid and
MCP can be binding. As shown in Figure 5.5, the costs of the market model are 23%
lower than that of the reference model, and the overall absolute savings are equal to 530
euro/a. Thus, the expected saving from IIS could amount to an additional 170 euro/a in
this configuration. These costs were calculated ignoring the transaction and service fees
of the grid and market platform operator. Other fees might be considered depending on
the regional regulations and the operating costs of the market platform. These costs will
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not influence the operation plan of the prosumers; in other words, the utility benefits
will still be the same, but this would influence the economic benefit of the prosumer.
Hence, the market platform operator and the utility must make sure that the economic
benefit is maintained within specific boundaries. Otherwise, the prosumers will not be
interested in trading their energy in the market platform.

Comparing the results of each prosumer to that of the utility, it can be seen that the
self-sufficiency, self-consumption or CO2 emission reduction of average prosumer is lower
than that of the whole microgrid. Such a difference is due to the aggregation effect of the
load profiles of all the prosumers. However, it is important to demonstrate the benefits
share for each prosumer from the participation in the market platform.

The performed analysis assumed that no penalties are paid if the prosumer does not
commit to the bid. However, if the prosumer submits a selling bid of a PV system with a
ζ = 10, it is probable that the PV system would not be able to deliver the expected bid
volume. As discussed in Section 3.3.5, in this situation, the battery system is responsible
for fulfilling the bids. Based on a full year analysis, Figure 5.6 demonstrates the required
battery capacity per kWp PV that the prosumer needs to install to avoid any penalties.
For ζ ≥ 58, no batteries need to be installed, and 100% of the bids communicated by the
PV system can be satisfied. However, the lower the ζ, the higher is the required battery
capacity. The optimal battery capacity can only be determined based on the expected
platform penalty and the readiness of the prosumer to be exposed to such risks. As
discussed, the PV predictions provide an indicator of the certainty of the prediction but
do not decide on the amount of energy that can be traded. If the prosumer needs to
avoid any penalties, it would be advised to trade up to ζ = 60. With lower ζ, the profit
of the prosumer can be increased as indicated by Equation 3.12, but penalties might be
imposed.
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Figure 5.6: Percentage of unsatisfied bids against the ζ of the PV prediction and the available
battery capacity.
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6 Conclusions

In this paper, a market model for energy trading platform is presented in which the
prosumers are capable of trading their energy supply and demand. The prosumers
communicate with the market via a decentralized HEMS, where each device develops
its own bid depending on its physical characteristics and technical constraints. Hence, a
bidding strategy is presented for each device type. The models of the integrated devices
are based on either field test or testbeds to ensure the accuracy of the integrated model.
Moreover, the devices are integrated as non-linear models in the market through a co-
simulation platform to demonstrate the system dynamics and maximize their accuracy.
Additionally, a probabilistic PV prediction system is integrated into the market model
to show the mechanism of PV energy trading, given its generation uncertainty.

Furthermore, the model allows the prosumers not only to trade in a real-time market
but also in a forward market to facilitate energy planning. Hence, the market will benefit
both the prosumer and the utility. These benefits can be summarized as follows:

� At the level of the microgrid, the market model doubles the self-sufficiency and
self-consumption. CO2 emissions are reduced by 21%, and the import peak load
decreased by 25%. Therefore, it can be concluded that the market not only fa-
cilitates energy trading but acts as a microgrid decentralized energy management
system as well.

� At the level of the prosumer, it is ensured that benefits are distributed over the
market participants. Using the same metrics implemented at the level of the
microgrid, the model revealed that the benefit of each prosumer using the market
model exceeds that of the reference model.

� Additional metrics are used to evaluate the economic benefit of the prosumers. The
costs are calculated based on conventional billing metering infrastructure, then also
using the soon-to-be-implemented IIS. In both cases, the prosumers benefits are
higher with the market model. Thus, the implementation of the market model can
be independent of the current ICT infrastructure. Using conventional infrastruc-
ture, the prosumer can save an average of 15% of the costs, while using IIS the
prosumer can save 23%.

To maintain the prosumers commitment to the communicated bid, given the uncer-
tainties of renewable generation prediction in the forward market, a battery system is
required. The capacity of the battery system and the percentage of unsatisfied bids are
calculated depending on the output of the probabilistic forecast model. The results show
that the prosumer can participate without having a battery system or being penalized
provided that the most probable generation profile is traded.
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For future works, a more profound insight will be presented that discuss the factors in-
fluencing the market operations. Scenarios evaluating different microgrid and household
configuration, pricing mechanisms, and prosumers preferences will be analyzed.
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A.5 Publication 5 — Evaluation of Energy Market Platforms
Potential in Microgrids: Scenario Analysis Based on a
Double-Sided Auction

Abstract

Local energy markets represent a mean for distributed energy resources trading for pro-
sumers and energy management for utilities. In these markets, prosumers either trade
or shift their loads to maximize their trading gains via communicating with an energy
market platform. The utility considers the trading process as an approach to maxi-
mize autonomy and minimize peak loads. The benefits of the prosumer and utility can
vary depending on several parameters such as market rules, microgrid configurations, or
lifestyle and social behavior of market participants. In this paper, selected scenarios are
presented that discuss and analyze the major factors influencing the market dynamics
and microgrid energy balance. These scenarios are divided into three scenario groups
that consider market design parameters, microgrid configurations, and user behavior. A
forward double-sided auction market model is used to evaluate these scenarios. Further-
more, the same scenarios are evaluated once more using a reference model, where no
market platform is integrated, so that the results of the energy market can be compared.
The results are analyzed based on multiple metrics from the perspectives of the prosumer
and utility to quantify and compare the benefits of the two major market players.
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197



1 Introduction

Societies are transforming the traditional fossil fuel-based supply into a sustainable en-
ergy supply that is more environmentally friendly and economically viable. In Germany,
energy system transformation is being realized through expanding the renewable energy
sources’ (RES) share and increasing energy efficiency [1]. Along the way of the energy
transition, the nature of the electricity grid is transforming. The dependency on cen-
tralized power stations is decreasing, and electricity is being increasingly generated by
small power systems that are distributed all over the grid. Between 2002 and 2017, the
installed RES increased from 18 GW to 111 GW. Photovoltaic systems (PV) represent
the highest share of the RES, where the capacity increased from 0.3 GW to 42.71 GW
within the same period [1, 2]. According to [3, 4], 39.4% of the PV capacity is owned by
the residential sector, while 19.2% is owned by the commercial and industrial sectors.
As much as these figures indicate the progress of energy transition, it demonstrates the
extent of transformation in the national grid, and the necessity to modernize the way of
managing the grid to adapt to the growing RES. Using conventional concepts to manage
bi-directional power flow is no longer valid. Moreover, more roles are being assigned
to distribution network operators and energy consumers as well. Thus, traditional con-
sumers are being transformed into prosumers, thus, becoming more aware of the energy
system. Hence, using prosumers’ flexibility is becoming more socially acceptable, as long
as they are financially compensated.

Energy markets in microgrids represent not only an approach for energy trading be-
tween prosumers but also for demand side management. As discussed in [5], energy
markets can overcome several challenges faced by current energy management systems
such as scalability, decision decentralization, and data privacy. However, energy markets
are among the most complex trading markets, given the nature of the energy product.
The energy product is highly customizable and is exposed to several technical and com-
mitment constraints [6]. Hence, there are numerous factors and possibilities to design
and run the market.

The developments in information and communication technologies and introduction
of the Blockchains increased the number of research discussing the applications of en-
ergy markets at the microgrid and distribution level [7, 8, 5, 9, 10]. [11] compared the
centralized against the distributed trading approaches in the low voltage network under
different optimization goals to demonstrate the importance of local energy markets. [12]
developed a decentralized energy trading algorithm, where uncertainties of generation
were considered. [13] presented an hour-ahead energy market, where a market subscrip-
tion charge was used as a price signal. In [14], multiple energy sharing mechanisms based
on a multi-agent framework were evaluated. The authors discussed the economic and
technical benefits of the presented models for residential prosumers. Other studies were
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performed to investigate different game theoretic approaches [15], prosumer grouping
possibilities [9], scalability [16], or even weather forecasts requirements [17]. Using the
Blockchain technology, [18] discussed the required components for designing an energy
market for microgrids. [19] presented an electricity trading market for electric vehi-
cles (EVs) using consortium Blockchain. [20] applied game theoretic approaches and
Blockchains to enable transactions between individuals in the microgrid. [21] proposed
a transaction model as a service for the prosumers. The authors worked on increasing
the energy system efficiency while maintaining transparent and secure transactions.

The scenarios presented in the literature were limited given the multiple possibilities
of market, microgrid, and prosumers’ building configurations. [19, 22] studied EVs
integration in microgrids energy markets. In the model of [23], micro turbines, wind
turbines, and PV systems were present in a real-time single sided auction market. In
this model, the prosumers were absent, and the loads were assumed to be fixed. [24]
and [25] studied the integration of combined heat and power systems (CHPs) into the
energy markets. [25] presented a multi-lateral trading model, yet prosumers were not
actively integrated.

The objective of this paper is to analyze multiple scenarios of energy markets in
microgrids to quantify the benefits of the prosumer and utility under different technical
and economic constraints. The scenario analysis covers the following aspects:

� Market design parameters such as the trading intervals and market pricing mech-
anisms.

� Microgrid configurations that can be represented by the number of prosumers and
installed RES capacities participating in the market.

� User behavior that influences the available flexibility within a building such as the
fixed load consumption share.

The structure of the paper is as follows: Section 2 shortly describes the used market
design and its concept of operation. Moreover, it presents the input parameters and
defines the scenario groups. Section 3 demonstrates and discusses the results of the
different scenario groups of both the market and reference model. Section 4 presents a
conclusive summary of the whole study.
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2 Methods and input data

2.1 Description of the model used

[26] presented a discrete-timely double-sided auction market, where prosumers can trade
their energy for different time horizons. Figure 2.1 shows an overview of the model
structure and the communication process. The model consists of different components
such as a market platform, a home energy management system (HEMS), a market agent,
a device controller, and devices D. At the prosumer level, a user interface is available
to communicate the user preferences (UP). A forecasting system for the available RES
and fixed load is necessary for forward trading. At the microgrid level, a billing system
is required to inform the users about their costs. Additionally, the market platform can
receive a real-time price (RTP) from the utility or directly from the wholesale market.

In the market model presented in [26], the market agent behaves depending on the
type of device it is connected to. Thus, there is an independently operating market agent
with a different strategy for each of the PV, EV, micro-CHP and heat pump. Depending
on the device status and the UP, the market agent develops a bid bi or bj , where i is the
index of a buyer (i.e., consuming device) and j is the index of a seller (i.e., generation
device). The market rules define the bid price pi or pj such that pmin ≤ pi, pj ≤ pmax,
where pmin and pmax are the feed-in price and import price of the utility, respectively.
Hence, the market agent always creates the bid price between the predefined market
ceiling and floor.

Once the market agent develops the bid, it is forwarded to the HEMS so that it can
be modified depending on the chosen operation (comfort - cost saving). Additionally,
the HEMS bids on behalf of the user fixed loads consumption qf at a bid price always
equal to pmax so that the bids can always be accepted by the prosumers or utility.

The market platform receives all the bids from the N participating prosumers to
clear the market. The market clearing price is denoted by pe. In this market model,
the prosumers have the right to change their bids at any time until the time of the gate
closure tg. Also, they have the right to trade at any forward trading horizon. The benefit
of the prosumer is evaluated based on Equation 2.1, where qα denotes an accepted bid
volume and n is the number of buyers or sellers bids.

$ =

n∑

1

(pmax − pe)q
α
i,n +

n∑

1

(pe − pmin)qαj,n (2.1)

For more details about market mathematical formulation, market rules, clearing process,
and insights on the market dynamics, please refer to [26].
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Figure 2.1: An overview of the model structure.

2.2 Scenarios definition

There is a various number of possible scenarios that can be used to analyze the behavior
of an energy market in a microgrid. These scenarios can vary depending on the market
design parameters which are not limited to trading time horizon, trading time interval,
market rules, bidding strategies, and pricing mechanisms. At the microgrid level, several
combinations can be analyzed for different microgrid sizes, distributed capacities, storage
devices, and technical constraints. At the prosumer level, the type of devices integrated,
their capacities and setup can vary. As an example, if a heat pump is installed, different
storage sizes can be analyzed. Additionally, the building type and size, heat curves, set
temperatures, and night setback can define the prosumer load curve.

The user behavior and lifestyle also have an impact on the prosumers bids in the
market. The more available flexible loads, the higher is the potential of the prosumer to
trade in the market. User preferences and optimization goals can also play an important
role. However, they have to be defined based on the society where the market is used.
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Calculating the combinations of these variables requires high computational capacity
and time. Thus, specific scenarios are selected to represent the market behavior under
the most probable configurations. In this paper, three scenario groups are discussed as
per Figure 2.2.

Figure 2.2: An overview of the scenario groups.

Group A discusses the market design variables such as pmin and trading intervals.
The scenarios of A1 vary pmin, while holding every other variable constant as shown in
Table 2.1. pmin is varied at a constant step size between 0 and pmax. At pmin = 0, the
prosumers might not get any profit for their feed-in from the utility or trading in the
market, but might be able to operate the loads at lower costs. At pmin = pmax, the
market is inactive, as the market price is fixed. The goal behind the scenarios of A1 is to
show the influence of different feed-in tariffs and foreseeable market fees on the benefits
of the prosumers and the utility.

The influence of the trading intervals is also analyzed in group A. The trading interval
∆t is varied between 15 and 60 minutes. The goal behind varying the trading intervals is
to quantify the benefits of higher trading frequency, given the same system configuration
and forecast quality.

Group B discusses the microgrid configurations, where the influence of the number of
prosumers and the installed PV capacities are studied. An important aspect that needs
to be analyzed is the number of participants required to operate the market. Given the
decentralized structure presented in [26], each device in a prosumer’s building is a market
participant. Hence, the number of market participants is the number of prosumers
multiplied by the number of devices at each prosumer’s house. In this scenario group,
the number of prosumers is varied between 2 and 15. Two represents the minimum
possible number of prosumers and 15 is the simulation system limit, as each building
and device is modeled non-linearly in Modelica. Additionally, the average peak load
reaches a plateau for any microgrid size with more than 10 prosumers as discussed in
the literature by [27]. Thus, evaluating a large number of prosumers would not be
helpful.

Another sub-group of scenarios addresses the influence of the installed PV capacity at
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each prosumer’s building. The capacities are varied from 1 kWp to 12 kWp, which are
the expected PV capacities to be possibly installed at a prosumer’s building. The goal
behind this scenario is to evaluate the influence of the over- and under-capacity on the
market prices, prosumer, and utility.

The last group, group C, evaluates the user behavior. Although the user behavior can
be evaluated based on different variables, fixed load consumption is used as an indicator
of the user behavior and lifestyle. Three categories define the user consumption level:
low, average and high. The range of each level is explained in the next section. The
goal behind this scenario group is to present the influence of the fixed load consumption
magnitude on the prosumer’s profitability and behavior in the market.

Within this paper, a separate analysis is performed on each group of scenarios inde-
pendently. The analysis discusses the results from both the utility’s and the prosumer’s
perspective, as they are the two main stakeholders of the market. Furthermore, the
scenarios are always compared to a reference case (no market) and the baseline scenario.
The comparison can be performed based on several metrics, yet to summarize the re-
sults, only self-sufficiency, self-consumption, peak load, and costs are evaluated. Table
2.1 summarizes the scenarios including the constant and changing variables.
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2.3 Baseline Scenario and Input Data

The baseline scenario is represented by a 10 single family houses microgrid located in
Munich, Germany. It is assumed that these single-family houses are occupied by low
energy consuming prosumers, and are equipped with a heat pump, an EV charging
station, and a PV system. The fixed loads of the prosumers are based on the high-
resolution measurements of [28]. All the measured households are connected to the same
distributor. Thus, it can be assumed that they are located in proximity to each other
and can represent a microgrid. Figure 2.3(a) presents the distribution of the households
yearly energy consumptions, and Figure 2.3(b) presents the 10th to 90th percentiles
of power variation over time on a typical day. From the typical day profile, it can be
assumed that no PV is installed at these houses, given the load peak at noon. Also, no
operation patterns of a heat pump, an EV charging station, or a micro-CHP are found
in the separate analysis of the household profiles. Hence, it can be deduced that there
are no flexible devices in these houses and these profiles can be treated as fixed load
profiles.

Using the consumption distribution presented in Figure 2.3(a), the households con-
suming 1000-3000 kWh/a, 3001-7000 kWh/a, and 7001-9000 kWh/a are defined to be
occupied by low, average, and high energy consuming prosumers, respectively. 10 repre-
sentative profiles are picked from each category to represent the user behavior in scenario
group C.

9%

54%

32%

4%

1000-3000 kWh/a

3001-5000 kWh/a

5001-7000 kWh/a

7001-9000 kWh/a

(a) (b)

Figure 2.3: 74 representative household profile analyses, a) annual energy consumption b) elec-
trical loads on a typical day.

The integrated heat pump has 10.1 kWth, and a COP of 5.02 at B0/W35 according to
the standard EN14511. The heat pump is responsible for covering the space heating and
domestic hot water consumption through a 749 l combi-storage. The detailed system
description and hydraulic configuration are in [29].

A conventional single-phase charging station is integrated with a power of 3.6 kW. The
driving cycle of the EV is based on the worldwide harmonized light duty driving test
cycle (WLTC) of class 3 [30]. The vehicle is assumed to be for private use on working
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days and weekends. More information on the implemented model is available in [31].
A 6 kWp PV system is integrated in each single-family house. The power profile of

the year 2017 is used and scaled up based on the data of [32]. The prediction of the PV
system is based on the work of [33, 34].

The building model is configured based on the research project data of [35]. A building
of a single floor, a cellar, and an attic is integrated. The building construction year is
between 1984 and 1994. It has a heated living area of 150 meters and a room height
of 2.5 meters. The attic and cellar are assumed to be unheated, while the living area
is heated based on a supply temperature curve that varies linearly depending on the
outside temperature. The hot water consumption is defined based on the standard VDI
4655. The hot water circulation consumption is based on the field measurements of [36].

In the base scenario, the trading interval is set to 60 mins. The utility is assumed to
be always participating to balance the market. Hence, the pmax and pmin are set by the
utility according to the fixed import and feed-in tariff, respectively. The fixed import is
0.26 e/kWh, and the feed-in tariff is 0.12 e/kWh as per the EEG 2017 [37]. An RTP
signal could have been implemented, yet it would have led to suppressing several effects
in the selected scenarios (e.g., the impact of constant minimum price).
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3 Results

3.1 Overview

This section describes the results of the analysis of the 3 aforementioned scenario groups.
The scenarios are variations of the baseline scenario and are always compared to the
reference scenario (no market). Each scenario was run for a complete year to represent
the behavior of the system in all the seasons. The overall number of market model and
reference scenarios is 98. Four metrics are used to evaluate the presented scenarios: self-
sufficiency, self-consumption, peak load, and costs. Self-sufficiency describes the share of
energy demand supplied by the prosumer, while self-consumption describes the share of
on-site generated energy consumed by the prosumer. The peak load shows the maximum
import load of the microgrid. Costs are calculated from the perspective of the prosumer
to quantify the possible cost savings using the market model. The same metrics are used
to quantify the benefits of the utility at the microgrid level.

3.2 Group A: Market design

Group A discusses two major factors influencing the market behavior. In A1, the impact
of different minimum market prices on the load shifting behavior in the microgrid and
the profitability of the prosumers is investigated. Figure 3.1 presents the results of
multiple metrics against different values of pmin. It can be seen that the self-sufficiency,
self-consumption, and peak load are almost constant and the cost results of the market
model are always better than the reference. Self-sufficiency and Self-consumption are
doubled, and the peak load is reduced for all the houses. At pmin = 0.24, which is 0.02 less
than pmax, the results falls in comparison to the lower pmin values. This behavior occurs
due to the small difference between pmin and pmax that negatively influences the market
clearing algorithm and optimization models of the markets agents. At pmin = pmax, the
market cannot operate since the price, in this case, is fixed and there are no incentives
for the prosumers to trade their energy or shift their loads.

The costs are evaluated based on Equation 2.1. As shown in Figure 3.1(d), the costs
of the market and reference model decrease as pmin increases. This reaction occurs as
the prosumer gets the chance to feed-in energy at higher prices. Furthermore, it can
be seen that the cost savings linearly decrease, as pmin increases. In other words, given
that pmax is constant and equal to 0.26, the cost savings are directly proportional to
∆p = pmax− pmin. At pmin = 0, ∆p = 0.26, the cost savings are around 30%, compared
to 8% at pmin = 0.24, ∆p = 0.02.
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(a) (b)

(c) (d)

Figure 3.1: Metrics of the scenario subgroup A1, a) self-sufficiency, b) self-consumption, c) peak
load, d) annual costs.

From another perspective, the increase in pmin can be seen as pmin−basescenario = 0 plus
transaction fees, utility fees, or ICT service fees. In all these cases, only the prosumer’s
costs are going to change. The load shifting behavior and overall load curve of the
microgrid are not going to be influenced by any changes of additional fees, as long as
there is still a minimal difference between the market floor and ceiling. Hence, if fees
have to be charged to the prosumers by the market operator for using the platform or
by the utility for using the grid to exchange energy, the magnitude of the fees should
maintain at least minimal amount of profit or cost savings for the prosumers. Otherwise,
the market will fail to operate as an energy management system.

In A2, different trading intervals are investigated. Figure 3.2 compares the 15, 30,
and 60 min trading intervals’ normalized results depending on the given metrics. The
results are normalized to the highest absolute value of the same metric. Self-sufficiency
decreases slightly as the trading interval increases. It can be seen that the difference is
< 1.5%. The standard deviation of the 15 min is also smaller than that of 30 and 60
min. Self-consumption exhibits the same behavior of self-sufficiency, where the 15 min
is higher than the 30 and 60 mins. However, in this case, no significant difference can
be noticed between the 30 and 60 min. The peak loads and annual costs in the 15 min
trading interval are the lowest.
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The performance of the 15 min trading interval is always better than other trading
intervals, as it enables the market agents to adapt the bids to the load curves without
additional averaging. Also, it helps in placing bids that fit better with the supply curves
of the PV systems. In a real-life environment, the prosumer can only place a bid and
communicate with the market platform according to the forecast resolution constraints.
Thus, if the forecasting resolution is half-hourly, but the trading intervals are quarter-
hourly, the prosumer will place the bids on a half-hourly basis. In this model, the
integrated probabilistic forecast has an hourly-resolution. A linear interpolation was
used to increase the resolution of the forecast so that the scenarios of the 15 min and 30
min intervals can be evaluated. Although the results are in favor of the 15 min trading
intervals, better results could have been achieved if the forecasting systems had higher
resolutions.

Figure 3.2: Comparison between different trading intervals at the prosumer level.

At the microgrid level, Table 3.1 shows the absolute values of the given metrics for
different trading intervals using the market and reference models. δ is calculated as

δ =
Market−Reference

Reference
×100. It can be seen that self-sufficiency and self-consumption

for the whole microgrid decrease as the trading intervals increases. δ drops from 134.1%
to 122.4% and from 128.1 % to 115.2% for self-sufficiency and self-consumption, respec-
tively. Moreover, the peak load increases from 37.5 kW to 40.6 kW at the 60 min trading
interval. This leads to a change in δ by 6.2%. At the microgrid level, costs and cost
savings are not calculated as they are calculated for each prosumer. The reference model
values at the different trading intervals are constant as no market platform is integrated.
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Table 3.1: Comparison between different trading intervals at the microgrid level.

Scenario Self-Sufficiency [%] Self-Consumption [%] Peak Load [kW]

Market Reference δ Market Reference δ Market Reference δ

15 mins 30.2 12.9 134.1 58.4 25.6 128.1 37.5 50.5 -25.7
30 mins 29.6 12.9 129.4 57.1 25.6 123.1 39.1 50.5 -22.6
60 mins 28.7 12.9 122.4 55.1 25.6 115.2 40.6 50.5 -19.5

3.3 Group B: Microgrid configuration scenarios

In group B, the impact of different microgrid configurations on the market is discussed.
In B1, the influence of the number of prosumers on the microgrid and the market is
described. Figure 3.3 shows the self-sufficiency, self-consumption, peak load and annual
costs of a 2 to 15 prosumer microgrid. Generally, it can be seen that the market can
operate properly even with a small number of prosumers. No major changes can be seen
after 4 prosumers. The most affected measure is the standard deviation. As the number
of prosumers increases, the standard deviation increases, which is typical in a real-life
situation.

Self-sufficiency decreases slightly after 4 prosumers and then maintains an almost
constant mean. This can be due to the fact that the first 4 houses have a lower yearly
energy consumption. On the other hand, the self-consumption increases from 2 to 4
prosumers and then remains constant. In this case, the same behavior can be seen in
the reference model.

The peak load increases as the number of prosumers increases. The reference model is
not influenced by the increase in the number of prosumers, as much as the market model.
The maximum standard deviation spread of the market model is between approximately
4.9 and 5.9 kW, compared to approximately 5.95 kW and 6.3 kW for the reference
model. On the other hand, the mean varies between approximately 5.1 kW and 5.3 kW,
compared to 6.1 kW for the reference model.

The mean annual cost also increases as the number of prosumers increases. However, it
can be noticed that the market and the reference model increase almost simultaneously.
This means that the increase in the annual costs is due to the addition of households
with relatively higher energy consumption and not due to the inefficiency of the market
model. The difference between the two means is almost constant in every case.

Figure 3.4 provides another insight at the microgrid level. Compared to self-sufficiency
at the prosumer level, self-sufficiency at the microgrid level is almost constant as the num-
ber of prosumers increases. On the other hand, self-consumption at the microgrid level
shows a similar behavior to self-consumption at the prosumer level, where it increases
until four prosumers and then stays constant. Similar to the peak load at the prosumer
level, the peak load at the microgrid level increases as the number of prosumers increases.
However, it can be seen that the difference between the market and the reference model
also increases. Thus, the percentage of peak load reduction achieved by the market
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improves as the microgrid size increases.

(a) (b)

(c) (d)

Figure 3.3: Metrics of scenario subgroup B1 at the prosumer level, a) self-sufficiency, b) self-
consumption, c) peak load, d) annual costs.

(a) (b)

Figure 3.4: Metrics of scenario subgroup B1 at the microgrid level, a) self-sufficiency and self-
consumption, b) peak load.
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Another aspect that can be studied among several others is the increase in PV capacity
installed at each prosumer’s house. In B2, the PV capacity is varied from 1 to 12 kWp.
Figure 3.5 shows the results of the given metrics for different PV capacities. The self-
sufficiency of all the houses with the market model increases as the PV capacity rises.
Also, the gap between the self-sufficiency of the market and that of the reference model
increases in proportion with the installed PV capacity. It can be seen that at 1 and 2
kWp the difference in self-sufficiency is not significant compared to that of higher PV
capacities. This is because the installed capacities are high enough to enable load shifting
or trading. This interpretation can be assured by the self-consumption analysis. It can
be seen that at 1 and 2 kWp the market and the reference model are almost identical
and 45 to 65% of the PV energy is consumed on site. As the PV capacity increases, the
reference model’s self-consumption decreases. On the other hand, the self-consumption
of the market model increases from 2 to 5 kWp. After 5 kWp, the self-consumption
decreases due to the excess capacity of the PV system.

Using the reference model, the peak load of each prosumer does not change signifi-
cantly, compared to the market model. This is because some loads operate after sunset,
yet these loads are shifted using the market model. Hence, a linear decrease in the peak
load can be seen, as the PV capacity increases.

The annual costs using the reference or market model decrease linearly as the PV
capacity increases. This is because in both cases, the excess PV energy is supplied to
the grid either at the market clearing price or at the fixed feed-in tariff for the market
or the reference model, respectively. However, it can be noticed that the gap between
the market and the reference model increases as the PV capacity increases. This gap
indicates that the prosumers benefit from trading the excess energy supply as in Equation
2.1.

On the microgrid level, similar behavior can be observed for the self-sufficiency as the
prosumer level. However, the magnitude of self-consumption is higher at the microgrid
level. It can be seen that at 1 and 2 kWp the difference between the market and the
reference is higher compared to the same case at the prosumer level.

Although the mean peak load of the prosumers is always higher using the reference
model than the market model as in Figure 3.5(c), the peak load using the market model
at the microgrid level is higher at 1 and 2 kWp than the reference model. The lack
of energy supply in the market led to using the generated energy locally inside the
prosumers’ houses and exhibiting the same load shifting behavior. Thus, the peak load
of the market model exceeds that of the reference model. As the volume of excess energy
increases in the market, the lower the peak load gets. It can be seen that the peak load
drops from 55 kW to 35.5 kW at 12 kWp PV.
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(a) (b)

(c) (d)

Figure 3.5: Metrics of the scenario subgroup B2,a) self-sufficiency, b) self-consumption, c) peak
load, d) annual costs.

(a) (b)

Figure 3.6: Metrics of scenario subgroup B2 at the microgrid level, a) self-sufficiency and self-
consumption, b) peak load.
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3.4 Group C: User behavior scenarios

Several variables can be used to study the impact of user behavior on the market plat-
form. In group C, the fixed load consumption is used to indicate the user behavior.
Since all the households have the same types and magnitude of flexible loads, higher
fixed loads consumption means a lower share of flexible loads. Hence, more energy can
be consumed locally by the household itself, and less can be shared with the market.
Figure 3.7 compares the different consumption behavior of the prosumers against the
metrics. The results are normalized based on the highest absolute value of the same
metric. As anticipated, prosumers with the lowest fixed load energy consumption have
the highest self-sufficiency, lowest self-consumption, peak loads, and annual costs.

Figure 3.7: Comparison between different consumption behavior at the prosumer level.

The presented results in Figure 3.7 are valid and foreseen for the market and the
reference model. However, the advantage of the market model over the reference model
cannot be recognized. Hence, Figure 3.8 shows the benefits of the low, average and high
consuming prosumers using the proposed metrics. These results show the normalized
absolute value of the δ of each metric. It can be seen that prosumers with the lowest fixed
load energy consumption are the ones benefiting most from the market model. These
prosumers can achieve the highest self-sufficiency and self-consumption. The differences
in the peak load reduction are not as high as self-sufficiency, yet the prosumers with
the low fixed load energy consumption are achieving the highest peak load reduction.
Similar behavior can also be seen at the annual cost savings metric.

The reason behind the high benefits claimed by the prosumers with the low fixed load
energy consumption is their capability to offer a higher share of the PV and their overall
electrical energy consumption. The HEMS of the prosumers with high loads between
7000 kWh/a and 9000 kWh/a always eliminates the PV bids to satisfy the fixed load
demands. Moreover, the HEMS always bids the fixed loads with a price equal to pmax
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to guarantee the operation of the fixed loads. Hence, the higher the fixed load energy
consumption of the prosumer, the less are the overall benefits from the market.

Figure 3.8: Benefits of different prosumers based on the fixed load consumption.

The analysis at the microgrid level shows another perspective. Table 3.2 shows the
absolute values of the self-sufficiency, self-consumption, and peak load. It can be seen
that as the fixed load consumption increases, the self-sufficiency of the whole grid using
the reference model increases, yet it decreases using the market model. The 2.3% increase
between low and high using the reference model can be driven by the share of load
increase occurring during the availability of PV generation. Comparing the reference
and market, it can be seen that between low and high, the δ of self-sufficiency dropped
from 122.4% to 65.4%, which is almost 50% decrease.

Self-consumption of the market and the reference model behaves similarly. Between
low and high, self-consumption increases from 55.1% to 64.1% for the market model, and
from 25.6% to 39.7% for the reference model. Although self-consumption increases in
both models, the δ decreases from 115.2% to 61.4%. This result builds upon the results
of the same metric at the prosumer level in Figure 3.8. Hence, it can be deduced that
increasing the share of the fixed load reduces the efficiency of the market.

Similarly, the peak load increases for both of the market and the reference model.
This leads to decreasing the peak load reduction capability of the market model. The
δ, in this case, increases from -19.5 to -14.4%. Hence, 5.1% is lost due to changing the
consumer behavior from low (1000-3000 kWh/a) to high (7001-9000 kWh/a).
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Table 3.2: Comparison between different consumption behavior at the microgrid level.

Scenario Self-Sufficiency [%] Self-Consumption [%] Peak Load [kW]

Market Reference δ Market Reference δ Market Reference δ

Low 28.7 12.9 122.4 55.1 25.6 115.2 40.6 50.5 -19.5
Average 26.8 14.1 90.0 59.5 32.3 84.2 44.4 53.7 -17.3
High 25.3 15.2 65.4 64.1 39.7 61.4 48.0 56.1 -14.4
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4 Conclusions

This paper presents a scenario analysis of an energy trading market model in microgrids.
The used market model enables the prosumers to trade their energy supply and demand
within the microgrids. This model does not only support the prosumers via offering a
possibility for additional economic incentives but also presents the utility a decentralized
approach to manage the microgrid and maintain the prosumers’ privacy. Hence, the
results were analyzed at the prosumer level and microgrid level to make sure that the
two main stakeholders of the microgrid could be encouraged to participate in the market
platform.

98 selected scenarios are presented. These scenarios are divided into three different
groups. The first group studied market design parameters, the second group studied
different microgrid configuration, and the third group studied the influence of the user
behavior. The results of the three scenario groups can be summarized as follows:

� The capability of the market model to act as energy management system is inde-
pendent of the price ranges (pmax−pmin) or the transaction or service fees imposed
by the market operator. The prosumers profit is the only sensitive output to the
market prices and fees; however, the prosumer will keep bidding as long as there
is a minimal profit.

� Trading intervals and resolutions can improve the benefits of the market model,
yet the forecasts’ resolution limits their impact. Forecast resolution should match
the trading intervals to maximize the benefits of the market platform to the utility
and prosumers.

� Number of prosumers and devices influence the performance of the market. The
used model showed its capability to operate with 2 prosumers, 3 devices each.
After 5 prosumers, 15 devices, the benefits of the market reach a plateau.

� Increasing the PV capacity in the microgrid influences directly the self-sufficiency,
and self-consumption, even if no market platform is integrated. However, the
market model can double the self-sufficiency and self-consumption of the microgrid.
Moreover, it leads to a linear decrease in the peak loads and annual costs of the
prosumers.

� Multiple parameters can be varied to indicate multiple user behavior. However,
fixed load consumption is found to be able to reflect prosumer lifestyle, habits
and consumption level. Based on the field measurements of different residential
household, the results show that the higher the share of fixed loads, the lower is
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the efficiency of the market. Hence, prosumers with the lowest share of fixed loads
are expected to profit the most from the market platforms in microgrids.

Energy market platforms performance is highly dependent on the nature of the market,
microgrids, and prosumers. In this paper, the most fundamental scenarios are presented.
However, there is room for studying other multiple market design parameters, technical
constraints or social behaviors. In future studies, the realization of these market plat-
forms is still to be discussed under different national legislations and ICT constraints.
Moreover, the impact of these local markets on the regional electricity market and the
overall national grid is still to be investigated.
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A Appendix

A.6 Publication 6 — Hardware in the loop (HIL) for Micro
CHP systems

Abstract

Micro combined heat and power (CHP) systems have been always offering multiple po-
tential advantages compared to conventional thermal or electric power generation sys-
tems. At the Institute of Energy Economy and Application Technology (IfE), micro
CHP test beds based on multiple technologies have been set up to be evaluated un-
der different operating conditions and control schemes. The performed evaluations and
applied control schemes have been dependent on the static load being fed to the test
bed. The static load has been representative for the system evaluation, yet the system
dynamics have been concealed during operation. To provide an accurate analysis of a
micro CHP system, the experimental analysis and simulation must tend to show out the
system dynamics under multiple real-life conditions. To achieve this goal, a Hardware
in the loop (HiL) test bed has been set up on site. In this system, a Stirling engine
based micro CHP, Whispergen 1 kWe-14.5kWth, is used along with an 800 liter heat
buffer storage in a simulation loop. The loop includes as well a single family house, room
temperature controller, and the micro CHP controller. The hardware data acquisition
system is based on LabVIEW, while the single family house, temperature controller, and
micro CHP controller have been modelled in SimulationX, a Modelica based software.
A Matlab code has been also developed to act as a communication manager between the
two programs, LabVIEW and SimulationX. Throughout this contribution, a novel test
approach of a HiL system will be presented that enhance both accuracy and flexibility
of the running system. Detailed description of both the software and the hardware side
will show the system operation strategy and the interactions between them. Further-
more, system performance will be analyzed to evaluate the system general functionality,
accuracy, robustness, and flexibility.

Author Contribution

I developed the communication system and wrote the paper; Florian Sänger integrated
the communication system with the Micro-CHP testbed; Peter Tzscheutschler reviewed
the method and the paper.
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1 Introduction

An affordable, sustainable, and reliable energy supply is one of the fundamental pillars
of a stable economy. Consequently, Europe has tended towards a decentralized small-
scale energy supply sources in form of renewable energy sources and combine heat and
power units [1]. CHPs have presented one of the main competing solutions towards a
sustainable energy supply and a pressure relief to the grid due to enabling participation
of consumers in the grid and its high availability factor. Consequently, the German
government has legalized policies, the Combined Heat and Power Act (KWKG) that
empowers CHP systems. Within the KWKG, a goal was set to have a 25% of electricity
generated in 2020 by co-generation and to minimize the CO2 emissions due to power
generation [2].

Several micro CHP types have been developed for residential use. At the Institute of
Energy Economy and Application Technology (IfE), multiple micro CHP test benches
have been set up to evaluate different micro CHP technologies (i.e., Stirling engines,
internal combustion engines and fuel cells). They are operated to evaluate the capability
of micro CHP to satisfy either or both electricity and heat demand of a household or
a building. Yet all these test beds have been operated under a static heat load profile.
The building model was initially designed in an independent software then, the heat load
was transferred to the micro CHP to fulfill it.

1.1 Motivation

Static loads have been the acceptable conventional way to operate the test bed. The
static loads might be sufficient in testing the basic operation of the micro CHP, yet
it enfolds several dynamics within the operation. These enfolded dynamics might be
affecting the comfort of the heated zone through going excessively over or below the
reference room temperature. Consequently, a feedback loop was needed not only to
ensure the comfort temperature of the zone, but also to evaluate appropriately the micro
CHP operation under different operating conditions and control algorithms. Moreover,
this feedback loop should allow the investigation of a building thermal mass activation
and its impact on micro CHP operation.

1.2 Objectives

The objective of this contribution is to present a more accurate simulation system, a
Hardware in the Loop (HiL) system, which enables integration of both Micro CHPs as
the hardware, and building models within a feedback loop. Consequently, the dynamics

A.6 Publication 6

225



of the HiL system will be presented to show out both of the building zone tempera-
ture and the micro CHP reactions to different control scenarios, also to demonstrate the
physical system capability to cope up with the simulation system. Through this contri-
bution, the methodology of developing and operating a HiL system will be presented.
The data exchange, synchronization methodology, and control parameters will be clari-
fied. Furthermore, results of operation of a micro CHP HiL system will be discussed to
demonstrate the ability of integrating both of building simulation and test beds in one
environment and in the same loop.
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2 Simulation system components

2.1 Overview

The simulation system has been developed over three platforms, where each of them have
a basic rule towards the system coherence and integration. The building models and the
micro CHP controllers have been developed using SimulationX with Green Building
Package, a Modelica based software, which enables modelling and simulation of building
models, energy management systems and micro CHP units as well. On the other hand
LabVIEW has been used to control the current test beds setup and acquire data.

To integrate both of the two platforms. Matlab has been used as a HiL manager to
coordinate the communication between both SimualtionX and LabVIEW. As shown in
Figure 2.1, the communication between Matlab and SimulationX is based on a Compo-
nent Object Model (COM) Interface, while the Transmission Control Protocol/Internet
Protocol (TCP/IP) is the commu]nication protocol between Matlab and LabVIEW. The
COM is an interface that specifies certain methods which is supported by the object,
which is SimulationX in this case. These methods do not stipulate a specific way of
implementation, but rather send calls for processing [3]. In other words, Matlab does
not dictate SimulationX about the way of processing the data through the COM inter-
face. Matlab just sends calls for reading or writing the data and starting the simulation.
On the other hand, Matlab feeds this data to LabVIEW through using the client/server
TCP/IP communication protocol that is most commonly used within networks for data
exchange.

Figure 2.1: HiL communication structure.
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2.2 Building Model

The main goal behind the building model is to simulate the influences of different factors
over the internal zone temperature. These factors include and are not limited to heat
transmission through walls, heat bridge losses, solar yields, ventilation losses, internal
yields and losses via persons, internal heat storage, and heating via multiple heating
systems.

Through SimulationX multiple zones can be independently modeled and intercon-
nected to simulate a whole building. Yet, since the goal is to simulate a single family
house. It was modeled as a single temperature zone which has a surface area of 200m2

and a height of 5m. The heating system used within the single family house was assumed
to be a radiator.

It should be mentioned that the heat yields per person such as heat of the body,
heat losses due to cold water consumption, and heat yields due to electrical devices
operations have been ignored within this model due to their limited effect on the overall
heat demand profile.

The hot water demand was not included as well within this model, as a measured hot
water demand profile out of a single family house in Miesbach, Germany [4] has been
fed directly to the test bed.

2.3 Room Temperature Controller

The room temperature control is based on a hysteresis control around a reference room
temperature, 21◦C. To achieve this temperature, the room temperature controller alters
two main variables that significantly affect the amount of energy transferred to the room
and heating power, the supply reference temperature to the radiators and the flow rate
of the circulation pump. The supply reference temperature has been predetermined
through a heating curve that varies linearly based on the ambient temperature. It
dictates 35◦C for an ambient temperature greater than 15◦C and it goes up to 55◦C for
less than -10◦C. Another heating curve, night set-back curve. A night set-back curve
has been also used. It has the same exact variation but the temperature drops by 10◦C
between the following hours 22:00 and 05:00 of the next morning. Within the simulation,
the pump flow rate is calculated based on the following equation

qv =
(TRef + HUp − TAct) × qvmax

HUp −HLow
(2.1)

qv: Pump flow rate

qvmax: Maximum pump flow rate

TRef : Reference room temperature

TAct: Actual room temperature

Hup: Hysteresis upper limit

Hlow: Hysteresis lower limit
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Thus, the pump flow rated is simply determined based on the difference between the
actual and the reference temperature, as a factor of the maximum flow rate that can be
supplied by the pump.

2.4 Micro-CHP Controller

The micro CHP controller used is as heat-led controller that fits the natural of the
Whispergen Stirling engine outputs. The main inputs to the controller are:

� CHP supply reference temperature

� Heat storage reference temperature

� Temperature of the micro CHP flow

� Temperature of the micro CHP return

The output of the controller is simply a Boolean signal to the micro CHP and the peak
load boiler.

The algorithm behind the operation of the micro CHP heat-led controller is simple
a hysteresis control around the reference temperature defined by the user. Throughout
all the simulations, the heat storage reference temperature is set to 60◦C and the micro
CHP supply reference temperature is set to 70◦C . The upper and lower limit of the
hysteresis is set to ± 5K. The peak load boiler control is based on a hysteresis control
around the same temperature as well, but with a smaller upper and lower limits ± 3K.
Yet, the peak load boiler controller does not switch on unless a specific amount of time
has passed without reaching the reference temperature.

2.5 Micro-CHP testbed setup

As shown in Figure 2.2, the test bed consists of a 800 liter combined heat buffer (CHB)
storage tank [5], which is connected to a Whispergen Stirling engine that has a 7.5-14.5
kWth and 1 kWel as per [6]. The micro CHP is connected to the heat storage via an
internal heat exchanger in which the flow has a constant flowrate. For the Domestic
Hot Water (DHW), three pneumatic valves have been set up at different flow rates to
simulate different consumption categories of the domestic hot water. The domestic hot
water supply is delivered through an internal heat exchanger within the heat storage.

Space heating (SH) is directly supplied through the heat storage. It passes a mixer, as
shown in Figure 2.2, through which the space heating flow temperature is set. The flow
goes as well through a heat exchanger which connects the heat flow of the heat storage
to a 20 kW cooling circuit, that represents the heat demand within the single family
house. The flow rate of the cooling circuit is varied to control the return temperature of
the space heating according to desired reference value.
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Figure 2.2: Hydraulic Scheme [7].

2.6 System integration

Figure 4.6 shows the overall system components integrated in SimulationX. On the top
left is the ambience block, which provides the ambient conditions to the building heated
zone. Then, the building is connected via temperature and thermal measurement block
to a temperature and volume flow defining block. This block simply receives the actual
signal from the micro CHP test bed and feeds it into the building model. Also, the
return pipe is connected to a similar system to feed back the return temperature as a
reference return temperature to the micro CHP.

Also, in Figure 4.6, the room temperature controller can be observed. It is connected
to the supply and return temperature sensor, in addition to the actual room temperature
so that it can maintain the reference temperature defined by the user. Moreover, it is
connected to the heating curve look up table to generate the reference heat supply
temperature according to the ambient conditions.

Furthermore, the micro CHP controller is integrated as independent block that is
directly connected to the micro CHP via the HiL communication manager to observe
the heat storage and the micro CHP supply and return temperature so that it can
provide the appropriate control signals.
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3 Simulation Methodology

3.1 Synchronization

Synchronization is one of the most critical requirements that needs to be fulfilled within
a HiL system to generate accurate results. The presented HiL system is designed to
synchronize and exchange data up to 1-second rate. Such high data exchange rate might
not be always needed. Yet, it is preferred to design the system initially to produce the
best possible resolution. Within this second, the HiL communication manager must
exchange the data between LabVIEW and SimulationX. Also, this second includes the
processing time of the SimulationX and data processing code within the HiL communi-
cation manager. Thus, achieving such high data communication is highly dependent on
the complexity of the model, amount of data exchange, quality of the connection, and
the computational power available.

Figure 3.1 shows out the flow chart of the HiL system run. As an initial step, an ini-
tialization signal is sent to LabVIEW to initiate the connection. Then, the HiL manager
starts up the COM server to communicate with SimulationX as well. At this phase, the
HiL communication manager is ready to exchange the data between the two software
tools. The data exchange process is a looping process that keeps going till the end of
simulation time. To achieve synchronization, the HiL communication manager calculates
the processing time of SimulationX and the data processing algorithm. If the processing
time is less than one second, it waits the reminder of a second to start the next communi-
cation iteration. Yet, if the overall processing time exceeds a second, HiL communication
manager automatically fails and recommends decreasing the communication rate.

A post processing code has been developed to collect the data out of SimulationX
with a real-time stamp in a time series to be matched with the data and time stamps
generated by LabVIEW. Through, this post processing algorithm a validation for the
synchronization between LabVIEW and SimulationX can be confirmed. Also, it en-
ables proper analysis to the control signals transferred from SimulationX to LabVIEW.
Another important advantage, is that the post processing code makes up for the mi-
nor connection losses, as the TCP/IP connection gets lost. At this moment, the post
processing can be adjusted to either interpolate linearly or to repeat the last received
signal.

3.2 Data Exchange

As shown in Figure 3.2 the data being exchanged between the LabVIEW and Simula-
tionX is fixed throughout the whole simulation. The SimulationX initiates the communi-
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cations with LabVIEW through the HiL communication manager, Matlab, with a signal
of zeros. Then, the LabVIEW replies back with the values of the following variables:

TSupply: Supply temperature of CHP

TReturn: Return temperature of CHP

TAct: Actual temperature of heat storage

TSHsupply,act: Actual SH supply temperature

qSH,act: Actual SH supply flow rate

After processing these values within SimulationX, it feeds back the following variables:

CHPON : CHP switch Boolean

PeakON : Peak load boiler boolean switch

TSHsupply,ref : Reference SH supply temperature

TSHreturn,ref : Reference SH return temperature

qSH,ref : Reference SH supply flow rate

Figure 3.1: HiL Flow chart.

A Appendix

232



The processing within SimulationX is done through two basic blocks, the micro CHP
controller and the building model. As previously explained the micro CHP controller
receives TSupply, TReturn and TAct to decide whether to switch on the micro CHP and
peak load boiler.

The building model processes the input data,TSHsupply,act and qSH,act, then based on
the current ambient temperature and the building parameters the return temperature,
TSHreturn,ref , is calculated.

Through the COM interface the TSHreturn,ref is read over and bypassed to LabVIEW
through the TCP/IP connection. After the signal is received by LabVIEW, the test bed
works on reaching the required, TSHreturn,ref , through controlling the flow rate of the
cooling circuit supplying the heat exchanger that represents the building’s thermal load.

Figure 3.2: Data exchange within the HiL.
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4 Results

4.1 Micro-CHP control

The initial priority is to validate the operation of the micro CHP controller, to make
sure that the most important component of the test bed is well operated. Figure 4.1
shows three basic plots of the SimulationX Boolean signals for the micro CHP and the
peak load boiler, the gas and thermal power of the micro CHP, then the 10 temperature
sensors that have been installed all over the height of the heat storage tank.

Figure 4.1: Micro-CHP control.

As previously explained, the micro CHP controller is a hysteresis controller that con-
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trols the maximum temperature of the heat storage around the reference temperature.
Since the reference temperature was set to 60◦C and there is an upper and lower limit
of ± 5K, the heat storage as shown in Figure 4.1, was charged to a maximum temper-
ature of 65◦C. The micro CHP was operated again when the heat storage maximum
temperature went down to 55◦C.

Throughout the charging and discharging cycles shown, it can be concluded that the
system was highly synchronized and was able to maintain an appropriate control over
the micro CHP. For the peak load boiler controller, it is based as well on a hysteresis
controller around the same reference temperature of the micro CHP, 60◦C, but with an
upper and lower limit of ± 3K. Yet, the peak load boiler controller is switched on only
when the micro CHP fails to reach the reference temperature within 60 minutes. This
switching delay can be easily observed within the SimulationX signals. It can be noticed
that around 08:30 the micro CHP was switched on, but it could not reach the reference
temperature till 09:30. Consequently, the peak load boiler switched on till the maximum
temperature of the heat storage reached 62◦C, and then switched off back again.

4.2 Space heating

To validate the operation of the space heating heat exchangers, the interaction between
the SimulationX and the test bed must be evaluated. Such interaction can be analyzed
based on the dynamics of the HiL system operation and synchronization. In another
words, it can be assessed based on the reaction of the test bed towards the SimulationX
signals back and forth. Figure 4.2 can show out the space heating pump reaction towards
the SimulationX reference signal. As expected the pump started out with its maximal
flow, 0.14 l/s, due to the initial temperature of the zone. Then, it varied along with
the variation of the room temperature. It can be noticed that the test bed has been
following almost perfectly the SimulationX reference signal.

Figure 4.2: SimulationX reference flow rate versus the testbed.

Yet, it can be also observed that there are some spikes in the test bed measurements.
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These spikes occurred due to the fast response of the pump to the TCP/IP connection
loss between the LabVIEW and the HiL communication manager. Despite the occur-
rence of these minor connection losses, the results have not been majorly affected and
the pump was able to restore itself immediately to the reference signal. The TCP/IP
connection minor connection losses did not affect the supply and return temperature
as much as the pump due to the heated zone inertia. Figure 4.3 can show out the ac-
tual supply and return temperatures compared to the SimulationX signal and it can be
noticed that there are few spikes compared to the pump.

Figure 4.3: Actual and reference supply/return temperatures.

Figure 4.4: Return temperature comparison.

For the supply temperature, the variation of the SimulationX reference signal between
the morning supply temperature and the night set-back temperature can be observed
between 00:00 and 05:00, also between 22:00 and 23:59. With minor tolerance, the test
bed was able to successfully follow the SimulationX supply temperature reference signal.
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Also, the return temperature has been perfectly fitted throughout the whole operation.
The upper and lower fluctuation have been limited to almost ±0.5K within most of the
operation time steps as presented in Figure 4.4.

The only unusual behavior within Figure 4.3 was the three temperature drops within
the day in both of the supply and return temperatures. These temperature drops can
be detailed through Figure 4.5. In that figure, the data of 10 temperature sensors that
have been installed across the heat storage tank height have been plotted throughout the
whole day. is the uppermost temperature sensor, while T-10 is the lowest temperature
sensor.

Figure 4.5: Heat storage temperature versus space heating supply temperature.

Through comparing the space heating supply temperature to the heat storage tank
temperature sensors, it can be concluded that the drop in the space heating supply
temperature is due to low storage content. The micro CHP controller switches on when
T-1 reaches 55◦C, yet the energy demand of space heating and DHW did not enable the
micro CHP to make up for the low storage content. Consequently, the space heating
supply temperature dropped simultaneously with the storage content. Yet, as soon
as the micro CHP started to charge back the heat storage tank, the space heating
supply temperature increased accordingly back to the reference value. Same conclusions
can be drawn at 05:00, it can be noticed that the SimulationX had a reference supply
temperature signal of 50◦C, yet the test bed could not satisfy it due to low storage
content.

The effect of low space heating supply temperature has been reflected on the return
temperature. It can be noticed that the return temperature dropped as well, but not as
significantly as the supply temperature due to the zone heat inertia. Such reaction of
the return temperature represents one of the main advantages of the HiL system over
the static loads feed to the test bed. In similar situation using static loads, the test bed
decreases the return temperature of the space heating significantly to fulfill the same
desired heating power.
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Figure 4.6: The SimulationX model.
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5 Conclusion and outlook

Throughout this contribution, a HiL system has been presented. The methodology of
integrating both of building simulation and test bed control software has been detailed.
Also, the components of each system, the test bed and SimulationX, have been shown
along with their integration into one environment. A HiL communication manager
has been developed over Matlab to enable communication and synchronization between
LabVIEW and SimulationX.

Within the results of this contribution, it can be concluded that the designed HiL sys-
tem is able to successfully takeover the control of the test bed. Also, it has been proven
that system is capable of simulating accurately a realistic single-family house with all
the possible conditions that could be raised throughout space heating. An example
was presented to show out the effect low heat storage content on space heating supply
temperature and the ability of SimulationX to reflect the fluctuation of the supply tem-
perature over the return temperature of the heated zone. Including these dynamics into
the system evaluation do not only lead to proper evaluation to the energy consumed by
the building, but also it can easily show out the thermal comfort of the house occupants.
Also, an occupancy profile can be included to show out whether the occupants of the
house were affected by the thermal discomfort.

Furthermore, such HiL system is based on COM interface and TCP/IP connection.
Consequently, the HiL communication manager can easily integrate the simulation model
with any software that can use TCP/IP protocol for data transfer, not only LabVIEW.
Also, the COM interface enable easy changes in the SimulationX model to enable auto-
mated variable simulation runs.

A.6 Publication 6

241



A Appendix

242



Bibliography

[1] IEA. International CHP/DHC Collaborative, Advancing Near-Term Low Carbon
Technologies, 2012. URL: https://www.iea.org/media/files/chp/profiles/

germany.pdf.

[2] M. Altmann, A. Brenninkmeijer, J.-C. Lanoix, E. D., A. Crisan, A. Hugyecz, G. Ko-
reneff, and S. Hanninen. Decentralised Energy Systems. Ip/a/Itre/St/2009-16,
page 96, 2010. URL: http://www.europarl.europa.eu/activities/committees/
studies.do?language=EN.

[3] Microsoft Development Center. What Is a COM Interface — Microsoft
Docs, 2015. URL: https://docs.microsoft.com/de-de/windows/desktop/

LearnWin32/what-is-a-com-interface-.

[4] P. Tzscheutschler. Experiences from Field Testing of Stirling Micro-CHP Systems.
Prague, Czech Republic, 2013. CLIMA 2013: 11th REHBA World Congress & 8th
International Conference IAQVEC.

[5] Sanevo Whispergen. Produktdatenblatt- Sanevo Typ 800, 2011.

[6] WhisperGen. WhisperGen product specification, 2011. URL: http:

//www.whispergen-europe.com/productspec{_}en.php?fm=whispergen{&}fp=

ProductSpecs.

[7] J. Lipp and F. Sänger. Potential of power shifting using a micro-CHP units and heat
storages. Naples, Italy, 2013. Microgen3.

A.6 Publication 6

243



A Appendix

A.7 Publication 7 — Hardware in the Loop Real-Time
Simulation for Heating Systems: Model Validation and
Dynamics Analysis

Abstract

Heating systems such as heat pumps and combined heat and power cycle systems (CHP)
represent a key component in the future smart grid. Their capability to couple the elec-
tricity and heat sector promises a massive contribution to the energy transition. Hence,
these systems are continuously studied numerically and experimentally to quantify their
potential and develop optimal control methods. Although numerical simulations pro-
vide time and cost-effective solutions for system development and optimization, they
are exposed to several uncertainties. Hardware in the loop (HiL) approaches enable sys-
tem validation and evaluation under different real-life dynamic constraints and boundary
conditions. In this paper, a HiL system of a heat pump testbed is presented. It is used to
present two case studies. In the first case, the conventional heat pump testbed operation
method is compared to the HiL operation method. Energetic and dynamic analyses are
performed to quantify the added value of the HiL and its necessity for dynamics anal-
ysis. In the second case, the HiL testbed is used to validate a model of a single family
house with a heat pump participating in a local energy market. The energetic analysis
indicates a deviation of 2% and 5% for heat generation and electricity consumption of
the heat pump model, respectively. The model dynamics emphasized its capability to
present the dynamics of a real system with a temporal distortion of 3%.

Author Contribution

I designed the experiments, developed the HiL system and wrote the paper; Lukas Mayer-
hofer operated the testbed and prepared the energetic analysis data; Peter Tzscheutschler
and Ulrich Wagner provided a detailed critical review; All authors discussed the docu-
mented results.
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1 Introduction

Installed renewable energy capacities are growing fast worldwide. At the end of 2017,
2179 GW were installed, with a growth rate of 8.3% [1, 2]. These capacities are expected
to continue growing to minimize the CO2 emissions and mitigate the climate change. In
Germany, several legislations were introduced to create a nuclear and fossil-free economy
within the framework of the energy transition [3]. Among these acts are the renewable
energy act, Erneuerbare Energien Gesetz (EEG), and the combined heat and power
act, Kraft-Wrme-Kopplungsgesetz (KWKG). The EEG prioritizes the renewable energy
sources (RES) in the energy market [4]. It guarantees a fixed feed-in tariff for the
supplier to minimize the risk of the investors. Hence, the RES reached 111 GW in
2017 [4]. On the other hand, KWKG empowers the integration of combined heat and
power (CHP) systems in the national grid. A goal was set to generate 25% of the
electricity by co-generation by 2020 [5]. As these two acts increased the renewable
energy capacities and increased the system efficiency, they raised several challenges in
the national grid and made the traditional grid management techniques rather obsolete.

Sector coupling is one way to address these challenges faced by the grid. Heat pumps
and CHP systems are the key drivers behind the electricity and heat sectors coupling.
The attractive costs and lifespan of heat storages enable these heating systems to be
the most economically feasible candidates to offer flexibility and mitigate the fluctu-
ating RES. Moreover, the continuous improvement of these systems efficiency led to a
significant decrease in the operation and maintenance costs [6].

Given these heating systems potential in the current and future national energy sys-
tem, several researchers modeled and studied these heating systems [7, 8, 9, 10, 11, 12,
13]. Although the presented heating system models can predict to a reasonable extent
the energy generation or consumption of a real-system, they are exposed to several un-
certainties as they are designed to be integrated into larger models under specific system
constraints. Hence, field tests and testbeds were used to investigate the quality of the
results and analyze the real-life system dynamics. Although field tests provided the ut-
most accurate results, they are costly and do not offer enough control flexibility [8]. For
control algorithms’ development and evaluation, testbeds are considered the most feasi-
ble option [14, 15]. However, the testbed operation approach can significantly influence
the results.

Hardware in the loop (HiL) is an approach to simulate and evaluate thermal system
dynamics under multiple environmental constraints. The fundamental idea of the HiL
is to integrate real hardware in a simulation loop. Real hardware replaces the numerical
model of a system to study and evaluate the quality of a developed control or optimiza-
tion algorithm [16]. Hardware can also be integrated with multiple numerical models to
investigate its reaction to different model combinations. As an example, a HiL system
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of a heat pump as hardware and a controller as software can be used to evaluate the
quality of the control system. Also, a building model can be integrated to show the heat
pump dynamics and reaction to different building types, ages or sizes.

In the literature, HiL simulation is being used in several fields. According to [16, 17], it
has been used for over 50 years. An early application was in the flight and missiles control
industry as in the Sidewinder program in 1972 [18]. It has also become more popular
in other industries. As an example, HiL represents a crucial tool in the automotive
industry nowadays [17, 19]. It is extensively used for engine and suspension systems
control and design. Moreover, Hil is also used for testing unmanned aerial vehicles as
in [20]. In the electrical power sector, applications of HiL for testing and validating
are growing. Sun et al. [21] used a HiL system to study the dynamic performance of a
switch-mode power amplifier. In [22] a power HiL system was introduced and used to
evaluate a case study of a Great Britain network. Rosa et al. [23] implemented a HiL
system to investigate and compare the performance of multiple control techniques for
Single-Ended Primary Inductance Converter (SEPIC). Castaings et al. [24] investigated
different energy management strategies with electric vehicles using a HiL system in real-
time. The author’s setup facilitated the evaluation of the effectiveness of the designed
EMS strategies in real-time. Furthermore, Ruuskanen et al. [25] designed a HiL system
for water electrolysis system emulation. Through this system, the author was able to
study the electrolyzer characteristics in a smart grid. In [26], voltage control coordination
scenarios were validated based on a HiL system. The authors used HiL in a real-time
simulation to validate the capability of RES to provide voltage control in a smart grid.

Although several publications are available for power HiL systems, a limited number
of publications discussed the heating systems in buildings. Among these publications is
the work of [27], where a HiL simulation system was developed to evaluate the control
strategies of a hydronic radiant heating system. The author replaced the model of a
hydronic network with real hardware to minimize the results uncertainties. In [28], a HiL
system was developed to simulate micro-CHP systems with different building models.
The author showed the necessity of a HiL system in the operation of micro-CHP testbeds
and evaluation of optimization and control algorithms.

At the Institute of energy economy and application technology (IfE), several testbeds
were developed to evaluate the common heating systems at different scales as in [29,
15, 30] and recently in [14]. A testbed is necessary to demonstrate and validate the
novel optimization algorithms and control strategies being developed. Through these
testbeds, the operational requirements and technical constraints were easily defined.
Ideally, a heating system testbed should also be able to demonstrate and emulate a real
building with a heating system and is expected to eliminate all the uncertainties, as real
hardware is used. However, as the buildings are emulated by heat sinks, uncertainties
can emerge, and the building dynamics in certain cases diminish. Thus, a HiL system
was introduced in [28] to address these uncertainties with micro-CHPs operation. In this
paper, the recent advanced HiL version of [28], the testbed in [14] and model presented
in [31] are used to demonstrate the following aspects:

� A comparison between heating systems testbeds operation with HiL and without
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HiL system simulation

� An energetic and dynamics analysis to quantify the benefits of HiL simulation with
heating systems

� A model validation of the heat pump dynamics and interactions within a microgrid

The structure of the paper is as follows. Section 2 shortly describes the different nu-
merical and experimental methods used to analyze a heating system. Section 3 demon-
strates the HiL system structure including the testbed and building model. Moreover,
it presents the input system parameters. Section 4 demonstrates the results of the two
different case studies. Section 5 presents a conclusive summary.
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2 Heating Systems Analysis Methods

Numerical simulation provides the ideal environment for testing and evaluation of a
heating system performance connected to different buildings types. Compared to exper-
imental testing, it saves efforts, costs, and time to investigate a specific heating system.
However, it is exposed to several uncertainties, and its accuracy is questionable. Hence,
the experimental investigation has always an edge over the numerical simulation as it
eliminates the modeling uncertainties.

Figure 2.1: Abstract diagram of different methods for heating system analysis.

The experimental testing can only be performed using hardware, or hardware and
numerical models as HiL. Figure 2.1 presents an abstract comparison between heating
system analysis using numerical simulation, hardware only (without HiL), and hardware
and numerical models (HiL). The conventional method to evaluate the heating system
experimentally is using hardware only. A reference profile that is obtained within a
field test or by a simulation model is fed directly to the testbed. This reference profile
contains the thermal load of the building over a specific period of time. The testbed
hydraulic circuit emulates this load profile using a heat sink to evaluate the reaction of
the heat source and heat storage. Although the heating source such as a heat pump or a
micro-CHP system is a real system, the results of the whole experiment are exposed to
uncertainties because of the heat sink emulation of the reference load profile. The heat
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sink always tries to reach the set reference profile, even if it has to decrease the return
temperature to or below the room temperature. As a conventional alternative solution,
return temperature can be held constant, yet it diminishes the dynamics of the whole
testbed operation.

A combination of hardware and numerical simulation is considered to be the optimal
method for heating systems analysis and models validation. The heat source and heat
storage are integrated as hardware with a building model using HiL system to evaluate
and validate heating systems dynamics and performance. Consequently, the building
model can calculate realistic return temperatures and the feedback of the building for
any violations introduced by the heating source. Furthermore, the room temperature
can be simulated by the building model to analyze the user comfort in real-time.

A Appendix

250



3 HiL Simulation System

3.1 Communication Structure

Figure 3.1 shows the detailed control loop of the implemented HiL model. The heat
pump (HP) controller, temperature controller, building model, and the tapping profiles
are implemented in SimulationX, which is a Modelica based software. More details
about the models are explained later in this section. The testbed, the hardware, is
presented by three modules: heat sink, heat storage, and heat source, which are the
typical components of a heating system testbed. A LabVIEW program controls the
different components of the testbed and feeds the output to the database.

Figure 3.1: Detailed control diagram of the HiL system.

The communication between the model in SimulationX and LabVIEW is managed
by the HiL manager, which is based on MATLAB. The data is transferred using the
TCP/IP protocol between the HiL manager and LabVIEW, while COM interface is used
to manage the SimulationX. The details of the HiL manager communication protocols
and sequence are thoroughly documented in [28].

Other communication systems were tested such as exporting the building models in
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the C programming language (C-code) and importing the model in LabVIEW. However,
processing the C-code in real-time desynchronizes the LabVIEW real-time control loop.
Moreover, the number of inputs and outputs to and from the C-code are limited. Hence,
using C-code for integrating models in real-time LabVIEW control systems is not feasible
for heating systems applications.

The communicated data between the testbed and the SimulationX models is depen-
dent on the functionality of the model and testbed module. The HS controller receives
the actual heat source supply temperature θHeatSoruce,supply,actual, actual heat source re-
turn temperature θHeatSoruce,return,actual, and temperature of the storage θstorage,actual
from the testbed. Moreover, it receives an external control input signal Sm that is devel-
oped from the model described in [31]. Based on these input signals, the HS controller
sends a binary operation signal Cs to the testbed heat source. The temperature con-
troller receives θset and θactual, which are the set room temperature and the actual room
temperature, respectively. Based on these two inputs and weather data Dw, the tem-
perature controller can calculate the set flow rate ϕflowrate,set, and the set space heating
supply temperature of the θsupply,set. The building model receives Dw, actual flow rate
ϕflowrate,actual, and the actual supply temperature of the space heating θsupply,actual.
Based on these inputs and the building model, the return temperature θreturn,set can be
calculated and forwarded to the testbed. Communicating the θreturn,set each second in
this HiL simulation system maximizes the results accuracy and enables the testbeds to
present realistic dynamics that is comparable to field measurements. Tapping profiles
can also be integrated as a model and communicated as energy profiles ET to the heat
sink.

3.2 Testbed Components and Description

The testbed system consists of three modules and a brine water heat pump with a
thermal power of 10.31 kW and a COP of 5.02 by B0/W35 as per standard EN14511.
Two circulations pumps are integrated into the heat pump on the brine and the water
side. Moreover, it is equipped with an emergency electrical heater of 8.8 kW. Figure 3.2
shows the simplified hydraulic schematic of the used testbed.

A ground-source heat pump required an emulator to show the dynamics of the ground
heat exchanger. Module A includes a ground-source emulator that can provide any
required brine temperature to the heat pump. It consists of 300 L heat storage, filled
with a water-glycol mixture as an anti-freezing heat transfer fluid. The storage is heated
by a 12.5 kW electrical heater that is controlled via a hysteresis regulator to maintain
the tank temperature during the whole operation time at 40 ◦C. The set temperature
of the tank and the hysteresis bandwidth can be defined by the user depending on
the simulation goals. A mixer, similar to the conventional space heating mixers, is
used to mix the supply of brine tank with the return of the heat pump to reach the
required ground-source set temperature. Depending on the HiL system and the goal of
the simulation, the mixer can maintain a constant brine temperature or a time-dependent
temperature profile.
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Figure 3.2: Hydraulic schematic of the heat pump testbed [14].

Module B shows the combi-storage system of a conventional residential house. It
includes a 749 L combi hygienic buffer storage to cover the space heating and domestic
hot water consumption. A stainless steel heat exchanger extracts heat from the storage
to cover the hot water consumption. Moreover, a coaxial pipe, pipe-in-pipe system, is
used to enable the hot water circulation and maintain the pipe temperatures at a certain
level.

Module C is the most complex module as it represents the heat sink of the testbed. It
can emulate the space heating and domestic hot water consumption depending on the
building type and user behavior. The space heating circuit consists of a space heating
mixer, circulation pump, and two heat exchangers. Through the mixer, the supply of
the tank with the return of the space heating is mixed to reach the required θsupply,set.
The circulation pump is controlled according to ϕflowrate,set, which varies depending
on the heat demand. Two heat exchangers of two different sizes are used to emulate
different building loads depending on their required maximum heat power. The domestic
hot water consumption is emulated through three magnetic valves that have different
consumption flow rates. These valves can represent different consumption activities such
as washing, showering or cooking.

The hydraulic configuration in Figure 3.2 shows only one of the most common hy-
draulic configurations. However, the testbed can allow several other configurations, such
as a direct connection of the heat pump to module C or using additional heat storage
for hot water consumption. More details about the hydraulics, control, and dynamics of
the testbed are available in [14].
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3.3 Models Description

Earlier in [31], a market model is presented based on a double-sided auction, in which
different household devices and heating systems can participate. The heating system
bids their energy needs to either decrease costs or increase comfort. In this paper,
the market control approach is going to be used to develop the external control signal,
Sm. The control signal provided in this case is a binary signal, either 0 or 1. The HS
controller reacts to the signal as in Equation (3.1), where θHeatSource,supply,max is the
maximum heat source supply temperature, θHeatSource,return,max is the maximum heat
source return temperature, and θstorage,max is the maximum storage temperature at a
specified sensor position.

CS =





0, if θHeatSource,supply,actual ≥ θHeatSource,supply,max,

0, if θHeatSource,return,actual ≥ θHeatSource,return,max,

0, if θstorage,actual ≥ θstorage,max,

Sm, otherwise

(3.1)

The Sm is considered in full control, yet the HS has to make sure that the heat source
operation never exceeds the operation limit set by the manufacturer.

The temperature controller sets the flow rate and the supply temperature of the heat-
ing circuit. The flow rate is determined based the room actual temperature θactual and
set temperature θset. It operates based on a hysteresis algorithm. The set flow rate of
the heating circuit ϕflowrate,set is calculated based on θactual − θset, ∆+

r , and ∆−
r , where

∆+
r and ∆−

r are the hysteresis upper and lower limits, respectively. These limits are
determined by the user depending on the level of comfort required. The smaller the
absolute value of ∆+

r and ∆−
r , the higher the comfort. Equation (3.2) details the control

cases of the flow rate.

ϕflowrate,set =





ϕflowrate,min, if θactual − θset > ∆+
r ,

ϕflowrate,max, if θactual − θset < ∆−
r ,

ϕflowrate,max − ϕflowrate,min

∆+
r −∆−

r

×(θactual − θset) + ϕflowrate,min, otherwise

(3.2)

The supply temperature is determined based on the outside temperature given in
Dw. The supply temperature varies linearly against the outside temperature. The lower
the outside temperature, the higher the supply temperature of the space heating system.
The limits and the magnitude of this linear relationship between the outside temperature
and the heating system supply temperature are defined based on the age of the building
and the type of the radiators. In Section 3.4, the used supply temperature curve is
explained.
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3.4 Model Input Data and Parameters

The building model is created and calibrated based on the research project data of [32].
It consists of three heated zones to represent an attic, a living area, and a cellar. The
base model is available in the Green City package of SimulationX [33]. The construction
year of the building is between 1984 and 1994. The living area has 150 square meters and
a room height of 2.5 m. The cellar and attic are unheated. The living area is heated, and
the temperature is maintained at 21 ◦C. In Table 3.1, a summary of the most important
input data parameters is presented.

Table 3.1: Building and control models basic parameters.

Description Value Units [-]

Building age 1984–1994 -
Building type residential -
Flanking none -
Number of occupants 4 -
Heated living area 150 m2

Clear room height 2.5 m
Body heat dissipation per person 80 Watt
Set temperature—θset 21 ◦C
Initial zone temperature 21 ◦C
Upper hysteresis limit—∆+

r 0.5 K
Lower hysteresis limit—∆−

r −0.5 K
Heating system exponent 1.2 -
Max. flow rate—ϕflowrate,max 0.24 L/s
Min. flow rate—ϕflowrate,min 0 L/s
Max. heat source supply temperature—θHeatSource,supply,max 65 ◦C
Max. heat source return temperature—θHeatSource,return,max 55 ◦C
Max. storage temperature (lowest layer)—θstorage,max 55 ◦C
Night setback 10 K

A winter cloudy type day is selected based on the VDI Standard 4655. The ambient
weather temperature, the global solar irradiation, and the cloudiness are shown in Fig-
ure 3.3. According to the standard, the average temperature should be below 5 ◦C and
the cloudiness should be higher than 5/8. On the selected day, the average temperature
and cloudiness were 3.15 ◦C and 7/8, respectively. The number of cloudy winter days
in the reference year was 85 days. The presented profile represents a typical average
day of the given year in Munich, Germany. A winter type day is chosen to show clearly
the influence of HiL on the quality of the results. A summer type day could have been
selected, yet the space heating circuit would not be activated in this case. Hence, the
HiL influence would not be noticed.
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Figure 3.3: A winter cloudy type day temperature and global irradiation.

The heating circuit supply temperature is defined according to Equation (3.3), where
θa is the ambient temperature. As shown, the supply temperature varies depending
on the outside ambient temperature. The slope of the supply temperature is defined
according to the recommended operation constraints and the nature of the building
itself. Moreover, the required set temperature and user comfort level play an important
role in deciding the slope of the heating curve. A change in the set temperature or the
comfort level can be accompanied by a parallel shift of the heating circuit supply curve.
As an example, if an increase in comfort is required, a parallel, upwards shift can be
made. Alternatively, if the user needs to decrease the costs, the heating curve can be
shifted downwards.

θSupply,set =





50, if θa < −20

−0.625× θa + 37.5, if − 20 ≤ θa ≤ 20,

25, if θa > 20

(3.3)

A Appendix

256



4 Results and Analysis

In this paper, two cases are evaluated. The first case compares the testbed operation
with and without HiL to present the added value and necessity of the HiL system.
The comparison is based on energetic and dynamics analysis of the two experimental
methods. The energetic analysis compares the energy consumption of the heat source
and heat sink on the given type day. The dynamic analysis investigates and compares
power and temperatures over time of the two experiments.

In the second case, the HiL system is used to validate a single family house model
with a heat pump participating in an energy market. The preliminary market model
was presented in [31]. The system dynamics evaluation of the model is crucial as it
influences the time, volume and price of the heat pump energy bid in the market. Hence,
a comparison is conducted between the HiL system and the model to evaluate and
demonstrate the model accuracy.

4.1 Case 1: Testbed Operation with and without HiL

The goal of this case study is to evaluate the testbed operations with and without HiL to
quantify the added value and present the necessity of the HiL systems. A reference load
profile is generated from the building model using the type day presented in Section 3.4.
The building model is connected to an over-sized heating source or a district heating to
simulate the exact heat demand profile of the building without any compromises on the
comfort side of the user.

Figure 4.1 presents the energy consumption and generation of the type day experiment,
where Eel is the electric energy consumption of the heat pump, Eth is the thermal energy
generation of the heat pump, Ebrine is the energy consumed on the brine side, and Esh

is the energy consumed by the building. It can be seen that the deviation is between
0.2% to 5.5%, which is relatively small. However, it can be noticed that using the
same metrics, the operation without HiL always has a lower consumption than the one
with HiL. The reference space heating profile consumption is 132.8 kWh, compared to
135.3 kWh for the operation with HiL and 128.4 kWh for the operation without HiL.
Although the experiment with HiL system is closer to the reference, it does not indicate
a significant failure in the experiment without HiL. Hence, operating heating system
testbeds without a HiL communication system has been widely accepted over the past
years.

A.7 Publication 7

257



Figure 4.1: Energetic analysis of the testbed performance with and without HiL.
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Figure 4.2: Comparison between the space heating dynamics of the testbed operation with and
without HiL against the reference profile, (a) space heating thermal power (b) space
heating supply and return temperatures.

Insight on the dynamics and the difference between the testbed operations with and
without HiL can be presented in Figure 4.2. Although the energy consumption is almost
equal, a significant difference can be seen in the space heating dynamics between the
operation with HiL, without HiL and the reference profile. Between 00:00 and 06:00
in Figure 4.2a, no differences can be noticed. The testbed operations are identical to
the reference profile. With the increasing demand after 06:00 and the lack of sufficient
energy in the heat storage, the power dropped. The testbed operation without HiL
reaction was to reduce the return temperature trying to maintain the same power, as in
Figure 4.2b. The return temperature, in this case, decreased to 17 ◦C, which is a major
violation as the return temperature became lower than the room temperature. The
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testbed would have reduced the return temperature even to a lower level than 17◦C,
but the cooling circuit capacity constrained it. On the other hand, the HiL system
maintained a plausible return temperature due to the integration of a building model in
the loop. Moreover, the HiL increased the thermal power after 08:00 to make up for the
thermal power drop started at 06:00 and maintained a proper temperature, while the
testbed operation without HiL continued to simulate the reference profile.

Another drop in power can be noticed between 12:00 and 18:00 for the HiL system. The
testbed operating without HiL maintained the reference load profile power, even though
there was not a sufficient amount of energy in the storage. This can be confirmed by the
decrease in supply temperature noticed in Figure 4.2b. This drop is due to incapability of
the heat pump to meet the demand. The HiL maintained a plausible return temperature,
but return temperature without HiL decreased significantly. Although the power of the
testbed operation without HiL seems acceptable, the return temperature dynamics are
not realistic and can not be relied on for model validation or further research.

The behavior of the space heating circuit without HiL led to another operation plan
for the heat pump, although the same control strategy is used. As in Figure 4.3, the
heat pump started at the same time and behaved similarly within the first operation
cycle. With the second cycle starting at 06:00, a difference can be seen that is increasing
over time as seen at 15:00 and again at 20:00. This difference can lead to a significant
error in the evaluation of energy management systems and cost optimization models
based on variable electricity tariffs, or in energy market model as in Section 4.2. The
exact operation plan represents a necessity in evaluating and validating the flexibility
potential of heat pumps.
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Figure 4.3: Thermal and electrical power of the heat pump with and without HiL.
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4.2 Case 2: Model Validation Based on HiL

Based on the model presented in [31], 10 single family residential houses are simulated
located in Munich, Germany. These houses are participating in a local energy market,
where each device sell or buy energy depending on its operation mode. Each house is
equipped with a photovoltaic system, an electric vehicle and a heat pump. The installed
PV capacity at each house is 6 kWp. The technical details and the data of the integrated
PV system can be found in [34]. A 3.6 kW charging station is used for the electric vehicle,
while the integrated heat pump is represented by the testbed in Section 3.2. More details
about the heat pump testbed can be found in [14]. A single family house is selected from
these 10 houses to be validated based on the HiL system and the heat pump testbed.

The goal of the model validation is to compare the operation of the heat pump in
the model to the testbed with HiL while making sure that the building load is covered
and the room temperature is properly maintained. On the heat sink side, Figure 4.4a
shows that the space heating power of the testbed with HiL and the simulation are
behaving similarly. Even when a drop in the thermal power occurred at 17:00, it did
not influence the room temperature as shown in Figure 4.4c. The room temperatures of
the completely simulated model and HiL are showing similar dynamics. A difference can
be noticed between 09:00 to 22:00, yet this difference is below 0.02 ◦C. In Figure 4.4b,
the supply and return temperature of the HiL testbed and simulation model can be
compared. The supply temperature is varying based on the supply curve earlier defined
in Equation (3.3). It can be seen that the supply temperature shows plausible results
except at 17:00, where a drop in the temperature can be noticed because of the low
storage content. An operation without HiL would have led to a proportional decrease in
the return temperature, yet the HiL system maintained realistic dynamics. Comparing
the model to the HiL, it can be noticed that the return temperatures are not violated,
and both the HiL and simulation dynamics are comparable except at the starting point,
where minor fluctuation occurred by the simulation solver. In the HiL measurements,
spikes can be noticed to due few data packet losses n the communication between the
testbed and model. However, it does not influence the overall results.

The behavior of the heat pump in the HiL and simulation is almost identical as in
Figure 4.5. The magnitude of the thermal and electrical power is equivalent, which
means that the heat pump has been providing power to the heat storage almost at the
same supply temperature. In this type day, the energy difference between the HiL system
and the simulation is 2% and 5% for the heat generation and electricity consumption,
respectively. However, the HiL based validation in this paper does not only concern
the energetic consumption but also the temporal distortion of the power. The time and
volume of the heat pump bid in an energy market have to be evaluated to validate the
accuracy of the model.

In [14], the thermal and electrical power of the heat pump model were validated
independently based on mean absolute percentage error (MAPE) and root mean square
error (RMSD). However, since the temporal distortion of the model compared to the
HiL is crucial to evaluate the model capability in participating in energy markets at
the estimated times, the temporal distortion index (TDI) of [35] is used. This metric
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is based on the dynamic time warping (DTW) developed in the 1970s, which is used
to evaluate the temporal distortion between two different time series. In this paper,
the two time series are the HiL measurements and simulation model time series of the
heat pump electrical power. The DTW finds the optimal warping path (i.e., a common
set of instants) by minimizing the distance between the two given time series. The
TDI can be calculated then according to Equation (4.1), where i and j are the HiL
measurements time series index and simulation model time series index, respectively.

TDI =
1

N2

k−1∑

l=1

|(il+1 − il)(il+1 + il − jl+1 − jl)| (4.1)

The output of the TDI is between 0 and 1. The lower the value of the TDI metric, the
lower is the temporal distortion. The metric result in this type day is 3%, which means
that temporal distortions between the HiL measurements and the simulation model are
low.
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Figure 4.4: Comparison between the heat pump dynamics of the testbed operation with HiL
and simulation model, (a) space heating thermal power (b) space heating supply
and return temperatures (c) room temperature.
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Figure 4.5: Heat pump thermal power and electrical power on the type day.
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5 Conclusions

In this paper, hardware in the loop (HiL) real-time system is presented. The HiL com-
munication structure, models and testbeds are explained to show the experimental setup
of HiL for heating systems. Two case studies are demonstrated to evaluate the potential
and applications of the HiL. The first case study evaluates the energy consumption and
dynamics of the testbed operation with and without HiL. The results of the case study
are summarized as follows:

� Testbed operation with or without HiL does not influence the heat energy con-
sumption of the heat sink (space heating), or the heat energy generation from
the heat pump. The variations in results are between 0.2% and 5.5%. Hence,
energetically no significant difference can be noticed.

� The dynamics of the testbed operation without HiL showed that a drop in the
space heating supply temperature is always accompanied by an equivalent drop
in the return temperature of the space heating. Thus, testbed operation without
HiL can not emulate real-life return temperature dynamics and can lead to system
violations.

� The HiL system is able to maintain realistic dynamics due to the availability of a
building model in the loop.

� The violations of the testbed operation without HiL led to a shift in the operation
plan of the heat pump. Hence, the testbed operation without HiL is not reliable
for heating system models validation.

In the second case study, the HiL system is used to validate a single family house
building participating in a local energy market. HiL is chosen as it is necessary to
validate not only the energy consumption but also the system dynamics and the temporal
distortion of the model. The simulation model showed its capability to present the heat
pump system dynamics including any drops in the supply temperature or the heat storage
of the tank. The HiL also showed the advantage of demonstrating the room temperature
of the building model for the given type day, which facilitates evaluating the comfort of
the residents and comparing it to the simulation model. Furthermore, TDI is used to
quantify the temporal distortion of the heat pump to make sure that the electric energy
consumption is communicated at the right time of the day. The TDI value is 3%. Hence,
a minimal temporal distortion can be noticed between the HiL and the simulation model.

As an outlook, HiL for heating systems can be used for several further studies. It
enables not only an accurate validation of a simulation model but also experimentation
using a building model inertia to offer flexibility to the grid. The HiL can also be further
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developed to include multiple heating systems that can communicate and interact in the
same local heating network or microgrid.
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