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Abstract
Future railway systems and applications address a railway traffic that

is both safe and efficient. Prominent examples are: train-side collision
avoidance systems, virtual coupling, and autonomous train driving. These
systems and applications rely on a train localization that provides an exact
location of the train within the track network. This train localization is
safety-critical and therefore the approach requires a continuous availabil-
ity and a track-selective accuracy. Current train localization is based on
infrastructure with costly way-side components. This thesis focuses on the
onboard train localization that uses exclusively sensors that are mounted
on the train. Onboard train localization needs appropriate sensors in com-
bination with a track map and a method that computes a track ID and
a location on that track. This thesis presents research on train-mounted
sensors, several localization methods and a mapping approach for the re-
quired track map. The localization and mapping methods are based on
a Bayesian estimation framework and estimate the probabilistic posterior
distribution.

The train mounted sensors GNSS, IMU, and magnetometer are ana-
lyzed as well as novel approaches of track feature measurements are pre-
sented with inertial measurements of train kinematics caused by the track
geometry, the measurements of passive magnetic track features, and the
measurements of vibratory track features.

The special track map may initially not be available, suffer from in-
completeness, insufficient accuracy or outdated information. Therefore,
a simultaneous localization and mapping approach, called RailSLAM, is
presented. This probabilistic mapping method addresses the creation and
maintenance of the feature rich track map.

Three train localization methods are presented and implemented: a
simple map-match method which requires very accurate positioning, a
probabilistic particle filter method and a probabilistic multiple hypothesis
tracker method. The train localization methods are evaluated for track-
selectivity and compared. The evaluation is based on recorded measure-
ment data of a regional train at regular passenger service. The particle
filter and the multiple hypothesis filters showed results with 100 % track-
selectivity even with real measurements and a prior recorded RailSLAM
track map over 230 km of train data. The RailSLAM track map is cre-
ated from multiple train runs and comprises nine geometric values: a 3-D
position, 3-D attitude and 3-D curvatures.
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Chapter 1

Introduction

1.1 Motivation

Since the beginning of railway transportation in the 19’th century, it is a
concern to prevent train accidents. Therefore, train control systems with
signaling have been established for a safe railway traffic. These systems
manage the exclusive access of trains to certain tracks and sections for a
collision free operation. Over time, the technical systems became more and
more elaborated, but severe train accidents still happened.

Currently, a global trend in railways is a modernization of the train
control systems. This modernization comprises improved train control and
automatic train protection (ATP) systems for higher safety and efficiency.
In Europe, the European train control system (ETCS) is currently de-
ployed in many countries [1]. In the United States, the positive train
control (PTC) system is currently implemented in many trains [2, 3]. Be-
side the modernization of train control systems, new concepts for a safe
and efficient railway traffic have been proposed and developed in recent
years. The research of this thesis is motivated with the development of
the railway collision avoidance system (RCAS) at the German Aerospace
Center DLR (Deutsches Zentrum für Luft- und Raumfahrt). RCAS is an
infrastructure-less and decentralized system, which is installed on trains
[4]. Usually, railway collision avoidance is realized by signaling with ATP.
RCAS is an independent system that is not connected to the signaling sys-
tem. The main system components of RCAS are a train localization unit
with onboard sensors, a radio communication system, and an interface for
the train driver. Each train localizes itself within the railway track network
and communicates its location and its current velocity to all other trains or
track workers. Each train receives messages from trains in the vicinity and
all train trajectories are checked for potential collision courses. Finally, an
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interface for the train driver visualizes the current traffic state and issues
an alert if necessary. In addition to the collision avoidance functionally,
RCAS can provide a complementary and independent speed monitoring
to prevent derailments. As an independent system to any ATP, RCAS is
suitable to increase safety as an overlay system, as a fallback system as
well as a safety system on side-tracks where train protection systems are
not installed.

The development of RCAS generated a need for a track-selective and
continuous train localization based on measurements of onboard mounted
sensors. This localization requires also a special map of the railway environ-
ment. In this thesis, a map-based train localization concept with onboard
sensors is designed and analyzed. Furthermore an automated mapping con-
cept, called RailSLAM, is developed. This thesis encompasses a theoretical
assessment of the novel concepts, implementations as well as evaluations
with measurements recorded on a regional train.

The safety performance report of the European Railway Agency [5]
counts yearly 86 significant accidents by collisions and 94 derailments as
average performance figures per year between 2010-2012 of the European
Union. This report concludes, that accidents by train collision or derail-
ment happens every second day on average in the EU. The figures on train
collisions include train-to-object and train-to-train collisions. About 12 %
of the collisions in 2012 were train-to-train collisions [5]. Reported indi-
cators to dangerous incidents are called precursors to accident and the
ratio of reported precursors to significant accidents is 12:1. There are 468
reported precursors to accident on wrong-side signaling failures and 2318
precursors to accident of signals passed at danger [5]. These figures relate
to 7.6 dangerous incidents per day on average in the EU. A collision avoid-
ance system, such as RCAS, can warn the train driver in advance and is
likely to be effective at preventing these incidents.

Additionally to safety, the efficiency of railway traffic can be optimized
in terms of capacity, which refers to an increased number of trains per hour
and track. The moving block method considers an increased capacity with
a reduced safety distance between trains down to the braking distance and
is considered in ETCS level 3 [1]. In contrast, a state-of-the-art interlocking
uses fixed blocks of a track section. The moving block is dynamically
defined around the train at a train control computer with a safety distance
from the rear of the train to the train front plus the braking distance
[1]. This safety distance is smaller than the fixed block. The technical
elements are a train localization unit, wireless communication links from
each train to the central train control and a cab signaling. A further



1.2. Problem Statement 3

reduction of the safety distance below the braking distance is possible with
a new application called virtual coupling [6, 7, 8]. In virtual coupling, a
train follows another train at a very close distance of a few meters. For safe
operations, the train driver is excluded from the distance control. Virtual
coupling requires a direct, robust wireless communication link between the
trains as well as a train localization unit in combination with a reliable
distance estimation.

Finally, automatic train operation (ATO) systems can operate a train
without a driver or attendant autonomously in the highest automation
grade, called unattended train operation (UTO) [9]. There are more than
25 subway systems with UTO by 2011 [10]. These systems require special
infrastructure at wayside and platforms for the replacement of the train
driver. UTO systems are often in enclosed railway environments with no
level-crossings and are monitored by a centralized train supervision [11].
Furthermore, the railway traffic of a subway is a homogenous traffic with
similar travel speeds and usually one operator, the same type of trains and
one schedule. In contrast to homogenous traffic, a mixed traffic comprises
cargo and passenger trains on the same track network with widely varying
travel speeds. Fully autonomous trains for mixed traffic with no special in-
frastructure is currently a challenge. Rüdiger Grube, the former director of
Germany’s largest railway company (Deutsche Bahn AG), has announced
autonomous trains in mixed traffic until 2023 [12].

All mentioned railway applications collision avoidance, virtual coupling,
and autonomous train driving require an accurate and reliable train local-
ization as well as a spacial map of the railway tracks.

1.2 Problem Statement

Future safety critical railway applications and systems require a train lo-
calization unit with sensors mounted on the train. Train localization de-
termines a location called topological location in the following. This topo-
logical location consists of a track ID and a one-dimensional location on
that track. The topological location cannot be measured directly with on-
board mounted sensors, because the track ID and the origin for the 1-D
location are arbitrary definitions and not physical quantities. This circum-
stance is designated as the train localization problem. Furthermore, the
major requirements for safety critical train localization are a continuous
availability and a track-selective accuracy. The train localization challenge
is to design a train localization unit, that is based on onboard sensors,
with a continuous availability and a track-selective accuracy. Moreover,
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appropriate sensors must be identified for their suitability with respect
to train localization. The solution must cope with hidden variables such
as the topological location, imprecise measurements from multiple sensor
sources, and measurement outages.

Onboard train localization does not rely on cost-intensive track-side
equipment. Instead, a train localization based on onboard mounted sen-
sors requires a special map with track characteristics. However, this special
map may be initially not available, has insufficient accuracy, and may be
incomplete or outdated. These map issues are referred to as map prob-
lem. The special track map has to be created or updated with a mapping
approach. Therefore, sensor measurements of the track geometry need to
be associated with topological locations. The challenge for the mapping
approach is to design a concept for an automated map generation and map
maintenance based on measurements of onboard sensors.

Finally, the problems of train localization and track mapping are closely
linked with each other: On the one hand, the train localization with on-
board sensors requires a map and the track-selective accuracy depends on
the map quality. On the other hand, the mapping requires a location for
the correct data association and a track-selective location accuracy is in
turn vital for the map quality. A missing map for the localization and a
required location for the mapping is known as the chicken-and-egg problem
[13] about what comes first: the map or the location.

1.3 Approach and Contribution

In this thesis, the train localization problem is addressed with a prob-
abilistic train localization estimation, a track map with geometric track
features and the following onboard sensors: global navigation satellite sys-
tem (GNSS) receivers, inertial measurement units (IMUs), and magnetic
sensors. The focus of this thesis is on low-cost and commercial-off-the-
shelf (COTS) sensors.

GNSS alone does not fulfill the requirements of track selectivity and
continuity. The accuracy of GNSS is not sufficient in some scenarios in
the railway environment and the continuity is not always given, especially
in tunnels. Beside the well-known combination of IMU and GNSS in an
inertial navigation system (INS), this thesis focuses also on a different and
non-integrative method with the IMU measurements: A special property
of railways is the strong physical constraint of train kinematics by the
rails of the track. An IMU can measure the train kinematics caused by
the track geometry. The train location can be estimated in combination
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with a special map that contains the track geometry linked to topological
locations. This special map is called track map in the following. This
thesis provides detailed analysis on inertial measurements and limits the
scope of GNSS measurements to the level of the solved position solution.
Additionally, novel approaches for train localization are presented using
magnetic measurements or vibration measurements.

The map problem and the chicken-and-egg problem are solved with
an algorithmic approach named simultaneous localization and mapping
(SLAM). The proposed method in this thesis is called RailSLAM. This
method is able to estimate a new track map without prior information and
also to improve an existing track map. The train localization method is
either a part of the SLAM method or used as a stand-alone method once the
track map has been created. In this work, three train localization methods
and one SLAM method are presented and evaluated. The methods are
based on a Bayesian estimation framework and estimate the probabilistic
posterior. The three localization approaches are:

• a simple and straightforward map-match method,

• a probabilistic particle filter method,

• a probabilistic multiple hypothesis tracking method.

The mapping process uses a probabilistic SLAM approach and is able to
start with or without a prior known track map.

The evaluation and test uses real train data from a regional passenger
train at regular service. The sensor data set was recorded on multiple train
runs between Augsburg and Ingolstadt in Germany and the data set con-
tains synchronized measurements of multiple IMUs with magnetometers, a
GNSS receiver, and a camera. The recorded videos from the camera were
used as reference for the proposed track-selective evaluation method. The
three localization methods are evaluated for track selectivity with different
track maps.

The contributions of this thesis in the field of onboard train localization
and track mapping are summarized in the following:

• Analysis of onboard measurements with GNSS, IMU and magnetic
for train localization.

• Identification, analysis and description of novel measurement ap-
proaches for train localization based on train kinematic measure-
ments with inertial sensors, magnetic measurements, and vibration
measurements.
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• Definition of the estimation problem for train localization and SLAM
for railways based on Bayesian theory.

• Design, description and implementation of three train localization
methods with GNSS and IMU. Evaluation for track-selective ac-
curacy and performance comparison with train measurements over
230 km.

• Design, description, implementation and evaluation of the RailSLAM
method for an automated localization and mapping of railway tracks
with GNSS and IMU. The accuracy of the track map is evaluated
with a reference map.

Furthermore, the discussions in Chapter 8 contain suggestions for improve-
ments and indications for future research.

1.4 State of the Art and Related Work

Modern Train Control Systems

In Europe, the ETCS is currently deployed in many countries [1]. One
focus in ETCS is a harmonization of technical systems between countries
for a simplified cross-border traffic with a common signaling system. The
technical modernization encompasses a balise based signaling with inher-
ent train positioning, speed monitoring, cab signaling, train integrity and
wireless communications for train control between train and control center
[14]. Cab signaling is an onboard interface for the train driver to visualize
the current signaling state without the need for light signals or signs in the
infrastructure [14]. Train integrity monitors the wagon set if the train is
still complete or if some wagons got decoupled.

In the United States, the PTC system is currently implemented in
many trains [2, 3]. PTC uses a global positioning system (GPS) based
train localization with the main purpose to ensure collisions. At railway
switches, the predefined switch way is verified by the traveled switch way, so
the system can detect a wrong switch stand. Furthermore, PTC monitors
unauthorized train access to tracks in work zones and detects over-speed,
which is a cause for derailments [3]. The PTC system and ETCS are
both digital, centralized, and communication based train control system
including train positioning.
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Train Localization with Track-side Sensors

Collision free railway operations is primarily achieved by train protection
systems with interlocking. Interlocking assures, that trains can only access
a track section or a block if it is recognized to be vacant. State-of-the-
art train protection systems rely on track-side infrastructure with beacons
and signaling devices. Examples for track-side infrastructure are magnetic
coils, cable loops, contacts, track-circuits, axle counters, transponders and
balises [1, 15]. For continuous location data, a train odometry measures the
speed and computes the traveled distance from wheel turns, for instance.

The train location within a certain track section is of interest for the
train control center. In contrast, a train driver is interested in the distance
between the train and the next signaling unit. In the case that there is a
stop signal, a train needs to brake and stop safely before the signal.

There are two main classes of ATP systems, the intermittent train
control systems and the continuous train control systems for higher train
speeds. Intermittent train control systems, such as ETCS Level 1 or the
German PZB (Punktförmige Zugbeeinflussung), provide information about
the upcoming railway signal only at the discrete locations of the beacons.
The focus is on the distance between train and railway signal and not on an
absolute location. Continuous train control systems, such as ECTS Level
2 or the German LZB (Linienzugbeeinflussung) uses Balises or cable loops
to localize the train with a higher resolution of the train location. The
track selectivity is achieved with designated balise IDs or with a near-field
communication over cable loops that is locally limited and only available
at the particular track and track section. A location along the track can
be determined at the balise positions or at loop crossings, e.g. every 50 m
for LZB. Between balises or loop crossings, the distance is measured via
wheel turns for a continuous localization [1, 15].

Train Localization with Onboard Sensors

There are multiple options of train localization with onboard sensors and
a map. The different approaches vary in sensor types or combinations,
processing methods and evaluation scope:

For railway localization, inertial sensors are often used in combination
with GNSS receivers in an integrated navigation system [16, 17]. The yaw
turn rate measurements of an IMU can also be used for the switch-way
identification [18, 19] and has been analyzed in [20]. Approaches with
GNSS and IMU are found in [18, 17, 19] and extensions with eddy cur-
rent sensor in [16, 21, 22]. Sensors such as cameras [23, 24] or LIDAR
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[25, 26] can directly identify the different switch ways and contribute to
the track-selective result. The eddy current sensor, a metal detector for
characteristic railway features, can be used for a switch-way detection, or
as speed and displacement sensor [16, 21, 22]. A study of a tightly cou-
pled localization with GNSS satellite ranges, Doppler measurements and a
track map is presented in [27]. Marais et al. [28] show a survey of GNSS
based railway signaling and train localization approaches. The processing
methods of each study are different and dependent on the sensors, the filter-
ing method, and the algorithmic integration of the map. Saab proposed a
train localization using a map matching technique with a correlation of the
curvature signature [29]. There are two approaches for the track-selective
localization estimation: the multiple hypothesis filter and the particle fil-
ter. A multiple hypothesis filter handles and maintains multiple estimates
on several tracks in the vicinity and is commonly used [16, 22, 19, 26]. The
hypotheses are the different tracks and a new hypotheses is generated and
maintained after passing a switch. The particle filter instead handles the
different track hypotheses with a large set of particles. Localization with a
particle filter, onboard sensors and a map was proposed in [30]. Fouque et
al. [27] defined a marginalized particle filter with raw GNSS data for the
identification of the carriageway and the along location of a road vehicle.
Hensel et al. [21] showed a particle filter approach for railways based on
an eddy current sensor and a map.

Only a few approaches evaluate larger data sets with a track-selectivity
statistics: Lauer and Stein [22] used GNSS and a velocity sensor and
showed a gain in track-selective accuracy and confidence between a simple
map-match and a proposed estimation algorithm. Böhringer [16] evalu-
ated an integrated navigation system (GNSS, IMU) in combination with
an eddy current sensor for switch-way identification. Even with a moder-
ate switch detection rate of 70 % of the eddy current sensor, the combined
results with GNSS and IMU received 99.78 % of track-selective accuracy.
These results are based on real train runs of 120 km with 113 switches and
considered in a comparison with results of this thesis on Chapter 8. Hensel
et al. [21] showed no direct figures on the traveled switch-way estimation,
but improved switch detection (98.23 %) and classification (99.64 %) with
an eddy current sensor of 831 switches. This study focuses on switches
as position input and the classification discriminates between merging and
splitting switch runs.

The contributions of this thesis address the following research gaps:
Analysis of train measurements with focus on low-cost and COTS sen-
sors for train localization, especially inertial sensors and magnetometers; a
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Bayesian motivation of the train localization problem; evaluation and com-
parison of a particle filter, multi-hypothesis filter and a simple map-match
approach for train localization all compared with an identical measurement
data set.

Railway Track Mapping

Railway tracks are planned by railway line design offices and railway in-
frastructure companies [15]. The railway track information comprise plans
for constructions, railway line overview maps, but also speed limitation,
altitude, curvature and superelevation profiles. For train localization, this
information may be too detailed as in construction plans, or too coarse as
in generalized overview maps. As an example for a map, the DBOpenData
[31] route atlas contains position data of major railway lines but generalizes
parallel tracks of the same route by just one line. The data from plans may
not be existing in the required generalization or format (e.g. paper maps).
Further issues are an outdated map, incomplete content or the availability
of maps by rights of property.

Design plans may consider only a theoretical railway track. The map
with track positions and profiles can be achieved by three state-of-the-art
methods:

• A classical survey considers position measurements from total station
theodolites. These total stations determine points relative to a base
station, usually from an electronic theodolite (azimuth, elevation)
and electronic distance measurements, such as laser ranging [32]. As
a limitation, measurements and post-processing are carried out by a
time consuming manual process with a low grade of automation.

• A train-borne survey with dynamic measurements by special trains
called track geometry car. Track geometry cars are equipped with ex-
pensive, high-end survey instrumentation, real time kinematic (RTK)
GNSS and used to check the track condition [33]. The intended pur-
pose is a high precision measurement of the track mostly by a single
run.

• A photogrammetry method with data recorded by planes, drones [34]
or satellites. A further processing step extracts positions of railway
tracks from remote sensing data, such as images, LIDAR or radar. All
methods require an additional processing step to link the positions
to the abstract track definitions.
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Alternatively to the mentioned methods, the mapping can also be re-
alized with standard trains in regular service. In contrast to the train
survey by a track geometric car, a standard train will run several times
over the same tracks and may be equipped with sensors of lower cost and
quality. In robotics, the localization and mapping with the same onboard
sensors and has been realized by the SLAM algorithm. SLAM estimates
a pose (position and heading) and a map at the same time and has been
described by [13, 35] and in many others. The SLAM algorithm considers
a probabilistic representation of the map and the location and depends on
a revisit of previous locations. This revisit, also denoted as loop closure,
enables a correction and reduction of uncertainty of the map and the lo-
cation. The EKF-SLAM [35] considers a Kalman filter with positions of
the landmarks stored in the state vector and the covariance matrix. As
a limitation, only a relative small number of features are possible due to
the quadratic growth of the covariance matrix. A further development for
larger environments is the use of particle filters with independent maps
in each particle by the FastSLAM approach of Montemerlo et al. [36].
In an advancement, FastSLAM 2.0 [37] uses a Rao-Blackwellized scheme
for an optimized efficiency by a reduced number of particles. An example
for pedestrian indoor navigation with inertial sensors was presented with
FootSLAM [38]. As major differences to robotic SLAM, FootSLAM uses
just an intrinsic sensor (IMU) and no extrinsic environment scanners.

The main difference of railway and robotics SLAM is the map, that is
mainly the trajectory of the train run instead of distant features and free
space for an arbitrary motion. Additionally, the railway SLAM uses abso-
lute positions from GNSS sensors. The SLAM method is used in railways
to improve the accuracy of the track geometry and the data association
to the correct track and location with every run on the same tracks. Has-
berg [17] proposed the SLAM method for railways and is considered as the
most related work to this thesis in terms of track mapping. In that work,
a probabilistic spline representation was used for the map with measure-
ments from an integrated navigation system. The cubic splines allow a
sparse data set for 2-D positions of the track representation.

1.5 Thesis Outline

This outline describes the content of the chapters: The fundamentals are
found in Chapter 2 with an introduction to Bayesian theory, state esti-
mation algorithms, and probabilistic methods for localization and SLAM.
Chapter 3 describes the fundamentals for a navigation within the railway
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domain and introduces the railway track map. Chapter 4 presents an anal-
ysis of train measurements for GNSS, IMU and magnetic field sensors in
typical railway environments. The IMU is further analyzed as kinematic
sensor for track geometry and as a vibration sensor for characteristic track
signatures. Chapter 5 presents the probabilistic theory of Bayesian train
localization and RailSLAM. The algorithmic implementations are found in
Chapter 6 and with three different methods of the map based train local-
ization and one SLAM method. Chapter 7 contains a description of the
experimental data set and evaluation methods. The evaluation results of
the three localization methods and RailSLAM with measurement data are
presented in Chapter 8. There, the methods are discussed, compared and
suggestions of improvements are given. Finally, a summary and conclusion
is presented in Chapter 9.
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Chapter 2

Bayesian Framework

2.1 Probabilistic Theory and Bayesian Esti-
mation

The general motivation for a probabilistic approach is uncertainty, which
arises from imperfect and unknown information. Examples for uncertainty
are an unpredictable environment, limited and noisy measurements, un-
known and hidden states and partially observable variables as well as ap-
proximations of the used models and algorithms (see [13]). In probabilistic
theory, the uncertainty is represented by probabilities and probability dis-
tributions. Estimation is the process to find an estimate from uncertain
information. Bayesian estimation originates on concepts in an essay from
Thomas Bayes and Richard Price [39].

As a motivation, Figure 2.1 shows typical random measurement distor-
tions of an ideal measurement signal over time. Random errors can not be
observed and adjusted in advance with a calibration. A calibration can only
adjust for deterministic errors such as scale errors, offset, or non-linearity.
The ideal signal is shown in Figure 2.1a) and the signal and additional

0 t
b) signal(t)

+ white noise

0 t
a) signal(t)

si
gn

al

0 t
c) signal(t)

+ bias

0 t
d) signal(t)

+ bias drift(t)

0 t
e) signal(t)

+ bias drift(t)
+ white noise

Figure 2.1: Signals with distortions.
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white Gaussian noise is shown in Figure 2.1b). Figure 2.1c) shows a con-
stant but unknown bias or a nearly constant bias with very slow change.
Examples are a varying bias at power-up, a uncompensated temperature
effects or aging of the sensor. A faster changing bias over time is shown
in Figure 2.1d). Figure 2.1e) represents a typical measurement with the
random errors of white noise and a time varying bias. The unknown ideal
signal is the desired information and the goal of an estimation is to find
this information from the randomly distorted signals.

Probability Theory

The following defines the notation, basic probabilistic properties and basic
concepts of a probabilistic framework. These definitions and concepts are
prerequisite for the derivations of probabilistic train localization and rail-
way SLAM. The following probabilistic properties can be found in many
textbooks, such as [13, 40, 41].

The random variable xmay be defined as discrete or continuous stochas-
tic value and can take specific values with a particular probability. Further-
more, x can be also a vector and group several different random variables,
also with continuous and discrete variables together. In this thesis, the es-
timation methods for localization and mapping comprises continuous and
discrete variables. Furthermore, the random variables in this thesis are
discretized in time with time steps and the current time step is indexed
with k.

The probability distribution of a continuous random variable x is de-
fined with probability density function (PDF) and denoted with p(x). The
integral of the PDF is unity by definition:∫

p(x)dx = 1. (2.1)

The function for a discrete random variable is the probability mass function
µ(x). There, each discrete outcome xi, indexed with i, is associated with a
point mass µ(xi). This point mass is also the probability of the realization
of one outcome. The probabilities of all n possible outcomes sum up to 1:

n∑
i

µ(xi) = 1. (2.2)
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Discrete values can be described with the Dirac (impulse) delta function
δ(·) in the continuous domain. This Dirac delta function is defined by [41]:

δ(x) =

{
1, if x = 0.

0, otherwise.
(2.3)

and ∫ ∞
−∞

δ(x)dx = 1. (2.4)

A particular discrete value or sample xi can be defined in the continuous
domain with δ(x − xi). The corresponding PDF of a discrete random
variable for the continuously ranged variable x is [41]:

p(x) =
n∑
i

µ(xi)δ(x− xi). (2.5)

The joint probability distribution contains the combination of the ran-
dom variables x and y:

p(x, y). (2.6)

A conditional probability is defined as [39]:

p(x|y) =
p(x, y)

p(y)
. (2.7)

The product rule is given by rearranging this equation and the joint distri-
bution function p(x, y) can be decomposed into two factored distributions:

p(x, y) = p(x|y) · p(y), (2.8)

or alternatively into:
p(x, y) = p(y|x) · p(x). (2.9)

In the case that there are multiple joint variables, the product rule can be
applied multiple times, which refers to the chain rule in the Appendix A.
The well-known Bayes’ rule is derived from Eq. (2.8) and Eq. (2.9):

p(x|y) =
p(y|x) · p(x)

p(y)
. (2.10)

The posterior probability distribution is p(x|y), and called posterior in
the following. The prior probability distribution is p(x) in this case and
called prior. The Bayes’ rule is used in a special way for estimation: The
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posterior is computed from the prior and the information update with the
likelihood p(y|x). The denominator p(y) is a normalization constant, so
that the calculated posterior is a proper PDF which integrates to unity
(see Eq. (2.1)).

Conditional independency is described in [39] with: ”Events are inde-
pendent when the happening of any one of them does neither increase nor
abate the probability of the rest”. In the case that x is independent of y,
the conditional probability p(x|y) simplifies to:

p(x|y) = p(x). (2.11)

In combination with the product rule, a joint probability of p(x, y) can be
split into independent parts, provided that x is independent of y:

p(x, y) = p(x|y) · p(y) = p(x) · p(y). (2.12)

Marginalization or the theorem of total probability is defined with [13]:

p(x) =

∫
p(x, y)dy,

=

∫
p(x|y)p(y)dy.

(2.13)

The marginalization of the continuous variable y considers all possible val-
ues by integration. For a discrete variable y, the integral is replaced by a
sum over all possible outcomes. The marginalization is used in the follow-
ing ways: With marginalization, it is possible to remove y from the joint
distribution function p(x, y) or from p(x|y)p(y), even if x is dependent on
y. In the following, this marginalization is used to eliminate a past state
estimate. Another use case is the computation of the unknown distribution
of p(x). There, p(x) is expanded according to Eq. (2.13) and solved with
p(x|y) and p(y) that are either known or computable [13]. This type of
marginalization is used when the joint distribution function is split with
the product rule in p(y|x)p(x) and the estimation of a next time step of
p(x) requires knowledge from y. The unknown distribution p(x) is then
expanded to Eq. (2.13) and computed. One example in the following is
SLAM, in which the estimation of location and map is split in two estima-
tions, but the location estimation still requires a map. Another example
is Rao-Blackwellization, in which the state is split in linear and non-linear
states that depend on each-other and different filters are used to compute
these states.

Appendix A summarizes the probability calculus rules with more com-
plex examples with additional joint variables and additional conditional
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variables. These rules will be used in the following to decompose the
posterior probability distribution of the estimation problems into factored
probability distributions. This process will be called factorization. In the
context of this thesis, estimation problems are dynamic and involve prob-
ability distributions at different time steps or over several time steps. The
current time step will be denoted with the index k, the previous or past
with k − 1 and the next time step in the future is indexed with k + 1. A
sequence of the random variable or estimation state x with all time steps
from the start time to the current time is indexed with x0:k. A sequence of
all past time steps of x is denoted with x0:k−1. A posterior PDF p(xk) is
indexed with k and a prior PDF p(xk-1) with k − 1. Different notations in
the literature use also k+ 1 for the posterior and k for the prior (see [40]).
In terms of estimation, a hidden state x is estimated from measurements,
where x is a vector of random variables and the elements are either discrete
or continuous. The state is called hidden, because the true values are not
known and also direct measurements contain uncertainty.

If p(x) is not further specified, it can be any arbitrary probability dis-
tribution. One particular PDF will be used in the context of this thesis:
the Gaussian normal PDF. This PDF is commonly used, because many
estimation methods are based on analytical derivations with the Gaussian
PDF. The Gaussian PDF, denoted with N

(
µ, σ2

)
, is defined with x as

argument, µ as mean and σ2 as variance:

p(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.14)

For a n-dimensional vector x, the Gaussian distribution N (µ,Σ) is mul-
tivariate with µ as mean vector and Σ as covariance matrix:

p(x) =
1√

(2π)n · det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.15)

A particle filter uses sampled distributions. As an advantage, a sampled
probability distribution can represent arbitrary distributions. A continuous
probability distribution p(x) can be approximated with a limited sample
number N of discrete samples xi and weights wi:

p(x) ≈
N∑
i=1

wiδ(x− xi). (2.16)

The weights are similar to the point masses of Eq. (2.2) with the continuous
function being approximated by samples. In contrast, Eq. (2.5) is exact
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because the discrete distribution with all n possible outcomes is included
with the corresponding point masses. A distribution can be sampled by
equidistant sampling points, e.g. same distances on a grid, uniform random
distributed or arbitrary distributed.

Assumptions and Approximations

In the following estimation filters, several assumptions and approximations
are made in order to realize a computational feasible estimation (see [13]).
The estimation methods in the following comprises assumptions and ap-
proximations regarding to:

• conditional independence, also over time,

• completeness of state variables, models or functions,

• linearity of models or functions,

• probability distributions.

The Markov property assumes a conditional independence over time: a
future state is conditionally independent to a past state if an interim state
is known [13]. As a reminder, a state is here a set of random variables
that are represented with probability distributions. For example, if the
probability distribution of the current state with time step k is known, the
future hidden state at time step k+1 is only conditionally dependent on the
current state at k and not on the past hidden state at k − 1. Further, the
state representation may be incomplete due to computational complexity
or because the additional states are not observable. Measurement mod-
els and transition models are an approximation with assumptions on the
model function, linearity and the probability distribution. A commonly
used assumption for measurements is additive white Gaussian noise and
a linear measurement function of the state vector. The assumption that
measurements are independent over time is often not correct: Unmodeled
systematic errors or pre-filtered measurements cause correlations and thus
dependency over time. The sampled distribution of Eq. (2.16) is an approx-
imation because a limited number of samples, or particles respectively, are
used to represent the distribution of a probability function.

Graphical Model and Posterior

A graphical model can be used for the design of a probabilistic model and
further for a refinement or a comparison and differentiation between two
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approaches. Graphical models represent a graphical layout of a probabilis-
tic model by visualizing observations and dependencies between random
variables and also over time. A Bayesian network is a graphical model for
random variables with directed and acyclic dependencies. The dynamic
Bayesian network (DBN) shows additionally the causal dependencies over
time. The hidden Markov model (HMM) can be seen as a special case of a
dynamic Bayesian network [42]. A HMM is specified by a hidden and un-
known random variable with a dependency in time to the previous hidden
variable. Measurements have no dependency over time.

A simple positioning problem is formulated as an example: The hidden
state of the position is X, as its true position is unknown and a sensor
measures a dependent variable Z with an uncertainty. The DBN or HMM
in Fig. 2.2 shows three sequential time steps.

X0 X1 Xk−1 Xk Xk+1

Z1 Zk−1 Zk Zk+1

initial
state
(0)

first
time step

(1)

previous
time step
(k − 1)

current
time step

(k)

future
time step
(k + 1)

... ...

Figure 2.2: Dynamic Bayesian Network (DBN) with hidden state variables
(X) and measurements (Z) over three time steps.

The current hidden state at time k depends on the last state k − 1,
as defined in general in an HMM and can be seen also in the model in
Fig. 2.2. The given example contains the series of hidden variables over
time X0:k = {X0, ..., Xk} including the initial state X0. The observations
Z1:k = {Z1, ..., Zk} are conditionally independent between each other and
conditional dependent on the true position X. This means, the outcome
of the measurement Z is caused by the position X. The full posterior
probability density contains the full history of the hidden state conditioned
on the measurements, and is defined by:

p(X0:k|Z1:k). (2.17)

The filter posterior considers only the current state xk and is defined by:

p(Xk|Z1:k). (2.18)
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Dynamic Bayesian Filter

The full posterior and the filter posterior are factorized in the following
into different probability densities for further processing. The resulting
probability densities are called likelihood, transition and prior. The filter
computes the posterior density function from the measurement update,
state transition and the prior density function. This filter is called a re-
cursive filter because the output, i.e. posterior, for one time step becomes
the input, i.e. prior, in the next time step.

The transition density contains the evolution of the estimate over time.
The likelihood is a measure how likely the measurement fits to the estimate.

The full posterior of Eq. (2.17) is factorized in the Appendix B with
Eq. (B.1) and splits the posterior in several factors:

p(X0:k|Z1:k)︸ ︷︷ ︸
full posterior

= η︸︷︷︸
norm.
factor

· p(Zk|Xk)︸ ︷︷ ︸
likelihood

· p(Xk|Xk-1)︸ ︷︷ ︸
transition

· p(X0:k-1|Z1:k-1)︸ ︷︷ ︸
prior

. (2.19)

The posterior can be computed sequentially from the prior distribution,
transition distribution and the likelihood of the measurements. A realiza-
tion for the estimation of the full posterior is the particle filter.

The filter posterior of Eq. (2.18) is factorized in the Appendix B with
Eq. (B.2), Eq. (B.3) and results in the general Bayesian filter definition.
The filter posterior is computed from the prediction distribution and the
likelihood by:

p(Xk|Z1:k)︸ ︷︷ ︸
filter posterior

= η︸︷︷︸
norm.
factor

· p(Zk|Xk)︸ ︷︷ ︸
likelihood

update, correction

·
∫

p(Xk|Xk-1)︸ ︷︷ ︸
transition

· p(Xk-1|Z1:k-1︸ ︷︷ ︸
prior

)dXk-1︸ ︷︷ ︸
prediction

.

(2.20)
The prediction is computed with a marginalization of the previous state
Xk−1 [13]. Therefore, the prediction distribution p(Xk|Z1:k−1) is expanded
by Eq. (2.13), because the current state depends on the previous state, as
seen in Fig. 2.2. This type of equation is also known as the Chapman-
Kolmogorov equation and refers to the marginalization of the past steps
[40]. This means, that the information of the previous step is included while
the dependency of Xk−1 is excluded from the prediction distribution. This
Bayesian filter is computed sequentially in two steps: first, the prediction
step of Eq. (2.20) is processed, followed by the update step. An example
for the realization of this Bayesian filter is the Kalman filter.
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2.2 Probabilistic Data Filters

2.2.1 Kalman Filters

The Kalman filter implements the estimation of the filter posterior for
linear state-space models with additive white Gaussian noise [43]. Every
posterior, prior and initial PDF are represented with a Gaussian normal
PDF with the state vector x as mean, and the covariance matrix P :

p(Xk|Z1:k) ≈ N (xk,Pk) . (2.21)

The generic Kalman filter algorithm implements the Bayesian filter of pre-
diction and update Eq. (2.20). The Kalman filter estimates the state vector
x and covariance matrix P with linear system model F and a process noise
Q. The prediction step or time update with control input u and input ma-
trix B is [44]:

xk|k-1 = Fkxk-1 +Bkuk, (2.22a)

Pk|k-1 = FkPk-1F
T
k +Qk. (2.22b)

The innovation is the difference between the predicted measurement and
the actual measurement. Innovation yk and innovation covariance Sk are
defined with measurement matrix H and the sensor noise R [44]:

yk = zk −Hkxk|k-1 (2.23)

Sk = HkPk|k-1H
T
k +Rk. (2.24)

The Kalman gain K is defined with:

Kk = Pk|k-1H
T
k S
−1
k . (2.25)

Finally, the measurement update with gain and innovation is:

xk = xk|k-1 +Kkyk, (2.26a)

Pk = (I −KkHk)Pk|k-1(I −KkHk)
T +KkRkK

T
k , (2.26b)

where I is an identity matrix and the covariance update is in the Joseph
form [44].

For non-linear measurement or system models, there is the extended
Kalman filter (EKF) with a linearization with a Taylor series approxima-
tion [44]. Another variant of the Kalman filter for non-linearities is the
unscented Kalman filter (UKF) [45, 46]. The UKF uses the unscented
transform and computes samples of a Gaussian distribution.
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Error State Kalman Filter

The error-state Kalman filter (ESKF) is also known as linearized Kalman
filter or indirect Kalman filter [47]. The use-case is the estimation with a
non-linear system model and non-linear relations between state and mea-
surement. For example, the update of angular changes of an attitude
requires non-linear computations.

The ESKF estimates an error ∆x in the update step, and the estimation
state x is corrected with this error afterward. The vectors of ESKF state
∆x and estimation state x are of same size. The goal is to estimate x
while the error ∆x is an auxiliary estimate that corrects the estimation
state x.

At first, this estimation state x is propagated with the non-linear sys-
tem model:

xk|k-1 = fk(xk-1,uk). (2.27)

The process noise is defined for the prediction of the ESKF covariance. The
error state system matrix F is either designed to propagate the errors, or
F is the Jacobian of the system matrix [47]:

Fx,k = d
dxf(x)|x=xk, (2.28)

In contrast to the standard Kalman filter, the covariance matrix Σ∆ is now
computed for the ESKF:

Σ∆
k|k-1 = FkΣ

∆
k-1F

T
k +Qk. (2.29)

The ESKF state ∆x is not predicted and can be omitted or set to zero:
∆xk|k-1 = 0. The error ∆xk is estimated in the update step. The mea-
surement matrix is here a non-linear function of the estimation state h(x).
The innovation is the difference between the predicted measurement of the
estimation state hk(xk|k-1) and the actual measurement zk, see Eq. (2.23).
The error ∆xk is now computed from the innovation, the Kalman gain Kk,
and without a predicted error state:

∆xk = Kk · (hk(xk|k-1)− zk). (2.30)

The Kalman gain and the covariance update are the same as in the standard
Kalman filter, see Eq. (2.25) and Eq. (2.26):

Kk = Σ∆
k|k-1H

T
k (HkΣ

∆
k|k-1H

T
k +Rk)

−1 (2.31a)

Σ∆
k = (I −KkHk)Σ

∆
k|k-1(I −KkHk)

T +KkRkK
T
k . (2.31b)

Finally, the correction step corrects the errors from the estimation state:

xk = xk|k-1 −∆xk. (2.32)
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2.2.2 Multiple Hypotheses Tracking

The main drawback of Kalman filters is the need for a Gaussian repre-
sentation with a single mode. A Multiple Hypotheses Tracking (MHT)
filter estimates a Gaussian mixture with different and discrete hypotheses.
The filter tracks all hypothesis, but may output only the most probable
hypothesis at each time step for further processing. A hypothesis is either
a decision of a path in the motion model or a data association of mea-
surements called correspondence (see [13]). This hypothesis is an auxiliary
variable and time invariant because the decision or association does not
change over time. Each hypothesis will be denoted with H and indexed
with j. The posterior is now extended with an additional joint variable
from the filter implementation. This can be done, as the filter can esti-
mate any additional variable, even an own auxiliary variable of the filter.
The product rule splits the extended joint posterior into the initial pos-
terior, which is conditioned on a discrete decision or association, and all
hypotheses conditioned on the measurements:

p(Xk,H|Z1:k) = p(Xk|Z1:k,H) · p(H|Z1:k). (2.33)

The desired posterior is computed with a discrete marginalization over all
hypothesis:

p(Xk|Z1:k) =
∑
j

p(Xk|Z1:k,Hj)︸ ︷︷ ︸
posterior with decision

· p(Hj|Z1:k)︸ ︷︷ ︸
weight wj

. (2.34)

As the hypotheses are discrete, the marginalization is a sum over all real-
izations of H. The second factor is the weight wj of j’th hypothesis. The
factorization of the weight estimation involves Bayes’ rule and a normal-
ization factor η:

p(Hj|Z1:k)︸ ︷︷ ︸
wjk

= η · p(Zk|Z1:k-1,Hj)︸ ︷︷ ︸
likelihood

· p(Hj|Z1:k-1)︸ ︷︷ ︸
wjk-1

. (2.35)

The weight estimate consists of a measurement likelihood and a prior
weight. The likelihood is defined with the j-th innovation yj (see Eq. (2.23))
and the innovation covariance Sj (see Eq. (2.24)) [41]:

p(Zk|Z1:k-1,Hj) ∝ exp

(
−1

2
(yj)T (Sj)−1yj

)
. (2.36)

The normalization factor η is calculated from the condition, that all weights
sum up to one:

η =
1∑
j w̃

j
k

. (2.37)
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The different hypothesis are represented by a Gaussian PDFs and esti-
mated by a Kalman filter, EKF or UKF. The resulting distribution is a
mixture of weighted Gaussians:

p(Xk|Z1:k) ≈
∑
j

wj
k · N

(
xjk,P

j
k

)
. (2.38)

New hypothesis may be added if new decisions for paths or correspondences
are necessary. The amount of hypotheses are maintained by pruning, which
eliminates unlikely hypotheses with a low weight. An output function may
select and output the most likely hypothesis with the highest weight, while
the filter continues to track all hypotheses.

2.2.3 Particle Filter

A particle filter represents a probability distribution with discrete sam-
ples of the estimation state, called particles. The probability distribution
with particles is represented by the sample density and the particle weight.
A particle filter estimates the full posterior of Eq. (2.19) and can han-
dle non-linear models and arbitrary probability distributions of posterior,
state-transitions and measurements [48]. The posterior of Eq. (2.19) is rep-
resented by the particles set {xi0:k, w

i
k}Ni=1 and each particle consists of a

state vector hypothesis xi and the weight wi. The particle probability den-
sity is also called particle cloud and is mathematically represented by a sum
of Dirac-delta functions δ(x), as defined in Eq. (2.16). The full posterior is
now approximated with a finite number of particles N :

p(X0:k|Z1:k) ≈
N∑
i=0

ωik · δ(x0:k − xi0:k). (2.39)

The i-th particle xi0:k and the weight wi of N particles represent one sample
of the posterior of all time steps until k. In other words, a particle xi0:k

contains the i-th realization of the estimation state including the state
history.

A probability density function can be represented by particles or sam-
ples in three ways: The first case uses constant sample spacings, where the
weights contain the information of the probability function with wi = p(xi).
The second case considers constant weights wi = 1

N , where the sample
density contains the probability information. The third combines different
weights with arbitrary sample densities.
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Importance Sampling

The posterior density function cannot be sampled directly. Therefore, par-
ticles are generated from a proposal function, also known as importance
density which is feasible to compute [48]:

xi0:k ∼ q(X0:k|Z1:k). (2.40)

Afterward, these particles are weighted [48], while the weights are propor-
tional to the fraction of posterior over proposal function:

wk = η
p(X0:k|Z1:k)

q(X0:k|Z1:k)
. (2.41)

The importance density (proposal function) covers the domain of the pos-
terior and is computationally feasible, but different to the posterior. This
difference is compensated with the weights, that correct the importance
density to the posterior. The general proposal function is defined in a
recursive form:

q(X0:k|Z1:k) = q(Xk|X0:k-1, Z1:k) · q(X0:k-1|Z1:k-1)︸ ︷︷ ︸
recursive part

.
(2.42)

The general weight function is computed from 2.41 with 2.42 and the full
posterior factorization 2.19 in the nominator:

wk = η
p(Zk|Xk) · p(Xk|Xk-1)

q(Xk|X0:k-1, Z1:k)
·p(X0:k-1|Z1:k-1)

q(X0:k-1|Z1:k-1)︸ ︷︷ ︸
wk−1

. (2.43)

A popular choice of the proposal function is with the transition function,
while the weight function contains the likelihood [48, 40]:

q′(X0:k|Z1:k) = q′(Xk|Xk-1, Zk)︸ ︷︷ ︸
transition

· q′(X0:k-1|Z1:k-1)︸ ︷︷ ︸
recursive part

, (2.44)

The weight function is then:

wk = η · p(Zk|Xk) · wk−1. (2.45)

Nevertheless, the choice and definition of the proposal function is a crucial
part of the particle filter design process. The weights of the particle filter
sum up to one, similar to Eq. (2.1), where the sum over all probabilities
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is one. The normalization factor η is computed from this property in a
deterministic way:

η =
1∑N
i=1 w̃

i
k

. (2.46)

For many applications, the particle distribution is unfeasible to process. A
characteristic value of a distribution are the minimum mean square esti-
mate (MMSE) or minimum variance estimate and a corresponding covari-
ance [40]. The MMSE with a mean and covariance is computed as output
estimate:

x̂k =
N∑
i=1

ωik · xik, (2.47a)

P̂k =
N∑
i=1

ωik(x
i
k − x̂k)(xi − x̂k)T . (2.47b)

The generic particle filter algorithm in Fig. 2.3 contains the main steps
with importance sampling, resampling and output estimate.

1: function Update Particle Filter(x1:N
k-1 , ω

1:N
k-1 , uk, νk, zk, εk)

2: for all N particles do
3: xik = sampleProposal(xik-1, uk, νk)
4: ω̃i

k = weight(xik-1, ω
i
k-1zk, εk)

5: end for
6: ω1:N

k = normalize(ω̃1:N
k ) with Eq. (2.46)

7: [x̂k, P̂k] = outputEstimate(x1:N
k , ω1:N

k ) with Eq. (2.47)
8: if isTimeForResample(ω1:N

k ) then
9: [x1:N

k , ω1:N
k ] = resample(x1:N

k , ω1:N
k )

10: end if
11: return x1:N

k , ω1:N
k , x̂k, P̂k

12: end function

Figure 2.3: Generic particle filter update function for one time step and
measurement update.

Likelihood

The sensor likelihood is the conditional density p(Zk|Xk). This function
calculates a probability how likely the measurement z fits to the predicted
measurement h(xi) of one particle. The non-linear measurement model is
denoted with h(·). The likelihood evaluates the innovation yi = z − h(xi)
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of each particle (see Eq. (2.23)). A popular choice is a measurement model
with additive white noise n:

z = h(x) + n. (2.48)

The likelihood function is then defined with the innovation vector yik of
the i-th particle and the covariance of the sensor noise Σz:

p(Zk|Xk)=̂
N∑
i=1

N
(
yik,Σz

)
. (2.49)

The resulting probability is further used as a weighting of the different
particles. In practice, the likelihoods can be used without constants, such
as the constant of the Gaussian normal function, because the normalization
factor η compensates any constant afterward. Likelihood functions can be
also used in the proposal function [13]. There, particles are sampled from
a measurement PDF.

Resampling

After several time steps, some particles may carry a very high weight while
the rest has a very low weight. These low weighted particles are inefficient
and this process is called degeneration. In order to avoid this, a systematic
resampling [48] of the particle distribution can solve this problem.

A metric for particle depletion is the effective number of particles N̂eff

[40]. The particle distribution is resampled if N̂eff is below a threshold Nth:

Nth >
1∑

i(w
i
k)

2︸ ︷︷ ︸
N̂eff

. (2.50)

The threshold Nth depends on the total number of particles Np and is
practically defined within 1 < Nth < Np.

Particle Filter Challenges

The drawbacks and challenges for a particle filter application are:

• Divergence happens, if the particles and the estimate are apart from
the true values and cannot recover. The result is an unstable filter,
and can be compensated with a continued resampling, the design of
the proposal function and the insertion of extra sampling noise (see
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[40]). In the case that a divergence happens, a filter monitoring can
detect a severe divergence by appropriate measurements and restart
the filter [40].

• Overconfidence happens, if the measurement noise is too small and
correlations are disregarded in the sensor model. The filter converges
very quickly to the measurements and results in a too small particle
distribution after resampling. This can lead to the described diver-
gence, if the true values are not covered with near particles anymore.

• Degeneracy of the particle distribution is the effect where nearly all
weight is accumulated on one or a few particles. The state-of-the-art
approach is resampling the particle distribution [48].

• The dimensionality problem arises from the fact, that every addi-
tional dimension of the state vectors requires a much higher number
of particles. This leads to a high computational complexity [49]. A
low dimensional state vector for the particle filter is desirable and this
can be achieved with the use of different filters and a state dimension
reduction of the particle filter.

State Dimension Reduction

The dimension of the estimation state can be reduced with a combination
of different filters. Kalman filters are optimal for linear and Gaussian
cases while the particle filter can handle non-linear distributions. The
state dimension of the particle filter can be reduced to the dimension of
the non-linear states. Therefore the state vector is split into linear states
X l and non-linear states Xn, and the joint posterior is now:

p(X l, Xn|Z). (2.51)

A separation of linear and non-linear states with dependencies on each
other result in one Kalman filter per particle. This approach is called
marginalized particle filter [40] or Rao-Blackwellized particle filter [50].

In the case that the estimation of the linear states are not dependent
from the non-linear states, the product rule splits the joint state vector:

p(X l, Xn|Z) = p(Xn|X l, Z) · p(X l|Z), (2.52)

and the particle filter uses the linear estimate as input. The linear states
are estimated with a Kalman filter in a first step. Afterward, the linear
distribution is sampled by particles and the non-linear states are estimated
with a particle filter.
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2.3 Localization and Mapping

In the context of this thesis, the terms position, location and navigation
will be used in a defined meaning: A position is expressed in a coordinate
frame, such as a geographic GPS position measurement. A location will
be used in combination with a map, especially for the train location on
the railway tracks. This location contains a track identifier (ID) and a 1-D
location on that track. The processes for the estimation of a position or
a location are called positioning or localization, respectively. Navigation
will be used in this context as the comprehensive estimation of positions,
locations and velocities. The common navigation tasks by path planning
or guidance are not considered here.

2.3.1 Localization

The location and the map are defined in a probabilistic manner. That
means, that the location values and the map content can be ambiguous
and represented by a probability distribution. Figure 2.4 shows the block
diagram of a generic sequential Bayesian localization with a map. The
location is computed from sensor inputs, the map and the prior location
of the last time step.

Map

Localization
sensor data

location

prior location

Figure 2.4: Block diagram of a generic Bayesian localization.

The posterior of a generic localization problem contains the hidden
state X, conditioned on all measurements Z1:k, all control inputs U1:k and
the map M . The process of localization is divided into smaller steps by
a factorization. The main components are the transition distribution and
an update of sensor information. The transition is computed from previ-
ous location, map and motion. The sensor updates are dependent on the
location. If the sensors measure directly a property of the map, the mea-
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surement update is conditionally dependent on the map. The factorized
version for the full posterior of the localization is defined as:

p(X0:k|Z1:k, U1:k,M) =

η · p(Zk|Xk,M)︸ ︷︷ ︸
meas.

likelihood

· p(Xk|Xk-1, Uk,M)︸ ︷︷ ︸
transition

· p(X0:k-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior

.

(2.53)

The factorized filter posterior of the generic localization contains:

p(Xk|Z1:k, U1:k,M) =

η · p(Zk|Xk,M)︸ ︷︷ ︸
meas.

likelihood

·
∫

p(Xk|Xk-1, Uk,M)︸ ︷︷ ︸
transition

· p(Xk-1|Z1:k-1, U1:k-1,M︸ ︷︷ ︸
prior

)dXk-1.

(2.54)

2.3.2 Mapping

Mapping is the process to create or change the content of a map. In the
context of this thesis, a map is generated or updated from sensor data.
The mapping requires also a data association of the sensor data to the ap-
propriate map data, so that the map content is updated at the right place.
In a probabilistic mapping, the sensor data and the map data contain un-
certainty. A data association is ambiguous, if the data association contains
discrete variables with multiple possibilities. This is the case for a data as-
sociation to different tracks. The probabilistic map contains then multiple
map hypotheses. Figure 2.5 shows the mapping process from sensor data,
data association and the previous map. In the case of a map creation,
there is no previous map available. This type of mapping will be called
white-space mapping in the following. The update of an existing map can
be carried out by replacement of the previous map with new information
or an information fusion of the previous map with new information. The
latter case will be called prior-map mapping.

MapMapping
sensor data

data association

prior map

Figure 2.5: Block diagram of a generic mapping process with prior map
information.



2.3. Localization and Mapping 31

2.3.3 SLAM: Simultaneous Localization and Mapping

There is a causal problem about what comes first: A localization requires
a map and the mapping process requires a location for the data associ-
ation. Additionally, there are uncertainties from the estimations of the
location and the map. The method of simultaneous localization and map-
ping (SLAM) joins both processes of localization and mapping and ad-
dresses the computation with uncertainty. Figure 2.6 shows the linked lo-
calization and mapping processes. The two processes are loosely linked
and compute the location and the map separately: At first, the location is
computed from the previous map and sensor data. Secondly, the map is
updated with the location and sensor data.

The development of SLAM focused mainly on a problem in the field
of robotics with relative measurements only (see [13]). The classic SLAM
problem is a robot with measurements from an onboard laser range scan-
ner on a plane 2-D environment. The range measurements are processed
and reduced to landmarks. These landmarks refer to obstacles or walls.
The map contains a set of these landmarks including the locations and fea-
tures of the landmark. The robot’s location and orientation is combined
and estimated with the robot’s pose. The classic robotic SLAM considers
only relative measurements, such as range measurements to the landmarks.
There are no absolute position measurements involved. As a consequence,
the map is not to scale nor rotated to north and only linked to a start posi-
tion or a zero origin. The classic robotic SLAM works as follows (see [13]):
At first, the robot starts to move with an empty map. The robot’s pose
is estimated from the starting point and from motion measurements, such
as wheel turns or wheel speeds. Landmarks are extracted from measure-
ments and put into the map with locations relative to the robot’s location.
An accumulation of relative motion measurements leads to an increase of
uncertainty over time: The uncertainty of the location and the location
of all landmarks in the map grow over time and motion. The growing
uncertainty of the robot’s location transfers directly to the uncertainty of
the newly recorded landmark locations. As a consequence, all landmark

MapLocalization Mappinglocation

sensor data

prior map

prior location

Figure 2.6: Block diagram of a combined localization and mapping process.
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locations are correlated with the robot’s locations. Additionally, the data
association of measurements to a certain landmark is unknown and this
data association must be estimated as well. It could be shown, that SLAM
can reduce the uncertainty of the pose and the map [13]. An important
event therefore is called loop closure and describes the return of the robot
to a previously mapped area. In the event of a loop closure, the SLAM
algorithm with relative measurements only shows its main advantage: The
pose and all landmark positions are updated and their uncertainties are
reduced. This effect can be explained with the correlations of the pose and
the landmark locations [13].

There are two versions of SLAM regarding the posterior: The online
SLAM uses a filter posterior, and refers to the estimation of the current
location state Xk and the map M :

p(Xk,M |Z1:k, U1:k). (2.55)

The full SLAM posterior refers to the full trajectory of all locations X0:k

and the map M :

p(X0:k,M |Z1:k, U1:k). (2.56)

There are many approaches published for this classic SLAM problem
and a recent overview is found in [51]. The most common are the EKF-
SLAM [35] (online SLAM), the GraphSLAM with factor graphs [13] (full
SLAM), and the FastSLAM with particle filters [36, 37] that uses the full
SLAM approach and can be used as online SLAM.

The EKF-SLAM uses a Gaussian representation for the robot’s pose
(location and orientation) and the landmark locations. This algorithm
solves the unknown data association by the most likely and nearest loca-
tion [35]. Figure 2.7 shows a simplified block diagram of an EKF-SLAM
with already known data association of the measurements to the landmark.
Additionally to the location, as depicted in the simplified block diagram,
the EKF-SLAM considers also the orientation in a combined robot’s pose.
The prediction step of the Kalman filter uses a prior location and motion
measurements. The update function computes the map and the pose from
the predicted location, the landmark measurements and the landmarks of
the prior map. If a new landmark is measured, the landmark including
its location is put to the map. In the case that an existing landmark is
measured, the robot location and the landmark location are simultaneously
updated. In contrast to the localization and mapping in Fig. 2.6, the up-
date function of the EKF-SLAM contains a combined location and map
update as shown in Fig. 2.7. The landmark estimates are fully correlated
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Map
Location
prediction

Update location and map
New landmark:

add landmark with
location to the map

Existing landmark:
update location
and landmark

landmark
measurements

motion
measurements

location

Figure 2.7: Simplified block diagram of a the robotic EKF-SLAM with
landmark measurements.

with each other in the covariance matrix and linked to the position uncer-
tainty. As a main drawback, the EKF-SLAM is limited to a low number of
landmarks. The reason for this is the state vector of the EKF, which con-
tains all landmarks and thus the covariance matrix is growing quadratically
with the number of landmarks in the map [13].

Montemerlo et al. proposed ”FastSLAM”, a SLAM approach with a
particle filter [36]. The important advancement is the separation of position
uncertainty and map uncertainty as well as the conditional independence
of each feature estimate. This is possible, as each particle has its own
and independent path history. The particle cloud represents the position
uncertainty. The feature estimates are conditionally independent to each
other as they are conditioned on the full path X0:k.

There are different versions of SLAM in terms of the used sensor data:
There is exteroceptive sensor data that are direct measurements of the
user’s environment. Example sensors are camera, radar or lidar and these
sensors can measure also distant features of the environment from the user.
An example of exteroceptive SLAM is shown in Figure 2.8 with a com-
mercial robotic vacuum cleaner (XIAOMI Mi Robot Vacuum) that uses a
laser scanner. The map shows obstacles and walls, and it is used here to
optimize the trajectory (gray line) for the purpose of floor cleaning. Inte-
roceptive sensor data refers to measurements of an inner state of the user,
which measure features of environment indirectly over the user’s position
or motion. An example given with inertial sensors and Figure 2.9 shows
an indoor map from an interoceptive SLAM created by the motion of a
foot (FootSLAM) [52, 38, 53]. There, the map is the walkable area, that is
created from the trajectory of the pedestrian. In the context of this thesis,
an interoceptive version of SLAM is used for the dynamic measurement of
the track geometry with inertial sensors.
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Figure 2.8: Exteroceptive SLAM: Robotic vacuum cleaner map (blue) from
laser scanner data with floor plan overlay (black).

Figure 2.9: Interoceptive SLAM: Indoor map of an office environment map
(cyan) with floor plan overlay (black) [53]. Example map of the FootSLAM
algorithm from foot mounted IMU data.
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Chapter 3

Navigation in the
Railway Environment

3.1 Railway Tracks

Trains run always on tracks. This fact is essential for the navigation of
trains, because a railway track constrains the positions and trajectory of a
train to one degree of freedom in the along-track direction. Multiple tracks
are connected to a track network via railway switches or crossings. A rail-
way switch, also known as points, connects tracks and can further change
the connection between two possible tracks. Hence, the trajectory of a
train is switchable to one of the connected tracks. A plain railway crossing
is an overlap of two tracks with no access from one track to the crossing
traverse track. There are special crossings with access to the traverse tracks
that are called slip switches or diamond crossings, respectively. A single
slip switch contains two switches and a double slip contains four inbuilt
switches and a crossing (see [15]). Finally, a track can be terminated at
one side with no connection to other tracks.

3.1.1 Railway Track Geometry

Railway tracks are planned in railway design offices with the following
considerations and can be found in [15]: On the one hand, a straight
line or track is desired between two destinations, as it is the shortest and
therefore most economical connection. On the other hand, a railway track
has to pass around urban areas, private property or terrain obstacles such
as mountains, rivers or coast line. Once, curves are implemented in order
to pass around these obstacles, there are further dynamics for a running
train. Trains can derail or even tilt over if the speed is too high for a certain
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curve radius due to lateral forces. Therefore, the track design defines also
a speed limit for safety reasons. The lateral train dynamics by acceleration
and jerk are further limited for passenger comfort and to avoid a shift of
cargo.

Railway tracks are fixed to the Earth, so any location on the tracks
represent as well a geographic position. In the following, the track geo-
metry is defined along the one dimensional track location s. One track
characteristic is also the heading angle ψ at a certain track location s. A
change of the heading angle over location s is called curvature (cψ), or
heading curvature more precisely. A curvature is the inverse of a radius
and the preferred unit in track design. The reason is a singularity of the
radius when it comes to straight tracks. A straight track has a curvature
of zero but an infinite radius in theory which results in a large positive or
negative radius in practice with tolerances.

A railway track requires at least a C1 continuity up to the first dif-
ferentiable because of the inertia of a train. A C0 continuity defines a
continuously connected track without breaks or gaps. Besides a derail-
ment, a C0 continuity limits the accelerations to finite values of a running
train that tries to stay on the track. Additionally for C1 continuity, the
tangents must match from two sides at any track location and thus the
turn rates of a running train are limited to finite values. If a straight track
connects to a curve with a constant radius, a sudden lateral acceleration
acts on the train and causes a theoretical infinite lateral jerk. Practically,
there is a high jerk because the undercarriage and suspensions absorb a
sudden change of the acceleration. Nevertheless there is a risk of a cargo
shift and a high jerk causes discomfort for passengers. A higher continuity
is achieved with a linear increase of the curvature between straight and a
circular arc with the use of a Clothoid, also known as Euler’s spiral. There
are also other transition curves with an S-shaped increase of curvature or
splines for even higher orders of continuity and a smoother train run.

The superelevation of tracks allows to increase the train speed for a
given limit of the lateral acceleration. This is possible, because the gravity
compensates parts of the lateral acceleration for a tilted train run in curves.
The superelevation described here with the bank angle (φ) of the track.
This bank angle is also limited, because a train may stop at all possible
locations in a curve and then a portion of gravity acts as lateral force. A
change of the bank angle over the track location s is the bank curvature cφ.
A ramp-shaped or S-shaped change of the bank angle satisfy the continuity
requirements regarding the bank angle. A smooth train run at a curve
entry is achieved with simultaneous changes of the bank angle and the
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heading curvature, e.g. via Clothoid, followed by a circular curve with
constant bank angle and constant curvature. Finally, the slope angle θ is
the inclination along a track for changes of the height level. The slope is
limited because a train may stop downhills or start towards uphills. The
change of a slope angle is the slope curvature cθ and indicates a crest or a
sag (see [15]). All track curvatures are defined as a change of angle over
the track location s:

bank curvature: cφ(s) =
dφ(s)

ds
, (3.1)

slope curvature: cθ(s) =
dθ(s)

ds
, (3.2)

heading curvature: cψ(s) =
dψ(s)

ds
. (3.3)

Track design follows usually national limitations and in special cases there
are exceptional permissions. As an example, the German limitations for
the 1435 mm track gauge are 6.8◦ for the bank angle from superelevation
and 2.3◦ for the slope (see [15, 54]). The minimum curve radius is above
100 m and above 180 m for new tracks [54], as trains can derail in too tight
curves. A maximum lateral acceleration of 1 m/s2 limits the speed in curves
and the maximum lateral jerk is defined with 0.45 m/s3 [15].

3.1.2 Railway Switches

A standard railway switch with its elements is shown in Figure 3.1. A
switch consists of two tracks: the straight track, usually for the main line,
and the diverging track, usually for the secondary line. There are negligible
and rare examples of switches with three tracks from special railways, which
will be disregarded here. In the case that the switch is a curved switch, the
least curved track is still denoted as straight track. Beside the standard
switch, there are different switch versions as the curved switch, Clothoid
switch and the Y-switch with equally curved tracks in opposite directions
(see [15]).

A train is guided by the switch blades to the straight or diverging track.
These switch blades can be moved so that one blade fits always to an outer
rail. The tracks are interrupted by the frog gap in front of the crossing
point of the rails from the two tracks. This gap is needed for the wheel
rims to pass the crossing rails. The V-shaped crossing rails are known
as frog, common crossing, or V-rail. A frog can be rigid or movable in
combination with the blades for higher train speeds. During the passage
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over the gap, the wheels are guided by guide rails. The clearance gauges of
the two tracks overlap within the switch. In some countries, the point of
the clearance intersection is indicated with a marker. For a collision free
operation, only one rail vehicle is allowed to access the switch at a time
(see [15]).

switch blades

actuator
frog

frog gap
guide rails

straight track

diverging track

clearance
gauge

clearance
indicatorswitch arc

switch angle

train passes
switch trailing

train passes
switch facing

switch length

Figure 3.1: Railway switch.

A train passes the switch facing in the direction of branching tracks
with two possible travel paths. In the opposite direction, the train passes
the switch trailing with only one possible travel path. From a train’s view,
the two tracks merge to one track. The travel directions of left and right
of a facing switch run are important for train localization. The resulting
path of a left or right switch run will be denoted as switch way in the
following. There are different ways to define a switch start, switch end
and a measure of the length. In the context of train localization, the
following definition is beneficial: The switch starts with the blades and
also the two possible tracks are defined from that point. The switch ends
at the clearance indicator for tolerance reasons of the train localization
evaluation. Within the switch, a wrong track identification is uncritical,
as only one train can occupy the switch. The track selectivity is evaluated
after the switch end.

Table 3.1 shows a list of standard switch examples used in Germany.
The radius or curvature of the turning track characterizes the standard
switch and limits the train speed. The table presents typical and char-
acteristic switch data with the arc radius, tangent ratio and speed limit
[15]. The values of switch curvature, switch angle, arc length, switch length
and transit time are calculated from this characteristic data. The switch
angle is the heading change caused by the switch arc computed from the
tangents ratio. The arc length is calculated from radius and switch an-
gle. The switch length is calculated for a 3.5 m clearance with a continued
straight track from radius, ratio and clearance distance (see [15]). Finally,
the transit time is here the time of a train run over the curved part of the
switch at the speed limit. This time ranges between 1.5 s and 2.8 s and is
of interest for the switch-way identification.
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switch type speed curva- switch arc switch transit

radius, tangent limit ture angle length length time

r, tanα vmax cψ = 1
r α larc = rα lsw t = larc

vmax

[m], [ratio] [km/h] [1/km] [◦] [m] [m] [s]

190 1:9 40 5.26 6.3 21.0 42.0 1.9

” 1:7.5 ” ” 7.6 25.2 38.8 2.3

300 1:14 50 3.33 4.1 21.4 59.7 1.5

” 1:9 ” ” 6.3 33.2 48.1 2.4

500 1:12 60 2.00 4.8 41.6 62.8 2.5

” 1:14 ” ” 4.1 35.7 66.8 2.1

760 1:18.5 80 1.32 3.1 41.1 85.3 1.8

” 1:14 ” ” 4.1 54.2 76.1 2.4

1200 1:18.5 100 0.83 3.1 64.8 97.2 2.3

2500 1:26.5 120 0.40 2.2 94.3 139.9 2.8

Table 3.1: Basic designs of German standard switches (see [15]).

An example is presented with a typical scenario of a switch followed
by parallel tracks: The curved switch track is part of an S-shaped track
that results in a parallel track to the straight track with a distance 4 m.
The S-shaped track is composed from the switch arc, followed by a straight
track and followed by the same arc turning in opposite direction. Figure 3.2
shows this example for the six representative switches from Table 3.1. A
transit time is calculated for a train traveling at the speed limit over the
switch and the continued curve until the clearance of 3.5 m is reached. For
each parallel track scenario, there are roughly 4 s of transit for the switch-
way identification. As a special property of a switch, the two tracks of the
competing switch ways differ in geometric characteristics of: curvatures
cψ, headings ψ, and positions (ϕ, λ). The curvature difference δcψ can
be measured from the switch start until the end of the switch arc. The
heading difference δψ is zero at the switch start and increases until the end
of the switch arc. The cross distance δCT increases also from zero at the
switch start. Figure 3.2 shows the ideal difference signals of δcψ, δψ, and
δCT between the two tracks of different switch ways. This parallel track
scenario includes a second arc that is traveled after the switch. Within
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Figure 3.2: Ideal difference signals for a switch-way discrimination of rep-
resentative switches in a parallel track scenario.

the second arc, the heading difference decreases to zero and a curvature
difference can be observed a second time. In this parallel track scenario,
the cross-track distance is the only remaining value to identify the tracks
after the second arc has passed.

3.2 Map based Navigation in the Railway
Domain

3.2.1 Geometric Coordinate Frames

The geometric coordinate frames for railways comprise: sensor frames,
train frame, track frame with local navigation frame as well as Earth frame
and inertial frame. Sensors measure in their specific sensor frame. For
further processing, these measurements are converted in the train frame
according to the sensor mounting. The map with the specific track geo-
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metry is expressed in the track frame which is linked to a local navigation
frame. Frame rotation matrices are defined in the Appendix C.1. A train
is constrained and guided by the rails of the track and thus the train frame
is linked to the track frame.

Sensor Frame

Inertial sensors, heading sensors and also cameras or other feature detectors
measure with respect to their sensor frame (index s). The measurements
~z s are rotated from sensor to train body frame (index b) with:

~z b = Cb
s~z

s, (3.4)

and the direction cosine matrix (DCM) rotation Cb
s that is defined in

Eq. (C.6). For a fixed mounted sensor, this rotation is persistent and can
be calibrated and adjusted in advance. The inverse transformation from
train body frame to sensor frame is:

Cs
b = Cb

s

T
. (3.5)

Train Frame

The train frame is the vehicle body frame and defined by a right-handed
Cartesian coordinate system. Train frame and body frame are the same in
the following. The train axes are specified to the front in along direction
(x), to the right side (y) and towards the bottom side (z). A complete train
requires different frames for each train car, each bogie and wheel axle. In
the following context, the train frame is used only for the cabin of the
first car with the mounted onboard sensors. For the train speed, there is
only one degree of freedom in the longitudinal x-axis of the body frame.
The train speed is defined with: vb,xeb and denoted as train speed v in the
following. This notation describes the speed v in the x-axis of the body
frame (superscript b, x), with the speed defined between Earth frame e and
body frame b (subscript: eb). In the following, a train speed will be also
defined in the track frame. The train motion acceleration is mainly caused
from the train traction and brakes. This acceleration is denoted with atb

and is also defined in the x-axis of the body frame, between Earth frame
and body frame: ab,xtb,eb. This train acceleration is also the time derivative
of the train speed v. The train attitude angles are defined in the body
frame b by right-handed Euler angles between the local navigation frame
n with north-east-down (NED) coordinates and the body frame b with
the subscript: nb. The train body angles around the x-axis is roll (φbnb),
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around the y-axis is pitch (θbnb) and the orientation to north is yaw (ψbnb).

The indexes are omitted in the following and the turn rates φ̇, θ̇ and ψ̇ are
defined similar to the angles. The DCM Cb

n from navigation frame n to
train frame b is defined in Eq. (C.6) with the angles of roll, pitch and yaw.

Track Frame

The general track frame is defined on the track at the center between
the two rails as depicted in Figure 3.3. The geometric coordinate frame
is defined in along-track, cross-track and down direction with the angles
of heading, slope and bank. However, this definition is ambiguous, as a
track frame can be defined in two different directions with opposite angles
and axes directions. Therefore, the track frame is defined within the map
with a fixed direction: Each track has a direction definition from its start
(s = 0 m) to its end point with an increasing 1-D track location s. The
track start is defined in an arbitrary way at one ending of a track. In
the following, a track frame is considered with this fixed definition. The
geometric track axes are along-track in the definition direction, cross-track
to the right side and downwards as presented in Fig. 3.3. The track frame is
defined at any 1-D track location s on the track as a Cartesian coordinate
system with index t. The track frame origin at a 1-D track location s can be
related to an absolute geographic position. The track attitude is defined in
the navigation frame (superscript n) by right-handed Euler angles between
the navigation frame n and the track frame t with the subscript nt. Bank
(φnnt) is the angle around the along-track axis, slope (θnnt) around cross-track
and heading is the angle to north (ψnnt). According to the angle definitions,
a positive slope angle is defined as uphill, a positive bank angle is leaning
to the right and a positive heading angle is defined clockwise from north.
Curvature signs are defined equally and a positive heading curvature cψ is

along-track
[track frame]

slope
θ

down
[nav frame]

horizontal plane
[nav frame]

down
[track frame]

north
[nav frame]

along-track
[track frame]

east
[nav frame]

cross-track
[track frame]

heading
ψ

cross-track
[track frame]

bank
φ

horizontal plane
[nav frame]

Figure 3.3: Track frame angle and axes definitions. [Left] top view, [Middle]
side view, [Right] front view of a track.
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a curve to the right, a negative is a curve to the left. The DCM Ct
n from

navigation frame n to track frame t is defined in Eq. (C.6) with the angles
of bank, slope and heading.

Earth Frame and Inertial Frame

The Earth frame and the inertial frame have the same origin at the center
of the Earth. The inertial frame is does not rotate and the inertial mea-
surements are referenced to this frame. The Earth frame is fixed to the
rotating Earth. There are two different coordinate systems used for the
Earth frame: The Cartesian Earth centered, Earth fixed (ECEF) coordi-
nate system and the latitude, longitude, height (LLH) coordinate system
based on an ellipsoid for the approximation of the Earth shape. In this
thesis, the world geodetic system of 1984 (WGS84) definition is used for
the reference ellipsoid.

Transformations between Earth frame e and navigation frame n are
used for train localization, mapping, analysis and evaluation. A position
~p is represented in LLH coordinates with latitude angle ϕ, longitude angle

λ, and a metric height h: ~p =
(
ϕ λ h

)T
. Between the two LLH posi-

tions ~p1 and ~p2, a distance ~x is defined in metric north-east-down (NED)

coordinates: ~x =
(
xn xe xd

)T
.

There are two geodetic problems for the calculations with positions
and distances [32]: The direct geodetic problem is defined to determine a
position ~p2 from a given position ~p1 and a distance. The inverse geodetic
problem is defined to determine a distance between the two positions ~p1

and ~p2.
According to the direct geodetic problem, the LLH position ~p2 can be

computed from ~p1 and ~x with:

~p2 = fLLH (fECEF(~p1) + Ce
n(ϕ1, λ1) · ~x) . (3.6)

The transformation from LLH to ECEF coordinates is fECEF and the trans-
formation from ECEF to LLH is fLLH. These transformations are non-linear
and solutions can be found in [55]. The rotation matrix Ce

n(ϕ, λ) is defined
in Eq. (C.9) at a position (ϕ, λ) and rotates the axes from navigation frame
n to ECEF Earth frame e. An alternative transformation uses the arc mea-
sure with meridian and transverse Earth radii for the computation of the
direct geodetic problem:

~p2 = ~p1 +

 xn
(Rn(ϕ1)+h1)

xe
(Re(ϕ1)+h1) cosϕ1

−xd

 . (3.7)
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This transformation uses the meridian radius in north direction Rn(ϕ) and
the transverse Earth radius in east direction Re(ϕ) as defined in Appendix
Eq. (C.10) and Eq. (C.11). The radii depend on the latitude and change for
distances in north-south direction. In this thesis, Eq. (3.7) is used for the
propagation of a position with inertial measurements and for calculations
with small distances in the vicinity of tracks (e.g. <100 m).

According to the inverse geodetic problem, the NED distance ~x is com-
puted from the two positions ~p1 and ~p2 and the rotation matrix Eq. (C.9):

~x = Cn
e(ϕ1, λ1) (fECEF(~p2)− fECEF(~p1)) . (3.8)

The alternative calculation of the distance from positions for small dis-
tances is based on the arc measure with meridian and transverse Earth
radii:

~x =

(Rn(ϕ1) + h1) 0 0
0 (Re(ϕ1) + h1) · cosϕ1 0
0 0 −1

 (~p2 − ~p1)

=

 (ϕ2 − ϕ1) · (Rn(ϕ1) + h1)
(λ2 − λ1) · (Re(ϕ1) + h1) · cosϕ1

−h2 + h1

 .

(3.9)

Along-track and Cross-track Distance Definitions

The coordinate system in track frame is defined with along-track and cross-
track direction. Figure 3.4 shows the different distances between a geogra-
phic position ~pŝ on a track at the 1-D track location ŝ and a geographic
position ~p next to the tracks. The along-track distance dAT is the length
of the tangent vector of the track at ŝ. The cross-track distance dCT is the
length of the normal vector to ~p. The cross-track distance δCT is defined
with the length of the normal vector between matched geographic track
position ~ps̃ at track location s̃ and ~p. The along-track distance δAT, also
denoted with ∆s, follows the path of the track and is defined between track
location ŝ and the matched track location s̃. The track location at ŝ can
be an estimate, a prediction or a true location in the following sections
of localization, mapping and evaluation. For straight tracks, the distance
δAT is the same as dAT. If the distance δAT is small compared to the curve
radius r for curved tracks, the distances δAT and dAT are very similar:

dAT ≈ δAT,
dCT ≈ δCT,

}
for curve radius r � δAT. (3.10)
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This approximation will be used in one following localization method (Sec-
tion 6.2.4). The computation of s̃ from the geographic position ~p and a
map with track segments is also presented in the map-match approach
(Section 6.2.2).

s0

position ~p

~pŝ

~dCT

~dAT

~δCT

δAT
~ps̃

Figure 3.4: Along-track and cross-track distance definitions.

3.2.2 Trains on Tracks

Train-to-track Direction

A train can be placed in two different directions on a track as shown in
Figure 3.5. This direction is called train-to-track frame direction and de-
noted with:

ot ∈ {−1,+1}. (3.11)

The map defines the track origin (s = 0) at one side of the track and also
the direction of the along-track axis in Figure 3.5.

along-track
[track frame]

cross-track
[track frame]

z y

x

along-track
[track frame]

cross-track
[track frame]

z

[train frame]

x

y

[train frame]

[sensor frame]

z
y

x

Figure 3.5: [Left] Train with sensor frame in positive train-to-track direc-
tion (ot : +). [Right] Train direction in negative train-to-track direction
(ot : −).
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The rotation from train (body) frame b to track frame t can take two
discrete states: both frames are either aligned in the same direction of
the tracks or the train frame is rotated in the opposite direction. The
rotation matrix C(ot) depends on the train-to-track direction ot and rotates
the train frame or track frame. An opposite train-to-track direction is a
rotation of one frame about the z axis with ψ = π or ψ = 180◦, respectively.
The train-to-track rotation matrix uses the yaw rotation matrix, as defined
in Eq. (C.1), and the train-to-track direction ot:

C(ot) =

ot 0 0
0 ot 0
0 0 1

 . (3.12)

If the train-to-track direction ot is positive, both frames are aligned and
C(ot) is an identity matrix. If the train-to-track direction is negative, the
train-to-track rotation matrix is:

C(ot = −) =

−1 0 0
0 −1 0
0 0 1

 . (3.13)

For both cases of the train-to-track direction ot, the rotation matrix from
track frame t to train frame b is the same as the rotation from train to
track frame:

Cb
t (ot) = Ct

b(ot). (3.14)

The train speed v is alternatively expressed between train and track
frame with ṡ. This train speed stands for the temporal change of the
location s. The absolute velocity of v and ṡ are the same but the sign
depends now on the definition for the track origin and the motion direction
of the train. The sign of ṡ indicates either an increasing (+) or decreasing
(−) change of the location s of the current track:

ṡ = ot v :

{
v, for ot = +

−v, for ot = − . (3.15)

The acceleration of the train can be expressed in the track frame with s̈
and the conversion is:

s̈ = ot atb. (3.16)

Table 3.2 shows the conversions of the train direction variables: the train-
to-track frame direction (ot), the train motion direction by the sign of v
(ov) and the direction of motion between train and track frame by the sign
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of ṡ (om). The motion direction depends on a forward or backward velocity
v. Most of the trains are designed for two-way directional operations. The
motion direction remains the same during a train run. The direction can
change once the train has stopped. As defined in the paragraph about track
frame, the orientation of the track frame is fixed and defined in the map.
It is possible that two connected tracks in a map, e.g. at a switch, have
opposite orientation definitions. This causes an alternating sign of ṡ and
ot after a change of tracks during a train run. This means, ov is persistent
during one train run, while ot and om can change. The motion direction
in track-frame (om) changes also with the velocity direction. Direction ot

remains its value during stand-still and is thus persistent while the other
directions are undefined. Table 3.2 contains all possible combinations of
the train directions in six different scenarios. With the knowledge of two
directions ot, the third can be derived from Table 3.2. These directions

train-track frame train velocity train motion direction

direction direction in track frame

ot ov = sgn(v) om = sgn(ṡ)

+ forward (+) +

− forward (+) −
+ backward (−) −
− backward (−) +

+ stop (0) 0

− stop (0) 0

Table 3.2: Train directions for all six scenarios.

are only auxiliary variables and needed for conversions. The directions
are tracked in a deterministic way for train localization. However, these
directions may be unknown and ambiguous in the initial phase of train
localization. They are usually observable soon after the first motion of the
train.

Track Geometry and Train Trajectory

For train localization and track mapping, a conversion is required in a
common coordinate frame for the map data, the train state and the mea-
surements. All data can either be converted into the train frame or in the
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track frame. In this thesis, the train frame is used for train localization
as well as for the information fusion of the prior map and measurements
in the RailSLAM method. Once the track map is updated, the data is
converted to the track-frame.

As previously mentioned, the railway tracks are a hard constraint for
the positions, motion and kinematics of a train. In principle, a train bogie
adapts the position and attitude of the track with its wheels. The bogie is
further linked to the train cabin over a pivot bearing and suspensions. The
track attitude angles of bank, slope and heading influence directly the train
angles by roll, pitch and yaw. In this thesis, the following set of physical
variables are used for train-side measurements as well as for track features
in the track map:

{ϕ, λ, h︸ ︷︷ ︸
position

, φ, θ, ψ︸ ︷︷ ︸
attitude

, cφ, cθ, cψ︸ ︷︷ ︸
curvatures

}. (3.17)

This set of variables is called train trajectory in the context of train-side
measurements. In the context of a track and the track map, this set of
variables is called track geometry. As a simplification, the track geometry
translates approximately to the train cabin trajectory values in the fol-
lowing. This may induce a small error, as the several parts of the bogie
and the undercarriage contains suspension and the cabin is placed on two
bogies.

The positions in Eq. (3.17) are not affected from a rotation of the track-
to-track direction. Table 3.3 shows the attitude and the curvature conver-
sions for the two track-to-train directions. The attitude angles change if
the train direction ot is negative. As mentioned, a curvature describes the
change of the attitude angles over the track location parameter s. The
bank curvature is independent of the direction definition ot. This property
can be explained with the thread of a screw: a thread has the same direc-
tion of rotation at both ends of the tread. The clock-wise rotation that
is seen from one end of a right-handed thread is also seen as a clock-wise
rotation from the other end. An arbitrary or changing definition of the
track origin does not affect the direction of rotation in the x-axis and the
bank curvature. The slope curvature is also independent of the direction
definition ot: the vertical curves of sag or crest do not change with a differ-
ent definition of the track origin and train-to-track direction. The heading
curvature changes its sign with an opposite train-to-track direction. A left
curve with increasing track locations turns to a right curve, with respect
to increasing track locations, if the track origin changes.



3.2. Map based Navigation in the Railway Domain 49

Train Frame Track Frame Train-to-track Direction

train trajectory track geometry ot = + ot = −

roll φb bank φt φb ≈ φt φb ≈ −φt
pitch θb slope θt θb ≈ θt θb ≈ −θt
yaw ψb heading ψt ψb ≈ ψt ψb ≈ ψt + π

bank curvature cφ,b ≈ cφ,t

slope curvature cθ,b ≈ cθ,t

heading curvature cψ,b ≈ cψ,t cψ,b ≈ −cψ,t

Table 3.3: Conversion of attitude angles and curvatures between train and
track frame.

3.2.3 Topological Coordinates

The goal of train localization is to estimate the train location in the track
network by topological coordinates as well as the train speed. A unique
and discrete track ID (id) identifies the track and the track length variable
s is the one-dimensional location on that track. Each track is defined with
an origin and a direction ot that indicates if a train is oriented towards or
against the track origin. The topological pose consists of the topological
location and the direction:

T topo = { id, s︸︷︷︸
topological

location

, ot}. (3.18)

Tracks are connected by switches, crossings or diamond switch crossings.
A track is defined in this thesis with a unique ID between two connections,
i.e. a track contains no switch or crossing. This definition ensures, that a
track is always one-dimensional with no other access than the track begin or
track end. The topological location is a unique address within the railway
track network.

Topological Localization Characterization

A suitable analysis for topological localization characterization is the dis-
tinction in along-track and track identification. Along-track addresses the
continuous 1-D localization on a track. Track identification focuses on the
discrete tracks IDs and track selectivity is the ability of a correct localiza-
tion and identification of the track. Sensors can contribute to along-track
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and track identification with relative or absolute measurements of track fea-
tures or train motion. As shown in Table 3.4 and Figure 3.6, measurements
can contribute to train localization in four different ways. Measurements
may also contribute to absolute along-track or track identification in a lo-
cal vicinity. The GNSS position measurements are considered as absolute
along-track measurements and also useful for the track identification un-
der certain conditions: in scenarios with parallel tracks there is still an
ambiguity due to the close tracks and the GNSS measurement accuracy.

track identification
at switch

(idleft, idright) absolute track
identification (id)

relative
along-track (∆s)

absolute
along-track (s)

Figure 3.6: Topological characterization of localization.

Localization Estimation, Contribution of
characterization observation of measurements via

relative along-track ∆s velocity integration, displacement,
distance measurement

absolute along-track s comparison with diverse along-track
features, signatures, and landmarks

track identification idleft / idright comparison with competing
at switch switch-way features

absolute track id comparison with diverse track
identification features, signatures, and landmarks

Table 3.4: Localization characterization with along-track and track identi-
fication.

3.2.4 Train Control

The train control, with train driver operation, consists of an along-track
control from the train driver and a train route guidance from a train control
center:

U = { U sw︸︷︷︸
route guidance,

train control center

, U acc, Um︸ ︷︷ ︸
along-track control,

train driver

}. (3.19)
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The route guidance influences the travel path of the train by the selected
switch way (U sw ∈ {straight, turn} or {left, right}). This is usually con-
trolled by a train control center or sometimes by the train driver at shunt-
ing yards or industrial tracks. A complete train route consists of multiple
and consecutive switch stands. The train driver controls the general train
motion Um with a travel direction selector and the acceleration U acc with
the traction and brake lever. The general train motion includes the travel
direction as well as a stopped train at a railway signal or with activated
parking brakes: (Um ∈ {forward, backward, stop}). The train control
center has also influence on the along-track control via railway signaling.

3.3 Topological and Geometric Track Map

The track map contains relevant information for the train localization.
This map contains topological information by the track connections as
well as the geometric information with the track features. Figure 3.7 shows
the two layers of this special map with the topological network part and
the linked geometric part. The track map is an abstract model of the
railway environment with limited accuracy and limited completeness. An
ideal map assumes no errors and exact data. A probabilistic track map
contains additionally values for the uncertainty. This uncertainty can be
represented as a deviation, e.g. a Gaussian variance or covariance for the
geometry values. A probabilistic track map can also contain weighted and
multiple versions of one track.
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Figure 3.7: Railway map with topological and geometric data (see [P4]).

3.3.1 Railway Track Features

Track features are characteristics of the track and continuously present over
position. Discrete features occur only at a particular position and are called
landmarks. Examples for landmarks are switches, significant changes of the



52 Chapter 3. Navigation in the Railway Environment

geometry as start and end of curves, bridges, a tunnel entrance or railway
signals. A suitable track feature or landmark is a location dependent and
unchanging property of the track which can be measured. A sequence of
track features over location is called track signature in this thesis. In the
context of landmarks, a signature is a set of signals or properties which
are needed for the detection and identification of the landmark (see [13]).
Over different locations, there are unique track features as well as repeated
and ambiguous features.

In this thesis, the track geometry consists of geographic position, atti-
tude and curvatures. The geographic positions describe the center line of
a railway track. It consists of latitude, longitude and height (ϕ, λ, h) is a
unique feature in combination as a position. The track attitude contains
bank φ, slope θ, heading ψ, and the track curvatures are bank curvature
cφ, slope curvature cθ, and heading curvature cψ. Attitude and curvature
are not unique features and can be locally constant over s or repeated on
other locations. Additional features can be extended, provided that there
is a different signal over different locations and sensors can measure these
features. Examples of extended features are the vibratory signatures [P5],
magnetic signatures [P6], metal objects for eddy current sensor and visual
features for cameras.

3.3.2 Model of the Track Map

The track map model stores the map information of topology and track
features and provides interfaces to access this information. An example of
a data model and exchange format for a track map is the Railway Markup
Language railML [56]. The track map model defined here is confined to the
needs of train localization and defines also interface functions. Additional
information of speed limits, track load, electrification and other railway
properties can extend this map.

The track map is organized with a set of the different tracks. Every
track is identified with a unique track ID id and defined with one start and
one end point. A track is always one-dimensional with no other access than
the start or track end. The geometric data of each track is parametrized
to the one-dimensional location and stored by samples over the location s.
A continuous representation of track features is achieved by interpolations
between these points. Figure 3.8 shows an example of three track features
with standard deviations. Each track feature shows nine sample points and
an interpolation in between.
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Figure 3.8: Parametrized track features over 1-D track locations: inter-
polated samples (red) of latitude, longitude and heading curvature with
standard deviations (blue).

The track map model provides interface functions for the applications
of train localization and mapping. One important interface function is
a transition of a track location (topological location) with a defined dis-
tance, called transition interface function. Another interface functions ac-
cesses the track features, that are sampled over the 1-D track location. An
interpolation enables a continuous access of the track feature and track
geometry data. Possible data interpolation methods can be linear inter-
polation (C0 continuity), cubic interpolation (C1) or cubic spline interpo-
lation (C2) or similar. For a comparison of data from the track map and
measurements, the track feature vector is converted to the train frame, as
described in Table 3.3.

Figure 3.9 visualizes a small railway network of tracks with one switch
and one crossing. The topological connections are shown with the linked
IDs to the other connections. Each connection has an own ID consisting
of the track ID and a sign. A positive sign refers a track start, a negative
refers to a track end. In Figure 3.9, the crossing displays only the accessible
IDs while the traverse link IDs are not shown. Switches and crossings are
nodes of the topology and a switch connects three tracks, a crossing four
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tracks. The topological information is stored in the connections of the
track endings, respectively the track start point and track end point. A
connection links another connection with its ID while the other connection
references also the first connection ID. There are six types of connections
considered: buffer stop, open end, single connection, switch merge, switch
branch and crossing. The endings of buffer stop and open end terminate
the track or leave it open to an unknown track. The single connection
connects only one track to another one. The switch merge connects one
track ending with a track ending of the type switch. There is no access
from a merging track to the other merging track of a switch. The switch
connects to two other track connections and both tracks are accessible
with a train. The crossing points to one accessible connection and the two
traverse tracks are inaccessible. In this way, the track map limits the access
of certain tracks, which is a vital information for the track map transition
function (see Eq. (6.5)).
a) Track layout

b) Track topology with connections and links
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track 103

track 104

track 105

switch crossing

switch

ID +101
(start)
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next:+103
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(end)

Figure 3.9: Map with linked connections of a switch and crossing.

3.3.3 Errors of the Track Map

There are several types of map errors: incomplete data, incorrect data and
inaccurate data between the map data and the truth. A track map may
usually focus on a region or a specific railway line. Missing tracks that are
out of the region are not considered as a map error. If a train runs on a
track that is not part of the track map, this map is insufficient.

Some of the map errors can be detected with checks and the map data
itself. Examples for incomplete data are missing track connections, missing



3.3. Topological and Geometric Track Map 55

connection references or missing track feature data. Missing references can
be detected from rules, as a switch requires two connections with references
to other tracks, for example. A missing track feature can be detected if
other track features are present. Examples of incorrect data that can be
detected are inconsistent connections, inconsistent cross references, or a
non-continuity of positions at a track change. The track geometry data
can be further checked against reasonable limits or limits for changes.

The geometry data is a representation of the true tracks with a specific
accuracy. Hence, this data deviates from the true track geometry with a
certain error. In the following, different maps are evaluated with a cross-
track map bias δCT,map. This bias in lateral direction is the systematic
offset between a position on the true tracks and the corresponding position
in the map model.

3.3.4 Data Sources of the Track Map

In this thesis, the RailSLAM method estimated the track map from mea-
surements. As an alternative, the track map can be also generated from ex-
isting geo-position data. This data may originate from public or private geo
databases, from land surveys or from sampled positions of geo-referenced
aerial images.

In the following, Open Street Map (OSM) [57] is used as representative
example of an existing geo database. OSM is an open source database
from crowd sourced data and contains 2-D position samples of many rail-
way tracks. The major advantage is the good coverage of railway tracks in
certain areas. In contrast, a train measurements contain only those tracks
and switches that are part of the train runs. These covered tracks are
only a fraction of the track network. Fig. 3.10 shows the comprehensive
tracks of Augsburg main station from OSM position data with interpola-
tions between the track sample positions. The disadvantage of the OSM
based map is the coarse accuracy of the position samples in some parts of
the environment, an incompleteness in some areas, and the lack of other
geometry data than 2-D positions.

Geo-referenced aerial images, also known as digital orthophotos (DOP),
are created by land surveying offices from surveying flights or from satellite
images. This type of image is also used by a virtual globe software, such
as Google Earth [58] or NASA WorldWind [59]. A geo-referenced image
has geo position information associated to the pixel positions of the image.
Railways tracks can be identified inside the image and sampled either man-
ually or with specific algorithms. The geo positions are obtained from these
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Figure 3.10: Railway track positions of Augsburg main station from Open
Street Map (OSM) data.

samples, as the geo positions are linked to the image. Depending on the
quality of the images, there is a limited accuracy of the positions with off-
sets and image distortions. Figure 3.11 shows a geo-referenced DOP from
the local land surveying office [60]. The reference track is sampled from
this image and shown with white points and and interpolation in between.
The track from OSM position data is shown in magenta. In this example,
the cross-track map bias δCT,map between the OSM based track map and
the reference track is between 1.7 m and 2.4 m over a length of 1.7 km.
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Figure 3.11: Geo-referenced digital orthophoto with a reference track
(white) and OSM based track (magenta).
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The raw position samples of railway tracks are not sufficient for a track
map, because the topological layer is missing. Therefore, a track map
requires further processing of the position samples. At first, the positions
are grouped to tracks and labeled with an unique track ID id. For every
track, the 1-D location s is computed from the Euclidean distances between
these position samples. An origin is defined for each track at an arbitrary
ending. The last step is a connection of track connections. The track
geometry information may be extended with heading angle and heading
curvature, which can be calculated from the 2-D position samples: The
heading may be computed with the metric distances in north (∆xn) and
east (∆xe) direction from two consecutive position samples:

ψ = arctan

(
∆xn
∆xe

)
. (3.20)

The curvature is the change of heading of two consecutive headings over
the arc length ∆s of the track between the samples:

cψ =
∆ψ

∆s
. (3.21)

3.3.5 Memory Requirements of the Track Map

The memory requirements are assessed for a track map for train localiza-
tion. The plain data volume is a rough estimate of uncompressed map
information. Each value of the geometric data is considered with a dou-
ble precision floating point representation of 8 data bytes. The topology
requires for each track integers for the track ID (4 B), connection types of
start and end (1 B) and linked IDs. These linked IDs point to other connec-
tions with a track ID and a start and end connection identifier (sign) with
a signed integer (4 B). There are no linked IDs for a termination (buffer
stop or open end), one for single connections and merging switch tracks,
two for switches and three for crossings.

A representative track map is analyzed for memory consumption with
different formats. This track map covers all tracks of and near the op-
erating area of the regional transportation cooperation BRB in Augsburg
(Germany) in 2014. The track map contains 1563 tracks over a total length
of 568 km with 14886 track samples, 915 switches, 124 crossings, 2087 end-
ings and an average segment length of 42.6 m. Every track sample contains
four variables by 1-D track location, 2-D geographic position and curvature
data. For the given example, the uncompressed map information is 465 kB
for the track features and 16.2 kB for the topology. Table 3.5 contains
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the estimated data volumes of all German tracks over 63 839 km [61] with
different sample spacings and number of track features. The large map of
German railways is 112 times larger than the example map. The topology
data volume of 1.8 MB is estimated from the example map and scaled up.

Track features
Average sample spacing

5 m 10 m 20 m 50 m

4 values (s, ϕ, λ, cψ) 391 MB 197 MB 99 MB 41 MB

10 values (s, ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ) 976 MB 489 MB 245 MB 99 MB

10 values + variances 1950 MB 976 MB 489 MB 197 MB

Table 3.5: Estimated and raw data volumes for a complete track map of
Germany (63 839 km [61])

The railway networks of 27 European countries sum up to 330 892 km
[61] and are more than five times larger than the German network. The
raw data volume of the topology is roughly 9.2 MB. The raw memory
requirements for the very large EU27 railway map with sample points of
5 m and ten variables with variances are about 10 GB.

A data reduction and state-of-the-art compression can further decrease
the data volume of a track map. Data reduction can be achieved with a
sample point reduction on straight tracks, for example. This is possible
if sample points are redundant and can be interpolated from surrounding
samples within a defined tolerance. Splines are advantageous to approxi-
mate curves and reduce further sample points. Hasberg [62] has shown a
spline approximation for railways tracks with 2-D position data.

This memory analysis shows, that even uncompressed and very large
maps are manageable with off-the-shelf storage devices.
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Chapter 4

Onboard Sensors

This chapter presents the sensors that are used for an onboard train local-
ization and track mapping. The algorithmic implementations in Chapter 6
use a GNSS and an IMU. Section 4.1 presents the GNSS with an overview,
theoretic accuracy and a train measurement analysis. Section 4.2 presents
the IMU with an overview, a state-of-the art inertial navigation system me-
thod, an analysis of train measurements, and an analysis of a direct track
feature measurement method with inertial sensors. Furthermore, two novel
measurement methods are presented with the passive magnetic measure-
ment method in Section 4.3.1 and the vibration method in Section 4.3.2. A
summary of possible onboard train measurements is given in Section 4.3.3.

4.1 GNSS: Global Navigation Satellite Sys-
tem

A global navigation satellite system (GNSS) enables a user to determine
world-wide its absolute geographic position, velocity and time. The first
and most widely used GNSS is the NAVSTAR-GPS (USA). Other systems
are the Russian GLONASS system, the European GALILEO system and
the Chinese BeiDou (Compass) system. A GNSS has three major system
components: A space segment with the satellite constellation, a ground
segment and the GNSS receiver as user segment. Figure 4.1 shows a sim-
plified GNSS receiver block diagram with a focus on the data interfaces.

A simple layout of a GNSS receiver consist of several elements, such
as a radio frequency (RF) front end with connected antenna, a signal pro-
cessing unit and a navigation computer. Further explanation of signal
processing and position computation can be found in [63, 64]. The three
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Figure 4.1: Simplified GNSS receiver diagram with different data outputs.

data interfaces, as depicted in Fig. 4.1, represent different stages of the data
processing. The GNSS data can be processed in combination with addi-
tional external information. This external data can be measurements from
an inertial measurement unit (IMU), a barometer, speed sensors or a map
of the environment. The coupling level denotes how tight this external data
is coupled to the GNSS data. A post-processing considers a computation
of the PVT data from recorded raw data or raw measurements. This post-
processing comprises for example non-causal signal filters and additional
information, such as precise satellite orbit information or corrections from
nearby reference stations. First, the position, velocity, time (PVT) solution
is the standard output that is available on every commercial receiver. This
PVT data is based on GNSS measurements and optional correction data.
A further information fusion with other measurements will be denoted as
loosely coupled positioning. Second, a tightly coupled positioning requires
raw measurements that consist of pseudoranges, Doppler and phase mea-
surements of each satellite. Third, an ultra tight coupled positioning uses
inphase and quadrature (IQ) samples that enables an enhanced tracking
of the satellite signals with additional information from other sensors.

The scope of this thesis considers a standard COTS receiver with a
single antenna and a PVT solution as output for a loosely-coupled integra-
tion. Advanced GNSS approaches are briefly presented with suggestions for
improvements in Section 8.1.5. The following presents the theoretical accu-
racies of GNSS positions with a measurement error model (Section 4.1.1)
and ideal measurements (Section 4.1.2). A useability analysis for train
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localization is given in Section 4.1.3 with an evaluation of measurements
recorded on a train in a railway environment.

4.1.1 Measurement Errors and Corrections

The navigation computer processes measurements of several satellites. A
pseudorange is a range measurement from satellite s to the receiver u. A
standard measurement model for the pseudorange ρ is given by [64]:

ρsu = ||~r s − ~ru||︸ ︷︷ ︸
range between

satellite and user

− c · δs︸︷︷︸
satellite

clock offset

+ c · δu︸︷︷︸
user clock

offset

+ Isu + T su︸ ︷︷ ︸
Ionospheric and

Tropospheric delay

+ ερ︸︷︷︸
remanent

errors

. (4.1)

The navigation computer estimates the user position ~ru and the user clock
offset δu from multiple satellite measurements. As shown in Eq. (4.1), there
are several error sources which decrease the position accuracy. Some of
them can be corrected online at the receiver. Errors of the ephemeris data
cause errors in satellite position ~r s and therefore in the range estimate.
An error from the satellite clock causes a bias in the range measurement.
The atmospheric effects of ionosphere and troposphere cause biases on the
measurements. The parameters for pseudorange corrections of ephemeris,
satellite clock and atmospheric errors for each satellite are transmitted
by several ways: First, the satellite navigation message of each satellite
contains coarse parameters with a global scope. More accurate parameters
as well as integrity information for an increased reliability are transmitted
by satellite based augmentation system (SBAS) service with a continental
scope. More accurate corrections with a local scope can be achieved with
differential GNSS (DGNSS), that requires a mobile network and reference
stations with known positions (see [63, 64]).

Multipath is another error source: the satellite signal is reflected in the
environment near the receiver and part of the remanent errors ερ. The
reflected signal path is different to the direct line-of-sight path and affects
the range and Doppler measurements.

4.1.2 Theoretical GNSS Accuracy

This theoretic analysis shows the challenge of track-selective accuracy with
GNSS position measurements. Therefore, the horizontal GNSS accuracy
is compared to typical distances of parallel railway tracks. A parallel track
distance depends mainly on the railway gauge, route types by main or
secondary line and the maximum speed. A common parallel track distance
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in Germany is 4.0 m for train speeds up to 200 km/h [15]. A simple map-
matching by a nearest neighbor approach (see 6.2.2) uses inherently half
of the parallel track distance as a decision threshold.

The GNSS accuracy is monitored and periodically reported by the wide
area augmentation system (WAAS) stations in North America and by
European geostationary navigation overlay service (EGNOS) stations in
Europe. Figure 4.2 shows the histogram and cumulative error probabil-
ity of the horizontal navigation system error of the EGNOS open service.
There, the probability of a horizontal error below 2.0 m is shown with over
99.9 % from 27 monitor stations [65].

Figure 4.2: EGNOS open service horizontal navigation system error
(HNSE) histogram and cumulative probability of August 2016. Courtesy
of ESSP and European GNSS Agency, produced under a program funded
by the European Union [65].

The measurement conditions of a train mounted GNSS receiver are dif-
ferent compared to the ideal conditions of the monitor stations. The major
differences are multipath and obstructed line-of-sight paths to satellites in
the railway environment. A train driver’s view of the railway environment
can be seen in Fig. 4.3. There are many possible signal reflectors, such
as metal poles, catenary, bridges, other trains, railway tracks and sound
walls. Other possible sources of multipath are buildings, trees or station
roofs next to the tracks. The own train can also cause multipath by the
pantograph or with roof structures such as the casings of air-conditioning.
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Figure 4.3: Possible multipath causes in railway environment.

Besides multipath, signals from low elevated satellites are likely obstructed
by the railway environment. With higher latitudes of the GNSS receiver
position, the satellite augmentation signals from geostationary satellites,
such as EGNOS, have lower elevations and are also more likely obstructed
by the railway environment. This causes a degradation of the satellite geo-
metry. Additionally, GNSS signals are not available in tunnels or below
station roofs. As a consequence, there is a degraded accuracy performance
expected in the railway environment compared to the ideal conditions of
the monitor stations. A localization based on GNSS positions and a near-
est neighbor method (simple map-match) is likely to fail in a parallel track
scenario.

4.1.3 Analysis of GNSS Accuracy with Train Mea-

surements

The following measurement analysis encompasses a comparison of GNSS
position measurements of several runs with an example track map and
a reference map. Furthermore, the GNSS measurements of position and
motion direction are analyzed at a railway switch. The presented analysis
uses filtered PVT data (position, velocity, time) from a single frequency
(L1) GPS receiver (u-blox LEA 6T) with one patch antenna. This GNSS
setup represents a low-cost COTS setup. The measurements were recorded
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on a regional passenger train, as described in Section 7. The following
shows, how the GNSS measurements of position, motion direction and
speed contribute to the train location estimation.

GNSS Position Measurements

Figure 4.4 shows typical GPS position measurements of ten different train
runs over the same railway track. The train repeats in every run the same
trajectory given by the positions of the rails. It can be seen that each GPS
trace (orange) has a nearly constant offsets to each other trace and the
track map. The example track map from OSM data (magenta) shows also
an offset to the intended center line between the rails, represented with a
white reference line.
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Figure 4.4: GPS position traces (orange) of ten runs on a single track
scenario and a biased track map (magenta) and a reference trace (white).

The position measurements will be associated to the track map in the
train localization, later on. An error between the position measurements
and the track map can be observed in cross-track direction, with the cross-
track distance δCT (see Section 3.2.1). This error encompasses a map bias
and the error between measured positions and true positions. The along-
track error is not observable. As mentioned in Section 3.3.3, a cross-track
map bias δCT,map defines the offset between the true center line of the tracks
and the track map.

Figure 4.5 shows the cross-track error distribution between GNSS posi-
tion measurements and a reference track map. The measurement setup is
explained with more details in Section 7.1, the reference track map is ex-
plained in Section 7.2.2, and the cross-track error computation is explained
in Section 7.3.3. The cross-track evaluations comprise position measure-
ments with 1 Hz and a total length of 4.4 h from 21 train runs (see Table 7.1
and Table E.2). These evaluations are limited to the extent of the reference
track map between Augsburg main station and station Friedberg. The axes
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Figure 4.5: Cross-track accuracy evaluation of a COTS GNSS receiver
in a railway environment. Cross-track error histogram and cumulative
distribution function (CDF) between GNSS position measurements and
the reference track map. The last histogram bin contains all errors ≥
10 m.

scales are the same as in Fig. 4.2, and the last histogram bin in both figures
contains all remaining errors equal or greater than 10 m. The cross-track
error distribution of Fig. 4.5 shows a lower accuracy compared to the ideal
horizontal error deviation of a monitor station in Fig. 4.2. However, the two
figures are not directly comparable. The data set of Fig. 4.5 comprises less
samples with 16006 measurement samples. As a consequence, the possi-
ble satellite constellations are not complete. Additionally, the train routes
were mostly in east-west direction and thus the cross-track errors are in
north-south direction. The reference track map may be close to the true
positions of the tracks, but this track map contains still position errors.
Furthermore, the type and mounting position of the GNSS antenna has
influence on the cross-track error. Improvements regarding the antenna
setup are discussed in Section 8.1.5. Nevertheless, the following train lo-
calization and track mapping methods are evaluated with these measure-
ments. A train localization computes and uses this cross-track distance as
part of the track identification. The error histogram of Fig. 4.5 shows still
a lower accuracy compared to the expected performance figures on GNSS
position accuracy from Fig. 4.2. Figure 4.5 shows also the error CDFs when
the train is stopped and in motion. A stopped train shows larger errors
than a train in motion because a multipath changes with a moving train
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more quickly and the receiver filters a fast changing multipath. A deter-
ministic track identification of parallel tracks with a track separation of
4 m has a discrimination threshold at 2 m. A dynamic track identification
at parallel tracks or at switch with a moving train shows 76.3 % below 2 m
(see Fig. 4.5). A static track identification with a stopped train at parallel
tracks is more difficult with a lower accuracy of 53.3 % below 2 m. The ideal
monitor station showed over 99.9 % of the deviations below 2 m (Fig. 4.2).
Section 8.2.2 shows more distributions of cross-track errors with different
track maps and positions from GNSS only as well as positions from an
integrated navigation system (INS/GNSS).

GNSS Position Measurements at a Switch

The switch is a crucial point for a track-selective train localization. The
switch way in left or right direction is resolved from the measurements.
Figure 4.6 and Fig. 4.7 illustrate the GPS positions of three runs to the
left switch way and three to the right. The 2-D positions are shown in
along and cross-track coordinates relative to the start of the switch. The
cross-track bias δCT between measurements (blue and orange) and the map
(gray) can be seen in Fig. 4.6.
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Figure 4.6: GPS position traces over left (blue) and right (orange) switch
way.

A cross-track bias is unfortunate for a correct switch-way estimation.
On the other hand, this bias can be observed from measurements and the
map just before the switch, for the case that the bias does not change. The
switch way estimation can then be calibrated by the observed cross-track
bias δCT(sswitch). As a consequence, only the difference signal is evaluated
by the estimator or switch-way detector. In Fig. 4.7, the last cross-track
bias is stored before the switch start, and then it is subtracted from the
measurements.
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Figure 4.7: GPS position traces over switch with cross-track bias compen-
sation.

Figure 4.8 shows the cross-track difference signals of the switch-way
measurements. With three left and three right position traces, there are
three difference signals between the same switch way of left (blue) and and
three between the same of right (orange). Ideal measurements of the same
switch way have no differences and should appear as a zero line. There
are nine difference signals between a left and a right switch way (green).
These differences are computed between all six measured position traces:
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Figure 4.8: [Top] Signals of cross-track distance differences between GPS
position traces. [Bottom] Signals of cross-track distance differences with
bias compensation.

Therefore, the cross-track deviations are computed between the trace po-
sitions and a track map with a simple map-match method (Section 6.2.2).
The difference signals are computed at defined along-track positions be-
tween interpolated deviation curves of two different traces. The upper
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plot of Figure 4.8 uses directly the GPS measurements while the lower plot
subtracts the cross-track bias. The lower plot shows a better separability
between the signals of different switch ways and the same switch way. The
signal separation can be enhanced with the cross-track bias compensation
for the case that this bias is constant during the train run over the switch.
A better signal separation is beneficial for the switch-way estimation in
order to resolve the correct switch way.

GNSS Heading Measurements at a Switch

Apart from position measurements, a GNSS receiver measures and esti-
mates the motion of the antenna. A heading angle ψm of the train motion
is defined between the horizontal motion direction and north. The head-
ing estimate of a single antenna receiver requires a movement and can be
computed from position differences or from the velocity vector ~vNED of the
receiver in the navigation frame. The heading angle is computed from the
north (vn) and east (ve) component of the estimated velocity vector:

ψm = arctan(
vn

ve
). (4.2)

Figure 4.9 shows the heading from GPS measurements of the train experi-
ment. There are six runs over the switch and the switch is passed facing.
The blue lines show the headings of three runs over the 1-D track locations
for the left switch way. The orange lines show the of three runs to the
right switch way. It can be seen, that the switch ways can be separated
against each other from the motion heading measurements. For a train
localization, the GNSS heading measurements contribute mainly to the
track identification at a switch. Further, the heading measurements may
also contribute to an absolute along-track and track identification, if the
different location hypotheses show heading differences.
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Figure 4.9: GPS heading measurements of different switch ways.
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The orientation of a train is denoted with the yaw angle ψ and is defined
as the angle between the train frame and north (see Section 3.2.1). Modern
trains are designed as two directional vehicles and operate equally in both
directions. A forward moving train has the same yaw angle (train frame)
than the heading of the motion direction. In the case that a train moves
backwards, the yaw angle of the train frame is shifted to the motion heading
by π, or 180◦ respectively. As a consequence, the measured heading angle
needs to be converted to the train frame or track frame with Table 3.2 for
further processing.

GNSS speed

The GNSS speed measurement contributes to the train localization in terms
of relative displacement estimation. The speed measurement of a GNSS
receiver is computed from the length of the horizontal velocity vector in
the navigation frame:

|v|GNSS =
√
v2

n + v2
e . (4.3)

A single GNSS antenna is invariant for horizontal rotation, i.e. the speed
and also heading measurements are independent of the angle between an
antenna frame and the train frame. As a consequence, the GNSS speed
is always positive and points in the direction of motion. Similar to the
heading measurements, the speed measurement is converted from the mo-
tion direction to the train frame, or track frame if required. As defined in
Section 3.2.1, the speed in train frame of a forward running train has a pos-
itive sign, while a backward running train has a negative sign. The further
conversion to the track frame was defined in Eq. (3.15). An example of a
speed measurement from GPS is illustrated in Figure 4.10 with a typical
passenger train run of 66 km from Augsburg to Ingolstadt and eight train
stops in between.
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Figure 4.10: GPS speed measurements of a train-run from Augsburg to
Ingolstadt.
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4.2 IMU: Inertial Measurement Unit

An inertial measurement unit (IMU) measures accelerations and turn rates
in three dimensions. Section 4.2.1 starts with an overview of the measure-
ment principle and errors and continues with the common use-case of an
IMU as part of an integrated navigation system (INS) in Section 4.2.2. Be-
sides the INS approach, other methods for train localization with an IMU
are presented. These methods measure railway track features, in particular
the geometric characteristics of a track. The theoretical expected measure-
ments of track features with an IMU are presented in different models in
Section 4.2.3. Finally, IMU measurements of train runs are analyzed in
Section 4.2.4 and the track feature methods are analyzed for applicability
in a train localization.

4.2.1 Measurement Principle and Errors

An inertial measurement unit (IMU) combines three turn rate sensors,
named gyroscopes, and three acceleration sensors, named accelerometers.
Figure 4.11 shows a typical block diagram of an IMU. This IMU measures
a motion in six degrees of freedom (6 DoF) with three dimensional acceler-
ation measurements ax,y,z (translations), and three dimensional turn rate
measurements ωx,y,z (rotations). Therefore, an IMU contains a sensor triad
of orthogonal acceleration sensors and a triad of orthogonal gyroscopes.
Most IMUs contain additionally a controller and measure a temperature
for corrections. An internal or external clock signal triggers measurements
at a constant frequency. The controller corrects the measurements with
calibration data for the correction of biases, scales, misalignment, and tem-
perature. Finally, the IMU outputs the six measurements at a certain clock
rate (see [66]).
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Figure 4.11: Typical design of an IMU.
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There are several types of accelerometers and gyroscopes which differ
in design, measurement principle, and accuracy ([66]). The train measure-
ments of Chapter 7.1 comprises a data set with a micro electro mechanical
system (MEMS) IMU from Xsens (Xsens MTi) and also a high-end fiber
optical gyroscope (FOG) IMU from KVH (1750 IMU) as reference.

Accelerometer

Both types of IMUs from the train experiment contain MEMS acceleration
sensors. There a different ways to design an acceleration sensor and alter-
natives can be found in [66]. MEMS acceleration sensors are widely used
in the automotive domain and in consumer products, such as smartphones.
An acceleration sensor measures a translational acceleration a via inertial
force f which acts on a well-known mass m:

a =
f

m
. (4.4)

This mass is attached to a spring with known spring characteristics. A
force or acceleration causes a displacement of the mass, which is measured
and digitized. A typical MEMS acceleration sensor combines the spring
with mass, the displacement sensing, and signal processing in silicon. A
displacement of the mass changes the distances of electrodes of differential
capacitors, which can be translated to a signal (see [66]).

Gyroscope

The turn rate is measured with a gyroscope. There are different ways to
built a gyroscope, and an overview is given in [66] as well. In the following,
a MEMS gyroscope and a FOG gyroscope are explained briefly.

A MEMS gyroscope measures an angular rate via the Coriolis accelera-
tion. Therefore, a small and known mass oscillates linearly in one axis and
an applied turn rate causes a Coriolis force. The oscillation axis, the turn
rate sensing axis and the axis of the Coriolis force are perpendicular to
each other. The Coriolis force is measured similar to the explained MEMS
acceleration sensor (see [66]).

Another type of gyroscope is the fiber optical gyroscope (FOG). The
measurement principle of optical gyroscopes is based on the Sagnac effect.
This effect refers to a difference in optical length of two light beams, which
travel in opposite directions through an optical ring. A FOG uses a fiber
coil with multiple windings. At first, a light beam is split and coupled
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into the opposite endings of the fiber coil. The beams are combined after-
ward and inference fringes are observed using a photo detector (see [66]).
The sensor noise and bias stability of a FOG gyroscopes is typically lower
compared to MEMS gyroscopes.

IMU Measurement Errors

Some inertial measurement errors, such as scale errors, non-linearity, mis-
alignment, biases and temperature dependencies can be determined in a
calibration procedure. The internal controller can adjust for these known
errors as long as these errors are persistent over time. However, there are
also measurement errors, that are not persistent and change over time.
A significant measurement error of inertial sensors is the changing sensor
bias over time, also known as drift. Table 4.1 shows the major sensor noise
characteristics of MEMS acceleration sensors of the IMUs used in the ex-
periment. The bias stability is the characteristic value for the changing
bias during operation of the IMU (in-run) and includes the changes caused
by temperature over the specified temperature range. The value of the
velocity random walk defines the expected variance of the velocity esti-
mate after one hour caused by a white noise. It can been seen, that the

Acceleration MEMS MEMS MEMS

Literature Xsens MTi KVH 1750

[47] [67] [68]

measurement range ±[m/s2] up to 1000 50 100

bias stability (in-run, over temp.) σ [m/s2] 0.01-0.1 0.02 0.01

noise: velocity random walk [m/s/
√

h] down to 0.04 0.12 0.07

Table 4.1: Theoretical accelerometer characteristics.

KVH MEMS sensors have better performance characteristics for the bias
stability and noise by a factor of two compared to the Xsens acceleration
sensors.

The rotational turn rates are measured with gyroscopes. Table 4.2
shows the major sensor noise characteristics of MEMS and FOG gyro-
scopes used in the train experiment. The value of the angular random
walk defines the expected variance of an angle estimate after one hour
caused by a white noise.

The gyroscope values of Table 4.2 shows the difference of FOG and
MEMS: The used MEMS gyroscope biases have a deviation of 60 ◦/h due
to the drift and temperature effects, and a 3◦ standard deviation after one
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Gyroscope MEMS MEMS FOG FOG

Literature Xsens MTi Literature KVH 1750

[47] [67] [47] [68]

measurement range ±[◦/s] 100-6000 300 up to 1000 490

bias stability σ [◦/h]
5-135 60 0.1-50 1

(in-run, over temp.)

noise: [◦/
√

h]
down to 1 3 down to 0.1 0.013

angle random walk

Table 4.2: Theoretical gyroscope characteristics.

hour due to integrated noise. The FOG gyroscope bias stability is smaller
than 1 ◦/h and 0.013◦ angle random walk after one hour.

4.2.2 Inertial Navigation System

An inertial navigation system (INS) contains an IMU and computes the
position, attitude and velocity of a vehicle from acceleration and turn rate
measurements. The following contains a brief overview of use-cases, state-
of-the-art functional principle, errors, and solutions that can be found in
[66, 47]. The INS will be used in the measurement processing (Section 6.1)
for one localization method (Section 6.2.4) and in the track map creation
method of the track geometry (Section 6.3).

One way to built an INS is to process inertial measurements from a
fixed mounted and strapped-down IMU. The processing method is hence
called strapdown method [66, 47]. In order to compute the attitude, the
velocity and the position, three differential equations need to be solved.
The equations for the strapdown method can be found in the Appendix D.
The strapdown method (SD) computes for each discrete time step k the
attitude, the velocity and finally the position:

~xSD
k = (ϕ, λ, h︸ ︷︷ ︸

position

, vn, ve, vd︸ ︷︷ ︸
velocity

, φ, θ, ψ︸ ︷︷ ︸
attitude

)T . (4.5)

The strapdown method, defined as a function, uses as input the previous
result at k − 1, the measurements of acceleration ~a and turn rates ~ω, and
computes a new result for the current time step k:

~xSD
k = fSD(~xSD

k−1,~ak, ~ωk). (4.6)

The main problem of an INS is the growing error over time. An INS
computes only relative values and requires therefore an initial informa-
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tion about position, velocity and attitude. The position, for example, is
computed via dead reckoning from this initial position in the strapdown
method (see [47],[66]). An update with inertial measurements is a relative
increment of attitude, velocity, position and added to the previous result.
As a consequence, measurement errors sum up and the errors of position,
velocity and attitude grow over time. The accuracy of an INS with IMU
depends strongly on the drift and noise of the gyroscopes: At first, uncom-
pensated biases of the turn rate measurements result in a growing angular
error over time of the attitude due to temporal integration. Afterward, the
attitude estimate is used for the gravity compensation of the acceleration
measurements. The erroneous attitude causes an erroneous acceleration
that is further integrated two times for the position estimate. Secondly,
a constant or growing error of the heading angle influences also the po-
sition accuracy of a moving vehicle. The position error grows over time
because the vehicle moves in a wrong direction. An INS with solely IMU
measurements can only provide a defined accuracy for a certain time. This
time duration determines the quality and grade of an INS. As mentioned
in the previous section, there are different types of IMUs, or gyroscopes in
particular, with different figures in terms of noise and drift.

A long-term stable INS requires additional measurements. An INS
is usually combined with GNSS measurements to an INS/GNSS [66, 47].
GNSS measurements solve the problem of the initial starting point and
limit the error growth. An INS/GNSS estimates also the inertial measure-
ment biases from GNSS measurement updates in order to compensate the
drift. An INS/GNSS is often used to enhance positioning data compared
to GNSS only. The INS/GNSS increases the position accuracy and avail-
ability in short GNSS outages and in environments with degraded signal
reception over limited periods of time. Further, an attitude estimate is
achieved that is stable with a limited error over time. A loosely coupled
version of an INS/GNSS is defined for the GNSS and IMU data fusion in
the implementation Section 6.1.

4.2.3 Theoretical Measurements of Track Features

with an IMU

A train localization compares measurements with information from the
track map. Accelerations and turn rates can not be stored in a map, be-
cause these quantities are dynamic and depend on the train speed. Instead,
the geometry of the tracks can be stored in the track map. The rails of a
track constrain the trajectory of a train. When a train runs over a curved
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track with curvature cψ, the train changes its heading ψ with a constant
turn rate ψ̇. At the same time, a centripetal acceleration alat acts on the
train in lateral direction. The relation between the turn rate, the speed
and curvature is [69]:

ψ̇ = dψ
dt = dψ

ds · dsdt = cψṡ. (4.7)

The relation between lateral acceleration, turn rate, train speed and cur-
vature is also described in [69]:

alat = ψ̇ṡ = cψṡ2. (4.8)

An IMU, that is mounted on a moving train, measures these turn rates
and accelerations. The curvature cψ is an important track feature for the
switch-way identification and also suitable for an observation of the along-
track location at curvature changes. A curvature has been also used for
car localization in [69] and for train localization in [18, 19]. An advanced
filtering and classification of a railway track curvature into standard geo-
metric elements, e.g. straights and curves, have been analyzed in [70, 71].
Figure 4.12 shows theoretical turn rates and lateral accelerations of the
curved track of six different German standard switches, as presented in
Section 3.1.2. Each railway switch has a different curve radius and a speed
limit. The diagram shows the linear speed dependency of the turn rate
and the quadratic speed dependency of the lateral accelerations.

The horizontal curvature can be measured in several ways with an IMU,
which was theoretically analyzed in [C3]. The first method uses directly
the IMU measurements of the turn rate ωz and the lateral acceleration alat

in horizontal direction:

cψ1 =
ω2
z

alat
. (4.9)

The second variant uses the turn rate measurement and the estimated
speed ṡ in track frame:

cψ2 =
ωz
ṡ
. (4.10)

The third variant depends on the lateral acceleration measurement and the
train speed:

cψ3 =
alat

ṡ2
. (4.11)

These three methods are theoretically analyzed in [C3] with three different
types of IMU (consumer, automotive, tactical) and their typical sensor
noise. This study showed for consumer and automotive grade IMUs, that
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Figure 4.12: Theoretical yaw turn rates and lateral accelerations over train
speed of selected railway switches.

cψ2 is best for lower velocities and cψ3 is best for higher velocities above

50 km/h. For tactical grade IMUs, cψ2 is always the best, followed by cψ1 .
A 3-D kinematic model for the inertial measurements is defined in the

following. This model relates the IMU measurements to the dynamic train
states of train speed v and acceleration atb to the track geometry at a
particular track location (id, s) with the train-to-track direction ot.

There are two different possibilities for the curvature definition: The
first one defines the curvatures on planes that are defined about the hori-
zontal axes of the navigation frame in along-track, cross-track, and vertical
down axes. The second curvature definition defines curvatures in the track
frame about the track frame axes in along-track, cross-track, and vehicu-
lar down direction. The track frame axes may be tilted or inclined to the
horizontal axes. The first curvature definition has been used in [P1] and is
not followed up. The second curvature definition with the track frame is
more practical and is used in the following.

The acceleration model is defined in the train body frame from track
geometry, train speed and acceleration:

Cb
s~a

s

︸ ︷︷ ︸
measurements
in train frame

= Cb
n(φb, θb)

 0
0
−g

+

 abtb
ablat.

abvert.


︸ ︷︷ ︸

predicted measurements
from map, location, speed and acc.

. (4.12)
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The lateral acceleration and the vertical acceleration are centrifugal ac-
celerations. The IMU measures in the sensor frame and the values are
rotated to the train frame. The final acceleration model uses Eq. (4.8)
with all values in train frame:

abx = g sin θb + abtb, (4.13)

aby = −g sinφb cos θb + cψ,b · v2, (4.14)

abz = −g cosφb cos θb − cθ,b · v2. (4.15)

The track geometry values of bank φ, slope θ, slope curvature cθ, and
heading curvature cψ are obtained from the map in the track frame. For
an opposite track-to-train direction ot, the angles φ, θ and the curvature
cψ change signs, as defined in Section 3.2.2, Table 3.3.

The turn rate measurements from the gyroscopes (ωx, ωy, ωz) are also
rotated from sensor frame to the train frame. The relation between mea-
surements and the predicted turn rates from the track geometry of the
map are given by Eq. (4.7) with curvatures in the body frame and the
train speed v:

ωbx = cφ,b · v, (4.16)

ωby = cθ,b · v, (4.17)

ωbz = cψ,b · v. (4.18)

For an opposite track-to-train direction ot, the heading curvature cψ,t from
the map changes its sign, see Table 3.3.

4.2.4 Measurement Analysis of a Train-mounted IMU

The following figures Fig. 4.14 and Fig. 4.15 show IMU data and the fre-
quency spectrogram over a 10 minutes run of a regional train with two
station stops in between. The IMU data was recorded with 200 Hz in the
train cabin with a Xsens MTi (MEMS). The axes of the IMU measure-
ments are aligned with the train frame. The spectrograms use a window
and FFT length of 256 samples and visualize the signal over time in the
frequency domain with frequencies up to the Nyquist frequency of 100 Hz.
These spectrograms use a decibel scale to visualize the signals with the
logarithmic ratio to 1 m/s2 for the acceleration measurements and to 1 ◦/s
for the gyroscope measurements. Figure 4.13 shows the speed profile of a
typical train run for the IMU measurement analysis. There are two extra
train stops between 175 s-200 s and 375 s-400 s.
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Figure 4.13: Speed profile of the train run for the IMU analysis.

The spectrograms of Fig. 4.14 show vibrations in all axes, which can be
noticed by the higher frequency components between 1 Hz and 100 Hz. The
stops of the train can be identified in the acceleration measurements. The
vibrations of a stopped train arise mainly from the diesel engine and fans.
A moving train causes different vibrations from the engine, gearbox, wheels
and the track (see [P1, P5]). More details about vibrations are described
in Section 4.3.2. The train acceleration or deceleration is measured in the
x-axis. These accelerations are limited to approx. 1 m/s2 due to limited
engine power and a limit of the maximum transferable force over the rail-
wheel contact [15]. This traction limited force leads to low dynamics of the
x-axis acceleration in combination with inertia of a relative high train mass.
Figure 4.14 indicates these low dynamics and changes at 1 Hz and below
in the spectrogram of the x-axis. The y-axis in shows accelerations due
to the banked track between 80 s and 250 s as well as lateral accelerations
of higher switch curvatures at 75 s and 350 s. The z-axis shows vibrations
only.

The gyroscope values of Fig. 4.15 are less affected by vibrations than the
accelerations. The turn rate of the gyroscope x-axes measures the change
of the roll angle caused by the bank curvature and the actual speed. The
gyroscope y-axis measures the low changes of a slope angle. However, the
diagrams of the y-axes do not visualize these low signals. The gyroscope z-
axes measures the change of the yaw angle caused by the heading curvature
and the actual speed. As seen in the diagrams, the heading changes are the
strongest signal from the tracks. Some of these signals indicate curvatures
from switches that can be also seen in the y-axis diagram of the acceleration
measurements. All curvature signals have a low dynamic below 1 Hz and
the remaining signal components are vibrations and measurement noise.
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Figure 4.14: Acceleration measurements over time and spectrum.
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Figure 4.15: Gyroscope measurements over time and spectrum.
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Train Acceleration Measurement

A typical train acceleration measurement atb of the reference run is shown
in Fig. 4.16. Therefore, the signal of the x-axis acceleration (Fig. 4.14)
is filtered with a 6’th order Butterworth filter at a cut-off frequency of
f(−3 dB) = 1 Hz. As a reference, the change of GPS speed measurements
between two consecutive time steps are shown for comparison reasons. The
train moves backwards to the train frame in this example, and thus the
train accelerates with negative accelerations and positive deceleration. The
IMU accelerations and GPS speed changes match in most cases, but differ-
ences can be seen around 100, 130, and 140 s. There, the train runs below
bridges and the GPS signals are disturbed. The accelerating maneuvers
can be seen in the figure with several steps from the different gears. The
brake maneuvers contain different steps for speed reduction and a final spot
brake down to standstill with the strongest deceleration signals. Between
acceleration and deceleration, the train is coasting with a low deceleration
(e.g. 475 s-525 s). The IMU acceleration measurements can be used to es-
timate the velocity and the 1-D location on the track combined with GNSS
velocity measurements.
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Figure 4.16: Typical train accelerations of a train run.

Measurements of the Attitude

An INS/GNSS estimates the attitude of the train from IMU measurements
amongst other measurements. Figure 4.17 depicts bank φ, slope θ and yaw
ψ estimates over the 1-D track location s. The example scenario shows six
runs in the same direction on a straight and single track with a uphill slope.
After 200 m the train passes a banked curve, changes its yaw direction and
passes a switch at 470 m. The train passes three times the switch on the
left switch way (blue) and three time on the right switch way (orange).
The last part of the train runs are on parallel tracks of a station. The
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attitude signatures show a low discrimination characteristic in along-track
direction. At the switches, especially the yaw angle shows a beneficial
separability for the track identification. In this case, the bank angle can
be also used to discriminate the switch. There, the train is excited in the
sharp left turn of the switch. The cabin swings in a rolling motion and
the IMU was mounted inside cabin. The different switch ways with their
geometry have influence on the excitation of the cabin. A bogie mounted
IMU does not show this rolling effect.
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Figure 4.17: Attitude measurements from INS/GNSS measurements.

Measurements Analysis of Switch-way Curvatures

The different curvature computation variants of 4.2.3 are analyzed with
recorded IMU data. In the theoretical analysis of 4.2.3, the curvature
computations were free of systematic errors. Additionally, the curvature
measurements are dynamic and the magnitudes of the IMU measurements
depend on the train speed. The systematic errors are the IMU measure-
ment biases. Further, the lateral acceleration of variant 3 (Eq. (4.11)) de-
pends also on an exact estimate of the roll and pitch angle for corrections.
The lateral acceleration (see Eq. (4.14)) is aligned to the cross-track axis
of the track frame and is calculated from the bias corrected measurements:

alat = ay − bay + g sinφ cos θ. (4.19)
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The acceleration measurements are further disturbed by a shaking train
cabin or undercarriage.

The first curvature variant (Eq. (4.9)) uses solely alat and ωz measure-
ments from the IMU. There is a singularity when the acceleration mea-
surement is close to zero in the denominator. This happens on straight
tracks with lateral acceleration measurements near and around zero. The
second and third variant (Eq. (4.10), Eq. (4.11)) contain the train speed in
the denominator and require a certain minimum speed.

The following analysis contains typical measurements of several runs
over two different switches. Each switch is overrun three times to the left
and three times to the right switch way. The measurements are from the
MEMS IMU inside the train cabin and the train speed, biases and roll
angle are estimated with an INS/GNSS. The results from the first variant
(Eq. (4.9)) were not useful due to the singularity issue and are not shown.
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Figure 4.18: Switch A (≈ 20 km/h): Curvatures over track locations from

cabin MEMS IMU. [Top] Curvature cψ2 (yaw rate), [Bottom] Curvature cψ3
(lat. accel.)

Figure 4.18 shows the first switch that is passed facing (see Fig. 3.1) for
six times at low train speeds of approximately 20 km/h. It can be seen, that
the differences of the curvature between left and right switch way are more
significant with the second curvature variant by the yaw rate (Eq. (4.10)).
The third variant by the lateral acceleration (Eq. (4.11)) shows different
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Figure 4.19: Switch B (≈ 55 km/h): Curvatures over track locations from

cabin MEMS IMU. [Top] Curvature cψ2 (yaw rate), [Bottom] Curvature cψ3
(lat. accel.)

offsets and little variations between the runs. The offsets might be caused
by an inaccurate estimate of the roll angle.

The second switch in Fig. 4.19 is passed six times at higher train speeds
of 55 km/h in average. At higher train speeds, the third variant with
acceleration shows a better signal-to-noise ratio and separability of the
two different switch ways compared to Fig. 4.18 with a lower train speed.
The curvature signature from the yaw rate (second variant, Eq. (4.10)) is
still better in repeatability of the same switch way and differentiability of
the competing switch way.

The train approaches the first switch in forward direction and the sec-
ond switch in backward direction according to the train frame definition.
The curvature signatures of the second switch are measured ahead of the
switch start at track location 0 m in Fig. 4.19. This effect stems from the
GPS antenna mounted on the train front, while the rear side of the wagon
enters the switch at first. Further, the curvature from lateral acceleration
in Fig. 4.19 shows a delayed signature of approx. 10 m in comparison to
the turn rate based curvature. The reasons are: First, the wagon starts
to turn, once the first wheel set enters the curved track and because the
wagon can be considered as a rigid body. At this time, the GPS antenna
is about one wagon length (20 m) away. Second, the measurement of the
lateral acceleration depends on the mounting position of the sensor on the
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train and the delay is caused from lever arm effects. The IMU was also
mounted near the train front.

Compared to Section 4.2.3 and the theoretic results in [C3], the turn
rate based variant (variant 2, Eq. (4.10)) was preferred for lower train speed
with automotive grade IMUs and for all velocities with tactical grade IMUs.
The measurement analysis with a MEMS IMU showed also the most re-
peatable signatures of the same switch way with the turn rate based variant
(Eq. (4.10)) at two different train speeds. The average train speed at the
second switch (55 km/h) is near the threshold of the lower speed definition
in the theoretic analysis (50 km/h). Nevertheless, the theoretic analysis
did not consider a limited accuracy of bias or gravity corrections, which
is additionally unfortunate for the variant 3 with the lateral acceleration
(see Eq. (4.19)). Therefore, the variant 2 (turn rate, Eq. (4.10)) is used in
the following for the curvature measurements. The variant 3 (lateral acc.,
Eq. (4.10)) may be still considered as a valuable and additional signal for
the switch-way discrimination for train speeds above 50 km/h.

Measurements of the Curvature Signatures

The three-dimensional curvatures, as defined in Eq. (4.16) - (4.18) are an-
alyzed for repeatability. The curvatures of bank, slope and heading are
calculated from bias corrected turn rates and the estimated speed:cφcθ

cψ

 =

ωx − bωx

ωy − bωy

ωz − bωz

 1

ṡ
. (4.20)

The previous presented curvature computation variant 2 (Eq. (4.10)) is
contained in the last row (heading curvature). The biases bωx, bωy, and bωz

are either estimated from the INS/GNSS or observed at standstill, where
the turn rates are assumed to be zero.

Figure 4.20 shows repeated measurements of three curvature signatures
from three different runs over the same track route. The turn rates are
measured from the MEMS IMU inside the cabin and the INS/GNSS es-
timates the gyroscope biases and the train speed. It can be seen, that
the bank and heading curvature signatures show a repeatable signature
over three different runs. The noise and other disturbances of the raw turn
rate measurements of Fig. 4.15 could be removed with low-pass filters. The
slope signature is with a maximum amplitude of 0.1 in units of 1/km very
low compared to the other curvature signatures and the disturbances.

The curvature signatures from turn rates are not sensitive to drift, as
the biases or errors do not sum up in integrations of the inertial mea-
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Figure 4.20: Repeated curvature signature measurements over track loca-
tions from three different train runs with a MEMS IMU inside the cabin.
[Top] Bank curvatures, [Middle] slope curvatures, [Bottom] heading curva-
tures.

surements. This property is advantageous for the use of low-cost MEMS
gyroscopes. Similar results with repeatable signatures could be achieved
without the INS bias and speed estimates. The train speed was directly ob-
tained from GPS. The gyroscope biases are calibrated during stand-still,
when the vehicle turn rates are known to be zero. As described in the
train experiment (see Section 7.1), there is a FOG IMU placed next to the
MEMS IMU. A further comparison to curvature signatures from a FOG
IMU showed also similar results in terms of repeatability of signatures. The
slope curvature signatures from the FOG IMU showed slight improvements
with a more repeatable pattern of the curvature signals over different runs.
The advantage of a FOG IMU for the curvature measurements is less sig-
nificant than for the inertial navigation system (INS). The repeatability of
the curvature signals, especially the heading curvature for the switch-way
identification, is similar for MEMS and FOG gyroscopes.
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4.3 Alternative Measurements for Train Lo-
calization

This section presents further sensors and measurements for train local-
ization. Two novel measurements with methods for train localization are
presented: The passive magnetic measurement method and the vibration
measurement method have been discovered from the train measurements in
parallel to the work for the localization and mapping algorithms. However,
in this thesis, these measurement methods are not used in the implementa-
tions of the train localization and mapping approaches. Nevertheless, the
methods with magnetic and vibration measurements show very promising
results.

4.3.1 Passive Magnetic Measurement Method

A passive magnetic field sensor measures the current magnetic field as
it appears at the sensor. Passive means without an active field gen-
eration and is used to discriminate from inductive sensors. The mag-
netic field can be measured with inexpensive solid-state magnetometer
sensors that are widely used in navigation equipment, electronic compasses
and smartphones. Example magnetometers sensors are Hall-effect sensors,
anisotropic magnetic resistive (AMR) sensors and fluxgate sensors.

The measured magnetic field at the sensor is a result of a superposition
of one or more magnetic fields. Furthermore, the direction and density of
a magnetic field can be changed in the vicinity of a ferromagnetic object.
The railway environment contains many components from ferromagnetic
material, such as steel rails, wheels, sign posts, catenary and other steel
constructions (see Figure 4.3). The resulting magnetic field at the sensor
is a superposition of the Earth field, ferromagnetic effects including mag-
netized components and electric currents:

~Bsensor = ~BEarth +
∑

~Bferromag.effects +
∑

~Bcurrents. (4.21)

In [P6], in a co-supervised master thesis [M4], and in [J2], it could
be shown that the magnetic field measurements are related to train loca-
tion and speed. The magnetic field shows a characteristic and location-
dependent signature as well as periodic characteristics with a speed depen-
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dency. A measurement model for train localization with the magnetic field
is defined in [J2]:

~Bsensor = ~Benv.(id, s)︸ ︷︷ ︸
track location

dependent

+ ~BEarth(ψ)︸ ︷︷ ︸
heading

dependent

+ ~Bwheel(v)︸ ︷︷ ︸
speed

dependent

+ ~Brest︸︷︷︸
currents,

train, other

.
(4.22)

It could be shown that these terms are separable with signal filters, such as
low-pass and band-pass filters in time and spatial domain [J2]. The results
of the heading dependent, speed dependent and localization dependent are
briefly summarized. The measurement analysis was carried out with the
train measurements of Section 7.1 with a bogie and a cabin magnetometer.

The heading dependent part of Eq. (4.22) is known as the classical com-
pass use-case. In [P6], a railway compass was analyzed from measurement
data for two different measurements positions at the bogie and inside the
train cabin. A calibration method was used in [P6] based on GPS heading
measurements. It could be shown that the compass angle measurements
are not very accurate with up to 59◦ of deviation for the cabin mounted
sensor. Nevertheless, this accuracy is sufficient for a discrimination of the
train-to-track frame direction. The bogie compass instead showed worse
results and is not suitable for a rough orientation discrimination [P6].

The speed dependent part of Eq. (4.22) is called odometry and first
results were presented in [P6]. Figure 4.21 shows magnetic signals in fre-
quency domain of multiple train runs over train speed. This figure is
created from a power spectral density (PSD) that is computed over a se-
quence of 512 samples from the magnetic measurements in combination
with a speed measurement from GPS [P6].
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Figure 4.21: Magnetic frequency spectrum over train speed.

It can be seen, that multiple lines with different slopes arise from the origin.
These lines correspond to harmonic frequencies that are generated from a
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turning wheel. The following model relates measured frequencies to the
wheel diameter d, speed v and the harmonic n:

fn =
v

d · π · (n+ 1). (4.23)

Two different methods for the speed measurement have been evaluated,
a wheel turn method based on Eq. (4.23) and a speed signature method.
The speed signature method incorporates a database over different speeds,
each with frequency signatures and a corresponding speed. For the speed
estimation, this method compares the current frequency signature with
the prior known frequency signatures. The train speed is derived from the
best matching frequency signature and its corresponding speed. The wheel
turn method showed better results with 43.4 % below an error of 1 km/h,
compared to the speed signature method with 21.9 % < 1 km/h. The
magnetic measurements are from a bogie mounted magnetometer and the
speed reference is from GPS measurements. A concept for speed estimation
with a Kalman filter in combination with acceleration measurements has
been shown in [P7].

The third use-case is the location dependent part with the magnetic
signatures of a track. A magnetic signature is a signal of the localization
dependent distortions and magnetized components over the 1-D track lo-
cation. This signature is generated from a filtered sequence of magnetic
measurements that is resampled with equidistant samples over the track
locations. A second filter in spatial domain mostly separates the location
dependent signatures from other parts in Eq. (4.22). Fig. 4.22 shows mag-
netic signatures of three runs to the left switch way and three runs to the
right switch way. First, it can be seen that on same along-track locations,
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Figure 4.22: Magnetic signatures of three left and three right runs at a
switch.

the signatures are very similar and at different locations, the signatures
are also different and therefore distinguishable. It it possible to measure
magnetic signatures also inside the train cabin. Compared to the bogie
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mounted sensor, the cabin sensor showed lower amplitudes. Nevertheless
the repeatability of the signatures on same track locations and the sepa-
rability of different locations and track were equally good: The evaluation
results over 45.6 km with a 50 m signature were 97.8 % below an error of
4 m for a bogie mounted sensor and 97.4 % for a cabin mounted sensor
[J2]. GPS position measurements were used as reference. Secondly, the
figure shows different signatures for different switch ways. The measure-
ment analysis has shown excellent switch-way identification characteristics:
the signatures are repeatable for the same way and separable from different
ways. Furthermore, it has been shown in [J2] that magnetic signatures of
parallel tracks are distinguishable. A parallel track separation is a useful
property in contrast to the inaccuracies of GNSS measurements, as shown
in Section 4.1.3.

Figure 4.23 shows the magnetic signatures in a tunnel from five inde-
pendent runs. The signatures show a high repeatability between the train
runs. This repeatability proves the location dependency of the signatures.
Hence, the magnetic signature method is suitable for a localization in tun-
nels. This is an important result, as a GNSS based train localization is not
suitable in tunnels.
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Figure 4.23: Magnetic signatures of a 230 m long railway tunnel.

In summary, the passive magnetic measurements contribute to the train
localization estimation in all four ways: to relative along-track estimation
with the speed measurements, to absolute along-track estimation, to a
track identification at switches and also to an absolute track identification
at parallel tracks. The passive magnetic measurement method has a high
potential to increase accuracy and add redundancy to a GNSS based train
localization approach. Moreover this passive magnetic approach is also
suitable in GNSS denied environments and especially for tunnels.
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4.3.2 Vibration Measurement Method

Vibrations are alternating accelerations and turn rates that can be mea-
sured with inertial sensors. This vibration method extends the presented
methods with the IMU. The vibration method is independent from a slowly
changing drift. Therefore, inexpensive MEMS sensors or piezoelectric ac-
celeration sensors are suitable. One advantage is, that the vibration me-
thod requires no extra sensor hardware if an IMU is already part of the
navigation hardware. The spectrograms of accelerations (Fig. 4.14) and
turn rates (Fig. 4.15) visualize the vibrations with specific frequency com-
ponents over time. Similar to the passive magnetic field sensor, a train
speed and location measurement is possible from speed dependent and lo-
cation dependent signatures. The vibrations of interest arise while the
train is moving from exited wheels, the engine and from the track. First
results have been presented in [P5], in a co-supervised master thesis [M4]
and in [P7]. A general measurement model for a train localization with
vibrations can be defined with the IMU measurements of acceleration ~a
and turn rate ~ω:

~a = ~atb︸︷︷︸
train

traction/brake

+ ~ageo.(id, s, v)︸ ︷︷ ︸
track geometry

location dependent

+

vibration︷ ︸︸ ︷
~avib.(id, s)︸ ︷︷ ︸

track vibrations
location dependent

+ ~avib(v)︸ ︷︷ ︸
speed

dependent

+ ~arest︸︷︷︸
other vib.
Coriolis

, (4.24)

~ω = ~ωgeo(id, s, v)︸ ︷︷ ︸
track geometry

location dependent

+

vibration︷ ︸︸ ︷
~ωvib.(id, s)︸ ︷︷ ︸
track location

dependent

+ ~ωvib(v)︸ ︷︷ ︸
speed

dependent

+ ~ωrest︸︷︷︸
other vibrations,

Earth rate

. (4.25)

This model contains also the accelerations and turn rates from the track
geometry and train motion, as defined in Eq. (4.13) - Eq. (4.15) and Eq. (4.16)
- Eq. (4.18). The location dependent accelerations from track geometry
contain the gravity portions depending on the track attitude as well as the
centripetal accelerations from curve runs. In Section 4.2.4, the train dy-
namics have been analyzed with frequencies of 1 Hz and below. Therefore,
the vibrations can be separated with a high-pass filter.

The measurement analysis was carried out from measurements of a bo-
gie mounted and a cabin mounted MEMS-IMU. Figure 4.24 shows z-axis
acceleration in frequency domain of multiple train runs over train speed.
This figure is created from a power spectral density (PSD) from accelera-
tion measurements. The PSDs are sorted according to the corresponding
speed measurement of a GPS. There are visible lines in Figure 4.24 that
point to the origin. These lines arise from periodic excitations of turning
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Figure 4.24: Vibrations: Frequency spectrum of z-axis acceleration over
train speed.

wheels, gear-box or other speed dependent vibrations of the train. Above
50 Hz, there is a saw-tooth signal visible when the train is accelerating that
is caused by the diesel engine and the gear shifts.

The train speed and the location measurement with vibrations are sum-
marized in the following. The train speed observations have been analyzed
and presented in [P5], [M4], and in [P7]. A speed signature method has
been used to observe the speed from vibrations. Same as for the magnetic
speed analysis, the speed signature method finds a speed with a compari-
son of prior known frequency signatures with associated speeds. The best
results for the bogie sensor are 46.1 % below a speed error of 1 km/h with
the acceleration y-axis. The speed observations are further combined in
a Kalman filter with the train acceleration measurements and an outlier
rejection [M4], [P7]. In [P7], an IMU-only odometry has been presented
with a bounded speed error as shown in Figure 4.25. The speed observa-
tions from vibrations show often large deviations: the red crosses indicate
the rejected speed observations while the green circles indicate accepted
speed observations from vibrations.
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Figure 4.25: Speed estimation with acceleration and vibration measure-
ments [P7].
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The location dependent vibration signatures are used for the train lo-
calization. A vibration signature is a normalized vibration intensity over
the 1-D track location. Therefore, the high-pass filtered acceleration or
turn rate signal is transformed into spatial domain with speed informa-
tion. The result is a resampled signal with constant distances over the
1-D track locations, called signature. Afterward, the signal envelope is
computed that represents a vibration intensity over 1-D track locations.
Finally the signature is normalized with the quadratic speed. This en-
sures same amplitudes of localization dependent vibration features when
the train runs with different speeds over the same track. Figure 4.26 shows
the vertical acceleration vibrations of a bogie mounted IMU from six runs
over a railway switch. It can be seen that the signature has repeatable pat-
terns on the single track, and mostly separable patterns after the switch
start according to the switch way. The along-track error was analyzed over
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Figure 4.26: Vibration signatures of three left and three right runs at a
switch.

59.7 km with a search window of 200 m. The bogie sensor showed an error
below 4 m in 89 % of the cases while the cabin sensor showed an error below
4 m in 74 % of the cases. Initial results of a switch-way analysis showed
a successful switch-way estimation with all six inertial signals for the bo-
gie sensor, and with five inertial signals for the cabin sensor. The bogie
sensor performs better than the cabin sensor in the localization dependent
vibrations.

The vibration method in combination with IMU methods presented in
Section 4.2 are very beneficial for a train localization in terms of relative and
absolute along-track localization as well as a track identification, especially
at switches.
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4.3.3 Overview of Onboard Measurements for Train

Localization

The proposed methods for train localization and track mapping can be ex-
tended with additional sensors. Beside GNSS and IMU, there are various
other approaches and scientific examinations with different sensors for train
localization. Multiple and independent sensor measurements can be used
to increase reliability and availability of a train localization. Furthermore,
different combinations of sensors are advantageous for the along-track ac-
curacy and the correct track identification.

Train mounted Along-track Track-identification

sensors and systems relative displacement, switch-way discrimination

absolute along-track parallel tracks discrimination

GNSS receiver speed, switch: position, heading

positions, motion heading parallel tracks: position

Inertial sensor, IMU train accel., switch: curvature &

curvature & attitude attitude signatures

Passive magnetic speed: periodic signature, discriminative

signature sensor magnetic signature magnetic signature

Vibration signature speed: periodic signature, discriminative

sensor vibrational signature vibrational signature

Train speed sensors speed, –

wheel turns, Doppler radar distance integration

Imaging sensors speed: image displacement, image or feature signature of

camera, radar, lidar image or feature signature switch elements, other tracks

Inductive sensor speed: periodic signature signature of

switch-way elements

Add. infrastructure fixed positions of balise, transmission of IDs

balise, cable loop, beacon cable crossing, beacon to train on every track

Table 4.3: Overview of train mounted sensors and usability for train local-
ization.

Table 4.3 lists the usability of different sensor types for an onboard
train localization. The first two, GNSS and IMU, are used in the im-
plementations in Chapter 6. The measurement methods with magnetic
signatures and vibration signatures are described in this thesis and sug-
gested for further use (Section 8.1.5). The general train speed sensors,
imaging sensor and inductive sensors are briefly described in the follow-
ing. For completeness, the last row includes train mounted sensors, that
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require additional infrastructure. The usability and contribution to the
train localization is shown in the categories of along-track and track iden-
tification (see Section 3.2.3). A contribution to along-track estimation can
be achieved with a relative displacement estimate from speed or with an
absolute along-track feature that identifies a 1-D location on a track. The
track identification can be archived while passing a switch and measur-
ing competitive track features of a particular switch way. Alternatively,
a measurement may contribute to a track identification that directly dis-
criminates a track without a switch.

Train Speed Sensors

Train speed sensors are usually installed on trains for speed and distance
estimation. Current train protection systems monitor the speed and trav-
eled distance near railway signals and block section boundaries. This sensor
contributes to relative displacement estimation of a train localization. In
general, a wheel turn sensor counts the revolutions of a train wheel. One
drawback is the wheel slip when the train is accelerating or decelerating.
This wheel slip causes erroneous speed measurements and distance inte-
grations [72]. Another type of speed sensor is a Doppler radar mounted
below a train [73, 74]. The advantage is a slip-free measurement of speed
for the estimation of traveled distance.

Imaging Sensors

Imaging sensors are considered widely here with cameras, lidar and also
synthetic aperture radar (SAR). Some of these sensors are able to generate
an image with depth information, such as stereo cameras, lidar and radar.
The imaging sensors are exteroceptive sensors and measure characteristics
in the railway environment. A further signal processing detects and clas-
sifies specific objects and features. The train speed or displacement may
be measured from changes of consecutive images or scans. A positioning
is achieved with a comparison of measured features and map features (see
[13]). For the railway domain, a switch-way detector or a parallel track
detector can discriminate and detect the correct track. Examples of vision
based railway track and switch detection can be found in [23, 24]. Li-
dar has been used for railway localization with track and switch detection
in [26, 75]. As a disadvantage, optical sensors have usually a decreased
performance with dirt, dust, rough weather, and direct or reflected sun-
light. Current research in imaging with SAR is conducted extensively for
the automotive domain in a front facing direction (e.g. [76]) as well as in
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a ground facing direction [77], also known as ground penetration radar.
Nevertheless, imaging sensors can provide useful information for clearance
monitoring and obstacle detection.

Inductive Sensors

An inductive sensor measures primarily a change of inductance of a coil.
Among other parameters, the inductance depends on conductive material
within the magnetic field of a coil. Railway tracks, fastenings and switches
are made of the conductive material steel. Comprehensive research has
been conducted with the ”Eddy-Current Sensor” (ECS) for train localiza-
tion in [21, 78, 79]. This ECS sensor contains one coil for the generation
of a modulated magnetic field and two other coils for a differential mea-
surement of the resulting field affected from metallic structures within the
sensing range. It senses changes in the metallic structure of the tracks while
the train and the sensor move over the tracks. Sleeper fastenings can be
detected and the train speed is derived form continuously passed sleepers
with known or calibrated distance. Furthermore, a train run over a certain
switch way is characterized by specific switch elements. Classification me-
thods can discriminate switch parts and detect a switch and also the switch
way a train has taken [21]. In [80], a difference inductance sensor is de-
fined for speed and displacement measurement. This sensor evaluates the
inductance measurements of two separated coils in along-track direction.

Infrastructure based Train Sensors

Infrastructure based train sensors consist of components on the train and
in the railway infrastructure. These infrastructure components are arti-
ficial landmarks near or on the tracks, which can be detected by a train
mounted unit. Examples are beacons, markers, cable loops, and balises.
The Eurobalise, for example, is used for train localization in ETCS [14, 81]:
On the train side, there is a balise transmission module (BTM) with an an-
tenna at the undercarriage. During a passage over a track-mounted balise,
a data telegram with location information is sent from the balise to the
train. For track-selective train localization, an appropriate placing of the
balises at switches and parallel tracks is necessary.
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Chapter 5

Probabilistic Localization
and Mapping for
Railways

The following presents the theoretic part for the probabilistic train localiza-
tion and track mapping methods. Section 5.1 presents a general dynamic
Bayesian network (DBN) for railway navigation and a realized DBN with
GNSS and IMU measurements. The latter DBN is used in the factoriza-
tion of the train localization posteriors (Section 5.2) and of the RailSLAM
posterior (Section 5.3). The posterior distributions can be seen as general
estimation problem definitions and the factorization divides the estimation
problem into smaller parts. The further estimation implementations are
based on these factorized posterior distributions.

5.1 Bayesian Theory Applied to Railways

The generic DBN of a train equipped with onboard sensors is shown in
Fig. 5.1 for two time steps. This DBN extends the presented DBN in [P4].
At first, a train state Tk is defined as a random variable at the time step
k. This train state contains the train related physical quantities, such as
position, attitude, and velocity. The train control input U is the train
driver control of traction and brakes. The railway environment consists of
time invariant railway tracks, denoted with M , and a network control in-
put V . This network control comprises the control of signals and switches
that influence the train trajectory. Several onboard sensors are mounted
on the train and measure physical quantities of the train and the environ-
ment. These measurements are differentiated into intrinsic measurements



98 Chapter 5. Probabilistic Localization and Mapping for Railways

M
Vk-1 Vk

Tk-1 Tk

Uk-1 Uk

ZIN
k-1 ZIN

kZEX
k-1 ZEX

k

BIN
k-1 BIN

k

BEX
k-1 BEX

k

Railway Environment

Train

Onboard
Sensors

Extrinsic
Environment
Measurements

Sensor
Biases

Train
Control

Input

Intrinsic
Inner Train State

Measurements

Network
Control

Input

Train State

Time Step k-1 Time Step k

Figure 5.1: General DBN for railway navigation.

ZIN and extrinsic ZEX measurements. The extrinsic sensors measure a
characteristic of the surrounding environment apart from the train. An
intrinsic sensor measures characteristics related solely to the train such as
attitude or position. The measurement biases of the onboard sensors are
denoted with BEX and BIN respectively.

This generic DBN shows the dependencies between the random vari-
ables with arrows: The train state depends strongly on the railway tracks
M due to the constraint train kinematics that is caused by the geometry
of the railway tracks. The train states are also conditional dependent on
its predecessor because of the inertia. A train has a significant mass and
a change of the velocity is limited by the wheel-rail force transmission and
the engine power. Additionally, the railway tracks are designed to cause
limited and slow changing dynamics in terms of jerk, accelerations and
turn-rates for safety reasons. The train control input U and network con-
trol input V are defined conditionally independent from its predecessor.
This conditional independence means that the input can change randomly
between time steps. The intrinsic sensor measurements depend on the train
state and there is only an indirect dependency of the railway tracks from
the constrained train states. For example, a gyroscope measures a turn
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rate of the train, which depends on the train velocity and the curvature of
the railway track. For the extrinsic measurements, there is a direct depen-
dency of the environment and the train states. A train mounted camera,
for example, measures a distant feature in the railway environment as well
as the camera’s perspective depends on the position and attitude of the
train. Measurements Z have no dependency over time, but the correlated
sensor errors, such as the biases B, are dependent over time.

This DBN is also a hidden Markov model (HMM) [42, 82], as only the
hidden states (T , B) posses a time transition and depend only on their
last time step (Markov condition). In contrast, the sensor measurements
are independent from the last measurement.

The implementations in this thesis consider a simplified DBN: First,
only intrinsic measurements from GNSS and IMU are used. Second, only
biases for the IMU are estimated. The railway environment contains rail-
way tracks with a time invariant geometry. The network control that con-
trols the switches is combined with the train control input in the control
input U . The special DBN is shown in Fig. 5.2, and it represents the causal
dependencies for the localization and mapping estimations in the following.

M

Tk-1 Tk

Uk-1 Uk

ZGNSS
k-1 ZGNSS

kZIMU
k-1 ZIMU

k

BIMU
k-1 BIMU

k

Time Step k-1 Time Step k

Figure 5.2: DBN for railway navigation with IMU and GNSS.
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5.2 Train Localization

5.2.1 Localization Estimation with Onboard Sensors

Train localization is the procedure to estimate the topological location in
the railway network. This location is estimated by means of a track map
and onboard sensor measurements.

Estimation State

The goal for a train localization algorithm is to estimate and resolve Tk and
the sensor biases Bk. The train location is the topological pose T topo by
track ID, track location and direction, as defined in Eq. (3.18). Further, the
train speed v is of interest and estimated in the train localization. In the
following posterior factorizations, T v will be used as the random variable
for train speed in order to assign the affiliation to the train state. These
values are combined in the train localization state vector, or simply, train
state T . The basic train state for one discrete time step k is:

T ′k = {id, s, ot︸ ︷︷ ︸
T topo

, v︸︷︷︸
T v

}k. (5.1)

This basic train state is augmented with random variables from the train
trajectory:

Tk = {T topo, T v, T traj}k. (5.2)

The trajectory describes the path of the train over time. The values of
the trajectory depend on the track map content and the available sensor
measurements. A trajectory for a measurement setup with a GNSS receiver
contains the geographic position:

T traj′ = {ϕ, λ}. (5.3)

A 2-D extension with heading and curvature results in:

T traj′′ = {ϕ, λ, ψ, cψ}. (5.4)

A full 3-D trajectory with curvatures consists of nine variables:

T traj′′′ = {ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ}. (5.5)

The estimation states of a train localization is formulated with the
random variables and summarized with continuity properties in Table 5.1.
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The track ID is a discrete variable, and the track location is continuous
within the track. At a track change is a discontinuity of the track location s.
As explained in 3.2.2, the direction ot is an auxiliary state that is unknown
at the beginning, but its transition is deterministic with the use of the track
map. Depending on the onboard sensors, there are unknown measurement
biases b. These biases b can change over time due to a random drift, which
can not be calibrated in advance.

State variable Symbol Continuity

track ID id discrete ID, changes at track change

track location s continuous within a track,

discontinuous at track change

train direction ot binary, can change at track change

train speed v continuous

train trajectory ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ continuous

sensor biases b continuous

Table 5.1: Estimation states for train localization.

Train State Estimation and Challenges

The initial estimate for train localization is an unknown location and train
direction. Trains may be parked, shut down, and reactivated on side tracks
with parallel tracks in the vicinity. This fact may cause ambiguities in
terms of the correct track and train direction. On the other hand, this
initial uncertainty will be resolved shortly after moving and can be further
avoided with a permanent power supply or a storage of the last estimate
before shutdown.

The discontinuities of certain state values in Table 5.1 arise from the
track definitions and can be handled by the track map transition func-
tion (Eq. (6.5)). The transition of the location is mostly one-dimensional
with one outcome. A transition over a switch passed facing results in two
possible locations.

The actual ambiguities and uncertainties of train localization arise from
missing or inaccurate measurements of absolute along-track locations and
measurements for a track identification. Sensor measurements are dis-
turbed by random noise, biases, and unresolved systematic errors. The
train location accuracy suffers from low signal-to-noise ratios in terms of
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track feature measurements and ambiguities of parallel track features for
an absolute track identification.

A dead-reckoning of the train location with relative along-track mea-
surements result in a growing position uncertainty and error. This uncer-
tainty and error is not only limited to along-track: As soon as switches are
passed, this uncertainty has an impact on the correct assignment of mea-
surements to a switch way and can cause an incorrect track identification.
A lack of an absolute track identification measurement can be compen-
sated with a location tracking, an adequate estimation of the along-track
location and an identification of the switch way. Nevertheless, an absolute
track identification reduces uncertainty, especially for the initial localiza-
tion.

5.2.2 Localization Posterior Factorizations

The localization posterior estimates the train state T and the sensor biases
B from the measurements Z, the control input U , and the map M . The
DBN of Fig. 5.2 visualizes the random variables and their dependencies
for the posterior factorizations. A factorization splits the posterior into
factors, which are feasible for computation. In this thesis, a particle filter
and a multi hypothesis tracker (MHT) are implemented. There are two
posteriors: The first posterior is for the particle filter and estimates all
train states T0:k and biases B0:k. The second is the filter posterior, which
estimates only the current states of Tk and Bk.

Localization Full Posterior for Particle Filter

The full posterior of train localization with GNSS and IMU measurements
is factorized in the Appendix B.3 and consists of:

p(T0:k, B0:k|Z1:k, U1:k,M) ∝ p(ZGNSS
k |Tk) · p(ZIMU

k |Tk, Bk)︸ ︷︷ ︸
measurements

· p(Bk|Bk−1)︸ ︷︷ ︸
bias transition

·

p(T nk |T lk, T nk-1, Uk,M)︸ ︷︷ ︸
non-linear train transition on tracks

· p(T lk|T lk-1, Uk)︸ ︷︷ ︸
linear train transition

p(T0:k-1, B0:k-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior

.

(5.6)

The different parts can be assigned to specific functions and computations.
The train transition consists of two parts: a linear train transition for the
linear train states and a non-linear part for the non-linear train states.
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The linear part is the velocity and distance estimate, while the non-linear
part contains the track map. This posterior is used in the particle filter
implementation in Section 6.2.3.

Localization Filter Posterior for MHT Filter

The localization filter posterior is factorized in the Appendix B.4 and con-
sists of:

p(Tk, Bk|Z1:k, U1:k,M) ∝ p(Zk|Tk, Bk)︸ ︷︷ ︸
measurement update

∫
p(T nk |T lk, T nk-1, Uk,M)︸ ︷︷ ︸

non-linear train transition on tracks

·

p(T lk|T lk-1, Uk)︸ ︷︷ ︸
linear train transition

· p(Bk|Bk-1)︸ ︷︷ ︸
bias transition

· p(Tk-1, Bk-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior

d(Tk-1, Bk-1).

(5.7)

This posterior is used in the MHT implementation in Section 6.2.4.

5.2.3 Pre-processed Measurements

The pre-processed measurements ZP contain position, velocity, attitude,
and curvature measurements and is defined with:

ZP = (ϕ, λ, h︸ ︷︷ ︸
position

, v,︸︷︷︸
velocity

φ, θ, ψ︸ ︷︷ ︸
attitude

, cφ, cθ, cψ︸ ︷︷ ︸
curvatures

). (5.8)

These measurements are actually estimates from a sensor fusion of GNSS
and IMU measurements. Nevertheless, the pre-processed measurements
will be handled as measurements of the train trajectory and also the track
geometry in the following. In order to distinguish from sensor measure-
ments, these measurements are named pre-processed measurements. The
filter posterior describes the estimation of the pre-processed measurements
ZP
k and also the IMU biases Bk of the acceleration and turn rate measure-

ments:

p(ZP
k , B

IMU
k |ZGNSS

1:k , ZIMU
1:k ) ∝ p(ZGNSS

k |ZP
k , B

IMU
k )︸ ︷︷ ︸

GNSS measurement update

·

∫
p(ZP

k ,B
IMU
k |ZP

k-1,B
IMU
k-1 ,ZIMU

k )︸ ︷︷ ︸
estimate with IMU input

· p(ZP
k-1,B

IMU
k-1 |ZGNSS

1:k-1 ,Z
IMU
1:k-1)︸ ︷︷ ︸

prior

d(ZP
k-1,B

IMU
k-1 ).

(5.9)

The factorization is presented in the Appendix B.5. The IMU measure-
ments are used as input in this estimation. A GNSS measurement updates
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and corrects the estimate. The pre-processed measurements will be used
in the MHT train localization and in the RailSLAM method. The particle
filter instead uses directly the IMU and GNSS measurements.

5.3 RailSLAM Simultaneous Localization and
Mapping for Railways

The simultaneous localization and mapping for railways (RailSLAM) is
an automated track map generation and track map enhancement method.
This method uses measurements from onboard sensors and creates either
new track maps, or augments, corrects and enhances existing tracks maps
instantaneously during the train run.

5.3.1 Learning of the Track Map

The track map is created and enhanced during train runs. There are two
main states for the mapping process: the white-space phase and the prior-
map phase. These mapping phases or mapping states are named phases
in order to distinguish from the estimation states with random variables.
The mapping phases are denoted with ξ and used as auxiliary values in a
state machine of the RailSLAM algorithm.

White space means that there is no information known about the tracks,
in analogy to white and empty paper maps. In this phase, new tracks are
estimated from measurements of the onboard sensors.

In the prior-map phase, the train is localized on the previous track map
with measurements and the track geometry of the track map is updated.
In this way, the track map with its features is enhanced by every revisit
and the uncertainty of the track geometry estimate is reduced. The prior-
map phase is valid as long as the train stays on known tracks. These
known tracks are either previously visited or a preliminary track map has
been used. A preliminary track map can be augmented if it contains less
information about tracks and track geometry before.

Figure 5.3 explains the mapping phases and transitions with a typical
example of a two-way passenger train operation between the stations A
and B. The train starts at station A and travels towards station B. In the
beginning, there are no tracks known and the track map is newly created
in the white-space phase. In Figure 5.3(b), the train departs from B back
to station A. The train reverses on the previous mapped track, and the
mapping process is now in the prior-map phase. At this time, the track map
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contains one track. Railway lines contain often two tracks with dedicated
travel directions. After leaving the platform track, the train branches to
the reverse track of the railway line. At this branch, a switch is observed
from the trajectory of the train and inserted in the track map. This switch
splits the current track in two tracks and a new track is created. The train
runs now again on an unknown track and the mapping process is in the
white-space phase. In Figure 5.3(d), the train merges to the known track
and a second switch is observed. This switch splits the known track in two
tracks and links all connected tracks in the switch. The mapping process
continues in the prior-map phase and the track map contains now four
tracks and two switches.

RailSLAM State Machine for the Mapping Phases

Figure 5.4 shows the state machine for RailSLAM with the two main map-
ping phases and five transitions. Within the boxes of white-space phase
and prior-map phase there are the elementary steps shown for the map
processing. In RailSLAM there are also multiple hypothesis on different
switch ways, tracks or new tracks and switches possible. Each hypothe-

a) Train travels to station B

Station A
Station B

Recorded track
White-space phase

b) Train reverses to station A

Station A
Station B

Prior-map phase
Transition:

reverse on known track

c) Train branches to reverse track

Station A
Station BWhite-space phase

Transition:
branch to unknown track

d) Train joins track at station A

Station A
Station B

Prior-map phase

Transition: merge to known track

Figure 5.3: A typical learning sequence of a track network with train runs.
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 White-space phase

Estimate
trajectory

Estimate 
location

Add to
track map Add

switch

Add
switch

Circular loop closure

Merge to known track

Reverse

Exceeded map

Branch to unknown track
 Prior-map phase

Measurements

Estimate
trajectory

Localize
on track map

Update
track map

Measurements

Figure 5.4: State machine of RailSLAM mapping phases with correspond-
ing track map processing.

sis contains this state machine and mapping phases and processes. The
conditions for a transition are checked and decided before or within the lo-
calization part. In a probabilistic algorithm, these decisions can be random
or result in multiple hypothesis. The transitions of the mapping phases can
be derived from the different scenarios:

Reversing train: The reversing train is depicted in Fig. 5.3(b). There,
the train changes the travel direction and the mapping phase changes
from white-space phase to prior-map phase.

Branch via switch: Fig. 5.3(c) shows the transition from prior-map phase
to white-space phase after branching from a known track with a new
switch. The switch is passed facing.

Merge via switch: The returning train in Figure 5.3(d) merges with a
new switch to the known track and the mapping phase changes from
white-space phase to prior-map phase.

Exceeded map: This transition happens when a train exceeds the known
track map. The train travels further than the track map is known
and there no new switch involved. The mapping phase changes from
prior-map phase to white-space phase.

Circular loop closure: In a circular loop closure, the train returns to
known tracks without a new switch. One example are circular net-
works, where the train arrives at its initial location without changing
travel direction. The mapping phase changes from white-space phase
to prior-map phase.
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5.3.2 RailSLAM Posterior Factorization

The presented version of RailSLAM estimates the online SLAM posterior
with intrinsic measurements from a GNSS and an IMU. A full SLAM
posterior with particle filter has been presented in [P4] and implemented
in [M3].

The RailSLAM version of this thesis contains additionally a delay for
the track map update. This delay allows some time to identify tracks and
new switches over certain time steps without generating multiple maps.
Some time after a passed switch or a newly estimated switch, the number
of multiple train state hypotheses reduces again and most of the multiple
maps become obsolete. This delayed mapping is possible if solely intrinsic
measurements are used and the train does not revisit the same track loca-
tions within this delay period. In the implementation, the mapping will be
delayed until the train stops again. Other possibilities of delays are a fixed
time lag or a fixed distance. The time step of the last track map update is
denoted with k′.

The main factorization for the online SLAM posterior results in a map-
ping part and a train state estimation part:

p(Tk, Bk,Mk|Z1:k, U1:k)

prod. rule
cond. indep.

= p(Mk|Tk, Z1:k)︸ ︷︷ ︸
track map estimation

· p(Tk, Bk|Z1:k, U1:k)︸ ︷︷ ︸
train state estimation

.

(5.10)
This posterior factorization is for both mapping cases: white-space and
prior map. The train state estimation is different for each mapping case
and will be explained in the following. The track map estimate M is now
indexed with a time step k in order to separate the different times of pre-
vious track map update and actual time step. The train state contains the
topological pose T topo, train speed v and the train trajectory values T traj,
as defined in Eq. (5.2). The train location and track map are estimated
from the pre-processed measurements.

The first factor in Eq. (5.10) is the track map estimation. There, the
track map is updated with information from the train state Tk. As a
specialty of RailSLAM, the train trajectory is also the estimate of the
track geometry. The topological pose of Tk is the data association of the
track geometry for the track map update. This means that the train state
contains all information for an incremental track map update. As long
as the train runs on different track locations, the current train state does
not depend on a track map that includes the last updates. Therefore, a
series of consecutive train state estimates can be temporarily buffered for
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a collective track map update. The track map estimation is delayed and
computed some time after a series of train state estimations. The actual
data fusion of prior track map information and measurements is processed
in the train state estimation.

The second factor in Eq. (5.10) is the train state estimation. In the
white-space case, the trajectory is estimated from the pre-processed mea-
surements that contain measurements of the trajectory alone. The white-
space train state estimation is similar to Eq. (5.9) and the track location is
updated from location increments. In the prior-map case, the train state
estimation of Eq. (5.10) is more complex: Now, the train state trajectory
is estimated from measurements and geometry data of the previous map.
This previous map is missing in the train state estimation of Eq. (5.10).
Therefore, the train state estimation is extended and marginalized (see
Eq. (A.15)) with the previous map Mk′ from a past time step k′:

p(Tk, Bk|Z1:k, U1:k)︸ ︷︷ ︸
train state estimation

extension,
margin. Mk′

=

∫
p(Tk, Bk|Z1:k, U1:k,Mk′)︸ ︷︷ ︸

localization and trajectory
estimation (Eq. (5.12))

· p(Mk′)︸ ︷︷ ︸
previous map

dMk′.

(5.11)
This extension and marginalization of a random variable has been described
in Eq. (2.13), and used also in the prediction step of the filter posterior
Eq. (2.20) of a Kalman filter, for example. This marginalization inserts
known map information with uncertainty into the train state estimation.
The localization and trajectory estimation in Eq. (5.11) is different to the
train localization of Eq. (5.7) because the trajectory is also estimated and
updated with measurements. In contrast to Eq. (5.7), the localization and
trajectory estimation is split into a trajectory estimation part and a train
localization part:

p(

Tk︷ ︸︸ ︷
T traj
k , T topo

k , T v
k , Bk|Z1:k, U1:k,Mk′)

prod. rule
cond. indep.

=

p(T traj
k |T

topo
k , Z1:k,Mk′)︸ ︷︷ ︸

trajectory estimation
(Eq. (5.14))

· p(T topo
k , T v

k , Bk|Z1:k, U1:k,Mk′)︸ ︷︷ ︸
train localization

(Eq. (5.13))

.

(5.12)

In a first step, the train localization is computed with the estimation of
T topo
k , train speed T v

k and an additional bias Bk. The factorization of
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the train localization step is similar to the localization filter posterior in
Eq. (5.7):

p(T topo
k ,T v

k , Bk|Z1:k, U1:k,Mk′) =

p(Zk|T topo, Bk,Mk′)︸ ︷︷ ︸
measurement update

·
∫

p(T topo
k |T v

k , T
topo
k-1 , Uk,M)︸ ︷︷ ︸

non-linear train transition on tracks

· p(T v
k |T v

k-1, Uk)︸ ︷︷ ︸
linear train transition

·

p(Bk|Bk-1)︸ ︷︷ ︸
bias transition

·p(T topo
k-1 , T v

k-1, Bk-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior

d(Tk-1, Bk-1).

(5.13)

The measurement update compares the predicted trajectory values from
the predicted location and the map. This update corrects the along-track
location and compares the predicted trajectory with the measured value
for a track identification.

The second step of the trajectory estimation (Eq. (5.12)) is computed in
the same time step, but after the computation of the train localization step.
The trajectory update computes the trajectory from the measurement and
the map information at the estimated location:

p(T traj
k |T

topo
k , Z1:k,Mk′)

Bayes
cond. indep.

=

trajectory update︷ ︸︸ ︷
p(Zk|T traj

k ) ·

T traj prediction
from estimated T topo︷ ︸︸ ︷

p(T traj
k |T

topo
k ,Mk′)

p(Zk|Z1:k-1)
. (5.14)

The presented factorization is used in the RailSLAM implementation with
an MHT filter and a delayed mapping in Section 6.3.

5.3.3 Comparison to Robotic SLAM

There are some differences between the classical robotic SLAM, as de-
scribed in [13] and the proposed RailSLAM method. These differences are
listed in Table 5.2.

The map in robotic SLAM is either location-based or feature-based and
locations are addressed with Cartesian coordinates (see [13]). A location-
based map holds information for every location of the map grid and an
example is the occupancy grid map. The feature-based map contains only
objects at specific locations of the environment, called landmarks. In con-
trast, RailSLAM contains feature sample points of each railway track and
assigns these with a track ID and a 1-D location on the track. The track
map in RailSLAM represents railway tracks as possible train trajectories
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Robotic SLAM (see [13]) RailSLAM

Map Content obstacles, railway tracks:

accessible free space constrained trajectories

Map Type location-based: occupancy grid features over 1-D location

feature-based: landmarks for each railway track

Map 2-D/3-D: x, y, (z), track ID (id),

Coordinates relative to origin track location (s)

Motion 3 degrees of freedom constrained to 1-D track,

Model (2-D position and yaw) two paths at switches

Motion Meas. speed, steering angle speed, acceleration

Feature laser scanner, camera, GNSS, IMU

Measurements sonar (extrinsic) (intrinsic)

Features, depends on sensors track features:

Signatures e.g. edges, patterns, colors position, attitude, curvatures

Association corresponding track and 1-D location,

Problem features, landmarks also switch way

Loop Closure required for conversion uses absolute positions, no

requirement for conversion

Simultaneous localization with previous delayed mapping possible,

map followed by map update Simultaneous mapping

in the same time step in the same train run

Table 5.2: Differences between classical robotic SLAM and RailSLAM.

instead of distant features and free space for an arbitrary motion as used in
the robotic SLAM. Furthermore, the features of the railway track consists
of absolute positions, attitude, curvatures, and additional signatures such
as magnetic of vibration patterns. A robot moves freely in a 2-D space and
the motion model has three degrees of freedom. Trains are constrained to
1-D tracks and only at switches, there are two possible paths. The measure-
ments are divided into motion measurements and feature measurements for
localization and mapping. The feature measurements of the robotic SLAM
are extrinsic because laser scanners or cameras measure distant features,
which additionally persist over several time steps. In contrast, the Rail-
SLAM measurements of GNSS and IMU are intrinsic, as only the position,
acceleration and turn rate of the train is measured and not a direct track
feature. RailSLAM does not require loop closures for the convergence of
location and map, because the absolute position updates from GNSS de-
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couple the track sample points from each other. Finally, the simultaneous
property of RailSLAM can be relaxed with a delayed mapping for some cir-
cumstances. A delayed mapping is possible if solely intrinsic measurements
are used and trains do not revisit the same track immediately. With ex-
teroceptive measurements, the same distant landmark is seen over several
time steps and should be directly integrated in the map. In the context of
robotic or pedestrian SLAM, a robot or person can quickly turn and close
a loop. Trains instead move in a more deterministic way, for example a
direction change is only possible after a stand still and a switch is needed
to join to known tracks. The mapping delay is used to reduce the creation
and deletion of multiple maps for each hypotheses after passed switches or
possible new switches. Nevertheless, RailSLAM can be still considered as
a simultaneous mapping method in the sense of the same train run.
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Chapter 6

Implementation

This chapter presents the algorithms for the train localization and track
mapping as well as a GNSS and IMU data fusion in a pre-filter. There are
three different localization methods and the RailSLAM method.

6.1 GNSS and IMU Data Fusion

The GNSS and IMU measurements can be processed in the localization
or mapping estimation or in a pre-processing, as defined in Section 5.2.3.
This pre-processing keeps the sensor fusion and bias estimation separate
from the localization or map estimation algorithms. The pre-processing
combines GNSS and IMU measurements with an inertial navigation sys-
tem (INS). The output is the pre-processed measurement vector ZP (see
Eq. (5.8)) composed of position, velocity, attitude and curvatures of the
time step k:

ZP
k = (ϕ, λ, h︸ ︷︷ ︸

position

, v,︸︷︷︸
velocity

φ, θ, ψ︸ ︷︷ ︸
attitude

, cφ, cθ, cψ︸ ︷︷ ︸
curvatures

)k. (6.1)

Fig. 6.1 shows the pre-processing with INS/GNSS, and the curvatures are
computed from the INS data and the IMU turn rates. The INS/GNSS
is implemented in a loosely-coupled version with the strapdown algorithm
and an error-state Kalman filter (ESKF), as defined in [47]. The main
steps of the pre-processing are shown in the algorithm Fig. 6.4.

The INS state vector comprises 15 values with 3-D positions (latitude,
longitude, height), velocity in north-east-down navigation frame, attitude
in roll-pitch-yaw angles as well as the biases of acceleration and gyroscope
measurements:

xINS = (ϕ, λ, h︸ ︷︷ ︸
position

, vn, ve, vd︸ ︷︷ ︸
velocity

, φ, θ, ψ︸ ︷︷ ︸
attitude

, bax, bay, baz︸ ︷︷ ︸
accel. bias

, bωx, bωy, bωz︸ ︷︷ ︸
gyro. bias

)T . (6.2)
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ESKF

Strapdown

Curvature

Localization,
Mapping,

SLAM

+

ZGNSS

Z IMU

X INS

INS/GNSS

ZP

Figure 6.1: GNSS and IMU data fusion for pre-processed measure-
ments ZP.

A strapdown algorithm tracks the position, velocity and attitude from iner-
tial measurements as described in Section 4.2.2. The differential equations
are in Appendix D and more details of the algorithm and derivations are
in [47]. The algorithm is showed in Fig. 6.2.

The INS propagates the position, velocity and attitude with the strap-
down method (Fig. 6.2, line 4):

xINS
k|k-1 = fSD(xINS

k-1 , ẑ
IMU
k ). (6.3)

Function: Pre-processed measurements
Input: GNSS measurements (PVT) ZGNSS, IMU measurements ZIMU

Output: pre-processed measurements ZP

1: loop
2: if new IMU measurement ZIMU then
3: correct inertial meas. with estimated biases: ẑIMU

k = zIMU
k − xINS,bias

k-1

4: propagate INS state via strapdown Eq. (6.3)
5: propagate ESKF cov.Σ∆

k|k-1 with meas. noise and bias noise Eq. (2.31)
6: update low-pass filter of curvature computation with corrected turn rates
7: else if new GNSS measurement ZGNSS then
8: compute innovation between GNSS measurements and INS state xINS

k|k−1

9: update ESKF error estimate ∆xk|k Eq. (2.30) and Σ∆
k|k Eq. (2.31)

10: correct the INS state xINS
k|k−1 with the estimated errors ∆xk|k

11: end if
12: if time for output then
13: compute horizontal velocity from : v =

√
v2

n + v2
e

14: compute curvatures from filtered turn rates and velocity v (Eq. (4.20))
15: output vector ZP with position, velocity, attitude and curvatures
16: end if
17: end loop

Figure 6.2: Algorithm: Pre-processed measurements from loosely-coupled
INS.
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The ESKF has been described in Eq. (2.27)-Eq. (2.32) in Section 2.2.1
and the error state vector comprises 15 error states in the loosely-coupled
version [47]:

∆x =

(∆xn,∆xe,∆xd,∆vn,∆ve,∆vd,∆α,∆β,∆γ,∆b
ax,∆bay,∆baz,∆bωx,∆bωy,∆bωz)T .

(6.4)

The position error is in the metric north-east-down format and the atti-
tude error consists of Euler angle increments. The ESKF system matrix
is derived from differential equations for the errors of position, velocity,
attitude, and inertial sensors [47]. In line 5, the ESKF covariance is prop-
agated with measurement noise of the inertial measurements input and
with process noise for the bias estimation [47]. The curvatures are com-
puted with Eq. (4.20) from the INS velocity estimate and from the low-pass
filtered and bias-corrected turn rate measurements (lines 6,13-14).

6.2 Train Localization

This section introduces the most common track map interface functions
and three train localization methods. The three localization methods are
the simple map-match method, a probabilistic particle filter method and
a probabilistic multi hypothesis tracking (MHT) method.

6.2.1 Track Map Interface Functions

The train localization implementations and also RailSLAM use common
interface functions of the track map:

The track map transition function is needed for the propagation of a
train on tracks. A topological pose of a train is shifted with a distance ∆s
and the transition function computes a new topological pose:

{ îd, ŝ, ôt︸ ︷︷ ︸
new topo pose(s)

} = fmap,trans( id, s, o
t,︸ ︷︷ ︸

prev. topo pose

∆s). (6.5)

In the simplest case, the topological pose stays on the same track and ∆s
is just added or subtracted from the location s according to the orientation
and the sign of the distance. In the case that a train changes the track,
the location s faces a jump discontinuity at the changeover of the tracks
and the track ID is also changed. Additionally, the new track may have a
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different track orientation definition. In this case, the transition function
changes the track-to-train frame direction ot of the new topological pose.
If a switch passed facing, there are two possible switch ways. For this case,
the track map transition function outputs two topological poses.

The second track map interface function is a query of the track geometry
mid,s defined in track frame t at the topological location (id, s):

{µm,Σm}id,s︸ ︷︷ ︸
track sample
point mid,s

= ft
map( id, s︸︷︷︸

topo.
location

). (6.6)

The track sample mid,s of the probabilistic track map contains a mean
vector µm ∈ IR9×1 and a covariance matrix Σm ∈ IR9×9. The vector µm

contains the track geometry values with positions, attitude and curvatures.
The track geometry values are interpolated at the location s from the stored
geometry sample points of the track.

A train localization requires a comparison of the measurements and
the track geometry. In this thesis, the track geometry is converted to
the train frame for the this comparison. Therefore, the function Eq. (6.6)
is extended and the track geometry is converted to the train frame, as
described in Table 3.3. The trajectory function of the track map returns
the track geometry converted to the train frame b and requires additionally
the train-to-track frame direction ot:

{µtraj,Σtraj}id,s,ot︸ ︷︷ ︸
trajectory
point T traj

= fb
map(id, s, ot︸ ︷︷ ︸

topo.
pose

). (6.7)

A train trajectory point T traj, as defined in Eq. (5.5) and Section 5.2.1,
contains the mean vector µtraj ∈ IR9×1 with the trajectory values and the
covariance matrix Σtraj ∈ IR9×9.

6.2.2 Simple Map-Match Method

The simple map-match method uses a nearest neighbor approach. This me-
thod searches the nearest track (id) and the track location s from position
measurements without prior information:

{id, s}︸ ︷︷ ︸
topo. location

= fmap-match( ϕ , λ︸ ︷︷ ︸
geo position

). (6.8)

Figure 6.3 illustrates the block diagram with the position measurement in-
put, the track map and the train location output. The simple map-match
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method is a deterministic function and does use a past result. The loca-
tion computation involves a search of tracks and segments in the vicinity
of the position measurement, an orthogonal projection of the position to
the track segments, and the output of the nearest matched track ID and
track location. This method is used as a reference localization approach as
well as in the initialization of the probabilistic localization methods. The
simple map-match method would be sufficient if the position measurement
are continuously available in combination with an accuracy that is always
better than half of the distance of parallel tracks. It will be shown in the re-
sults, that this method has accuracy problems in terms of track selectivity
with real GNSS position measurements, recorded on a train.

Track
map

Find near
tracks & segments

Orthogonal
projection

Output
nearest

Geo position
measurement

Train
location

Simple Map-match

Figure 6.3: Block diagram of a train localization with the simple map-
match method.

The matched position on the track map minimizes the distance between
a measured position and the track model. The track model is defined with
position sample points and straight segments in between. Figure 6.4 shows
a Voronoi diagram of a switch scenario with linear track segments. This
diagram shows areas around the segments, where any position within a
specific area would be matched by shortest distance to the current segment
and track, respectively. The areas around different tracks are separated
with different colors.

The orthogonal projection is the method to find a position on a track
segment and a track location from a 2-D position measurement. This me-
thod calculates a point on the track segment which defines an orthogonal

Position ~p

~ps̃
Matched pos.

Segment ~a
~b

l

d

~p1 ~p2

Track selection
boundary

Figure 6.4: Voronoi diagram for line segments and orthogonal projection.
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vector ~d between segment ~a and position ~p, as depicted in Figure 6.4. The
segment ~a is defined between the track sample positions ~p1 and ~p2. The vec-
tor ~d is an approximation of the cross-track distance δCT (see Section 3.2.1)
because of the track geometry approximation with straight segments. The
vector~b points from the first segment point ~p1 to the position measurement
~p. A length l is calculated with the scalar dot product (~a•~b = |~a||~b| cosα):

l =
(~a •~b)
|~a| . (6.9)

The projected segment point is calculated with the unit vector of ~a:

~l = l · ~a|~a| , (6.10)

and the absolute matched position is ~ps̃ = ~p1 +~l. The distance d is defined
between ~l and ~p. The train location is composed by the ID of the track
with the minimum distance d to a segment and the track location, which
is calculated with the track location of the first track sample sp1

and the
length l:

s̃match = sp1
+ l. (6.11)

The algorithm summary of the simple map-match method is presented in
Fig. 6.5. This method is entitled with simple because it uses no feedback
of previous results and it does not need any parameters or noise assump-
tions. Different projection methods of positions to railway tracks regarding
covariances can be found in [16].

Algorithm: Train Localization (Simple Map-Match)
Input: GNSS or INS position data (~p), track map
Output: topological location (id, s)

1: loop
2: if new position measurement ~p available then
3: get track IDs in vicinity of search area
4: for all near tracks do
5: find nearest track segment with ~p1 and ~p2

6: compute orthogonal projection with ~p, ~p1, ~p2

7: save track id with cross-track distance d and length l
8: end for
9: id: select nearest track with minimum distance d

10: s̃: compute 1-D location with length l and nearest segment
11: end if
12: end loop

Figure 6.5: Train localization algorithm with simple map-match method.
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6.2.3 Particle Filter Method

The train localization method with a particle filter is depicted in Figure 6.6.
The sensor measurements of GNSS and IMU are directly used as an input
for the particle filter method. The particle filter is a probabilistic esti-
mation method because it computes the train location with probability
distributions. This particle filter is a Bayesian sequential filter because
it updates with measurements for each time step and it uses the output
probability distribution of the past time step as a prior information. As
defined in Section 2.2.3, the particle filter consists of a proposal function, a
weight function, a resample function and an output estimate. The proposal
and weight functions are defined from the factorized full posterior in the
following. The train localization full posterior, as defined in Section 5.2.2
Eq. (5.6), is now estimated with particles and their associated weights:

p(T0:k, B0:k|Z1:k, U1:k,M) ≈ {xi0:k, w
i}Npi=1. (6.12)

This train localization approach with particle filter has been published
initially in [P2], with extensions and simulations in [P3], and in the final
version with train measurement evaluations in [J1].

Track
map

Proposal
function

Weight
function

Resample Output
estimate

GNSS
IMU

Train
location

Particle filter

Figure 6.6: Block diagram of the train localization with particle filter me-
thod.

Proposal Function

The proposal function or importance density q() is designed with the linear
train transition, the bias estimation, the non-linear transition on tracks and
the prior:

q(T0:k, B0:k|Z1:k, U1:k,M) =

p(T lk|T lk-1,Uk)︸ ︷︷ ︸
KF: odometry,

linear transition

·p(Bk|Bk-1)︸ ︷︷ ︸
KF

bias transition

·p(T nk |T lk,T nk-1,Uk,M)︸ ︷︷ ︸
non-linear train transition

·p(T0:k-1,B0:k-1|Z1:k-1,U1:k-1,M)︸ ︷︷ ︸
prior

.

(6.13)

The linear and one dimensional train transition, called odometry in the
following, is estimated with a Kalman filter and updated with GNSS speed
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and longitudinal IMU acceleration measurements. The odometry state
(xodo) contains the estimate of the speed v, displacement ∆s and accelera-
tion measurement bias bax. The state transition of the odometry prediction
step is defined here as a 1-D transition model of the type discrete white
noise constant acceleration (DWPA) [40]. The linear 1-D train transition
and the acceleration bias are estimated with the discrete model:

∆s
v
a
bax


k︸ ︷︷ ︸

xodo
k

=


0 ∆t ∆t2

2 0
0 1 ∆t 0
0 0 1 0
0 0 0 1




∆s
v
a
bax


k−1

(6.14)

The non-linear train transition is estimated with particles and the dis-
placement result of the odometry is used as an input. Therefore, the dis-
placement of the i’th particle is sampled from the distance estimate of the
odometry:

∆sik ∼ N
(
∆sodo

k , σ2
∆s

)
. (6.15)

Afterward, the train transition function on the track (Eq. (6.5)) is pro-
cessed for each particle. This transition ensures, that the estimates, or
particles respectively, exist and stay exclusively on tracks. The transition
function on tracks computes a new topological coordinate from the linear
displacement ∆sik, the previous coordinate, a randomly chosen switch way
and the track map. The transition function of the track map considers the
discontinuity at a track change. In the case that the train passes a switch
facing, the switch way is sampled from a discrete and uniform distribution.
Finally, the track geometry is obtained with Eq. (6.7) from the track map
and defined in the train frame. The bias of the gyroscope (bωz) is observed
and updated only during train stops:

bωz
k |v=0 ≈ ωz. (6.16)

The turn rates are assumed to be zero at stand-still and the low Earth
turn rate is neglected. The proposal function contains a Kalman filter
for odometry and gyroscope bias. Therefore the particle filter estimates
actually only two state dimensions with the track ID and 1-D location:

xPF = (id, s)T . (6.17)

In combination with the estimates from the Kalman filter and the track
map, the particle state x is extended with: the train direction ot, the
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velocity v and the gyroscope bias bωz as well as positions, heading and
curvature of the current track location in the train frame. The complete
state is:

x = (id, s︸︷︷︸
PF

, ot, v, bax︸ ︷︷ ︸
odometer

, bωz, ϕ, λ, ψ, cψ︸ ︷︷ ︸
from track map

)T . (6.18)

As mentioned in Section 3.2.2, the train-track direction ot is an auxiliary
state that can be tracked in a deterministic way, once this direction is
known. This tracking is handled in the train transition function of the
track map Eq. (6.5).

Weight Function

The weight function is computed from the posterior Eq. (5.6) and the pro-
posal function Eq. (6.13) as defined in Eq. (2.41):

wk = η
p(T0:k, B0:k|Z1:k, U1:k,M)

q(T0:k, B0:k|Z1:k, U1:k,M)
. (6.19)

Hence, the weight function for the i’th particle with IMU and GNSS like-
lihoods is:

wi
k =η · p(ZGNSS,pos

k |T ik) · p(ZGNSS,ψ
k |T ik) · p(ZIMU,ωz

k |T ik, Bi
k) · wi

k−1. (6.20)

In this approach, the GNSS and IMU data is directly used without any
pre-processing such as an INS. In practice, the weighting function with the
measurement likelihoods is based on a comparison of measurements with
expected measurements from the track map. The following sensor mod-
els implement a Gaussian likelihood: The measurement model for GNSS
positions includes 2-D positions from the extended state Eq. (6.18) and an
additional white noise npos:

ZGNSS,pos
k =

(
ϕ
λ

)
k

+ npos
k , npos

k = N (0,Σpos) . (6.21)

The GNSS heading measurement of a single antenna represents the di-
rection of motion, while the state ψ in Eq. (6.18) considers a heading in
train frame. For this reason, the measurement model turns the estimated
heading ψ with π, if the train motion is backward:

ZGNSS,ψ
k =

{
ψk + nψk , if v > 0,

ψk + π + nψk , if v < 0,
nψk = N

(
0, σ2

ψ

)
. (6.22)
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Finally, the yaw rate measurement model is defined from the curvature cψ,
the train speed in track frame ṡ, a gyroscope bias bωz and a white noise
nωz:

ZIMU,ωz
k = cψk · ṡk + bωz

k + nωzk , nωzk = N
(
0, σ2

ωz

)
. (6.23)

The train speed ṡ in track frame can be obtained from the estimation state
Eq. (6.18) with the speed in train frame v and the direction ot, as defined
in Table 3.2.

Output Estimate

For most applications, a particle distribution is not convenient because a
single mode or most likely output is required. As described in Eq. (2.47),
a minimum mean square estimate (MMSE) is computed from the particle
distribution. An alternative is the output of the most likely particle with
the highest weight. The MMSE takes the particle distribution also into
account and filters over particles because the sampling step added noise.
Internally, the particle filter keeps its particle distribution for the next
update. As a specialty of this filter, the particles are on the tracks. It is
not feasible to compute an MMSE for a switch scenario with particles on
both switch ways. The output estimate decides first for the more likely
1-D path of tracks and computes then an MMSE on this path. A track
path contains one or more sequential tracks on a 1-D path, where a train
is able to run over sequentially. For further computations, a track path
has a continuous 1-D coordinate frame compared to discontinuities at the
joints of tracks. A topological pose can be translated into path coordinates
as well as translated from path coordinates. In a switch scenario, particles
can be distributed before the switch, on the left switch way and on the
right switch way. This particle distribution would result in two possible
track paths: id1

p = {idbefore, idleft} and id2
p = {idbefore, idright}. The output

estimate is calculated with the following four steps as defined in [J1]:

a) Track path: all track path hypotheses are identified with at least one
particle.

b) Most likely (ML) path: the sum of weights are calculated for each
path and the most likely path has the highest cumulative weight.

c) Mean square estimate on path: A 1-D location and standard devia-
tion is calculated from a weighted mean and weighted sample variance
of the selected particles, which belong to the ML path.

d) Translation to topological pose: the most likely path and the mean
location on path are converted back into topological coordinates with
track ID and 1-D location.
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Algorithm Summary

The algorithm of the sequential Bayesian filter with a particle filter, GNSS,
IMU, and a track map is shown in Fig. 6.7. The particle filter is initialized
from the first GNSS position measurement: Therefore, the initial particles
are sampled from a 2-D Gaussian distribution at the first position with
an enlarged covariance [J1]. For each particle, the sampled positions are
map-matched by Eq. (6.8) for the initial topological location.

Algorithm: Train Localization (Particle Filter)
Input: GNSS and IMU sensor data, track map, parameter
Output: topological coord. (id, s, ot) and train speed v

1: initialize all Np particles by first GNSS position
2: loop
3: if new measurement(s) available then
4: time step: k = k + 1, ∆t = tk − tk−1

5: for all Np particles do
6: predict odometry KF Eq. (6.14)
7: update KF with speed / acceleration measurement
8: if train is moving then
9: sample displacement from odometry Eq. (6.15)

10: compute map transition Eq. (6.5)
11: get geometry from track map (train frame) Eq. (6.7)
12: compute likelihoods Eq. (6.21)/Eq. (6.22)/Eq. (6.23)
13: multiply particle weight by likelihoods Eq. (6.20)
14: else (train is stopped)
15: observe and filter gyroscope bias Eq. (6.16)
16: end if
17: end for
18: normalize weights Eq. (2.46)
19: compute most likely output estimate
20: if resampling necessary then
21: perform resampling
22: end if
23: end if
24: end loop

Figure 6.7: Train localization with particle filter, GNSS, IMU, and track map.

6.2.4 Multiple Hypotheses Tracking Method

The multiple hypothesis tracking (MHT) method estimates the train local-
ization filter posterior. The MHT is a probabilistic Bayesian filter method
that computes different hypothesis with probabilities and probability dis-
tributions for the train location estimate. The MHT method computes
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sequentially the train location from measurements and from the last esti-
mate. Figure 6.8 shows the block diagram of the MHT method with the
pre-processed measurements and the track map as inputs and the train lo-
cation as output. There are two functions that estimate the train location:
the along-track estimation function and the track identification function.
The pruning step removes hypotheses with a low weight below a defined
value. The MHT differs from the particle filter method with a range of
changes. One difference is the estimation of the filter posterior instead
of the full posterior. Other differences are a pre-filter of sensor data via
INS, a separate along-track estimation, and an explicit focus on switch-way
detection and track identification. Same as the particles, the hypotheses
contain a weight and an estimate of the train state and biases. The main
difference is, that there is only one hypothesis for each track in along-track
direction. The multiple hypotheses arise from the multiple tracks after
passing a switch facing, for example.

Track
map

Along-track
estimation

Track identification
estimation

Pruning Output

Pre-processed
measurements

Train
location

Multi Hypothesis Filter

Figure 6.8: Block diagram of the train localization with the MHT method.

The filter posterior of the train localization (Eq. (5.7)) is extended with
multiple hypothesis and associated weights (see Section 2.2.2, Eq. (2.33)-
Eq. (2.35)). The filter posterior factorization with the hypotheses extension
is:

p(Tk, Bk|Z1:k, U1:k,M) ∝
∑
j

wj
k︸︷︷︸

mixture weight of
j’th hypothesis

· p(ZAT
k |T jk , Bk)︸ ︷︷ ︸

measurement update
for along-track

·

∫
p(T jk |T

j
k-1,U

j
k ,M)︸ ︷︷ ︸

train transition

· p(Bk|Bk-1)︸ ︷︷ ︸
bias transition

· p(T jk-1,Bk-1|Z1:k-1,U
j
1:k-1,M)︸ ︷︷ ︸

prior

d(T jk-1,Bk-1).

(6.24)

The pre-processed measurements contain already a sensor fusion of IMU
and GNSS measurements. The bias vector B considers the correlated errors
of the pre-processed measurements and is the same for all hypotheses. The
MHT posterior of Eq. (6.24) shows a mixture weight w that is used for the
track identification estimation. The remaining factorization of Eq. (6.24)
is used for the along-track estimation. The measurements ZAT are suitable
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measurements for an along-track estimation, according to Section 3.2.3.
The number of hypotheses is dynamically changed, e.g. after passing a
switch. A switch passed facing at time step k results in two hypotheses of
the train control input: H1

k = U sw,right
k ,H2

k = U sw,left
k . For a switch passed

facing with an unknown switch way, there are two hypothesis created with
equal weights. The mixture weight update of the j’th hypothesis is (see
Eq. (2.35)):

wj
k = η · wj

k-1 · p(ZTI
k | T jk , B

j
k︸ ︷︷ ︸

j’th hypothesis Hj
). (6.25)

The measurements ZTI are all suitable measurements for a track identifi-
cation, especially at a switch, according to Section 3.2.3 and ZTI is defined
in the following.

A pruning step reduces hypotheses with low weights or after a switch
was passed merging with two hypotheses. The pruning is suspended, as
long as the hypotheses are inside a defined switch section. Finally, the
hypothesis with highest weight is selected as output.

Measurement of Along-track and Cross-track Distance

A position measurement contributes to the along-track estimation as well
as to the track identification. Therefore, an along-track distance dAT and
a cross-track distance dCT are computed from an estimated track position
and a measured position, as depicted in Fig. 3.4, Section 3.2.1. At first, a
distance vector in NED coordinates is computed between a position mea-
surement and a position on the tracks with Eq. (3.8) or Eq. (3.9). The
predicted position on the tracks is retrieved from the map with Eq. (6.6) at
the predicted location (id, s, ot)k|k−1. The following computes a NED vec-

tor in 2-D from the position measurement zϕλ and the predicted trajectory
vector µtraj

k|k−1 with Eq. (3.9):(
xn

xe

)
=

(
(Rn+h) 0

0 (Re+h) cosϕ

)(
zϕλ−Hϕλµtraj

k|k−1

)
. (6.26)

The conversion matrix and also the meridian radius Rn (Eq. (C.10)) and
the transverse radius Re (Eq. (C.11)) depend the measurements of latitude
and height. The matrix Hϕλ selects the latitude and longitude values from
the predicted trajectory:

Hϕλ =

(
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

)
. (6.27)
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The NED vector of Eq. (6.26) in north (xn) and east (xe) direction is rotated
with the heading angle ψ to the along-track and cross-track axes:(

dAT

dCT

)
=

(
cosψ sinψ
− sinψ cosψ

)(
xn

xe

)
. (6.28)

The measurement covariance of the position measurement is Σϕ,λ. The
variances of along-track and cross-track distances are computed from the
rotated measurement covariance with the heading angle ψ:(

σ2
AT ·
· σ2

CT

)
=

(
cosψ sinψ
−sinψ cosψ

)
Σϕ,λ

(
cosψ sinψ
−sinψ cosψ

)T
. (6.29)

This transformation does not include the Earth radius as in Eq. (6.26)
because the covariance for the position is defined in meters.

Along-track Estimation

The along-track estimation contains a 1-D Kalman filter. However, the
1-D track location is discontinuous at track changes and also the track ID
changes, too. This non-linearity requires to integrate the map functions
Eq. (6.5) and Eq. (6.7) in the Kalman filter. The prediction step shifts
the previous track location with the distance ∆s as input, uses the map
transition Eq. (6.5), and enlarges the 1-D track location uncertainty σ2

s :

∆sk = vk ·∆t, (6.30)

(id, s, ot)k|k−1 = fmap-trans((id, s, o
t)k−1,∆sk), (6.31)

σ2
s,k|k−1 = σ2

s,k + σ2
∆s,k. (6.32)

Afterward, the track geometry is retrieved from the track map in train
frame with Eq. (6.7). In the case that a switch has been passed facing, one
hypothesis gets duplicated after the map transition function, each with
its own Kalman filter. The track ID and the train direction ot are auto-
matically tracked with the map transition function. The next step is an
update with measurements. The 1-D location s is an arbitrary definition
and hence it is not possible to measure this value directly. Special func-
tions are required to process a track location or a distance increment from
measurements and map geometry. The update step of the Kalman filter
processes a distance on tracks ∆smeas

k , which is the innovation between
a measurement and expected measurement. The Kalman filter estimates
then the distance ∆s′k|k in the update step with the Kalman gain K, the
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predicted uncertainty σ2
s,k|k−1, innovation ∆smeas

k , and a measurement un-

certainty σ2
meas:

K =
σ2
s,k|k−1

σ2
s,k|k−1 + σ2

meas

, (6.33)

∆s′k|k = K ·∆smeas
k , (6.34)

σ2
s,k|k = (1−K) · σ2

s,k|k−1. (6.35)

The along-track distance dAT of Eq. (6.28) is a suitable measurement for the
along-track estimation: ∆smeas

k = dAT including the measurement variance
σ2

meas = σ2
AT, as defined in Eq. (6.29).

Finally, the predicted location (id, s, ot)k|k−1 is shifted with the distance
on tracks ∆s′k|k via the map transition function Eq. (6.5) and the track

geometry in train frame is retrieved with Eq. (6.7), once again.

Switch Way and Track Identification Estimation

The switch way or track identification estimation is realized with the weight
update of the multiple hypotheses, as defined in the posterior Eq. (6.24)
and in the general weight update Eq. (6.25). If a switch is passed facing,
the along-track estimation creates two hypotheses with the same weight.
The switch way is now estimated with a comparison of measurements and
the different track geometries from the hypotheses of the left and right
switch way. This switch-way estimation evaluates several measurements
over a certain range from the switch start. This range is defined either
with switch length (see 3.1.2) or a fixed distance from the switch start.
The pruning is suspended in the switch range. A switch-way decision
occurs, once the pruning step decides for a hypotheses elimination after
that distance and if one switch-way hypothesis has a sufficient low weight.

The weight function Eq. (6.25) of each hypothesis is computed with a
likelihood. This likelihood evaluates a difference between measurements
and the trajectory of the j’th hypothesis. This difference is called track
identification innovation ∆TI and is computed from a measurement vector
zTI and the trajectory vector µtraj,j of the j’th hypothesis. A Gaussian
likelihood evaluates a probability (see Eq. (2.15)) from the track identifica-
tion innovation vector ∆TI,j and the innovation covariance matrix Σ∆TI,j

of the j’th hypothesis:

p(ZTI
k |T jk , B

j
k) ≈ N

(
∆TI,j,Σ∆TI,j

)
. (6.36)

Three measurements are used for the track identification: the cross-
track distance dCT, the heading ψ and the heading curvature cψ. The
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cross-track distance requires the 2-D position measurements, as defined in
Eq. (6.28) and Eq. (6.26), and the measurement model is non-linear. The
track identification measurements ZTI with the measurement vector zTI

and the measurement covariance ΣTI are obtained from the pre-processed
measurements ZP and defined with:

zTI =
(
ϕ λ ψ cψ

)T
. (6.37)

The matrix HTI selects the track identification values from the train tra-
jectory:

HTI =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

 . (6.38)

The innovation ∆TI,j depends on the j’th hypothesis and contains a con-
version to NED coordinates and a rotation to the cross-track axis with the
heading ψ: djCT

∆ψj

∆cψ
j


︸ ︷︷ ︸

∆TI,j

=

−sinψ(Rn+h) cosψ(Re+h)cosϕ 0 0
0 0 1 0
0 0 0 1

(zTI−HTIµtraj,j
)
.

(6.39)
The innovation covariance Σ∆TI,j is computed with the measurement co-
variance ΣTI, the trajectory covariance Σtraj,j, and a rotation to the cross-
track axis:

Σ∆TI,j =

−sinψ cosψ 0 0
0 0 1 0
0 0 0 1

(HTIΣtraj,jHTIT +ΣTI
)
−sinψ 0 0
cosψ 0 0

0 1 0
0 0 1

.
(6.40)

Eq. (6.37) to Eq. (6.40) describe the matrix definitions for the multivariate
Gaussian likelihood. Alternatively, the Gaussian likelihood for the track
identification can be defined with three one-dimensional Gaussian likeli-
hoods:

p(ZTI
k |T jk , B

j
k) ≈N

(
djCT, (σ

2
CT+σ2

CT,j)
)
· N

(
(ψ−ψj), (σ2

ψ+σ2
ψ,j)
)

· N
(

(cψ−cψj), (σ2
cψ+σ2

cψ,j)
)
. (6.41)
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The notation in Eq. (6.41) contains simplifications for clarity reasons: The

estimates from µtraj,j
k are indexed only with j, the measurements are de-

noted without an index and the time step index k is omitted. The cross-
track distance is computed with Eq. (6.28), and the variances are computed
with Eq. (6.29). The heading variance is σ2

ψ, and the heading curvature

variance is σ2
cψ .

During a passage of a switch, certain biases can be compensated. As
described in 4.1.3, the cross-track position bias may be observed with the
last position measurement before the switch and subtracted for the switch-
way identification. In the ideal case, there are only two hypotheses after
passing a switch facing, and a single hypothesis after the switch range has
been left.

Algorithm Summary

The MHT train localization algorithm with pre-processed measurements is
shown in Fig. 6.9. The set of hypotheses H is denoted after the first map

Algorithm: Train Localization (MHT)
Input: pre-processed measurements ZP, track map, parameter
Output: topological coord. (id, s, ot) and train speed v

1: initialize all H0 hypotheses by first position measurement
2: loop
3: if new pre-processed meas. ZP available then
4: time step: k = k + 1, ∆t = tk − tk−1

5: if train is moving then
6: compute map transitions of each H from velocity displacement → H′
7: update absolute along-track filters of each H′ with measurements
8: compute map transitions of each H′ from along-track correction → H′′
9: if H′′ contains only one hypothesis then

10: output estimate: Ĥ = H′′
11: keep hypothesis for next measurement update: H = H′′
12: else
13: compute track identification weights of multiple hypotheses H′′
14: pruning: remove merged and low weight hypotheses of H′′,→ H′′′
15: choose most likely output estimate Ĥ of H′′′
16: keep remaining hypotheses for next measurement update: H = H′′′
17: end if
18: end if
19: end if
20: end loop

Figure 6.9: Train localization with MHT filter, pre-processed measure-
ments, and a track map.
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transition with H′, and with H′′ after the second transition. The number
of hypotheses changes at each switch passed facing in the map transition.
A pruning step keeps or removes hypotheses and the set of hypotheses is
now denoted with H′′′, which is H for the next time step.

6.3 RailSLAM Method

The RailSLAM algorithm estimates the most probable train location in
combination with the track map. Figure 6.10 shows the block diagram of
the RailSLAM algorithm. The train localization and trajectory estimation
computes a train location and updates the trajectory with information from
the track map and pre-processed measurements. This estimation will be
also referred to as train state estimation. The mapping function generates
or updates the track map from the trajectory estimate with the associated
train location. The mapping function contains further a buffer for a de-
layed mapping in order to resolve certain hypothesis after switches before
the track maps of each hypothesis is updated. The output of the RailSLAM
method is the topological train location and an updated track map. The

Track
map

Train localization &
trajectory estimation MappingLocation,

trajectory

Pre-processed
measurements

RailSLAM Train
location

Figure 6.10: Block diagram of the RailSLAM method.

implementation of the train localization and trajectory estimation com-
prises several parts and functions: a train localization with and without a
prior track map, a trajectory estimation with and without prior track map
and an estimation of the topology with a switch discovery detector and a
mapping-phase estimation.

The estimation states of train state, trajectory point, track map geo-
metry and measurements are recapitulated for completeness. The train
state T contains topological pose, velocity and trajectory variables (cf.
Eq. (5.1), Eq. (5.2), Eq. (5.5)) at the time step k:

Tk = { id, s, ot︸ ︷︷ ︸
topo. pose T topo

, v, ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ︸ ︷︷ ︸
µtraj,Σtraj,

trajectory point T traj

}k. (6.42)

A trajectory point contains the geometric variables with position, attitude
angles and curvatures in the train frame. Each trajectory point T traj

k is
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represented with a mean vector µtraj
k and covariance matrix Σtraj

k . In the
following, a sequence of these points is called a trajectory. A track map
sample mid,s at a certain topological location contains the track geometry
in the track frame (cf. Eq. (6.6)):

mid,s = {ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ}︸ ︷︷ ︸
µm,Σm,

track geometry at location id, s

. (6.43)

Each track geometry point mid,s is represented with a mean vector µm
id,s

and covariance matrix Σm
id,s. A track geometry point is accessed from the

track map at a topological location with Eq. (6.6). The measurement ZP
k

is represented with a mean vector zP
k and covariance matrix ΣP

k . The
pre-processed measurements are defined in Section 6.1, Eq. (6.1) and these
measurements match with most of the variables of Tk:

ZP
k = {v, ϕ, λ, h, φ, θ, ψ, cφ, cθ, cψ︸ ︷︷ ︸

ztraj,Σz,traj,
trajectory measurement Ztraj

}k. (6.44)

In Section 5.3.2, the online SLAM posterior factorization has been pre-
sented. The following implementation uses a multiple hypothesis track-
ing (MHT) approach for the estimation of the online SLAM posterior.
The main factorization with the mapping and train state estimation part
(Eq. (5.10)) is extended with hypotheses and a mixture weight for each
hypothesis j:

p(Tk,Bk,Mk|Z1:k,U1:k)∝
∑
j

wj
k︸︷︷︸

mixture weight of
j’th hypothesis

·p(M j
k |T

j
k , Z1:k)︸ ︷︷ ︸

track map
estimation

·p(T jk ,Bk|Z1:k,U
j
1:k)︸ ︷︷ ︸

train state
estimation

.

(6.45)
The track map estimation updates the track map with information from
the train state Tk, and is explained in Section 6.3.3. A hypothesis Hj of
RailSLAM contains a mixture weight wj

k, a train state hypothesis T jk , a

mapping phase ξjk, and a track map hypothesis M j
k :

Hj
k = {wj

k, T
j
k , ξ

j
k,M

j
k}. (6.46)

The mapping phase ξ is an additional and auxiliary variable and can be
associated to the train state. This variable indicates either the white-space
phase or the prior-map phase. The train state estimation contains the
train localization and trajectory estimation. Depending on the mapping
phase, the implementations of the localization and trajectory estimation
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are different. Hypotheses are needed to estimate switches and switch ways.
Hypotheses arise from a decision of the control input U sw for a particular
switch way. If a switch is known in the track map, it is similar as in
the MHT localization one hypothesis for each switch way. If a switch is
unknown in the track map, there is one hypothesis with a switch and one
other without.

Expansion stages Init. Data association of measurements

map

1 White space mapping no 1-D location only

2 Along-track SLAM yes along-track localization, known switch ways

3 Prior-map SLAM yes full train localization, new track features

4 RailSLAM opt. full train loc., new tracks, known switches

5 Full RailSLAM opt. full train loc., new tracks, new switches

Table 6.1: Expansion stages of RailSLAM.

Table 6.1 shows five expansion stages of the RailSLAM algorithm. The
first expansion stage considers a simple white-space mapping with no initial
prior map. The second stage uses an initial map and a known switch-way
path. This stage is suitable for an update of track data in a mapping pro-
cess if the train route and switch ways are known in advance. The third
stage is similar to the second stage with the difference, that the switch
ways are unknown now. There, the localization estimates the switch way.
Second and third stage can enhance the initial map with new and improved
track features. The forth stage contains white-space and prior-map esti-
mation, as the initial map is optional and new tracks can be estimated.
The detectors of new switches are bypassed with true information. The
last expansion stage is the full RailSLAM with switch detectors for the
estimation of undiscovered and new switches. There, the switches can be
detected if a new path is chosen from a known track. The initial map is
again optional. RailSLAM (stage 4) and the full RailSLAM (stage 5) can
start without a track map or with an incomplete track map in terms of
missing tracks and switches.

6.3.1 Algorithm

The algorithm of RailSLAM with a delayed mapping is shown in Fig. 6.11
and explained in the following. As defined in Eq. (5.10) and Eq. (6.45),
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Algorithm: Online RailSLAM with delayed mapping
Input: pre-processed measurements ZP, optional: prior track map M
Output: most likely topological location (T̂ topo), updated track map M

1: initialize track map or load track map, if available
2: initialize all H0 hypotheses by first position
3: loop
4: if new pre-processed meas. ZP available then
5: time step: k = k + 1, ∆t = tk − tk−1

6: if train is moving then
7: if train starts moving then
8: memorize time step when train starts moving: k0 = k
9: if train is reversing then

10: change all white-space hypotheses of H to prior-map phase
11: end if
12: end if
13: predict with ZP for each white-space hypot. in H (Fig. 6.12)
14: localize & predict with ZP for each prior-map hypot. in H (Fig. 6.13)
15: assign trajectory from ZP for each white-space hypot. inH′ (Eq. (6.47))
16: update trajectory with ZP for each prior-map hypot. inH′ (Eq. (6.48))
17: update mixture weights with meas. ZP of each hypothesis in H′
18: pruning: remove low weighted hypotheses of H′,→ h′′

19: buffer for mapping: add remaining hypotheses to sequence H′′k0:k

20: compute most likely location hypothesis (T̂ topo estimation) from H′′
21: keep remaining hypotheses for next measurement update: H = H′′
22: else if train stops moving then
23: compute track map Mk of each hypothesis sequence inH′′k0:k (Fig. 6.14)
24: clear buffered data and all track map variants of obsolete hypotheses
25: end if
26: end if
27: end loop

Figure 6.11: Algorithm: Online RailSLAM with delayed mapping.

the algorithm splits in a train state estimation part and a mapping part.
The train state is estimated while the train is moving in the lines 7-17 in
Fig. 6.11. The map is updated once the train stops moving in line 19.

At first, the condition of a reversing train is checked in line 7 from
the motion data. If the train is reversing, all white-space hypotheses are
changed to the prior-map phase (line 8) because the train runs now on a
previously recorded track. The train state estimation with localization and
trajectory estimation is in lines 10-14. The train state estimation depends
on the mapping phase ξ because the prediction and update functions are
different with or without a known map. The train state prediction of all
white-space hypotheses in line 10 contains a transition with a switch esti-
mation and is presented in Figure 6.12. The localization and prediction of
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the trajectory for all prior-map hypotheses is in line 11, and presented in
Figure 6.13. Within these prediction steps (line 10-11), the mapping phase
ξ can change or additional hypotheses can be generated at switches. There-
fore the hypothesis set is denoted with H′ in the next line. Line 12 contains
the trajectory assignment from measurements for all white-space hypothe-
ses in H′ (see Eq. (6.47)). Line 13 contains the trajectory update function
with measurements for each prior-map hypothesis in H′ (see Eq. (6.48)). In
line 14, the mixture weights are updated with appropriate measurements
in the case that there are multiple hypotheses. Unlikely hypotheses with
a low weight are removed in line 15 and the remaining set of hypotheses
is denoted with H′′. A mapping buffer in line 16 stores the trajectories of
each hypotheses for the delayed mapping. This buffer, represented with
the set of hypotheses series H′′k0:k, contains a sequence of data for each re-
maining hypothesis. A sequence contains the mapping phase, topological
locations and estimated trajectory from the point in time, when the train
starts moving (k0) until the current time step k. Finally, the most likely
train location is computed in line 17.

The track map is updated once at stand-still in this implementation.
The benefit of a delayed mapping is higher computational efficiency. Many
hypothesis will be deleted after a certain time and the delayed mapping
computes only track maps of the remaining hypothesis. Ideally, there is
only one hypothesis left. The mapping function of line 19 for one hypothesis
is shown in Figure 6.14. An additional map maintenance deletes obsolete
track maps and clears the buffer after the mapping process (line 20).

6.3.2 Train State Estimation

This section presents more details on the train state estimation from the
RailSLAM algorithm (lines 11-14 in Fig. 6.11). The train state estima-
tion for the white-space and the prior-map case are each presented with a
prediction and update function.

Prediction of White-space Phase

A white-space hypothesis has no information about a prior or initial map.
Figure 6.12 shows the white-space prediction function for one hypothesis.

The white-space prediction function is called in line 10 of the Rail-
SLAM algorithm (Fig. 6.11) for each white-space hypothesis. The topolog-
ical location is estimated in along-track direction from the last topological
pose T topo

k-1 and the velocity measurement (line 1, Fig. 6.12). The track
ID remains the same, as long as the RailSLAM hypothesis remains in the
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Function: White-space Prediction
Input: pre-proc. measurements ZP, white-space hypothesis Hj

Output: updated hypothesis Hj

1: predict T topo with velocity measurement input
2: get results of merge detector with ZP

k′′:k, T j
k′′:k, and prior map M j

k′

3: if new merging switch detected then
4: ξjk changes to prior-map phase
5: memorize new switch
6: assign new switch path T topo,j

k′′:k from detector
7: else if circular loop closure detected then
8: ξjk changes to prior-map phase

9: assign new path T topo,j
k′′:k from detector

10: end if

Figure 6.12: White-space prediction function.

white-space phase. A hypothesis transition of the mapping phase ξ from
white-space to prior-map phase can occur with a reversing train, a merg-
ing switch or a circular loop closure as described in Fig. 5.4. The reverse
motion is already handled in the main RailSLAM algorithm (Fig. 6.11).
More challenging are the merging switch and the loop closure. A merging
switch detector evaluates possible merging scenarios from a sequence of
time steps between k′′ and k and decides for a change of the topological
location and mapping phase ξ of the current hypothesis (line 2). In the
case that a switch or a closed loop is detected, the path of the hypothesis
history T topo

k′′:k is changed between the time step of the switch start or closed
loop and the current time step k.

Localization and Trajectory Prediction of Prior-map Phase

Figure 6.13 shows the prior-map localization and trajectory prediction func-
tion for one hypothesis. This function is called in line 11 of the RailSLAM
algorithm (Fig. 6.11) for each prior-map hypothesis in H.

In line 1 of Fig. 6.13, the location is similarly estimated as in the MHT
localization: A new track location is computed from a measured displace-
ment and the map-transition function Eq. (6.5). At this point, the track
map can be exceeded to an unknown area. This event is called exceeded
map and is easily detected in the train transition function when the known
track in the track map is exceeded. A continued prior-map phase will
instead update the along-track location (line 3) and recompute the transi-
tion on the track map (line 4), followed with a check if the track map is
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Function: Prior-Map Localization and Trajectory Prediction
Input: pre-proc. meas. ZP

k′:k, prior-map hypothesis Hj

Output: hypothesis Hj or mult. hypotheses H
1: compute track map transition of Hj with velocity measurement input
2: if track map is not exceeded then
3: update along-track Kalman filter of each H′ with measurements
4: compute track map transitions of H′ from along-track correction
5: if track map is not exceeded then
6: get trajectory µtraj,j

k|k-1 and cov. Σtraj,j
k|k-1 from M j

k′ and predicted T topo,j
k

7: get results of switch discovery detector with ZP
k′′:k, T j

k′′:k, and M j
k′

8: if new branching switch detected then
9: ξjk changes to white-space phase

10: memorize new switch
11: assign new switch path T topo,j

k′′:k from detector
12: end if
13: end if
14: end if
15: if track map is exceeded then
16: ξjk changes to white-space phase

17: predict T topo,j
k with remaining displacement

18: end if

Figure 6.13: Prior-map localization and trajectory prediction function.

exceeded. The predicted trajectory and covariance are received from the
track map and from the predicted topological pose with Eq. (6.7) in line 6.
In line 7, the switch detector evaluates a possible switch from a sequence
of measurements and past train states. If the switch estimator decides for
a branch to unknown track, a new switch is created and a new path T topo

k′′:k is
assigned that includes the switch start. The new switch with its location
and connections are memorized in the mapping buffer. For the exceeded
map scenario, the mapping phase changes and the remaining distance is
predicted in the same way as in the white-space case (lines 16-17).

Trajectory Assignment in White-space Phase

The white-space trajectory assignment function assigns the trajectory from
measurements ZP without a prior map. This function is called in line 12
of the RailSLAM algorithm (Fig. 6.11). The trajectory measurements Ztraj

k

are directly assigned to trajectory values T traj,j
k . The measurement vector

ztraj and the measurement covariance Σz,traj contains all values of the pre-
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processed measurements ZP except the velocity. The assignment of the
trajectory for the j-th hypothesis is:

µtraj,j
k = ztraj

k , (6.47a)

Σtraj,j
k = Σz,traj

k . (6.47b)

Trajectory Update in Prior-map Phase

The second function in the prior-map phase is the prior-map trajectory up-
date function and is called in line 13 of the RailSLAM algorithm (Fig. 6.11).
This function contains the update step of a Kalman filter from a prior
known trajectory and measurements. The measurement model H is an
here an identity matrix, see Eq. (6.47). As an option, a different measure-

ment matrix can exclude certain variables from an update of T traj,j
k if Ztraj

k

contains only limited set measurements.
The Kalman filter update of the trajectory is given by:

K = HΣtraj
k|k-1H

T (Σtraj
k|k-1H

T + Σz,traj
k )−1, (6.48a)

µtraj
k|k = µtraj

k|k-1 +K(ztraj
k −Hµtraj

k|k-1), (6.48b)

Σtraj
k|k = (I −KH)Σtraj

k|k-1. (6.48c)

The predicted trajectory µtraj
k|k-1 and covariance Σtraj

k|k-1 are obtained from

the track map at the predicted location in the prior-map localization and
prediction function, see line 6 of Fig. 6.13.

6.3.3 Track Map Generation and Update

The RailSLAM track map generation and update function is called in the
RailSLAM algorithm (line 19, Fig. 6.11) and is shown in Fig. 6.14. This
function incorporates information from the train location and trajectory
estimation and updates the track map. The train state buffer contains
J hypotheses at the time of a track map update. For each remaining
hypothesis Hj, there is a sequence of train state estimates T jk0:k since the
last track map update at time step k0.

In Fig. 6.14, the first step of the track map function is the topology up-
date with new tracks and new switches (line 1). If a new switch is inserted
into an existing track, this track is split in two tracks and a third track is
connected. Therefore, new track IDs are generated, new connections are
created, and existing connections are updated with new links. New tracks
from a white-space mapping are generated.
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Function: Track Map Generation and Update
Input: sequence of one hypothesisHj

k0:k, with train statesT j
k0:k and track mapM j

Output: updated track map M j

1: topology update: add new tracks (white space) and new switches
2: for all track IDs id in Tj

k0:k do

3: get trajectory T traj,j
k′:k′′ and 1-D locations sjk′:k′′ that are associated to id

4: convert trajectory to track geometry with Eq. (6.49)
5: interpolate track geometry with new sample grid (Eq. (6.50))
6: update track id of track map M j: save track samples sm,µm,Σm

7: update common sample points of connected tracks
8: end for

Figure 6.14: Track map generation and update function.

The second step is the track geometry update or generation for each
track. Therefore, the function determines the sequence of trajectory esti-
mates T traj

k′:k′′ and the 1-D locations sk′:k′′ that are associated to the current
track (line 3). The trajectory values are in the train frame and a function
converts the values to the track geometry in the track frame with the cur-
rent track-to-train direction from the topological pose (line 4), according
to Table 3.3:

{µm
k ,Σ

m
k }︸ ︷︷ ︸

track geometry
track frame

= ftrain-to-track.( µ
traj
k ,Σtraj

k︸ ︷︷ ︸
train trajectory,

train frame

, ot
k︸︷︷︸

track to train
frame orient.

). (6.49)

A train state sequence contains samples at a constant frequency, e.g.
at 1 Hz, in contrast to a track geometry sequence with 1-D location de-
pendent and equidistant samples, e.g. every 10 m. Therefore, new track
geometry samples are generated with an interpolation function from the
time-dependent sample points sk′:k′′, time-dependent track geometry values
µm
k′:k′′ and a new sampling grid sm

s′:s′′:

µm
s′:s′′︸ ︷︷ ︸

new geometry samples
over 1-D locations

= finterpol.( sk′:k′′︸︷︷︸
1-D locations

over time

, µm
k′:k′′︸ ︷︷ ︸

geometry samples
over time

, sm
s′:s′′︸︷︷︸

constant sample
grid of 1-D locations

).

(6.50)
The indexes indicate either samples from location s′ to s′′ or a sequence
of time steps from k′ to k′′ within the current track id. The sequence of
covariances Σm

s′:s′′ are interpolated with a nearest neighbor method from
the time-dependent covariances Σm

k′:k′′. Line 5 contains the track geometry
interpolation. The sample grid is either a new grid with constant distance
spacings or a reused sample grid from a prior map. Afterward, the track
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samples are stored to the map in line 6. In the prior-map phase, the
previous track samples are simply overwritten, because the information
fusion of prior map and new measurements has been carried out in the
train state estimation. The last step corrects the common sample points
of connected tracks with switches or crossings (line 7).

Figure 6.15 shows the results of the track map generation and update
function for an example scenario with a track map update of existing tracks
and new tracks.
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a) Prior track map and train trajectory
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b) Prior track map and track map changes
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c) Updated track map

Figure 6.15: RailSLAM track map update from location referenced train
trajectory.

In Figure 6.15 a), the 2-D positions are shown for an existing track map
in gray and the train trajectory sequence with green dots. This example
contains a branching switch, a short new track, and a merging switch back
to the prior-known track 911. Figure 6.15 b) shows the changed parts of
the updated track map (magenta) next to the previous track map (gray).
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It can be seen, that the new track map is slightly shifted and there are two
new switches. Further, the shifted switch causes also a change of the first
sample point of those tracks that are not overrun, as for the track 922 for
instance. The final result of the updated map is shown in Fig. 6.15 c).
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Chapter 7

Experiment Setup and
Evaluation Methods

This chapter presents the train measurements with the measurement equip-
ment, sensors and installation on the train, as well as a description of the
train route of several runs. Furthermore, the following presents ground-
truth references for the switch ways and the track map. The evaluation
methodology comprises methods for a track-selective evaluation, a cross-
track evaluation for position measurements and a track map evaluation.

7.1 Train Measurements

7.1.1 Measurement Setup

The train measurements were carried out with a specially designed mea-
surement box. This box is shown in Figure 7.1 and records synchronized
and time-stamped sensor data. The measurement box starts recording data
after power-up automatically. The components of the box comprise a rail-
way certified power supply unit for the 24 V train power, several sensors as
well as an electronic board with the data logger and storage. The sensors
are a GNSS receiver (u-blox LEA 6T), a box-mounted MEMS IMU with
magnetometer (Xsens MTi), a box-mounted FOG IMU (KVH 1750) and
an external MEMS IMU with magnetometer (Xsens MTi). The electronic
board (Figure 7.1) was designed as an extension for a microcontroller board
with a 32-bit ARM microcontroller. This extension board contains an SD-
card slot, a 10 MHz temperature stabilized clock and hardware interfaces
for the sensors.

All measurements are stored in combination with a timestamp. The
timestamps are vital for the temporal alignment of the multi-sensor data in
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Figure 7.1: Components of the train measurement box.

the post-processing and evaluation methods. Therefore, the electronic ex-
tension board has a common clock with a 10 MHz frequency and a counter
register within the microcontroller. The frequency is divided for the 100 Hz
and 200 Hz trigger signals for the IMU measurements. The 1 PPS (pulse-
per-second) signal of the GNSS receiver is captured with the microcon-
troller. The IMU measurements are triggered from the common clock and
each IMU sends a message to the microcontroller. Once this message is
received by the controller, the timestamp of the trigger event is linked with
the message and stored on SD-card. A post-processing step computes ab-
solute timestamps from the 10 MHz counter values, the 1 PPS observations
and the absolute time and date information from the GNSS messages. The
absolute timestamps are expressed in the Unix timestamp format, which
is a millisecond counter from the 1.1.1970 at 0:00:00 UTC time. The mea-
surement data set comprises 1 Hz GNSS data (position, velocity, time from
GPS), two MEMS IMUs with 200 Hz data rate, a FOG IMU with 100 Hz
data rate, and video data.

The train setup is shown in Fig. 7.2 with the measurement box mounted
in the rack behind the train driver (upper right picture). The external
IMU was mounted on top of the front bogie, as shown in the lower right
picture. The GNSS antenna was mounted below the fiberglass roof for
electrical safety reasons, because the train route contained electrified parts
with a high-voltage catenary. The antenna placement was centered in the
cross direction of the train. A special camera (dash-cam) with GPS time-
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stamped video was installed behind the front windshield for the switch-way
reference.

GNSS antenna

MEMS IMU at bogie

Reference
camera

Measurement box:
- time-synchronous recorder
- GNSS receiver
- FOG/MEMS-IMU

X
Y

Z

Figure 7.2: Measurement setup on the regional train.

7.1.2 Train Experiment

The measurements were recorded on the regional train ”Alstom Coradia
Lint41” under regular passenger service conditions. This train can travel
up to 120 km/h and has two driver’s cabs for a two-side operation. The
Lint41 is 41 m long with a mass of 67.5 t, has 140 seats and is powered by
two diesel engines [83]. The train runs in a two-way commuting service
between stations on the railway line Augsburg - Ingolstadt. Fig. 7.3 shows
the map of the train route and the stations along the line.

Figure 7.4 shows the topological schematic of the train route and the
travel directions for ten example runs. This track topology is later esti-
mated by the RailSLAM algorithm. The train runs on some tracks in one
direction and on some tracks in both directions. Stations have often de-
parture or destination tracks in a specific direction and some of the tracks
are directional tracks. Most of the tracks with other and parallel tracks in
the vicinity are between station Augsburg and station Friedberg. A single
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Figure 7.3: Train route from Augsburg to Ingolstadt. (sources left: Google
maps, Kartendaten 2017, GeoBasis-DE/BKG 2009, right: Bayerische Re-
gio Bahn 2014)

track scenario is indicated in Figure 7.4 near Friedberg station. All train
runs pass this single track section and each iteration of the RailSLAM track
map is evaluated within this single track.

station
Augsburg

platform 101

platform 2

stop stop

single track
scenario

station
Friedberg

station
Aichach

station
Ingolstadt

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10

Distance: 0 km
Time: 0 min

7.5 km
10 min

25 km
30 min

66 km
60 min

Figure 7.4: Train route from Augsburg to Ingolstadt.

Table 7.1 shows the schedule of the train runs with motion direction,
travel time, distance, and the number of branching switches. All runs
start or finish in Augsburg and pass all stations to Friedberg. Some runs
continue to Aichach or Ingolstadt. A second data set with several train
runs is listed in the Appendix E.
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Run Departure Arrival Motion Branching Time Distance

station station direction switches [km]

1 Augsburg Friedberg backward 8 10 min 8

2 Friedberg Augsburg forward 7 10 min 8

3 Augsburg Ingolstadt backward 22 1 h 66

4 Ingolstadt Augsburg forward 20 1 h 66

5 Augsburg Friedberg backward 8 10 min 8

6 Friedberg Augsburg forward 7 10 min 8

7 Augsburg Aichach backward 11 30 min 25

8 Aichach Augsburg forward 9 30 min 25

9 Augsburg Friedberg backward 8 10 min 8

10 Friedberg Augsburg forward 7 10 min 8

107 4 h 230

Table 7.1: Train routes (data set 1)

7.2 Evaluation References

7.2.1 Labeled Train Route

The track-selective analysis requires known switch ways. A switch-way
reference is obtained from a recorded video of the train run. Figure 7.5
shows one still picture of the video while the train passes a switch facing.
The possible switch ways are either left or right and manually extracted
from the video for each passed switch. For every run, a reference travel
path can be computed with the map from a start position, the motion
direction, and a series of true switch ways.

The upper plot of Figure 7.6 shows the geographic view of all tracks
in gray, the traveled path of the train in orange and the positions of the
branching switches in blue. The lower plot visualizes the train speed and
the true switch ways of Run 1 over time. The train runs backwards to
Friedberg and turns five times to the right switch way, three times to the
left way and seven switches are passed trailing (merge). The train stops
can be identified from the train speed. The branching switches are shown
with the true switch ways of left and right over time in the lower plot. This
combined visualization with the geographic plot and temporal plot is used
in the analysis of the localization methods.
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Figure 7.5: Still picture of a switch run from the reference video.
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Figure 7.6: Run 1 over time from Augsburg main station to Friedberg
station.
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7.2.2 Reference Track Map

The estimated track map from the RailSLAM algorithm is evaluated with
geo-referenced images from the local land surveying office ”Bayerische Ver-
messungsverwaltung” [60], as described in Section 3.3.4. A geo-referenced
image has position information associated with the center of each pixel.
The quality of the geo-referenced image is defined by the metric resolution
of one pixel as well as by the accuracy of the positions. The used areal
images had a position accuracy of 50 cm and a pixel resolution of 20 cm
[60]. The next step is a manual sampling of the railway tracks from that
image. Figure 7.7 shows a section of the DOP image with Gauß-Krüger
coordinates and the manually sampled reference line of the track. The
localization methods are evaluated with a different track maps, but also
with the reference track map. The reference track map exists only in the
area between Augsburg and Friedberg. However, the evaluation with the
reference track map considers only 77 passed switches on 80 km of travel
distance for the ten runs. Nevertheless, this reference track map contains
all parallel tracks and switches in this area.

4423700 4423740 4423780 4423820 4423860
5357550

5357575

5357600

Easting [m]

N
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Figure 7.7: Geo-referenced digital orthophoto with a sampled track (white)
of the reference track map.

7.3 Evaluation Methodology

7.3.1 Evaluation Method for Track-Selective Accu-

racy

The track-selective performance is a measure for the correct track esti-
mation of the train localization, especially in switch scenarios or parallel
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track scenarios. This performance evaluation is used in a comparison with
different localization methods, different parameters, different sensor data
and different track maps. Therefore, an evaluation procedure compares a
known reference route with the estimated track IDs. This reference route
are the true track IDs that are obtained from the map and the switch-way
reference.

The critical scenario for track selectivity is a switch passed facing with
the two possible switch ways of left and right way. Fig. 7.8 shows a switch
with different evaluation sections. The track estimate is evaluated as cor-

clearance pointswitch start

tolerance range

true run
fixed tolerance threshold or distance to clearance point

wrong track

Figure 7.8: Track-selective evaluation at a switch with tolerance range and
wrong track section for a true right (straight) run.

rect, if the estimated track ID is part of the reference route. At a switch,
there is a tolerance range in order to allow a certain time or traveled dis-
tance for the switch-way estimation process. Some of the discriminative
switch signatures are hard to separate at the switch start. Once the end of
the switch is reached, the switch-way decision is evaluated with correct or
wrong. This tolerance range is also shown in the figure between the switch
start and the clearance point of the two different switch ways. A wrong
estimate in the switch section or tolerance range is less severe, as only one
train can occupy the switch at a time. Alternatively, a fixed tolerance range
can be defined for simplicity reasons. In this thesis, a fixed tolerance range
of 50 m is used. The possible outcomes of the track-selective evaluation ε
at a time step k are:

εk =


εok
k (correct)

εtol
k (wrong, but tolerated before clearance point)

εerr
k (wrong)

(7.1)

The performance of a train localization method for track selectivity
is evaluated statistically over different train runs. In a run analysis, the
track-selective result can be visualized with the correct, wrong or toler-
ated outcome over time. The evaluation is computed from the localization
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output for each time step of a moving train and if switches or parallel
tracks are in the vicinity: The number of correct-track evaluations NOK is
counted if the train is moving and other tracks are in the vicinity. The
tolerated-wrong-track counts Ntol and wrong-track counts Nerr are counted
when the train is moving. Nε is the combined count of NOK, Ntol and Nerr.

More compact performance figures are defined for performance conclu-
sions and a comparison of different methods, parameters, and a comparison
of track maps. There are three track-selective performance figures:

• The track-selective accuracy ATS is a ratio of the accepted track-
selective results and indicates how well a train localization method
identifies the correct tracks. Accepted evaluations are correct out-
comes and tolerated wrong-track outcomes, and a perfect evaluation
reaches a ratio of 100%. The track-selective accuracy is defined with:

ATS =
NOK +Ntol

Nε
. (7.2)

• The track-selective error ratio ETS counts all errors including the
tolerated wrong tracks. A perfect evaluation with no wrong estimates
reaches 0%. The error ratio is defined with:

ETS =
Nerr +Ntol

Nε
. (7.3)

• The switch-way-detection accuracy ASW compares the number of a
correct detected switch ways versus all passed branching switches. A
switch way is correct, if the correct track is identified after the toler-
ance range. Any change to a wrong track afterward is also counted
as a wrong switch-way detection.

The track-selective accuracy ATS may be used to evaluate a design goal for
the development of a train localization. The error rate ETS considers also
the tolerated errors and is more suitable for comparisons or the confirma-
tion of improvements in a development or parameter adjustment process.
The switch-way-detection accuracy ASW with the number of branching
switches indicates also the statistical size of the evaluation.

The track-selective performance is only evaluated in scenarios with par-
allel tracks in the vicinity, because track-selective errors occur only in the
presence of switches and parallel tracks. A train run on a route with many
single track scenarios would distort a comparative evaluation in favor of a
better track-selective evaluation. The vicinity is defined in this thesis with
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a radius of 20 m around each estimated location. Additionally, the per-
formance is only evaluated for times where the train is in motion because
long standing periods distort the performance figures as well.

7.3.2 Evaluation Process for Train Localization Me-

thods

The evaluation of the different localization methods is carried out with
recoded measurements and also different track maps. Figure 7.9 depicts
the functional elements and interfaces of the train localization and evalu-
ation for track selectivity. There are several configurations possible: The
pre-processing involves a processing stage with INS/GNSS and curvature
computation or alternatively the direct sensor data. Additionally, IMU
data of three different IMUs can be selected. The train localization me-
thods involve the simple map-match method, particle filter and the MHT
method.

Sensor data Pre-processing Train localization Evaluation

Synchronized
sensor data

interface

Localization
measurements

interface

Train
location
interface

GNSS

IMU

INS Curvature

Curvature

- Map match
- Particle filter
- MHT

Localization
method

Parameter Track
map

- OSM
- Reference
- RailSLAM 1
- RailSLAM 2

Track-selective
evaluation

eval. results,
performance
figures

Switch way
reference

Figure 7.9: Architecture of the train localization evaluation with recoded
measurements, pre-processing, different methods and different track maps.

For the presented train measurements, there are four different track
maps available: An OSM (Open Street Map) based track map, a refer-
ence track map and two track maps generated with the RailSLAM method
from recorded data. The first one (RailSLAM 1) is created from the same
data set as used in the evaluations, the second map (RailSLAM 2) is com-
puted from different data. Table 7.2 shows the differences of the track
maps. The first two track maps of the table are created from 2-D posi-
tion samples (ϕ, λ). The heading ψ and curvature cψ are calculated from
the 2-D positions (see Section 3.3.4), and the height h is computed from
height models. The OSM track map and reference track map are compa-
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Track Map Data Source Geometry Coverage

OSM Open street map, ϕ, λ, (h, ψ, cψ) Augsburg-Ingolstadt,

position samples all tracks near route

Reference geo-referenced aerial ϕ, λ, (h, ψ, cψ) Augsburg-Friedberg,

image, pos. samples all tracks near route

RailSLAM 1 RailSLAM method, ϕ, λ, h, φ, θ, ψ, Augsburg-Ingolstadt,

meas. from runs 1-10 cφ, cθ, cψ traveled tracks only

RailSLAM 2 RailSLAM method, ϕ, λ, h, φ, θ, ψ, Augsburg-Ingolstadt,

meas. from other runs cφ, cθ, cψ traveled tracks only

Table 7.2: Track maps for the localization evaluation.

rable, as both track maps contain the same track network topology with
the same amount of parallel tracks and switches along the train run. The
RailSLAM track maps consider only the tracks where the train was run-
ning in the mapping phase. These track maps contain less parallel tracks
and switches than the OSM track map or reference track map from aerial
images. RailSLAM track map 1 is considered as an ideal map, because
it is created from the same data as used for the localization evaluation.
RailSLAM track map 2 is created from measurements of different runs and
represents the more realistic use-case.

7.3.3 Evaluation Methods of the Track Map

A map-based train localization requires small deviations between measure-
ments and the stored geometry of the track map. A deviation is called
error if a ground-truth reference is used. The reference track map is used
as ground-truth in this thesis. Further, a deviation will be called a residual,
if the deviation is computed between measurements and a track map that
is estimated from the same data. In this thesis, residuals are evaluated
with the track map RailSLAM 1.

Mean Track Map

The mean track map can be considered as a simple and alternative track
map generation approach compared to the SLAM based approach. This
track map will be used to compare the errors of different iterative mapping
approaches and the plain measurements. The mean track map is gener-
ated as follows: The measurements are pre-processed for a trajectory and
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associated to topological tracks. For same track IDs, the trajectories of
all runs are interpolated to a common sample grid of 1-D locations. For
each sample, a mean value is computed for all trajectory values. The main
difference to the update of the RailSLAM track map is the storage of each
trajectory and the processing of all stored trajectories. RailSLAM updates
the track map incrementally and deletes the trajectory estimate afterward.

Cross-track Evaluation

Measurements and track maps are evaluated with the cross-track error.
This error is the cross-track distance δCT between the reference track map
and a measured position or a track map position. The cross-track error
is computed in the following for the measured position and the track map
position. A measured position is matched on the reference track map with
a function that returns the nearest position on the tracks:

~pref = fmatched,pos(~p). (7.4)

This function involves the simple map-match method and the reference
track map. Afterward, the cross-track error e is computed between ev-
ery position measurement ~p and the corresponding nearest position on a
reference track ~pref.

e = ||~p− ~pref||︸ ︷︷ ︸
δCT

. (7.5)

As a compact performance figure, the root mean squared error (RMSE)
for measurements (Emeas) is defined between measurements and reference
over all time steps k:

Emeas =

√∑N
k e

2
k

N
. (7.6)

The number of samples for the error statistics is N . In this case, N is the
number of all time steps.

Track maps are also evaluated and compared with the cross-track error.
For each track sample of the candidate map, the error is computed between
the position of the sample ~pid,s and the matched position of the reference
track map ~pref:

~pref = fmatched,pos(~pid,s). (7.7)

The cross-track error of a track map sample (eid,s) is computed in the same
way as in Eq. (7.5):

eid,s = ||~pid,s − ~pref||. (7.8)
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The RMSE for a candidate track map (Emap) is computed over all track
IDs and locations with:

Emap =

√∑
id

∑
s e

2
id,s

N
. (7.9)

The track map error and RMSE are used in the analysis of the RailSLAM
track maps over different iterations counts.

Combined Measurement and Track Map Evaluation

This evaluation analyzes the statistics of deviations, errors and residuals
between measurements and a track map. Therefore, a cumulative distribu-
tion function (CDF) of the deviations is used with the measurement data
over several runs. The analysis comprises the cross-track deviations and
additionally the deviations of height, attitude and curvatures. The CDF
F (x̂) is defined in general with:

F (x̂) = p(x ≤ x̂), (7.10)

and determines the probability that a value of the random variable x is
less or equal than x̂ [84]. The analysis of the deviation, error or residual
uses a discrete set of errors and a discrete CDF. This CDF is represented
with a graph of the probability over a range of increasing errors ê. For a
specific value of ê, the discrete CDF is the number of all errors that are
smaller than ê over the count of all error values N :

Fe(ê) =

∑
k χ(ek ≤ ê)

N
. (7.11)

The indicator function, also called characteristic function χ, returns 1 if ek
is equal or less than ê:

χ(ek ≤ ê) =

{
1, if (ek ≤ ê),

0, otherwise.
(7.12)

Additionally to the CDF, the results for combined measurement and track
map evaluation show also the RMSE Emeas (Eq. (7.6)) as a compact per-
formance figure of a statistics with many measurements of several train
runs.
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Chapter 8

Results and Discussions
of the Algorithms

8.1 Localization Methods

In the following, the train localization methods of simple map-matching,
particle filter and the multi hypothesis tracker are evaluated with measure-
ment data of the regional train experiment. The track-selective analysis
results are shown with visual representations and performance figures from
statistics over ten runs. The results of each localization method are dis-
cussed and the different methods are compared.

8.1.1 Simple Map-Match Method

Figure 8.1 shows the track-selective evaluation of the simple map-match
method for Run 1 between the stations Augsburg and Friedberg. The
evaluation results over time are shown in Figure 8.2 with the true switch
way and train speed. The correct estimated track is marked with OK in
green, a yellow triangle marks a tolerated error in the vicinity of the switch,
and a wrong track is marked with a red cross. The track-selective eval-
uation is suspended on the single track before Friedberg station, between
430 s and 520 s, because track selectivity is always given in single track sce-
narios. There is also no evaluation of the track selectivity while the train
is standing. The train speed is indicated in gray in Fig. 8.2. The train
speed is negative because the train runs reversed in Run 1, according to
the train frame definition. The switches are shown in blue, as described in
Section 7.2.1, Fig. 7.6. Branching switches are shown with the true switch
way of left and right. As seen from the figures, the matched positions
are several times on the wrong tracks. The identification of the tracks can
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Figure 8.1: Track-selective evaluation of the simple map-match method.
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Figure 8.2: Track-selective evaluation of the simple map-match method
over time.

change instantly, because the simple map-match method uses no prior in-
formation of past track estimates. Every measurement is matched to the
nearest track in a snapshot manner and this method does not estimate a
switch way.

The performance figures over ten runs over 230 km between Augsburg
and Friedberg are shown in Table 8.1 with different track maps. The
track selectivity is appropriately evaluated on tracks with parallel tracks
in the vicinity. The number of error events represents how many times a
transition to a wrong track occurred.

Method: Map-match Track Track Error Error

Measurements map selectivity rate events

INS/GNSS positions

OSM 83.2% 18.7% 61

Reference 91.2% 11.3% 44

RailSLAM1 95.5% 5.6% 37

RailSLAM2 93.9% 7.1% 33

Table 8.1: Track-selective performance figures of the simple map-match
method.
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The reference track map shows better results than the OSM track map
with a higher track selectivity value and a lower error rate. The track maps
created with RailSLAM show better results than the OSM and reference
track. The RailSLAM track map 1 with the same data performs slightly
better in track selectivity and error rate than the RailSLAM track map
2 from different data. This track map is not necessarily more accurate,
because common errors are neglected with the use of the same data for
mapping and localization. However, the evaluation with the ideal map
shows still matches on wrong tracks. The track selectivity of this method
depends on small cross-track distances to the correct tracks. In general,
a higher accuracy of position measurements and a higher accuracy of the
geographic track positions in the track map are beneficial for a better track
selectivity.

8.1.2 Particle Filter Localization

The particle filter (PF) is analyzed for track selectivity in the following.
The measurements are directly used for the particle weighting without a
pre-processing stage. The most relevant parameters are the number of par-
ticles, the resample threshold and the probability distribution parameters
for the sampling noise and the measurement noise.

Track-Selective Results

Figure 8.3 shows the track-selective evaluation of the particle filter output
for Run 1 and Figure 8.2 shows the evaluation over time. It can be seen,
that the particle filter estimates the tracks more accurately than the sim-
ple map-match approach. At one switch, the filter estimates an incorrect
track within the tolerance region. This result represents one parameter set-
ting with 100 particles, an OSM track map and GNSS position and heading
measurements. The parameter adjustment process uses fixed random seeds
for the pseudo-random number generators. Different random seeds alter
the results of the evaluation even with the same data and parameters. The
results are sensitive to the parameters such as different random seeds, mea-
surement noise, the noise ratio between different measurements, resampling
occurrence, process and sampling noise as well as the track map quality.

Table 8.2 shows an evaluation with the OSM track map and direct
measurements from GNSS and IMU over ten runs and 230 km of trav-
eled distances. These results have been also presented in [J1]. For the
switch-way evaluation, ’failed’ means that a track was not correctly iden-
tified. A ’late’ switch way means that the estimate was wrong on the first
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Figure 8.3: Track-selective evaluation of the particle filter method of Run 1.
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Figure 8.4: Track-selective evaluation of the particle filter method over
time.

hand, but correct in the long run after the tolerance range of a switch.
The results of this table were processed with parameter adjustments and
fixed random seeds for the best track-selective performance. The param-
eters of the sample variance, measurement variances, and the resample
threshold are different for each combination and random seed. Therefore,
the track-selective results of Table 8.2 show mainly tendencies of improve-
ments for different combinations and no general results on track selectivity.
The combination of GNSS positions and heading is better than positions
only in terms of track selectivity, error rate or correct estimated switch
ways. The best combination in Table 8.2 is combination 3 with GNSS po-
sitions and IMU yaw rate. The combination of all likelihoods with GNSS
positions, heading, and IMU yaw rate shows similar results and no im-
provement towards perfect track selectivity. The imperfect results and this
lack of improvement can be mainly explained with the imprecise positions
of the OSM track map and the derived heading and curvature values (see
Section 3.3.4). The track map quality is a very important factor for the
track selectivity with the particle filter. The reference track map with
more accurate geographic track positions is beneficial for the comparison
with GNSS position measurements in the weighting function. The Rail-
SLAM track map contains better geometry values with advantages for the
weightings with GNSS heading and IMU yaw rate.
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Method: particle filter Track Track Error Correct

Measurements map selectivity rate switch ways

1) GNSS positions OSM 84.0 % 20.2 % 74 of 107

2) GNSS positions, OSM 90.2 % 10.8 % 103 of 107

GNSS heading from motion (3 failed, 1 late)

3) GNSS positions, OSM 99.3 % 1.0 % 104 of 107

IMU yaw rate (1 failed, 2 late)

4) GNSS positions, heading OSM 99.2 % 1.2 % 103 of 107

IMU yaw rate (1 failed, 3 late)

Table 8.2: Track-selective performance figures of the particle filter method.

Table 8.3 shows results over 100 repeated evaluations with different
seeds, 1000 particles, the RailSLAM map 2 and the switch-way estimation
with the IMU yaw rate. The switch ways have been correctly estimated in
all cases except some accepted errors in the switch sections. There are little
variations of the error rate due to different results over different random
seeds.

Method: PF Track Track Error Correct

Measurements map selectivity rate switch ways

GNSS positions, RailSLAM 2 100 % min. 0.04 %, 26 of 26

IMU yaw rate max. 0.21 % (0 failed, 0 late)

Table 8.3: Track-selective performance figures of the particle filter (PF)
method with over 100 repeated evaluations of different seeds.

Discussion

The proposed particle filter estimates the 1-D track location and the track
ID with particles and has thus a low state dimensionality of two. The
speed and displacement are estimated with a Kalman filter. As a result,
the number of particles can be relatively low, as particles are limited and
constraint on the tracks. In the evaluations, particle sizes of 100 to 1000
are used.

The particle distribution in along-track requires a certain spread across
the 1-D location domain and must be regarded in the proposal function
design and parameter adjustment process. On the one hand, if the particles
are distributed too narrow, divergence can happen and all particles are
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away from the true values. In order to avoid this situation, more sampling
noise is added. On the other hand, if the distribution is too large, there
might be ambiguities of a repeated geometry signature of the track. The
particle distribution in along-track direction is expanded with the sampling
step and gets reduced with the resampling step. The particles follow the
position measurements in the usual case because the particles are weighted
according to their distance to the position measurements. In fact, this is a
weak effect compared to a Kalman filter update. A measurement update
from a Kalman filter changes and drags the estimate in the direction of
the measurement. The particle filter instead changes only the particle
weights in a first step. The estimated values of the particle state are not
directly changed with the position measurement update. A change of the
particle distribution is achieved with the resampling step. Secondly, there
is a reduced impact of the along-track weighting due to the multiplication
of several likelihoods from different sensors. Some measurements, such
as the heading or turn-rate measurements, contain rare and ambiguous
along-track information. Without this drag and a reduced impact of the
along-track weighting, the particle distribution can escape from the actual
true position in some scenarios. The consequence is a wrong and divergent
result of the particle filter.

The parameter adjustment of the different likelihoods is crucial and
affects the particle distribution in along-track as well as the cross-track
estimation. The parameter adjustment is complex because it requires a
Monte Carlo evaluation over different random seeds and the adjustment
is sensitive to small changes of the sampling variance, measurement co-
variances, the ratio between the different measurement likelihoods and the
resampling threshold.

The particle filter has three processes with random generators. The
sampling of the velocity, the sampling of the switch way, and the resam-
pling process require random numbers. These random generators can be
controlled with random seeds for a pseudo random sequence of the same
numbers. A set of same random seeds can be used for the analysis of
parameter impact in order to have comparable results. However, the par-
ticle filter estimates different results for different seeds or shuffled random
generators.

Particle filters use typically more computational resources than other
estimation approaches due to the much higher number of hypotheses. Nev-
ertheless, an evaluation of a MATLAB implementation with measurement
data and 1000 particles was more than 150 times faster than real-time on
a contemporary business notebook (Intel i7-5600 CPU, 2.6 GHz).
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8.1.3 Multi Hypothesis Tracker Localization

The multi hypotheses tracker (MHT) estimates a switch way and keeps the
estimate of an identified track similar to the particle filter. The switch-way
estimation is carried out with the evaluation of likelihoods that weight the
different hypotheses. Beneficial likelihoods for the switch-way estimation
are the cross-track distance to the position measurement dCT , the heading
ψ, and the horizontal curvature cψ. A pruning process eliminates all hy-
potheses with weights below a threshold. In the ideal case, there are two
hypotheses after the train has passed a switch facing, and one hypothesis
after the train has left the switch area.

Track-Selective Results

The results for the exemplary Run 1 with the OSM track map are also
similar to the particle filter results in Section 8.1.2, as seen in Fig. 8.5 over
time. The number of hypothesis varies at each switch passed facing and the
correct switch way is estimated shortly after (Fig. 8.5, bottom). A scenario
with two nearby switches passed facing and three hypotheses can be seen
at 90 seconds. There, the train passes the second switch within the switch
section of the first switch.
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Figure 8.5: Train localization with MHT method: [Top] Track-selective
evaluation over time of Run 1. [Bottom] Number of hypotheses and weight
over time.

The track-selective performance figures of the MHT filter over 230 km
are shown in Table 8.4. The MHT method reached almost full track selec-
tivity and two late resolved switch ways. Nevertheless, the map quality is
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also very important for the MHT filter. Evaluations with the RailSLAM
track map 2, based on different data, showed a full track selectivity over
a larger range of different parameters. Additionally, evaluations showed
also full track selectivity with the measured heading curvature as exclusive
weight for the switch-way estimation.

Method: MHT Track Track Error Correct

Measurements map selectivity rate switch ways

INS/GNSS, OSM 99.9% 0.46% 105 of 107

(dCT, ψ, cψ) (0 failed, 2 late)

INS/GNSS, RailSLAM 2 100% 0.13% 26 of 26

(dCT, ψ, cψ) (0 failed, 0 late)

Table 8.4: Track-selective performance figures of the MHT method.

Discussion and Comparison to Particle Filter

The MHT method was taken into consideration after the evaluations of the
particle filter with measurement data and the OSM map. Several ideas for
improvements were realized with the MHT method, such as a separation
of the along-track estimation and cross-track estimation. This separation
is achieved by the along-track Kalman filter with position measurement
updates and the hypotheses weights are exclusively used for the cross-
track estimation. Further, the GNSS and IMU data fusion is achieved
with an INS in a pre-filter stage. This separation into smaller elements is
beneficial from an engineering point of view, as the different elements can
be improved, tested and adjusted individually.

The non-linearities of the train localization estimation problem are the
switch ways and the track features that are rather deterministic and known
in a track map. Furthermore, the train localization estimation is separable
to a 1-D parameter estimation. As a consequence, the particle filter can
not show its full capability in terms of non-linear estimation.

Compared to the particle filter method, the MHT method achieves also
a full track selectivity for the RailSLAM track map 2. If the coarse OSM
track map is used, the MHT method outperforms the particle filter me-
thod. The particle filter results of Table 8.2 appear similar, but these
results are only valid for one random seed realization. The particle filter
method is a non-deterministic algorithm and produces different outcomes
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for the same input data. The track-selective results of the MHT method
are repeatable because the MHT method is a deterministic algorithm in
the sense that this algorithm produces the same results from the same in-
put data. The MHT train localization is still a probabilistic algorithm in
the sense that this method implements an estimation of the train location
with probabilities and a Bayesian framework. The parameter adjustment
process for the MHT method is less complex, because there is no need for a
Monte Carlo evaluation as well as the along-track tuning and track identifi-
cation tuning is independent from each other. The presented measurement
likelihoods depend on the quality of the track map. The particle filter
uses inherently also unfortunate likelihoods for the along-track estimation
such as the coarse heading or coarse curvature of the OSM track map.
The track identification with imprecise GNSS position measurements is
difficult with imprecise geographic track positions of the OSM track map.
The MHT along-track estimation uses instead position measurements only.
The MHT track identification uses other parameters for the position mea-
surements in order to achieve a low and less significant weight from the
cross-track position likelihood.

8.1.4 Related Work

There are few studies with a similar evaluation scope of more than 100 km
or 100 switches, as presented in Section 1.4. The advantage of a proba-
bilistic estimation approach over deterministic map-matching in terms of
track selectivity was also shown by [22] with a GNSS and a velocity sen-
sor. Böhringer [16] received similar track-selective results (99.78 %) with
a different train, different location and a sensor setup with INS/GNSS in
combination with an eddy current sensor as switch-way detector. Finally,
it can be reasoned from the literature and the present results, that most
of the gain in accuracy can be achieved by using a probabilistic estima-
tion filter as well as using sensors which can measure the competing switch
ways.

8.1.5 Suggestions for Improvements

The localization results depend on the accuracy of the measurements as
well as on the track map. First, position accuracy improvements are ex-
pected from advanced multi-constellation and multi-frequency GNSS re-
ceivers compared to the used GPS-L1 receiver. Second, the GNSS measure-
ment setup may be improved with an advanced antenna and an optimized
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placing. Further improvements are expected from positioning methods
using the carrier-phase measurements, railway specific GNSS positioning
methods [C5], [85] and integrity monitoring [86], [87], [88]. A promising
approach for the train localization with a particle filter has been shown in
a supervised master thesis [M2] and in [C4]. This approach used pseudo-
range and Doppler measurements of a GNSS receiver and showed a suc-
cessful GNSS based train localization with less than four satellites in view.
Further, beneficial satellite constellations for along-track and track identi-
fication were analyzed. The particle filter implemented a bias estimation
for each pseudorange between satellite and track map position. This bias
estimation showed enhanced results for the switch-way identification.

For the sensor fusion, a tightly-coupled INS [89], [90] or an ultra-tightly
coupled INS may be chosen in favor of the loosely-coupled INS/GNSS. An
increased availability and track-selective accuracy is also expected with a
train localization based on multiple GNSS antennas, e.g. for two or more
GNSS on the same train.

In the case that GNSS measurements are absent, the INS/GNSS can
bridge a limited amount of time with position data. A continued along-
track localization with other measurements than GNSS positions is im-
portant for a continued accuracy at GNSS outages, an increased avail-
ability and for redundancy reasons. The presented MHT method uses
only position measurements for the along-track estimation. Further, this
along-track estimation is computed at single track location, which is the
estimated mean of one hypothesis. The particle filter instead samples the
track geometry over a range of along-track locations and uses also other
measurements for the along-track estimation. Suitable extensions for the
MHT method may involve additional measurements for the along-track es-
timation, a quality evaluation for the measurement and the track feature,
and a sampling of a track feature over a range of track locations. More-
over, a GNSS redundant approach for train localization is desired for longer
GNSS interruptions in tunnels and for a cross-check verification of mea-
surements. The proposed magnetic and vibration based train localization
(Section 4.3.1) are promising extensions and can be used independently
from GNSS.

8.2 RailSLAM Method

This section contains results of the RailSLAM method with the experimen-
tal data set. The following plots show the results with INS data from the
cabin mounted MEMS IMU. The RailSLAM method estimates a trajec-
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tory of the train, that consists of nine geometric values and a topological
data association to the track ID and the 1-D track locations. This tra-
jectory is estimated from measurement data and from a prior track map,
in the case that the actual track is prior known and available in the track
map. A white-space mapping adds new tracks, a prior-map SLAM replaces
previously estimated geometry data.

8.2.1 Estimation of the Topological and Geometric

Track Map

The track map is now estimated from the experimental data set, as depicted
in Fig. 7.4. The following results show the creation of a new track map.
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Run 2 prior-map phase reverse
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branch merge branchreverse
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Figure 8.6: Topology evolution of the iterative track map creation for ten
runs.

Figure 8.6 shows the evolution of the topological track network over ten
runs. A new and unknown track (magenta) is recorded in the white-space
phase. An existing track is updated in the prior-map phase (cyan). Some
tracks are known but unchanged (gray) because the route of the current
train run does not cover these tracks. Changes between white-space phase
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and prior-map phase are shown in orange with reverse, loop, branch and
merge switches. There are 15 known switches passed facing indicated with
the true switch ways in right or left (black). It can be seen, that most of
the track network is explored in the first four runs during the white-space
phases. Later runs update the track map with the prior-map phase.

The final RailSLAM track map after ten runs is shown in Figure 8.7.
The left figure shows the 2-D positions of the track map with stations.
The colors indicate the number of runs on a particular track, which is
also the iteration count of the map update. However, parallel tracks and
some switches are very close compared to the geometric dimension of the
complete track map. Hence, the right plot shows a topological schematic
with iterations in different colors as well as the track IDs next to the
tracks. The track with the most iterations is the single track near Friedberg
with ten runs while each track of the station in Schrobenhausen are only
recorded once.
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Figure 8.7: RailSLAM track map after ten runs. [Left] Geometric plot of
2-D positions. [Right] Schematic plot of the recorded track network with
track IDs.

Figure 8.8 shows the geometry of track 1 with a length of 4.8 km after
five iterations. Each variable is shown with the uncertainty in terms of a
one-sigma deviation. It can be seen from the figure that the track geo-
metry has a low variation in along-track direction over many stretches of
track 1. The geometry values of the attitude angles and the corresponding
curvatures are mathematically linked and changes are correlated. Banked
curves allow higher velocities and therefore the bank or bank curvature is
also linked with horizontal curves of heading angle and heading curvature.
The height is linked with slope and slope curvature.
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Figure 8.8: Geometry and uncertainty of track 1 from the RailSLAM track
map.
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Figure 8.9 visualizes 2-D positions of the RailSLAM track map 1 near
Augsburg station and shows four switches with parallel tracks. The parallel
tracks in the center are track 7 and track 9, as defined in Fig. 8.7. It can be
seen that the RailSLAM track map matches the tracks of the geo-referenced
aerial image [60] in the background. However, the areal image depicts more
tracks and switches that are not covered with the train runs. RailSLAM
can only map the tracks that are passed with the train. The track map
contains 17 tracks with a total length of 74.9 km after ten runs and each
track contains nine geometric variables. These variables are sampled over
the 1-D track location and contain the positions, attitude and curvatures.
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Figure 8.9: RailSLAM track map with switches near Augsburg station.

8.2.2 Track Map Analysis and Comparison of Track

Maps

The accuracy of the track map in lateral direction is analyzed in the fol-
lowing. Figure 8.10 shows a 100 m section of track 15 between Augsburg
and Friedberg with the trajectories of all ten runs. It can be seen, that

0 5 10 15 20 25 30 35 40 45 50 55 60
5

10

15

20

25

East [m]

N
or

th
[m

]

Measurements
RailSLAM track map
Reference

Figure 8.10: Single track scenario with a geo-referenced areal image, the
RailSLAM track map after 10 iterations (magenta), 10 trajectories (orange)
and a reference (blue).
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each trajectory shows a different, but constant deviation to the reference
line. The resulting RailSLAM track map can be seen after ten iterations
(magenta).

The single track scenario (see Fig. 7.4) of track 15 with 1.7 km between
Augsburg and Friedberg is now analyzed for the cross-track position errors
over ten runs and ten map iterations. The box plot in Fig. 8.11 sketches
the cross-track error distribution of the plain measurements, the RailSLAM
track map, and the mean track map. The box plot shows the mean error
values (’+’), a thick line represents the error range between the 25 % and
the 75 % percentiles and the thin lines represent the range between the
10 % and the 90 % percentiles.
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Figure 8.11: Evolution of the cross-track error over ten runs (single track
scenario).

In Fig. 8.11, the measurements are the cross-track error between pre-
processed, INS/GNSS position measurements and the reference and shown
in orange color. The errors between the RailSLAM track map 1 and the
reference are shown in magenta and denoted with RailSLAM track map.
Finally, the mean track map of the n-th run is created from an average of
n measurement trajectories. The cross-track errors of the mean track map
is shown in green and computed between the positions of the track map
and the reference.

Two characteristics can be observed in Fig. 8.11: The first one is the
comparison of the errors from the RailSLAM track map and the mean track
map. The second characteristic is the evolution of the cross-track accuracy
over iterations.

The comparison of the mean track map and the RailSLAM track map
show very similar results in terms of cross-track errors. The mean map ap-
proach does not respect any variances for the iterations, so all measurement
weights of every iteration are equal. RailSLAM instead has an inbuilt way
of respecting the covariances and thus adjusting the weights. However, the
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correct weighting of the measurements is difficult due to unknown biases
and inadequate estimated measurement covariances. With every iteration,
the RailSLAM algorithm reduces by default the estimated covariance or
uncertainty, respectively. There is a potential risk of overconfidence and
the accuracy is overestimated. This overconfidence leads to an error in
terms of a bias when the track map converges over iterations.

An expectation for an iterative mapping approach, such as the Rail-
SLAM method, is an improvement of the accuracy over several iterations.
The evolution of the cross-track errors over iterations shows neither a mono-
tonic decrease nor a decrease of the error with a trend in Fig. 8.11. This
result has to be seen carefully with respect to the limited statistics of ten
iterations and to a position error of the reference with 0.5 m [60]. The final
RailSLAM track map error, i.e. the mean cross-track error of the single
track section after ten iterations, is in the range of the accuracy of the ref-
erence. There are further accuracy evaluations in the following with CDFs
for the cross-track error as well as for seven other geometry values.

A comprehensive analysis with measurements and different track maps
with cumulative distribution functions (CDFs) is presented next. There-
fore, the deviations are analyzed between the track geometry and mea-
surements over ten runs, as defined in Table 7.1. This deviation between
track map and measurement is also processed in a likelihood for train lo-
calization. The deviations of cross-track, heading and heading curvature
are computed for all four track maps. Figure 8.12 shows the distribution
of the cross-track deviation between different maps and position measure-
ments from INS/GNSS or GNSS only. The deviations between measure-
ments and the RailSLAM track map 1, which was estimated from the same
data, are the residuals. The deviation evaluation is limited to the tracks
between Augsburg and Friedberg, because of the limitations from the ref-
erence track map. This limitation of the evaluation is also RailSLAM track
maps have more iterations over the tracks compared to the complete range
from Augsburg to Ingolstadt.

The GNSS position deviations to the reference track map in Fig. 4.5 are
slightly different, because there are 21 train runs analyzed (see Table 7.1
and Table E.2). Table 8.5 extracts the performance values of the GNSS-
only position deviations as well as the deviations with INS/GNSS positions.
The performance values are the RMSE of the cross-track error, the error
probability below 1 m and 2 m as well as the 95% and the 99% error. In the
case that the parallel track separation is 4 m, there are 85.3 % below and
14.7 % above the discrimination distance of 2 m for the best and realistic
case with the RailSLAM track map 2. More than half of the measurements
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are above 2 m in the worst case with OSM track map and GNSS positions
only.
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Figure 8.12: Cumulative cross-track deviations over different track maps.

Positions Track Map RMSE Err.< 1 m Err.< 2 m 95% 99%

GNSS

OSM 3.08 m 25.6% 49.1% 5.7 m 7.8 m

Reference 2.00 m 44.6% 73.6% 3.6 m 6.3 m

RailSLAM 2 1.85 m 53.9% 83.9% 3.1 m 8.2 m

RailSLAM 1 1.66 m 57.1% 85.5% 3.0 m 6.0 m

INS/GNSS

OSM 2.99 m 23.4% 46.2% 5.4 m 7.5 m

Reference 1.93 m 49.5% 76.0% 3.2 m 5.6 m

RailSLAM 2 1.86 m 54.7% 85.3% 2.9 m 7.4 m

RailSLAM 1 1.56 m 60.8% 90.7% 2.3 m 5.5 m

Table 8.5: Cumulative cross-track deviations and residuals of GNSS posi-
tions, INS/GNSS positions and four different track maps.

The track map with the largest cross-track deviations is the OSM track
map, as seen from the table and the figure. Further, there is an improve-
ment with the reference track map and the second best is the RailSLAM
track map 2, which was created from a different data set than the mea-
surements used for this evaluation. An explanation for the better perfor-
mance of the RailSLAM track map 2 may be a limited accuracy of the
geo-referenced aerial images for the reference track map. The best results
are the residuals from RailSLAM track map 1. This result does not sur-
prise, as the same data is used and is not a realistic use-case. Nevertheless,
the residual distribution of this track map demonstrates how repeatable
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the measurements are with this ideal track map in terms of the cross-track
deviation. A higher repeatability of measurements is a quality indicator
that can be used to qualify different sensors, sensor setups or pre-processing
approaches. Finally, there is a small gain in terms of lower errors for the
INS/GNSS measurements compared to the GNSS only measurements.

The following shows the deviations of attitude and curvature measure-
ments to all four track maps with CDF curves and selected values in tables.
The measurements are the pre-processed measurements and only a mov-
ing train is evaluated because the curvature measurement require a motion.
The following deviation evaluations comprise 5400 deviations for each track
feature between the tracks of Augsburg and Friedberg. The track features
of heading ψ and curvature cψ are important for the switch-way estimation
and the track-selective accuracy. Figure 8.13 shows the cumulative devia-
tions and residuals for all four track maps. Both RailSLAM track maps
show an improved heading and curvature compared to the reference and
OSM track map. The latter two track maps calculate the heading and
curvature from consecutive position samples, as explained in Section 3.3.4.
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Figure 8.13: Cumulative distribution function of the heading and curvature
deviation between track maps and measurements over ten runs.

Table 8.6 shows the performance values from Figure 8.13. The improve-
ment in terms of heading deviation from the worst track map (OSM) to
the best track map (RailSLAM 1) are approximately a factor of two. The
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Measurements Track Map RMSE 95% error 99% error

Heading ψ

OSM 0.60◦ 1.3◦ 2.0◦

Reference 0.46◦ 0.98◦ 1.8◦

RailSLAM 2 0.36◦ 0.66◦ 1.7◦

RailSLAM 1 0.29◦ 0.58◦ 1.3◦

Curvature cψ

OSM 0.35 1/km 0.61 1/km 1.6 1/km

Reference 0.33 1/km 0.70 1/km 1.4 1/km

RailSLAM 2 0.09 1/km 0.18 1/km 0.42 1/km

RailSLAM 1 0.08 1/km 0.15 1/km 0.37 1/km

Table 8.6: Cumulative deviations and residuals of heading and curvature
for four different track maps.

curvature deviations from the RailSLAM track maps are 3 to 4 times lower
than the curvature deviations from OSM and reference track map.

Figure 8.14 shows the deviations and residuals of the attitude angles
and curvatures of bank and slope for the two RailSLAM track maps.
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Figure 8.14: Cumulative distribution function of the attitude and curvature
deviations between track maps and measurements over ten runs.

The OSM or reference track maps do not contain these track features,
because the bank and slope angles as well as the bank and slope curvatures



174 Chapter 8. Results and Discussions of the Algorithms

Measurements Track Map RMSE 95% error 99% error

Height h
RailSLAM 2 8.3 m 16.5 m 21.8 m

RailSLAM 1 8.8 m 17.1 m 20.9 m

Bank φ
RailSLAM 2 0.25◦ 0.50◦ 0.70◦

RailSLAM 1 0.20◦ 0.40◦ 0.56◦

Slope θ
RailSLAM 2 0.25◦ 0.50◦ 0.65◦

RailSLAM 1 0.20◦ 0.41◦ 0.65◦

Bank curvature cφ
RailSLAM 2 0.07 1/km 0.15 1/km 0.26 1/km

RailSLAM 1 0.06 1/km 0.12 1/km 0.23 1/km

Slope curvature cθ
RailSLAM 2 0.05 1/km 0.11 1/km 0.19 1/km

RailSLAM 1 0.05 1/km 0.09 1/km 0.18 1/km

Table 8.7: Cumulative deviations and residuals of height, bank, slope, bank
curvature, slope curvature for two different RailSLAM track maps.

can not be computed from 2D positions. The residuals of the RailSLAM
track map 1 are again slightly smaller than the deviations between mea-
surements and RailSLAM track map 2.

Table 8.7 shows the performance values from Figure 8.14 and addition-
ally the track feature of height h. The performance values show relative
large height deviations compared to the horizontal cross-track deviations,
even for the residuals. The larger height deviations can be explained with
the unfortunate the satellite constellations for the observation of the height.
Bank and slope angle deviations show similar results with a deviation lower
than 0.5◦ for 95 % of all evaluations. The slope curvature shows slightly
lower deviations with 0.11 1/km (95 % error) than the bank curvature with
0.15 1/km for the realistic use-case with the RailSLAM track map 2 and
different data for track map and measurements.

8.2.3 Discussion and Suggestions for Improvements

A train localization benefits from small deviations between measurements
and map values, especially for the estimation of switch ways. An increased
measurement accuracy is advantageous for the localization, as discussed in
Section 8.1.5, especially in terms of position measurements. An iterative
mapping can benefit from an increased measurement accuracy in two ways:
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in terms of data association and the track geometry accuracy of the track
map.

The track geometry values show a low variation in along-track direction
over many stretches. Most variables change in the curve entrance or curve
exit. In straights or constant curves, there are less significant variations
of the geometry values that can be used for an along-track estimation.
In the proposed implementation with the MHT localization, the along-
track estimation, and hence the data association, depend on a position
propagation from train speed and a position update.

A different RailSLAM approach was investigated in [P4] and in the two
supervised master-theses [M1], [M3]. The sensor fusion and track geometry
estimation was different and a particle filter was used for the localization
in combination with a random switch generation. The track geometry
estimation in [P4] used a model to predict the geometric track values of
position, attitude and geometry, and GNSS and IMU measurements were
directly used to update the track geometry estimation. The changes in
terms of sensor fusion approach, track estimation and localization filter
were motivated in order to compute an improved RailSLAM track map
from a more significant amount of recorded measurements in combination
with a comparison to ground truth references. The pre-processed measure-
ments decouple the trajectory estimation from the RailSLAM estimation
and solve the estimation of IMU sensor biases in a more effective way than
the track geometry estimation in [P4]. However, the pre-filter introduces
correlations over time of the pre-processed measurements. Nevertheless,
the advantages of the pre-filter predominate in terms of bias estimation,
the separated and independent development, and optimization possibilities.
Further optimization potential of the pre-processing has been discussed in
Section 8.1.5. The benefits of the MHT method over the particle filter for
train localization has been also discussed in Section 8.1.3 and Section 8.1.5.

The estimation of new switches showed undesired results, especially for
scenarios with long-stretched merging switches with low train speeds and
the given measurements. Therefore, the presented RailSLAM track map
of Fig. 8.7 used prior known information about a new and undiscovered
switch. Hasberg has also described challenging scenarios for the switch-
way detection in [62]. Nevertheless, Hasberg could identify 117 out of 120
switches correctly with his approach and his measurement data set. The
main differences to the SLAM approach from Hasberg are a simpler map
interpolation in this thesis and an extended map geometry for an integra-
tion of IMU data. The track geometry interpolation of the present thesis
results in more dense sample points with more geometry values. Never-
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theless, the amount of storage for large track maps with dense samples is
technically unproblematic as shown in Chapter 3.

The magnetic and vibration signatures in Section 4.3.1 show promising
characteristics for an along-track estimation and a switch-way estimation.
An extension with magnetic and vibration signatures for localization and
mapping may improve also the track map accuracy with a more accurate
data association in along-track. Further, a correct switch detection and
switch-way estimation is vital for the map quality.

Finally, it can be questioned whether the simultaneous property of the
SLAM approach is needed. A mapping result may be needed immediately
or after short time for the use cases of an online map verification or map-
change detection. For a general mapping, the sensor data can be recorded
and the track map generation may be shifted to a later post-processing.
One example has been given with the mean track map that was used for
comparison reasons. A post-processing approach can further exclude or
weight any measurements according to their residuals to an estimated track
map. This post-processing approach is considered as an alternative to the
SLAM approach with immediate processing.
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Chapter 9

Conclusion

Summary

This thesis presents and evaluates methods for a train localization with
exclusive onboard sensors without the need for extra infrastructure. This
onboard train localization requires a track map. Therefore, an iterative
generation of the track map is presented with the RailSLAM method. The
thesis comprises a theoretic part with Bayesian estimation (Chapter 2) and
definitions for the map based train localization (Chapter 3). A sensor anal-
ysis is found in Chapter 4 with global navigation satellite system (GNSS)
measurements, track geometry measurements with inertial measurement
unit (IMU) as well as first analysis of magnetic and vibration signatures.
Chapter 5 defines the probabilistic posterior distributions for train local-
ization and track mapping. These posterior distributions can be seen as
general estimation problem definitions and the factorization divides the
estimation problem into smaller and manageable parts. The further prob-
abilistic implementations are based on these factorized posterior distribu-
tions. Three map based train localization methods are defined in theory
(Chapter 5), implemented (Chapter 6) and evaluated in Chapter 8: a sim-
ple map-match method, a particle filter method and a multi hypothesis
tracker (MHT) method. These implementations are evaluated with ref-
erence data and over different track maps. A simultaneous localization
and mapping (SLAM) method, called RailSLAM, is defined (Chapter 5),
implemented (Chapter 6) and evaluated in Chapter 8. Real measurement
data was recorded on a regional train during regular transport service for
realistic scenarios. These measurements are used for the sensor data anal-
ysis and also for the evaluations of the proposed algorithms. Evaluation
methods with performance figures are defined in Chapter 7.
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Conclusions of the Research

The map based train localization requires low deviations between measure-
ments and the track map values, especially for the switch-way estimation.
The repeatability of measurements over different train runs is a good indi-
cator, because the map itself is created from measurements. The measure-
ment analysis with the IMU (inertial measurement unit) showed a high
repeatability of the curvature signals that are measured with gyroscopes
in a non-integrative way. The differences in terms of repeatability and
measured curvatures between a low-cost MEMS (micro electro-mechanical
system) IMU and high-end FOG (fiber optical gyroscope) IMU turned out
to be marginal. The measurement analysis of the magnetic field and the vi-
bration signals showed promising results along-track and the identification
of the switch way. The GNSS position analysis with a reference track map
showed an insufficient accuracy for a track-selective train localization with
a simple map-match approach for a GPS L1 receiver with a patch antenna.
The combination of GNSS and IMU with an integrated navigation system
(INS/GNSS) could increase the position accuracy in terms of repeatability
and deviation to a ground truth reference. However, the position accu-
racy was still not suitable for a reliable track-selective localization based
on simple map-matching.

The conclusions from the localization evaluation of the three different
methods are: The simple map-match approach is the method with the
lowest complexity. This method depends directly on the instant accuracy
of the position measurements but shows also the lowest performance. In
contrast, the probabilistic estimation methods of particle filter and MHT
regard prior estimates and showed better results for track selectivity. Fur-
ther, the use of the geometry features and appropriate measurements are
very beneficial for the switch-way estimation. The particle filter combines
the sensor fusion, along-track estimation and track identification internally
in the filter. One outcome of the particle filter evaluation is the advantage
of a combination of measurements and the need for a feature rich and pre-
cise track map. The evaluation results of the particle filter method with a
coarse track map showed complex parameter adjustments and difficulties
in along-track estimation with divergence as well as wrong track identifi-
cations. The particle filter could not show its full capabilities because of
the low non-linearities of the train localization estimation problem and the
measurement likelihoods that are presented and used in this thesis. The
MHT method follows a divide-and-conquer strategy with the INS/GNSS
as a pre-filter stage and the separation of along-track estimation and track
identification. This strategy has practical implementation advantages as
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each part can be improved, adjusted, tested, and optimized individually.
The evaluation results of the MHT method with a coarse track map qual-
ity showed a similar track selectivity as for the particle filter with fixed
random seeds and optimized parameters. Nevertheless, the results of the
MHT methods are repeatable in contrast to the particle filter results, be-
cause the MHT method does not use random generators. MHT method
and particle filter method showed both perfect results in terms of track-
selective accuracy with a RailSLAM track map. An accurate track map is
vital and critical for a successful onboard train localization.

An iterative mapping approach has been presented with the simulta-
neous localization and mapping for railways, called RailSLAM. Two differ-
ent track maps over 230 km with ten switches have been created an ana-
lyzed. The analysis of the cross-track error evolution over iterations showed
similar results of the RailSLAM method and an averaging method, called
the mean track map. The accuracy of the track map geometry depends
on the accuracy of the measurements and of unresolved and systematic er-
rors over different train runs. The correct weighting of the measurements
is difficult due to unknown biases and inadequate estimated measurement
covariances. The cross-track error of the RailSLAM track map after ten
iterations is in the range of the accuracy of the reference.

All three train localization methods performed best with the RailSLAM
track map compared to the track map based on Open Street Map (OSM)
data and the reference track map based on data of the official land survey
office. The RailSLAM track map has the richest set of track features and
the lowest deviations between measurements and track map, compared to
the other track maps. The RailSLAM track map geometry comprises geo-
graphic positions, height, the attitude angles of bank, slope, and heading,
as well as bank curvature, slope curvature and heading curvature.

Final Remarks

A reliable and track-selective train localization is vital for collision avoid-
ance systems and automated train driving. The onboard train localization
is independent from other railway signaling, uses cost-effective sensors and
there is no need for additional infrastructure elements. Future railway ap-
plications benefit directly from an absence of costly infrastructure based
sensor systems. The automated mapping saves surveying effort as the
track map is created during regular train operations. With a continuous
and automatic mapping, the track map is always up-to-date.

Future onboard train localization may be completely independent of
GNSS for a use-case in long tunnels, underground and for subway trains.
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This thesis contributes to the GNSS independent train localization with
three different measurements of track features: the kinematic measure-
ments of the track geometry, the passive magnetic track features and the
vibration track features.

Finally, the thesis contributions in terms of measurement analysis, lo-
calization methods, mapping methods, and evaluations, bring the develop-
ment of future railway applications one step forward towards a safer and
more efficient railway traffic.
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Appendix A

Probabilistic Toolbox

The basic rules for of probabilistic calculus are given in basic and complex
forms with additional joint and conditional variables. Random variables
can be multi dimensional and grouped or split in variables:

a = a1:n = {a1, a2, a3:n} = {a1:n−1, an}. (A.1)

Product Rule

The basic product rule, product rule with additional conditional c and
product rule with additional estimate j:

p(a, b) = p(a|b) · p(b), (A.2)

p(a, b|c) = p(a|b, c) · p(b|c), (A.3)

p(a, b, j|c) = p(a, j|b, c) · p(b|c). (A.4)

Chain Rule

The generic chain rule, the chain rule with three joint variables a, b, j, and
the chain rule with additional conditional c:

p(a1:n) = p(an|an−1, ...a1) · p(an−1|an−2, ...a1) · ... · p(a1) (A.5)

p(a, b, j) = p(a|b, j) · p(b|j) · p(j), (A.6)

p(a, b, j|c) = p(a|b, j, c) · p(b|j, c) · p(j|c). (A.7)
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Bayes’ Rule

The basic Bayes’ rules are given with and without expanded normalization
constant:

p(a|b) =
p(b|a) · p(a)

p(b)
, (A.8)

=
p(b|a) · p(a)∫
p(b|a) · p(a) da

(A.9)

Bayes’ rule with an additional conditional c:

p(a|b, c) =
p(b|a, c) · p(a|c)

p(b|c) (A.10)

Bayes’ rule with an additional conditional c and estimate j:

p(a, j|b, c) =
p(b|a, j, c) · p(a, j|c)

p(b|c) (A.11)

Marginalization, Theorem of Total Probability

Marginalization over b is:

p(a) =

∫
p(a, b) db, (A.12)

=

∫
p(a|b) · p(b) db . (A.13)

Marginalization over b with additional conditional c is:

p(a|c) =

∫
p(a, b|c) db, (A.14)

=

∫
p(a|b, c) · p(b|c) db . (A.15)
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Appendix B

Posterior Factorizations

A factorization splits a posterior probability function into smaller factors
in order to compute and estimate the posterior. The factorization uses
Bayesian rule, product rule, conditional independence, marginalization,
normalization and the Markov assumption. The posterior can be propor-
tional (∝) to the factors, or alternatively, a normalization factor η can be
used. A general estimation state is denoted with X. For the use-case of
train localization, T is the train state and B stands for biases and sys-
tematic sensor errors. Measurements are denoted by Z, control input by
U and the map by M . The current time step is denoted with k and the
previous with k − 1. A series of all time steps is indexed with 0 : k and
all past time steps are 0 : k − 1. The initial state is indexed with zero
(X0) and the first measurement with one (Z1). The goal is a factorization
with a prior posterior, which is the estimation result of the last step. The
following general factorizations use the definitions of random variables and
causal dependencies on the dynamic Bayesian network (DBN) in Fig. 2.2
(Section 2.1), the train localization factorizations are based on the DBN in
Fig. 5.2 (Section 5.1).
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B.1 Bayesian Filter Example: Full Joint Pos-
terior

The full posterior p(X0:k|Z1:k) is factorized according to the DBN in Fig. 2.2.
The first step of the factorization uses the Bayes’ rule Eq. (A.10) with
a = X0:k, b = Zk and c = Z1:k−1 as additional conditional:

p(X0:k|Z1:k)

Bayes
cond.indep.

=
p(Zk|X�0:k,����Z1:k-1)·p(X0:k|Z1:k-1)

p(Zk|Z1:k-1)
,

prod.rule
cond.indep.

=
1

p(Zk|Z1:k-1)
·p(Zk|Xk)·p(Xk|X�0:k-1,����Z1:k-1)·p(X0:k-1|Z1:k-1),

cond.indep.
Markov

= η︸︷︷︸
normalization

· p(Zk|Xk)︸ ︷︷ ︸
meas. likelihood

· p(Xk|Xk-1)︸ ︷︷ ︸
transition

· p(X0:k-1|Z1:k-1)︸ ︷︷ ︸
prior

.

(B.1)

The final factorization of the full posterior consists of measurement likeli-
hood, state transition, prior posterior and a normalization constant.

B.2 Bayesian Filter Example: Filter Poste-
rior

The Bayesian filter posterior is factorized according to the DBN in Fig. 2.2
as well. The filter posterior p(Xk|Z1:k) is factorized with Bayes’ rule
Eq. (A.10) with a = Xk, b = Zk and c = Z1:k−1 as additional conditional:

p(Xk|Z1:k)
Bayes
=

p(Zk|Xk,����Z1:k−1) · p(Xk|Z1:k−1)

p(Zk|Z1:k−1)
,

cond.
indep.
= η · p(Zk|Xk)︸ ︷︷ ︸

meas. likelihood

·p(Xk|Z1:k−1).
(B.2)

The current hidden state depends on the last state Xk−1 and the last factor
is expanded by 2.13 and the last state Xk−1:

p(Xk|Z1:k−1) =

∫
p(Xk|Xk−1,����Z1:k−1)︸ ︷︷ ︸

transition

· p(Xk−1|Z1:k−1)︸ ︷︷ ︸
prior

dXk−1. (B.3)

The normalization η is given by:

η−1 = p(Zk|Z1:k−1) =

∫
p(Zk|Xk−1,����Z1:k−1) · p(Xk−1|Z1:k−1)dXk−1. (B.4)
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B.3 Factorization of the Localization Full Pos-
terior

The localization full posterior is split into factors for a recursive factor-
ization. The DBN in Fig. 5.2 shows the train localization problem with
random variables and causal dependencies. The first step of the factoriza-
tion is again with the Bayes’ rule:

p(T0:k, B0:k|Z1:k, U1:k,M) =

Bayes
=

p(Zk|Z1:k-1, T0:k, B0:k, U1:k,M) · p(T0:k, B0:k|Z1:k-1, U1:k,M)

p(Zk|Z1:k-1, U1:k,M)
,

norm.∝ p(Zk|Z1:k-1, T0:k, B0:k, U1:k,M) · p(T0:k, B0:k|Z1:k-1, U1:k,M),
cond.indep.

Markov∝ p(Zk|Tk, Bk,M) · p(T0:k, B0:k|Z1:k-1, U1:k,M).
(B.5)

The first factor of Eq. (B.5) splits in the two types of Z:

p(Zk|Tk, Bk,M) = p(ZIMU
k , ZGNSS

k |Tk, BIMU
k , BGNSS

k ,M)
prod. rule

cond.indep.
= p(ZIMU

k |Tk, BIMU
k ) · p(ZGNSS

k |Tk, BGNSS
k ).

(B.6)

The second factor of Eq. (B.5) is factored in a recursive form:

p(T0:k, B0:k|Z1:k-1, U1:k,M) =
prod. rule

= p(Tk, Bk|T0:k-1, B0:k-1, Z1:k-1, U1:k,M) · p(T0:k-1, B0:k-1|Z1:k-1, U1:k,M),
cond.indep.

Markov
= p(Tk, Bk|T0:k-1, B0:k-1, Uk,M) · p(T0:k-1, B0:k-1|Z1:k-1, U1:k-1,M).

(B.7)

The first factor of Eq. (B.7) is factorized again:

p(Tk, Bk|T0:k-1, B0:k-1, Uk,M) =
prod. rule

= p(Tk|T0:k-1, B0:k-1, Bk, Uk,M) · p(Bk|T0:k-1, B0:k-1, Uk,M)
cond.indep.

= p(Tk|Tk-1, Uk,M) · p(Bk|Bk-1)

(B.8)

The train state transition of Eq. (B.8) is factorized by a linear and an
non-linear part of the train state (T = {T l, T n}) with product rule and a
conditional independence of the linear part from the map:

p(Tk|Tk-1, Uk,M) = p(T nk |T lk, T nk-1, Uk,M) · p(T lk|T lk-1, Uk) (B.9)
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Inserting Eq. (B.9), Eq. (B.8) in Eq. (B.7) together with Eq. (B.6) in Eq. (B.5)
results in the factorized localization posterior:

p(T0:k, B0:k|Z1:k, U1:k,M)︸ ︷︷ ︸
posterior

∝ p(ZGNSS
k |Tk, BGNSS

k ) · p(ZIMU
k |Tk, BIMU

k )︸ ︷︷ ︸
meas. likelihoods

·

· p(Bk|Bk−1) · p(T nk |T lk, T nk-1, Uk,M) · p(T lk|T lk-1, Uk)︸ ︷︷ ︸
transitions

·

· p(T0:k-1, B0:k-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior: posterior of k-1

.

(B.10)

B.4 Factorization of the Localization Filter
Posterior

The train localization filter posterior is derived in a recursive factorization:

p(Tk, Bk|Z1:k, U1:k,M) =

Bayes
=

p(Zk|Z1:k-1, Tk, Bk, U1:k,M) · p(Tk, Bk|Z1:k-1, U1:k,M)

p(Zk|Z1:k-1, U1:k,M)
,

cond.indep.
Markov∝ p(Zk|Tk, Bk,M) · p(Tk, Bk|Z1:k-1, U1:k,M).

(B.11)

The first factor of Eq. (B.11) splits in the different sensor types of Z. In the
following, only intrinsic measurements are used and the factor gets condi-
tionally independent of M . The second factor of Eq. (B.11) is extended and
marginalized over the previous estimates of Tk-1 and Bk-1. The equation
uses the substitution of X = {T,B} for the marginalization over Xk-1:

p(Xk|Z1:k-1, U1:k,M) =
margin.

over Xk-1

=

∫
p(Xk|Xk-1, Z1:k-1, U1:k,M) · p(Xk-1|Z1:k-1, U1:k-1,M)dXk-1.

(B.12)

The first factor of the integral is split after reversing the substitution:

p(Tk, Bk|Tk-1, Bk-1, Z1:k-1, U1:k,M)

prod.rule
cond.indep.

= p(Tk|Tk-1, Uk,M) · p(Bk|Bk-1).
(B.13)
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The following factorization results with Eq. (B.13) inserted in Eq. (B.12)
again inserted in Eq. (B.11), a conditionally independent likelihood of M
due to DBN in Fig. 5.2, and a reversed substitution {T,B} = X:

p(Tk, Bk|Z1:k, U1:k,M)︸ ︷︷ ︸
posterior

∝ p(Zk|Tk, Bk)︸ ︷︷ ︸
measurement

likelihood

·

∫
p(Tk|Tk-1, Uk,M) · p(Bk|Bk-1)︸ ︷︷ ︸

transitions

· p(Tk-1, Bk-1|Z1:k-1, U1:k-1,M)︸ ︷︷ ︸
prior

d(Tk-1, Bk-1).

(B.14)

The train state transitions can be further split in linear and non-linear
values with Eq. (B.9).

B.5 Factorization of the Pre-processed Mea-
surements

The factorization of the pre-processed measurements is similar to the generic
Bayesian filter posterior. The IMU measurements are used here as an input.
The pre-processed measurements posterior estimates the pre-processed mea-
surements ZP and the IMU biases BIMU from IMU and GNSS measure-
ments. This posterior is factorized with Bayes’ rule Eq. (A.10) with a =
{ZP

k , Bk}, b = ZGNSS
k and c = {ZGNSS

1:k-1 , Z
IMU
1:k }:

p(ZP
k , B

IMU
k |ZGNSS

1:k , ZIMU
1:k ) =

Bayes
=

p(ZGNSS
k |ZP

k , B
IMU
k ,

��
��

ZGNSS
1:k−1 ,����ZIMU

1:k ) · p(ZP
k , B

IMU
k |ZGNSS

1:k−1,Z
IMU
1:k )

p(ZGNSS
k |ZGNSS

1:k−1 , Z
IMU
1:k )

,

cond. indep.
norm.∝ p(ZGNSS

k |ZP
k , B

IMU
k ) · p(ZP

k , B
IMU
k |ZGNSS

1:k−1 , Z
IMU
1:k ).

(B.15)

The last factor is extended and marginalized with Eq. (A.15), and a =
{ZP

k , B
IMU
k }, the previous estimate b = {ZP

k-1, B
IMU
k-1 } and c = {ZGNSS

1:k-1 , Z
IMU
1:k-1}:

p(ZP
k ,B

IMU
k |ZGNSS

1:k−1 ,Z
IMU
1:k )

extended,
marginalized

=∫
p(ZP

k ,B
IMU
k |ZP

k-1,B
IMU
k-1 ,

�
���
ZGNSS

1:k-1 ,Z
IMU
�1:k )·p(ZP

k-1,B
IMU
k-1 |ZGNSS

1:k-1 ,Z
IMU
1:k-1) d(ZP

k-1,B
IMU
k-1 ).

(B.16)
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Finally, the posterior factorization for the pre-processed measurements is:

p(ZP
k , B

IMU
k |ZGNSS

1:k , ZIMU
1:k ) ∝ p(ZGNSS

k |ZP
k , B

IMU
k )︸ ︷︷ ︸

GNSS measurement update

·

∫
p(ZP

k , B
IMU
k |ZP

k-1, B
IMU
k-1 , ZIMU

k )︸ ︷︷ ︸
estimate with IMU input

· p(ZP
k-1, B

IMU
k-1 |ZGNSS

1:k-1 , Z
IMU
1:k-1)︸ ︷︷ ︸

prior

d(ZP
k-1, B

IMU
k-1 ).

(B.17)
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Appendix C

Coordinate Frames

C.1 Frame Rotations

This section contains the rotation matrix definition with Euler angles. A
rotation matrix is needed for a conversion of measurements from one frame
into another frame. A frame here is a Cartesian coordinate system. The
turn directions and the Cartesian axes definitions follow the right-hand rule
according to [66]. The angles are defined with roll φ about the Cartesian
x- axis, pitch angle θ about the y-axis and yaw angle ψ about the z-axis.
The yaw rotation matrix rotates the coordinate axes and is [66]:

Cψ =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 . (C.1)

The pitch rotation matrix for the coordinate axes rotation is [66]:

Cθ =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 . (C.2)

The roll rotation matrix for the coordinate axes rotation is [66]:

Cφ =

1 0 0
0 cosφ sinφ
0 −sinφ cosφ

 . (C.3)

The full rotation from the frame b to the frame n is denoted with Cn
b, and

computed from the three axes rotations in the following order (see [66]):

Cb
n = Cφ ·Cθ ·Cψ. (C.4)
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The transverse rotation from frame n to the frame b is the transposed
matrix:

Cn
b = Cb

n

T
. (C.5)

The full direction cosine matrix (DCM) Cn
b is [66]:

Cn
b =

cosθ cosψ −cosφ sinψ + sinφ sinθ cosψ sinφ sinψ + cosφ sinθ cosψ
cosθ sinψ cosφ cosψ + sinφ sinθ sinψ −sinφ cosψ + cosφ sinθ sinψ
−sinθ sinφ cosθ cosφ cosθ

 .

(C.6)

The rotation between a horizontal leveled frame and a tilted track frame
t is defined with the roll and pitch rotations Eq. (C.3), Eq. (C.2), or with
the transposed DCM of Eq. (C.6) and ψ = 0:

Ct
hor. = Ct

n(ψ = 0)

= CφCθ

= Chor. T
t

=

 cosθ 0 −sinθ
sinφ sinθ cosφ sinφ cosθ
cosφ sinθ −sinφ cosφ cosθ

 .

(C.7)

The turn rates ~ω (ωx, ωy, ωz) are measured with the gyroscopes. The
relation between measurements and the turn rates of the coordinate axes
φ̇, θ̇ and ψ̇ are given by [66]:ωxωy

ωz

 =

φ̇0
0

+ Cφ

0

θ̇
0

+ CφCθ

0
0

ψ̇


=

 φ̇− ψ̇sinθ

θ̇cosφ+ ψ̇sinφcosθ

ψ̇cosφcosθ − θ̇sinφ

 .

(C.8)

C.2 Earth Frame

The world geodetic system of 1984 (WGS84) is defined with a semi-major
axis of the ellipsoid of a = 6 378 137 m and a flattening of f = 1

298.257223563
[47].
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The rotation matrix from the ECEF coordinates of the Earth-frame e
to NED coordinates in the navigation frame n is defined with the latitude
ϕ and longitude λ of the Earth ellipsoid:

Cn
e =

−sinϕ cosλ sinϕ sinλ cosϕ
−sinλ cosϕ 0

−cosϕ cosλ −cosϕ sinλ sinϕ

 . (C.9)

The inverse transformation from navigation frame to ECEF frame is again
the transposed DCM: Ce

n = Cn
e
T .

The meridian radius in north direction and the transverse Earth radius
in east direction depend on the latitude ϕ and are defined in [66, 47] with:

Rn(ϕ) =
a · (1− e2)

(1− e2 sin2 ϕ)
3
2

, (C.10)

Re(ϕ) =
a

(1− e2 sin2 ϕ)
1
2

. (C.11)

The major eccentricity squared e2 is defined with the flattening f :

e2 = f(2− f). (C.12)
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Appendix D

Strapdown Method for
an Inertial Navigation
System

This section describes the differential equations that are needed for the
computation of attitude, velocity and position from acceleration and turn
rate measurements. An acceleration measurement ~a b

ib is also called specific
force measurement, because the acceleration of the train and the gravity
is measured in combination. The turn rate measurements are ~ωb

ib. Specific
force and turn rates are defined in body frame (b) and measured between
inertial frame and body frame (ib).

Attitude

The attitude is computed from the turn rate measurements of the gyro-
scopes. The differential equation for attitude with the direction cosine
matrix (DCM) Cn

b from body frame (b) to navigation frame (n) is defined
with [66]:

Ċn
b = Cn

bΩ
b
nb. (D.1)

This equation shows how the attitude, represented with the DCM, changes
over time with the turn rate measurements contained in Ωb

nb. This turn
rate matrix are defined in body frame (b) and measured between naviga-
tion frame and body frame (nb) A DCM can be defined with the Euler
angles roll (φ), pitch (θ) and yaw (ψ) between body and navigation frame,
see Eq. (C.6). Alternatively, the attitude and the differential equation can
be represented by quaternions or Euler angles. Algorithmic realizations
for this differential equation with discrete turn rate data updates and con-
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ing correction can be found in [91, 66, 47]. The matrix Ωb
nb is the skew

symmetric matrix of the components of ~ωb
nb [66]:

Ωb
nb =

 0 −ωb
nb,z ωb

nb,y

ωb
nb,z 0 −ωb

nb,x

−ωb
nb,y ωb

nb,x 0

 . (D.2)

The body turn rates ~ωb
nb are defined between navigation and body frame

and contain Earth rate, transport rate and turn rate measurements [66]:

~ωb
nb = ~ωb

ib︸︷︷︸
turn rate

measurements

− Cb
n( ~ωn

ie︸︷︷︸
Earth
rate

+ ~ωn
en︸︷︷︸

transport
rate

). (D.3)

The Earth turn rate Ω is defined in Earth frame between inertial and Earth
frame and is further converted to the navigation frame with the latitude ϕ
[66]:

~ωn
ie =

(
Ω cosϕ 0 −Ω sinϕ

)T
. (D.4)

The navigation frame of a vehicle with a horizontal motion over the Earth
shape requires to rotate according to the Earth curvature. The transport
rate considers this effect and is defined in the navigation frame between
Earth frame and navigation frame [66]:

~ωn
en =

(
ve

Re+h
−vn
Rn+h

−ve tanϕ
Re+h

)T
, (D.5)

with the local Earth radius in north (Rn) and east (Re) directions, and the
velocity components the in navigation frame in north (vn), east (ve) and
down (vd) direction. A common simplification for low velocities and for
low-cost IMUs is to neglected the Earth rate and the transport rate.

Velocity and position

The differential equation for the velocity ~v n
eb =

(
vn ve vd

)T
in navigation

frame between Earth and body frame (eb) is given by [66, 47] with adjusted
notation:

~̇v n
eb = Cn

b ~a b
ib︸︷︷︸

accel.
meas.

−
Coriolis correction︷ ︸︸ ︷

(2 ~ωn
ie︸︷︷︸

Earth
rate

+ ~ωn
en︸︷︷︸

transport
rate

)× ~v n
eb + ~g n

l︸︷︷︸
local

gravity

. (D.6)

This equation shows how the train velocity changes from acceleration mea-
surements that are corrected from Coriolis effects and the gravity. Algo-
rithmic realizations for the differential equation of velocity Eq. (D.6) with
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discrete acceleration data updates and sculling correction can be found in
[92, 66, 47]. The Coriolis correction term considers the Coriolis acceler-
ation from the vehicle motion and a combined turn rate from Earth and
transport rate. The gravity part ~g n

l of Eq. (D.6) respects the local gravity
vector. There are various realizations in the literature [93, 66] and the
local gravity models depend usually on position and height. Finally, the
differential equation for the position propagation over time is given by [66]:ϕ̇λ̇

ḣ

 =

 vn
1

(Rn+h)

ve
1

(Re+h) cosϕ

−vd

 . (D.7)

A common discretization of Eq. (D.6) and Eq. (D.7) is a first order approxi-
mation with an integration over the time step period ∆t and a high update
rate compared to the dynamics.
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Appendix E

Train Experiment
Schedule

Run Departure Arrival Motion Branching Time Distance

station station direction switches [km]

1 Augsburg Friedberg backward 8 10 min 8

2 Friedberg Augsburg forward 7 10 min 8

3 Augsburg Ingolstadt backward 22 1 h 66

4 Ingolstadt Augsburg forward 20 1 h 66

5 Augsburg Friedberg backward 8 10 min 8

6 Friedberg Augsburg forward 7 10 min 8

7 Augsburg Aichach backward 11 30 min 25

8 Aichach Augsburg forward 9 30 min 25

9 Augsburg Friedberg backward 8 10 min 8

10 Friedberg Augsburg forward 7 10 min 8

107 4 h 230

Table E.1: Train routes (data set 1).
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Run Departure Arrival Motion Branching Time Distance

station station direction switches [km]

101 Augsburg Ingolstadt backward 21 1 h 66

102 Ingolstadt Augsburg forward 20 1 h 66

103 Augsburg Friedberg backward 8 10 min 8

104 Friedberg Augsburg forward 7 10 min 8

105 Augsburg Ingolstadt backward 22 1 h 66

106 Ingolstadt Augsburg forward 20 1 h 66

107 Augsburg Friedberg backward 8 10 min 8

108 Friedberg Augsburg forward 7 10 min 8

109 Augsburg Aichach backward 11 30 min 25

110 Aichach Augsburg forward 9 30 min 25

111 Augsburg Friedberg backward 8 10 min 8

141 5:50 h 354

Table E.2: Train routes (data set 2).
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Nomenclature

Navigation, Inertial Navigation

ϕ ◦ latitude
λ ◦ longitude
h m height
~p ◦, ◦, m position vector: latitude, longitude, height

(WGS84)
xn, xe, xd m position: north, east, down (navigation frame)
~v m/ s speed vector (navigation frame)
vn, ve, vd m/ s speed: north, east, down (navigation frame)
t s time
φ ◦ roll
θ ◦ pitch
ψ ◦ yaw

φ̇, θ̇, ψ̇ rad/ s turn rates in roll, pitch, yaw direction
ax, ay, az m/ s2 acceleration x, y, z in train frame
~a m/ s2 acceleration vector (x,y,z) in train frame
ωx, ωy, ωz rad/ s turn rate x, y, z in train frame
~ω rad/ s turn rate vector (x,y,z) in train frame
bax, bay, baz m/ s2 acceleration sensor bias
bωx, bωy, bωz rad/ s gyroscope sensor bias
g, ~g m/ s2 gravity, gravity vector
Cb

s 3×3 direction cosine matrix, from sensor to body frame
Cn

b 3×3 direction cosine matrix, from body to navigation
frame

Re m local transverse Earth radius, east
Rn m local meridian Earth radius, north
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Train Trajectory and Railway Track Geometry

ϕ ◦ latitude
λ ◦ longitude
h m height
φ ◦ roll (train), bank angle (track)
θ ◦ pitch (train), slope angle (track)
ψ ◦ yaw (train), heading angle to north (track)
cφ 1/ km bank curvature
cθ 1/ km slope curvature
cψ 1/ km heading curvature

Measurements, Track Geometry Computations

alat m/ s2 acceleration in lateral direction
ψm

◦ motion heading
~B T magnetic field, flux density
~BN magnetic field, flux density normalized to Earth

field
f Hz frequency
n harmonic
fn Hz nth harmonic frequency
d m wheel diameter
r m track radius
δAT m along-track distance on tracks
δCT m cross-track distance between a position and track
dAT m along-track distance (length of track tangent vec-

tor)
dCT m cross-track distance (length of track normal vector)

Railway Navigation

id ∈ N discrete railway track ID
s m track location
∆s m displacement (track frame)
ot ± direction of the train frame in track frame
ov +, 0,− direction of the train speed in train frame
om +, 0,− direction of the train motion in track frame
{id, s} N,m topological location
T topo N,m,± topological pose: {id, s, ot}
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U acc m/ s2 train control: acceleration/brake
Um +, 0,− train control: forward/stop/backward motion
U sw left/right train control: switch way (alternatively

straight/turn)
ṡ m/ s train speed (track frame)
s̈ m/ s2 train acceleration (track frame)
v m/ s train speed (train frame)
atb m/ s2 train acceleration/deceleration (train frame)
C(ot) 3×3 train-to-track frame and track-to-train frame rota-

tion

Random Variables

Xk state or random variable X at time step k
Xk-1 prior, X of last time step
X1:k history of X from first to current time step k
Xk0:k sequence of X from k0 to k
X l, Xn linear states, non-linear states
T train state
T topo, T v, T traj train state: topological pose, train velocity, trajectory
T l linear train states (velocity, displacement)
T n non-linear train states (topological pose, trajectory)
M map of railway tracks
U train control input
V network control input
Z measurement(s)
ZIN, ZEX intrinsic measurement, extrinsic measurement
ZGNSS, ZIMU, ZP GNSS, IMU, pre-processed measurements
B bias
BGNSS, BIMU GNSS bias, IMU bias
EINS INS error state

Probabilistic Theory, Estimation Filters

p(x) probability density function of x
µ(x) point mass function for discrete random variables
δ() Dirac delta function
p(x|y) conditional probability density function of x given y
E(x) expected value of x
Cov(x, y) covariance of x and y
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x̂ estimate of quantity x
n noise
η normalization factor
N
(
µ, σ2

)
Normal distribution function (mean µ and variance σ2)

xk mean vector of estimation state X at time k
Σ,P covariance matrix
F state-transition or system matrix
f(x) non-linear state-transition or system model
Q process noise covariance matrix
z measurement vector
H measurement model matrix
h(x) non-linear measurement model
R,Σz measurement noise covariance matrix
S innovation covariance matrix
K Kalman gain
I Identity matrix
H set of all hypotheses
Hj single hypothesis with index j
wj weight of j’th hypothesis
Np number of particles
xi i-’th particle state
q() proposal function, importance density
wi weight of the i’th particle

N̂eff effective number of particles
Nth threshold for resampling
x̂ mean estimate vector

P̂ covariance estimate matrix

Implementations

µm,Σm track geometry: mean vector (track frame), covariance
matrix

µtraj,Σtraj train trajectory: mean vector (train frame), covariance
matrix

zP,ΣP pre-processed measurements: mean (train frame), cov.
matrix

zϕ,λ,Σϕ,λ position measurements: mean, covariance matrix
ztraj,Σz,traj pre-processed trajectory meas. mean (train frame), cov.

matrix
zIMU, zGNSS IMU measurement vector, GNSS measurement vector
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xodo odometry state vector: displacement, speed, accelera-
tion, bias

∆sodo displacement, computed from the odometry
∆smeas measured along-track displacement
σ2
s along-track variance, track location variance
σ2

∆s variance of displacement
σ2

AT, σ
2
CT along-track distance variance, cross-track distance vari-

ance
σ2
ψ heading variance
σ2
cψ heading curvature variance
H ,Hϕ,λ,HTI measurement matrix: position, track identification
zTI,ΣTI track identification meas. mean (train frame), cov. ma-

trix
∆TI,Σ∆TI track identification innovation, innovation covariance
ξ SLAM mapping phase (white-space phase or prior-map

phase)
sk′:k′′ 1-D track location sequence over time between k′ and

k′′

sm
s′:s′′ constant sample grid: 1-D track location between s′ and

s′′

µm
k′:k′′ track geometry sequence over time between k′ and k′′

µm
s′:s′′ track geometry sequence over 1-D locations between s′

and s′′

xINS INS state vector (posi-
tion, velocity, attitude, acc. & gyr. biases)

∆x,Σ∆ ESKF error state vector, covariance matrix
∆xn,∆xe,∆xd error state: correction of north, east, down position
∆vn,∆ve,∆vd error state: correction of north, east, down velocity
∆α,∆β,∆γ error state: Euler angle increments
∆bax,∆bay,∆baz error state: correction of acceleration biases
∆bωx,∆bωy,∆bωzerror state: correction of gyroscope biases

Evaluation

ε track-selective evaluation result
εok
k correct track estimate
εtol
k wrong track estimate but tolerated within switch sec-

tions
εerr
k wrong track estimate
ATS track-selective accuracy
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ETS track-selective error ratio
ASW switch-way accuracy
~pref map-matched position on reference track map
e cross-track position error: measurement to reference
Emeas RMSE of cross-track position error
eid,s cross-track map error: estimated map to reference map
Emap RMSE of cross-track map error
Fe(ê) CDF of cross-track position error
N sum of all samples for the error statistics
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Acronyms

ATO automatic train operation

ATP automatic train protection

CDF cumulative distribution function

COTS commercial-off-the-shelf

DBN dynamic Bayesian network

DCM direction cosine matrix

ECEF Earth centered, Earth fixed

EGNOS European geostationary navigation overlay service

EKF extended Kalman filter

ESKF error-state Kalman filter

ETCS European train control system

FOG fiber optical gyroscope

GNSS global navigation satellite system

GPS global positioning system

HMM hidden Markov model

IMU inertial measurement unit

INS inertial navigation system

LLH latitude, longitude, height

MEMS micro electro mechanical system

MHT multi hypotheses tracker

MMSE minimum mean square estimate

NED north-east-down

PDF probability density function

PF particle filter
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PTC positive train control

PVT position, velocity, time

RCAS railway collision avoidance system

RMSE root mean squared error

RTK real time kinematic

SAR synthetic aperture radar

SBAS satellite based augmentation system

SLAM simultaneous localization and mapping

UKF unscented Kalman filter

UTO unattended train operation

WAAS wide area augmentation system

WGS84 world geodetic system of 1984
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[18] O. Plan, “GIS-gestützte Verfolgung von Lokomotiven im Werkbahn-
verkehr,” Ph.D. dissertation, University of German Federal Armed
Forces Munich, Germany, 2003.

[19] K. Gerlach and C. Rahmig, “Multi-hypothesis based map-matching
algorithm for precise train positioning,” in Information Fusion, 2009.
FUSION ’09. 12th International Conference on, July 2009.

[20] A. Broquetas, A. Comerón, A. Gelonch, J. M. Fuertes, J. Antonio
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