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This article presents experimental data of organosolv lignin from
Poacea grass and structural changes after compounding and
injection molding as presented in the research article “Effects of
high-lignin-loading on thermal, mechanical, and morphological
properties of bioplastic composites” [1]. It supplements the article
with morphological (SEM), spectroscopic (3'P NMR, FT-IR) and
chromatographic (GPC, EA) data of the starting lignin as well as
molar mass characteristics (mass average molar mass (M,,) and
Polydispersity (D)) of the extracted lignin. Refer to Schwarz et al.
[2] for a detailed description of the production of the organosolv
residue and for further information on the raw material used for
lignin extraction. The dataset is made publicly available and can be
useful for extended lignin research and critical analyzes.
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Specifications Table

Subject area Material Science

More specific sub- Bioplastic composites, lignin research
ject area

Type of data Tables, images, figures

How data was Scanning electron microscopy (SEM; DSM 940A, Zeiss, Germany), elemental
acquired analysis (EA; Euro EA, Hekatech, Germany), gel permeation chromatography

(GPC; SECurtiy, PSS Polymer Standards Service, Germany) equipped with a
refractive index detector and a series of linear columns (PSS Gram (30 A, 1000 4),
AppliChrom ABOA DMSO-Phil-P (100 A)), High Performance Liquid Chromato-
graphy (HPLC; Dionex® equipped with a Rezex ROA-H+ column), 31 Phos-
phorous NMR (°'P NMR; JEOL-ECS 400 MHz, Jeol Ltd., Japan), Fourier-transform
infrared spectroscopy (FT-IR; Nicolet 380, Thermo Scientific, Germany), image
analysis (Image], NIH, USA)

Data format Raw spectra data, analyzed data, images
Experimental The lignin-rich precipitate obtained from organosolvation of Poacea grass silage
factors was Soxhlet extracted with ethyl acetate (EtOAc). The solid residue was used to

fabricate lignin/polyethylene-co-vinyl acetate rubber composites. Theredfter,
lignin was re-extracted with dimethyl sulfoxide (DMSO) from the bioplastic
composites and structural data were collected

Experimental Structural data on lignin from ensiled Poaceae grass is given by solid- and liquid-
features state methods

Data source East Bavaria lower mountain range near Regensburg, Germany (49°14'N; 12°39’
location E)

Data accessibility ~ Data is available with this article

Value of the data

e The data are convenient to examine the structural characteristics of organosolv lignin from her-
baceous plants such as Poaceae grass and can be compared with other related studies.

e The data establish a link between lignin content in bioplastic composites and load-dependent
molecular weight changes.

e These data allow other researchers to extend the characterization of lignin in highly-filled
composites.

1. Data

Morphological characteristics of lignin from Poaceae grass are shown in Fig. 1. Molecular weight
change upon solvent-extraction of the organosolv residue and molecular weight changes of lignin as a
function of lignin loading in processed lignin bioplastic composites [1]. are given in Fig. 2. Data on
lignin purity are given in Table 1.

Raw spectral data of the starting lignin are shown in Figs. 3 and 4 and band assignments and
hydroxyl group contents are given in Tables 2 and 3, respectively.
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Fig.1. a) and c) Scanning electron micrographs of a precipitated Poaceae grass lignin particle displaying the particle surface and
b) and d) size distribution of precipitated lignin particles and size distribution of clustered particles on the particle surface
obtained from image analysis.
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Fig. 2. a) Molecular weight characteristics obtained from GPC of Organosolv precipitate and lignin after extraction with EtOAc.
b) Mw and D of Poaceae grass lignin after injection molding and extraction with DMSO from bioplastic composites corre-
sponding to different lignin volume fractions.

2. Experimental design, materials and methods
2.1. Sample collection and preparation

A lignin-rich fraction was obtained by organosolvation of a grass silage press cake (PC) batch,
described earlier by Schwarz et al. [2]. The obtained solid lignin phase was Soxhlet-extracted for 24 h
using ethyl acetate (EtOAc), air dried overnight and then stored at ambient conditions until use.

2.2. Purity analysis

Lignin purity analysis was conducted according to NREL standard methods [11]. Acid insoluble
lignin (Klason lignin) was examined by sulfuric acid hydrolysis. Residual carbohydrate and ash
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Table 1
Data on purity analysis of obtained Poaceae grass lignin: Mass average molecular weight, residual sugar, ash, sulfur content and
mean particle size.

Molar mass Purity Mean particle size
M,y D Y sugar ash sulfur dp
(g mol™") (dimensionless) (%) (um)
1600 33 3.0 11 0.1 9.5
a b
30% 50%
40% 4 55%
50% A
= & 60% 4
=] =
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z
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90% 1 75% 1 \/
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Fig. 3. a) FT-IR spectrum of the isolated lignin (precipitated and EtOAc-extracted) and b) detail of the region below 1800 cm™".

content were determined according to NREL/TP-510-48087 and sulfur content was determined using
elemental analysis [12]. Measurements were run on vacuum-dried samples in duplicate and data are
given as the arithmetic averages.

2.3. Fourier-transform infrared spectroscopy (FI-IR)

FT-IR analysis was performed to examine the starting lignin. Direct transmittance was measured
by using the KBr pellet technique with a lignin concentration of 0.3 wt% in 300 mg KBr. The following
parameters were used: spectral range: 400-4000 cm™', spectral resolution: 2 cm™!, total scans: 128,
background: KBr.

2.4. Morphological analysis

Mean lignin particle size and particle size distribution were evaluated using a scanning electron
microscope operated at 10 kV and by image analysis.

2.5. 3P NMR

Spectral data were obtained according to a previously reported procedure and data on different
functional groups present in lignin were obtained from integration of the spectra and calculated as
described herein [13].

2.6. Gel permeation chromatography (GPC)

GPC was used to examine the mass average molecular weight and molecular weight distribution of
isolated (starting) and processed lignin. For the determination of molecular weight changes following
thermoplastic processing, lignin was Soxhlet-extracted for 24 h from ground composites using DMSO
and lyophilized. The measurements were performed at 50 °C using 0.075M DMSO/LINOs as the
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Fig. 4. a) >'P NMR spectrum of phosphytylated starting lignin. b) 3'P NMR spectra in the overlapping region between 144.5 and
137 ppm with deconvoluted signals.

Table 2
FTIR band assignments of starting lignin.

Wavenumber Assignment Reference
(em™)
1036 aromatic C-H in-plane deformation (G > S); C-O deform. in primary alcohols; C=0 stretch [3-6]
(unconj.)
1059 O-H stretch in cellulose [4]
1 guaiacyl C-H and syringyl C-H [4]
1160 C=0 stretch in conjugated ester groups, such as p-coumaric acid, typical for HGS lignins [3,5-8]
1231 C-C stretch; C-O stretch; C=0 stretch, G condensed > G etherified [4,8]
1265 C=0 stretch; C-O stretch in guaiacyl aromatic methoxyl groups [3-9]
~1315 condensed S and G ring (G ring substituted in pos. 5) [3,5-8]
1371 aliphatic C-H stretch in CHs, not in OMe; phen. OH [3,5-7]
~1427 aromatic ring vibrations of phenyl-propane (Cy) skeleton combined with C-H in-plane [3-9]
deformation
1456 C-H deformation; asym. in -CH; and -CH,- [3-9]
1514 aromatic skeleton vibrations (G > S) [3-9]
~1612 aromatic skeletal vibrations (S > G); C=0 stretch; G condensed > G etherified [3,4,6]
1649 C=0 stretch; in conjugated p-subst. aryl ketones; conjugated carbonyl and carboxyl; [6,8-10]
absorbed OH
~1700 C=0 stretch in unconjugated ketones, carbonyls and in ester groups; conjugated aldehydes [3-7]
and carboxylic acids absorb around and below 1700 cm™!
~2863 C-H vibration of mehtyl group of methoxyl [3-10]
2929 C-H stretch in -CHs and -CH,- [3-10]
2964 C-H stretch in -CH3 and -CH,- [3-10]
3411 O-H stretch [3-10]
Table 3

Functional group contents obtained from quantitative 3'P NMR where the assignments S-OH, G-OH, H-OH, COOH, 4-0-5’, 5-5',
and p-5 correspond to syringyl phenolic units, guaiacyl and demethylated phenolic units, p-hydroxylphenolic units, and car-
boxylic acids and condensed phenolic units of the 4-0-5’, 5-5’, and -5 type.

¥ aliph. OH = carboxyl. OH X phenol. OH -5 S-OH 4-0-5' 5- G-OH H-OH
(mmolg™!)  (mmolg™) (mmol g~1) (mmol g~!)(mmol g~') (mmol g!) 5'(mmol g~!)(mmolg~"') (mmolg~")

149 0.31 0.59 0.06 0.10 0.07 0.11 0.25 0.23
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eluent. Lithium nitrate (LiNOs3, anhydrous, 99.98%, Alfa Aesar, Germany) was added to minimize
association effects. All samples were made up at 0.1% (w/v) in 0.075 M DMSO/LiNOs. Pullulan polymer
standards (PSS) ranging from 180 to 708.000 g mol~' were used for calibration.
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