
Stricker et al. BMC Bioinformatics  (2018) 19:247 
https://doi.org/10.1186/s12859-018-2238-7

SOFTWARE Open Access

GenoGAM 2.0: scalable and efficient
implementation of genome-wide generalized
additive models for gigabase-scale genomes
Georg Stricker , Mathilde Galinier and Julien Gagneur*

Abstract

Background: GenoGAM (Genome-wide generalized additive models) is a powerful statistical modeling tool for the
analysis of ChIP-Seq data with flexible factorial design experiments. However large runtime and memory requirements
of its current implementation prohibit its application to gigabase-scale genomes such as mammalian genomes.

Results: Here we present GenoGAM 2.0, a scalable and efficient implementation that is 2 to 3 orders of magnitude
faster than the previous version. This is achieved by exploiting the sparsity of the model using the SuperLU direct
solver for parameter fitting, and sparse Cholesky factorization together with the sparse inverse subset algorithm for
computing standard errors. Furthermore the HDF5 library is employed to store data efficiently on hard drive, reducing
memory footprint while keeping I/O low. Whole-genome fits for human ChIP-seq datasets (ca. 300 million parameters)
could be obtained in less than 9 hours on a standard 60-core server. GenoGAM 2.0 is implemented as an open source
R package and currently available on GitHub. A Bioconductor release of the new version is in preparation.

Conclusions: We have vastly improved the performance of the GenoGAM framework, opening up its application to
all types of organisms. Moreover, our algorithmic improvements for fitting large GAMs could be of interest to the
statistical community beyond the genomics field.

Keywords: Genome-wide analysis, ChIP-Seq, Generalized additive models, Sparse inverse subset algorithm,
Transcription factors

Background
Chromatin immunoprecipitation followed by deep
sequencing (ChIP-Seq), is the reference method for
quantification of protein-DNA interactions genome-wide
[1, 2]. ChIP-Seq allows studying a wide range of
fundamental cellular processes such as transcription,
replication and genome maintenance, which are charac-
terized by occupancy profiles of specific proteins along
the genome. In ChIP-Seq based studies, the quantities
of interest are often the differential protein occupancies
between experiments and controls, or between two
genetic backgrounds, or between two treatments, or
combinations thereof.
We have recently developed a statistical method,

GenoGAM (Genome-wide Generalized Additive Model),
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to flexibly model ChIP-Seq factorial design experiments
[3]. GenoGAM models ChIP-Seq read count frequencies
as products of smooth functions along chromosomes. It
provides base-level and region-level significance testing.
An important advantage of GenoGAM over competing
methods is that smoothing parameters are objectively
estimated from the data by cross-validation, eliminating
ad-hoc binning and windowing. It leads to increased sen-
sitivity in detecting differential protein occupancies over
competing methods, while controlling for type I error
rates.
GenoGAM is implemented as an R package based on the

well-established and flexible generalized additive models
(GAM) framework [4]. On the one hand, it builds on top of
the infrastructure provided by the Bioconductor software
project [5]. On the other hand, it uses the mgcv pack-
age [6], a general-purpose R library for fitting GAMs [7]
that provides a rich functionality for GAMs with a variety
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of basis functions, distributions and further features for
variable and smoothness selection. In its general form, the
implementation for fitting a GAM minimizes a cost func-
tion using iterations whose time complexity are quadratic
in the number of parameters. Moreover, the time com-
plexity of the implementation for estimating the standard
errors of the parameters, which are required for any sta-
tistical significance assessment, is cubic in the number of
parameters. To allow the fitting of GAMs on complete
genomes, which involves millions of parameters, we had
proceeded with a tiling approach [3]. Genome-wide fits
were obtained by fitting models on tiles, defined as over-
lapping genomic intervals of a tractable size, and joining
together tile fits at overlap midpoints. With long enough
overlaps, this approximation yielded computation times
linear in the number of parameters at no practical preci-
sion cost. Furthermore, it allowed for parallelization, with
speed-ups being linear in the number of cores.
Nonetheless, application of the current implementation

remains limited in practice to small genomes organisms
such as yeast or bacteria, or to selected subsets of larger
genomes. A genome-wide fit for the yeast genome (ca. 1
million parameters) took 20 hours on a 60-core server. Fits
for the human genome could only be done for chromo-
some 22, the smallest human chromosome.
Here we introduce a new implementation of GenoGAM

that is 2 to 3 orders ofmagnitude faster. This is achieved by
exploiting the sparsity of the model and by using out-of-
core data processing. The computing time for parameter
and standard error estimation, as well as thememory foot-
print, is now linear in the number of parameters per tile.
The same genome-wide fit for yeast is now obtained in
13 min on a standard 8-core desktop machine. Whole-
genome fits for human datasets (ca. 300 million parame-
ters each) are obtained in less than 9 hours on the same
60-core server.
Before describing the new implementation and results,

we provide some necessary mathematical background.

GenoGAMmodels
In a GenoGAM model, we assume ChIP-Seq read counts
yi at genomic position xi in the ChIP-Seq sample ji to fol-
low a negative binomial distribution with mean μi and
dispersion parameter θ :

yi ∼ NB(μi, θ) (1)

where the logarithm of the mean μi is the sum of an offset
oi and one or more smooth functions fk of the genomic
position xi:

log(μi) = oi +
K∑

k=1
fk(xi)zji,k (2)

The offsets oi are predefined data-point specific con-
stants that account for sequencing depth variations. The
elements zji,k of the experimental design matrix Z is 1
if smooth function fk contributes to the mean counts of
sample ji and 0 otherwise. A typical application is the com-
parison of treatment versus control samples, for which a
GenoGAMmodel would read:

log(μi) = oi + fcontrol(xi) + zji ftreatment/control(xi), (3)

where zji = 0 for all control sample data points and
zji = 1 for all treatment sample data points. The quan-
tity of interest in such a scenario is the log fold-change
of treatment versus control at every genomic position
ftreatment/control(xi).
The smooth functions fk are piecewise polynomials con-

sisting of a linear combination of basis functions br and
the respective coefficients β

(k)
r :

fk(xi) =
∑

r
β(k)
r br(xi) :=

(
Xkβ

(k)
)

i
, (4)

where br are cubic B-splines, which are bell-shaped cubic
polynomials over a finite local support [8]. The column of
the n×pk matrixXk , where pk is the number of basis func-
tions in smooth fk , represents a basis function br evaluated
at each position xi.
Typically all smooth functions have the same bases and

knot positioning, implying that all Xk are equal to each
other. Consequently, the complete design matrix X is the
Kronecker product of the experimental design matrix Z
and Xk .

log(μi) = oi + (Xβ)i, (5)

where X = Z ⊗ Xk and the vector β is the concatenation
of all β(k).
The fitting of the parameters β is carried out by maxi-

mizing the negative binomial log-likelihood plus a penalty
function:

β̂ = argmax
{
lNB(β ; y, θ) − λβT (S + εI)β

}
(6)

where S is a symmetric positive matrix that approximately
penalizes the second order derivatives of the smooth
functions. This approach is called penalized B-splines or
P-splines [9]. The εI term adds regularization on the
squared values of the β ’s, which is particularly useful for
regions with many zero counts. The smoothing param-
eter λ controls the amount of regularization. Both the
smoothing parameter λ and the dispersion parameter θ

are considered as hyperparameters that are estimated by
cross-validation [3].
Newton-Raphson methods are used to maximize

Eq. (6). The idea is to iteratively maximize quadratic
approximations of the objective function around the
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current estimate. The current parameter vector βt is
updated as:

βt+1 = βt − H−1(βt)�f (βt) (7)

where the negative inverse Hessian H−1(βt) captures the
local curvature of the objective function, and the gradi-
ent vector �f (βt) captures the local slope. The iteration
stops when the change in the log-likelihood or the norm
of the gradient of the log-likelihood falls below a specified
convergence threshold. Because the negative binomial dis-
tribution with known dispersion parameter θ is part of the
exponential family, the penalized log-likelihood is convex
and thus convergence is guaranteed.

Standard error computation
For the purpose of statistical testing, variance of the
smooth estimates are also needed. These are of the form:

Var(fk(xi)) = σ 2
i,k =

(
XkH−1

k XT
k

)

i,i
, (8)

where Hk is the Hessian with respect to the parameters
β(k) and can be simply extracted fromH.

Remarks on sparsity
The HessianH is computed as:

H = XTWX − 2λ(S + εI) (9)

withW a diagonal matrix [6].
However, the number of nonzeros for each row of the

design matrix X is at most 5 times the number of smooth
functions because every genomic position xi is overlapped
by 5 cubic B-splines br only. Moreover, the penalization
matrix S only has 5 nonzeros per row, as it encodes the
second-order difference penalties between coefficients of
neighboring splines [9]. Hence, the matrices X and S, and
therefore H, which appears in the majority of the compu-
tations via Eqs. (7) and (8), are very sparse. Here we make
use of the sparsity of these matrices to drastically speed up
the fitting of the parameters.

Implementation
Workflow
Data preprocessing consists of reading raw read align-
ments from BAM files, centering the fragments, comput-
ing the coverage y, and splitting the data by genomic tiles
(Fig. 1). Afterwards, normalization factors for sequencing
depth variation are computed using DESeq2 [10]. In the
new version of GenoGAMwe store the preprocessed data
in HDF5 files [11] through the R packages HDF5Array
[12] and rhdf5 [13]. This allows writing in parallel as the
data is being preprocessed, which reduces the memory
footprint of this step. For all subsequent matrix operations
the Matrix package is used, which implements rou-
tines for storage, manipulation and operations on sparse
matrices [14].

Fitting GenoGAM models on tiles is achieved by the
Newton-Raphson algorithm (Eq. 7). This is done on few
representative tiles during cross-validation in order to
identify optimal hyperparameters λ and θ , and subse-
quently when fitting the model on the full dataset.
The variance of the smooth estimates (Eq. 8) is obtained

using the sparse inverse subset algorithm as detailed in
a subsection below. The implementation is based on the
R package sparseinv [15], which wraps relevant code
from the SuiteSparse software [16]. As in the pre-
vious GenoGAM model [3], fitting on different tiles is
conducted in parallel. The result objects for the fits, vari-
ances and parameters are initialized prior to fitting on
hard drive. This allows the processes to write results in
parallel on the fly, ensuring fast computation and low
memory footprint. The HDF5 storage is further opti-
mized for reading time by adjusting HDF5 chunk size
to the size of the tiles (for preprocessed count data)
and chunks (for fits and variance). As HDF5 is not
process-safe on R level, writing is serialized by a queuing
mechanism.
The parallelization backend is provided by the R pack-

age BiocParallel. It offers an interface to a vari-
ety of backends and can be registered independently of
GenoGAM. Parallelization is performed over chromo-
somes during the read-in process. Over tuples of folds
and tiles during cross-validation process and over tiles
during fitting process. Because some backends have a
particular long start-up time, the use of many processes
might end up dominating computation time. Specifi-
cally during cross-validation on small and limited num-
ber of regions, this might pose a problem. Therefore
an optimal number of workers is automatically obtained
and registered by the cross-validation function and reset
on exit.

Newton-Raphson implementation for sparse matrices
We estimate the parameters β by maximizing the penal-
ized log-likelihood using the Newton-Raphson iteration
(Eq. 7). Due to the sparsity of the matricesX,D and S,H is
sparse and cheap to compute. The inverse is never explic-
itly formed. Instead the linear system is solved by a direct
solver using the SuperLU library [17]. Furthermore all
matrices are stored in a sparse format, avoiding redundant
storage of zeros.
Our new fitting algorithm differs from the one of mgcv

in two ways. First, mgcv uses Iteratively Reweighted
Least Squares, a Newton-Raphson method that employs
the Fisher information matrix I , defined as the negative
expectation of the Hessian H, instead of the Hessian in
the iteration (Eq. 7). However, this did not lead to any
measurable differences in the fitted parameters. Second,
mgcv uses QR decomposition of the design matrix X [6].
However, general QR decomposition destroys the sparse
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Fig. 1 Schematic overview highlighting the difference between GenoGAM 1.0 and GenoGAM 2.0: Raw BAM Files are read-in, pre-processed
normalized and written to hard drive in HDF5 format. Moreover, normalization factors for sequencing depth variation are computed using DESeq2
[10]. The resulting object is the dataset upon which fitting is done. Then global hyperparameters are estimated by cross-validation and for each tile
coefficients are estimated via Newton-Raphson and standard errors via sparse inverse subset algorithm. The final model is written as a new object to
hard drive in HDF5 format. Note, that the schematic view is a simplification: The pre-processed dataset and the fitted model are not generated in
memory and written to HDF5 in the end. Instead, all HDF5 matrices are initialized on hard drive directly and the writing is done on the fly. Blue
(GenoGAM 1.0) and orange colors (GenoGAM 2.0) mark differences between both GenoGAM versions, simultaneously displaying the content of this
paper

structure of X. We have investigated the use of sparse QR
decompositions but this was less efficient than our final
implementation.

Variance computation using the sparse inverse subset
algorithm
The Hessian H is sparse, but its inverse, the covariance
matrix H−1, usually is not. However, the variances of
interest (Eq. 8) can be computed using only a subset of the
elements of the inverseH−1. Specifically, denoting for any
matrix A:

• NZ(A) = {(i, j),Ai,j �= 0} the indices of nonzero
elements,

• Ci(A) = {j : Ai,j �= 0} the column indices of nonzero
elements for the i-th row,

• Rj(A) = {i : Ai,j �= 0} the column indices of nonzero
elements for the j-th row,

then σ 2 can be computed only using the elements (H−1)l,j,
where (l, j) ∈ NZ(H). Indeed, on the one hand we have:

σ 2
i =

∑

l,j
Xi,l

(
H−1)

l,j Xi,j (10)

=
∑

(l,j)∈C2
i (X)

Xi,l
(
H−1)

l,j Xi,j

On the other hand, Eq. 9 implies that NZ(H) =
NZ(XTWX) ∪ NZ(S) ∪ NZ(I). Since

(XTWX)l,j =
(

∑

i
Xi,lWi,iXi,j

)
, (11)

it follows that:
(
XTWX

)

l,j
�= 0 ⇔ ∃i, i ∈ Rl(X) and i ∈ Rj(X)

⇔ ∃i, (l, j) ∈ C2
i (X)

Moreover, the nonzeros of the identity matrix I is
a subset of the nonzeros of the second-order dif-
ferences penalization matrix S [9]. Furthermore, the
nonzeros of the second-order differences penalization
matrix S, which penalizes differences between triplets
of consecutive splines, is a subset of the nonzeros of
XTX, since genomic positions overlap five consecutive
splines when using cubic B-splines. Hence, NZ(H) ={
(l, j), ∃i, (l, j) ∈ C2

i (X)
}
. Together with Eq. 10, this proves

the result.
Using only the elements of H−1 that are in NZ(H)

applies to computing the variance of any linear combina-
tions of the β based on the same sparse structure of X or a
subset of it. Hence, it applies to computing the variance of
the predicted value for any smooth function fk(x) or com-
puting the variance of the derivatives of any order r of any
smooth drfk(x)

drx .
To obtain the elements of H−1 that are in NZ(H), we

used the sparse inverse subset algorithm [18]. Given a
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sparse Cholesky decomposition of symmetric matrix A =
LLT , the sparse inverse subset algorithm returns the val-
ues of the inverse A−1 that are nonzero in the Cholesky
factor L. Since nonzero in the lower triangle of A are
nonzeros in the Cholesky factor L [19], the sparse inverse
subset algorithm provides the required elements of H−1

when applied to a sparse Cholesky decomposition of H.
See also Rue [20] for similar ideas for Gaussian Markov
Fields. To perform the sparse inverse subset algorithm, we
used the R package sparseinv [15], itself a wrapper of
relevant code from the SuiteSparse software [16].
Once the sparse inverse subset of the Hessian is

obtained, σ 2
i can be computed according to Eq. (10) with a

slight improvement: Because only the diagonal is needed
from the final matrix product, the implementation does
not perform two matrix multiplications. Instead, only the
first product is computed, then multiplied element-wise
with XT

k and summed over the columns.

Results
Leveraging the sparse data structure allows for faster
parameter estimation
Figure 2 displays the comparison in fitting runtime (A)
and memory usage (B) of our Newton-Raphson method
versus the method underlying the previous GenoGAM
version on a single core. Computation was capped at

approximately 2 h, which leads the blue line (GenoGAM
1.0) to end after around 1100 parameters. It can be clearly
seen that exploiting the advantages of the data structures
leads to improvements by 2 to 3 orders of magnitude.
At the last comparable point at 1104 parameters it took
the previous method 1 hours and 37 min, while it was
only 1 s for the Newton-Raphson method. This number
increased a little bit towards the end to almost 5 s for 5000
parameters.
Additionally, the more efficient storage of sparse matri-

ces and the lightweight implementation reduces the over-
head and memory footprint. Again at the last comparable
point, thememory used by the previousmethod is 8 Gbyte
while it is 52 MByte by the new method, increasing to
250 MByte at the 5000 parameters mark. Moreover, run-
time per tile drops empirically from growing cubically
with the number of parameters in GenoGAM 1.0 to lin-
early in GenoGAM2.0. Also, Thememory footprint drops
empirically from growing quadratically with the number
of parameters in GenoGAM 1.0 to linearly in GenoGAM
2.0 (dashed black lines fitted to the performance data).

Exact σ 2 computation by the sparse inverse subset
algorithm
Alternatively to the direct computation of the inverse Hes-
sian with consecutive computation of variance vector σ 2,

Fig. 2 Coefficient estimation performance. a Empirical runtime for the estimation of coefficients vector β is plotted in log-scale against increasing
number of parameters (also log-scale). The runtime is capped at around 2 hours, such that runtime of previous GenoGAM version (blue line)
terminates after 1100 parameters. The new version of GenoGAM (orange line) achieves linear runtime in p (dotted line p), the number of parameters,
compared to the previous cubic complexity (dotted line p3). bMemory consumption in MByte for the estimation of coefficients vector β is plotted
against number of parameters (also log-scale). Due to the runtime cap at around 2 hours the runtime of previous GenoGAM version (blue line) does
terminate after 1100 parameters. The storage of matrices in sparse format and direct solvers avoiding full inversion keep the memory footprint low
and linear in p (dotted line p) for the new GenoGAM version (orange line) compared to quadratic in the previous version (blue line, dotted line p2)
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it is also possible to directly compute σ 2. Here and here-
after the smooth function specific index k is dropped for
simplicity. In a comment to the paper of Lee and Wand
[21], a direct way to compute σ 2 without inverting H was
proposed by Simon Wood [22]. The comment states, that
in general, if y = Xβ , then

σ 2
i =

p∑

j=1

((
XPTL−1

)

i,j

)2
(12)

Where P is the permutation matrix and L−1 is the
inverted lower triangular matrix resulting from Cholesky
decomposition of XTH−1X.
Figure 3 shows the comparison of both methods in

time and memory on a single core, with the above pro-
posed method depicted as “indirect” (blue). While both
methods have linear memory footprint, the slope of
the indirect method is around four times higher. The
computation time is significantly in favor of the sparse
inverse algorithm. This is because for every σ 2

i a tri-
angular system has to be solved to obtain (XPT )iL−1.
Although solving the complete system at once is faster,
it had a high memory consumption when it came
to increased number of parameters in our implemen-
tation. Thus the performance presented is based on

batches of σ 2
i to obtain a fair trade-off between run-

time and memory. Nevertheless, the difference remains
around 2 orders of magnitude. Moreover runtime goes
now linearly in practice for the sparse inverse subset
algorithm compared to quadratically for the indirect
method (dashed black lines fitted to the performance
data).

Performance on human and yeast ChIP-Seq datasets
The previous version of GenoGAM could only be partially
applied genome-wide for megabase-scale genomes such
as the yeast genome and was impractical for gigabase-
scale genomes such as the human genome. A genome-
wide model fit with two conditions and two replicates
each took approximately 20 h on 60 cores [3]. With com-
putational and numerical improvement on one side and
a data model largely stored on hard drive on the other
side, runtime and memory requirements have dropped
significantly. Figure 4 shows the runtime performance on
seven human ChIP-Seq datasets with two replicates for
the IP and one or two replicates for the control. The
analysis was performed with 60 cores on a cluster, the
memory usage never exceeded 1.5 GB per core and was
mostly significantly lower. The overall results show that
around 20 min are spent with pre-processing the data,
which is largely occupied by writing the data to HDF5

Fig. 3 Standard error computation. a Empirical runtime for the computation of standard error vector σ 2 is plotted in log-scale against increasing
number of parameters (also log-scale). Computation based on sparse inverse subset algorithm (orange line) achieves linear runtime in p (dotted line
p), the number of parameters, compared to quadratic complexity (dotted line p2) of the “indirect” method (blue line). bMemory consumption in
MByte for the computation of standard error vector σ 2 is plotted against number of parameters. Though both methods achieve linear memory
consumption in p, the slope of the “indirect” method (blue line) is around 4 times greater than of the sparse inverse subset algorithm (orange line)
likely due to the recursive computation of the inverse instead of solving of a triangular system
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Fig. 4 Genome-wide performance for human and yeast. The performance of GenoGAM 2.0 on seven human ChIP-Seq datasets for the transcription
factors NRF1, MNT, FOXA1, MAFG, KLF1, IRF9 and CEBPB. The first three of which contain two replicates for the control, while the rest contains only
one. This increases the data by around a 1/3, but the runtime by around 40 min, equivalent to approximately 1/11. Overall ca. 20 min are spent on
data processing (blue), up to one hour on cross-validation (green) and 7 - 8 h of fitting (orange) amounting to a total of 8 - 9 h runtime on 60 cores,
with the snow parallel backend and HDF5 data structure. At the very top yeast runtime is shown on a regular machine with 8 cores, the
multicore backend and all data kept in memory avoiding I/O to hard drive. Data processing (blue, almost not visible) takes 40 s, cross-validation
around 9 min (green) and fitting 3.5 min (red)

files. One hour of cross-validation, to find the right hyper-
parameters and around 7 to 8 h of fitting, amounting to
a total runtime of 8 to 9 h. It is also notable, that the
transcription factors NRF1, MNT and FOXA1 include
two controls instead of one, thus efficiently increasing
the amount of data to fit by a third, but the runtime by
around 40 min.
Additionally, the same yeast analysis is shown by run-

ning on a laptop with 8 cores for comparison to the
previous version. The total runtime is around 13 min with
the cross-validation significantly dominating both other
steps (around 9 min). This is due to the fact, that the
number of regions used is fixed at 20, resulting in 200
model fitting runs for one 10-fold cross-validation itera-
tion. Hence, for a small genome like the yeast genome,
hyperparameter optimization may take more time than
the actual model fitting. Note, that during cross-validation
the only difference between human and yeast analysis
is the underlying data and the parallel backend. How-
ever the runtime on yeast is only 1/6 of the runtime
in human. Both factors play a role in this: First, the
parallel backend in the yeast run uses the Multicore
backend, allowing for shared memory on one machine.
While the human run uses the Snow (simple network of
workstations) backend, which needs to initiate the work-
ers and copy the needed data first, resulting in an overall
greater overhead. Second, convergence on yeast data is
generally faster due to higher coverage resulting not only
in less iterations by the Newton-Raphson, but also during
cross-validation.

Replication of previous benchmark analyses show
equivalent biological accuracy
To demonstrate that GenoGAM 2.0 leads to the same
results than GenoGAM 1.0 we have re-generated bench-
mark analyses of the first paper [3]. The first benchmark
is a differential occupancy application that demonstrates
that GenoGAM has greater sensitivity for same speci-
ficities than alternative methods (Fig. 5a-b). The second
benchmark shows that GenoGAM is on par with alterna-
tive methods to infer peak summit positions in ChIP-Seq
data of transcription factors (Fig. 5c). Consistently, with
the fact that GenoGAM 2.0 fits the same function than
GenoGAM 1.0, the performance on these two bench-
marks matched.
These improvements have required us to re-implement

the fitting of generalized additive models, since
GenoGAM 1.0 was based on an generic R package for
fitting generalized additive models. We have restricted
the implementation so far to the negative binomial dis-
tribution. Therefore, application to methylation data,
which requires the quasi-binomial distribution, is not yet
supported.

Conclusion
We have significantly improved the implementation of
GenoGAM [3] on three main aspects: Data storage, coef-
ficient estimation and standard error computation. We
showed its runtime and memory footprint to scale lin-
early with the number of parameters per tiles. As a result,
GenoGAM can be applied overnight to gigabase-scale
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Fig. 5 Replication from our previous study [3] with GenoGAM 2.0. a Replication of figure 3A from our previous study [3]. ROC curve based on a
quantile cutoff of 0.15 (15% of the genes are assumed to be true negatives). GenoGAM (orange and blue) has a constantly higher recall with a lower
false positive rate. b Replication of Fig. 3b from our previous study [3]. Area under the curve (AUC) for all possible quantile cutoffs from 0 to 1 in steps
of 0.01. GenoGAM 1.0 (blue) and GenoGAM 2.0 (orange) are almost identical and are thus largely overlapping. Up to a cutoff of 0.6, GenoGAM
(orange and blue) performs consistently better than all competitor methods by around 0.03-0.04 points above the second best method (csaw and
DESeq2, pink and green, respectively). The entire range of quantile cutoffs is shown out of completeness, reasonable values are between 0.15 and
0.25. c Replication of supplementary figure S9C from our previous study [3]. Proportion of significant peaks within 30 bp of motif center and 95%
bootstrap confidence interval (error bars) for six ENCODE transcription factors (CEBPB, CTCF, USF1, MAX, PAX5, YY1) on chromosome 22 and for the
yeast TFIIB dataset

genome datasets on a typical lab server. Runtime for
mega-base genomes like the yeast genome is within min-
utes on a standard PC. Finally, our algorithmic improve-
ments apply to GAMs of long longitudinal data and can
therefore be relevant for a broader community beyond the
field of genomics.

Availability and requirements
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Programming language: R, C++
Other requirements: R 3.4.1 (https://cran.r-project.org/)
or higher
License: GPL-2
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