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We introduce a method to investigate the static and dynamic properties of both Abelian and non-Abelian
lattice gauge models in 1þ 1 dimensions. Specifically, we identify a set of transformations that disentangle
different degrees of freedom, and apply a simple Gaussian variational ansatz to the resulting Hamiltonian.
To demonstrate the suitability of the method, we analyze both static and dynamic aspects of string breaking
for the U(1) and SU(2) gauge models. We benchmark our results against tensor network simulations
and observe excellent agreement, although the number of variational parameters in the Gaussian ansatz is
much smaller.
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I. INTRODUCTION

Gauge theories lie at the basis of our fundamental
understanding of nature. Quantum electrodynamics (QED)
describes the interactions of electrons and positrons with
the electromagnetic field and is based on the U(1) gauge
symmetry group. Quantum chromodynamics (QCD)
accounts for the strong interaction between quarks and
gluons and is based on the SU(3) gauge group. Those
theories are roots of the standard model, that comprises our
current understanding of particle physics. While in pertur-
bative limits they are very well understood [1], this is not
the case in general.
A very powerful framework to address nonperturbative

regimes is lattice gauge theory (LGT) [2,3] where space
(and time) is discretized. In such a theory the fermionic
(matter) degrees of freedom reside in the sites of a cubic
lattice, the bosonic (gauge) ones in the links, and they
interact with each other in a gauge invariant way. The
continuum limit is then recovered when the lattice constant
is taken to zero, by properly renormalizing the coupling
constants in the process. Monte Carlo methods [4–6] have

successfully been used in LGT to compute with a very high
precision several physical properties in different models.
This approach works extremely well as long as the so-
called sign problem [7] is absent, which is the case for static
(thermal equilibrium) problems in QED or QCD in the
absence of a chemical potential.
In dynamical scenarios or regimes in which Monte Carlo

simulations suffer from the sign problem, one has to look
for other techniques. Hence, there is an ongoing interest in
overcoming these limitations [8–12].
Hamiltonian latticemethods, aspioneered inRefs. [13–22],

might offer another possibility. Recently, several research
groups have addressed relatively simple lattice gauge
models in the Hamiltonian formulation using tensor net-
work techniques [23,24], motivated by the success of
DMRG [25] and related approaches to solve strongly
correlated condensed matter systems in lattices.
Those methods are based on variational ansätze over

families of states. Most of the work [26–38] so far has been
concentrated in 1þ 1 dimensions, where such family
corresponds to matrix product states (MPS). Despite their
simplicity, those models contemplate many of the phenom-
ena that are expected to occur in higher dimensions, such as
confinement [39], string breaking [30], etc. In fact, some
studies have successfully analyzed models with the sign
problem [28,40–43], and thus raise the expectations about
tensor network methods complementing Monte Carlo tech-
niques. However, the extension of these methods to higher
dimensions is still under development, and it is not clear if
the methods will succeed in such cases (other methods
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suggesting to use projected entangled pair states for
the study of lattice gauge theories have been proposed
[37,44–46]). Another important class of states that are
commonly used for variational calculations are Gaussian
states [47–51]. Those are defined for bosonic and fermionic
theories, and comprise all states that can be generated by a
Gaussian function of creation and annihilation operators
acting on the vacuum. As they fulfill Wick’s theorem,
one can compute expectation values very efficiently and
thus use them for variational calculations [52–55].
Unfortunately, in the case where both bosons and fermions
are present, Gaussian states cannot accommodate any
correlations between them beyond mean-field, and thus
they are not useful for the description of lattice models with
matter and gauge fields. Apart from that, their special form
makes them unsuitable to study many complex phenomena.
In this paper we show how one can use Gaussian states as

variational ansatz for LGT in 1þ 1 dimensions to study
both ground state and dynamical properties. The main idea
is to first apply transformations that disentangle the bosonic
and fermionic degrees of freedom, followed by trans-
formations that convert the Gaussian states in suitable
ansätze for variational calculations. A similar procedure has
been recently successfully applied to condensed matter
models [55,56]. We apply such method to the U(1)
(Schwinger model) and SU(2) gauge groups, with special
emphasis on the latter. We analyze the ground state, as well
as the time dynamics in the presence of external charges. In
order to benchmark the approach, we compare our results
to those from either published MPS calculations [30,40] or
by explicitly performing MPS simulations ourselves.
Despite the fact that the number of variational parameters
in the Gaussian ansatz is much lower than in MPS, we
observe very good agreement, thereby showing the suit-
ability of our approach to LGT simulations. Furthermore,
the method presented here does not suffer from a violation
of the area law, in contrast to MPS, which makes it suitable
also for the study of real time dynamics after quenches.
Using the transformed Hamiltonian, we study static as

well as dynamic properties of string breaking. First, to
probe the static aspects of the phenomenon, we compute
the interacting vacuum of the theory in the presence of
external charges. This allows us to determine the static
potential, i.e., the excess energy compared to the vacuum
without external charges as a function of the distance
between the external charges [57]. We demonstrate that the
method reliably distinguishes between the regimes where a
flux string is present in the ground state and string breaking
occurs. Second, we simulate the real-time evolution of a
flux string, compute local observables and monitor the
spatially resolved flux profiles as well as correlation
functions throughout the evolution. These studies allow
us to clearly distinguish between the string and broken
string cases in both the ground state and dynamical
evolution. The ansatz captures the relevant features and

it is possible to simulate the dynamics even in the scenario
of a global quench.
The rest of the paper is structured as follows. In Sec. II

we briefly review the Kogut-Susskind Hamiltonian lattice
formulation [58] for a gauge theory with a compact
symmetry group. Afterwards we show how the gauge field
can be decoupled for systems with open boundary con-
ditions (OBC) and discuss how to apply the variational
method to the resulting formulation in Sec. III. Once the
general framework has been established, we benchmark our
approach for two specific cases. In Sec. IV we test the
ansatz for describing static properties (Sec. IVA) and real-
time dynamics of string breaking (Sec. IV B) for a U(1)
LGT. For the former, we compare our results to those
obtained in Ref. [30] close to the continuum limit. In Sec. V
we turn to the non-Abelian case of a SU(2) LGT. We
introduce two additional unitary transformations which
allow us to apply the Gaussian variational ansatz in the
presence of external charges by decoupling dynamic and
static fermions (Sec. VA). Again, we characterize the
ground state (Sec. V B) and real-time dynamics (Sec. V C)
of the system and benchmark our results against MPS
simulations. Finally, we conclude in Sec. VI.

II. MODEL

The model we are studying is a (1þ 1)-dimensional
LGT with compact gauge group. We adopt the Kogut-
Susskind Hamiltonian formulation with staggered fermions
[58] which reads

H ¼ ε
XN
n¼1

ðϕ†
nU

j
nϕnþ1 þ H:c:Þ

þm
XN
n¼1

ð−1Þnϕ†
nϕn þ

g2

2

XN−1

n¼1

L2
n ð1Þ

on a lattice with N sites. For Eq. (1) to correspond to the
discretization of the continuum theory as in Ref. [58], one
identifies ε ¼ 1=ð2aÞ, g2 ¼ g20a andm ¼ m0, where g0 and
m0 are the bare coupling and mass, and a is the lattice
spacing. In general, for compact gauge groups G the

operatorsUj
n are unitariesU

j
n ¼ expðiPdimðGÞ

a θanTa;jÞwith
as many independent angular variables θa as generators of
the Lie algebra associated to G, Ta;j. These generators
satisfy

½Ta;j; Tb;j� ¼ i
X
c

fabcTc;j ð2Þ

where fabc are the structure constants, and j labels a given
representation. These angular variables θan are related to the
gauge field on a link n as θcn ¼ −agA1;c

n . The fermionic
field ϕn is a spinor in the same representation as Uj and
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resides on site n. The electric term in Eq. (1) can be written
in terms of either the left or right electric fields Ln and Rn
where each of them has dimðGÞ components. They are
related by a group element in the adjoint representation
UAdj:

n , Rn ¼ UAdj
n Ln, and fulfill the commutation relations

½Ra;Rb� ¼ i
X
c

fabcRc; ½La;Lb� ¼−i
X
c

fabcLc: ð3Þ

Moreover, as conjugate momenta of the gauge field, Ln and
Rn fulfill the commutation relations

½La
k; ðUj

kÞαβ� ¼
X
γ

ðTa;jÞαγðUj
kÞγβ

½Ra
k; ðUj

kÞαβ� ¼
X
γ

ðUj
kÞαγðTa;jÞγβ: ð4Þ

Physical states jψi have to fulfill Gauss’ law, Ga
njψi ¼ 0

for all a, n, where

Ga
n ≔ La

n − Ra
n−1 −Qa

n: ð5Þ

In the expression above Qn is the total charge which
consists of the dynamical Qn and static (external) charges
qn at the site n, Qn ¼ Qn þ qn.
In the case of the Abelian group U(1), ϕn is just a single

component fermionic field and, since the structure con-
stants vanish, Rn ¼ Ln ¼ Ln. The link operators reduce to
Un ¼ expðiθnÞ, where the phase θn ∈ ½0; 2π� represent an
Abelian phase related to the gauge field as θn ¼ −agA1

n. In
this case the commutation relations between the conjugate
variables from Eq. (4) yield

½θn; Lm� ¼ iδn;m: ð6Þ

The staggered charge is defined as Qn ¼ ϕ†
nϕn−

ð1 − ð−1ÞnÞ=2, and qn is simply a real number. In the
limit of strong coupling, g ≫ 1, meaning that the hopping
term in Eq. (1) can be neglected, the Hamiltonian can be
solved analytically. The gauge invariant ground state in the
sector of vanishing total charge is simply given by the odd
sites occupied by a single fermion, empty even sites, and
the links carrying no electric flux

jψSC;Uð1Þi ¼ j1; 0; 1; 0;…i ⊗ j0igauge: ð7Þ

In the expression above the numbers in bold face indicate
the fermionic occupation and j0igauge indicates the total
electric flux carried by gauge links. This state is the lattice
analog of the Dirac sea or the bare vacuum of the theory.
For the gauge group SU(2), the fermionic fields in the

fundamental j ¼ 1=2 representation are given by

ϕn ¼ ðϕr
n;ϕ

g
nÞT; ϕ†

n ¼ ðϕr;†
n ;ϕg;†

n Þ ð8Þ

taking into account the two colors components ϕr (“red”)
and ϕg (“green”). The structure constants are given by the
completely antisymmetric Levi-Civita symbol fabc ¼ ϵabc

and the generators are represented by Ta;1=2 ¼ σa=2 with
σa the Pauli matrices. Therefore there are three independent
angular variables θa on each link.
The total SU(2) color charge is then given by Qn ¼

Qn þ qn with three different components

Qa
n ¼

1

2
ϕ†
nσaϕn; qan ¼

1

2
σa ð9Þ

for a ¼ x, y, z, where the external charges at a given site qn
are nothing but spin operators. Note that when there is no
static charge on site n then qan ¼ 0.
Similar to the Abelian case of U(1), the ground state in

the limit of large g can be solved analytically yielding the
bare vacuum

jψSC;SUð2Þi ¼ j1; 1; 0; 0; 1; 1…i ⊗ j0igauge ð10Þ

where the bold numbers now correspond to the occupation
numbers of each color of fermions on a site and j0igauge
again indicates the gauge links carrying no color flux.
Unless stated otherwise, we fix for all the following the

hopping amplitude to ε ¼ 1 as unit of energy. Moreover,
we also set ℏ ¼ 1.

III. METHODS

A. Decoupling the gauge field

Because of the absence of transversal directions in 1þ 1
dimensions, the gauge degrees of freedom are not truly
independent. Hence, it is always possible to decouple the
matter and the gauge fields by applying a unitary trans-
formation to the Hamiltonian (1). Here we present a simple
way of performing such a decoupling for systems with
OBC.While similar transformations were carried in [59,60]
for periodic boundary conditions, the resulting Hamiltonian
takes a simpler form in our case. This unitary trans-
formation works for any gauge symmetry given by a
compact Lie group and a unitary representation. In the
following we briefly summarize the main steps and show
the full derivation in Appendix A.
The decoupling is achievedwith the unitary transformation

Θ ¼
Y→
k¼1

exp

�
iθk ·

X
m>k

Qm

�
; ð11Þ

where the superscript → means that the product must be
ordered from left to right with increasing site index k.
Applying this transformation to the Hamiltonian, we obtain
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HΘ ≔ ΘHΘ† ¼ ε
X
n

ðϕ†
nϕnþ1 þ H:c:Þ

þm
X
n

ð−1Þnϕ†
nϕn þ

g2

2
He ð12Þ

where the electric energy term in the sector of vanishing total
charge exhibits a long-range Coulomb interaction

He ¼
X
a

X
n;m

Qa
nVn;mQa

m ð13Þ

between the charges with Vn;m ¼ −jn −mj=2. Moreover, in
the sector of vanishing total chargeGauss’ law is transformed
to La

n ¼ Θ†Ga
nΘ ¼ 0 acting on the physical space.

A few comments are in order. The transformation shown
above is completely general and does not rely on the
Gaussian variational approach. For the case of U(1) the
resulting Hamiltonian is equivalent to the one used in
previous numerical studies [27,28,61] and recently realized
in a quantum simulation experiment [62]. Hence, the
transformed Hamiltonian from Eq. (12) might be suitable
for both the design of future quantum simulators as well as
for other numerical methods.

B. Variational approach

In order to solve the transformed Hamiltonian HΘ, we
apply a time-dependent variational method following
the ideas from Ref. [55]. Our variational ansatz in the
untransformed frame corresponding to the Hamiltonian (1)
is given by

jψ >¼ Θ†UextjGSij0igauge ð14Þ

where jGSi is a general fermionic Gaussian state, Θ is the
unitary transformation from Eq. (11), and Uext is another
unitary transformation which decouples dynamic and static
fermions (see Sec. VA for more details). In particular, we
see that the transformation Θ is not Gaussian. As a result,
although jGSi is a Gaussian state, the ansatz jψi in the
original frame is not.
Our goal is to study the evolution of jψi under the

Hamiltonian (1) in either imaginary or real time to obtain,
respectively, the ground state or the dynamic properties.
Equivalently, we can study the evolution of jGSi under the
rotated HamiltonianUextΘHΘ†U†

ext. As shown for example
in Refs. [53–55], every fermionic Gaussian state is com-
pletely characterized by its covariance matrix

Γ ¼
� hϕϕ†i hϕϕi
hϕ†ϕ†i hϕ†ϕi

�
ð15Þ

which collects all two-point correlation functions since ϕ,
ϕ† stand for the vectors collecting all annihilation and
creation operators respectively, i.e., ϕ ¼ ðϕ1;ϕ2;…;ϕMÞT

with M the number of modes. For the Schwinger model
M ¼ N, whereas for the SU(2) LGTwe have twice as many
modes, M ¼ 2N, due to the two colors of fermions. Thus,
in order to compute the evolution of jψi, we have to
determine the evolution of Γ in imaginary and real time
which is given by the equations [55]

d
dτ

ΓðτÞ ¼ fΓ;HðΓÞg − 2ΓHðΓÞΓ ð16Þ

i
d
dt

ΓðtÞ ¼ ½HðΓÞ;Γ�: ð17Þ

In the expression aboveHðΓÞ is the (effective) single-particle
Hamiltonian in the UextΘ-rotated frame (see Appendices A
andB for details). Equation (16) yields the ground state in the
limit τ → ∞, while Eq. (17) describes real-time dynamics in
the family of fermionic Gaussian states.

IV. U(1) GAUGE THEORY

Let us first consider the simple Abelian case of the
Schwinger model. Since for the U(1) gauge group the
external charges are merely complex numbers, and hence
Uext ¼ 1̂, the variational ansatz reads jψi ¼ Θ†jGSij0igauge.
We will first analyze the (interacting) ground state (sub-
sectionA), and then the real-time dynamics in the presence of
two static charges (subsection B). In both cases we will
consider the decoupled Hamiltonian from Eq. (12) that
contains the matter fields only. In order to benchmark the
Gaussian variational approach, we compare our results to the
MPS computations carried out in Refs. [30,40].

A. Static properties

In this section, we study the static potential between
external charges for both the massless and the massive
Schwinger model. First we compute the ground state
energy Evac by evolving the bare vacuum (Dirac sea) from
Eq. (7) according to Eq. (16). In order to determine the
ground state energy EQðLÞ in the presence of static charges,
we repeat the calculation but this time placing on top of
the vacuum a pair of external charges separated by a
distance L and connected by a string of electric flux (to
fulfill Gauss’ law).
In Fig. 1, we compare our results for the static potential,

VQðLÞ ¼ EQðLÞ − Evac, to those obtained via a gauge-
invariant MPS simulation in Ref. [30] where the gauge field
was not eliminated. To compare our results to those in
Ref. [30], we identify ε ¼ 1=ð2aÞ and g2 ¼ g20a. Then the
continuum limit of the model is obtained as a → 0. One can
introduce the dimensionless parameter x ¼ 1=ðg0aÞ2, such
that the continuum limit corresponds to x → ∞.
In Fig. 1(a) we show numerical results from MPS and

Gaussian ansätze in the case of two small but finite lattice
spacing values, for the quantity
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Δ ¼ 1

g
jVQð∞Þ − VQðLÞj ð18Þ

where VQð∞Þ is the exact analytical value of VQðLÞ when
L → ∞ in the continuum limit [63]. We observe that
both ansätze behave very similarly, and the relative
error between both is below 0.3% considering MPS as
the reference result.
For the massive Schwinger model, we choose x ¼ 100 in

order to compare the potential VQðLÞwith that in Ref. [30].
Although this case is not exactly solvable, it is well known
[30,64] that as long as the static charges are integer
multiples of the fundamental charge g, these will be
completely screened by the particle-antiparticle pairs cre-
ated out of the vacuum in the broken string case. As soon
as L reaches the critical distance Lc and this happens, the
potential VQðLÞ saturates to a constant value, where the
excited pairs of dynamical fermions screen the static
charges creating two isolated color singlets (also called
mesons [40]). In Fig. 1(b) the static potential for Q=g ¼ 1
and different values ofm=g shows that the smallerm=g, the
easier it is to break the string, i.e., smaller values for Lc.
The accuracy of the Gaussian variational method can be
validated in comparison to MPS with relative error
bounded by 0.7% even for L close to Lc.
In Fig. 1(c) we consider noninteger values of Q=g for

m=g ¼ 1. In this case the static charges cannot be com-
pletely screened via production of pairs, which can only
screen their integer part. This fact gives rise to the
appearance of several string breaking processes with a
remaining flux connecting the charges. In this case the
relative error between the two ansätze is bounded by 0.4%
in comparison with MPS results in Ref. [30].
The reason why the Gaussian ansatz turns out to describe

the model so accurately, can be understood as follows. In
the limit x → ∞, the Hamiltonian (12) becomes quadratic

and then it can be exactly solved by the Gaussian ansatz.
On the other hand, for x → 0, the hopping term vanishes
and the ground state is given by the bare vacuum (7). In
fact, this state turns out to be a Gaussian state as well and
therefore both limits are accurately captured by the
Gaussian ansatz. This analysis together with the results
for the charge and flux distribution profiles shows that the
Gaussian ansatz accurately captures the equilibrium proper-
ties of the U(1) Schwinger model. In the following sections
we return to our original parameter convention fixing ε ¼ 1
as unit of energy similar to the discrete models considered
in Refs. [40,41].

B. Real-time dynamics

In this section we probe the validity of the Gaussian
ansatz to describe dynamical properties of the Schwinger
model by solving Eq. (17) for certain initial conditions. In
particular we are interested in the dynamics of string
breaking. We consider two different scenarios: (i) an initial
dynamical string configuration whose ends at n1 and n2 can
freely propagate, which we call the free string, given by the
non-Gaussian state Θ†ϕ†

n1ϕn2 jGSij0igauge for odd distance;
(ii) a string with two static charges on its ends, referred to as
a static string. Moreover, time is measured in units of 1=ε.
For the static string created on top of the interacting

vacuum with m, g ≠ 0, one expects that the string will
dynamically break for the length L=a ¼ 19 which exceeds
the critical distance. In Fig. 2, the real-time evolution of the
electric flux configuration in different parameter regimes
for a static string is shown.
In Fig. 2(a) we show the electric flux for the non-

interacting massless case m ¼ g ¼ 0. This case can be
analytically solved with the Gaussian ansatz where the
initial state is the interacting vacuum with half filling, i.e.,
hϕ†

nϕni ¼ 1=2 for all sites n. The calculation shows that a
line of electric flux connecting the static charges does not

(a) (b) (c)

FIG. 1. Comparison between the static potential VQðLÞ=g obtained from the Gaussian method and the MPS calculation from Ref. [30].
(a) Deviation from the continuum analytical result for the massless case m=g ¼ 0 (black solid line) for x ¼ 100 (red solid line for the
Gaussian ansatz and green crosses for the MPS) and x ¼ 400 (blue solid line for the Gaussian ansatz and cyan asterisks for the MPS).
(b) Static potential for the massive case withQ=g ¼ 1 and x ¼ 100 from the Gaussian ansatz (solid lines) and the MPS results (crosses).
(c) Partial string breaking for noninteger values of Q=g and m=g ¼ 1, x ¼ 400. Solid lines again represent the result from the Gaussian
ansatz, crosses the MPS results from Ref. [30].
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increase the energy of the system and therefore the string
state is stationary, as can be seen in the figure.
In the intermediate regime, shown in Fig. 2(b), a more

intriguing feature emerges. We observe the formation of
anti-string configurations, i.e., a string with opposite
orientation of charges at its ends in comparison to the
original string, in the center where the production of
particle-antiparticle pairs takes place [40]. This effect is
called Schwinger mechanism where the creation of these
pairs in a uniform electric field is viewed as the quantum
process in which virtual pairs can be separated to become
real pairs once they gain the binding energy of twice
the rest mass energy [65,66]. We will further study this
phenomenon in the following section.
Figure 2(c) shows the result for the strong coupling

regimem ¼ 3, g ¼ 3.5. In this case, the interacting vacuum
in the outer region is stable due to the high cost in energy
of creating pairs out of the vacuum. Nevertheless an
oscillation between a string and a broken string is realized
in the center.
For the free string whose ends can freely propagate, we

consider the string created on top of the interacting vacuum
and the bare vacuum, i.e., the ground state of

P
nð−1Þnϕ†

nϕn.
The result for the bare vacuum is used to qualitatively
compare our results with those obtained from the DMRG
calculations in Ref. [40]. We note that in Ref. [40], the gauge
field was not eliminated and an effective Quantum Link
model with spin-1 operators on the link was considered.
Moreover, in order to qualitatively compare to the existing
results, we plot our results for the electric field within the
range jhLnij ≤ 1.
The real-time evolution of the electric flux configura-

tion for the initial free string is shown in Fig. 3. For the
noninteracting massless Schwinger case, which is exactly
solvable with a Gaussian state, fermionic excitations can be
created out of the vacuum at no energy cost which gives
rise to large fluctuations of the electric field. Notice the
difference in the evolution of the electric field in Figs. 3(a)
and 3(d) for a string created on top of the interacting and the

bare vacuum, respectively. In the former case, Fig. 3(a)
shows that only the initial string propagates on the lattice.
For the string imposed on top of the bare vacuum, the
evolution corresponds to a global quench, which results in
an interference of twowave fronts in the bulk as can be seen
in Fig. 3(d). The difference of our results in Fig. 3(d) with
respect to a similar study with a spin-1 Quantum Link
model in Ref. [40] can be explained due to the large
fluctuations of the electric field, which lead to a maximal
value maxn;tjhLniðtÞj ¼ 1.35 > 1 at t ≈ 1 during the evo-
lution. As a result, the quantum link model in this
parameter regime with g ¼ 0 is not equivalent to the
Schwinger model considered in this paper [66].
In Figs. 3(b) and 3(e), we choose m ¼ 0.1, g ¼ 1. In this

intermediate regime the string created on top of the
interacting vacuum is breaking due to the creation of
particle-antiparticle pairs, as Fig. 3(b) reveals. At the
beginning, string/anti-string configurations emerge alter-
natingly and finally disappear at a later time for which a
steady state is reached. Figure 3(e) clearly shows that for
a string imposed on top of the bare vacuum, we again
observe an interference between the electric fieldwave fronts
coming from the center and the boundary due to the quench
dynamics.
In the regime of strong coupling and large mass, m ¼ 3,

g ¼ 3.5, the Hamiltonian (12) is dominated by the mass and
long-range interaction terms rendering the dynamical
fermions outside the string region essentially static. As a
result, the bare and interacting vacua are very similar. Thus,
as shown in Figs. 3(c) and 3(f), the time evolution of the
electric field for a string imposed on the interacting vacuum
is almost identical to the one imposed on the bare vacuum.
In both cases the string is not completely broken. Because
of the small fluctuations of the electric field in this regime,
our results from Figs. 2(c), 3(c) and 3(f) are in very good
agreement with those obtained with a quantum link model
in Ref. [40].
In general, we observe that the Gaussian ansatz captures

the relevant features of the static and dynamical aspects of

(a) (b) (c)

FIG. 2. Evolution of the electric flux distribution< Ln > for an initial static string of length L=a ¼ 19 andQ=g ¼ 1 imposed on top of
the interacting vacuum. (a) The noninteracting case m ¼ g ¼ 0. (b) The appearance of string and antistring configurations for m ¼ 0.1,
g ¼ 1. (c) The strong coupling limit m ¼ 3, g ¼ 3.5.
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string breaking and correctly describes the production and
propagation of particle-antiparticle pairs.

V. SU(2) GAUGE THEORY

In the previous section we demonstrated the suitability of
the ansatz to study Abelian gauge theories. However the
Gaussian variational method is also adequate for studying
non-Abelian lattice gauge models. To illustrate that, we
investigate an SU(2) LGT, which exhibits a richer Hilbert
space structure compared to the Schwingermodel.As before,
we will consider the decoupled Hamiltonian (12) that only
contains the fermionic matter fields. This allows us to
correctly estimate vacuum energies in the absence of static
charges via the variational ansatz jψi ¼ Θ†jGSij0igauge. The
situation is different if we consider static charges. Unlike the
U(1) case, now they are noncommuting operators. As a result
the nontrivial color entanglement between the external
charges and dynamical fermions prevents the description
with a Gaussian state jGSi even after applying the trans-
formation Θ.
To overcome this difficulty, we introduce two additional

non-Gaussian unitary transformations, V1 and V2, which

efficiently disentangle the static and the dynamical degrees
of freedom. In the new frame, the static charges and the
dynamical fermions are decoupled and the former appear as
classical variables in the rotated Hamiltonian. While a
transformation V1 decoupling a single static charge from
the dynamical fermions has been already used in the context
of the Kondo model [56], here we generalize this approach
and introduce a new transformation V2 to decouple the
second static charge. Moreover, we also introduce the
correlation function between the static charges and between
static charges and dynamical fermions. Using the variational
ansatz jψi ¼ Θ†V†

1V
†
2jGSij0igauge, we analyze again ground

state properties in thepresence of two static charges aswell as
real-time dynamics.

A. Decoupling the static charges

To study the string-breaking phenomenon we insert
a pair of static charges at two sites n1 and n2. This
corresponds to the static charge distribution

qan ¼
1

2
ðδn;n1σa1 þ δn;n2σ

a
2Þ: ð19Þ

(a) (b) (c)

(d) (e) (f)

FIG. 3. Evolution of the electric flux distribution hLni for an initial free string of length L=a ¼ 19 and Q=g ¼ 1, the columns
corresponds to m ¼ g ¼ 0 (first column), m ¼ 0.1, g ¼ 1 (second column), and m ¼ 3, g ¼ 3.5 (third column). Panels (a)–(c) show the
evolution of a string imposed on top of the interacting vacuum, where no waves are coming from the boundaries. Panels (d)–(f) show the
evolution of the string on imposed on top of the bare vacuum, leading to waves propagating from the boundaries and destructively
interfering with the propagating string. The parameter regime m ¼ g ¼ 0 used in panels (a) and (d) can be exactly solved with the
Gaussian ansatz. Moreover, panels (b) and (e) show the Schwinger mechanism.

VARIATIONAL STUDY OF U(1) AND SU(2) LATTICE … PHYS. REV. D 98, 034505 (2018)

034505-7



When the string is present, the pair of static charges
forms the spin singlet state

P
α¼r;gΘ†ϕ†;α

n1 ϕ
†;−α
n2 jGSij0igauge,

and when the string is broken, each static charge forms a
singlet state with the surrounding dynamical fermions. As a
result, neither of them is a Gaussian state.
However, if we are able to decouple the static charges

qn from the dynamical fermions with a unitary trans-
formation V2V1, the transformed Hamiltonian (conditioned
on the spin state of static charges) only contains operators
acting on the dynamical fermions which can be studied
with the Gaussian state approach. In fact, this decoupling is
possible if the Hamiltonian has certain parity symmetries.
The problem we are trying to tackle here resembles a

two-impurity problem described by the Hamiltonian (12),
where the impurities are two static charges described by the
Pauli matrices σα. The Hamiltonian HΘ has the parity
symmetry

½P1; HΘ� ¼ 0; ð20Þ

where the operator P1 ¼ σz1σ
z
2Pz and Pz is defined to be

Pz ¼ exp

�
i
π

2

X
n

ϕ†
nðσz þ 1Þϕn

�
: ð21Þ

This Z2 symmetry corresponds to the rotational invariance
of the entire system along the z-direction by π.
Similar to the single-impurity Kondo model [56], we can

construct the unitary transformation

V1 ¼
1ffiffiffi
2

p ð1 − iσy1σ
z
2PzÞ; ð22Þ

which transforms P1 into the operator σx1 of the first
impurity, V1P1V

†
1 ¼ σx1. Since P1 is a symmetry of the

Hamiltonian, σx1 is conserved in the new frame, i.e.,

½σx1; H1� ¼ 0; ð23Þ

and can be considered as a “classical” variable, where
H1 ¼ V1HΘV

†
1. The explicit form of H1 is

H1 ¼ ε
X
n

ðϕ†
nϕnþ1 þ H:c:Þ ð24Þ

þm
X
n

ð−1Þnϕ†
nϕn þ

g2

2
He; ð25Þ

where the electric term reads

He ¼
1

4

X
a

X
kp

Vkpϕ
†
kτ

aϕkϕ
†
pτaϕp

þ 1

2

X
k

Vkn1ðσx1ϕ†
kτ

xϕk − iσz2Pzϕ
†
kτ

yϕk

þ σx1σ
z
2Pzϕ

†
kτ

zϕkÞ þ
1

2

X
k;a

Vkn2σ
a
2ϕ

†
kτ

aϕk

þ 1

2
Vn1n2ðσx1σx2 − σx2Pz þ σx1PzÞ: ð26Þ

To decouple the second static charge located at n2, we
notice that the Hamiltonian H1 is rotationally invariant
along the x-direction for an even numberN ¼ P

nϕ
†
nϕn of

dynamical fermions. Thus, P2 ¼ σx2Px is the parity sym-
metry of the Hamiltonian H1, where

Px ¼ exp

�
i
π

2

X
n

ϕ†
nðσx þ 1Þϕn

�
: ð27Þ

A second unitary transformation

V2 ¼
1ffiffiffi
2

p ð1 − iσy2PxÞ ð28Þ

allows us to rotate the parity operator P2 ¼ σx2Px for the
second charge, as V2P2V

†
2 ¼ −σz2. Thus, in the new frame,

σz2 commutes with the Hamiltonian H2 ¼ V2H1V
†
2. The

final form of the transformed Hamiltonian is given by

H2ðσx1; σz2Þ ¼ ε
X
n

ðϕ†
nϕnþ1 þ H:c:Þ þm

X
n

ð−1Þnϕ†
nϕn þ

g2

2

�X
a

X
n;m

Qa
nVn;mQa

m þ 1

2
Vn1;n2ð−σx1σz2Px þ iN σz2Py þ σx1PzÞ

þ
X
m

Vn1;mðσx1Qx
m − iσz2PzQ

y
m þ σx1σ

z
2PzQz

mÞ þ
X
m

Vn2;mð−σz2PxQx
m − iPxQ

y
m þ σz2Q

z
mÞ
�

ð29Þ

which only depends on the two commutating operators σx1; σ
z
2 for the static charges, where the operator Py is defined as

Py ¼ exp

�
i
π

2

X
n

ϕ†
nðσy þ 1Þϕn

�
; ð30Þ
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and the relation

PxPz ¼ PzPxeiπN ¼ PzPx ¼ iNPy ð31Þ

has been used assuming an even number of dynamical
fermions.
A remarkable feature of this Hamiltonian is that the

operators for static charges become classical variables.
Indeed, a general state in the rotated frame can be written
as jΨi ¼ jΨ2ijs1ijs2i, where js1i and js2i are eigenstates
of σx1 and σz2, respectively. The evolution of the state
jΨ2i is governed by the Hamiltonian H2ðs1; s2Þ of dynami-
cal fermions and will be approximated by the Gaussian
state jGSi.
To show the decoupling procedure and the correspond-

ing symmetries in a compact way, we can rewrite the
symmetry operators as

P1 ¼ −iN eiπQ
z ð32Þ

and

P̄2 ¼ V†
1P2V1 ¼ ð−1ÞN eiπQ

y ð33Þ

in the original frame before applying V1 and V2, where
Qz ¼ P

nQ
z
n and Qy ¼ P

nQ
y
n are the total (dynamical

plus external) SU(2)-charge operators along the z and the y
directions. Apart from the prefactor determined by the fixed
dynamical fermion number, these two symmetries corre-
spond to the rotational invariance of the original
Hamiltonian HΘ along the z and the y directions by angle
π. The analysis above implies that a single unitary trans-
formation V2V1 can be applied directly to transform both
symmetry operators to σx1 and −σz2 of static charges,
respectively. In the new frame, σx1 and σz2 commute with
the Hamiltonian H2, and, thus, become the classical
variables s1 and s2. Correspondingly the symmetry oper-
ators P1 and P̄2 take the values s1 and −s2, respectively. As
will be shown in Sec. V B, the relation of s1;2, N , and Qz;y

provides us a clear picture of the ground state configuration
from the symmetry analysis.
We emphasize that V1 and V2 are two non-Gaussian

unitary transformations entangling static charges and
dynamical fermions. This entanglement induced by V1

and V2 can be seen from the variational state

1

4
ffiffiffi
2

p Θ†fðj↑iz þ s1j↓izÞ½ð1þ s2Þj↑iz þ ð1 − s2Þj↓iz�

þ s2ðs1j↑iz − j↓izÞ½ð1þ s2Þj↑iz þ ð1 − s2Þj↓iz�Pz

− s2ðj↑iz þ s1j↓izÞ½ð1 − s2Þj↑iz þ ð1þ s2Þj↓iz�Px

þ ðs1j↑iz − j↓izÞ½ð1 − s2Þj↑iz þ ð1þ s2Þj↓iz�iNPyg
× jGSij0igauge ð34Þ

in the original frame, which correctly captures the physics
for the appropriate choice of the parameters s1, s2 ∈
f−1;þ1g and the Gaussian state. Note that if the
Gaussian state is taken to be the Dirac sea [Eq. (10)], it
is a common eigenstate of all operators Pc with the same
eigenvalue (either þ1 or −1) and Eq. (34) becomes the
singlet state between static charges for s1 ¼ s2 ¼ −1, while
it becomes a triplet state for any other choice of s1 and s2.
However, unlike the Dirac sea, a general Gaussian state
jGSi does not preserve the rotational symmetry of the
Hamiltonian, and gives rise to entanglement between static
and dynamical fermions. We will explore this entanglement
structure in greater detail in our studies of the ground state
and the real-time dynamics.
To explicitly characterize the entanglement between

static charges and dynamical fermions, we introduce two
gauge invariant correlation functions

C2ðn1; n2Þ ¼
X
a;b

hqan1ðUAdj;†
n1 � � �UAdj;†

n2−1 Þa;bqbn2i ð35Þ

between the static charges, and

Cdynðn1; nÞ ¼
X
a;b

hqan1ðUAdj;†
n1 � � �UAdj;†

n−1 Þa;bQb
ni ð36Þ

between the static charge at n1 and the dynamical fermion
at n. Note that in the gauge-field-free frame, these corre-
lation functions become

C2ðn1; n2Þ ¼
X
a

hqan1qan2i; ð37Þ

and

Cdynðn1; nÞ ¼
X
a

hqan1Qa
ni: ð38Þ

In the limit where the string dominates (e.g., in the initial
state, when the string is superimposed on the bare vacuum),
the two static charges form a singlet state through the flux
string connecting them, hence C2ðn1; n2Þ approaches
−3=4. In the opposite regime, when the string is broken,
a color singlet is formed between each static charge and the
dynamical fermions, and the correlation C2ðn1; n2Þ van-
ishes. Hence, this correlation function indicates the occur-
rence of string breaking

C2ðn1; n2Þ →
�−3=4 in the string regime

0 in the broken-string regime
ð39Þ

In the latter case, the entanglement between the static charge
at n1 and the screening “cloud” of dynamical fermions can
be characterized by Cdynðn1; nÞ. Furthermore, the correla-
tion functions enable us to give a precise description of
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entanglement structure between the static charges and the
dynamical fermions for in and out-of-equilibrium dynamics.
Analogously to Sec. IV for the U(1) gauge group, we

make use of the evolution Eqs. (16) and (17) for Γ to study
the string-breaking phenomenon in the ground state and its
real-time dynamics. The effective mean-field Hamiltonian
appearing in the Eqs. (16) and (17) is derived in
Appendix B. Unlike the Abelian case, the Hamiltonian
H2ðs1; s2Þ contains exponential functions of the creation
and annihilation operators, hence the derivation of the
mean-field Hamiltonian follows a much more sophisticated
procedure [55].

B. Static properties

Let us first apply the Gaussian ansatz in combination
with the unitary transformations Θ, V1 and V2 to study the
static aspects of the string-breaking phenomenon in the
ground state of the SU(2) LGT. Additionally, to benchmark
the Gaussian variational ansatz, we also perform MPS
calculations (see Appendix C for details) and compare the
results of both simulations. We observe that with our choice
of parameters in both optimization algorithms, numerical
artifacts are negligible for the effects we want to observe.
Note that again we measure energy in units of ε ¼ 1.
First of all, we compare the values for the ground state

energies in the absence of static charges i.e., the vacuum
energies Evac=ε. In Table I, considering MPS as the
reference result, we show the relative difference

Δ ¼ EGauss
vac − EMPS

vac

jEMPS
vac j ; ð40Þ

between Gaussian and MPS ansätze for Evac. As expected,
the MPS simulation yields lower values for the vacuum
energy in all cases but even in the strong coupling regime
(with m ¼ 0.5 and g ¼ 3) the relative error is bounded
below 2.1%. Moreover we observe that the larger the
coupling g becomes with respect to the mass m and the
hopping ε, the more relevant the (nonquadratic) electric
energy term He becomes, and, thus, resulting in larger
errors.

After comparing the interacting vacuum energies, we
proceed to study the system in the presence of two static
charges. Due to the parity symmetries, we conclude that the
Hamiltonian has four sectors labeled by the eigenvalues s1
and s2 of P1 and −P2. Fixing s1, s2 ∈ f−1;þ1g, we can
compute the ground states in all of these four sectors
with Eq. (16). The global ground state is then the one with
the lowest energy. In Fig. 4 we present our results for
m ¼ 1, g ¼ 1 [Fig. 4(a)], m ¼ 0.5, g ¼ 1 [Fig. 4(b)], and
m ¼ 0.75, g ¼ 1.5 [Fig. 4(c)].
In Fig. 4(a) the blue asterisks correspond to the ground

state energy in the sector s1 ¼ s2 ¼ −1. As expected,
before the string breaks, the ground state energy (potential
energy) grows linearly with the distance of the static
charges. In the broken string case, the ground state energy
in the sector s1 ¼ s2 ¼ −1 shows an oscillatory behavior
between odd and even distances. Computing the ground
states in all four sectors, we find that for even distances the
global ground state in the broken string regime is in the
sector s1 ¼ 1; s2 ¼ −1, and has the same energy as for odd
distances, as shown by the red triangles in Fig. 4(a). The
energy of the global ground state (potential energy)
obtained from the non-Gaussian ansatz forms the expected
plateau once the string has broken and quantitatively agrees
with that from the MPS calculations (black circles).
Computing the expectation value of P1 and −P̄2 in the
ground state obtained from the MPS calculations we
observe the same values for s1 and s2 in the different
regimes. As shown by the green squares and the pink
crosses the MPS results confirm that the global ground state
is in the sector s1 ¼ s2 ¼ −1 in the string and string-
breaking cases for odd distances, while it is in the sector
s1 ¼ 1 and s2 ¼ −1 for even distances in the broken string
state. To understand why s1 takes different values for even
and odd distances in the string-broken state, one can inspect
the total SU(2) charges Qa (including both static charges
and dynamical fermions) and the total number of dynamical
fermions for even and odd distances. It turns out that the
ground state for odd distances is half-filled, and the total
SU(2) charge is zero, which leads to s1 ¼ s2 ¼ −1 for the
system size N ¼ 40. However, for even distances, the
ground state of the system in the broken string case always
prefers to add or reduce two dynamical fermions and as a
result, s2 is kept the same and s1 changes the sign.
In Figs. 4(b) and 4(c), the potential energy VQðLÞ, is

plotted for m ¼ 0.5, g ¼ 1 and m ¼ 0.75, g ¼ 1.5. As m
decreases, i.e., for relatively stronger interactions, the
description given by the non-Gaussian ansatz still agrees
with the MPS result very well, with a relative error smaller
than 1.1%.
The presence or not of the string in the ground state can

also be distinguished in the electric flux profiles. These are
shown in the second and third rows of Fig. 4 for two sets
of distances corresponding to the string and the string-
breaking regimes, with the first static charge always located

TABLE I. Comparison between the vacuum energies Evac=ε
obtained from the Gaussian ansatz and the MPS calculation.

Evac=ε

m g Gaussian MPS Δ (%)

1 1 −64.2559 −64.2760 0.03
0.5 1 −51.9578 −52.0270 0.13
0.75 1.5 −54.6641 −54.7920 0.23
0.5 1.5 −48.2457 −48.4827 0.49
0.5 2 −43.9929 −44.4673 1.07
0.5 3 −36.1139 −36.8746 2.06
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at n1 ¼ 8. In the string case, the two static charges are
confined by the flux string. In the string-breaking regime,
each of the static charges is completely screened by the
surrounding dynamical fermions, and the flux string is

broken. Because of the global SU(2) symmetry each group
component contributes equally to hL2

ni. The flux distribu-
tion is also in good agreement with the one obtained from
the MPS calculations, as shown by the red solid curves.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Comparison between the equilibrium properties of the SU(2) LGT from the non-Gaussian ansatz and the MPS simulations.
The columns correspond to parameters m ¼ 1, g ¼ 1 (first column), m ¼ 0.5, g ¼ 1 (second column), and m ¼ 0.75, g ¼ 1.5 (third
column). Panels (a)-(c) in the first row show the static potential VQðLÞ=ε. Additionally, in panel (a) we compare the results for different
choices of s1 and s2 for the non-Gaussian ansatz in Eq. (34) and verify the result computing the expectation values for the parity
operators P1 and P2 in the global ground state determined via a MPS simulation. Panels (d)-(f) show the color-electric flux profiles at
various separations L=a between the external charges yielding a string ground state. Analogously, panels (g)-(i) show the flux profiles
for separations where the flux string is broken. Finally, the panels (j)-(l) in the last row show the correlation function C2ðLÞ between
static charges in the ground state as a function of the distance.
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In the last row of Fig. 4, the correlation function C2ðLÞ
between the static charges as a function of the distance is
shown. The breaking of the string takes place at some
distance Lc. For much shorter distances (L ≪ Lc) C2ðLÞ is
close to −3=4 indicating that the static charges are confined
by the electric flux string and form a singlet state. In contrast,
for much longer distances (L ≫ Lc) C2ðLÞ is essentially 0,
thus implying that the static charges are screened by the
surrounding dynamical fermions and the string is broken.
Close to the distance at which the breaking takes place, the
correlation function calculated from both the non-Gaussian
ansatz (blue asterisks) and the MPS results (black circles)
displays a sudden change for m ¼ 1, g ¼ 1 [Fig. 4(e)] and a
smooth transition for m ¼ 0.5, g ¼ 1 and m ¼ 0.75, g ¼
1.5 [Figs. 4(f) and 4(g)].
The correlation function Ca

dynðn1; nÞ between the first
static charge and the dynamical fermions also displays
different patterns in the string and string-breaking regimes.
As shown in Fig. 5, the static charges are hardly entangled
with the dynamical fermions when the string is present,
hence resulting in small values for Ca

dynðn1; nÞ. In contrast,
Ca
dynðn1; nÞ reveals that a symmetric cloud of dynamical

fermions screens the static charges when the string is
broken. In particular, due to the global SU(2) symmetry of
the Hamiltonian each group component contributes
equally, we see that

P
n;aC

a
dynðn1; nÞ is close to −3=4.

Hence, the external charges are forming approximately a
SU(2) singlet with the surrounding dynamical fermions.
Therefore, our results for the potential energy, the

electric flux profiles, and the correlation functions provide
a comprehensive description of the string-breaking phe-
nomenon. In the string case, the two static charges con-
nected by the electric flux string form a SU(2) singlet state,
and are only weakly entangle with the half-filled dynamical
fermions. As the distance increases, the flux string becomes
longer and longer, which leads to the linear increase in the
potential energy of static charges. At distances larger than a
certain threshold value Lc, each static charge forms a color
singlet with the dynamical fermions in the screening cloud,
and the string is broken. For odd distances, the static
charges are on sites of different staggered mass. This term

favors double occupancy in one of them, and vacancy in the
other. On the contrary, for even distances both static
charges are located at sites favoring double occupancy
with dynamical fermions (vacancy). Thus two fermions are
annihilated (created) to screen the static charges. The
screening results in a single dynamical fermion being
localized on each of the static charges. In both cases the
potential energy reaches a plateau indicating the occurrence
of the string breaking.
All in all, the non-Gaussian ansatz accurately describes

the string-breaking phenomenology in the (1þ 1)-dimen-
sional SU(2) LGT, where the entanglement between the
static charges and the dynamical fermions is entirely
encoded by the transformations V1 and V2. It also allows
us to effectively determine the relevant observables such as
the potential energy, the electric flux profiles and the
correlation functions.

C. Real-time dynamics

In this subsection, we study the dynamical aspects
of the string-breaking phenomenon using the non-
Gaussian ansatz from Eq. (34). Since the transformations
V1 and V2 can only characterize the entanglement between
static charges and dynamical fermions, but not the entan-
glement between different dynamical fermions, we restrict
ourselves to study the dynamical features of static strings.
In Fig. 6, the real-time evolution of the flux distribution

hL2
niðtÞ and the correlation function C2ðtÞ are depicted for

the static string imposed on top of the interacting vacuum
for various combinations of m and g.
Figures 6(a)–6(c) shows that the interacting string is

stable at short timescales, before it eventually breaks.
Similar to the U(1) case, the timescale of the breaking
process tSB depends on the length of the initial string, the
mass m and the coupling constant g (recall we have fixed
ε ¼ 1). Moreover, the string-breaking behavior is also
captured by the correlation function C2ðtÞ between the
two static charges, as shown in the second row of Fig. 6.
At initial times, the static charges connected by the flux

string are in a singlet state, thus C2ð0Þ ≈ −3=4. For short
timescales, the dynamical fermions start to accumulate
around the static charges and partially break the string,
which corresponds to a damped oscillation in C2ðtÞ.
Eventually, at tSB the static charges are completely screened
by the surrounding dynamical fermions, the flux string is
completely broken and C2ðtÞ oscillates around 0.
Comparing Figs. 6(d) and 6(e) to Fig. 6(f), we find that

the larger the initial length L is, the longer it takes for the
string to break. This can be explained as follows. For larger
distances L, the system requires a longer time to relax from
the initial interacting string state to the string-breaking state
by transporting a dynamical fermion between the two sites
occupied by the static charges. Moreover, for the same
distance between static charges, to decrease the massm and
coupling constant g, effectively implies to increase the

(a) (b)

FIG. 5. Correlation function Cα
dynðn1; nÞ between the first static

charge and dynamical fermions for m ¼ 1, g ¼ 1 and distances
L=a ¼ 5 (a) and L=a ¼ 23 (b) between static charges.

SALA, SHI, KÜHN, BAÑULS, DEMLER, and CIRAC PHYS. REV. D 98, 034505 (2018)

034505-12



hopping parameter ε, which speeds up the screening
process. Therefore, the string breaks faster for smaller
values of m and g, as can be seen in Figs. 6(d) and 6(e).

VI. CONCLUSION AND OUTLOOK

In this paper, we introduce a new family of variational
ansätze which is suitable to study lattice gauge models. Our
method relies on three unitary transformations that rotate
the original Hamiltonian (1). First, we derive Θ which
decouples the matter and the gauge degrees of freedom.
The resulting rotated Hamiltonian (12) is completely
general and can be addressed with any numerical or
analytical technique. For the U(1) LGT, the Gaussian
ansatz can describe the interacting vacuum state and the
in and out of equilibrium transition between the string and
broken string cases. However, for the SU(2) LGT, while the
ansatz is able to describe the interacting vacuum, it cannot
be directly applied to study the string breaking in the
presence of two static charges. Thus, we further introduce a
non-Gaussian ansatz with two unitary transformations V1

and V2 that characterize the entanglement between static
charges and dynamical fermions.
Using the Gaussian ansatz, we investigate the static and

dynamical aspects of string breaking in the Schwinger
model. First, we compute the interacting vacuum of the
theory in the presence of two external charges and
determine the static potential. For small distances between
the external charges, we clearly see a linear increase in the
static potential, thus indicating a flux string is present in the
ground state. For larger distances beyond a critical one, it is

energetically favorable to break the flux string resulting in a
flattening of the potential. In general, we observe excellent
agreement with previous tensor networks studies of the
model [30] and we are able to precisely determine the
regimes in which string breaking occurs. Second, we
simulate the real-time dynamics of a flux string between
two external charges. Computing the site resolved flux
profiles we can also clearly distinguish between a string
state and the breaking case in the out-of-equilibrium
scenario. Even if we perform a global quench on the initial
string state, we are able to simulate the dynamics with the
Gaussian variational method.
This variational ansatz is not limited to the Abelian case

and we can also explore static as well as dynamical
properties for a SU(2) LGT in the presence of external
charges. Since in this case the Gaussian ansatz cannot be
directly applied to the rotated Hamiltonian (12), we show
how to overcome this limitation with the two additional
unitary transformations V1 and V2. These two transforma-
tions, which decouple the static charges and the dynamical
fermions, not only allow us to address the resulting
Hamiltonian with fermionic Gaussian states, but also shed
light on the entanglement structure between the dynamical
fermions and the static charges. In the presence of a string
we observe that the external charges are correlated among
themselves. In contrast, in the breaking case correlations
between the dynamical fermions and the static charges
develop. Together with the static potential, the site resolved
color-flux profiles and the correlation functions between
charges, this allows us to give a comprehensive description
of the string-breaking phenomenon. As for the Schwinger

(a) (b) (c)

(d) (e) (f)

FIG. 6. Evolution of a color-flux string for an initial spin-singlet state between the static charges. Panels (a)–(c) show the evolution of
the flux profile, panels (d)–(f) the evolution of the correlation function C2ðtÞ. The different columns correspond to the parameters
m ¼ 0.5, g ¼ 1, L=a ¼ 25 (first column), m ¼ 0.75, g ¼ 1.5, L=a ¼ 25 (second column) and m ¼ 0.75, g ¼ 1.5, L=a ¼ 15 (third
column).
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model, our results are in very good agreement with those
obtained from MPS simulations. Furthermore, we also
simulate the evolution of a color-flux string in real-time.
Again, the flux profiles as well as the real-time evolution of
the correlation function C2ðtÞ, clearly indicate whether the
initial color flux string is breaking.
On the one hand, the unitary transformation Θ is not

limited to the two specific cases we address and can be used
with arbitrary SU(N) gauge groups. More generally, it
might be possible to derive a similar transformation for
certain discrete gauge groups extensively used in the
context of condensed matter physics. There is not yet a
transformation to eliminate the gauge field in higher
dimensions, i.e., 2þ 1 and 3þ 1 dimensional systems.
One possibility is to decouple the gauge field as much as
possible [67] and then find a suitable ansatz. Another
possibility is to complement Gaussian states with unitary
transformations that would respect Gauss law. On the other
hand, V1 and V2 are also valid in higher spatial dimensions.
However to decouple the SUðN > 2Þ external charges is
not straightforward, since the method given in the paper
only applies to SU(2). Thus, one has to investigate how to
extend the method to larger N. Additionally, these two
transformations for the SU(2) case might have also appli-
cations in condensed matter physics. For example, they
could potentially be applied to study problems such as
Ruderman-Kittel-Kasuya-Yosida interactions between two
Kondo impurities induced by the fermionic bath. In fact, in
a recent work [68], the spinon-holon bound state in the 2D
t − J model is studied from the LGT point of view, i.e., the
meson formation, which provides some hints to understand
high-Tc superconductivity. Nevertheless the extension to
high temperatures requires the generalization of the current
variational approach. Moreover a finite chemical potential
that tunes the total particle number can be easily considered
by just adding a new quadratic term into the Hamiltonian.
Although here we combine the rotated Hamiltonian HΘ

with the use of non-Gaussian states, we expect the
decoupled formulation itself to be useful for a variety of
other approaches. On the one hand, as our MPS results for
the SU(2) case show, this formulation can be directly
addressed with tensor networks. Compared to previous
MPS studies of SU(2) gauge models [33,41] we do not
have to truncate the gauge Hilbert spaces to finite dimen-
sion and our formulation can be readily extended to
arbitrary gauge groups SUðNÞ. On the other hand, it could
have potential applications for the design of future quantum
simulators for LGT. In the quantum simulation of the SU(2)
LGT, two spins 1=2 can be considered on each site to
realize the spin Hamiltonian [69] via a Jordan-Wigner
transformation [41]. This formulation generalizes the one
recently implemented in a quantum simulator for the
Schwinger model [62] to non-Abelian gauge groups.
Since the gauge field can be completely eliminated, this
might allow for simpler experimental realizations compared

to previous proposals. The rotated Hamiltonian might also
be interesting for studying the largeN limit of gauge theories
[70]. Since the gauge degrees of freedom are absent in the
rotated Hamiltonian the effort for addressing larger values of
N only grows moderately.
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APPENDIX A: ELIMINATING
THE GAUGE FIELD

Here we explicitly derive the unitary transformation
which allows for eliminating the gauge field in
Hamiltonian (1) for any non-Abelian gauge group G with
unitary representations as it is for example the case of
SUðNÞ with N > 1. Different to derivation in Ref. [59,60],
we choose to work with open boundary conditions.
Moreover, for the ease of notation, we use the Einstein
summation convention for group indices throughout this
Appendix.

1. Transformation to decouple the gauge field

In order to eliminate the gauge field appearing in the
hopping term of the Hamiltonian (1) we look for a unitary
transformation given by a fermionic operator that leaves the
matrix components ðUjÞαβ invariant. Let us recall how ϕα

n

and ϕα;†
n transform under gauge transformations [71]

ΘQ;j
g ϕα

nΘ
Q;j†
g ¼

X
β

Dj
αβðg−1Þϕβ

n;

ΘQ;j
g ϕα;†

n ΘQ;j†
g ¼

X
β

ϕβ;†
n Dj

βαðgÞ; ðA1Þ

SALA, SHI, KÜHN, BAÑULS, DEMLER, and CIRAC PHYS. REV. D 98, 034505 (2018)

034505-14



where ΘQ;j
g ¼ Q

nexpðiαn ·QnÞ with g ∈ G and DjðgÞ is
the representation given by

Dj
βαðgÞ ¼ ðeiαn·TjÞβα: ðA2Þ

From now on the representation index j will be omitted
as long as there is no need for a particular one. Given these
transformation laws, the hopping term changes as follows

Hhop↦ΘQHhopΘQ†

¼ε
X
n

fðϕ†
nÞγDγαðgnÞðUnÞαβDβδðg−1nþ1Þðϕnþ1ÞδþH:c:g;

ðA3Þ
where we denote the gauge transformation applied to the
fermionic field living on the site n by DðgnÞ. Thus, in
order to remove the gauge field in the hopping term
with this transformation we see that the condition
DðgnÞUnDðg−1nþ1Þ ¼ 1 has to be fulfilled, or equivalently

Dðgnþ1Þ ¼ DðgnÞUn ∀ n: ðA4Þ
To solve the set of equations (A4), we fix the left open

boundary conditions to U0 ¼ 1 and Dðg0Þ ¼ 1 for both
gauge and fermionic fields, giving as a result Dðg1Þ ¼ 1
[72]. Solving for all links n we obtain

DðgnÞ ¼ U1U2 � � �Un−1 ∀ n ðA5Þ

where we did not make reference to any specific repre-
sentation and the index j has been omitted. In fact we see
that the unitary transformation Θ which generates the linear
transformation (A5) is given by

Θ ¼
Y→
k¼1

exp

�
iθk ·

X
m>k

Qm

�
≡Y→

k¼1

Wk; ðA6Þ

where the link variables θan describing the gauge field were
discussed below Eq. (2) and the superscript “→”means that
the operators Wk ¼ expðiθk ·

P
m>kQmÞ must be ordered

from left to right with increasing index k.

2. Rotated Hamiltonian

So far we have only considered the hopping part of the
Hamiltonian. To complete the transformation of the
Hamiltonian, we still have to compute the mass term
and the color-electric energy term. Using Eq. (A1), it is
easy to see that the mass term is invariant under Θ. To see
how the electric field transforms under Θ, we use the
commutation relation between the conjugate variables from
Eq. (4) and then since Wj

k ¼ expðiθk ·
P

m>kQ
j
mÞ, we see

that Wj
k has the same matrix structure as ðUj

kÞmn because
the fermionic chargesQa;j

m are just complex numbers on the
gauge Hilbert space. Therefore we obtain

Wj
kL

a
kW

j†
k ¼ La

k −
X
m>k

Qa;j
m ðA7Þ

Thus, omitting the j index, La
n transforms under Θ as

ΘLa
nΘ† ¼ La

n −
X
m>n

ðUAdj
n−1…UAdj

1 QmÞa; ðA8Þ

where we have applied the transformation law

WkQa
mW

†
k ¼ ðUAdj

k Þa;bQb
m ðA9Þ

for m > k and 0 otherwise, i.e., Qm transforms as a 3-
vector under color rotations. Thus in the rotated frame
Gauss’ law takes the easy form

La
n ¼ Ra

n−1 ∀ n > 1: ðA10Þ

Now using the relation between L ¼ ðLaÞdimðGÞ
a and

R ¼ ðRaÞdimðGÞ
a given by

Ra
n ¼ ðUAdj

n ÞabLb
n; ðA11Þ

with UAdj
n . the adjoint representation of a group element on

the link, we obtain the easy form for the electric field

La
n ¼

�
UAdj

n−1…UAdj
1

�
R0 þ

X
m≥1

Qm

��
a

ðA12Þ

expressing Ln as a sum of the previous charges. Thus, using
the orthogonality of the matrices UAdj

n . and combining
Eqs. (A8) and (A12), the rotated electric term takes the
form

He ¼ ΘH̄eΘ† ¼
X
n

�
R0 þ

X
m≤n

Qm

�
2

: ðA13Þ

If the background field vanishes R0 ¼ 0 and the total
charge is zero,

P
nQ

a
n ¼ 0, which implies Gauss’ law in the

form of Eq. (5), we can rewrite the electric term in the
symmetric form

He ¼
X
k;p

1

2

X
n

ðθ−knθ−pn þ θþnkθ
þ
npÞQkQp

¼
X
k;p

1

2

X
n

ðθ−knθ−pn þ θþnkθ
þ
np − 1ÞQkQp; ðA14Þ

where θ�kn are Heaviside functions defined as θ�kn ¼
θðk − n� 0þÞ. Realizing that

1

2

X
n

ðθ−knθ−pn þ θþnkθ
þ
np − 1Þ ¼ −

1

2
jk − pj ðA15Þ
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is the Coulomb potential in 1þ 1 dimensions, we can
express the Hamiltonian in the final form

HΘ ¼ ε
X
n

fϕ†
nϕnþ1 þ H:c:g þm

X
n

ð−1Þnϕ†
nϕn

þ g2a
2

X
n;m

QnVn;mQm: ðA16Þ

Note that for the case of U(1), the previous result is much
simpler, since in this case the group dimension is one and
the structure constants are trivial.

APPENDIX B: EFFECTIVE HAMILTONIAN SU(2)

As we already discussed in the main text, one needs to
obtain the effective (state-dependent) single-particle
Hamiltonian HðΓÞ in order to solve the evolution equa-
tions (16) and (17) for the Gaussian state. In the following
we briefly introduce the general approach and deriveHðΓÞ
by taking derivatives of the expectation value for the rotated
Hamiltonian in Eq. (29) with respect components of the
covariance matrix Γ. In order to compute this expectation
value, which involves exponential terms, we follow
Appendix D in Ref. [55].

1. Imaginary time evolution of Gaussian
states and ground state properties

In this section, we study the zero temperature properties
by assuming the ground state jΨ2i of H2 as the fermionic
Gaussian state jGSi characterized by the covariance matrix
Γm ¼ ih½A; AT �i=2 of the Majorana fermion operator A ¼
ðϕ† þ ϕ; iϕ† − iϕÞT where ϕ† and ϕ are vectors collecting
all creation and annihilation operators on the lattice. The
ground state properties can also be described by the
covariance matrix in the Nambu basis Γ ¼ hΦ†Φi where
Φ ¼ ðϕ;ϕ†ÞT . Both representations are equivalent with Γ
and Γm related via Γ ¼ 1=2 − iW†

fΓmWf=4 with

Wf ¼
�

1 1

−i i

�
: ðB1Þ

The effective mean-field Hamiltonian HQðΓÞ ¼
1=2Φ†HðΓÞΦ can be obtained by computing the deriva-
tives of hH2i with respect to Γm [55]. Here, in terms of Γm
the mean values in hH2i are

hPci ¼ ð−1ÞNPf
�
Γc
F

2

�
; ðB2Þ

and

hPcϕ
†
nαϕnβi¼

1

4
ð−1ÞNPf

�
Γc
F

2

�
U†

c;βδ

��
1 i

�
ðiσyΓc

m−1Þ

×
1

1þ 1
2
ð1þσÞðiσyΓc

m−1Þσ
�

1

−i

��
nδ;nγ

Uc;γα;

ðB3Þ

where “Pf” stands for the Pfaffian, σy ¼ τy ⊗ 12N ,
σ ¼ 12 ⊗ τz ⊗ 1N ,

Γc
F¼

ffiffiffiffiffiffiffiffiffiffi
1þσ

p
Γc
m

ffiffiffiffiffiffiffiffiffiffi
1þσ

p
−iσyð1−σÞ Γc

m¼OcΓmOT
c ðB4Þ

Oc is a orthogonal matrix given by

Oc ¼
�
ReUc −ImUc

ImUc ReUc

�
; ðB5Þ

and Uc ¼ eiπτ
y=4, e−iπτ

x=4, I for c ¼ x, y, z.
Taking the derivative with respect to Γm, the single-

particle Hamiltonian has the form

H ¼
�
E0 Δ
Δ† −ET

0

�
þ i

1

2
W†

fHPWf; ðB6Þ

where

ðE0Þmα;nβ ¼ εδm;n�1δαβ þ ð−1Þnmδαβδnm þ g2a
2

�
3

8
Nδαβδnm þ 1

2
ðs1τxαβVnn1 þ s2τ

z
αβVnn2Þδnm

þ 1

2

X
k;a

τaαβVnkhϕ†
kτ

aϕkiδnm −
1

2
Vnm

X
a

τaαδhϕ†
mγϕnδiτaγβ

�
;

ðΔÞmα;nβ ¼
g2a
2

1

2
Vnm

X
a

τaαγhϕmδϕnγiτaβδ: ðB7Þ

The Hamiltonian in the Majorana basis consists of three parts, HP ¼ g2a
2
½Hð1Þ

P þHð2Þ
P þHð3Þ

P �, with

Hð1Þ
P ¼Vn1n2

�
s1s2hPxiOT

x

ffiffiffiffiffiffiffiffiffiffi
1þσ

p 1

Γx
F

ffiffiffiffiffiffiffiffiffiffi
1þσ

p
Ox− iN s2hPyiOT

y

ffiffiffiffiffiffiffiffiffiffi
1þσ

p 1

Γy
F

ffiffiffiffiffiffiffiffiffiffi
1þσ

p
Oy−s1hPzi

ffiffiffiffiffiffiffiffiffiffi
1þσ

p 1

Γz
F

ffiffiffiffiffiffiffiffiffiffi
1þσ

p �
; ðB8Þ
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ðHð2Þ
P Þij ¼

X
n

Vnn1

�
−ðs1s2τz − is2τyÞαβhPzϕ

†
nαϕnβi

� ffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p 1

Γz
F

ffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p �
ij
− i

1

2
ð−1ÞNPf

�
Γz
F

2

�

×

�
1

1þ 1
2
ð1þ σÞðiσyΓm − 1Þ

�
1

−i

��
j;nα

ðs1s2 − s2τxÞαβ
��

1 i

�
1

1þ 1
2
ðiΓmσy − 1Þð1þ σÞ

�
nβ;i

�
; ðB9Þ

and

ðHð3Þ
P Þij ¼

X
n

Vnn2

�
−ð−s2τx − iτyÞαβhPxϕ

†
nαϕnβi

�
OT

x

ffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p 1

Γx
F

ffiffiffiffiffiffiffiffiffiffiffi
1þ σ

p
Ox

�
ij
− i

1

2
ð−1ÞNPf

�
Γx
F

2

�

×

�
OT

x
1

1þ 1
2
ð1þ σÞðiσyΓx

m − 1Þ
�

1

−i

��
j;nγ

γUx;γαð−s2τx − iτyÞαβUT
x;βδ Es

×

��
1 i

�
1

1þ 1
2
ðiΓx

mσy − 1Þð1þ σÞOx

�
nδ;i

�
; ðB10Þ

The imaginary time evolution of Γ obeys Eq. (16) which
yields the ground state configuration in the limit τ → ∞.
The variational state in different sectors reads

1

4
ffiffiffi
2

p Θ†½ðj↑iz þ s1j↓izÞ½ð1þ s2Þj↑iz þ ð1 − s2Þj↓iz�

þ s2ðs1j↑iz − j↓izÞ½ð1þ s2Þj↑iz þ ð1 − s2Þj↓iz�Pz

− s2ðj↑iz þ s1j↓izÞ½ð1 − s2Þj↑iz þ ð1þ s2Þj↓iz�Px

þ ðs1j↑iz − j↓izÞ½ð1 − s2Þj↑iz þ ð1þ s2Þj↓iz�iNPy�
× jGSij0igauge ðB11Þ

In fact, considering as Gaussian state jGSi the one
corresponding to the Dirac sea in Eq. (10), the previous
ansatz acquires the simple form

Θ† 1ffiffiffi
2

p jψSC;SUð2Þi
1

2
½ð1þ s1Þj↑izj↑izþ s2ðs1−1Þj↑izj↓iz

þðs1−1Þj↓izj↑iz−s2ðs1þ1Þj↓izj↓iz�j0igauge ðB12Þ

since the Dirac sea is a common eigenstate of the parity
operators Pc. For instance, in the subspace with
s1 ¼ s2 ¼ −1, the initial seed state

Θ† 1ffiffiffi
2

p jψSC;SUð2Þi½j↑izj↓iz − j↓izj↑iz�j0igauge ðB13Þ

describes the singlet state of static charges in the (deep)
string regime.

APPENDIX C: TECHNICAL DETAILS
OF THE MPS SIMULATIONS

In order to solve the SU(2) LGT with MPS we start
from the decoupled Hamiltonian HΘ from Eq. (12). For
convenience in the simulations we chose to translate the

fermionic degrees of freedom to spins via a Jordan Wigner
transformation [41]. The resulting Hamiltonian reads

H ¼ ε
X
n

ðσþr;nσzg;nσ−r;nþ1 þ σþg;nσzr;nþ1σ
−
g;nþ1 þ H:c:Þ

þm
X
n

ð−1Þnð2þ σzn;r þ σzn;gÞ þ
g2a
2

He ðC1Þ

where the σ-matrices are the usual Pauli matrices, the
electric term He takes the form given in Eq. (13), and the
subscript indicates the vertex and the color on which they
are acting. The dynamic charges in spin formulation are
given by [41]

Qx
n ¼ −

i
2
ðσþr;nσ−g;n − H:c:Þ; ðC2Þ

Qy
n ¼ −

1

2
ðσþr;nσ−g;n þ H:c:Þ; ðC3Þ

Qz
n ¼

1

4
ðσzr;n − σzg;nÞ: ðC4Þ

In our calculations we are interested in the subsector of
vanishing total charge which we ensure by adding the
energy penalty λðPnQnÞ2 to the Hamiltonian. The constant
λ has to be chosen large enough to sufficiently penalize
states with nonzero charge. The ground state of the
resulting Hamiltonian can be computed with standard
variational optimization of the MPS wave function
[23,24]. To estimate our numerical errors, we run our
simulation for a series of bond dimensions χ of the MPS
ranging from 40 up to 200 and values of λ up to 5000. The
MPS results presented in the main text correspond to
χ ¼ 200, λ ¼ 1000 for which we find that both our
numerical errors in the ground state energy and the
correlation function as well as the expectation value of
the penalty are negligible.
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