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Nonthermalized dark matter is a cosmologically valid alternative to the paradigm of weakly interacting
massive particles. For dark matter belonging to a Z2-odd sector that contains in addition a thermalized
mediator particle, dark matter production proceeds, in general, via both the freeze-in and super-WIMP
mechanism. We highlight their interplay and emphasize the connection to long-lived particles at colliders.
For the explicit example of a colored t-channel mediator model we map out the entire accessible parameter
space, cornered by bounds from the LHC, big bang nucleosynthesis and Lyman-α forest observations,
respectively. We discuss prospects for the HL- and HE-LHC.
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I. INTRODUCTION

The evidence for dark matter (DM) in our Universe
provides a strong motivation for extending the standard
model (SM) of particle physics by a dark sector con-
taining a thermally or nonthermally produced relic. While
the hypothesis of a thermalized and frozen-out DM
candidate—such as a weakly interacting massive particle
(WIMP)—is an attractive and thus widely studied possibil-
ity, it is by far not the only viable explanation. In particular,
in view of many null-results from WIMP searches, an
exploration of alternative scenarios is vital to exploit the
current experimental capabilities and identify the nature
of DM.
One such scenario is feebly interacting DM that never

reaches thermal equilibrium with the SM throughout the
cosmological history. In this case, DM production may
proceed via occasional scatterings or decays of particles in
the thermal bath [1–5], so-called freeze-in [6]. Another
possibility is the out-of-equilibirum decay of a thermally
decoupled mother particle, i.e., through the super-WIMP
mechanism [7,8]. The latter is realized in models where the
mother particle belongs to a Z2-odd dark sector, that forbids
its decay into SM particles, while it may have sizeable
couplings to the SMİn this case, the mother particle freezes

out similarly to a WIMP while DM is produced through its
decay, that typically becomes efficient much later in cosmic
history. In addition, in general, a contribution to DM
production from freeze-in is also present within this setup,
as long as the mediator decay is possible [6].
In this article, we highlight the phenomenological

implications of the interplay of super-WIMP and freeze-
in production of DM and provide up-to-date experimental
constraints and prospects. We consider a Z2-odd dark sector
comprising a feebly interacting DM particle and a mediator
that transforms nontrivially under the SM gauge groups,
such that its gauge interactions drive it towards thermal
equilibrium in the early Universe. In contrast, the feeble
DM interactions prevent it from thermalizing. For con-
creteness, we focus on a Majorana fermion DM candidate
and a colored t-channel mediator, mapping out the entire
accessible parameter space.
The DM density constraint imposes a fairly general

relation between the involved masses and the lifetime
of the mediator [6]. In a wide range of the cosmologically
allowed parameter space, the mediator has macroscopic
decay length allowing for experimental tests for long-lived
particles at colliders as well as effects on big bang
nucleosynthesis (BBN) through late decaying mediators.
They constrain the parameter space towards small mediator
masses and small mass splittings, respectively. We dis-
cuss current constraints from searches for detector-stable
R-hadrons as well as future projections for stable and
metastable mediators at the HL- and HE-LHC. For large
mass splittings and a significant super-WIMP contribution
to DM production, large deviations of the DM momentum
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distribution from the thermal one can arise. This leads to a
large free-streaming length, suppressing the amplitude of
the matter power spectrum on small scales, which can be
probed via Lyman-α forest observations [9–11]. This
constrains the parameter space towards large mass split-
tings. The same observation constrains the parameter space
towards very small DM masses (few keV) where freeze-in
dominates. The parameter space is hence cornered from
all sides.
The remainder of this work is structured as follows.

We first introduce the model under consideration in Sec. II
and refer to possible embeddings and variations. In Sec. III,
we detail the computation of the DM density and provide
some model-independent phenomenological considera-
tions. Finally, Sec. IV provides results for the cosmologi-
cally viable parameter space, experimental constraints and
future projections. We conclude in Sec. V.

II. THE MODEL

As a simple example of a Z2-odd new physics sector we
consider a top-philic, colored scalar t-channel mediator t̃
and a Majorana DM fermion χ interacting with the SM
through the Lagrangian

Lint ¼ jDμt̃j2 þ λχ t̃ t̄
1 − γ5
2

χ þ H:c:; ð1Þ

where Dμ is the covariant derivative, t is the top quark
Dirac field and λχ is the new physics coupling. The t̃
particle is a SUð2ÞL singlet and has hypercharge identical to
tR, similar to a right-handed squark field in supersymmetry.
The model introduces the three parameters mχ , mt̃ and λχ .
In this work, we focus on the regime of sufficiently small

couplings λχ , such that the χ particle never reaches thermal
equilibrium with the SM bath. This means that neither t̃ − χ
conversions, such as (inverse) decays t̃ ↔ tχ, nor annihi-
lations, such as χχ ↔ tt̄, occur at rates comparable to the
Hubble expansion rate throughout cosmic history. Details
on further possible interactions and its phenomenology in
the case of thermalized DM can be found in [12,13].
The simplified model, and variants with different spin-

and gauge-quantum numbers, can be part of generic
extensions of the SM of particle physics. For example,
the model possesses a natural embedding in supersym-
metric models. In this case, the Z2-symmetry can be
identified with R-parity, and the mediator with the lightest
superpartner of the SM particles (being the right-handed
stop for the specific model from above). The feebly
interacting DM particle can be realized in the context of
a hidden sector, that features an unbroken hidden Uð1Þ
gauge symmetry. After supersymmetry breaking, a small
kinetic mixing with the SM Uð1ÞY hypercharge leads to a
small bino-admixture of the hidden gaugino, providing a
small coupling λχ of the form introduced above [14,15].

Arguably, also supersymmetric models featuring
gravitino DM and a long-lived next-to lightest supersym-
metric particle (NLSP) share similarities with the type
of models studied here if R-parity is conserved, but
also exhibit differences due to the nonrenormalizeable
interactions [1,2] (see [16] for a recent analysis of stop
NLSP, and references therein for other possibilities).
A variant of the model considered here, but without

Z2-symmetry, has been studied in [17,18].

III. DARK MATTER PRODUCTION

For small enough values of the coupling λχ that connects
DM to the SM, the DM particle χ is never in equilibrium
with the SM thermal bath. In this case, any process
throughout the cosmic history leading to the production
of χ particles contributes to an accumulated χ population.
Immediately after the end of inflation, χ particles may be
produced during the reheating process. In this work, we
assume that this process leads to a negligible contribution
to the abundance of χ particles, and adopt the common
assumption that reheating produces a thermal bath
of SM particles, with maximal temperature given by TR.
Furthermore, we assume TR ≫ mt̃, such that the mediator t̃
thermalizes due to its gauge interactions.1 In this case,
within the simple model considered here, there are two
distinct sources of χ particle production. First, the freeze-in
mechanism that is most efficient for T ∼mt̃, and second,
the super-WIMP mechanism, corresponding to the late
decay of the frozen-out population of t̃. In the following, we
discuss both sources in turn.

A. Freeze-in

Freeze-in production relies on the occasional production
of χ particles within a thermal bath. For the model
considered here, due to the Z2-symmetry in the dark
sector, production processes have to involve t̃ in the initial
or final state. Since the abundance of t̃ becomes strongly
suppressed for T ≪ mt̃, the relevant temperature range for
freeze-in is T ≳mt̃. At these temperatures, gauge inter-
actions keep t̃ close to thermal equilibrium, i.e., we may

assume nt̃ ≃ neqt̃ ¼ gt̃
R d3p

ð2πÞ3 ft̃ where ft̃ ¼ ðeEt̃=T − 1Þ−1,
gt̃ ¼ Nc and E2

t̃ ¼ m2
t̃ þ p2.

We consider both the 1 → 2 process t̃ → χt as well as all
allowed 2 → 2 processes ab → χc, including t̃ t̄ → χg,
t̃g → χt, gt̄ → χ t̃�. The Boltzmann equation for the number
density nχ reads [6]

1For TR ≲mt̃ the relic density becomes dependent on TR and
the production via freeze-in may dominantly proceed via DM pair
production whose rate is suppressed by heavy mediator propa-
gators arising in the t-channel or in loops. Hence, significantly
larger couplings are expected to saturate the relic density
constraint than found in this work.
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_nχ þ 3nχH ¼ 2ðC1→2 þ C2→2Þ: ð2Þ

Here

C1→2 ¼
Z

d3pt̃

ð2πÞ3
gt̃ft̃mt̃

Et̃
Γt̃→χt ¼ nt̃

�
mt̃

Et̃

�
Γt̃→χt;

C2→2 ¼
X

processes

Z
d3pa

ð2πÞ3
d3pb

ð2πÞ3 gafagbfbσab→χcvab; ð3Þ

where vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa · pbÞ2 −m2

am2
b

q
=ðEaEbÞ, ga are the

internal degrees of freedom (d.o.f.) of species a, and we
neglected the loss term, as appropriate for freeze-in, as
well as statistical factors ð1� fiÞ (see below). The factor 2
in (2) takes into account charge conjugated processes,
which contribute equally due to CP symmetry and the
Majorana nature of χ. Since nχ appears only on the left-
hand side, the Boltzmann equation can be solved by direct
integration for the yield Yχ ¼ nχ=s, where s ¼ π2

45
g�ST3 is

the entropy density. The final yield

Yfi
χ ¼ Y1→2

χ þ Y2→2
χ ð4Þ

can be split into contributions from 1 → 2 and 2 → 2
processes. The former is, for example, given by

Y1→2
χ ðx0Þ ≃

Z
x0

0

dx
2Yeq

t̃ ðxÞ
xHðxÞ hΓiðxÞ; ð5Þ

where x ¼ mt̃=T, we assumed dg�S=dx ¼ 0 during freeze-
in and introduced

hΓiðxÞ ¼ Γt̃→χt

�
mt̃

Et̃

�
ðxÞ ¼ Γt̃→χt

K1ðxÞ
K2ðxÞ

; ð6Þ

where Ki denote modified Bessel functions. The integral
saturates for x0 ≳ 1 due to Boltzmann suppression of Yeq

t̃ .
The contribution to the DM density from freeze-in is
given by ðΩh2Þfi ¼ mχYfi

χ sðT0Þh2=ρcrit, where sðT0Þ and
ρcrit denote the entropy- and critical energy density today,
respectively.
We compute the freeze-in contribution with

MICROMEGAS 5.0.4 [19] which assumes the mediator
to follow the equilibrium density. As discussed above we
expect this to be a good approximation for the setup
considered here. We used the default approximate phase
space integration as well as the optional full vegas
integration routine, that includes also quantum statistical
factors, and found deviations below 5%.
For mt̃ > mt þmχ, the two-body decay t̃ → χt is kin-

ematically allowed. Since 2 → 2 processes are formally
suppressed by two powers of a SM coupling constant, one
may expect them to give a subdominant contribution in that
case. Nevertheless, we find them to contribute at the same

level as the decay. This has several reasons. For processes
such as t̃ t̄ → χg, t̃g → χt, gt̄ → χ t̃� the relevant SM
coupling is αs, which is sizeable for most of the parameter
space. In addition, 2 → 2 processes are favored kinemat-
ically over 1 → 2 for T ≳mt̃. Lastly, there is a large number
of possible 2 → 2 processes that add up, while only a single
1 → 2 channel exists.
When both 1 → 2 and 2 → 2 processes are kinematically

allowed, unphysical divergences may occur related to
nearly on-shell propagators (the default routine within
MICROMEGAS excludes 2 → 2 processes in that case).
We checked that no such effects occur at a sizeable level,
except for t̃g → χt and t̃γ → χt. For these processes the
cross-section σðsÞ becomes enhanced close to the thresholdffiffiffi
s

p ≳mt̃. These processes feature an s-channel contribu-
tion, involving a propagator 1=ðs −m2

t̃ Þ that gives a large
contribution close to threshold. A similar effect occurs for
t̃Z → χt when mt̃ ≫ mZ. The enhancement can be under-
stood as soft initial state radiation that contributes to the
next-to leading order correction to the decay t̃ → χt, in an
expansion in the SM couplings. We expect it to be regulated
for the χ production rate when consistently including all
real and virtual corrections. In addition, one may argue
that for the processes above the enhancement is cut off
when including a thermal mass for the soft initial state
particle. Here we do not attempt to provide a full next-to
leading order result. Instead, we implement a cut-offffiffiffi
s

p
min ¼ Rðma þmbÞ, where R > 1. We checked that as

long as R is close to unity the final yield depends only very
weakly on the precise choice. We used R ¼ 1.2 in our
numerical results. The total value of the final yield is
affected at most at the 10% level for mt̃ ≲ 105 GeV when
choosing R ¼ 1.1 instead. In addition, we checked that
when omitting the processes t̃g → χt, t̃γ → χt and t̃Z → χt
in the abundance calculation, all results remain qualita-
tively unchanged (see Sec. IVA for details).

B. Super-WIMP

The super-WIMP mechanism relies on the thermal
freeze-out of the mediator, that subsequently decays into
the DM particle [8]. Within the model considered here,
freeze-out of t̃ annihilation into SM particles yields an
abundance Yfo

t̃ at temperatures T ≪ mt̃=25, analogous to
WIMP freeze-out, that can be converted into the density
parameter ðΩh2Þt̃ ¼ mt̃Yfo

t̃ sðT0Þh2=ρcrit. At a much later
time t ≃ 1=Γt̃→χt, the mediator decays, which yields a
contribution to the DM density given by

ðΩh2ÞsWχ ¼ mχ=mt̃ðΩh2Þt̃: ð7Þ

We compute the freeze-out abundance of the mediator
in the absence of DM as a function of mt̃ using
MICROMEGAS 5.0.4 [19]. We take into account
Sommerfeld enhancement of the mediator annihilation
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cross section as detailed in Appendix B of [20]. The
mediator density may also be affected by bound-state
effects [21–23], which we leave for future work.

C. Some model-independent considerations

Before discussing the parameter space and phenomenol-
ogy of the specific model considered here in more detail,
we highlight several properties that apply more generally to
models containing a Z2-odd mediator with sizeable inter-
actions with the SM, along with a DM particle that is very
weakly coupled. These type of models are not constrained
by WIMP searches for direct- and indirect detection.
However, the presence of the mediator leads to testable
signatures. It is in thermal equilibrium in the Early
Universe, and can potentially be produced in laboratory
experiments. The mediator needs to be heavier than DM,
such that it can decay into the stable DM state. Due to the
weak coupling, the mediator decay rate is suppressed,
leading generically to long-lived particles with special
implications for phenomenology.
In this case, both freeze-in and super-WIMP contribu-

tions are present in general. The former depends on the
production rate, which in turn depends on the small DM
coupling, in our case ðΩh2Þfiχ ∝ λ2χ . Since, for small enough
λχ , this coupling plays no role for the mediator freeze-
out, the super-WIMP contribution is independent of the
DM coupling, i.e., ðΩh2ÞsWχ ∝ λ0χ . Therefore, if we require
that the total abundance matches the observed value,
ðΩh2Þfiχ ðλχÞ þ ðΩh2ÞsWχ ¼ 0.12, solutions can only exist
for points in parameter space for which ðΩh2ÞsWχ ≤ 0.12.
In that case, the condition above can be used to determine
the value of λχ to explain the measured DM density. We
therefore expect in general that within a large portion of the
parameter space freeze-in dominates (“bulk”). The viable
region in parameter space is then bounded by a hypersur-
face on which the super-WIMP mechanism saturates the
DM density constraint (“boundary”). We will see below
that this expectation is borne out in the model considered
here (cf. [24]).
Provided the process that corresponds to mediator

decay gives a sizeable contribution to the freeze-in abun-
dance (in the model considered here this is the case for
mt̃ > mt þmχ , such that two-body decay is kinematically
allowed), we can estimate the freeze-in abundance by
generalizing (5) in the form

Y1→2
χ ≃ cgmed

Γmed

m2
med

Z
x0

0

dx
Yeq
medðxÞ

xH̃ðxÞgmed

K1ðxÞ
K2ðxÞ

; ð8Þ

where H̃ ¼ H=m2
med, and c ¼ 1ð2Þ for a neutral (charged)

mediator. Within the model considered here, Γmed → Γt̃→χt,
mmed → mt̃, gmed → gt̃, c → 2.
As long as the temperature of mediator freeze-out is well

above the electroweak scale, the number of relativistic

d.o.f. is approximately constant such that Yeq
medðxÞ

and H̃ðxÞ are functions of x only, without reference to
mmed. Furthermore, the number of internal d.o.f. of the
mediator cancels out inside the integrand in Eq. (8).
Hence, the integral in Eq. (8) is a constant. Con-
sequently, within the “bulk” region of parameter space
(for which ðΩh2ÞsWχ ≤ 0.12),

Ωh2

0.12
≃ 8.5 × 1024cgmedΓmed

mχ

m2
med

; ð9Þ

where we negected the 2 → 2 contribution in order to
obtain the parametric estimate above (cf. [6]). For a given
decay rate Γmed, or equivalently mediator lifetime, this
imposes a correlation mmed ∝ m1=2

χ between the mediator
and DMmass. We expect this finding to be applicable to the
general class of models discussed above, see e.g., [25].
In addition, within the “bulk” region of parameter space,

for which freeze-in dominates, Eq. (9) can be used to
estimate the time tdec ≃ Γ−1

med when the (subdominant)
population of frozen-out mediator particles decays. In
terms of temperature, and well above the electroweak
scale, Tdec ≃ 6 × 108 GeV × ðΓmed=GeVÞ1=2 and hence
xdec ¼ mmed=Tdec is given by

xdec ≃ 378ðcgmedÞ1=2
�

mχ

MeV

�
1=2

: ð10Þ

That is, there is a relationmχ ∝ x2dec, which we again expect
to apply to the class of models discussed above. This
also shows that the super-WIMP production via mediator
decay is well separated in time from the freeze-in regime
x ≃Oð1Þ for mχ ≫ 0.1 keV.
Note that Eq. (9) furthermore implies a model-

independent statement about the region in the mediator-
DM mass plane that provides long-lived particles at the
LHC. For proper decay length in the range [1 m; 1 mm]
we find

mmed ≃ ½1.3; 40� TeVðcgmedÞ1=2
�

mχ

MeV

�
1=2

; ð11Þ

where the lower edge of the mass range corresponds to
the upper edge of the decay length and vice versa while
smaller masses provide mostly detector-stable mediators.
Note that in case of additional contributions to DM
production the lifetime becomes larger, shifting the respec-
tive mediator mass range to larger values. Within freeze-in
scenarios long-lived particle signatures at the LHC were
studied in [6,26–31].

IV. PARAMETER SPACE AND CONSTRAINTS

A. Parameter space and DM density

Out of the three free parameters mχ , mt̃; λχ , one may
be fixed by the condition that the sum of freeze-in and
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super-WIMP contributions to the χ density equals the
observed DM abundance. We choose to fix λχ by this
condition, and use the DMmassmχ and the mass difference

Δm≡mt̃ −mχ ð12Þ

to describe the remaining two-dimensional parameter
space. Dark matter stability requires Δm > 0.
In Fig. 1, we show the resulting coupling λχ (green lines)

as function of the DM mass, for fixed Δm ¼ 2.5 TeV (left)
and Δm ¼ 100 TeV (right). The freeze-in contribution
dominates for mχ ≪ mcrit

χ ≃ 1.6 TeV and 40 GeV in the
two cases, respectively, corresponding to the “bulk” region
discussed before. The coupling λχ required to obtain the
measured relic density increases towards lower DM masses.
This can be understood in the following way: as discussed
above, for Δm ≫ mχ, the freeze-in yield is approximately
independent of mχ , such that Ωh2 ≃ ðΩh2Þfi ∝ λ2χmχ .
Requiring Ωh2 ¼ 0.12 thus implies λχ ∝

ffiffiffiffiffiffimχ
p .

When increasing mχ for fixed Δm, the super-WIMP
contribution becomes larger. Since it is independent of λχ ,
its value saturates the constraint ðΩh2ÞsW → 0.12 for some
finite value of mχ → mcrit

χ . At this point λχ → 0, and no
solutions providing the measured DM abundance exist for
larger values ofmχ . In order to quantify the uncertainty due
to the approximate treatment of 2 → 2 contributions with
threshold enhancement, we show an error band in Fig. 1
around the green line. The lower boundary corresponds to
the result obtained when using a cut parameter R ¼ 1.1
(see Sec. III A). For the upper boundary we omit the
enhanced 2 → 2 processes when computing the freeze-in
abundance.

The full two-dimensional parameter space is shown in
Fig. 2, covering the entire accessible region of parameter
space (left), going up to very large mediator masses, and the
patch for Δm < 50 TeV, with mχ on a linear scale (right),
respectively. The value of λχ obtained from imposing the
condition ðΩh2Þfi þ ðΩh2ÞsW ¼ 0.12 is indicated by the
green contour lines. For the left panel in Fig. 2, the contours
show decades in log10 λχ , and for the right panel the value
of λχ normalized to 10−12. In this two-dimensional param-
eter space, the “boundary” corresponds to the thick black
line, for which ðΩh2ÞsW → 0.12. Values of ðmχ ;ΔmÞ above
that line are excluded due to DM overproduction. The
region below the black line corresponds to the “bulk” as
discussed before. Well inside the “bulk,” freeze-in produc-
tion dominates. The black dashed (right panel only) and
dotted curves show the contour of constant relative super-
WIMP contribution ðΩh2ÞsWχ =ðΩh2Þtotχ ¼ 50% and 10%,
respectively. Below the dotted curve the super-WIMP
contribution is subdominant.
In the following, we discuss observational signatures that

can probe different regions of the parameter space, includ-
ing long-lived colored particles at the LHC (R-hadrons) and
during BBN, as well as Lyman-α forest observations.

B. Collider constraints and projections

As discussed in Sec. III C the relic density constraint
implies the existence of long-lived particles in a large part
of the parameter space within the class of models consid-
ered here. In Figs. 1 and 2, we indicate the proper decay
length by the cyan dotted contours for cτ ¼ 1 mm and 1 m,
corresponding to the range in which decays typically take
place inside the detector. Below the latter curve a signifi-
cant fraction of mediators decay outside the detector.

FIG. 1. Dark matter coupling strength λχ providing Ωh2 ≃ 0.12 as a function of mχ (green solid curve) for Δm ¼ 2.5 TeV (left) and
100 TeV (right). The green shaded band provides an estimate of the uncertainties due to the regularization of divergent diagrams: the
upper boundary is obtained from leaving out the respective diagrams while the lower boundary represents a looser cut (see text for
details). The purple and red shaded regions denote 95% CL exclusions from Lyman-α and BBN bounds, respectively. The cyan dotted
curves show contours of constant mediator decay length, while the blue dotted curve shows the projected sensitivity of the
27 TeV HE-LHC.
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The colored mediator t̃ can be copiously produced at
hadron colliders. For large mediator decay lengths, cτ≳
ðdetector sizeÞ, searches for detector-stable R-hadrons
provide a promising discovery channel at the LHC.
Here we constrain the model by current searches at the
13 TeV LHC and estimate projections for the HL- and
HE-LHC.
Current searches for detector-stable top-squarks with

the CMS detector exclude masses up to mt̃ ¼ 1250 GeV
at 95% CL [32]. This limit is directly applicable to
our model in the region where cτ ≫ 1 m. For inter-
mediate lifetimes, cτ ≲ 1 m, relevant for DM masses
mχ ≲ 100 keV, the limit is weakened due to the exponen-
tial suppression of the fraction of decays outside the
detector. We use the reinterpretation of the above limit
for finite lifetimes provided in [20] considering the ‘generic
model’ for hadronization. The resulting 95% CL exclusion
is shown in Fig. 2 (blue shaded region). For large DM
masses the limit lies entirely in the detector-stable regime
and its drop is simply caused by the chosen presentation
in terms of mχ and Δm. Towards small masses Δm ≃mt̃

and the drop in the limit is due to the exponential
suppression of the detector-stable fraction. Still, R-hadron
searches constrain the parameter space towards small
mediator masses down to the smallest mχ consistent with
Lyman-α bounds, see Sec. IV D.
In order to illustrate the future sensitivity to the model,

we consider R-hadron searches using 3 ab−1 at 14 TeV
(HL-LHC) and 10 ab−1 at 27 TeV (HE-LHC). We compute
the signal cross sections at the 14 and 27 TeV with

NLLFAST [33] and PROSPINO [34], respectively. As the
search is based on anomalous ionization loss and time-
of-flight the signal efficiencies depend crucially on the
velocity distribution of the produced mediators. To first
approximation the velocity distribution stays unchanged
for constant mt̃=

ffiffiffi
s

p
. We therefore estimate the signal

efficiencies by rescaling the ones from [32] (and [20] for
finite lifetimes):

ðAϵÞ14 TeVðmt̃Þ ¼ ðAϵÞ13 TeVðmt̃ × 13 TeV=14 TeVÞ
ð13Þ

and analogous for 27 TeV.2 We estimated the background
by rescaling the one reported in [32] by the cross section
ratio σ14 TeV=σ13 TeV (σ27 TeV=σ13 TeV for 27 TeV) com-
puted with MADGRAPH5_AMC@NLO [37] for the leading
background to heavy stable charged particles which is
Drell-Yan production of muons.
In Fig. 2, we draw the corresponding projected

95% CLs-limits for the HL- (blue dashed) and HE-LHC
(blue dotted). They reach mediator masses up to 2000 and
4050 GeV, respectively (see also the left panel of Fig. 2).

FIG. 2. Cosmologically viable parameter space (Ωh2 ≃ 0.12) in the mχ‐Δm plane displayed logarithmically (left) and linearly
(right) in mχ . The thin green lines denote contours of constant coupling strength λχ . The black thick line marks the over-closure bound
while the black dashed (right panel only) and dotted lines denote the contours where fsW ¼ 50% and 10%, respectively. The red and
purple shaded regions are excluded by bounds from BBN and the Lyman-α forest. The blue shaded region is excluded by R-hadron
searches at the 13 TeV LHC. The dashed and dotted blue curves denote the respective projection for the 14 TeV HL-LHC and 27 TeV
HE-LHC, respectively.

2Note that a naive use of the recasting of the 8 or 13 TeV search
for heavy stable charged particles [35,36] does not resemble this
behavior up to

ffiffiffi
s

p ¼ 27 TeV, but results in significantly smaller
signal efficiencies. The reason for this is the decreasing efficiency
towards large pT for the current CMS detector. We hence
implicitly assume an improved performance towards high pT
for the HE-LHC.
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The latter can probe the entire DM mass range up to the
boundary (where Δm ≃ 1500 GeV).
In addition to searches for detector stable objects, in the

region mχ ≲ 100 keV, signatures of mediators decaying
inside the tracker may provide further sensitivity. We
expect searches for disappearing R-hadron tracks and
displaced tops to be further promising discovery channels
at the HL- and HE-LHC.

C. BBN bounds

The presence of a metastable colored mediator during the
epoch of BBN affects the predictions for the primordial
abundances of light elements through the energy release
from its decay [38,39] as well as through bound-state
formation with baryonic matter [40,41]. Due to strong
hadro-dissociation processes the former effect is dominant
for a hadronically decaying mediator. We estimate the
respective constraints on the parameter space by applying
the results from [38] for a hadronic branching ratio of 1
using the mediator freeze-out abundance Yt̃ and lifetime as
computed by MICROMEGAS 5.0.4. The slight dependence
on the mediator mass is approximated by linearly inter-
polating (and extrapolating) the results for 100 GeV and
1 TeV in log-log space.
The resulting constraints are shown as the red shaded

regions in Figs. 1 and 2. For fixed mχ and Δm, BBN
imposes an upper bound on the lifetime, which translates
into a lower bound on the coupling λχ . For mχ ≪ Δm,
both the lifetime and the mediator abundance Yt̃ become
independent of mχ , explaining the almost horizontal
exclusion contour in Fig. 1. For Δm ¼ 2.5ð100Þ TeV
we find λχ ≥ 1ð6Þ × 10−14 (see Fig. 1). The value of
the coupling required for Ωh2 ¼ 0.12 is consistent with
BBN for most of the parameter space, except for a small
strip close to the “boundary”, at which λχ → 0 (not
resolved in Fig. 2), as well as the region Δm≲mt, for
which the two-body decay t̃ → χt is kinematically for-
bidden, such that the mediator lifetime is increased
(see Fig. 2, right panel). BBN bounds are stronger
than Lyman-α constraints (see below) for mχ ≫ keV
and Δm≲ 10 TeV.

D. Lyman-α forest bounds

In this section, we consider constraints on the DM and
mediator mass from free-streaming of DM particles, that
leads to a suppression of the amplitude of the matter power
spectrum on length scales smaller than the free-streaming
scale

λfs ¼
Z

zprod

0

dz
vðzÞ
HðzÞ : ð14Þ

Here vðzÞ is the typical velocity of DM particles, and zprod
is the redshift at which DM is (dominantly) produced.

The power on small scales can be probed by observations
of absorption features in the spectra of distant light sources
(quasars) imprinted by intervening clouds of neutral hydro-
gen, known as Lyman-α forest. The interpretation of these
data depends on various properties of the intergalactic
medium (including its redshift-dependent temperature and
adiabatic index) as well as bias parameters that relate the
hydrogen distribution to the underlying DM density field.
These astrophysical effects are often described by a number
of “nuisance” parameters, that need to be varied together
with the cosmological parameters in order to obtain
constraints from comparing theoretical predictions based
on hydrodynamical simulations with observations [42,43].
Here we reinterpret such an analysis performed for mixed
cold and warm DM [44] based on data from BOSS/SDSS
[9], XQ-100/VLT [10], and MIKE/HIRES [11].
Since a dedicated analysis is beyond the scope of this

work, and in view of astrophysical uncertainties, we
estimate Lyman-α constraints on the model considered
here by computing the free-streaming length, and compar-
ing to the maximally allowed value taken from [44]. More
specifically, we translate the 2σ limits on the warm DM
mass, as function of the warm DM fraction 0 ≤ f ≤ 1, into
an f-dependent upper bound λmax

fs ðfÞ, and then apply the
latter to the model considered here (see below). For f ¼
1ð0.2Þ the analysis of [44] yields mWDM ≥ 4.0ð1.5Þ keV,
corresponding to λmax

fs ð1Þ ¼ 0.10 Mpc and λmax
fs ð0.2Þ ¼

0.21 Mpc (we use cosmic parameters from Planck [45]
for the conversion).
Even though, within the model considered here, DM is

composed of a single particle species, the two populations
produced via freeze-in and the super-WIMP mechanism,
respectively, feature a different momentum distribution,
and therefore different free-steaming lengths, denoted by
λfifs and λsWfs (see below). We denote the corresponding
fractions of the DM density by ffi ¼ ðΩχh2Þfi=0.12 and
fsW ¼ ðΩχh2Þfi=0.12, such that ffi þ fsW ¼ 1 in the cos-
mologically allowed parameter region. If for example λfifs
approaches the maximal allowed value, we find that λsWfs is
negligibly small within the majority of the accessible
parameter space, such that the fraction of “warm” DM is
in this case ffi, while the rest behaves as cold DM on the
relevant scales. The same is true vice versa. Therefore, we
impose the bound as

λafs ≤ λmax
fs ðfaÞ; ð15Þ

for both a ¼ fi, sW. This procedure is expected to fail when
both production mechanisms produce a comparable free-
streaming length, of the order of the maximally allowed
values. In this case, the corresponding matter power
spectrum can have a more complicated scale-dependence,
which requires a dedicated analysis (see e.g., [46–49] for
related discussions) which is beyond the scope of this work.
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Let us now estimate the free-streaming lengths for both
production mechanisms. We assume production is domi-
nated at a redshift interval around some redshift zprod with a
typical momentum pprod of the DM particles. Due to
cosmic expansion, the momentum redshifts according to

pðzÞ ¼ pprod
1þ z

1þ zprod
; ð16Þ

and the typical velocity entering (14) is given by

vðzÞ ¼ pðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðzÞ2 þm2

χ

q : ð17Þ

Together with the standard expression

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩrð1þ zÞ4 þ ΩΛ

q
; ð18Þ

this can be used to compute λfs as function of zprod and
pprod. We note that the integral over z is dominated by
redshifts z≳ 103 such that the value computed with lower
integration boundary at z ¼ 0 and at the redshifts z ∼ 2–5
relevant for Lyman-α observations is practically identical.
For the super-WIMP mechanism, i.e., late decays t̃ → tχ

of the mediator, we assume for the time of production

tsWprod ≃ 1=Γdecay; ð19Þ

where Γdecay is the t̃ decay rate. The decay time can be
converted to the redshift using

tðTÞ ≃ 0.301ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p MPl

T2
; ð20Þ

and then solving T ¼ ðg�SðTÞ=g�SðT0ÞÞ1=3T0ð1þ zÞ for
the temperature, where g�ðSÞ are the usual relativistic d.o.f.
At the decay time, the kinetic energy of the mediator can be
neglected, such that it decays at rest. The momentum is
therefore given by

psW
prod ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

t̃ þm4
χ þm4

t − 2ðm2
t̃ m

2
χ þm2

t̃ m
2
t þm2

χm2
t Þ

q
2mt̃

:

ð21Þ

The above equations amount to vγðzprodÞ ≃mt̃=ð2mχÞ for
large mt̃ where γ ¼ ð1 − v2Þ−1=2. Note that for very long
mediator lifetimes comparable to the time of recombina-
tion, the interaction of the mediator with baryonic matter
can lead to further suppression of the power spectrum [50].
The mediator lifetimes we consider are much smaller than
this, even though there may be a tiny region in parameter
space very close to the “boundary”, for which λχ → 0,

where this becomes relevant. We do not consider this
possibility further here.
For the freeze-in contribution the dominant part arises

before the onset of a (strong) Boltzmann suppression of the
mediator abundance, that is at T ∼mt̃. We approximate the
production redshift by

zfiprod ≃ zðT ¼ mt̃=xfiÞ; ð22Þ

where xfi corresponds to the value of x ¼ mt̃=T for which
the production rate dYχ=dx is maximal. For simplicity, we
consider production via decay only for which we find
xfi ≃ 2.4. Production via scatterings peaks at a value of
comparable size, and we therefore expect the choice
adopted here to give a subleading contribution to the
error budget. Note that scatterings are taken into account
for the abundance computation. In order to estimate the
typical momentum, we compute the average energy of
DM particles produced from a thermal distribution of t̃.
As before we focus on production via decay, yielding
hEχiðxfiÞ ≃ 0.92mt̃ for Δm ≫ mt.
The resulting bounds on the parameter space are shown

by the purple-shaded regions in Figs. 1 and 2. The two
distinct exclusion regions in Fig. 1 correspond to the cases
λfifs > λmax

fs ðffiÞ and λsWfs > λmax
fs ðfsWÞ, respectively. In the

former case, the free-streaming length becomes large due to
the small DMmass, and in the latter case due to an interplay
of the large mass splitting, a long mediator lifetime and a
large super-WIMP fraction.
The resulting exclusion region on ðmχ ;ΔmÞ when

imposing Ωh2 ¼ 0.12 is shown in Fig. 2. For small DM
masses andmt̃ ≪ 107 TeV, the production is dominated by
freeze-in (i.e., ffi ≃ 1). In this case, Lyman-α data impose a
lower bound on the DM mass of the order of mχ ≳ 6 keV
(left part of purple-shaded area in Fig. 2). This bound is
comparable to warm DM bounds, but slightly stronger,
because freeze-in produces a nonthermal spectrum with
slightly higher momentum than in the corresponding
thermal case. However, we conservatively attribute an
uncertainty of a factor of two to the precise value, due
to the approximate estimate based on the free-streaming
length, as well as astrophysical uncertainties (see above).
For the region in parameter space for which the super-

WIMP mechanism gives a sizeable contribution, Lyman-α
data exclude large mediator masses, and require e.g., mt̃ ≲
106 TeV formχ ≃MeV (right part of purple-shaded area in
Fig. 2). The decay of mediators above this bound would
lead to a too large free-streaming length, because the heavy
mediator converts its rest mass into kinetic energy of the
DM particles. For mt̃ ≳ 107 TeV this excludes points in
parameter space with a fraction of DM produced via the
super-WIMP mechanism down to fsW ≳ 10%.
The exclusion contour in Fig. 2 close to the crossing

point of the two regions discussed above should be
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regarded as conservative, because both populations have
sizeable free-streaming length in that part of parameter
space. The approach outlined above tends to underestimate
the suppression of the power spectrum in this case. As
mentioned above, a proper treatment of this region goes
beyond the scope of this work.

V. CONCLUSION

In this work, we studied a class of DM models
comprising a Z2-odd dark sector that contains a feebly
interacting DM particle along with a mediator that trans-
forms nontrivially under the SM gauge group. The DM
particle never thermalizes and is produced via a combina-
tion of freeze-in on the one hand, and late decays of frozen-
out mediator particles, known as super-WIMP mechanism,
on the other hand. Despite the fact that DM interactions
with the SM are tiny—well in agreement with null-searches
in direct and indirect detection experiments—the presence
of the mediator leads to characteristic signatures that can be
probed by searches for long-lived particles at colliders, via
Lyman-α forest observations, as well as the determination
of primordial element abundances.
The interplay of freeze-in and super-WIMP produc-

tion leads to a finite region in parameter space for which
the observed DM abundance can be explained. Taking a
Majorana DM particle χ and a colored top-philic scalar
mediator t̃ as an example, the DM mass is bounded by
mχ ≤ mmax

χ ≃ 2700 GeV. In addition, there is a maximal
possible mediator mass, depending on the value of mχ .
For example, mt̃ ≤ mmax

med ≃ ð6; 3 × 103; 2 × 106Þ TeV for
mχ ¼ ð103; 1; 10−3Þ GeV. In addition, we highlight a
simple parametric relation between the mediator lifetime
and the masses. For DM mass in the MeV range and
mediator decay length on detector scales (mm–m), the
mediator mass is in the (multi-)TeV region.

We explore experimental probes within the entire acces-
sible parameter space of DM and mediator masses, and
provide up-to-date exclusion limits. We find that the
parameter space is constrained from all sides. Mediator
masses around the TeV-scale and below are excluded from
R-hadron searches at the 13 TeV LHC formχ ≲ 1 TeV, and
by BBN for mχ ≳ 1 TeV. On the other hand, very heavy
mediators with mass above 106–107 TeV are in conflict
with recent Lyman-α forest observations, as are DMmasses
below about 6 keV. In addition, a tiny region close to
the boundary of the accessible parameter space, with
mt̃ ≲mmax

t̃ , is excluded by BBN and Lyman-α observations
for mt̃ below and above 10 TeV, respectively (not fully
resolved in Fig. 2). In this region, a large fraction of the DM
abundance is produced via the super-WIMP mechanism,
and the mediator lifetime becomes particularly large. We
also provide projections for high luminosity and 27 TeV
high energy upgrades of the LHC, that are sensitive to
mediator masses up to around 2 and 4 TeV, respectively.
While we focus our phenomenological analysis in this

work on a specific simplified model, we emphasize that
the qualitative features remain the same in general. For
example, for a lepto-philic mediator mmax

χ and mmax
med would

be smaller due to its larger freeze-out abundance, while
the collider bound would be weaker due to the reduced
production cross section. In the future, it would be
interesting to perform a dedicated analysis of Lyman-α
forest bounds for combined super-WIMP and freeze-in
production.
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