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For a scalar theory whose classical scale invariance is broken by quantum effects, we compute self-
consistent bounce solutions and Green’s functions. Deriving analytic expressions, we find that the latter
are similar to the Green’s functions in the archetypal thin-wall model for tunneling between quaside-
generate vacua. The eigenmodes and eigenspectra are, however, very different. Large infrared effects from
the modes of low angular momentum j ¼ 0 and j ¼ 1, which include the approximate dilatational modes
for j ¼ 0, are dealt with by a resummation of one-loop effects. For a parametric example, this resummation
is carried out numerically.
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I. INTRODUCTION

A sufficiently large lifetime of metastable vacuum states
[1,2] is an important criterion for the viability of models of
electroweak symmetry breaking [3–6]. For other sectors
that are more or less closely tied to the electroweak one,
false vacuum decay can play an essential role in cosmology
[7]. Since tunneling events do not correspond to extrema
of the Minkowskian action, the calculation of the decay
rates relies on Euclidean solitons, which are saddle point
configurations often referred to as bounces [1].
Since the bounce action enters the decay rate exponen-

tially, leading-order calculations are often sufficient to
check the metastability. Higher precision can be achieved
when including the first quantum corrections, which also
establish the correct dimensionful prefactors for a decay
rate per unit volume by trading the zero modes associated
with the spontaneous breakdown of spacetime symmetries
for integrals over collective coordinates.
The fluctuation modes around the solitons differ from

those in calculations of effective potentials because they
include the gradient corrections from the varying back-
ground, whereas, for the effective potential, one assumes a
field configuration that is constant throughout spacetime.

Nevertheless, effective potentials can be useful in order to
include radiative effects, provided it can be justified that
gradient corrections are of higher order and pathologies,
such as imaginary parts appearing in concave regions of the
tree potential, can be ignored.
One-loop corrections to the action that account for the

gradients can be expressed through the functional deter-
minant of the quadratic fluctuations around the bounce.
A powerful method to deal with this apparently compli-
cated task is provided by the Gel’fand-Yaglom theorem,
which reduces the problem to one of solving field equations
for certain boundary conditions [8,9].
When dealing with bounce configurations that are not

perturbatively close to a tree-level solution (see Ref. [10]),
we encounter a significant limitation of this method. Such a
situation occurs for models of radiative symmetry breaking,
where the true vacuum only appears through loop correc-
tions [11] or, as in the case of interest for the present work,
for approximately scale-invariant models, where the scale
of the radius of the nucleating bubbles is not known before
consistently accounting for quantum effects. In particular,
for a scalar theory with a negative quartic self-coupling, the
classical solution, known as the Fubini-Lipatov instanton
[12,13], contains a scale parameter that determines the
radius of the nucleating bubbles, which is not fixed at tree
level. In this case, one needs to find the bounce solutions
by computing radiative corrections to the equations of
motion self-consistently within the bounce field configu-
ration, which is the main objective of the present paper. We
must emphasize that there are many ways in which the
classical scale invariance can be broken, and we make here
a specific choice that we find most suitable for our present
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methodical developments. Our particular setup is therefore
presented in Sec. II, and additional technical details are
provided in Appendix A.
Methodically, we compute the loop corrections from

Green’s functions in the bounce background. This approach
has already been applied to examples in the thin-wall limit
in Refs. [11,14,15]. Formally, these Green’s functions are
the inverse of the quadratic fluctuation operator, where the
aforementioned zero modes must be projected out in order
to leave the inversion well defined. We find that analytic
solutions are available and that these seem to suggest a
decomposition into zero and positive- or negative-definite
modes in a form that is not consistent with what we obtain
when computing these contributions explicitly. This may
be a concern, and a way of checking this and of gaining
further insight is to obtain the Green’s function from its
explicit representation in terms of a spectral sum. This
requires the knowledge of the eigenmodes, the complete
set of which, however, does not appear to be available in
terms of analytic expressions for the Fubini-Lipatov case.
In Sec. III, we therefore return to the archetypal case of
tunneling between quasidegenerate vacua, originally con-
sidered by Coleman and Callan [1,2], where the spectral
sum representation can be worked out explicitly. It turns out
there that the contributions from the discrete modes cannot
simply be “read off” from the analytic solution for the
Green’s function, such that we may not expect such a
straightforward decomposition for the Fubini-Lipatov case
either, which should address the above concern.
In Sec. IV, we describe a procedure for treating the zero

modes pertaining to the spontaneous breakdown of trans-
lational invariance in the bounce background. Particular
attention is paid to combine this with the resummation of
one-loop corrections in order to regulate the infrared
divergences that occur in this sector.
These developments are subsequently applied to the case

of a Fubini-Lipatov instanton with corrections from scalar
loops in Sec. V. We also explain in that section how we deal
with infrared effects due to dilatational zero modes asso-
ciated with the classical scale invariance. These modes are
not normalizable in the proper sense because they appear at
the end point of a continuum spectrum. Our calculation
makes use of the physical regularization of the infrared
divergences, i.e., due to the radiative breakdown of scale
invariance, by resumming the one-loop corrections within
the Green’s function. This method therefore presents an
alternative to the subtraction of the dilational sector in favor
of a collective coordinate for the scale transformations.
Finally, in Sec. VI, we apply the methods presented in

this work to a parametric example of scalar theory with
quartic interactions and extra couplings to scalar fields.
This serves to illustrate and to test the methods presented
here such that further developments and parametric studies
can follow in the future. Our conclusions and possible
future directions are presented in Sec. VII.

II. SETUP

We work with the following Euclidean Lagrangian,
comprising a real scalar field Φx ≡ΦðxÞ:

L ¼ 1

2
ð∂μΦÞ2 þ UðΦÞ þ δUðΦÞ; ð1Þ

where the classical potential is

UðΦÞ ¼ 1

2
m2Φ2 þ 1

3!
gΦ3 þ 1

4!
λΦ4; ð2Þ

and

δUðΦÞ ¼ 1

2
δm2Φ2 þ 1

3!
δgΦ3 þ 1

4!
δλΦ4 ð3Þ

contains the mass and coupling-constant counterterms. In
Eq. (1), ∂μ ≡ ∂=∂xμ is the derivative with respect to the
Euclidean coordinate xμ ≡ ðx; x4Þ.
When λ < 0, the potential UðφÞ exhibits a false vacuum

at φ≡ hΦi ¼ 0 and is unbounded from below for
φ → �∞. At the level of the classical potential, and when
setting m ¼ 0 and g ¼ 0, transitions from the false vacuum
at φ ¼ 0 proceed via quantum-mechanical tunneling, and
the bounce solution to the equation of motion

−
d2

dr2
φ −

3

r
d
dr

φþ U0ðφÞ ¼ 0 ð4Þ

is the Fubini-Lipatov instanton [12,13],

φðrÞ ¼ φð0Þ
1þ r2=R2

; ð5Þ

where φð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−48=λ=R2

p
, r ¼ ffiffiffiffiffiffiffiffiffi

x · x
p

is the four-
dimensional radial coordinate and R is a constant that
characterizes the radius of the nucleating bubble. The
bounce action is given by [16]

B ¼ 2π2
Z

∞

0

drr3
�
1

2
ð∂rφÞ2 þ

λ

4!
φ4

�
¼ −

16π2

λ
ð6Þ

and is independent of R, as a consequence of classical scale
invariance. These results should give a first approximation
to the tunneling rate per unit volume

Γ=V ∼ e−B=ℏ; ð7Þ

whenever m ≪ R−1, which is what we will also find
explicitly when including radiative corrections, cf. the
results for the bounce solutions shown in Sec. VI.
Now, radiative corrections will, in general, break classical

scale invariance, and the field experiences these already in
the false vacuum, where φ ¼ 0. We choose a nonvanishing
mass at the symmetric point as a renormalization condition
and thereby as the unique renormalization scale, i.e., we take
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m ≠ 0 in Eq. (2) and the renormalization condition
Uren00

eff ðφÞjφ¼0 ¼ m2. More details on this procedure are
presented in Appendix A. The existence of a bounce solution
then requires the presence of radiative corrections [16] and,
when these are small, there is the hierarchy m ≪ R−1, such
that mR is perturbatively small. Since the inverse radius is
much larger than the scale m, we can consider the present
setup as a classically scale-invariant model, albeit with a
small breaking provided by the parameter m. We will
confirm the perturbative deviation from scale invariance
explicitly in the numerical studies of Sec. VI.
From this perspective, and without a symmetry to protect

the vanishing of the mass of the scalar field when φ ¼ 0, m
appears as a dimensionful scale that is necessarily intro-
duced by radiative corrections, similar to the scale μ at
which Coleman and Weinberg fix the quartic coupling in
their original work on radiative symmetry breaking [17].
We note that the present setup would not change substan-
tially when choosing the tree-level parameter m2 ¼ 0,
while still maintaining Uren00

eff ðφÞjφ¼0 ¼ m2, but we prefer
the above choice for calculational simplicity.
The present model is reminiscent of approximately scale-

invariant theories that may be trapped in a false vacuum at
some point during the cosmological evolution. Depending
on the exact masses of the Higgs boson and the top quark,
the Standard Model may be the most important example
of such a theory [18]. Nevertheless, there are important
qualitative differences in the running of the quartic cou-
pling and in the way in which the potential barrier between
false and true vacuum is generated. We will comment on
these matters in the Conclusions.
We also include here the effect from Nχ extra fields χi of

mass mχ ,

L → Lþ
XNχ

i¼1

�
1

2
ð∂μχiÞ2 þ

1

2
m2

χχ
2
i þ

1

4
αΦ2χ2i

�
: ð8Þ

These additional fields are useful for controlling the
amount of radiative breaking of the scale invariance. The
effective potential resulting from our choice of renormal-
ization conditions is given by (see Appendix A)

Uren
eff ðφÞ ¼

1

2
m2φ2 þ λ

4!
φ4

þ 1

256π2

�
ð2m2 þ λφ2Þ2 ln 2m

2 þ λφ2

2m2

− 2λm2φ2 −
3

2
λ2φ4

�

þ Nχ

256π2

�
ð2m2

χ þ αφ2Þ2 ln 2m
2
χ þ αφ2

2m2
χ

− 2αm2
χφ

2 −
3

2
α2φ4

�
: ð9Þ

We note that since λ < 0, this radiative contribution to
the effective potential develops an imaginary part for
φ >

ffiffiffiffiffiffiffiffiffiffiffi
−2=λ

p
. This is due to the tachyonic instability of

the field Φ in that region. Nevertheless, the effective action
remains real when evaluated at the bounce solution.
Namely, the imaginary part present in the effective
potential—which assumes a constant, homogeneous field
configuration—is removed when we account for the
gradients of the field.

III. SPECTRUM OF FLUCTUATIONS

We aim to compute radiative corrections to tunneling
transitions using Green’s functions. While these can be
obtained as direct solutions to their defining equations,
additional insights can be gained through consideration of
the particular contributions from the fluctuation spectrum.
Unfortunately, in the Fubini-Lipatov case, where m2 ¼ 0
and λ < 0, the problem of finding the complete eigenspec-
trum and all eigenmodes of the fluctuation operator is not
fully analytically tractable.
It is therefore instructive to compare with the archetypal

example of tunneling in quantum field theory: the case
m2 ¼ −μ2 < 0 and λ > 0, as studied in the seminal works
by Coleman and Callan [1,2]. When the Z2-breaking term
(gΦ3=3!) is small, the minima are quasidegenerate and the
radius of the critical bubble is extremely large compared to
the width of the bubble wall: μR ¼ 2

ffiffiffi
3

p
μλ=g ≫ 1. This is

the thin-wall regime, which leads to simplifications such
that the full spectral decomposition can be carried out in an
analytic calculation. Moreover, it turns out that the Green’s
functions for the Fubini-Lipatov and the thin-wall cases
agree up to prefactors and the dependence of the radial part
on the total angular momentum quantum number j. We will
therefore present a transformation from the basis of the
fluctuation operator for the thin-wall problem to the Fubini-
Lipatov case. We shall refer to the respective bases as the
thin-wall and Fubini-Lipatov bases.
In order to deal with the fluctuations in the four-

dimensional spherically symmetric situation, we separate
the angular dependence as

ϕλXjflgðxÞ ¼ ϕλXjðrÞYjflgðexÞ: ð10Þ

The radial eigenfunctions ϕλXjðrÞ carry labels for the radial
eigenvalue λX (which may be discrete or part of a con-
tinuum), as well as the total angular momentum j. The Yjflg
are hyperspherical harmonics, where l≡ fl1;l2g, with
l1 ¼ 0; 1;…; j and l2 ¼ −l1;−l1 þ 1;…;l1, and ex ≡
x=jxj is a four-dimensional unit vector. The radial eigen-
value equation is�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

þ U00ðφÞ
�
ϕλXj ¼ λXϕλXj: ð11Þ
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This applies to both the Fubini-Lipatov and the thin-wall
cases, which differ in the particular form of UðφÞ. In the
Fubini-Lipatov case, the operator on the left-hand side of
Eq. (11) has a set of eigenfunctions that can be expressed in
either the thin-wall basis X ¼ TW or the Fubini-Lipatov
basis X ¼ FL, see Sec. III C.
In both cases m2 ¼ −μ2 < 0, λ > 0 (thin wall) and

m ¼ 0, λ < 0 (Fubini-Lipatov), we can exploit the Oð4Þ
symmetry of the bounce. Working in hyperspherical
coordinates, this allows us to expand the Green’s functions
as follows:

Gðx; x0Þ ¼ 1

2π2
X∞
j¼0

ðjþ 1ÞUjðcos θÞGjðr; r0Þ; ð12Þ

where cos θ ¼ x · x0=ðjxjjx0jÞ and the Uj are Chebyshev
polynomials of the second kind. The hyperradial Green’s
function Gjðr; r0Þ satisfies the equation

�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

þ U00ðφÞ
�
Gjðr; r0Þ ¼

δðr − r0Þ
r03

:

ð13Þ

In the presence of zero modes, the Green’s function can
only be defined in the subspace perpendicular to these,
implying that such modes need to be subtracted. Therefore,
and in order to gain further insight into the nature of the
radiative effects, it is useful to represent the Green’s
function as a spectral sum, which can be written in the
following form:

Gðx; x0Þ ¼ 1

2π2
X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λX∈LX

dj

þ
Z

λX∈LX
cj

dλX

2π

�ϕ−
λXjðr0Þϕþ

λXjðrÞ
λX

; ð14Þ

where the sum runs over the set of discrete eigenvalues
LX
dj and the integral over the continuum LX

cj. The þ and −
indicate the basis and reciprocal basis. Note that the
discrete and continuum eigenmodes have different dimen-
sionality, since

Z
drr3ϕ−

λX0jðrÞϕþ
λXjðrÞ ¼ δλXλX0

for λX; λX0 ∈ LX
dj; ð15aÞ

Z
drr3ϕ−

λX0jðrÞϕþ
λXjðrÞ ¼ 2πδðλX − λX0Þ

for λX; λX0 ∈ LX
cj; ð15bÞ

i.e., the former are normalizable and the latter normalizable
in the improper sense. For the real scalar field considered
here, the basis and reciprocal basis are the same in the case
of the discrete modes, and we will therefore drop the
distinction and the superscripts þ and − in what follows.
Note that the basis and its reciprocal are distinct for the
continuum modes.

A. Zero and negative modes

We first consider the eigenmodes with zero and negative
eigenvalues. The zero modes are associated with the
spontaneous breakdown of symmetries: translations in both
the Fubini-Lipatov and thin-wall cases, and, in addition,
dilatations around the tree-level Fubini-Lipatov instantons.
A negative eigenmode is a hallmark of metastable states,
reflecting the fact that the bounce is a saddle point solution,
such that it is present in both cases. We will show that the
negative mode can approximately be associated with a
dilatation of the bounce in the thin-wall case, whereas,
about the Fubini-Lipatov instanton, it does not correspond
to dilatations, which yield, in contrast, a nonnormalizable
zero mode.

1. Thin wall

In the thin-wall regime, the gradients of the bounce are
negligible everywhere except in the vicinity of the bubble
wall. We can therefore make the following series of
approximations for the damping term in the equation of
motion (4):

−
3

r
d
dr

φðrÞ ≈ −
3

R
d
dr

φðrÞ ≈ 0; ð16Þ

and the bounce is given by the well-known kink solution

φðrÞ ¼ v tanh½γðr − RÞ�; γ ≡ μ=
ffiffiffi
2

p
: ð17Þ

The four-dimensional translational invariance of the
action leads to four eigenmodes of zero eigenvalue.
Since the multiplicity of the jth angular momentum mode
is ðjþ 1Þ2 (in four dimensions), these translational zero
modes must have the angular quantum number j ¼ 1. This
may readily be verified by acting on the equation of motion
for the bounce with the infinitesimal generator of trans-
lations Pμ ¼ −i∂μ,

Pμ

�
−

d2

dr2
φ −

3

r
d
dr

φþ U0ðφÞ
�
¼ 0

⇔

�
−

d2

dr2
−
3

r
d
dr

þ 3

r2
þU00ðφÞ

�
PμφðrÞ ¼ 0: ð18Þ

It follows that the four zero modes have the explicit forms
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ϕμðrÞ ∝ PμφðrÞ ∝
xμ
r
sech2½γðr − RÞ�; ð19Þ

where μ ∈ f1; 2; 3; 4g.
The negative eigenmode owes its existence to the

instability. More specifically, in the thin-wall case, it arises
because the bounce action is a maximum with respect to
the radius of the critical bubble R. In fact, the negative
eigenvalue is given by [14]

λTW20 ¼ 1

B
δ2B
δR2

¼ −
3

R2
; ð20Þ

where TW stands for “thin wall”, and the subscripts will be
clarified in the remainder of this section. We may therefore
anticipate that the negative eigenmode is to be associated
with dilatations of the critical bubble in the present case,
that is with ∂rφ ¼ −∂Rφ. Acting on the equation of motion
for the bounce with the operator ∂r, we find

∂r

�
−

d2

dr2
φ −

3

r
d
dr

φþ U0ðφÞ
�
¼ 0

⇔

�
−

d2

dr2
−
3

r
d
dr

þ 3

r2
þU00ðφÞ

�
∂rφðrÞ ¼ 0; ð21Þ

which we can immediately relate to the eigenvalue equation
of the translational zero modes (j ¼ 1), cf. Eq. (18). When
we apply the thin-wall approximation for the centripetal
term, replacing in Eq. (21)

3

r2
∂rφðrÞ ≈

3

R2
∂rφ; ð22Þ

(as is appropriate because the field gradients are peaked at
r ∼ R) and comparing with Eq. (11), we indeed recover the
negative eigenvalue (20). We therefore conclude that the
negative eigenmode can be associated with dilatations in
the thin-wall regime.
To understand further whether dilatations generally per-

tain to the negative eigenvalue, we act on the bouncewith the
infinitesimal generator of dilatations. A geometric dilatation
is generated by D̄ ¼ xμ∂μ, and taking account of the scaling
dimension one for the scalar field, a scale transformation is
generated byD ¼ 1þ D̄ ¼ 1þ xμ∂μ, which we refer to as a
dilatation (without the adjective geometric), in the same
way this term is used in recent literature [5,19]. Spherical
symmetry then implies that D̄φðrÞ¼r∂rφðrÞ≈−R∂RφðrÞ,
where the latter approximation holds only in the thin-wall
regime, since sech2½γðr − RÞ� is strongly peaked at r ∼ R,
which confirms that the shape of the negative mode is close
to a dilatation. Note further that in the thin-wall regime,
where R ≫ γ−1, DφðrÞ ≈ D̄φðrÞ. However, acting instead
on the equation of motion for the bounce, we find

D̄

�
−

d2

dr2
φ −

3

r
d
dr

φþ U0ðφÞ
�
¼ 0

⇔

�
−

d2

dr2
−
1

r
d
dr

þ 4

r2
þ U00ðφÞ

�
D̄φ ¼ 0; ð23Þ

illustrating that one cannot conclude that geometric dilata-
tions correspond to eigenmodes of any eigenvalue.
Finally, note that in the thin-wall limit, the negative and

zero eigenmodes do not contribute to the Green’s function
because of a vanishing integration measure. Nevertheless,
for each j, there are two discrete eigenvalues and a
continuum starting for positive energies in the correspond-
ing quantum mechanical problem [14].

2. Fubini-Lipatov instanton

We now turn our attention to the spectrum of fluctuations
over the Fubini-Lipatov instanton in Eq. (5). For this given
background, the eigenvalue equation (11) has the form

�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

−
24R2

ðr2 þ R2Þ2 − λFL
�
ϕλFLjðrÞ ¼ 0:

ð24Þ

The classical action is invariant under both four-
dimensional translations and dilatations, and the dilata-
tional and translational zero modes are given in terms of the
associated Legendre polynomials Pω

n ðzÞ of degree n ¼ 2
and order ω ¼ jþ 1 ¼ 1, 2.
The translational symmetry leads to four zero eigenm-

odes, as before, and we can readily verify that these
are given by the action of the infinitesimal generator
Pμ ¼ −i∂μ on the Fubini-Lipatov instanton itself.
Specifically, we find

ϕμðrÞ ∝ PμφðrÞ ∝
xμ
r2

P2
2

�
1 − r2=R2

1þ r2=R2

�
∝

xμ
ð1þ r2=R2Þ2 ;

ð25Þ

where we use the spacetime index μ in favor of the pair
fλFL; jg, as in Eq. (11), in order to label the translational
modes. These modes have no nodes in the radial direc-
tion, such that there are no lower-lying modes for j ¼ 1,
and, as per the original argument by Coleman and Callan
[2], there must therefore exist a lower eigenmode, whose
eigenvalue is negative and whose angular momentum
is j ¼ 0.
The action is also invariant under scale transformations,

and there exists an additional, but nonnormalizable, zero
mode with j ¼ 0,

Dφ∝∂RφðrÞ∝
1

r
P1
2

�
1−r2=R2

1þr2=R2

�
∝

1−r2=R2

ð1þr2=R2Þ2 ; ð26Þ
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associated with dilatations of the critical bubble, but having
nothing to do with geometric dilatation transformations, as
per Eq. (23). We note also that applying the dilatation to the
equation of motion and comparing with Eq. (11) for j ¼ 0

and λFL ¼ 0, we find

D

��
−
d2

dr2
−
3

r
d
dr

�
φþU0ðφÞ

�
−
�
−
d2

dr2
−
3

r
d
dr

þU00ðφÞ
�
Dφ

¼2
d2

dr2
φþ6

r
d
dr

φþU0ðφÞ−φU00ðφÞ¼0: ð27Þ

Using the equation of motion (4), we then obtain

3U0ðφÞ ¼ φU00ðφÞ; ð28Þ
as we expect because the quartic potential is the unique
scale-invariant interaction term in four dimensions.
We note that, because the mode (26) has a single node

and zero eigenvalue, there also is, as anticipated, a negative
mode for j ¼ 0, which is associated with the metastability
of the false vacuum state [20]. This negative eigenmode
satisfies the eigenvalue equation

�
−

d2

dr2
−
3

r
d
dr

−
24R2

ðr2 þ R2Þ2 þ jλFL20 j
�
ϕ0ðrÞ ¼ 0: ð29Þ

For the sake of notational congruence with its thin-wall
counterpart (20), we have attached the subscript 20 to the
negative eigenvalue λFL20 and, for simplicity, we label the
pertaining lowest-lying mode with the index 0 rather than
the pair fλFL; jg. Introducing the dimensionless variable
z ¼ r=R and defining fðzÞ≡ ð1þ z2Þ2ϕ0ðrÞ, we are look-
ing for the solution to

− zð1þ z2Þf00ðzÞ þ ð5z2 − 3Þf0ðzÞ
þ zðjλFL20 j − 8þ jλFL20 jz2ÞfðzÞ ¼ 0: ð30Þ

By the Frobenius method, we obtain the following series
solution:

fðzÞ ¼ N
X∞
n¼0

anzn; ð31Þ

where N is a constant and with non-vanishing even
coefficients satisfying the fourth-order homogeneous recur-
rence relation

a0 ¼ 1; ð32aÞ

a2 ¼
jλFL20 j − 8

8
a0; ð32bÞ

anþ4 ¼
½jλFL20 j − nðn − 2Þ�anþ2 þ jλFL20 jan

ðnþ 4Þðnþ 6Þ : ð32cÞ

For λFL20 ¼ 0, this series truncates at first order, and we
recover the dilatational zero mode in Eq. (26). For a range
of λFL20 < 0, the coefficients of this series alternate in sign.
While we have been unable to find the solution to this
recurrence relation in closed form, we can extend the radius
of convergence of a finite truncation of this series by
forming the Padé approximant. Figure 1 shows the approxi-
mate analytic (dotted) and numerical (dashed) estimates of
the normalized negative eigenmode, compared to the form
one might naively extract from the Green’s function (dot-
dashed) (see Sec. III B).
We note that in the Fubini-Lipatov case, for each j, there

is a continuum of positive eigenvalues starting at zero
because these are the positive-energy solutions in the
corresponding Schrödinger problem. It follows that the
translational and dilatational zero modes are not discrete.
Moreover, we notice that for j > 1, the effective potential in
the Schrödinger problem is positive semidefinite, such that
there cannot be any negative modes. For j ¼ 0, we observe
that the dilatational mode has one node and the negative
mode has zero, such that these cover all modes with
eigenvalues ≤ 0. For j ¼ 1, the translational modes have
eigenvalue zero and no nodes, such that there can be now
lower-lying modes. In summary, the spectrum that appears
in Eq. (14) takes the form,

LFL
d0 ¼ fλFL20 g; ð33aÞ

LFL
dj ¼ ∅ for j > 0; ð33bÞ

LFL
cj ¼ fλFLjλFL > 0g; ð33cÞ

FIG. 1. Plot of the ½10=10� Padé approximant of the normalized
negative eigenmode (dotted) versus the numerical estimate
(dashed) and the “apparent” negative mode, as appears in the
Green’s function (dot-dashed). The value of the negative eigen-
value for the approximate analytic solution was taken from the
numerical estimate.
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where the superscript FL indicates the basis of the operator
in the eigenvalue equation (24) for fluctuations around the
Fubini-Lipatov instanton. The above spectrum is also
summarized and compared with the thin-wall case in
Table I.
For a self-consistent solution with radiative corrections

and m2 > 0, the continua begin in contrast at the point m2.
While in that case, the translational eigenvalues that are
protected by Goldstone’s theorem remain zero, the first
nonnegative eigenvalue for j ¼ 0, i.e., the one associated
with an approximate dilatation, is lifted tom2. The negative
mode that is present for j ¼ 0 due to the metastability
remains negative and discrete also after taking account of
the radiative corrections. In that situation, the above
spectrum is modified to

LFL
d0 ¼ fλFL20 g; ð34aÞ

LFL
d1 ¼ f0g; ð34bÞ

LFL
dj ¼ ∅ for j > 1; ð34cÞ

LFL
cj ¼ fλFLjλFL > m2g: ð34dÞ

B. Green’s function

1. Thin wall

In the thin-wall regime, we can make the approximations
(see Ref. [14])

jðjþ 2Þ
r2

→
jðjþ 2Þ

R2
; ð35aÞ

−
3

r
d
dr

→ −
3

R
d
dr

→ 0; ð35bÞ

and consistently replace

δðr − r0Þ
r03

→
δðr − r0Þ

R3
: ð36Þ

Subsequently, we move to a coordinate aligned with the
kink solution itself, via the change of variables

uð0Þ ≡ uð0Þðrð0ÞÞ ¼ tanh½γðrð0Þ − RÞ� ∈ ð−1; 1Þ; ð37Þ

which yields

�
d
du

ð1−u2Þ d
du

−
ω2

1−u2
þ6

�
Fjðu;u0Þ¼−δðu−u0Þ; ð38Þ

where Fjðu; u0Þ≡ γR3Gjðr; r0Þ and

ω ¼
�
4þ jðjþ 2Þ

γ2R2

�
1=2

: ð39Þ

In this way, one finds the Green’s function to be [14]

Gjðr; r0Þ ¼
1

2γR3ω

�
ϑðu − u0Þ

�
1 − u
1þ u

�ω
2

�
1þ u0

1 − u0

�ω
2

×

�
1 − 3

ð1 − uÞð1þ ωþ uÞ
ð1þ ωÞð2þ ωÞ

�

×

�
1 − 3

ð1 − u0Þð1 − ωþ u0Þ
ð1 − ωÞð2 − ωÞ

�
þ ðu ↔ u0Þ

�
;

ð40Þ

where ϑðzÞ is the generalized unit-step function.
It is helpful, however, to proceed slightly differently, by

substituting for the function G̃jðr; r0Þ≡ r3Gjðr; r0Þ before
making the thin-wall approximation. Doing the former
yields the hyperradial equation

�
−

d2

dr2
þ 3

r
d
dr

þ jðjþ 2Þ − 3

r2
þ U00ðφÞ

�
G̃jðr; r0Þ

¼ r3

r03
δðr − r0Þ; ð41Þ

TABLE I. Comparison of the eigenspectra for the archetypal
(thin-wall case) and scale-invariant (Fubini-Lipatov case with
m ¼ 0) theories over their respective tunneling configurations.
Modes that are part of the discrete spectrum are in white cells;
parts of the continuum spectrum are in grey-shaded cells. Note
that when lifting the mass parameter to m2 > 0 and including
radiative corrections, the translational zero modes become dis-
crete in the Fubini-Lipatov spectrum, whereas the approximate
dilatational mode remains at the end point of the continuum, with
its eigenvalue lifted to λFL10 ¼ m2.
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where we emphasize the change in sign of the first-order
derivative, the shift in the centrifugal potential and the
appearance of the dimensionless ratio of the two hyper-
radial coordinates on the right-hand side. Making the thin-
wall approximations

jðjþ 2Þ − 3

r2
→

jðjþ 2Þ − 3

R2
; ð42aÞ

þ 3

r
d
dr

→ þ 3

R
d
dr

→ 0; ð42bÞ

and consistently replacing

r3

r03
δðr − r0Þ → δðr − r0Þ; ð43Þ

we recover the differential equation (38) and the solution in
Eq. (40) but with

ω ¼
�
4þ jðjþ 2Þ − 3

γ2R2

�
1=2

: ð44Þ

While the difference between Eqs. (39) and (44) is
immaterial in the thin-wall regime (because there we take
R → ∞ while keeping the tangential momentum k ≈ j=R
finite, implying that j → ∞ for fixed k), the latter approach
allows us to make contact with the true eigenspectrum.
Specifically, the coincident limit of the Green’s function is

Gðr;rÞ¼ γ

4π2R3

X∞
j¼0

ðjþ1Þ2
ω

×

�
1

γ2
þ3ð1−u2Þ

X2
n¼1

ð−1Þnðn−1−u2Þ
γ2ðω2−n2Þ

�
; ð45Þ

where the denominators

λTWnj ¼ γ2ðω2 − n2Þ ¼ γ2ð4 − n2Þ þ jðjþ 2Þ − 3

R2
ð46Þ

are the discrete eigenvalues [cf. Eq. (70) below], as one
would naively expect from the contribution of the asso-
ciated modes to the spectral representation (14) of the
Green’s function. At this point, it is tempting to “read off”
the functional forms of the discrete eigenfunctions. We will
return to this point shortly. We notice that the contribution
from j ¼ 1, n ¼ 2 is singular. This contribution corre-
sponds to the four translational zero eigenmodes. As
described in Sec. IV, these eigenmodes should be excluded
from the Green’s function, and we will discuss this further
for the Fubini-Lipatov instanton below. Note that, in the
analysis of Ref. [14], the sum over discrete angular
momenta was traded for a continuous momentum integral
in the planar-wall approximation. In this case, the con-
tributions from the zero modes are measure zero, and it is

therefore not necessary to exclude them explicitly,
cf. Ref. [14].

2. Fubini-Lipatov instanton

For the classically scale-invariant model, we factor out
the 1=r dependence of the Green’s function, defining

G̃jðr; r0Þ ¼ rr0Gjðr; r0Þ: ð47Þ

We then have

�
−

d2

dr2
−
1

r
d
dr

þ ð1þ jÞ2
r2

−
24R2

ðr2 þ R2Þ2
�
G̃jðr; r0Þ

¼ r
r02

δðr − r0Þ: ð48Þ

We again move to coordinates aligned with the back-
ground field configuration—this time the Fubini-Lipatov
instanton—making the change of variables

uð0Þ≡uð0Þðrð0ÞÞ¼ 1−r2=R2

1þr2=R2
¼2

φðrÞ
φð0Þ−1∈ ð−1;1�; ð49Þ

with u → −1 corresponding to r → ∞. Rearranging
Eq. (49), we have

rð0Þ ¼ R

�
1 − uð0Þ

1þ uð0Þ

�
1=2

: ð50Þ

This change of variables leads to

�
d
du

ð1 − u2Þ d
du

−
ω2

1 − u2
þ 6

�
Fjðu; u0Þ

¼ −
�
1 − u
1þ u

��
1þ u0

1 − u0

�
δðu − u0Þ; ð51Þ

where Fjðu; u0Þ≡ R2G̃jðr; r0Þ and

ω ¼ jþ 1: ð52Þ

We note that the homogeneous part of the differential
equation (51) is of precisely the same form as for the
thin-wall case in Eq. (38). Proceeding as described in
Appendix B, we find the hyperradial Green’s function

Gjðr; r0Þ ¼
1

2R2ω

�
ϑðu − u0Þ

�
1 − u
1þ u

�j
2

�
1þ u0

1 − u0

�jþ2
2

×

�
1 − 3

ð1 − uÞð1þ ωþ uÞ
ð1þ ωÞð2þ ωÞ

�

×

�
1 − 3

ð1 − u0Þð1 − ωþ u0Þ
ð1 − ωÞð2 − ωÞ

�

þ ðu ↔ u0Þ
�
: ð53Þ
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It follows then that the coincident limit of the Green’s
function is

Gðr;rÞ¼ 1

4π2R2

�
1þu
1−u

�X∞
j¼0

ðjþ1Þ2
ω

×

�
1þ3ð1−u2Þ

X2
n¼1

ð−1Þnðn−1−u2Þ
ω2−n2

�
; ð54Þ

differing from Eq. (45) in the form of ω, the dimensionful
prefactors and an overall factor of 1=r2. From this
expression, one might suspect that there are discrete
eigenvalues proportional to

ω2 − n2 ¼ ðjþ 1Þ2 − n2: ð55Þ

However, this is misleading because it is in disagreement
with the spectrum discussed in Sec. III A 2. We may
recognize zero modes for j ¼ 0, n ¼ 1 and j ¼ 1, n ¼ 2,
which correspond to the five Goldstone modes that arise
from the spontaneous breakdown of symmetries in presence
of the bounce solutions: one (j ¼ 0) arises from broken
dilatational and four (j ¼ 1) from broken translational
invariance. In addition, there is one negative mode for
j ¼ 0, n ¼ 2, but we cannot directly infer its value from
Eq. (54). We emphasize, however, that the zero modes are
not discrete, and there are no discrete modes at all for j > 0,
whereas Eq. (54) might suggest otherwise.

C. Spectral sum

In order to understand the apparent mismatch between
the eigenspectra and the form of the coincident Green’s
function in the Fubini-Lipatov background (54), it would
be interesting to compare with an explicit construction via a
spectral sum in the form of Eq. (14). However, this cannot
be carried out analytically for the Fubini-Lipatov case in
terms of the eigenmodes of the operator in Eq. (11), i.e., in
the Fubini-Lipatov basis.
However, we notice that the left-hand side of Eq. (51) for

the Green’s function of the Fubini-Lipatov case is of
precisely the same form as Eq. (38) for the thin-wall case.
As a result, we can transform the problem of finding the
spectral sum in the Fubini-Lipatov case to a thin-wall basis,
such that it becomes analytically tractable. Moreover,
this relation between the two problems clarifies why the
apparentmodes in the Fubini-Lipatov Green’s function (54)
agree with those of the thin-wall case (45). It is important
though to emphasize that the eigenfunctions of the thin-wall
basis are not directly related to the true eigenfunctions over
the Fubini-Lipatov instanton, and we give an overview of the
basis transformation in Appendix D. This is the case for
the true negative eigenfunction, and the coefficients of the
transformation cannot be found in analytic form.
In the thin-wall case, we will see that there are nontrivial

cancellations between contributions from the true discrete

and continuum spectra, which obscures the origin of the
particular contributions to the Green’s function. This
strongly hints at the possibility that similar cancellations
occur for the Fubini-Lipatov case also without applying the
transformation to the thin-wall basis, such that this may
explain why the true negative eigenmode is not directly
apparent in Eq. (54).
We can cast the problem of finding the spectral sum

representation for the thin-wall case in a convenient
form by making the following (judicious) rescaling of
the eigenfunctions:

ϕ̃�
λTWjðuÞ≡ ðr=RÞ3γ1=2R3=2ϕ�

λTWjðrÞ: ð56Þ

The eigenvalue equation (11) then takes the form�
−

d2

dr2
þ 3

r
d
dr

þ jðjþ 2Þ− 3

r2
þU00ðφÞ− λTW

�
ϕ̃�
λTWjðuÞ ¼ 0;

ð57Þ
where we again emphasize the change of sign in the
damping term and the shift in the numerator of the
centrifugal potential. After making the thin-wall approxi-
mation1 via Eq. (42) and changing coordinates via Eq. (37),
the eigenproblem becomes�

d
du

ð1 − u2Þ d
du

−
ϖ2

1 − u2
þ 6

�
ϕ̃�
λTWjðuÞ ¼ 0; ð58Þ

where

ϖ2 ≡ ω2 − λ̄TW; ð59Þ

λ̄TW ≡ λTW=γ2 are the dimensionless eigenvalues and ω is
given by Eq. (44). Equation (58) is the associated Legendre
differential equation, and the solutions are the associated
Legendre functions of degree 2 and order ϖ. Setting
ϖ ¼ n ∈ f1; 2g, we immediately recover the discrete
eigenmodes discussed earlier. The order of these functions
becomes imaginary when λ̄TW > ω2, ϖ2 < 0, implying
positive energies in the corresponding Schrödinger prob-
lem, and this marks the beginning of the positive con-
tinuum.2 However, rather than dealing with the associated
Legendre functions of imaginary order, we can define

f�
λTWjðuÞ ¼

�
1 − u
1þ u

��ϖ=2
ϕ̃�
λTWjðuÞ ð60Þ

and recast the eigenvalue problem in terms of the Jacobi
differential equation

1Note that ðr=RÞ3ϕ�
λTWj → ϕ�

λTWj in the thin-wall
approximation.

2In Ref. [14], it is incorrectly stated that the continuum begins
at λ10 ¼ 2γ2. In the thin-wall regime, the continuum instead
begins at λTW00 ≈ λTW01 ¼ 4γ2, cf. Ref. [21].
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�
ð1−u2Þ d

2

du2
−2ðu∓ϖÞ d

du
þ6

�
f�
λTWjðuÞ¼0: ð61Þ

With these manipulations, the spectral sum representation
of the Green’s function is given by

GTWðx; x0Þ ¼ 1

2π2γR3

X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λ̄TW∈L̄TW

dj

þ
Z
λ̄TW∈L̄TW

cj

dλ̄TW

2π

��
1þ u
1 − u

�þϖ
2

×

�
1þ u0

1 − u

�
−ϖ

2 f−λTWjðu0ÞfþλTWjðuÞ
λ̄TW

: ð62Þ

In the Fubini-Lipatov case, the (judiciously) rescaled
eigenfunctions are

ϕ̃�
λFLjðuÞ≡ rϕ�

λFLjðrÞ: ð63Þ

After transforming to the thin-wall basis (see Appendix D),
we can write the spectral sum representation of the Green’s
function as

GFLðx; x0Þ ¼ 1

2π2R2

X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λ̄TW∈L̄TW

dj

þ
Z
λ̄TW∈L̄TW

cj

dλ̄TW

2π

��
1þ u
1 − u

�þϖþ1
2

×

�
1þ u0

1 − u

�
−ϖ−1

2 f−
λTWjðu0ÞfþλTWjðuÞ

λ̄TW
: ð64Þ

Here, the dimensionless eigenvalues are λ̄TW ≡ λTWR2,
and the superscript TW indicates that we are working in
the thin-wall basis. These λ̄TW ¼ ω2 −ϖ2 of the thin-wall
basis should not be confused with those of the thin-wall case,
which differ in the value ofω. We emphasize that the Fubini-
Lipatov value of ω ¼ jþ 1 [cf. Eq. (44) for the thin-wall
case] does not change under the basis transformation.
In order to see that the eigenfunctions of the thin-wall

basis are not directly related to the true eigenfunctions over
the Fubini-Lipatov instanton, we note that the eigenvalue
equation in Eq. (11) becomes�
d
du

ð1 − u2Þ d
du

−
ω2

1 − u2
þ λ̄FL

ð1þ uÞ2 þ 6

�
ϕ̃�
λFLjðuÞ ¼ 0:

ð65Þ
This differs from Eq. (58) for the thin-wall problem, due to
the extra dependence on u in the term pertaining to the
eigenvalue λFL. Hence, while the Green’s functions for the
Fubini-Lipatov and the thin-wall cases are identical up to
algebraic prefactors and the different form of ω in Eqs. (44)
and (52), their true eigenspectra are very different, with the

exception of the zero modes. When λ̄FL ¼ 0, we see from
Eq. (58) and the definition of ϖ in Eq. (59) that λ̄TW also
vanishes and the eigenvalue equations coincide in the thin-
wall and Fubini-Lipatov bases. Thus, for the Fubini-
Lipatov case, the zero modes (translational and dilatational)
coincide in the thin-wall and Fubini-Lipatov bases.
The apparent disparity between the eigenspectra of the

two bases originates from their differing normalizations;
namely, for the discrete modes,

R2

Z
du

1 − u2
ϕ̃−
λTWjðuÞϕ̃þ

λTWjðuÞ ¼ 1; ð66aÞ

R2

Z
du

ð1þ uÞ2 ϕ̃
−
λFLjðuÞϕ̃þ

λFLjðuÞ ¼ 1; ð66bÞ

with analogous expressions holding for the continuum
modes, which are normalized in the improper sense.
This difference in normalization is the reason why the
dilatational mode, which is nonnormalizable in the Fubini-
Lipatov basis, becomes an apparent normalizable mode in
the thin-wall basis. Moreover, it indicates that the trans-
formation, described here and in Appendix D for illus-
trative purposes, is not a basis transformation in the proper
sense, since the two bases span different Hilbert spaces.
Returning to the problem of finding the spectral sum

representations in the thin-wall basis, the solutions to
Eq. (61) are the Jacobi polynomials of degree 2:

Pð∓ϖ;�ϖÞ
2 ðuÞ. For ϖ ¼ n ∈ f1; 2g, we can show that these

are normalizable (see Appendix C)

Z þ1

−1

du
1− u2

�
uþ 1

u− 1

�þn
2

�
uþ 1

u− 1

�
−n0

2

Pð−n;þnÞ
2 ðuÞPðþn0;−n0Þ

2 ðuÞ

¼ ð−1Þnπ
4 sinðnπÞ ð4− n2Þð1− n2Þδnn0

¼
�
− 3

2
δnn0 ; n¼ 1

3δnn0 ; n¼ 2
: ð67Þ

For λ̄TW > ω2, the continuum is specified by ϖ ¼ iξ
(ξ ∈ R), and we can show that (see Appendix C)

Z þ1

−1

du
1−u2

�
uþ1

u−1

�þiξ
2

�
uþ1

u−1

�
−iξ0

2

Pð−iξ;þiξÞ
2 ðuÞPðþiξ0;−iξ0Þ

2 ðuÞ

¼π

2
ð4þξ2Þð1þξ2Þδðξ−ξ0Þ: ð68Þ

Hence, the sets of (dimensionless) discrete and continuous
eigenvalues that appear in the spectral sum in the thin-wall
basis can be specified as follows:

L̄TW
dj ¼ fλ̄TW2j ; λ̄TW1j g; ð69aÞ

L̄TW
cj ¼ fλ̄TWjλ̄TW > ω2g; ð69bÞ
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where

λ̄TWnj ¼ ω2 − n2: ð70Þ
The apparent discrete modes, which are the true eigenm-
odes in the thin-wall case, contribute to the Green’s
functions as

Gdðr; rÞ ¼
1

4π2R2

(
1
γR

ð1þu
1−uÞ

)X∞
j¼0

ðjþ 1Þ2

× 3ð1 − u2Þ
X2
n¼1

ð−1Þnðn − 1 − u2Þ
nðω2 − n2Þ ; ð71Þ

where the upper alternative applies to the thin-wall case and
the lower to the Fubini-Lipatov case. The contributions of
the apparent continuum modes to the Green’s functions are

Gcðr; rÞ ¼
1

2π2R2

(
1
γR

ð1þu
1−uÞ

)

×
X∞
j¼0

ðjþ 1Þ2
Z þ∞

−∞

dξ
2π

4

ð4þ ξ2Þð1þ ξ2Þ

×
Pð−iξ;þiξÞ
2 ðuÞPðþiξ;−iξÞ

2 ðuÞ
ω2 þ ξ2

: ð72Þ

Integrating over ξ (see Appendix D, where the case r0 ≠ r is
also treated), we obtain

Gcðr; rÞ ¼
1

4π2R2

(
1
γR

ð1þu
1−uÞ

)X∞
j¼0

ðjþ 1Þ2

×

�
1

ω
þ 3ð1 − u2Þ

X2
n¼1

ð−1Þnðn − 1 − u2Þ
ωðω2 − n2Þ

− 3ð1 − u2Þ
X2
n¼1

ð−1Þnðn − 1 − u2Þ
nðω2 − n2Þ

�
: ð73Þ

Despite having integrated over the continuum part of the
spectrum, there appear terms involving sums over n and
matching denominators to the discrete eigenvalues.
Furthermore, we see that the final line of Eq. (73) cancels
against the contribution from the discrete eigenmodes in
Eq. (71), leaving the results already quoted in Eqs. (45) and
(54). Therefore, while we can still “read off” the functional
form of the discrete eigenmodes from the final Green’s
function in the thin-wall case, we see that there is a
nontrivial interplay between the discrete and continuum
parts of the spectrum.
In the Fubini-Lipatov case, while we can read off the

functional forms of the zero modes, we cannot read off
the true functional form of any other modes due to the
transformation of the eigenvalue problem. Notice, for
instance, that the functional form of the negative mode
that one would read off from the Green’s function does not

coincide with the true negative eigenfunction, as can be
seen in Fig. 1. Moreover, by considering the transformed
eigenproblem, one might be led to conclude that there are
two infinite towers of discrete modes also for the Fubini-
Lipatov case. This is not correct, and we reiterate that,
in the Fubini-Lipatov case, the λ̄TWnj in Eq. (70) do not
compose the true discrete eigenspectrum. The eigenspectra
for both cases are summarized in Table I.
We remark that, while one might be tempted to remove

the apparent discrete zero modes in the thin-wall basis, this
will not eliminate the infrared divergences, since these
reside also in the continuum, as is clear from the interplay
of the apparent discrete and continuum modes described
above. Since the one-loop fluctuation determinant can be
related to the Green’s function, the same subtraction in
the transformed problem may also be problematic there,
cf. Ref. [5], and we leave further study of this point for
future work.

IV. ZERO MODES

In order to deal with the translational zero modes, we
first decompose the field as

ΦðxÞ ¼ φðx − yÞ þ
X4
μ¼1

aμϕμðx − yÞ þΦ0ðx − yÞ; ð74Þ

where φðx − yÞ is the bounce, y is its coordinate center,
Φ0ðx − yÞ contains the contributions of the negative- and
positive-definite (discrete and continuum) eigenmodes, and

ϕμðx − yÞ ¼ N ∂ðxÞ
μ φðx − yÞ ð75Þ

are the translational zero eigenmodes with the normaliza-
tion factor (no sum over μ)

N ¼
�Z

d4xð∂μφðxÞÞ2
�
−1=2

: ð76Þ

Note that in the case of the tree-level bounce, N ¼ B−1=2,
where B is the bounce action [see Eq. (6)]. The zero
eigenmodes satisfy the orthonormality relationsZ

d4xϕ�
μðxÞϕνðxÞ ¼ δμν; ð77aÞ

Z
d4xΦ0�ðxÞϕμðxÞ ¼ 0: ð77bÞ

We emphasize that, while all the eigenmodes depend
on y,3 the original field Φ≡ΦðxÞ is independent of y.

3This can be shown explicitly by considering the eigenvalue
problem directly, which can be expressed entirely in terms of
x − y.
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With this decomposition, the functional integral can be
written in the form

Z
DΦ ¼

Z
DΦ0 Y4

μ¼1

�
ð2πℏÞ−1=2

Z
daμ

�
; ð78Þ

where we have isolated the problematic integrals over the
zero modes. These integrals can be performed by means
of a Faddeev-Popov-type method [22–25]. Specifically, we
insert unity in the form

1 ¼
Y4
μ¼1

Z
dyμj∂ðyÞ

μ fμðyÞjδðfμðyÞÞ; ð79Þ

in order to trade the integrals over the aμ for integrals over
the collective coordinates yμ. We take

fμðyÞ ¼
Z

d4xΦðxÞ∂ðxÞ
μ φðx − yÞ; ð80Þ

from which it follows that

∂ðyÞ
μ fμðyÞ ¼ −

Z
d4xΦðxÞ∂ðxÞ

μ ∂ðxÞ
μ φðx − yÞ: ð81Þ

By virtue of the orthogonality of the eigenmodes, we can
quickly show that

fμðyÞ ¼ N −1aμ; ð82Þ

such that the delta function in Eq. (79) can be written as

δðfμðyÞÞ ¼ N δðaμÞ: ð83Þ

As a result, the Jacobian becomes

∂ðyÞ
μ fμðyÞjaμ¼0¼

Z
d4x½∂ðxÞ

μ φðx−yÞ�2

−
Z

d4xΦ0ðx−yÞ∂ðxÞ
μ ∂ðxÞ

μ φðx−yÞ: ð84Þ

The first term is just the normalization N −2, and we find

1¼
Y4
μ¼1

�Z
dyμN −1δðaμÞ

×

�
1−N 2

Z
d4xΦ0ðx−yÞ∂ðxÞ

μ ∂ðxÞ
μ φðx−yÞ

��
: ð85Þ

Inserting this result into the original functional integral in
Eq. (78) gives

Z
DΦ¼

�
1

2πℏN 2

�
2
Z

DΦ0
Z

d4y

×
Y4
μ¼1

�
1−N 2

Z
d4xΦ0ðx− yÞ∂ðxÞ

μ ∂ðxÞ
μ φðx− yÞ

�
:

ð86Þ

The integral within the parentheses is independent of y, and
we can writeZ

DΦ ¼ VT

�
1

2πℏN 2

�
2
Z

DΦ0

×
Y4
μ¼1

�
1 −N 2

Z
d4xΦ0ðxÞ∂μ∂μφðxÞ

�
; ð87Þ

where the four-volume factor VT has arisen from the
integral over the collective coordinates.
We now apply this decomposition in positive- or

negative-definite and zero modes to the path integral in
order to determine the radiative corrections to the bounce
from the generating functional

Z½J� ¼
Z

DΦ exp

�
−
1

ℏ

Z
d4x

�
1

2
∂μΦðxÞ∂μΦðxÞ

þ λ

4!
Φ4ðxÞ − JðxÞΦðxÞ

��
: ð88Þ

For the evaluation, we first expand around the classical

solution φð0Þ as Φ ¼ φð0Þ þ ℏ1=2
P

4
μ¼1 aμϕ

ð0Þ
μ þ ℏ1=2Φ0. A

superscript (0) has been attached here to the zero modes ϕμ

in order to indicate that they are obtained from substituting
the tree-level bounce φð0Þ into Eq. (75). We have also made
explicit the bookkeeping factors of ℏ1=2.
The Faddeev-Popov procedure described above then

leads to (We use the more compact index notation where,
e.g., fðxÞ≡ fx for functions and

R
d4x≡ R

x for integrals.)

Z½J� ¼ VT
B2

ð2πℏÞ2

×

�Y4
μ¼1

�
1 −

ℏ
B

Z
x

δ

δJx
∂μ∂μφ

ð0Þ
x

��
Z0½J�; ð89Þ

where

Z0½J� ¼ exp

�
−
1

ℏ

�
S½φð0Þ� −

Z
x
Jxφ

ð0Þ
x

��

×
Z

DΦ0 exp
�
−
Z
xy

1

2
Φ0

xG−1
xyΦ0

y − ℏ−1=2
Z
x
JxΦ0

x

− ℏ1=2

Z
x

λ

3!
φð0Þ
x Φ03

x − ℏ
Z
x

λ

4!
Φ04

x

�
ð90Þ

and
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G−1
xy ¼ δ4xy½−∂2

y þ U00ðφð0Þ
y Þ� ð91Þ

is the Klein-Gordon operator. In the full Hilbert space, this
operator is not invertible because of the zero modes ∂μφ

ð0Þ.
Nevertheless, the inversion is well defined in the subspace
perpendicular to the zero modes, where the subtracted
two-point function G⊥ is the solution to [23]

Z
z
G−1

xz G⊥
zy ¼ δ4xy −

X4
μ¼1

ðϕð0Þ
μ Þxðϕð0Þ

μ Þy; ð92Þ

with the additional requirement thatZ
y
G⊥

xyðϕð0Þ
μ Þy ¼ 0: ð93Þ

We refer to G⊥ and to its perturbatively improved variants
as the subtracted Green’s functions because they may be
thought of as emerging from their spectral sum represen-
tation with the (divergent) contributions from the zero
modes subtracted.
Making the shift Φ0 → Φ0 þ ℏ−1=2 R

y G
⊥
xyJy (Note that

the redefined Φ0 thus remains orthogonal to the zero
modes.), we then recast the object (90) to

Z0½J� ¼ exp

�
−
1

ℏ

�
S½φð0Þ� −

Z
x
Jxφ

ð0Þ
x

��

×
Z

DΦ0 exp
�
−ℏ2

Z
x

λ

3!
φð0Þ
x

δ3

δJ3x
− ℏ3

Z
x

λ

4!

δ4

δJ4x

�

× exp

�
−
Z
xy

1

2
Φ0

xG−1
xyΦ0

y þ
1

2ℏ

Z
xy
JxG⊥

xyJy

�
:

ð94Þ
Next, we make use of the apparent decomposition of the

generating functional (89) into

Z½J� ¼ Z⊥½J� þ Z→½J�; ð95Þ

where Z⊥ is the contribution that arises from replacing
the product term (over μ) with 1 and Z→ is the remainder
involving tadpole corrections ∝ ∂μ∂μφ

ð0Þ. We then define

φ⊥
x ¼ ℏ

1

Z⊥½0�
δ

δJx
Z⊥½J�

				
J¼0

; ð96aÞ

ℏG⊥
xy ¼ ℏ2

1

Z⊥½0�
δ2

δJxδJy
Z⊥½J�

				
J¼0

; ð96bÞ

φ→
x ¼ ℏ

1

Z½0�
δ

δJx
Z½J�

				
J¼0

; ð96cÞ

ℏG→
xy ¼ ℏ2

1

Z½0�
δ2

δJxδJy
Z½J�

				
J¼0

; ð96dÞ

with the superscript → indicating the inclusion of transla-
tional modes. In the following, we choose to drop the
superscripts on φ⊥ and G⊥ (when no ambiguity results)
because we find these to be the quantities most useful for
the present calculations and want to keep notation compact.
Note that Goldstone’s theorem implies that not only are
∂μφ

ð0Þ zero modes of the inverse Green’s function G−1 at
tree-level but that the same holds true at each order in
perturbation theory up to the exact solutions ∂μφ

→ and
G→−1, as well as ∂μφ and G−1.
The large infrared contributions from certain fluctuation

modes around the approximately scale-invariant solitons
require the resummation of loop corrections to the Green’s
functions. In the subspace perpendicular to the zero modes,
this can be achieved by the coupled system of equations
of motion for the one-point function and the Schwinger-
Dyson equations for the correlations (Recall that we have
dropped the superscripts ⊥.)

−∂2
xφx þ U0ðφxÞ þ ℏΠxxφx ¼ 0; ð97aÞ

Z
z
½δxzð−∂2

x þ U00ðφxÞ þ ℏΠxxÞ þ ℏΣxz�Gzy

¼
Z
z
G−1
xz Gzy ¼ δ4xy −

X4
μ¼1

ðϕμÞxðϕμÞy; ð97bÞ

where Πxx is the coincident and Σxy the noncoincident
contribution to the proper self-energy. In place of relation
(93), we now imposeZ

y
GxyðϕμÞy ¼ 0: ð98Þ

Note that, in order to carry out the inversion of the
Klein-Gordon operator appearing in Eq. (97b), it has been
necessary to define the Green’s function G such that it acts
in the subspace perpendicular to the modes ϕμ, which
include quantum corrections to the classical soliton, in
contrast to the tree-level Green’s function that acts in the

space perpendicular to ϕð0Þ
μ . The validity of this procedure

can be confirmed order by order in the loop expansion of
the self energy. To show this, we assume that, in Eq. (97),Π
and Σ, as well as the solution φ and G, are given to a certain
order in this expansion and we consider an infinitesimal
translation φ → φþ ε∂ϱφ of Eq. (97a) in the ϱ direction. In
this way, we obtain

Z
z

�
δxzð−∂2

x þU00ðφxÞ þ ℏΠxxÞ þ φx
δ

δφz
ℏΠxx

�
∂ϱφz ¼ 0:

ð99Þ

The last term can be calculated by applying the following
variation to each propagator appearing in Π:
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δ

δφz
G⊥

xy ¼ −
Z
vw

G⊥
xv
δG−1

vw

δφz
G⊥

wy ¼ −G⊥
xzλφzG⊥

zy; ð100Þ

which is a standard identity for the derivative of an inverse
operator that holds in the present case because G⊥ is the
inverse of G−1 in the subspace perpendicular to the zero
modes at a fixed location of the bounce.4

The variation of Π appearing in Eq. (99) therefore leads
to convolutions of the translational modes with all possible
insertions in propagator lines of Π, i.e.,

Z
z
φx

δΠxx

δφz
∂ϱφz ≡

Z
z
Σxz∂ϱφz: ð105Þ

This implies that ∂μφ is a zero mode of the Klein-Gordon
operator in Eq. (97b) such that, indeed, we can invert it in
the subspace perpendicular to ∂μφ. The system of equa-
tions (97) is then closed when expressing Π and Σ as two-
particle irreducible (2PI) self-energies, i.e., these are in a
diagrammatic form derivable from a 2PI effective action in
terms of the resummed propagators G and expectation
values φ.
We have so far focused on computing φ, G in the

subspace perpendicular to the zero modes. The functions
φ→ or G→ can be obtained to order ℏ as

φ→
x ¼ φx −

ℏ
B

Z
y
Gxyð∂2φð0Þ

y Þ; ð106aÞ

G→
xy ¼ Gxy þ

ℏ
B
λ

Z
vw

GxvGvwð∂2φð0Þ
w ÞφvGvy: ð106bÞ

We can check explicitly that ∂μφ
→ is indeed a zero mode

because

G→−1
xy ¼ G−1

xy − ℏ
B
λ

Z
w
φxGxwð∂2φð0Þ

w Þδxy
þ ℏΠxxδxy þ ℏΣxy þOðλ2Þ; ð107Þ

which, to order λ, is orthogonal to

∂μφ
→
x ¼ ∂μφx þ

ℏ
B
λ

Z
yz
Gxzφzð∂μφzÞGzyð∂2φð0Þ

y Þ; ð108Þ

derived from Eq. (106a). It would be desirable to derive
a formally exact expression for G→−1 that also points to
systematic approximations for this quantity to all orders.5

An apparent direction to pursue is the construction of a 2PI
effective action in the presence of the zero modes. We will
address this interesting formal step in future work.

V. SELF-CONSISTENT SOLUTIONS IN THE
CLASSICALLY SCALE-INVARIANT MODEL

We now apply the more general considerations of the
previous sections in order to obtain solutions in a classi-
cally scale-invariant setup, i.e., self-consistent radiative
corrections of the Fubini-Lipatov instanton. For the con-
tributions j ≥ 2, the Green’s functions can be computed
straightforwardly in the background of either the classical
or loop-improved bounce, with a resulting difference of

4In contrast, when we perform the variation of Eq. (92) in the
form of

δ

δφz

�Z
w
G−1

xwG⊥
wy þ

X4
μ¼1

ðϕμÞxðϕμÞy
�

¼ δ

δφz
δxy ¼ 0; ð101Þ

we obtain

δG⊥
xy

δφz
¼ −G⊥

xzλφzG⊥
zy þ

X4
ν¼1

Z
w

�
δ

δφz
ððϕνϕνÞxwG⊥

wyÞ

−
��

δ

δφz
ðϕνϕνÞxw

�
G⊥

wy þ G⊥
xw

�
δ

δφz
ðϕνϕνÞwy

���
;

ð102Þ

where we suppress the superscript (0) on ϕμ in this footnote.
Compared to Eq. (100), there appear extra terms collected in
curly brackets. Within these, the first term vanishes because of the
condition (93). In order to interpret the second term, we perform a
spatial translation of Eq. (93), which leads to

Z
y

�
G⊥

xy þ
Z
z

δG⊥
xy

δφz
ε∂ϱφz

�
ðϕμ þ ε∂ϱϕμÞy ¼ 0: ð103Þ

When substituting Eq. (102) and evaluating to order ε, the first
term from Eq. (102) leads here to a vanishing contribution
because of the condition (93) (just like the first term in curly
brackets already commented on). The remaining second term in
curly brackets leads to the contribution

−
X4
ν¼1

Z
ywz

��
ð∂ϱφÞz

δ

δφz
ðϕνϕνÞxw

�
G⊥

wy

þG⊥
xw

�
ð∂ϱφÞz

δ

δφz
ðϕνϕνÞwy

��
ðϕμÞy ¼ −

Z
w
G⊥

xwð∂ϱϕμÞw;

ð104Þ

where we have repeatedly used Eq. (93), as well as the
orthonormality

R
xðϕμÞxðϕνÞx ¼ δμν. In Eq. (103), this expression

cancels the product of the first term in the first pair of brackets
with the second one in the second pair of brackets. The extra
terms in Eq. (102) are therefore associated with a change of the
Hilbert space over which the path integral is performed, while, in
a fixed space, Eq. (100) is the appropriate translation of the
Green’s function.

5An expression for the proper self-energy that should appear in
G→−1 valid to all orders would require some generalization of the
standard diagrammatic expansion because of the tadpole terms in
the generating functional (89) that are not exponentiated.
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higher order in perturbation theory. Instead, for j ¼ 0 and
j ¼ 1, a resummation of the loop corrections is required in
order to arrive at a finite result.

A. Modes j ≥ 2

For j ≥ 2, we can proceed straightforwardly, i.e., we
can substitute the Fubini-Lipatov instanton, which is the
tree-level solution for φ from Eq. (5), in Eq. (13) for the
Green’s functions. The solutions Gj, to leading accuracy in
the gradient corrections, are presented in Sec. III B and
Appendix B.

B. Spectator fields

In order to force the action to have an extremum at the
bounce, we add to the model in Eq. (1) Nχ spectator fields
χ, as in Eq. (8). At leading order, the Green’s functions for
each of the fields χ are determined as the solution to

�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

þ α

2
φ2ðrÞ

�
Gχjðr; r0Þ ¼

δðr − r0Þ
r03

:

ð109Þ

Summation over j as in Eq. (12) yields Gχðx; x0Þ. Unlike
the Φ Green’s functions, there are no zero or infrared-
enhanced modes that require a particular procedure.

C. Resummation of loop corrections, renormalization
and the local approximation

For the modes j ¼ 0 and j ¼ 1, it is necessary to account
for infrared effects. The required resummation is carried out
through the inclusion of self-energy terms in the equation
of motion (4) for the bounce and in Eq. (13) for the Green’s
function, which acquire loop corrections as

−
d2

dr2
φ−

3

r
d
dr

φþU0ðφÞþφ½ΠrenðrðφÞÞþΠren
α ðrðφÞÞ�¼0;

ð110aÞ

ÕjGjðr; r0Þ þ δj1ϕ̃
trðrÞϕ̃trðr0Þ ¼ δðr − r0Þ

r0
; ð110bÞ

where we have introduced the one-loop-improved, rescaled
radial Klein-Gordon operator

Õj ¼ −
d2

dr2
−
1

r
d
dr

þ ðjþ 1Þ2
r2

þ U00ðφÞ

þ ∂
∂φφ½ΠrenðrðφÞÞ þ Πren

α ðrðφÞÞ�; ð111Þ

and where a separation of the angular part in analogy to
Eq. (12) is implied. Compared to Eq. (97b), the self-energy
terms are expressed as a derivative with respect to the
background field φ. This amounts to a local approximation

of the self energy Σ, as we will discuss further at the end of
the present subsection. Moreover, we have introduced the
rescaled translational zero modes

ϕ̃trðrÞ ¼ N r∂rφðrÞ ð112Þ

that include the effects breaking the scale invariance and are
to be subtracted for j ¼ 1.
The loop corrections in Eq. (110) are contained within

the coincident renormalized self-energies from loops of Φ
and χ, i.e., Πren and Πren

α . The former is given by

ΠrenðrÞ ¼ λ

2
G⊥ðr; rÞ þ δm2 þ δλ

6
φ2ðrÞ; ð113Þ

where we have introduced counterterms δm2 and δλ. While
we have expressed this in terms of the exact Green’s
function G⊥, a suitable approximation in order to capture
the leading quantum corrections for j ≥ 2 is to use the tree-
level form from Sec. VA, while, for j ¼ 0 and j ¼ 1, we
need to solve the system (110) self-consistently, thereby
resumming the one-loop effects. This approximation pro-
cedure is summarized in Fig. 2.
As renormalization conditions, we impose that the mass

and the quartic coupling of the one-loop effective potential
in the false vacuum coincide with their tree-level values,
cf. Eq. (A5). In the false vacuum, we evaluate the effective
potential at a homogeneous field configuration, for which
there are closed expressions for the hyperspherical Green
functions,

FIG. 2. Graphical representation of the approximation scheme
applied in Secs. V and VI. Solid lines represent the Green’s
function for the field Φ; dashed lines represent the fields χ. Thin
lines stand for tree-level Green’s functions (in the background of
the bounce found by solving the equations of motion); thick lines
stand for the partly one-loop-resummed Green’s functions.
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Ghom
j ðm;r;r0Þ¼ 1

rr0
ϑðr−r0ÞKjþ1ðmrÞIjþ1ðmr0Þþðr↔ r0Þ;

ð114Þ

where Iν and Kν are the modified Bessel functions.
When summing over j according to Eq. (12), the full
function Ghomðm; x; x0Þ is obtained. The counterterms
can be expressed conveniently in terms of the Green’s
functions in the homogeneous background by realizing
that the coincident Green’s functions are related to the
derivatives of the Coleman-Weinberg potential (9) as
φΠren ¼ ∂Uren

eff =∂φ. This leads to

δm2 ¼ −
λ

2

∂
∂φφGhom

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ λφ2=2

q
; r; r

�				
φ¼0

¼ −
λ

2
Ghomðm; r; rÞ; ð115aÞ

δλ ¼ −
λ

2

∂3

∂φ3
φGhom

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ λφ2=2

q
; r; r

�				
φ¼0

: ð115bÞ

The derivatives can be evaluated by making use of the
recursion relations of the modified Bessel functions, lead-
ing to closed-form expressions for the counterterms.
Along the same lines, the one-loop effects from the field

χ enter Eqs. (110a) and (110b) through

Πren
α ðrÞ ¼ Nχ

α

2
Gχðr; rÞ þ δm2

α þ
δλα
6

φ2ðrÞ; ð116Þ

where we introduce the counterterms

δm2
α ¼ −Nχ

α

2
Ghomðmχ ; r; rÞ; ð117aÞ

δλα ¼ −Nχ
α

2

∂2

∂φ3
φGhom

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ αφ2=2
q

; r; r

�				
φ¼0

:

ð117bÞ

Here, for all j modes, the propagator Gχ can be taken
at tree level in the background of either the tree-level or
the loop-improved bounce in order to capture the leading
quantum corrections from the field χ in the system (110),
since no problematic infrared effects occur. Again, the
difference between using the tree-level and self-consistent
bounces is of higher perturbative order and will only matter
when aiming for two-loop precision.
The counterterms specified above through Eqs. (115)

and (117) are valid at one-loop order. However, the self-
consistent solution to Eq. (110b) inserts radiative correc-
tions into the Green’s function for j ¼ 0 and j ¼ 1. This is
reminiscent of 2PI effective actions, where it is well-known
that the one-loop counterterms are insufficient to render the
one-loop resummed quantities finite. While there is a proof

of principle that 2PI renormalization schemes are via-
ble [26,27], we currently do not find it feasible to apply
these techniques to the present context. Instead of explicitly
specifying local counterterms for j ¼ 0 and j ¼ 1, we
therefore make the replacement

Gjðr; rÞ → Gjðr; rÞ − Re
h
Ghom

j ðMφðφÞ; r; rÞ

−Ghom
j


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ λφ2=2

q
; r; r

�i
; ð118Þ

where we make use of the Green’s function in the
homogeneous background (114) and

M2
φðφÞ≡m2 þ λ

2
φ2 þ ∂

∂φφ½ΠrenðrðφÞÞ þ Πren
α ðrðφÞÞ�:

ð119Þ

Thus, only the contributions due to the gradients in the field
φ are resummed, while those terms that are already present
for φ ¼ const: are dropped. Since the gradient corrections
are ultraviolet finite, we can therefore apply the one-loop
counterterms while self-consistently regulating the infrared
enhancement.
We now comment on the local approximation applied

in Eq. (111). When compared with Eq. (97b), it can be
expressed as

Z
z
ΣxzGzy ¼ φx

Z
z

�
δ

δφz
Πxx

�
Gzy

≈ φx

� ∂
∂φΠxxðrðφÞÞ

�
Gxy: ð120Þ

This is a linearization which would correspond to an exact
spatial translation if Gðx; yÞ ∝ ∂μφðxÞ, but which is not the
case in general. In an adiabatic expansion, the relative size
of the first correction for j ¼ 0 is

ð∂μmloopÞ2
m4

loop

∼
2ð∂μφÞ2
κφ4

¼ −
λr2

6κR2
; ð121Þ

where m2
loop ¼ ðκ=2Þφ2 and κ ¼ λ, α, depending on which

field we consider in the loop. Alternatively, we can make
this estimate by realizing that, in momentum space, the
coincident limit corresponds to a zero external momentum
approximation. Taking for the external momentum
ð∂μφÞ=φ and comparing the square of this with the squared
mass in the loop, we arrive at the same estimate as
in Eq. (121).
At the center of the bubble, for small r, the local

approximation should therefore be accurate, and, for j ≠ 0,
we should replace m2

loop → ω2
loop ¼ ðκ=2Þφ2 þ jðjþ 2Þ=r2

in Eq. (121), such that the approximation further improves for
the higher modes. On the other hand, for large r, the relative
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size of the nonlocal diagram compared to the coincident
contribution κ2φ2=κ decreases because φ → 0. We can
account for this by adding a factor to the error estimate
(121), which then becomes

λr2

6κR2

κ2φ2

κ2φ2 þ κ
: ð122Þ

Wefind this to be smaller than, e.g., 25%for all values of r and
the parameters chosen in Sec. VI.
While the local approximation is a considerable sim-

plification in the derivation of the first numerical results
presented in this work, we will address an improvement on
this procedure (at least for loops from small j) in the future.

D. Mode j= 1

The case j ¼ 1 requires special treatment because of the
apparent singularity in the tree-level Green’s function (53)
and because of the presence of the translational zero modes.
Besides the divergence in the denominator, we also note
that P−j−1

2 ðuÞ is proportional to Pjþ1
2 ðuÞ in the limit j → 1,

such that we cannot use it along with P2
2 in order to

construct the Green’s function as in Eq. (B9). One may
instead choose to work with Qjþ1

2 ðuÞ as an additional basis
solution. Explicitly, these functions read

P2
2ðuÞ ¼ 3ð1 − u2Þ; P−2

2 ðuÞ ¼ 1

8
ð1 − u2Þ; ð123aÞ

Q2
2ðuÞ ¼

5u − 3u3

1 − u2
þ 3

2
ð1 − u2Þ ln 1þ u

1 − u
; ð123bÞ

but we note that Q2
2 does not satisfy the boundary

conditions, i.e., it diverges at both ends of the interval
ð−1; 1Þ. Nevertheless, these functions are useful in order to
construct an approximation to the full solution that only
relies on a single numerical coefficient, and we will return
to this point at the end of this section.
The subtraction of the translational zero modes turns

out to be possible only when accounting for the deviation
of the bounce from the scale-invariant Fubini-Lipatov
form. Note that in the scale-invariant limit φ≡ φð0Þ,
ϕ̃trðrÞ ¼ P2

2ðuÞ=ð2
ffiffiffi
6

p
RÞ, such that we recover the trans-

lational zero mode given in Eq. (25).
Next, we need to solve Eq. (110b) for j ¼ 1. The

solution takes the general form

G̃1ðr; r0Þ ¼ −ϑðu − u0Þ½f−ðuÞϕ̃trðr0Þ þ fþðu0Þϕ̃trðrÞ�
− ϑðu0 − uÞ½f−ðu0Þϕ̃trðrÞ þ fþðuÞϕ̃trðr0Þ�
þ aϕ̃trðrÞϕ̃trðr0Þ; ð124Þ

where G̃ is defined in analogy with Eq. (47), f� are
solutions to the inhomogeneous equation

Õj¼1f�ðuÞ ¼ ϕ̃trðrÞ; ð125Þ

with fþðuÞ being regular for u → 1 and f−ðuÞ for u → −1.
The solutions f� can be obtained numerically and are,
in general, not orthogonal to ϕ̃tr. The coefficient a can be
determined by imposing orthogonality to the zero mode

Z
∞

0

drrϕ̃trðrÞG̃1ðr; r0Þ ¼ 0: ð126Þ

This condition can be solved for a as

a ¼ 1

ϕ̃trðrÞ f½CþðrÞ þ C−ðrÞ�ϕ̃trðrÞ

þ f−ðuÞDþðrÞ þ fþðuÞD−ðrÞg; ð127Þ

which is independent of r and where

Cþ;−ðrÞ ¼
Z

r;∞

0;r
dr0r0fþ;−ðr0Þϕ̃trðr0Þ; ð128aÞ

Dþ;−ðrÞ ¼
Z

r;∞

0;r
dr0r0½ϕ̃trðr0Þ�2: ð128bÞ

We can now comment on why this procedure is not
applicable to the solutions in the tree-level Fubini-Lipatov
background, where the scaled translational mode is

ϕ̃trðrÞ ¼
ffiffiffi
3

8

r
1 − u2

R
ð129Þ

and where the inhomogeneous equation can be cast to

�
d
du

ð1−u2Þ d
du

−
4

1−u2
þ6

�
f�ðuÞ¼

ffiffiffi
3

8

r
1−u
1þu

: ð130Þ

The particular solutions observing the boundary conditions
are

fþðuÞ ¼ −
ffiffiffi
3

8

r
1 − u
1þ u

5u2 þ 10uþ 3

12
; ð131aÞ

f−ðuÞ ¼ fþðuÞ −
1ffiffiffiffiffi
24

p Q2
2ðuÞ: ð131bÞ

Note that Q2
2ðuÞ is a nonnormalizable solution to the

homogeneous equation. We can substitute these results into
Eq. (124). However, it is now not possible to project out the
zero mode because the integralZ

u0

−1

du
ð1þ uÞ2 f−ðuÞϕ̃

trðrÞ ð132Þ
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is logarithmically divergent. This problem does not occur
when we account for the deviation from the Fubini-Lipatov
form. In particular, the mass term leads to an exponential
decay of the modes for r → ∞, such that the integral
Eq. (126) is convergent.
Nevertheless, we can compare the result (124) for G̃1,

based on the numerical solutions f�ðuÞ, with one where
we use the solutions (129) and (131) and determine the
parameter a by matching with the numerical G1,
cf. Fig. 5 below.

E. Mode j= 0

If the case j ¼ 0 were to be treated in complete analogy
with j ¼ 1, we would need to subtract the contribution
from the dilatational zero mode from the j ¼ 0 Green’s
function and integrate over the dilatations of the critical
bubble as a collective coordinate, implying that bubbles of
all radii are nucleated at the same rate. Such a procedure
can, however, not be valid because the scale invariance is
broken by radiative effects. As a consequence, a unique
extremum of the action corresponding to a soliton con-
figuration may emerge or, in the opposite case, no such
solution may exist. In the former case, a Gaußian evaluation
of the functional integral over the dilatational mode
becomes possible.
Since, in the perturbatively well-defined case (where, at

the point when φ ¼ 0, an infrared divergence in the quartic
coupling arising at one-loop order should be avoided),
radiative corrections necessarily imply m2 > 0 in the
renormalized potential, there is no zero mode for j ¼ 0
once these effects are included. Therefore, there is no
ambiguity in the solution to Eq. (110b).
The numerical calculation of the Green’s function for

j ¼ 0, including the effects breaking scale invariance, is
straightforward, up to matters concerning the renormaliza-
tion that require special care and that are explained in
Sec. V C. Similar to the case j ¼ 1, it is nonetheless
interesting to construct approximate solutions that rely
on a single numerical parameter only. We can find these
when considering

Õj¼0G̃0ðr; r0Þ ¼
δðr − r0Þ

r0
ð133Þ

and the dilatational mode at tree-level

φ̃dil
0 ðrÞ ¼ ∂RφðrÞ ¼ −

ffiffiffiffiffiffiffiffiffi
−
12

λ

r
uð1þ uÞ

R2
: ð134Þ

Now, this mode is not normalizable, i.e.,

Z
1

−1

du
ð1þ uÞ2 ½r∂RφðrÞ�2 ð135Þ

diverges logarithmically for u → −1 (r → ∞). Even
so, when neglecting radiative corrections, Eq. (133) is
solved by

G̃0ðu; u0Þ ¼ ϑðu − u0Þ 1
6
P1
2ðuÞQ1

2ðu0Þ

þ ϑðu0 − uÞ 1
6
P1
2ðu0ÞQ1

2ðuÞ
þ bP1

2ðuÞP1
2ðu0Þ: ð136Þ

Note that rr0G̃0ðr; r0Þ is regular everywhere, but the
parameter b remains arbitrary. The zero mode cannot be
projected out because it is not normalizable. However, by
comparing with the numerical result accounting for effects
breaking scale invariance, b can be determined such that we
obtain an approximate solution that only relies on a single
numerical parameter, cf. Figs. 6 and 7 below.

F. The negative eigenmode in the loop expansion

The functional integral over the negative eigenmode can
be defined only by analytic continuation via the method of
steepest descent. One might be concerned that this will lead
to subtleties in the diagrammatic expansion with respect to
the contributions from the negative eigenmode in the j ¼ 0
mode of the (subtracted) Green’s function. As we will now
describe, however, there are no modifications necessary.
We can isolate the contribution from the negative

eigenmode by coupling it to an independent source J0.
We expand the field as

Φ ¼ φð0Þ þ ℏ1=2
X4
μ¼0

aμϕμ þ ℏ1=2Φ00; ð137Þ

where μ ¼ 0 corresponds to the negative eigenmode ϕ0. We
drop the superscript (0) on the tree-level zero modes in this
subsection for notational convenience. The generating func-
tionalZ0½J� → Z0½J; J0� (in which the zero modes have been
taken care of, see Sec. IV) can then be written as

Z0½J;J0�¼ exp

�
−
1

ℏ

�
S½φð0Þ�−

Z
x
Jxφ

ð0Þ
x

��

×
Z

DΦ00
Z

da0ffiffiffiffiffiffi
2π

p exp

�
−
Z
xy

1

2
Φ00

xG−1
xyΦ00

y

−
1

2
λ0a20þℏ−1=2

Z
x
JxΦ00

xþℏ−1=2a0

Z
x
ðJ0Þxðϕ0Þx

−ℏ1=2

Z
x

λ

3!
φð0Þ
x ða0ϕ0þΦ00Þ3x

−ℏ
Z
x

λ

4!
ða0ϕ0þΦ00Þ4x

�
; ð138Þ

where λ0 < 0 is the negative eigenvalue. The contribution
from the negative eigenmode to the tree-level subtracted
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Green’s function G⊥ [cf. Eq. (96b)] can now be obtained
straightforwardly by functional differentiation,

ℏðG⊥
0 Þxy ¼

ℏ2

Z0ð0Þ½0; 0�
δ

δðJ0Þx
δ

δðJ0Þy
Z0ð0Þ½J; J0�jJ;J0¼0:

ð139Þ

The superscript (0) on Z0 indicates that the interactions
between the fluctuations have been set to zero. Proceeding in
this way, we obtain

ℏðG⊥
0 Þxy ¼ ℏðϕ0Þxðϕ0Þy

×
1

Z0ð0Þ½0; 0� exp
�
−
1

ℏ

�
S½φð0Þ� −

Z
x
Jxφ

ð0Þ
x

��

× ðdet00G−1Þ−1=2
Z

da0ffiffiffiffiffiffi
2π

p a20 exp

�
−
1

2
λ0a20

�
;

ð140Þ

where det00 is the determinant over the positive-definite
eigenmodes. Applying the method of steepest descent, we
obtain 1=2 of the integral over a00 ¼ −ia0 ∈ ð−∞;∞Þ,

ℏðG⊥
0 Þxy¼ℏðϕ0Þxðϕ0Þy

×
1

Z0ð0Þ½0;0�

�
i
2
exp

�
−
1

ℏ

�
S½φð0Þ�−

Z
x
Jxφ

ð0Þ
x

��

×ðdet00G−1Þ−1=2
�Z

da00ffiffiffiffiffiffi
2π

p ð−a020 Þexp
�
−
1

2
jλ0ja020

�
:

ð141Þ

Performing the remaining Gaussian integral over a00 yields

ℏðG⊥
0 Þxy ¼ ℏð−1Þ ðϕ0Þxðϕ0Þy

jλ0j

×
1

Z0ð0Þ½0;0�

�
i
2
exp

�
−
1

ℏ

�
S½φð0Þ�−

Z
x
Jxφ

ð0Þ
x

��

× ðdet00G−1Þ−1=2jλ0j−1=2
�
: ð142Þ

Recognizing the content of the braces as Z0ð0Þ½0; 0�, we
therefore find

ℏðG⊥
0 Þxy ¼ ℏ

ðϕ0Þxðϕ0Þy
λ0

; ð143Þ

which is the expected contribution from the negative
eigenmode.
On including the interactions between the fluctuations,

we find that each Wick contraction of a20 gives a factor
of 1=jλ0j and an additional factor of −1 from the analytic
continuation. Thus, the diagrammatic expansion is built

straightforwardly out of G⊥, without any modifications to
the contributions from the negative eigenmode in Eq. (143).

VI. PARAMETRIC EXAMPLE

Now, we numerically solve Eq. (110a) for the bounce
and Eqs. (109) and (110b) for the Green’s functions self-
consistently by running several iterations over these equa-
tions. This procedure can be initialized by calculating the
bounce in the Coleman-Weinberg effective potential. Since
the iterations are repeated until the self-consistent results
converge, no memory of this initial step persists. For the
parametric example, we use λ ¼ −1,m ¼ 1, α ¼ 1,mχ ¼ 1

and N ¼ 7. Note that m ¼ 1 is therefore the basic unit of
the quantities that we present in this section. When
switching to a dimensionful mass, the dimensionless scales
can be interpreted as φ=m, Πren=m2 and rm etc.
In Fig. 3, we show the numerical solution for the bounce

in comparison with the Fubini-Lipatov instanton. The

FIG. 3. Plots of the numerical bounce (solid black), including
the corrections from the breaking of scale invariance, versus the
Fubini-Lipatov instanton (dashed black). The dotted lines are the
positive (blue) and negative (red) difference between the former
and the latter.

FIG. 4. Plots of the renormalized self-energy ΠrenðφÞ with
(solid black) and without (black dashed) gradients, and from the
Cartesian-space computation (red dotted) in Eq. (144).
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radius R of the Fubini-Lipatov instanton is fixed by
matching to the release value of the numerical bounce.
The scale-invariance breaking effects are small in accord
with what we expect from the perturbative expansion.
Various versions of the renormalized self-energy are shown
in Fig. 4. The variant without gradients is based on
Re½Ghom

j � given in Eq. (114). We also compare with the
self-energy evaluated as an integral in Cartesian space and
without gradients, which is given by

Πren;hom ¼ λ

32π2

�
−
λ

2
φ2 þ

�
m2 þ λ

2
φ2

�
ln

�
m2 þ λ

2
φ2

m2

��
:

ð144Þ

Apparently, the only residual difference between the two
gradient-free versions is due to the different regularization
schemes applied in spherical and Cartesian coordinates,
and it goes to zero when the respective cutoffs are taken to
infinity.
In Fig. 5, we present variants of the j ¼ 1 contribution to

the renormalized self-energy Πren
j¼1ðφÞ. We verify that the

gradient effects can be largely isolated in terms of a
contribution from the squared translational modes normal-
ized by the parameter a, as obtained by a fit to the
numerical result. The corresponding results for j ¼ 0 are
presented in Fig. 6, and we compare the self-energies
without gradient corrections in Fig. 7 in order to appreciate
the size of the gradient effects and the accuracy of the
analytic approximations.
Next, in Fig. 8, we make the comparison for the

contributions from j ≥ 2. By comparing with Fig. 7,
we observe that the lion’s share of the radiative
corrections can be attributed to j ¼ 0, such that the
sector j ≥ 2 is subdominant. Thus, also the comparably
large relative discrepancy apparent in Fig. 8 does not

FIG. 5. Plots of the j ¼ 1 contribution to the renormalized self-
energy Πren

j¼1ðφÞ with (solid) and without (dashed) gradients. The
dotted line corresponds to the analytic solution based on
Eqs. (124) and (131) with a fitted value for the parameter a.

FIG. 6. Plots of the j ¼ 0 contribution to the renormalized
self-energy Πren

j¼0ðφÞ with (solid) and without (dashed) gra-
dients. In the case with gradients (solid), the dilatational zero
mode has been subtracted by means of the fitted amplitude. The
dotted line corresponds to the analytic solution based on
Eq. (136) with b ¼ 0.

FIG. 7. Plots of the j ¼ 0 contribution to the renormalized self-
energy Πren

j¼0ðφÞ with (solid) and without (dashed) gradients. The
dotted line corresponds to the analytic solution based on
Eq. (136) with a fitted value for the parameter b.

FIG. 8. Plots of the contributions to the renormalized self-energy
from j ≥ 2, i.e., Πren

j≥2ðφÞ with (solid black) and without (black
dashed) gradients, and using the analytic results for the Green’s
function in the Fubini-Lipatov background (black dotted).
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invalidate the overall applicability of the analytic
approximations.
Finally, in Fig. 9, we show a comparison of Πren

α ðφÞ with
and without gradient corrections, where the latter quantity
is given by

Πren;hom
α ¼ Nχα

32π2

�
−
α

2
φ2 þ

�
m2

χ þ
α

2
φ2

�
ln

�
m2

χ þ α
2
φ2

m2
χ

��
:

ð145Þ

The gradient effects are considerably smaller than for Πren.
This can be attributed to the fact that, unlike the fieldΦ, the
fields χ do not become tachyonic for large values of φ,
since α > 0.

VII. CONCLUSIONS

In this paper, we have presented a Green’s function
method for calculating loop-improved bounce solutions in
classically scale-invariant models.
While the problem of tunneling in classically scale-

invariant scalar theory has been addressed in a number of

earlier articles [3–6,19], the present method is comple-
mentary in the following aspects:

(i) Detemination of the bubble radius. Since the
bubble radius is not fixed at the classical level,
we have determined it through a self-consistent
solution for the bounce and the quantum fluctuations
in its background, which are expressed in terms of
Green’s functions. This allows us to find solutions
that cannot be constructed perturbatively from
classical solutions in the present case because the
parameter R for the Fubini-Lipatov instanton is
unknown a priori. In contrast, previous methods
determine the radius R by selecting the scale where
the running scalar coupling reaches its minimum,
which then also minimizes the tunneling action
[3,5,6]. Note that such an approach is not applicable
to the example discussed in this paper, where only
scalar loops are included, such that the scalar
coupling is monotonically increasing. While this
exemplifies the complementarity of the different
methods, it would be interesting to compare these
when applied to precisely the same models.

(ii) Role of the approximate dilatational mode in the
fluctuation spectrum. While the main scope of the
present paper is to find self-consistent solutions for
the bounce, a number of articles compute the one-
loop determinant around the Fubini-Lipatov instan-
ton using the Gel’fand-Yaglom method. In both
approaches, zero modes must be subtracted. How-
ever, we find here that the dilatational mode resides
at the end point of a continuum spectrum, such that
common regulation procedures for the functional
determinant in the Gel’fand-Yaglom approach that
stipulate this mode to be discrete [3,5,6] may need to
be revisited.

(iii) Resummation of infrared effects. Directly related to
the previous point, our approach to dealing with the
large infrared effects for approximate dilatations is
to perform a one-loop resummation of the Green’s
function for the angular momentum j ¼ 0. In con-
trast, earlier approaches trade the dilatations for R as
a collective coordinate, such that the integration over
R leads to the infrared corrections [3,5,6]. In the
future, it would be very interesting to compare the
two approaches and to chart the respective ranges of
applicability. In addition, we also find large infrared
effects in the j ¼ 1 sector.

(iv) Size of gradient corrections. Aside from the infrared
effects, we confirm that the bounce solutions receive
contributions from the running coupling that can
be computed when neglecting gradient corrections.
The latter are typically consistent with higher-order
effects, cf. Refs. [11,15] for the thin-wall case. In the
classically scale-invariant example of Sec. VI, the
gradient corrections for the spectator fields, as well

FIG. 9. Top panel: Plot of the renormalized self-energy Πren
α ðφÞ

from the self-consistent numerical procedure (black dashed) and
based on the analytical results for the Green’s function without
gradients (red dotted). Bottom panel: Difference between Πren

α ðφÞ
with and without gradients.
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as corrections from angular momentummodes j > 1
in general, appear to be perturbatively suppressed
compared to the leading-order running of the cou-
plings. However, close to scale invariance, the
infrared-enhanced contributions can become of
equal significance compared to the running of the
couplings. It would be interesting to identify the
functional form of the infrared enhancement in
future work.

(v) Higher-order terms from using translational collec-
tive coordinates. The present method accounts for
the next-to-leading-order effects from the Jacobian
associated with the change to translational collective
coordinates, which are known from quantum-
mechanical problems [23,24]. However, due to the
decomposition (95) of the generating functional, we
find a self-consistent solution to the Green’s function
and the bounce in the subspace excluding the
fluctuations associated with translations. The solu-
tions in the full Hilbert space can be obtained from
these solutions by applying the corrections from the
Jacobian. These should be included in the future
when, e.g., aiming to compute the decay rate to
leading-loop order.

(vi) Analytic form of the Green’s functions and fluc-
tuation spectra. We have found an intriguing con-
nection between the archetypal example for
tunneling between quasidegenerate vacua in field
theories [1,2] and the classically scale-invariant
models. More precisely, while the Green’s functions
for both problems agree up to the form of ω,
cf. Eqs. (44) and (52), and an algebraic prefactor,
the eigenspectra and eigenfunctions are very differ-
ent, which has a profound impact when handling
the translational zero modes and the approximate
dilatations.

Apart from the comparison between different methods,
further desirable developments in the present framework
include the following points:

(i) The local truncation of the convolution integrals
appearing in the Schwinger-Dyson equations should
be replaced by an improved approximation.

(ii) Fermion and gauge fields should be coupled to the
tunneling scalars, requiring the computation of
their Green’s functions in the spherically symmetric
background of the bounce. This will allow us to
investigate the effects of a barrier generated by
a negative running of the quartic coupling toward
high scales induced by fermion loops, which is of
particular interest because, in the one-loop effective
potential for such a model, no bounces can be found.
As for including the gauge fields, based on the
present methods, one may aim for transition rates
that are manifestly gauge invariant up to a certain
order in perturbation theory [28].

(iii) The functional determinant should be computed,
possibly using methods similar to those in Ref. [11],
applied there to a thin-wall example.

(iv) Due to the importance of self-consistent solutions for
the bounce, a formulation of the present problem in
the framework of a two-particle-irreducible effective
action would be of utility. Because of the presence
of the zero modes in the Green’s functions, this
may amount to a nontrivial technical step of general
interest.

Once these points are partly addressed, the present method
will be applicable to a wider class of models and parameter
ranges. Examples are the question of metastability in Φ4

theory without couplings to extra spectator fields, but for
different renormalization conditions, and also a more direct
comparison with earlier approaches that includes gauge and
Yukawa interactions will be possible. Of obvious interest is
the application to the Standard Model and other variants of
electroweak symmetry breaking.
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APPENDIX A: COLEMAN-WEINBERG
EFFECTIVE POTENTIAL

The renormalized one-loop Coleman-Weinberg effective
potential for the model in Eq. (1) with m2 ¼ 0 and g ¼ 0
takes the form

Uren
eff ¼ U þ δU þ 1

2

Z
d4k
ð2πÞ4 ½lnðk

2 þ λφ2=2Þ − ln k2�;

ðA1Þ

where the one-loop corrections have been normalized
with respect to the false vacuum. For the ultraviolet
regularization, we apply an ultraviolet cutoff Λ to the
three-momentum integral.
Now, we first consider the renormalization conditions

∂2Uren
eff ðφÞ

∂φ2

				
φ¼0

¼ 0;
∂4Uren

eff ðφÞ
∂φ4

				
φ¼μ

¼ λ; ðA2Þ

following Coleman and Weinberg [17], which yield the
counterterms

δm2 ¼ −
λ

16π2
Λ2; ðA3aÞ
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δλ ¼ −
3λ2

32π2

�
ln

				 λμ28Λ2

				þ 14

3
þ iπ

�
: ðA3bÞ

Note that the coupling-constant counterterm δλ is com-
plex, since λ < 0. The renormalized one-loop effective
potential is

Uren
eff ðφÞ ¼

1

4!
λφ4 þ 1

256π2
λ2φ4

�
ln
φ2

μ2
−
25

6

�
: ðA4Þ

The potential in Eq. (A4) receives loop corrections
∼φ4λnþ1 lnnðφ=μÞ at n-loop order. Therefore, the straight-
forward perturbation expansion cannot be applied close
to the false vacuum around φ ¼ 0, and the tunneling
problem is not well defined for these renormalization
conditions.
Due to this problem, instead of Eq. (A2), we takem2 ≠ 0

and make the choice

∂2Uren
eff ðφÞ

∂φ2

				
φ¼0

¼ m2;
∂4Uren

eff ðφÞ
∂φ4

				
φ¼0

¼ λ; ðA5Þ

yielding the counterterms

δm2 ¼ −
λ

32π2

�
2Λ2 þm2 ln

m2

4Λ2
−m2

�

−
Nχα

32π2

�
2Λ2 þm2

χ ln
m2

χ

4Λ2
−m2

χ

�
; ðA6aÞ

δλ¼−
3λ2

32π2

�
ln

m2

4Λ2
þ2

�
−
3Nχα

2

32π2

�
ln

m2
χ

4Λ2
þ2

�
; ðA6bÞ

where we have included the contributions from the addi-
tional fields as per Eq. (8). Substituting these into Eq. (A1)
yields the result in Eq. (9).

We emphasize that the radiative corrections necessarily
require the introduction of one dimensionful scale, which is
μ in Eq. (A2) and m in Eq. (9). As long as there are no
additional scales introduced, we can therefore refer to a
breaking of scale invariance due to radiative effects in both
cases. For the potential in Eq. (9), this is especially true of
field configurations for which φ2 ≫ −m2=λ.

APPENDIX B: FUBINI-LIPATOV GREEN’S
FUNCTION

In this appendix, we outline the calculation of the
Green’s function in the Fubini-Lipatov background.
Beginning from the transformed problem in Eq. (51) with
ω ¼ jþ 1, we recognize the homogeneous equation

�
d
du

ð1 − u2Þ d
du

−
ω2

1 − u2
þ 6

�
Fjðu; u0Þ ¼ 0 ðB1Þ

as the associated Legendre differential equation. Splitting
around the discontinuity, the general solutions for u≷u0 are
therefore of the form

F≷
j ðu; u0Þ ¼ A≷ðu0ÞPjþ1

2 ðuÞ þ B≷ðu0ÞQjþ1
2 ðuÞ; ðB2Þ

where Pμ
ν and Q

μ
ν are the associated Legendre polynomials.

Note that Eq. (B2) is strictly the general solution only for
j ¼ 0 and j ¼ 1, since Pμ

ν and Qμ
ν are defined only for

μ ≤ ν. Nevertheless, we will later be able to extend the
solution to j > 1 by means of the Jacobi polynomials. For
the time being, however, it is technically simpler to deal
with the associated Legendre polynomials.
Matching around the discontinuity, we require

F>
j ðu0; u0Þ ¼ F<

j ðu0; u0Þ; ðB3aÞ

lim
u→u0

�
d
du

F>
j ðu; u0Þ −

d
du

F<
j ðu; u0Þ

�
¼ −

1

1 − u02
; ðB3bÞ

from which it follows that

A> − A< ¼ Q1þj
2 ðu0Þ

ð2 − jÞ2ð1þjÞ
; ðB4aÞ

B< − B> ¼ P1þj
2 ðu0Þ

ð2 − jÞ2ð1þjÞ
: ðB4bÞ

Here, we have made use of the Wronskian

W½Pμ
νðuÞ; Qμ

νðuÞ� ¼
ðν − μþ 1Þ2μ

1 − u2
; ðB5Þ

where ðzÞν is the Pochhammer symbol, defined as

ðzÞν ¼
Γðzþ νÞ
ΓðzÞ : ðB6Þ

We also require that Fjðu; u0Þ vanish as u → �1, which
implies

A>

B> ¼ −
π

2
cotð1þ jÞπ; B< ¼ 0: ðB7Þ

Using the identity

πðν − μþ 1Þ2μ
2 sinðπμÞ P−μ

ν ðuÞ ¼ π

2
cotðπμÞPμ

νðuÞ −Qμ
νðuÞ; ðB8Þ

we therefore find

F>
j ðu; u0Þ ¼ −

π

2
cscðjπÞP−j−1

2 ðuÞPjþ1
2 ðu0Þ: ðB9Þ

We can extend this result to j > 1 by reexpressing Eq. (B9)

in terms of the Jacobi polynomials Pðα;βÞ
ν via the identity

FLUCTUATIONS ABOUT THE FUBINI-LIPATOV … PHYS. REV. D 98, 016001 (2018)

016001-23



Pμ
νðuÞ ¼

�
uþ 1

u − 1

�μ
2ðν − μþ 1ÞμPð−μ;þμÞ

ν ðuÞ; ðB10Þ

which again strictly holds only for j ≤ 1. For ν ¼ 2, the
polynomial expansion terminates, and we have

Pð�μ;∓μÞ
2 ðuÞ ¼ 1

2
½ð1� μÞð2� μÞ − 3ð2� μÞð1 − uÞ

þ 3ð1 − uÞ2� ðB11Þ

for all μ. Substituting this expansion into Eq. (B9) with
μ ¼ ω ¼ jþ 1 and after some algebra, we arrive at the
expression for the hyperradial Green’s function in Eq. (53).

APPENDIX C: ORTHONORMALITY OF THE
JACOBI POLYNOMIALS

The associated Legendre polynomials satisfy the familiar
orthonormality condition

Z þ1

−1

du
1 − u2

Pμ
νðuÞPμ0

ν ðuÞ ¼ ðνþ μÞ!
μðν − μÞ! δμμ0 : ðC1Þ

Using the identity

Pμ
νðuÞ ¼ ð−1Þμ ðνþ μÞ!

ðν − μÞ! P
−μ
ν ðuÞ; ðC2Þ

it follows that

Z þ1

−1

du
1 − u2

Pþμ
ν ðuÞP−μ0

ν ðu0Þ ¼ ð−1Þμ
μ

δμμ0 : ðC3Þ

This can be reexpressed in terms of the Jacobi polynomials
via Eq. (B10), giving

Z þ1

−1

du
1 − u2

�
uþ 1

u − 1

�þμ
2

�
uþ 1

u − 1

�
−μ0

2

Pð−μ;þμÞ
ν ðuÞPðþμ0;−μ0Þ

ν ðuÞ

¼ ð−1Þμ
μ

δμμ0

ðν − μþ 1Þþμðνþ μþ 1Þ−μ
: ðC4Þ

Making use of the fact that when ν ∈ N

ðν − μþ 1Þþμðνþ μþ 1Þ−μ
¼ ð−1Þνðν!Þ2 sinðπμÞ

πμ½ν2 − μ2�½ðν − 1Þ2 − μ2� � � � ½1 − μ2� ; ðC5Þ

we have

Z þ1

−1

du
1− u2

�
uþ 1

u− 1

�þμ
2

�
uþ 1

u− 1

�
−μ0

2

Pð−μ;þμÞ
ν ðuÞPðþμ0;−μ0Þ

ν ðuÞ

¼ ð−1Þμþνπ

ðν!Þ2 sinðπμÞ ½ν
2 − μ2�½ðν− 1Þ2 − μ2� � � � ½1− μ2�δμμ0 ;

ðC6Þ

giving Eq. (67) for ν ¼ 2 and μ ¼ n.
The associated Legendre functions of imaginary order

satisfy the following orthonormality condition for integer
degree ν [29] (see also Refs. [30,31]):Z þ1

−1

du
1 − u2

Pþiξ
ν ðuÞP−iξ0

ν ðuÞ ¼ 2 sinhðπξÞ
ξ

δðξ − ξ0Þ: ðC7Þ

This can be reexpressed in terms of the Jacobi polynomials
with imaginary parameters via Eq. (B10). Namely,

Z þ1

−1

du
1−u2

�
uþ1

u−1

�þiξ
2

�
uþ1

u−1

�
−iξ0

2

Pð−iξ;þiξÞ
ν ðuÞPðþiξ0;−iξ0Þ

ν ðuÞ

¼2sinhðπξÞ
ξ

δðξ−ξ0Þ
ðν−iξþ1Þþiξðνþiξþ1Þ−iξ

: ðC8Þ

For ν ∈ N, we have

ðν − iξþ 1Þþiξðνþ iξþ 1Þ−iξ
¼ ðν!Þ2 sinhðπξÞ

πξ½ν2 þ ξ2�½ðν − 1Þ2 þ ξ2� � � � ½1þ ξ2� ; ðC9Þ

and therefore

Z þ1

−1

du
1−u2

�
uþ1

u−1

�þiξ
2

�
uþ1

u−1

�
−iξ0

2

Pð−iξ;þiξÞ
ν ðuÞPðþiξ0;−iξ0Þ

ν ðuÞ

¼ 2π

ðν!Þ2 ½ν
2þξ2�½ðν−1Þ2þξ2� �� �½1þξ2�δðξ−ξ0Þ: ðC10Þ

We then immediately recover Eq. (68) for ν ¼ 2.

APPENDIX D: SPECTRAL SUM
REPRESENTATION

In this appendix,we include further details of thederivation
of the spectral sum representation of the Green’s functions.
We begin by writing the Green’s function for the Fubini-
Lipatov case in the form

GFLðx; x0Þ ¼ 1

2π2
X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λFL∈LFL

dj

þ
Z

λFL∈LFL
cj

dλFL

2π

�ϕ−
λFLjðr0Þϕþ

λFLjðrÞ
λFL

;

ðD1Þ
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where the eigenfunctions ϕ�
λFLjðrÞ compose the true eigens-

pectrum. As described in Sec. III C, we now define
ϕ̃�
λFLjðuÞ≡ rϕ�

λFLjðrÞ and change variables via Eq. (49). We

then have

GFLðx; x0Þ ¼ 1

2π2R2

�
1þ u
1 − u

�1
2

�
1þ u0

1 − u0

�1
2
X∞
j¼0

ðjþ 1Þ

×Ujðcos θÞ
� X
λ̄FL∈L̄FL

dj

þ
Z

λ̄FL∈L̄FL
cj

dλ̄FL

2π

�

×
ϕ̃−
λFLjðu0Þϕ̃þ

λFLjðuÞ
λ̄FL

; ðD2Þ

where λ̄FL ¼ R2λFL are the dimensionless eigenvalues. In
terms of the thin-wall eigenbasis, viz. the f�

λTWj of Sec. III C,

we can write

ϕ̃�
λFLjðuÞ ¼

� X
λ̄TW∈L̄TW

dj

þ
Z
λ̄TW∈L̄TW

cj

dλ̄TW

2π

�
a�
λFLλTW

ϕ̃�
λTWjðuÞ;

ðD3Þ

where

ϕ̃�
λTWjðuÞ≡

�
1þ u
1 − u

��ϖ
2

f�
λTWjðuÞ; ðD4Þ

ϖ is defined in Eq. (59), and the amplitudes

a�
λFLλTW

≡ R2

Z þ1

−1

du
ð1þ uÞ2

�
1þ u
1 − u

�
ϕ̃�
λTWjðuÞϕ̃�

λFLjðuÞ:

ðD5Þ

Here, we isolate explicitly in the second parenthesis the
weight function ð1þ uÞ=ð1 − uÞ in the orthogonality of the
thin-wall basis [cf. Eq. (66)]. Now, by virtue of the com-
pleteness of the thin-wall basis, we can also write

GFLðx; x0Þ ¼ 1

2π2R2

X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λ̄TW∈L̄TW

dj

þ
Z

λ̄TW∈L̄TW
cj

dλ̄TW

2π

��
1þ u
1 − u

�þϖþ1
2

×

�
1þ u0

1 − u0

�
−ϖ−1

2 f−
λTWjðu0ÞfþλTWjðuÞ

λ̄TW
: ðD6Þ

It immediately follows that

� X
λ̄FL∈Ldj

þ
Z

λ̄FL∈L̄FL
cj

dλ̄FL

2π

�
a−
λFLλTW0aþλFLλTW

λ̄FL

¼! 1

λ̄TW

(
δλ̄TWλ̄TW0 ; λ̄TW; λ̄TW0 ∈ L̄TW

dj ;

2πδðλ̄TW − λ̄TW0Þ; λ̄TW; λ̄TW0 ∈ L̄TW
cj :

ðD7Þ

In the thin-wall case, the two bases, of course, coincide, and
Eq. (D7) is trivially satisfied. For the Fubini-Lipatov case,
only the zero modes of the two bases coincide, as described
further in Sec. III C. On the other hand, the nonzero modes in
the Fubini-Lipatov case are a linear combination of the
discrete and continuum thin-wall eigenfunctions. This sit-
uation is summarized in Table I.
We can now write the following representations of

both the thin-wall and Fubini-Lipatov Green’s functions
(in the thin-wall basis) in terms of the dimensionless
eigenvalues λ̄TW:

Gðx; x0Þ ¼ 1

2π2R2

(
1
γR

ð1þu
1−uÞð1þu0

1−u0 Þ

)X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×

� X
λ̄TW∈L̄TW

dj

þ
Z

λ̄TW∈L̄TW
cj

dλ̄TW

2π

��
1þ u
1 − u

�þϖ
2

×

�
1þ u0

1 − u0

�
−ϖ

2 f−λTWjðu0ÞfþλTWðuÞ
λ̄TW

: ðD8Þ

We emphasize that the λ̄TW differ between the thin-wall and
Fubini-Lipatov cases due to the difference in the values of
ω [cf. Eqs. (44) and (52)]. The f�

λTWjðuÞ are the solutions of
the Jacobi differential equation in Eq. (61); namely, the
Jacobi polynomials of degree 2,

Pð∓ϖ;�ϖÞ
2 ðuÞ ¼ 1

2
ð3u2 − 1 ∓ 3ϖuþϖ2Þ: ðD9Þ

The discrete modes correspond to ϖ ¼ n ∈ f1; 2g and the
continuum modes to ϖ ¼ iξ (ξ ∈ R).
The normalization of the eigenfunctions follows from

the orthogonality of the Jacobi polynomials, described in
Appendix C. We find that the contribution from the discrete
modes is

Gdðx; x0Þ ¼
1

2π2R2

(
1
γR

ð1þu
1−uÞð1þu0

1−u0Þ

)X∞
j¼0

ðjþ 1ÞUjðcos θÞ

×
�
−
3

2

uu0

1 − ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u02

p

−
3

4

1

4 − ω2
ð1 − u2Þð1 − u02Þ

�
; ðD10Þ

and that from the continuum modes is
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Gcðx; x0Þ ¼
1

2π2R2

(
1
γR

ð1þu
1−uÞð1þu0

1−u0 Þ

)

×
X∞
j¼0

ðjþ 1ÞUjðcos θÞIðu; u0Þ; ðD11Þ

where

Iðu; u0Þ≡
Z þ∞

−∞

dξ
2π

4

ð4þ ξ2Þð1þ ξ2Þ

×

�
uþ 1

u − 1

�þiξ=2
�
u0 þ 1

u0 − 1

�
−iξ=2

×
Pð−iξ;þiξÞ
2 ðuÞPðþiξ;−iξÞ

2 ðu0Þ
ω2 þ ξ2

: ðD12Þ

Defining

L≡ ln
1þ u
1 − u

− ln
1þ u0

1 − u0

�
> 0; u > u0

< 0; u < u0
; ðD13Þ

and making use of Eq. (D9), the integral in Eq. (D12) can
be written

Iðu; u0Þ ¼
Z þ∞

−∞

dξ
2π

eiξL=2

ð1þ ξ2Þð4þ ξ2Þðω2 þ ξ2Þ
× ð1 − 3u2 þ 3iuξþ ξ2Þð1 − 3u02 − 3iu0ξþ ξ2Þ:

ðD14Þ

After partial fractioning, we can decompose this as
I ¼ I1 þ I2 þ Iω, where

I1 ¼
Z þ∞

−∞

dξ
2π

3uu0

1 − ω2
½1 − uu0 − iðu − u0Þξ� e

iξL=2

1þ ξ2
;

ðD15aÞ

I2 ¼
Z þ∞

−∞

dξ
2π

3

4 − ω2
½1þ u2 − 4uu0 þ u02 þ u2u02

− iðu − u0Þð1 − uu0Þξ� e
iξL=2

4þ ξ2
; ðD15bÞ

Iω ¼
Z þ∞

−∞

dξ
2π

1

ð1 − ω2Þð4 − ω2Þ
× ½ð1 − ω2 − 3u2Þð1 − ω2 − 3u02Þ − 9uu0ω2

þ 3iðu − u0Þð1 − ω2 þ 3uu0Þξ� eiξL=2

ω2 þ ξ2
: ðD15cÞ

Making use of the integrals

Z þ∞

−∞

dξ
2π

1

ξ2 þ a2
eiξL=2 ¼ 1

2a
e−ajLj=2; ðD16aÞ

Z þ∞

−∞

dξ
2πi

ξ

ξ2 þ a2
eiξL=2 ¼ 1

2
sgnðLÞe−ajLj=2; ðD16bÞ

where sgn is the signum function, we find

I1 ¼
3

2

uu0

1 − ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u02

p
; ðD17aÞ

I2 ¼
3

4

1

4 − ω2
ð1 − u2Þð1 − u02Þ; ðD17bÞ

Iω ¼ 1

2ω
ϑðu − u0Þ

�
1 − u
1þ u

�
ω=2

�
1þ u0

1 − u0

�
ω=2

×
3u2 þ 3uωþ ω2 − 1

ð1þ ωÞð2þ ωÞ
3u02 − 3u0ωþ ω2 − 1

ð1 − ωÞð2 − ωÞ
þ ðu ↔ u0Þ: ðD17cÞ

The terms arising from I1 and I2 exactly cancel those
terms arising from the discrete modes in Eq. (D10). Notice,
in particular, that there are no unit step functions in I1 and
I2. Putting everything together, and taking the coincident
limit, we quickly arrive at the results presented in Sec. III C.
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