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Ausgangssituation und Motivation: 

Die industrielle Röntgen Computertomographie (CT) stellt ein häufig verwendetes und sehr 

vielfältiges Hilfsmittel für die Zerstörungsfreie Prüfung dar. Die CT bietet dabei die einzigar-

tige Möglichkeit, ein vollständiges 3D Volumen eines vorhandenen Bauteils zu liefern und hat 

sich als exzellentes Werkzeug in der Qualitätssicherung etabliert. Die Scandauer einer Prüfung 

ist jedoch im Vergleich mit anderen typischen Methoden der ZfP relativ hoch, was bisher den 

Routineeinsatz in der Inline-Bauteilprüfung erschwert. 

Um den Messvorgang zu beschleunigen, können im Rahmen des Scans einzelne Projektions-

bilder ausgelassen werden, deren Informationsgehalt vergleichsweise gering ist. Zur Quantifi-

zierung der vorhandenen Bildinformation werden aktuell verschiedene Beobachtermodelle her-

angezogen, die jedoch weitestgehend auf dem menschlichen Seheindruck des Bildes beruhen. 

Diese Metriken sind zwar prinzipiell geeignet, betrachten jedoch nicht den tatsächlichen Infor-

mationsgehalt oder die Anforderungen des verwendeten Rekonstruktionsalgoritmus. 

 

Aufgabenstellung und Zielsetzung: 

Im Rahmen dieser Masterarbeit sollen verschiedene Observermodelle und Kennwerte zur 

Quantifizierung der Bildqualität auf ihre Brauchbarkeit in der Computertomographie mit redu-

zierter Projektionszahl (sparsely sampled CT) implementiert und untersucht werden. Hierfür 

sollen die verschiedenen Metriken auf simulierte Projektionen bereits bekannter Bauteile ange-

wendet und Rekonstruktionen mit den besten Aufnahmewinkeln erzeugt werden. Diese werden 

anschließend mit dem optimalen Rekonstruktionsergebnis verglichen um eine empirische Ein-

schätzung hinsichtlich ihrer Brauchbarkeit geben zu können. Das Ergebnis der Simulationen 

soll anschließend mittels echter Messungen verifiziert werden. 
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Kurzfassung 

Bei der zerstörungsfreien Prüfung spielt die Röntgen-Computertomographie (CT) eine wichtige 

Rolle bei der Untersuchung von Objekten, wie zum Beispiel, zur Fehlererkennung oder für 

metrologische Messungen. Heutige CT-Anwendungen verwenden Standardtrajektorien wie die 

typischen kreisförmigen oder spiralförmigen Bahnen in Kombination mit dem Filtered Back-

projection (FBP)-Rekonstruktionsalgorithmus. Große oder stark absorbierende Objekte verur-

sachen jedoch Absorptionsprobleme in bestimmten Richtungen. In solchen Fällen können Be-

standteile des Objekts aufgrund fehlender Informationen nicht richtig rekonstruiert werden. 

In dieser Arbeit stellen wir zunächst einen aufgabenbasierten Trajektorienoptimierungsalgo-

rithmus vor, der sich auf Basis der CAD-Geometrie eines Bauteils auf die Ermittlung der idea-

len Projektionen, welche die maximale Information für die anschließende Rekonstruktion be-

inhalten, konzentriert. Im Gegensatz zu anderen Ansätzen, die den Rekonstruktionsalgorithmus 

selbst verbessern, liegt der Schwerpunkt unserer Arbeit auf der Optimierung vor der eigentli-

chen Akquisition, d.h. bevor der tatsächliche CT-Scan stattfindet. Der vorgeschlagene Algo-

rithmus verwendet einen aufgabenbasierten Detektionsindex, der als Zielfunktion auf mehreren 

numerischen Modellbeobachtern basiert.  

Anschließend bewerten wir qualitativ und quantitativ die Ergebnisse verschiedener Modellbe-

obachter im Vergleich zu verschiedenen Eigenschaften des Features innerhalb des Objekts. 

Diese Modellbeobachter integrieren Vorwissen über das Feature selbst sowie über das Rau-

schen und die räumliche Auflösung. Beide Bildmerkmale werden unter Verwendung von Prä-

diktoren auf der Grundlage des Penalized Likelihood (PL) Rekonstruktionsalgorithmus appro-

ximiert, um eine effiziente Berechnung zu ermöglichen. 

Die Ergebnisse zeigen, dass unser Optimierungsalgorithmus im Vergleich zu einer früheren 

Implementierung in der Literatur eine genauere und schnellere Trajektorienoptimierung bietet. 

Dies ermöglicht es uns, die Beobachtermodelle auf unterschiedliche Eigenschaften zu testen. 

Generell wurde bei allen Modellen und bei allen Aufgaben eine Verbesserung der Qualität der 

Rekonstruktion erreicht. Dennoch legen unsere Ergebnisse nahe, dass es kein optimales Modell 

für alle möglichen Anwendungen gibt. Stattdessen ist die Wahl des bestgeeignetsten Be-

obachtermodells abhängig vom Akquisitionsschema ab (z. B. Anzahl der Projektionen, Kom-

plexität des Features, usw.). 

 

Schlagwörter: Computertomographie, Aufgabenbasierte Beobachtermodelle, Aufgabenba-

sierte Trajektorienoptimierung, Metriken für Bildqualität, Modulationsübertragungsfunktion, 

Rauschleistungsspektrum  
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Abstract 

In industrial non-destructive testing, X-ray computed tomography (CT) plays an important role 

in the investigation of objects, i.e. for defect detection or for dimensional metrology. Currently, 

CT applications use standard trajectories like the circular or helical orbits in combination with 

the Filtered Backprojection (FBP) reconstruction algorithm. However, large or strongly atten-

uating objects cause absorption problems in specific directions. In such cases, specific features 

of the object cannot be sufficiently reconstructed due to the lack of information about it. 

In this thesis, we firstly introduce a task-based trajectory optimization algorithm that focuses 

on identifying preferable projections that maximize the information content for the subsequent 

reconstruction based on the CAD data of an object. Unlike other approaches that improve the 

reconstruction algorithm itself, our work focuses on pre-acquisition optimization, i.e. optimiz-

ing the acquisition trajectory before the actual scan takes place. The proposed algorithm uses a 

task-based detectability index based on different numerical model observers as objective func-

tions. 

Secondly, we assess qualitatively and quantitatively the performance of different of such model 

observers versus different properties of the feature inside the object. These model observers 

incorporate knowledge about the feature itself and about the noise and spatial resolution around 

it. Both image characteristics will be approximated using predictors based on the Penalized-

Likelihood (PL) reconstruction algorithm in order to reduce the computational effort. 

Our optimization algorithm provides more accurate and faster trajectory optimization compared 

to an earlier implementation in the literature. This has allowed us to test the various model 

observers for different properties. In general, an improvement of the reconstruction quality was 

achieved with all model observers and for all imaging tasks. We were also able to assign the 

performance of these models to specific acquisition schemes, e.g. the NPW model observer has 

provided better results for a small number of projections, while the PW model observer was a 

better choice for a large number. We concluded that there is no model that is optimal for all 

cases, but instead depends on the acquisition scheme (e.g. number of projections, complexity 

of the feature, etc.). 

 

Keywords: 

Computed Tomography, Task-Based Model Observers, Task-Based Trajectory Optimization,  

Image Quality Metrics, Modulation Transfer Function, Noise Power Spectrum 
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1 Introduction 

The correct and targeted quantification of image quality in computed tomography (CT) is es-

sential for several reasons: not only does this serve as a tool for evaluating and assessing im-

aging systems performance, it also provides the ability to optimize the acquisition parameters 

such as the source-detector trajectory or the X-ray intensity [Fischer et al. 2016]. 

In the literature, there are many physical metrics for image quality. Several standard ap-

proaches, such as Signal-to-Noise Ratio (SNR), Modulation Transfer Function (MTF), or 

Noise Power Spectrum (NPS), can characterize the properties of an imaging system to some 

degree. However, since they do not consider the objective of the imaging system, they may 

not be very meaningful for assessing its imaging performance. In order to counteract these 

limitations, Robert Wagner proposed in his paper of 1972 to best define the image quality by 

considering the task that the image is to fulfill [Wagner et al. 1972]. For example, micro 

cracks detection requires an image of high spatial resolution to enhance sensitivity towards 

small objects while an edge detection can be best performed on an image with a low noise 

level to suppress small contrast variation. 

This task-based approach, combined with the statistical decision theory and signal processing, 

has been further developed in recent years and is now one of the standards for assessing im-

age quality in medical CT. The further developments of the reconstruction methods and the 

technical advances in computer capacity have led to many attempts to apply this approach to 

optimize the acquisition parameters [Vennart 1997]. 

In this thesis different models of task-based image quality assessment are investigated. Their 

performance in terms of the design and optimization of the acquisition trajectory is examined. 

This optimization focuses on identifying the best projections prior to the X-ray acquisition ra-

ther than improving the reconstruction itself [Gang et al. 2011]. Typical applications of this 

approach are CT configurations with a small number of projections or a shorter acquisition 

time. Both use cases are typical for an industrial inline CT application. With the identified 

projections, a CT scan can be performed on a customized trajectory. As a future goal, this op-

timized trajectory can be accessed using a robot-assisted CT system, where the X-ray source 

and the detector are mounted on two separate robot arms. Due to its flexibility, projections 

from almost any position are possible. 

This thesis is divided into 7 chapters: 

Chapter 1 introduces the motivation and the targeted scope of this work. It contains the syn-

opsis of the following chapters as well. 
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Chapter 2 provides the theoretical background of cone-beam computed tomography (CBCT). 

It presents briefly the system matrix and the general forward projection model of a cone-beam 

setup and the associated Lambert-Beer’s Law. The standard acquisition trajectories will be il-

lustrated as well. 

In Chapter 3 we will contemplate with the mathematical framework of the reconstruction 

methods used in this work with focus on the Penalized-Likelihood (PL) estimation and the 

Filtered Backprojection (FBP). In the following, we introduce the Standard Deviation (SD) 

and the Root-Mean-Square-Error (RMSE). Both metrics are used to assess the quality of the 

reconstruction. 

In section 1 of chapter 4 we present standard image quality metrics and approaches for trajec-

tory optimization. After the discussion of their limitations, we will introduce in section 2 the 

principle of task-based metrics. The presented general framework serves as a design and de-

velopment basis for all the numerical model observers. 

The detailed presentation of the different model observers is conducted in chapter 5. Here we 

will explain the mathematical background and the specific motivation for each model. This is 

the major part of the theoretical basics. Further, we will discuss their features and their limita-

tions. The model observers are divided into two categories: 

• The Fourier-based Pre-Whitening and Non-Pre-Whitening observers: Due to the 

high dimensionality of today’s CT images, the inversion of the covariance matrix of 

an image is difficult to compute. In order to avoid the inversion, these model observers 

are presented in the Fourier domain instead of the spatial domain. 

• The Channelized Hotelling Observers reduce this dimensionality of the covariance 

matrix through channelization. This technique decomposes an image into different 

spatial frequency channels. As a result, the inversion of the covariance matrix is easy 

to calculate. 

Subsequently, the flowchart of the task-based trajectory optimization for 3D and 2D features 

is given in chapter 6. Here the application of the theoretical framework is demonstrated just 

in certain contexts (we will focus on optimization and detection with respect to one single fea-

ture), as the motivation of this work is on the more theoretical aspects, which can then be 

adapted to a specific application. 

Finally, Chapter 7 and 8 summarize the results of this thesis. Here, we will discuss the per-

formance of the examined model observers regarding trajectory optimization and features de-

tection. We will also highlight the areas of possible future investigations based on the experi-

ence gained during this work. 
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2 Fundamentals of Computed Tomography 

This chapter describes the physical and mathematical details of an X-ray imaging system. 

These are necessary for the implementation of the reconstruction methods and the task-based 

performance metrics that will be discussed later. 

 

2.1 Introduction 

The first applications of X-ray imaging were established for medical purposes. This has been 

extended to non-medical use because of its advantages in diversifying different materials with 

different densities. Today it is a widely used non-destructive testing method for industrial ap-

plications. It offers the unique opportunity to deliver a full 3D representation of a single com-

ponent or a very complex assembly. This makes X-ray imaging an excellent tool for quality 

assurance and control in many technological areas such as materials science, metrology and 

manufacturing. Today, a very accurate inspection can be achieved as the new generation of X-

ray imaging systems can examine an object with a very high resolution. 

To scan an object, an X-ray source and a detector are required. The X-rays generated by an X-

ray tube pass through the object, which absorbs photons depending on its geometry and mate-

rial, and then hit the detector. The detector measures the remaining photons and converts this 

information into greyscale images [Buzug 2008]. 

 

Geometry of an X-ray System: 

The geometry of the X-rays can be divided into three major categories: Parallel-beam, Fan 

beam and Cone-beam. However, the cone-beam geometry has become more popular due to 

the short scanning time. This is very advantageous because the heat generated in the x-ray 

tube, which limits the measurement time, can be better controlled [Buzug 2008]. For the CT 

measurements in this work we use the cone beam configuration. An illustration of this setup 

with the main parameters is given in Figure 2.1. 

The distance between the X-ray source and the object (more precisely its rotation axis) is 

called SOD (Source-Object-Distance), while the Source-Detector-Distance is denoted as 

SDD. Each X-ray cone beam is characterized by its opening angle Ω. For every CT setup, the 

magnification M is given as: 

𝑀 = 
𝑆𝐷𝐷

𝑆𝑂𝐷
 (2.1) 
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This value is required to calculate the voxel size. If the voxels that define the volume of the 

object are isotropic, the voxel size can then be estimated as: 

𝑉𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒 =  
𝑃𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒

𝑀
=  
𝑆𝑂𝐷

𝑆𝐷𝐷
 𝑃𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (2.2) 

The PixelSize refers to the size of the pixels on the detector, which are also assumed to be iso-

tropic. 

CT devices: 

A CT device that is equipped by such a cone-shaped X-ray and a flat-panel detector is catego-

rized in the seventh generation. Figure 2.2 gives an overview of modern CT scanners used in 

the medical field (left side) and for industrial applications (right side). (A) is a C-arm scanner 

which is used in angiography. (B) is a conventional whole-body CT scanner. However, this 

variant has fan beam geometry and an arced detector with multiple-slices. (C) is a granite-

based system. It allows to scan large objects and to achieve high magnification M. Since this 

system is open, it must be installed in a room with radiation protection and therefore can’t be 

positioned next to a production line. In (D) we see the robot-assisted CT (RoboCT) of the ve-

hicle manufacture BMW. In this configuration, the X-ray source and the detector are mounted 

on two separate robots that provide the ability to reach any inspection position around the ve-

hicle [Buzug 2008] [Schoener 2012]. 

 

Figure 2.1: Geometry and notation for a cone beam CT setup with opening angle 𝜽 [Schrapp 2015] 
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Figure 2.2: Overview of modern CT scanners used in the medical and industrial fields. The figures are re-

produced from [Schoener 2012] [Fraunhofer EZRT 2019] 

 

2.2 Standard Acquisition Trajectories: 

In the following, some widely used standard trajectories in the industrial CT are presented. 

For each discrete position on the trajectory, a 2D projection is created. Once all required pro-

jections have been made, a 3D reconstruction of the object is performed. For this purpose, 

various reconstruction methods have been developed and refined over the years. Some of 

these algorithms are presented in the next chapter. 

 

For a better illustration the trajectories are sketched in Figure 2.3. The positions of source and 

detector are highlighted. It does not matter if the detector-source moves against the object or 

vice versa. The acquired projections from both trajectories are identical. 
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• Circular orbit: 

In standard cone-beam CT, the projections are recorded with a 2D detector moving on a circu-

lar orbit around the object to be X-rayed. The source lies on the opposite side of the object 

and moves in the same direction as the detector (i.e. clockwise or counter-clockwise). The 

data is usually recorded over the full 360-degree of the circle. However, the circular orbit does 

not fulfill the Tuy-Smith sufficiency condition. This condition requires that every plane inter-

secting the object must intersect the source-detector trajectory at least once for an exact recon-

struction. This is guaranteed just for the object plane that contains the acquisition orbit. The 

incompleteness of the data with this scan setup results in a high impact of the cone artifacts 

 

Figure 2.3: Overview of different acquisition geometries. Source, detector and trajectory are marked as 

red, black and blue. The figures are adapted from [Buzug 2008] 
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during reconstruction. The contrast resolution is also reduced due to the insufficient data 

[Buzug 2008]. Figure 2.4 shows how the circular orbit can be extended to meet this condition. 

 

Figure 2.4: Extension of the simple circular orbit to fulfill the Tuy-Smith sufficiency condition 

 

• Helix orbit: 

The helical geometry can be used to scan long objects. It requires that either the object or the 

source and detector are moveable in the direction orthogonal to the circular trajectory. 

The helical acquisition fulfills the Tuy-Smith condition and is therefore mathematically com-

plete. It delivers a cone artifact free reconstruction. However, the iterative reconstruction of a 

volume-of-interest which is part of the entire volume is problematic. The reason for this is 

that each voxel of the volume has a different tomographic angle for each imaging location. 

The latest is the angle between the X-ray passing through the voxel and the axis of rotation of 

the helix [Buzug 2008]. 

The classic helical trajectory with a small pitch requires long acquisition times. As illustrated 

in Figure 2.5 this can be replaced by the circles-plus-line trajectory to image the object in less 

time without affecting the reconstruction quality. 

 



Fundamentals of Computed Tomography 

8 

 

Figure 2.5: Typical acquisition geometries for long objects. The figures are reproduced from [Siemens 

2016] 

 

• Linear and Circular Tomosynthesis: 

For large and flat objects whose dimensions exceed the dimensions of the imaging system, 

volume information can be obtained with the help of the linear or circular tomosynthesis. 

In the geometry of linear tomosynthesis, the source and detector move on linear trajectories 

parallel to a major axis and on opposite sides of the object. The object itself remains fixed. In 

the circular arrangement, they move on circular paths in planes that are parallel to an object 

plane. The detector can be orthogonal to the main X-ray of the source or parallel to the plane 

containing the detector trajectory [Buzug 2008]. 

As it was discussed previously, the limited imaging angle range of tomosynthesis results in 

incomplete projection data. Therefore, the Tuy-Smith condition is not fulfilled, and the recon-

struction using IR methods leads to the typical reconstruction artifacts that limit the axial res-

olution of the reconstructed volume [Ebensperger 2014]. 
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2.3 System Matrix 

For the reconstruction, the object volume must be discretized in a finite number of voxels. 

Each voxel 𝑖 is then presented with a constant value parameter, called attenuation coefficient 

or density 𝜇𝑖. These parameters are unknown and will be calculated using a reconstruction al-

gorithm. For the sake of simplicity, we consider the X-ray examination of a 2D slice of a 3D 

object. The formulas shown here are thus legal for the 3D case. 

Within a cone-beam CT the X-rays are modelled as elongated triangles. The ratio between the 

area illuminated by the j-th X-ray within the i-th cell and the entire area of the i-th cell is de-

fined as the weighting factor 𝐴𝑖𝑗. In other words, each element 𝐴𝑖𝑗  reflects the contribution of 

a specific cell to a specific pixel measurement. The term 𝑏𝑗, which specifies the projection 

data obtained at the detector, is notated as the measurement gain along the j-th X-ray. The re-

lationship between the unknown densities 𝜇𝑖 and the measured values 𝑏𝑗  is then given for each 

detector pixel as [Buzug 2008]: 

𝑏𝑗 = ∑𝐴𝑗𝑖𝜇𝑖

𝑛

𝑖=1

              𝑤𝑖𝑡ℎ 𝑗 = 1, … ,𝑚 (2.3) 

where, n is the number of cells (voxels in 3D) and m is the number of pixels of the detector. 

Figure 2.6 shows this concept schematically for a cone-beam CT. 

 

Figure 2.6: Visualization of the weighting factors Aji in a 2D algebraic forward projection model for cone-

beam configuration 
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Equation (2.3) can be expanded to express 𝑏𝑗 as a function of all cells. In this way we obtain a 

system of linear equations for each projection. In general form we have: 

𝐴11𝜇1 + 𝐴12𝜇2 +⋯+ 𝐴1𝑛𝜇𝑛  =  𝑏1
𝐴21𝜇1 + 𝐴22𝜇2 +⋯+ 𝐴2𝑛𝜇𝑛  =  𝑏2

⋮
𝐴𝑚1𝜇1 + 𝐴𝑚2𝜇2 +⋯+ 𝐴𝑚𝑛𝜇𝑛  =  𝑏𝑚

 (2.4) 

The system of equations for each projection can also be rewritten in matrix form as: 

[
𝐴11 ⋯ 𝐴1𝑛
⋮ ⋱ ⋮
𝐴𝑚1 ⋯ 𝐴𝑚𝑛

] . (
𝜇1
⋮
𝜇𝑛

) =  (
𝑏1
⋮
𝑏𝑚

)        𝑜𝑟        [𝑨𝜇 = 𝑏]𝑷𝒓𝒐𝒋 𝒌 (2.5) 

where, b (size m) and µ (size n) are column vectors for the measurements and the attenuation 

values, the geometry matrix A (size m*n) is called system or design matrix, and k refers to the 

k-th projection. 

The equation (2.5) can be expanded to include all measured projections and it becomes: 

𝑨𝜇 = 𝑏 (2.6) 

The composition of the system matrix A during acquisition is shown graphically step by step 

in the following Figure 2.7. 
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Figure 2.7: Schematic overview of the relation between the system matrix, the attenuation values of the object and 

the measurements for multiple projections 
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2.4 Lambert-Beer’s Law 

When an X-ray passes through an object of thickness s with a constant attenuation value µ, it 

undergoes attenuation due to various physical mechanisms, such as photoelectric absorption 

or inelastic Compton scattering. The intensity I after attenuation of a monochromatic X-ray 

beam with initial intensity 𝐼0 is determined by the Lambert-Beer’s Law [Buzug 2008]: 

𝐼𝑗 = 𝐼0 𝑒
−𝜇𝑠 

(2.7) 

The attenuation of the X-ray, running through a sequence of multiple discontinuous elements 

with different attenuation coefficients µi and different thickness 𝑠𝑖, can be described as: 

𝐼𝑗 = 𝐼0 𝑒
−∑𝜇𝑖𝑠𝑖 ≈ 𝐼0 𝑒

−∫𝜇(𝑠)𝑑𝑠 (2.8) 

The attenuated intensity 𝐼𝑗 after passing through the object is given by the pixel values on the 

detector. The initial intensity 𝐼0 can be measured by performing a first scan without the object. 

The thickness 𝑠𝑖, which represents the length travelled by the X-ray beam through the i-th ele-

ment, can be approximated as the element size (corresponding to the voxel size in 3D). Know-

ing 𝐼𝑗, 𝐼0 and 𝑠𝑖, the relationship between the unknown attenuation coefficients µi, can be ex-

pressed as follows: 

𝑏𝑗 = ∫𝜇(𝑠)𝑑𝑠  ≈  ∑𝜇𝑖𝑠𝑖 = −ln (
𝐼𝑗

𝐼0
) (2.9) 

The line integral 𝑏𝑗 generally describes the attenuation of the j-th X-ray through the object and 

corresponds to the definition in equation (2.3). 

By substituting (2.6) and (2.9) into (2.7), we obtain the simplified general forward model for 

the measurement 𝐼: 

𝐼(µ) = 𝑫{𝐼0} . 𝑒
−𝑨𝜇 (2.10) 

Where, the diagonal matrix 𝑫{𝐼0} includes the measurement-dependent gains. Assuming that 

each detector pixel in the free jet (i.e., without an object in the X-ray path) is the same, all the 

diagonal entities have the same value 𝐼0. However, this is an idealization which is not typi-

cally the case. 
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3 Reconstruction Methods 

Numerous previous publications have described the tomographic system models and the asso-

ciated iterative reconstruction methods. This chapter presents the important information that 

will be needed for this work. 

The system matrix, A, and the measurements, b, are known before reconstruction. Knowing 

the Source-Object (SOD) and Source-Detector (SDD) distances, number & size of voxels 

(volume of the object) and number & size of pixels (size of the detector), the system matrix 

can be calculated. To obtain the unknown attenuation coefficients, µ, equation (2.6) must be 

solved. 

However, the explicit calculation of the inverse matrix of A is very time-consuming. And 

since A is very large, storing the matrix requires a lot of memory [Buzug 2008]. Memory re-

quirement is explained using an example from this work: 

The volume of an object is discretized using (512 x 512 x 512) voxels. The flat detector has 

512 pixels in each direction. An equiangular acquisition on a rotation orbit with an angle step 

of 1° provides 360 projections. The size of the system matrix for each projection is then: 

  [512 ∗ 512] ∗  [512 ∗ 512 ∗ 512] 

Each coefficient in the matrix is defined as a float (= 4 bytes). The storage requirement for 

this system matrix is then 128 Terabytes. An inversion of the entire system matrix (128 Tera-

bytes * 360 projections) is very demanding even for modern computers with powerful hard-

ware and software. Furthermore, since an X-ray illuminates just a small number of voxels in 

3D (cells in 2D), a reconstruction approach without explicit formation of the system matrix, 

A, can be applied to solve the equation (2.6). 

3.1 Iterative Reconstruction Technique 

The principle of IR algorithms is to reconstruct a tomographic volume from measured projec-

tions by iterative estimation. At the beginning, a first estimate is arbitrarily created. This could 

be a uniform object, where all voxels are equal zero or one. As next, simulated projections of 

this first estimate are created. Then, these projections are compared with the measured projec-

tions. The result of the comparison is then used to change the current estimate based on a spe-

cific applied method. By that, an adjusted estimate is created, and a new iteration starts. This 

is repeated until the measured and the adjusted projections agree according to a condition pre-

defined by the algorithm [Buzug 2008]. A simplified schematic of the IR algorithms is given 

in Figure 3.1. 
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Figure 3.1: The relevant steps of iterative reconstruction algorithms [Schrapp 2015] 

 

IR methods support the acquisition with arbitrary geometry that satisfy the Tuy-Smith suffi-

ciency condition and recent advances in computational power have made IR algorithms a val-

uable option for industrial CT imaging [Schrapp 2015]. 

 

3.1.1 Algebraic Reconstruction Technique 

First introduced by Gordon et al. in 1970, the algebraic reconstruction approach solves the 

equation (2.6) iteratively for each voxel 𝑖 = 1,… , 𝑛 and X-ray 𝑗 = 1,… ,𝑚 [Gordon et al. 

1970]. 

𝜇𝑖
𝑛+1 = 𝜇𝑖

𝑛 + 𝜆𝑛
𝐴𝑗𝑖( 𝑏𝑗 − ∑ 𝐴𝑗𝑖𝜇𝑖

𝑛⏞  
𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝑛
𝑖=1

⏞                
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑚𝑖𝑛𝑢𝑠 𝑛𝑒𝑤 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠⏞                    

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

)

(∑ 𝐴𝑗𝑖
𝑛
𝑖=1 )2

⏞                      
𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

 

(3.1) 

The forward projection of the current estimate given by ∑ 𝐴𝑗𝑖𝜇𝑖
𝑛𝑛

𝑖=1  is compared with the loga-

rithmized measured values 𝑏𝑗 = −ln (
𝐼𝑗

𝐼0
). The difference is then back-projected into the vol-

ume domain, weighted with a positive defined real number λ and finally added to the current 

estimation of the object. The term λ is called the relaxation parameter and serves to accelerate 

the convergence of the iterations. This is necessary because of the expensive calculation of 

each iteration. It also minimizes the impact of data inconsistency and the order of the 
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processed X-rays. It has also been proven that for each iteration there is an optimal value of λ 

which maximize the rate of convergence [Buzug 2008]. 

Compared to other IR approaches, ART is relatively fast and provides respectable reconstruc-

tion quality. However, when dealing with “very” noisy data, this method is ineffective. To 

overcome this restriction and improve the quality of the reconstructed volume, the projections 

can be examined simultaneously. In each iteration there is only one forward- and back-projec-

tion step. This method is called the Simultaneous Iterative Reconstruction Technique (SIRT) 

[Andersen et al. 1984]. 

3.1.2 Penalized-Likelihood Reconstruction 

In this work, we focus on the Penalized-Likelihood reconstruction which belongs to the cate-

gory of iterative reconstruction methods. It maximizes an objective function 𝛷(𝜇; 𝑦), which 

represents for this approach the difference between the log-likelihood function 𝐿 and a penalty 

term. The general form for the PL reconstruction (�̂�) from projections (𝑦) acquired from arbi-

trary trajectory is defined as: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥[ 𝛷(𝜇; 𝑦) ] = 𝑎𝑟𝑔𝑚𝑎𝑥[ 𝑙𝑜𝑔𝐿(𝜇; 𝑦) − 𝛽𝑅(𝜇) ] (3.2) 

Where, the penalty function 𝑅(𝜇) is weighted by a regularization strength parameter 𝛽. This 

penalty term allows controlling the balance between resolution and noise. 

This formulation offers the possibility to investigate different noise models, which are related 

to different likelihood functions. In addition, we could examine several types of regularization 

strategies. Selecting the commonly used Poisson model for the variations of the independent 

measurements yields to the following log-likelihood function [Stayman et al. 2011]: 

𝐿(𝜇; 𝑦) =  𝑝(𝑦|𝜇) =  ∏ 𝑝(𝑦𝑖|𝜇)
𝑁

𝑖=1
= ∏ 𝑒−�̅�𝑖(𝜇)

(�̅�𝑖(𝜇))
𝑦𝑖

𝑦𝑖!⏟          
𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑁

𝑖=1
  

(3.3) 

𝑙𝑜𝑔𝐿(𝜇; 𝑦)  ≅  ∑𝑦𝑖

𝑁

𝑖=1

𝑙𝑜𝑔[𝐼0 𝑒
(−𝑨𝜇)]

𝑖
 −  [𝐼0 𝑒

(−𝑨𝜇)]
𝑖
  (3.4) 

where, N is the number of the noisy measurements. 

For the regularization, we choose a quadratic penalty which can be expressed mathematically 

as follows: 

𝑅(𝜇) =  
1

2
µ𝑇𝑹µ (3.5) 
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where, 𝑹 is a 𝑛𝑉𝑜𝑥𝑒𝑙𝑠 x 𝑛𝑉𝑜𝑥𝑒𝑙𝑠 constant matrix that is defined as the Hessian of 𝑅(𝜇). The lat-

ter illustrates how voxels are combined and penalized and can be written as: 

𝑅(𝜇) =  
1

2
 ∑∑𝑤𝑗,𝑘

𝑘

(𝜇𝑗 − 𝜇𝑘)
2

𝑗

 
(3.6) 

This special type of quadratic penalty penalizes the voxel differences in a first order neighbor-

hood around a voxel location j. The weighting function 𝑤𝑗,𝑘 is equal to the inverse of the dis-

tance between the j-th voxel and the nearest k-th neighbor voxel (4 or 8 in 2D and 6 or 26 in 

3D reconstruction). Otherwise it is 0. Figure 3.2 illustrates the penalized pixels in a slice re-

construction with two different ways [Gang et al. 2017]. 

 

Figure 3.2: Illustration of the penalized pixels in a 2D slice reconstruction 

 

The PL reconstruction provides better results when dealing with incomplete data, e.g. acquisi-

tion of projections with limited angle. However, it is mostly difficult to analyze compared 

with analytic methods such as the Filtered-Backprojection [Gang 2014]. 

3.2 Filtered Backprojection 

In this section we want to introduce the widely used Fourier-transform based filtered back-

projection (FBP), which belongs to the analytical reconstruction algorithms. Assuming the 

completeness of the projection data, the reconstruction with FBP is fast and precise and re-

quires less computational effort than IR methods. However, it can lead to certain strong arti-

facts like the cupping artifact, which is induced by beam-hardening [Buzug 2008]. It is often 

used for standard circular trajectories. But, it can also support other acquisition geometries in 

a modified form [Zikuan et al. 2006]. In this work we will use this method for the optimiza-

tion as well as the final volume reconstruction. 

• Radon transform: 

For sake of simplicity, we consider the parallel-beam geometry to image a single 2D slice of 

an object. Nevertheless, the extension to cone-beam geometry to reconstruct a 3D object is 
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straightforward and will be discussed at the end of this section. For a monochromatic X-ray 

source and an object with unknown attenuation coefficient 𝜇, the Lambert-Beer’s law (see 

section 2.4) for the measured intensity I on the detector position 𝜉 along one parallel X-ray L, 

is written as: 

𝐼(𝜉) =  𝐼0 𝑒
−∫ 𝜇(𝑥,𝑦)𝑑𝑙

 
𝐿  (3.7) 

The representation of the attenuation coefficient 𝜇(𝑥, 𝑦) in the fixed coordinate system (𝑥, 𝑦) 

will be replaced by the more general form 𝑓(𝑥, 𝑦), which has also the same distribution 

as 𝜇(𝜉, 𝜂) in the rotating coordinate system (𝜉, 𝜂). In other words, 𝑓(𝑥, 𝑦) ≡  𝜇(𝜉, 𝜂). 

For a fixed projection angle 𝛾 and at a position 𝜉 on the detector, the projection integral is 

given as [Buzug 2008]: 

𝑝𝛾(𝜉) = ln ( 
𝐼0
𝐼(𝜉)

 ) =  ∫𝜇(𝜉, 𝜂)𝑑𝜂
 

𝐿

 
(3.8) 

The path L is a straight line and can be parametrized by: 

𝜉 = 𝑥 cos(𝛾) + 𝑦 sin(𝛾),               𝜂 = −𝑥 sin(𝛾) + 𝑦 cos(𝛾) (3.9) 

Changing from the rotating to the fixed coordinate system leads to the two-dimensional Ra-

don transform of the object: 

𝑝𝛾(𝜉) =  ∫ ∫ 𝑓(𝑥, 𝑦) 𝛿(𝑥 cos(𝛾) + 𝑦 sin(𝛾) −  𝜉) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 
(3.10) 

• FBP for Parallel-Beam geometry: 

The approach of the filtered back-projection is visualized in the following figure. 

 

Figure 3.3: Workflow of the filtered back-projection (FBP) with a ramp filter [Schrapp 2015] 
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The main four steps of the filtered back-projection can be summarized as follows [Buzug 

2008] [Schrapp 2015]: 

1. For each projection angle 𝛾, the Fourier transform of the measured projection profiles is 

calculated: 

𝑃𝑦(𝑞) = ℱ{𝑝𝛾(𝜉)} =  ∫ 𝑝𝛾(𝜉) 𝑒
−2𝜋𝑖𝑞𝜉  𝑑𝜉

∞

−∞

 
(3.11) 

2. High-pass filtering of 𝑃𝑦(𝑞) by multiplying it with the filer function 𝐺(𝑞): 

𝑃𝛾(𝑞) 𝐺(𝑞) (3.12) 

The difference between filtered and unfiltered back-projection is demonstrated in Figure 

3.4 (A) using the simple example of a square with only one attenuation coefficient. 

3. The inverse Fourier transform of the high-pass filtered 𝑃𝑦(𝑞) lead to the so-called filtered 

projection ℎ𝛾(𝜉): 

ℎ𝛾(𝜉) =  ℱ
−1{𝑃𝑦(𝑞) 𝐺(𝑞)}  =  ∫ 𝑃𝛾(𝑞) 𝐺(𝑞) 𝑒

2𝜋𝑖𝑞𝜉  𝑑𝑞
∞

−∞

 (3.13) 

4. Each filtered projection ℎ𝛾(𝜉) is back-projected along the line 𝜉: 

𝑓(𝑥, 𝑦) =  ∫  ℎ𝛾(𝜉) 𝑑𝛾
𝜋

0

 
(3.14) 

This step is very important for this work, as it equals the multiplication with the inverse of 

the system matrix A. 

Due to the Fourier transform, low frequencies are weighted more heavily for a simple summa-

tion than high frequencies. To avoid this problem, a high-pass filter can be used as a simple 

solution. For complete and continuous data, the Ram-Lak filter with 𝐺(𝑞) =  |𝑞| is 

 

Figure 3.4: (A) Illustration of the effect of the high-pass filtering. Left: Unfiltered back-projection. Right: 

Filtered Back-projection with Ram-Lak filter (G(q) = |q|) [Buzug 2008]. (B) Filter ker-

nels of the Ram-Lak filter and the Shepp-Logan filter [Lee et al. 2011] 
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appropriate. However, as high frequencies are over-weighted, signal noise in this range can be 

amplified. To compensate this, the Shepp-Logan filter kernel can be used. This limits the fre-

quency band with a rect-function and lowers the high-pass weighting at high frequencies with 

a sinc function. Its function is then given by 𝐺(𝑞) =  |𝑞| 𝑟𝑒𝑐𝑡(𝑞) 𝑠𝑖𝑛𝑐(𝜋𝑞) [Lee et al. 2011]. 

Using the convolution theorem, the filtering can be applied directly to the non-Fourier trans-

formed data. The multiplication in the frequency domain becomes a convolution in the spatial 

domain [Buzug 2008]. 

 

• FBP for Cone-Beam geometry: 

For cone beam geometry, two major modifications must be taken in the previously formulated 

filtered back-projection [Lee et al. 2011]: 

1. According to the Inverse-Square Law, the intensity of a divergent X-ray decreases propor-

tional to the square of the source-voxel-distance (SVD). This can be considered via a 

quadratic voxel-dependent weighting in the back-projection step. 

2. The filter kernel has also to be changed depending on the distance between the detector 

midpoint and the pixel that represents the projection of the considered voxel on the detec-

tor. The distances in the row and column direction are denoted respectively by a and b. 

Using the filter kernel 𝑔(𝑎) in the spatial domain and the convolution operator ⊗, the distri-

bution of the attenuation values can then be written as: 

𝑓(𝑥, 𝑦, 𝑧) =  
1

2
∫

𝑆𝑂𝐷2

𝑆𝑉𝐷2⏟  
𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

(

 
 
 
 

[
 
 
 
 

 𝑝𝛾(𝑎, 𝑏)
𝑆𝑂𝐷

√𝑆𝑂𝐷2 + 𝑎2 + 𝑏2⏟          
𝐹𝑖𝑙𝑡𝑒𝑟 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 ]
 
 
 
 

 ⊗  𝑔(𝑎)

⏟                        
𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 )

 
 
 
 

 𝑑𝛾
2𝜋

0

⏟                                          
𝐵𝑎𝑐𝑘−𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

 
(3.15) 
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3.3 Quality metrics for the evaluation of reconstructions 

Quality metrics for image evaluation are often not uniform but used on a case-by-case basis. 

In this work, reference data such as the 3D geometry of the part are available and will be used 

to evaluate the reconstructed volume. Most used approaches are the Mean-Square Error and 

the Peak Signal-to-Noise Ratio. These are simple and easy to compute, and its physical inter-

pretation is clear and straightforward. If no reference data set is available, metrics that evalu-

ate the noise and the edge accuracy can be used. In particular, the Shannon entropy and the 

line spread function are convenient in the context of optimization. However, a mathematically 

interesting objective metric is the Standard Deviation. It quantifies the variation of the attenu-

ation coefficients, which can be understood as noise in the raw measurements [Dremel 2017]. 

 

• Root-Mean-Square Error (RMSE) 

The simplest and most commonly used metric is the root mean square error (RMSE), which is 

calculated by summing all the squared differences of the attenuation coefficients of the refer-

ence and the reconstructed volume voxels. Due to the quadratic weighting, large deviations 

are considered more strongly [Suresh et al. 2014]. 

𝜎𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜇𝑖 − 𝜇𝑖,𝑟𝑒𝑓)2
𝑛

𝑖=1

= √𝜎𝑀𝑆𝐸  (3.16) 

where, n is the number of voxels and 𝜎𝑀𝑆𝐸  is the mean square error. 

 

• Standard Deviation (SD) 

Although very similar to the RMSE, a difference measure may be used not only between the 

reconstructed and the reference volume but also only within the reconstruction. It is defined as 

the standard deviation and can be written as [Fischer et al. 2016]: 

𝜎𝑆𝐷 = √
1

𝑛 − 1
∑(𝜇𝑖 − �̅�)2
𝑛

𝑖=1

           𝑤𝑖𝑡ℎ:  �̅� =
1

𝑛
∑𝜇𝑖

𝑛

𝑖=1

 (3.17) 

When this parameter is applied to a volume region of known constant attenuation coefficients, 

then the standard deviation gives a measure of the noise. 
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• Peak Signal to noise ratio (PSNR) 

PSNR measures the peak error between two images in decibels and can be physically under-

stood as the ratio between the signal and noise. Mathematically, it is defined as the logarithm 

of the inverse of the root-mean-square error. This means that a lower value of RMSE yields to 

smaller error and thus PSNR has a higher value. It is given as [Suresh et al. 2014]: 

𝜎𝑃𝑆𝑁𝑅 =  20 log (
𝑅

𝜎𝑅𝑀𝑆𝐸
) (3.18) 

Where, R is the largest possible value in the reconstruction. For CT it is usually the attenua-

tion coefficient of the highest density material. 
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4 Image Quality Assessment Metrics and Approaches 

As described in the introduction, not all projections have the same value for the reconstruc-

tion. In order to successfully evaluate the image quality depending on selected projections, 

some approaches are presented below. The first subsection presents the traditional assessment 

metrics and methods. Then their limits are illustrated. The task-based image quality assess-

ment, which is the core approach for selecting projections in this work, is described in the sec-

ond subsection. 

 

4.1 Traditional Metrics and Approaches 

To evaluate the performance of a CT imaging system, a set of standard and generally accepted 

metrics such as the contrast-to-noise ratio are available. 

 

Contrast-to-Noise Ratio (CNR): 

CNR is a very common measure of image quality, which is directly related to the physical 

properties (mainly signal and noise) of the imaging systems. It rates the contrast degradation 

due to the noise in the image. In the spatial domain the CNR is defined as [Desai et al. 2010]: 

𝐶𝑁𝑅 =  
𝜇𝑜𝑏𝑗𝑒𝑐𝑡  −  𝜇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

(4.1) 

where, 𝜇𝑜𝑏𝑗𝑒𝑐𝑡 and 𝜇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 are each the signal intensities of the object and the back-

ground. 𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 is the noise in background and is given as the standard deviation. 

However, information such as object size and shape as well as the pixel size of the image are 

not taken into account. This does not make CNR an optimal metric of image quality [Tseng 

2015]. 

 

Several approaches have been developed to optimize the trajectory of the image acquisition. 

Below are some of them listed briefly. 

 

Entropy-Based Projection Selection: 

For a circular orbit, Placidi et al. (1995) have developed an adaptive acquisition method to re-

duce the number of projections necessary for the reconstruction. 

The algorithm starts with four initial projections at 0, 45, 90 and 135 degree. Then the entropy 

of each of these projections is calculated. The entropy is defined as an objective function that 

quantifies the information content of each projection. Afterwards, the next projection between 
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the two projections with the highest entropy difference is added. The last two steps are then 

repeated until the number of the required projections or a predefined entropy difference is 

reached [Placidi et al. 1995]. An example to illustrate this approach is given below: 

 

Figure 4.1: Example of projections selection for equiangular (A) and entropy-based acquisition (B) [Pla-

cidi et al. 1995] 

 

Especially for smooth objects or objects with internal symmetries, a reconstruction with up to 

30 % fewer projections without loss of information can be performed. Another advantage of 

this approach is that the evaluation occurs during acquisition, which requires less memory. 

However, this method doesn’t incorporate prior knowledge of the object [Placidi et al. 1995]. 

 

Numerical Condition of System Matrix: 

Vogel et al. (2013) proposed an optimization algorithm for freehand SPECT (Single Photon 

Emission Computed Tomography) based on the numerical condition of the system matrix. 

The system matrix A detailed in section 2.3 is created dynamically during real-time acquisi-

tion. Its numerical condition is chosen as a cost function, which determines the next best posi-

tion of the detector [Vogel et al. 2013]. 

In detail, the system matrix is decomposed using the pivoted QR decomposition. And we get: 

𝑨 = 𝑸 𝑹 𝑷𝑇. Then using the diagonal entities of the upper triangular matrix 𝑹, an energy 

function is defined as: 𝜂(𝑨) =  ∑ |𝑅𝑖𝑖|𝑖 . To determine the next best position, the energy value 

is calculated for each possible next position as: 𝜂 ( 𝑨
𝑃𝑗+1

). The projection with the highest en-

ergy value is added. 
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However, the optimization performance for random trajectories decreases as the size of the 

system matrix increases and the algorithm can no longer compute all possible positions [Vo-

gel et al. 2013] 

 

Concept of Information Gain: 

Batenburg et al. (2012) have presented an algorithm for the dynamic selection of the next best 

projections. A new projection is added to a set of preselected projections, if the amount of in-

formation gained by acquiring this projection is maximized. This approach does not require 

prior information about the object. 

However, due to the high complexity of the proposed algorithm, the optimization for 3D vol-

umes with large dataset can be computationally very expensive [Batenburg et al. 2012]. 

 

Cover Most Relevant Edges: 

As shown in Figure 4.2, the reconstruction of an edge requires X-rays that are tangent to this 

edge. Based on this, and using good prior knowledge of the object, Zheng and Mueller (2011) 

proposed an optimization framework that identifies a minimal set of projections covering the 

most relevant sharp discontinuities (edges). 

First, the edges of the volume are detected using an edge detection algorithm and then con-

verted to points via Hough transform. After recognizing the most salient points, a set-covering 

algorithm finds the set of projections that contain them. 

Although this method uses prior object information, artifacts are not considered. This can lead 

to wrong results [Zheng et al. 2011]. 

 

Figure 4.2: Reconstruction of a square with projections covering the X-rays tangent to the edges (A) and 

projections shifted by 45° [Fischer 2014] 
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4.2 Task-Based Quality Assessment 

Previous works in the medical field have shown that image quality assessment is best evalu-

ated when defining the clinically interesting task. Stayman et al. (2013) have proven that a 

task-based metric is apt to optimize the acquisition orbit. They developed a general optimiza-

tion framework, which will be introduced in chapter 6. In this section we will explain the the-

ory of task-based assessment and what limitations and analytical advantages this approach 

has. 

 

Detection Task: 

An industrially important and in our case relevant task is the detection task. It determines 

which of two possible categories the acquired CT image belongs to (e.g., a feature either ex-

ists or does not exist). To make this decision, a likelihood-ratio decision function is intro-

duced [Vennart 1997]: 

𝐿 =  
𝑝(𝜇|𝐻1)

𝑝(𝜇|𝐻2)
 (4.2) 

Where, 𝜇 is the true or approximated data set representing the object being x-rayed; and 

𝑝(𝜇|𝐻𝑘) corresponds to the conditional probability distributions of the data given hypothesis 

𝐻𝑘. So, for the detection task the observer must decide which of the following hypotheses is 

more compatible with the data: 

𝐻1 ∶  𝜇 =  𝜇𝑏                    (𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑠𝑒𝑛𝑡) 

𝐻2 ∶  𝜇 =  𝜇𝑏 + 𝜇𝑓        (𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) (4.3) 

Where, 𝜇𝑓 refers to the feature to be detected and 𝜇𝑏 is the object background. 

A comparison of the decision function L with a criterion or threshold 𝐿𝑐 determines which hy-

pothesis is true. There are several approaches to determine 𝐿𝑐. It can also be set directly by 

the observer. Finally, to measure how well the observer can detect the feature, a figure of 

merit is needed. 

 

Figure of Merit: 

We consider the probability distributions of the likelihood-ratio decision function L for both 

hypotheses. A very simple example is shown in Figure 4.3 [Vennart 1997]. 

To quantify the detection performance of an observer, a figure of merit like the Signal-to-

Noise Ratio (SNR) can be used. It quantifies the overlap between the probability distributions 

and indicates how well the observer distinguishes between data of both hypotheses. 
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In other words, SNR is mathematically defined as: 

𝑆𝑁𝑅2  =  
𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
 =  

[〈𝐿〉2 − 〈𝐿〉1]
2

1
2 . [𝜎1

2  +  𝜎2
2]

 
(4.4) 

Where, the mean 〈𝐿〉𝑘 and variance 𝜎𝑘
2 are calculated for the decision variable L under each 

hypothesis. SNR can be replaced by the detectability index d´, when the decision function L is 

Gaussian-distributed under both hypotheses. This means L must be linear in the data, which is 

true for Gaussian-distributed noise. 

 

Figure 4.3: Probability distribution of the likelihood-ratio decision function for the hypothesis H1 (left) 

and H2 (right) 

 

Figure 4.4 shows how the detectability and thus the observer performance vary for different 

cases. A strong signal increases the distance between the probability curves, and thus the 

square of the difference of the means, [〈𝐿〉2 − 〈𝐿〉1]
2, rises. On the other hand, a low amount 

of noise reduces the spread of the curves and makes them much thinner. The distance between 

the peaks stays constant. As a result, the average of the variance, 
1

2
 . [𝜎1

2  + 𝜎2
2], decreases. In 

both cases, the detectability index increases as the curves overlap less [Heeger 1997]. 
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Figure 4.4: Probability distributions curves for two different signal strengths and two different noise lev-

els. The figures are reproduced from [Heeger 1997] 

 

For the task-based assessment, a detailed description of the selected observer is of crucial im-

portance in addition to the definition of the task and figure of merit. The observer is defined 

as the entity (human or numerical) that performs the task and makes the decision. In chapter 5 

we will introduce and analyze the performance of the widely used numerical observers by 

means of a detection task. 
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5 Model Observers 

In this chapter, different model observers for the calculation of the detectability index d´ will 

be described. We will focus on three different categories and illustrate their mathematical and 

physical approaches. The parameters displayed in these models are explained in the last sec-

tion of this chapter. We will also present the methods and approaches with which they are de-

termined. 

As a common figure of merit for the model observers, we use the signal-to-noise ratio (SNR) 

already presented in section 4.2. For a detection task and a Gaussian distributed likelihood-

ratio decision function 𝐿 (also noted as test statistic), we define the detectability index d´ as: 

𝑑´3𝐷
2  =  

[〈𝐿〉2 − 〈𝐿〉1]
2

1
2 . [𝜎1

2  +  𝜎2
2]
  

(5.1) 

The subscript “3D” assumes that the observer can capture the full correlations within the vol-

ume data, e.g. detection of a sphere in a 3D part. However, in order to compare the perfor-

mance of a model observer with a human observer who scrolls through the slices of a volume, 

it is necessary to calculate a 2D detectability index for each slice, e.g. detection of a disk in a 

2D image [Gang et al. 2011]. 

The model observers are applied on the reconstructed images. This is comprehensible since it 

is difficult for a human to detect very small features in a sinogram. Therefore, for a recon-

structed object 𝜇 from the projections y, we use the test statistic in the form 𝐿 =  𝐿(𝜇(𝑦)). 

Here we assume that the true and the reconstructed objects are equal (𝜇 =  �̂�). For the differ-

ent types of the linear model observers mentioned in this chapter, the test statistic is defined as 

the inner product in spatial domain of a template 𝑤 and the reconstructed object 𝜇. The differ-

ence between them lies in the expression of the template [Vennart 1997]: 

𝐿(�̂�) =  𝑤𝑇  ∙  𝜇(𝑦)  (5.2) 

The use of linear model observers has another positive aspect, as they can also be applied to 

assess the reconstruction methods [Yendiki et al. 2004]. Therefore, we will use the detectabil-

ity index to quantify the quality of the reconstructed feature. 
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5.1 Pre-Whitening Model Observer (PW) 

The first model observer represents the so-called Pre-Whitening Model Observer, which is 

formulated to remove or minimize correlations present in the noise. The noise is treated here 

as white noise. The PW observer assumes that both the mean and the variance of the back-

ground 𝜇𝑏 and only the mean of the feature signal 𝜇𝑓 are known. The PW template is then de-

fined as the difference between the signals expected for the feature-present and feature-absent 

cases weighted by a noise factor [Vennart 1997] [Yendiki et al. 2004]: 

𝑤𝑃𝑊 = 𝐶𝑜𝑣{𝜇}1
† (〈𝜇〉2 − 〈𝜇〉1) (5.3) 

Where, the superscript ”†” denotes the pseudo-inverse of a matrix. It is a generalization of the 

known inverse matrix to singular and non-square matrices. For the sake of simplicity, we will 

replace it with the superscript “-1” in the other equations. 〈𝜇〉𝑖 and 𝐶𝑜𝑣{𝜇}𝑖 are the mean and 

the covariance of the reconstructed data under hypothesis 𝐻𝑖. The inverse of 𝐶𝑜𝑣{𝜇}𝑖 is the 

term responsible for removing noise correlations in the feature and background signals. 

The mean values of the data can be obtained by using a linear system transfer function 𝑔 and 

we write [Vennart 1997]: 

〈𝜇〉1  = 𝑔 𝜇𝑏 

〈𝜇〉2 = 𝑔 (𝜇𝑏 + 𝜇𝑓) 
(5.4) 

To simplify the notation of the image noise covariance matrix, we introduce: 

𝐶𝑛𝑖 ≡ 𝐶𝑜𝑣{𝜇}𝑖  (5.5) 

Where, n stands for noise. In the case of an additive (independent of the signal amplitude), 

zero-mean and Gaussian distributed noise, then the covariance 𝐶𝑛𝑖 and the variance 𝜎𝑖 under 

both hypotheses are equal: 

𝐶𝑛 = 𝐶𝑛1 = 𝐶𝑛2 

𝜎𝑛
2  =  𝜎1

2 =  𝜎2
2 

(5.6) 

The diagonal elements of the covariance matrix (𝐶𝑛)𝑗𝑗 are equal to the variance 𝜎𝑛
2. And if the 

noise is position-independent, then 𝐶𝑛 is a diagonal matrix and we have: 

𝐶𝑛 = 𝜎𝑛
2 𝐼 (5.7) 

Where, 𝐼 is the unit matrix. 

In image quality assessment of CT images, there are numerous models of noisy backgrounds. 

Examples of the main three of these models are shown in Figure 5.1 [Zhangh 2014], where: 
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• Additive White Gaussian Noise: is the simplest noise model. It is statistically inde-

pendent of the signal and has a Gaussian amplitude distribution. Like white color, the 

white noise has a uniform power across all frequency bands. 

• Correlated Gaussian Noise: is generated by convolving the additive white noise with a 

2D Gaussian kernel. 

• Lumpy Background: is a more complex noise model in clinical images. A random 

number of Gaussian functions are applied at random locations of the image. These 

functions are also called lumps. Their number is selected according to a Poisson distri-

bution. 

 

Figure 5.1: Three examples of noise models: (A) White Gaussian Background, (B) Correlated Gaussian 

Background, and (C) Lumpy Background [Zhangh 2014] 

 

With the above definitions in equations (5.4) and (5.5) the PW template in (5.3) can be rewrit-

ten as [Vennart 1997]: 

𝑤𝑃𝑊 = 𝐶𝑛
−1 𝑔 𝜇𝑓 

(5.8) 

Inserting the template from (5.8) in the expression of the test statistic of (5.2) results in: 

𝐿𝑃𝑊     =  𝑤𝑃𝑊
𝑇  𝜇  

= (𝐶𝑛
−1 𝑔 𝜇𝑓)

𝑇 𝜇 

=  (𝑔 𝜇𝑓)
𝑇
 (𝐶𝑛

−1 )𝑇 𝜇 

=  (𝑔 𝜇𝑓)
𝑇 𝐶𝑛

−1 𝜇 

(5.9) 

Like equation (5.4), the mean values of the test statistics for both hypotheses can be written as 

follows: 

〈𝐿𝑃𝑊〉1  =  (𝑔 𝜇𝑓)
𝑇 𝐶𝑛

−1 (𝑔 𝜇𝑏) 

〈𝐿𝑃𝑊〉2  =  (𝑔 𝜇𝑓)
𝑇 𝐶𝑛

−1 (𝑔 (𝜇𝑏 + 𝜇𝑓)) 
(5.10) 
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For the case of Gaussian distributed noise (as assumed in equation (5.6)), the test statistic 𝐿𝑃𝑊 

is also Gaussian distributed, so that the difference of the means is equal to the average of the 

variances. This assumption is true for almost all linear model observers because the test statis-

tic in equation (5.2) is equivalent to a summation operation over all voxels of the volume. 

Thus, the Central Limit Theorem guarantees that this assumption is usually satisfied. It as-

sumes that the statistical distribution of a normalized sum of randomly distributed variables 

can be approximated to be a normal distribution [Vaishnav et al. 2014]. 

This yields to the following spatial representation of the detectability index in equation (5.1): 

𝑑´𝑃𝑊
2    =  〈𝐿𝑃𝑊〉2 − 〈𝐿𝑃𝑊〉1 = 

1

2
 ∙  [𝜎1

2  +  𝜎2
2] =  𝜎𝑛

2 

= (𝑔 𝜇𝑓)
𝑇 𝐶𝑛

−1 (𝑔 𝜇𝑓) 
(5.11) 

Computing the inversion of the covariance matrix in spatial domain can be very difficult and 

time-consuming due to its high dimensionality. For the reconstruction of an object repre-

sented by (512 x 512 x 512) voxels, 𝐶𝑛 has ca. 18x1015 elements. As will be discussed in de-

tail in section 5.6.1, the calculation in the frequency domain is more convenient. For this we 

substitute the parameters presented above by the corresponding Fourier transforms, with: 

𝐶𝑛 ⊶⏞
ℱ

𝑁𝑃𝑆
𝜇𝑓 ⊶ 𝑊𝑇𝑎𝑠𝑘

𝑔 ⊶ 𝑂𝑇𝐹

  (5.12) 

Where, NPS is the Noise Power Spectrum, 𝑊𝑇𝑎𝑠𝑘 is the task Template, and OTF is the Opti-

cal Transfer Function. In section 5.6 these individual parameters and their physical meanings 

are discussed in detail [Vennart 1997]. 

 

When replacing the spatial coordinates with the frequency coordinates of the test statistic on 

equation (5.9), one obtains [Vennart 1997]: 

𝐿𝑃𝑊  =  ∭
𝑂𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘

𝑁𝑃𝑆
 ℱ{𝜇} 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 (5.13) 

As a next step and identical to (5.10), the mean values can be directly transformed to the fre-

quency domain, such that: 

〈𝐿𝑃𝑊〉1  =  ∭
|𝑂𝑇𝐹|2  ∙  𝑊𝑇𝑎𝑠𝑘

𝑁𝑃𝑆
 ℱ{𝜇𝑏} 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 

〈𝐿𝑃𝑊〉2  =  ∭
|𝑂𝑇𝐹|2  ∙  𝑊𝑇𝑎𝑠𝑘

𝑁𝑃𝑆
 ℱ{𝜇𝑏 + 𝜇𝑓} 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 

(5.14) 
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Through subtraction of both equations in (5.14) and by knowing that 𝑊𝑇𝑎𝑠𝑘 = ℱ{𝜇𝑓}, the de-

tectability index can be modeled by the following equation in the frequency domain: 

𝑑´𝑃𝑊,3𝐷 
2  =  ∭

(𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)
2

𝑁𝑃𝑆
 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 (5.15) 

Where, MTF is the Modulation Transfer Function and is defined as the modulation (i.e. the 

real part) of the Optical Transfer Function OTF. As will be shown in section 5.6.1, MTF is an 

appropriate measure for the spatial resolution of an image. In general, the spatial resolution is 

defined as the imaging system’s ability to distinguish between two neighboring lines [Buzug 

2008]. 

The pre-whitening step (modeled in frequency domain by NPS) causes frequencies at which 

the noise is large to be downplayed. 

According to the current state of knowledge, the behavior of the detectability index applied on 

images with high-contrast is best evaluated with a Pre-Whitening Model Observer in Fourier-

domain [Racine et al. 2017]. 

 

• Pre-Whitening Model Observer with Eye Filter and internal Noise (PWEi) 

The second model observer in this thesis evaluates the detectability based on an anthropo-

morphic observer. This takes in consideration the human Contrast Sensitivity Function (CSF). 

The purpose of considering the human performance is to have a good correlation between 

model and human observers. This was mainly studied when the model observer was to replace 

or imitate a human, e.g. a radiologist in the field of medicine or a tester/inspector in the indus-

try. The human Contrast Sensitivity Function (CSF) can be mathematically approximated by 

an Eye Filter and an Internal Noise model [Gang et al. 2011]. 

In the literature several eye filters are introduced, depending on which model observer is ap-

plied. Most of the developers of the model observers have also introduced a corresponding 

eye filter. For the sake of simplicity, we will introduce only two different eye filters in section 

5.6.3. The internal noise describes the human inefficiency when performing different percep-

tual tasks. This perceptual disturbance has root in different processes e.g. the fluctuations in 

neural firing or information loss during neural transmission. We will go over it in more detail 

in section 5.6.4. 

The PW model observer has a higher detection index than a human observer. This is well il-

lustrated in Figure 5.2. For an ideal observer, the disks on both images are almost equally vis-

ible. In other words, it can detect small or hard-to-see features with high accuracy. For the tra-

jectory optimization this can be problematic as we are looking for the best projections. Here, 
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the purpose of the eye filter and the internal noise is to downgrade the performance of the 

ideal observers for bad projections. 

 

Figure 5.2: Unlike the human eye, for an ideal observer like the PW model observer both disks are equally 

difficult to distinguish from the background 

 

The test statistic of an anthropomorphic model observer in equation (5.2) can be estimated in 

spatial domain using [Vaishnav et al. 2014]: 

𝐿(�̂�)    = (𝐸 ∙  𝑤)𝑇⏞      
≜ 𝑤𝑇

 ∙  (𝐸 ∙  𝜇)⏞    
≜ 𝜇

  

= (𝐸𝑇  ∙  𝐸 ∙  𝑤)𝑇  ∙  𝜇 

(5.16) 

Where, E is the eye filter which is assumed to be radially symmetric in the frequency domain. 

To present 𝐿(�̂�) in the spatial coordinates, then the inverse of the Fourier Transform of the 

Eye filter must be applied. Inserting the PW template from equation (5.8) into the test statistic 

gives the following expression: 

𝐿(�̂�)  =  (𝐸𝑇  ∙  𝐸 ∙  (𝐶𝑛
−1 𝑔 𝜇𝑓))

𝑇
 ∙  𝜇 (5.17) 

 

The derivation scheme explained for the PW model observer is used here to obtain the PWEi 

detectability index. After some algebra we get [Gang et al. 2011]: 

𝑑´𝑃𝑊𝐸𝑖,3𝐷 
2  =  ∭

𝐸2  ∙  (𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘)
2

𝐸2  ∙  𝑁𝑃𝑆 + 𝑁𝑖
 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 (5.18) 

Where, 𝑁𝑖 is the internal noise. 
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• 2D PW-based Model Observers 

However, 3D eye filters and exact form of internal noise for fully 3D data are subjects of cur-

rent research. There are no established models for 3D images [Gang 2014]. This means that 

the anthropomorphic observers can only be used if the trajectory is optimized for a 2D feature 

in a single 2D object slice. For this reason, the 2D detectability index is derived from the 3D 

formulation by integrating the above equations across the direction orthogonal to the 2D im-

age [Gang et al. 2011]. In this work, we defined the direction perpendicular to the 2D slices 

as 𝑓𝑧. The integration leads to: 

PW Model Observer: 

𝑑´𝑃𝑊,2𝐷 
2  =  ∬

(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)
2

∫𝑁𝑃𝑆 𝑑𝑓𝑧
 𝑑𝑓𝑥𝑑𝑓𝑦 (5.19) 

 

PWEi Model Observer: 

𝑑´𝑃𝑊𝐸𝑖,2𝐷 
2  = ∬

𝐸2(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)
2

𝐸2 ∫𝑁𝑃𝑆 𝑑𝑓𝑧 + 𝑁𝑖
 𝑑𝑓𝑥𝑑𝑓𝑦  (5.20) 

As the eye filter is assumed to be circularly symmetric, the equation for PWEi model observer 

can be mathematically simplified by introducing the radial spatial frequency f. The detectabil-

ity index can then be obtained by a single integration over f, giving [Burgess et al. 1997]: 

𝑑´𝑃𝑊𝐸𝑖,2𝐷 
2  =  2𝜋∫

𝐸2(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)
2

𝐸2 ∫𝑁𝑃𝑆 𝑑𝑓𝑧 + 𝑁𝑖

∞

0

 𝑓 𝑑𝑓 (5.21) 

Where, 𝑓 = √𝑓𝑥2 + 𝑓𝑦2. 

Furthermore, the 2D formulation allows the comparison with human performance, which can 

be measured with the 9AFC tests. However, this is not part of this work and may be the sub-

ject of future research. 
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5.2 Non-Pre-Whitening Model Observer (NPW) 

Unlike the PW observer, which assumes full knowledge of the noise in background, the Non-

Pre-Whitening Model Observer, which was first introduced by Wagner and Weaver in 1972, 

is modeled by applying a detection template in form of the expected signal. Mathematically, it 

requires only knowledge of the means of the background 𝜇𝑏 and of the feature signal 𝜇𝑓. The 

NPW template is given by [Vennart 1997]: 

𝑤𝑁𝑃𝑊 = 〈𝜇〉2 − 〈𝜇〉1 (5.22) 

Comparing with the PW template the term representing the inverse of the covariance matrix 

does not appear. Therefore, the NPW model observer cannot remove the correlations present 

in the noise and thus it can correctly handle only white noise. 

Using the definition in (5.4) the template transforms into: 

𝑤𝑁𝑃𝑊 =  𝑔 𝜇𝑓 
(5.23) 

The decision function L is then implemented by weighting the image data directly with the 

template: 

𝐿𝑃𝑊     =  𝑤𝑁𝑃𝑊
𝑇  𝜇  

= (𝑔 𝜇𝑓)
𝑇 𝜇 

(5.24) 

The difference of the means of the test statistic from equation (5.24) under both hypotheses 

can then be expressed by: 

〈𝐿𝑃𝑊〉2 − 〈𝐿𝑃𝑊〉1  =  (𝑔 𝜇𝑓)
𝑇
 (𝑔 𝜇𝑓) (5.25) 

The average variance of the test statistic under both hypotheses is given by (see equation 

(5.11)): 

𝜎𝑛
2 = (𝑔 𝜇𝑓)

𝑇 𝐶𝑔 (𝑔 𝜇𝑓) (5.26) 

The average covariance matrix of the data 𝐶𝑔 is generalized to include the covariance matrix 

of the object 𝐶𝑓 as an additional source of noise. In medicine, 𝐶𝑓 corresponds to the anatomi-

cal noise and can be modeled by the anatomical background power spectrum. However, for 

industrial application, this term disappears, which means [Vennart 1997]: 

𝐶𝑔⏟
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

= 𝑔𝑇 𝐶𝑓⏟
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡

𝑔 + 𝐶𝑛⏟
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒

 =  𝐶𝑛 

(5.27) 
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When applying (5.25) and (5.26) to (5.1), we obtain the detectability index of an NPW model 

observer in the spatial domain as follows [Vennart 1997]: 

𝑑´𝑁𝑃𝑊,3𝐷
2  =  

[(𝑔 𝜇𝑓)
𝑇
 (𝑔 𝜇𝑓)]

2

(𝑔 𝜇𝑓)𝑇 𝐶𝑛 (𝑔 𝜇𝑓)
  (5.28) 

Just as the PW model observer, the Fourier representation of the NPW detectability index can 

be written in terms of the definitions in equation (5.12) as [Gang et al. 2011]: 

𝑑´𝑁𝑃𝑊,3𝐷
2  =  

[∭(𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)
2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭𝑁𝑃𝑆 ∙  (𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘)2 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧
  (5.29) 

Since the NPW model observer does not contain information about the noise correlation, this 

is suitable for complicated tasks with an inhomogeneous background. On contrast, the strat-

egy of the PW model observer is not applicable because the probability density function of the 

data is not known. Here, the assumption of a normal distribution does not apply [Vennart 

1997]. 

 

• Non-Pre-Whitening Model Observer with Eye Filter (NPWE): 

The NPW model observer can only be used on certain backgrounds. For example, it fails to 

predict the performance of a human observer in lumpy backgrounds. Burgess et al. have 

shown that by adding a spatial frequency filter that mimics the contrast sensitivity function 

(CSF) of the human eye, the predictive performance of the NPW model observer is signifi-

cantly improved [Burgess et al. 1997].Several subsequent studies have confirmed the good 

applicability of this model [Gang et al. 2011]. The test statistic of the NPWE model observer 

is then given as [Vaishnav et al. 2014]: 

𝐿(�̂�)    =  (𝐸𝑇  ∙  𝐸 ∙  𝑤)𝑇  ∙  𝜇 

= (𝐸𝑇  ∙  𝐸 .∙ (𝑔 𝜇𝑓))
𝑇
 ∙  𝜇 

(5.30) 

Thus, we write the equation of the detectability index as [Burgess et al. 1997]: 

𝑑´𝑁𝑃𝑊𝐸,3𝐷
2  =  

[∭𝐸2  ∙  (𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)
2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭𝐸4  ∙  𝑁𝑃𝑆 ∙ (𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘)2 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧
  (5.31) 
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• Non-Pre-Whitening Model Observer with Eye Filter and Internal Noise (NPWEi) 

The NPW model observer can be extended to include the eye filter and internal noise. First 

formulated by Ishida et al. in 1984, they proved that adding the internal noise term improves 

the detection of features with low contrast [Ishida et al. 1984]. 

𝑑´𝑁𝑃𝑊𝐸𝑖,3𝐷
2  =  

[∭𝐸2  ∙  (𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘)
2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭𝐸4  ∙  𝑁𝑃𝑆 ∙  (𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)2 + 𝑁𝑖  𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧
  (5.32) 

 

• 2D PW-based Model Observers 

The 2D detectability corresponding to the 3D model observers are [Gang et al. 2011]: 

NPW Model Observer: 

𝑑´𝑁𝑃𝑊,2𝐷
2  =  

[∬(∫𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)
2 𝑑𝑓𝑥𝑑𝑓𝑦]

2

∬(∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 𝑑𝑓𝑥𝑑𝑓𝑦
  (5.33) 

NPWE Model Observer: 

𝑑´𝑁𝑃𝑊𝐸,2𝐷
2  =  

[∬𝐸2  ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)
2 𝑑𝑓𝑥𝑑𝑓𝑦]

2

∬(𝐸4  ∙  ∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 𝑑𝑓𝑥𝑑𝑓𝑦
  (5.34) 

 

NPWEi Model Observer: 

𝑑´𝑁𝑃𝑊𝐸𝑖,2𝐷
2  

=  
[∬𝐸2  ∙  (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2 𝑑𝑓𝑥𝑑𝑓𝑦]
2

∬(𝐸4  ∙ ∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 + 𝑁𝑖 𝑑𝑓𝑥𝑑𝑓𝑦
  

(5.35) 

 

5.3 The Region-of-Interest Observer (ROI) 

The simplest model observer is the ROI observer. It requires knowledge only of the mean of 

the feature signal 𝜇𝑓. Information about the background is not considered in the ROI template. 

Then we can write the template as a simple matched filter step [Yendiki et al. 2006]: 

𝑤𝑅𝑂𝐼 = 〈𝜇𝑓〉2 =  𝑔 𝜇𝑓 
(5.36) 

However, for the detection task of a known feature, the ROI template is the same as the NPW 

template. Thus, the ROI model observer can be considered as a special case of the NPW 

model observer, which in our case is the same. 
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5.4 Hotelling Observer (HO) 

Rather than the Pre-Whitening observer, the Hotelling observer requires knowledge of the 

mean and the covariance of both the background 𝝁𝑏 and the feature signal 𝝁𝑓. The corre-

sponding template is [Yendiki et al. 2006] [Ott 2016]: 

𝑤𝐻𝑂 = 𝑆𝜇
† (〈𝜇〉2 − 〈𝜇〉1) (5.37) 

with 

𝑆𝜇
†  =  

1

2
(𝐶𝑜𝑣{𝜇}2⏞    

𝐶𝑛1

+ 𝐶𝑜𝑣{𝜇}1⏞    
𝐶𝑛2

) (5.38) 

Where, 𝑆𝜇 is called the unconditional covariance of 𝜇 and built based on two data sets. For the 

sake of simplicity, the pseudo-inverse index will be replaced by the superscript “-1”. 

To determine the detectability index, we need first to calculate the difference of the means 

and the average covariance. Analogous to the PW approach, we obtain: 

〈𝐿𝐻𝑂〉2 − 〈𝐿𝐻𝑂〉1  =  (𝑔 𝜇𝑓)
𝑇 𝑆𝜇

−1 (𝑔 𝜇𝑓) (5.39) 

And, 

𝜎1  =  (𝑔 𝜇𝑓)
𝑇
 𝑆𝜇
−1 𝐶𝑛1 𝑆𝜇

−1 (𝑔 𝜇𝑓) 

𝜎2  =  (𝑔 𝜇𝑓)
𝑇 𝑆𝜇

−1 𝐶𝑛2 𝑆𝜇
−1 (𝑔 𝜇𝑓) 

(5.40) 

The equations (5.39) and (5.40) substituted in (5.1) deliver the Hotelling detectability index in 

the spatial domain as: 

𝑑´𝐻𝑂
2  =  (𝑔 𝜇𝑓)

𝑇 𝑆𝜇
−1 (𝑔 𝜇𝑓) (5.41) 

Since we are using Gaussian distributed additive noise and background, the covariance matri-

ces of the data under both hypotheses are equal. It follows that 

𝑆𝜇  =  𝐶𝑛1  =  𝐶𝑛2 = 𝐶𝑛 
(5.42) 

This leads to: 

𝑑´𝐻𝑂
2  =  (𝑔 𝜇𝑓)

𝑇 𝐶𝑛
−1 (𝑔 𝜇𝑓) =  𝑑´𝑃𝑊

2  (5.43) 

In this special case, the Hotelling observer reduces to a PW approach if there is no object vari-

ability. 

In general, the Hotelling observer can be interpreted as a generalized PW model observer. 
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5.5 Channelized Hotelling Observer (CHO) 

As explained in section 5.1, the computational effort for computing the inverse of the covari-

ance matrix is extremely high. One approach to solve this problem is the use of the Fourier 

Transform. This has been applied for the PW and NPW model observers (see sections 5.1 and 

5.2). However, another widely used method is the channelization. This approach in combina-

tion with a model observer has been first examined by Myers and Barrett in 1987. Conceptu-

ally, the reconstructed image 𝜇 undergoes a set of frequency-based channels prior to pro-

cessing. This filtering step is not invertible and provides the channelized image 𝑣 as [Myers et 

al. 1987]: 

𝑣⏟
𝑁𝑐 𝑥 1

= 𝑈⏟
𝑀 𝑥 𝑁𝑐

𝑇  . 𝜇⏟
𝑀 𝑥 1

 
(5.44) 

Where, the reconstructed image 𝜇 with the original dimension 𝑀 must be given in the Fourier 

domain before processing by the channels and, the dimension of the channelized image 𝑣 is 

equal to the number of selected channels 𝑁𝑐. As 𝑁𝑐 ≪ 𝑀, the introduction of the channeling 

operator 𝑈 allows to reduce immensely the dimension of the data with only minimal loss of 

information. This operator includes a set of channels 𝑢𝑖, that will be introduced later in this 

section, and is defined as: 

𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑁𝑐]              𝑤𝑖𝑡ℎ 𝑢𝑖
𝑇𝑢𝑖 = 1 

(5.45) 

Instead of defining the template based on the original image like the PW model observer (see 

equation (5.3)), The template of the channelized Hotelling observer is defined as the product 

of the inverse of the covariance matrix of the channel responses and the difference of the 

means of the feature-present and feature-absent channel responses vectors, or equivalently 

[Brankov 2013]: 

𝑤𝐶𝐻𝑂 = 𝐶𝑣
−1 (〈𝑣〉2 − 〈𝑣〉1) (5.46) 

With: 

〈𝑣〉2 − 〈𝑣〉1⏞      
∆�̅�

= 𝑈𝑇  (〈𝜇〉2 − 〈𝜇〉1⏞      
∆�̅�

) =  𝑈𝑇 ∆�̅� (5.47) 

And, 

𝐶𝑣 = 
1

2
(𝐶𝑣2 + 𝐶𝑣1) (5.48) 

For a Gaussian-distributed additive noise, as assumed in the previous model observers, the av-

erage covariance matrices of the channel responses are the same under both hypotheses. This 
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means: 𝐶𝑣 = 𝐶𝑣2 = 𝐶𝑣1. In their work, Myers and Barrett have proven that 𝐶𝑣 can be ex-

pressed in relation to the original noise covariance matrix 𝐶𝑛 as follows [Myers et al. 1987]: 

𝐶𝑣⏟
𝑁𝑐 𝑥 𝑁𝑐

= 𝑈𝑇 𝐶𝑛⏟
𝑀 𝑥 𝑀

𝑈 
(5.49) 

The size of the covariance matrix 𝐶𝑛 of the Hotelling observer (see equation (5.42)) is then 

reduced to the number of channels. For example, 𝐶𝑛 has 5124 elements for a 512x512 image, 

where the size of 𝐶𝑣 is only 100 for the channelization with 10 channels. This huge simplifica-

tion allows to calculate the inverse of the new reduced covariance matrix 𝐶𝑣 without any com-

putational burden. However, it remains that 𝐶𝑛 is more difficult to calculate than MTF and 

NPS for the PW and NPS model observers [Russo 2017]. Per definition, the covariance ma-

trix can be calculated as: 

𝐶𝑣 = 〈[𝑣 − �̅�][𝑣 − �̅�]〉 (5.50) 

Or in dependence of the original image: 

𝐶𝑣 = 𝑈
𝑇  〈[𝜇 − �̅�][𝜇 − �̅�]𝑇〉⏞          

𝐶𝑛

 𝑈 (5.51) 

Where, �̅� can be understood as the expectation value of the image 𝜇. 

By applying the equations (5.47) and (5.49) into (5.46), the CHO template can be modeled as: 

𝑤𝐶𝐻𝑂 = (𝑈
𝑇  𝐶𝑛 𝑈)

−1(𝑈𝑇 ∆�̅�) (5.52) 

The test statistic in equation (5.2) can be then expressed as: 

𝐿(𝑣)    =  𝑤𝐶𝐻𝑂
𝑇  ∙  𝑣 

= [(𝑈𝑇 𝐶𝑛 𝑈)
−1 (𝑈𝑇 ∆�̅�)]𝑇 (𝑈𝑇𝜇) 

= [𝑈 (𝑈𝑇 𝐶𝑛 𝑈)
−1 (𝑈𝑇 ∆�̅�)]𝑇 𝜇 

= 𝑤𝐶𝐻𝑂,𝜇
𝑇  ∙  𝜇 

(5.53) 

Where, the CHO test statistic applies the spatial template 𝑤𝐶𝐻𝑂,𝜇 to the reconstructed image 𝜇. 

As discussed in section 5.1 for the PW observers, the difference of the means is equal to the 

average of the variances for Gaussian-distributed test statistic, and we obtain 

𝑑´𝐶𝐻𝑂
2    =  〈𝐿𝐶𝐻𝑂(𝑣)〉2 − 〈𝐿𝐶𝐻𝑂(𝑣)〉1 

= 𝑤𝐶𝐻𝑂,𝜇
𝑇  ∙  ∆�̅� 

(5.54) 

 

In radiology, CHO observers are often used to detect nodules. They gained popularity as they 

correlate very well with the performance of human observers [Vaishnav et al. 2014]. Thus, 

they are used to evaluate low-contrast detectability [Racine et al. 2017]. 
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• Channels 

Channelization with so called anthropomorphic channels, that incorporate knowledge about 

the human visual system (HVS), can better model the frequency selectivity of human observ-

ers. The idea behind this approach is to assume that the human visual system can be discre-

tized by multiple channels, while each channel is sensitive to a different frequency range 

[Vaishnav et al. 2014]. Example of these channels that can be used with the CHO observers 

are: Square (SQR), Gabor (GB), Sparse Difference of Gaussians (S-DOG) and Dense Differ-

ence of Gaussians (D-DOG) channels. Additionally, there exist some channels that are used to 

correlate with the detection performance of ideal observers. An example is the use of 

Laugerre-Gauss (LG) channels [Petrov et al. 2019]. 

 

Gabor Channels (GB): 

The Gabor channels have physiological and psychophysical bases. They describe the fre-

quency response of neurons to a small spot of light as a function of position [Vaishnav et al. 

2014]. 

The function of each Gabor channel is defined by multiplying a Gaussian function with a Si-

nusoidal wave in the spatial domain [Ferrero et al. 2017]. 

𝐶𝑗(𝑥, 𝑦) =  𝑒
−4ln (2)

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2

𝜔𝑠2
 cos[2𝜋𝑓𝑐((𝑥 − 𝑥0)𝑐𝑜𝑠𝜃

+ (𝑦 − 𝑦0)𝑠𝑖𝑛𝜃) +  𝛾] 
(5.55) 

Where, 

𝑗  The number of the channel 

(𝑥0, 𝑦0) The position of the feature 

(𝑥, 𝑦)  The coordinates of each pixel on the image 

𝜔𝑠  The channel width (given in cycles per pixels) 

𝑓𝑐  The central frequency (given in cycles per pixels and is related to 𝜔𝑠) 

𝜃  The orientation angle 

𝛾  A phase offset 

Each Gabor channel will be parametrized by the channel width and the angular orientation. 

 

Sparse and Dense Difference-of-Gaussians Channels (S-DOG and D-DOG): 

The Difference-of-Gaussians Channels (DOG) are radially symmetrical overlapping func-

tions. They are expressed as the difference between two Gaussian functions with two different 
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standard deviations. In dependency of the radial frequency, the function of the j-channel is de-

fined as [Petrov et al. 2019]: 

𝐶𝑗(𝑓) =  𝑒
−
1
2
(
𝑓
𝑄𝜎𝑗

)
2

− 𝑒
−
1
2
(
𝑓
𝜎𝑗
)
2

 (5.56) 

Where, 

𝑗  The number of the channel 

𝑓  The radial frequency. It is equal to √𝑓𝑥2 + 𝑓𝑦2 

𝜎𝑗  The standard deviation of each channel 

𝑄  defines the width of the channel 

𝜎𝑗 will be expressed using the standard deviation of the first channel and we obtain: 𝜎𝑗 =

 𝛼𝑗𝜎0. The parameter 𝛼 gives the difference of the standard deviation between the channels. 

Depending on these parameters, two different DOG channel models have been introduced ac-

cording to Table 5-1 [Abbey et al. 2001]. 

Table 5-1: Parameters for S-DOG and D-DOG channel models 

 S-DOG D_DOG 

𝝈𝟎 0.015 0.005 

𝜶 2.0 1.4 

𝑸 2.0 1.67 

 

This type of channels has been only used in few studies. However, it has shown little ad-

vantage in predicting human observer performance [Abbey et al. 2001]. 

 

Square Channels (SQR): 

The simplest type of channels are the square channels. They are radially symmetric and have 

a square bandpass profile. The radial symmetry is justified by the assumption that the noise 

covariance and the expected signal profile are also radially symmetric. This leads to a lower 

number of needed channels. Each SQR-channel is given by a lower and an upper frequency, 

while the upper frequency of the previous channel defines the starting frequency of the next 

channel. The upper frequency of the j-channel can be represented by: 𝑓𝑗 = 𝑓0𝛼
𝑗. Here, 𝑓0 is 

the starting frequency of the first channel and is assumed to be 0.015, while the parameter 𝛼 is 

set to 2.0. The general form of an SQR channel can be summarized as [Abbey et al. 2001]: 
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𝐶𝑗(𝑓) =  {

0 𝑓𝑜𝑟 𝑓 ≤ 𝑓0𝛼
𝑗−1      

1         𝑓𝑜𝑟 𝑓0𝛼
𝑗−1 < 𝑓 ≤ 𝑓0𝛼

𝑗

0 𝑓𝑜𝑟 𝑓 > 𝑓0𝛼
𝑗             

 (5.57) 

 

Laguerre-Gauss Channels (LG): 

The LG channels are symmetrically rotational channels with no preferred orientation formed 

as a product of Laguerre polynomials and Gaussian functions. Thus, they are suitable for ori-

entation-independent features like circular and spherical targets [Vaishnav et al. 2014]. Each 

LG channel is given by [Petrov et al. 2019]: 

𝐶𝑗(𝑟) =  
√2

𝑎
 𝑒
−𝜋𝑟2

𝑎2  𝐿𝑗 (
2𝜋𝑟2

𝑎2
)  (5.58) 

Where, 

𝑗  The number of the channel 

𝑎  The width of the LG functions 

𝐿𝑗  The Laguerre polynomial 

𝑟  = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 

For the LG channels, only the term 𝑎 is tuned to match the performance of a human observer. 

It is defined as 𝑎 = √2𝜋𝜎. The standard deviation factor 𝜎 ranges typically from 3 to 100. 

The Laguerre polynomial is given as: 

𝐿𝑗(𝑥) =  ∑(−1)𝑘 (
𝑗
𝑘
)
𝑥𝑘

𝑘!

𝑗

𝑘=0

 (5.59) 

The LG channels are efficient when performing detection tasks on Gaussian noise or Gaussian 

backgrounds. 
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5.6 Definition of the parameters in Model Observers 

5.6.1 MTF & NPS 

As can be seen from the derivation of the model observers, the detectability index d´ requires 

two specific image quality metrics, namely the Modulation Transfer Function (MTF) and Noise 

Power Spectrum (NPS). 

 

Definition: 

Modulation Transfer Function (MTF): is an important characteristic of an imaging system. It 

describes its overall spatial resolution at all available frequencies. Unlike CNR (see section 

4.1), MTF is directly dependent of the pixel size of the image and the properties of the hardware 

(e.g. X-ray source) and software (e.g. Reconstruction algorithm) used in the imaging system 

[Buzug 2008]. 

MTF can be estimated as the absolute value of the Optical Transfer Function (OTF). OTF itself 

can be obtained from the Fourier Transform of the Point Spread Function (PSF). The determi-

nation of PSF takes place directly on the acquired image. For a 2D CT image the relationship 

between MTF and PSF can be summarized in the following equation [Williams et al. 2002]: 

𝑀𝑇𝐹(𝑓𝑥, 𝑓𝑦) =  |𝑂𝑇𝐹(𝑓𝑥 , 𝑓𝑦)|   

 

𝑤𝑖𝑡ℎ   𝑂𝑇𝐹(𝑓𝑥, 𝑓𝑦) =  ℱ{𝑃𝑆𝐹(𝑥, 𝑦)} 
(5.60) 

In other words, MTF describes how well frequencies are transmitted through the imaging sys-

tem. For the ideal case the system is independent of the input frequency and thus MTF can be 

directly obtained from the Line Spread Function (LSF). 

 

Noise Power Spectrum (NPS): describes in the Fourier domain the noise amplitude as a function 

of the entire range of frequency in the image. The Noise in an imaging system can be divided 

into two main categories: Quantum Noise and Electronic Noise. The quantum noise is generated 

by the variation of the X-ray quanta that are transmitted to the detector through the object. On 

the other hand, the detector noise is caused by the electronics of the detector [Buzug 2008]. 

To compute the 2D NPS, the image is split into small homogenous ROIs. Then the following 

equation is applied [Tseng 2015]: 

𝑁𝑃𝑆(𝑓𝑥, 𝑓𝑦) =  
∆𝑥 ∆𝑦

𝐿𝑥 𝐿𝑦
 
1

𝑁
 ∑|ℱ{𝑅𝑂𝐼𝑖(𝑥, 𝑦)  − 𝑅𝑂𝐼̅̅ ̅̅

�̅�}|
2

𝑁

𝑖=1

 (5.61) 
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where, ∆x and ∆y are the pixel sizes in the horizontal and vertical directions; Lx and Ly are the 

dimensions of the ROI; N is the number of the ROIs; and 𝑅𝑂𝐼̅̅ ̅̅
�̅� is the mean value of i-th ROI. 

The relationship between the variance σ2 and NPS for the 2D case is given by: 

𝜎2 = ∬𝑁𝑃𝑆(𝑓𝑥, 𝑓𝑦) 𝑑𝑓𝑥𝑑𝑓𝑦  (5.62) 

 

Requirements for Fourier Transformation: 

Linearity and Shift-Invariance: 

Due to the importance of linearity and shift-invariance for the application of the Fourier trans-

form in the field of signal processing for CT [Gang 2014], they are briefly presented here. 

An imaging system is linear when the output from a weighted sum of input signals is equal to 

the weighted sum of the output from each input signal. For a system using the Fourier trans-

form ℱ, this means in the 3D case [Gang 2014]: 

ℱ{𝑎 𝑓1(𝑥, 𝑦, 𝑧) + 𝑏 𝑓2(𝑥, 𝑦, 𝑧)}  =  𝑎 ℱ{𝑓1(𝑥, 𝑦, 𝑧)} +  𝑏 ℱ{𝑓2(𝑥, 𝑦, 𝑧)}  (5.63) 

 

The shift-invariance, or alternatively position or translation invariance, requires that an argu-

ment shifting in the input signal produces an identical shift in the output signal. If 𝑔(𝑥, 𝑦, 𝑧) is 

the Fourier transform of 𝑓(𝑥, 𝑦, 𝑧), then the system must also fulfill for arbitrary 𝑥0, 𝑦0, 𝑧0 

[Gang 2014]: 

𝑔(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0)  =  ℱ{𝑓(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0)}  (5.64) 

 

For a linear and shift-invariant system (LSI), the Fourier analysis can then be used. This results 

in MTF and NPS being the same for all positions in the image. 

However, these requirements are only met by a few imaging systems. In the case of a flat panel 

detector, linearity is satisfied just within an exposure range below a certain pixel saturation 

value. E.g. a detector is nonlinear if 50 % of its pixels are saturated. On the other side, the shift-

invariance condition is violated by digital imaging systems as they divide an image to a limited 

number of pixels. Nevertheless, these systems are considered to be cyclically invariant because 

a translation equal to pixel spacing under certain imaging conditions allows the use of the Fou-

rier analysis [Gang 2014]. 
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Stationarity: 

A random process is stationary if the probability distribution of its properties, such as the mean 

signal and the variance, are constant in space. 

There are different degrees of stationarity. A process is called wide-sense stationary (WSS) or 

weakly stationary if the mean and the autocorrelation (first and second-order of its image sta-

tistics) are invariant to translation in space. This assumption is sufficient for power spectral 

analysis. Processes that have statistical properties that vary cyclically in space are referred to 

as cyclostationarity. The stationarity can be quantified by the difference between the diagonal 

and off-diagonal elements of the covariance matrix in Fourier domain. 

A linear and shift-invariant imaging system that has a WSS process as input will reproduce a 

WSS process as output. This is a key property for the calculation of the Fourier domain NPS 

[Gang 2014]. 

 

Mathematical Formulation for Penalized-Likelihood Reconstruction: 

Due to the spatially variable properties of the image quality when using iterative reconstruc-

tion techniques, conventional methods for determining MTF and NPS, can only be used to a 

very limited extent since these originate from location-independent image quality properties. 

However, the PL reconstruction (see section 3.1.2) allows a local estimation of these metrics 

[Stayman et al. 2004]. Due to this important property, we will continue to work with this re-

construction method. 

As will be shown in the general framework for trajectory optimization in section 6.1.1, MTF 

and NPS must be calculated for every set of projections in each iteration. This means first 

computing the 3D reconstruction for this set of projections and then measuring both metrics. 

This is time consuming and can be avoided by using appropriate predictors for MTF and NPS 

without performing the actual reconstruction. 

Stayman and Fessler (2004) proposed a method for predicting the local MTF and local NPS 

for a quadratic penalty PL reconstruction since both are the Fourier transforms of the Point 

Spread Function (PSF) and the Covariance (Cov). For an implicitly defined estimator, such as 

the PL estimator presented in section 3.1.2, the local PSF and Covariance can be written by 

applying the first-degree Taylor Polynomial and the implicit function theorem as follows 

[Stayman et al. 2004]: 
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[𝑃𝑆𝐹{�̂�}]𝑗  =  [−∇
20𝛷(�̂�; �̅�(𝜇)) ]−1 . ∇11𝛷(�̂�; �̅�(𝜇)) .

𝜕

𝜕𝜇𝑗
�̅�(𝜇)  

(5.65) 

[𝐶𝑜𝑣{�̂�}]𝑗 = [−∇
20𝛷(�̂�; �̅�(𝜇)) ]

−1
 . ∇11𝛷(�̂�; �̅�(𝜇)) . 𝐶𝑜𝑣{𝑦(𝜇)} . 

                       [∇11𝛷(�̂�; �̅�(𝜇))]
𝑇
 . [−∇20𝛷(�̂�; �̅�(𝜇)) ]

−1
 

(5.66) 

Where, 

𝑦(𝜇)   The tomographic measurements 

�̅�(𝜇)   The mean of the tomographic measurements 

�̂�   The reconstructed object with the mean measurements 

𝜇   The exact representation of the object 

∇20   Operator that yields a 2D matrix where the (j, k)-th element is 
𝜕2

𝜕𝜇𝑗𝜕𝜇𝑘
 

∇11   Operator that yields a 2D matrix where the (j, i)-th element is 
𝜕2

𝜕𝜇𝑗𝜕𝑦𝑖
 

𝐶𝑜𝑣{𝑦(𝜇)}  The covariance of the measurements. It is assumed to be a diagonal matrix 

 

These approximations are expressed in a closed form and depend only on the partial deriva-

tives of the objective function 𝛷(�̂�; �̅�(𝜇)). 

Applying (5.5) and (5.6) for the PL estimator in (3.2) gives: 

[𝑃𝑆𝐹{�̂�}]𝑗  =  [𝑨
𝑇𝑫{�̅�}𝑨 +  𝛽𝑹]−1 𝑨𝑇𝑫{�̅�}𝑨 𝑒𝑗 (5.67) 

[𝐶𝑜𝑣{�̂�}]𝑗 = [𝑨
𝑇𝑫{�̅�}𝑨 +  𝛽𝑹]−1 𝑨𝑇𝑫{𝑦}𝑨 [𝑨𝑇𝑫{�̅�}𝑨 +  𝛽𝑹]−1 𝑒𝑗  (5.68) 

 

Here the system matrix 𝑨 is called the forward projector, its transpose 𝑨𝑇 is the back-projec-

tion operator, 𝑫{𝑦} denotes a square diagonal matrix with the measurements y as diagonal en-

tries, 𝑒𝑗 is a unit vector with the j-th element equal 1 and otherwise zero. This vector extracts a 

column from 𝑃𝑆𝐹{�̂�} and 𝐶𝑜𝑣{�̂�} corresponding to the location given by voxel j. When the 

mean data of the measurements �̅�(𝜇) are not available, the noisy measurement 𝑦(𝜇) can be 

used. This is possible as the forward- and back-projection operators are smoothing operators 

and both estimators of PSF and Cov are robust against noise effects [Stayman et al. 2004]. 

The local PSF and Cov are circulant matrices for locally space-invariant imaging system. This 

means that every row is the same as the previous but shifted to the right by one column. In 

this case a circulant approximation can be used to avoid the expensive computation of the ma-

trix inverses, resulting in [Stayman et al. 2004]: 
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[𝑃𝑆𝐹{�̂�}]𝑗,𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡  =  ℱ
−1  { 

ℱ{𝑒𝑗} ⨀ ℱ{𝑨
𝑇𝑫{𝑦}𝑨𝑒𝑗}

ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}
 } (5.69) 

[𝐶𝑜𝑣{�̂�}]𝑗,𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 = ℱ
−1  { 

ℱ{𝑒𝑗} ⨀ ℱ{𝑨
𝑇𝑫{𝑦}𝑨𝑒𝑗}

|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}|
2 }  (5.70) 

The operator ⨀ represents an element-by-element multiplication. The division of both Fourier 

transform terms is also an element-by-element division. ℱ{ } is a discrete Fourier transform. 

 

If MTF and NPS are also locally stationary within a small neighborhood to voxel j, then the 

local MTF and NPS can be written as follows [Gang et al. 2017]: 

𝑀𝑇𝐹𝑗  =  
|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗}|

|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}|
  (5.71) 

𝑁𝑃𝑆𝑗 = 
|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗}|

|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}|
2 (5.72) 
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5.6.2 Task Function W 

As mentioned in the introduction, the performance of an imaging system is best evaluated in 

terms of the imaging task. It can be defined by the location, frequency content and shape of the 

object of interest. In general, the task function 𝑊𝑇𝑎𝑠𝑘 is defined as the difference of the Fourier 

transforms of two hypotheses presented in the spatial domain. For a detection task, the first 

hypothesis (signal-present) contains the feature while the second hypothesis (signal-absent) 

presents the background [Gang et al. 2011]. 

The spatial representation of a volume-of-interest (VOI) or region-of-interest (ROI) is denoted 

by O(x,y,z) and the difference of the attenuation coefficients of the signal and background is 

symbolized by ∆𝜇. By applying the above definition for detection on a uniform background, 

we obtain [Gang et al. 2011]: 

𝑊𝑇𝑎𝑠𝑘  =  ∆𝜇 . ℱ{𝑂(𝑥, 𝑦, 𝑧)} 

= (𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 − 𝜇𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑). ℱ{𝑂(𝑥, 𝑦, 𝑧)} 
(5.73) 

For pre-whitening and non-pre-whitening model observers, the task function usually occurs as 

a product with MTF. In other words, we obtain a good detectability if the frequencies of interest 

defined in the task function are well transmitted by the imaging system. 

For industrial applications, a 3D CAD model is mostly available and can be used to determine 

the task function. This approach will be illustrated in the next chapter. For simple features, the 

task function can be modeled by using the Heaviside step function. E.g. for the detection of a 

sphere of a radius r the task function is described by: 

𝑊𝑇𝑎𝑠𝑘 = ∆𝜇 . ℱ{𝑂} = ∆𝜇 . ℱ{𝐻[𝑟
2 − (𝑥2 + 𝑦2 + 𝑧2)]} (5.74) 

Examples of task functions and their corresponding Fourier transforms are shown in Figure 5.3. 

To illustrate, we consider 𝑂(𝑥, 𝑦, 𝑧) to be 1 within the circular and rectangular regions and 0 

everywhere else. Since the Fourier transform delivers complex numbers, the following Figure 

5.3 shows only the magnitude of the Fourier transform |ℱ{𝑂(𝑥, 𝑦, 𝑧)}|. 
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Figure 5.3: Different task functions presented in spatial (first column) and frequency domain (second and 

third columns). The value bars have no unit, like the features too 

 

For special cases, where the edge profile of the feature matters and not the content, the discrete 

Laplace operator can be used prior to the Fourier transform. The new task function is then given 

as [Samei et al. 2018]: 

𝑊𝑇𝑎𝑠𝑘  =  𝐶 . ℱ{ ∇
2[𝑂(𝑥, 𝑦, 𝑧)]} (5.75) 

Where, 

∇ =  (
𝜕𝑂

𝜕𝑥
+
𝜕𝑂

𝜕𝑦
+
𝜕𝑂

𝜕𝑧
) (5.76) 

The factor C adjusts the magnitude of the task function, so that the integral of the task function 

in the frequency domain equals the integral of the task function in spatial domain. Figure 5.4 

represent the task function for the edge profile of a circle. 
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Figure 5.4: Use of the discrete Laplace operator to model the edge profile of the feature. (A) The circle in 

spatial domain. (B) The edge profile differentiated by the Laplace operator. (C) The 

task function of the edge profile of the circle in frequency domain 

 

5.6.3 Eye Filter E 

Model observers which are supposed to imitate the performance of human observer could be 

valuable in assessing image quality. For this purpose, a spatial frequency filter is used to cor-

rect the detectability according to the performance of the human eye. This filter represents a 

mathematical approximation of the human contrast sensitivity function (CSF) in relation to 

the spatial frequency [Gang et al. 2011]. 

The human CSF describes the ability to perceive changes of contrast between regions that are 

not separated by definite borders and can be presented as a curve of the spatial frequency as 

illustrated in Figure 5.5. The spatial frequency is given in cycles per degree. It describes how 

many vertical black and white stripes can be seen through an angle of 1 degree. Figure 5.6 

shows the number of the cycles detected by the human eye per degree. Due to the limited 

number of photoreceptors in human eye, the detection of high spatial frequencies is very diffi-

cult and beyond a certain value is no longer possible [Archibald et al. 2009]. 
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Figure 5.5: The Human Contrast Sensitivity Function. It has a peak at approximately f = 1 to 8 [Archibald 

et al. 2009] 

 

 

Figure 5.6: The spatial frequency defines the number of cycles seen at the eye per 1 degree. Adopted from 

[Archibald et al. 2009] 
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One possible filter defined in the frequency domain is the eye filter, for which several formu-

lations have been cited in the literature. In this work, we will consider two eye filters that have 

proven their applicability in earlier works [Bouwman et al. 2014]. 

 

Eye Filter 1: 

In combination with their work on the NPWE model, Burgess et al. have demonstrated that 

the CSF of the human eye can be expressed mathematically and proposed the following equa-

tion [Burgess et al. 1997]: 

𝐸(𝑓) =  𝑓1.3  ∙  𝑒−𝑏𝑓
2
 (5.77) 

where, f is the spatial radial frequency (cycles/degree). The parameter b is so chosen that the 

maximum response of the eye filter occurs at f = 4 cycles/degree. For a typical viewing dis-

tance of 50 cm, b equals 2.2. 

 

Eye Filter 2: 

Based on a simple approximation of the Barten’s contrast sensitivity curve of the human eye, 

Burgess has also suggested a second eye filter [Bouwman et al. 2014]: 

𝐸(𝑓) =  𝑓 ∙   𝑒−𝑏𝑓 (5.78) 

Like the first eye filter, b is also chosen here to obtain 𝐸𝑚𝑎𝑥 at 𝑓 = 4 𝑐𝑦𝑐𝑙𝑒𝑠/𝑑𝑒𝑔𝑟𝑒𝑒 

 

5.6.4 Internal Noise N 

In this work, it is assumed that the internal noise is uncorrelated. It is defined as a 0.01-frac-

tion of the DC component of the noise power spectrum at a viewing distance of 100 cm [Li et 

al. 2013]. 

𝑁𝑖 =  0.01 (
𝐷

100
)
2

 𝑁𝑃𝑆(0,0) (5.79) 

Where, the viewing distance D is set to be 50 cm. 

𝑁𝑃𝑆(0,0) represents the amplitude of the white noise-equivalent NPS of the background. It is 

also called the DC component of NPS and is given by: 

𝑁𝑃𝑆(0,0) =  
∬𝑁𝑃𝑆 𝑑𝑓𝑥𝑑𝑓𝑦

∬𝑑𝑓𝑥𝑑𝑓𝑦
 (5.80) 

Compared with the total NPS, the internal noise 𝑁𝑖 has a small magnitude. Its effect over the 

performance of the model observer is insignificant.  
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6 Methods 

This chapter describes the approach and methods for implementing the Optimization algo-

rithm. For this purpose, we will present the performed experiments to compare the perfor-

mance of the model observers. These are divided into two main categories according to the 

dimensional representation of the feature. 

The first implementation of a task-based trajectory design was demonstrated on a clinical C-

arm system in 2013. A team from the Johns Hopkins University in Baltimore has defined a 

general framework for the optimization of the acquisition parameters. In this context, Stay-

man et al. have developed a task-based algorithm for optimizing the source-detector-trajectory 

for intraoperative operations [Stayman et al. 2013]. A first attempt to transfer this procedure 

into an industrial application took place in 2014 at Siemens Corporate Technology by Fisher 

et al. [Fischer et al. 2016]. However, both used the NPW model observer to determine the de-

tectability index. This simple numerical observer delivers good agreement with human ob-

servers, especially for simple imaging tasks [Stayman et al. 2013]. 

6.1 Trajectory Optimization for 3D features 

6.1.1 Flowchart of the task-based 3D detectability index 

The task-based trajectory optimization algorithm developed in this work consists of five main 

modules: Object module, Simulation module, Optimization module, Reconstruction module, 

and Evaluation module. Figure 6.1 shows the flowchart of this algorithm for 3D features. In 

the following sections, we will discuss each module in more detail. 
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Figure 6.1: Flowchart of the task-driven trajectory optimization for 3D features 
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6.1.2 Object module 

To determine the task function (e.g. feature is a nodule), Stayman et al. used a scan prior to 

the intraoperative operation. This is necessary since shape, location and attenuation coeffi-

cient of the feature are patient-dependent [Stayman et al. 2013]. 

On the other side, Fisher et al. have defined the task function directly in the frequency do-

main. For strongly directed features like edges, is this approach legible, as the Fourier trans-

form of a line has a line shape in the Fourier domain. However, for further features, they set 

the task function to be equal to 1 [Fischer et al. 2016]. Doing so, the detectability index e.g. 

for the PW model observer becomes: 

𝑑´𝑃𝑊,3𝐷 
2  =  ∭

(𝑀𝑇𝐹)2

𝑁𝑃𝑆
 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 (6.1) 

In this case the detectability index considers only projections that deliver a good resolution 

(MTF) with a little noise (NPS) without incorporating the properties of the feature. As 

demonstrated in Section 5.6.1, MTF and NPS are locally dependent. This means the optimiza-

tion is done for a high Signal-to-Noise Ratio (SNR) on the feature location specified by the 

feature vector e. Instead, we use the presence of a CAD model to define the imaging task 

functions. As a phantom, we modified an existing object as shown in Figure 6.2, which was 

used in an earlier study [Krimmel 2006]. As features, we positioned a sphere and a cylinder in 

two different positions within the phantom. However, the trajectory optimization will be per-

formed separately for each feature. A design drawing is shown in Appendix A. 

 

Figure 6.2: A customized phantom used to characterize the performance of the model observer 
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The sphere is of 3.1 mm diameter and is made of steel (Fe). The cylinder is made of titanium 

(Ti) and has a diameter of 3.1 mm and a height of 2.5 mm. The remaining body of the phan-

tom is made of steel and has the following dimensions: 45 x 12 x 10 mm. 

The different choice of material for both features has the advantage that we can test the model 

observers on two different contrast levels. Then for the configuration established in this work 

(will be introduced in the simulation module), steel and titanium have the following attenua-

tion coefficients: 1.5433 cm-1 for steel and only 0.742 cm-1 for titanium. This allows us to ex-

amine the performance of the model observers for both high- and low-contrast detection. 

As shown above in Figure 6.2, the detection of the features is performed against the air as a 

background and the definition of the task function simplifies to: 

𝑊𝑇𝑎𝑠𝑘  =  𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒  . ℱ{𝑂(𝑥, 𝑦, 𝑧)} (6.2) 

The value of 𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 will be taken from a reconstruction of the phantom with 2000 projec-

tions. 

 

6.1.3 Simulation module 

To generate the CT projection data, we used the radiographic simulation tool, aRTist (Analyt-

ical RT Inspection Simulation Tool), which is graphically displayed in Figure 6.3. This tool 

has been developed by the Bundesanstalt für Materialforschung und -prüfung (BAM). The 

CAD file in STL format of the phantom can be loaded and the corresponding materials (atten-

uation coefficients) can be assigned. This software allows the simulation of arbitrary trajecto-

ries. The generation of the X-ray images is based on X-ray tracing algorithms. The influence 

of scattering can be additionally simulated by a Monte-Carlo tool and a noise factor for the 

detector can also be set [Schrapp 2015]. 

In this work, the X-ray tube current was fixed at 250 kV. The dataset was generated with a 

360-degree field-of-view and a total of 360 equidistant distributed projections over a circular 

orbit (1° angle step). The acquisition time of a single projection was 0.5 s. The detector has a 

resolution of (512 x 512) and a noise factor of 1 %. For a good image quality, we selected a 

pixel pitch of 0.2 mm. The SOD and SDD are chosen as 100 and 200 mm, respectively. The 

object to be X-rayed is modeled with (512 x 512 x 512) voxels and the edge length of each 

voxel is set to 0.1 mm. 

For a reference reconstruction required in the evaluation module, 2000 angularly equidistant 

projections are recorded under the same geometry configuration as the 360 projections in-

tended for the optimization. 
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Figure 6.3: GUI of the X-ray simulation tool aRTist 

The rotation axis of the object must be carefully selected to reduce the influence of artifacts. 

That means that it should best not coincide with the rotation axes of rotational parts like a cyl-

inder. Otherwise, CT artifacts like the Feldkamp artifacts (streaks in the reconstruction due to 

the data incompleteness, also called cone beam artifacts) are enhanced by the cone-beam CT 

[Xue et al. 2015] [Herminso et al. 2015]. Figure 6.4 illustrates this type of artifacts for a cylin-

der depending on the position of the CT axis of rotation “Z” to the cylinder axis. 

 

Figure 6.4: Reconstruction of a cylinder for two different inclination angles. (A) shows strong FDK arti-

facts. The figures are reproduced from [Xue et al. 2015] 
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6.1.4 Optimization module 

In the work of Stayman et al., the locations of source-detector system are parameterized by a 

series of arc trajectories forming a sphere. Each position on the arc is defined by a tilt angle 

𝜑𝑛 and a rotation angle 𝜃𝑛. With a gradual increase of the tilt angle below a fixed rotation an-

gle, it was then examined under which angle the detectability index d', is the highest. In total, 

one projection was selected for each arc orbit. The purpose of this approach is to have more 

angle information during the reconstruction [Stayman et al. 2013]. 

However, as the goal of this work is to evaluate the efficiency of the model observers, we 

limit the optimization to projections acquired over a simple circular orbit. 

 

• Greedy Algorithm 

To have the first N best projections from the 360 acquired projections, the general optimiza-

tion task requires computing the detectability index for all possible combinations of N angles. 

This would require ∏ (360 − 𝑘)𝑁−1
𝑘=0  iterations. If N is equal 18, then we would need 

6.6958e+45 iterations. However, this is computationally extremely expensive to perform. To 

avoid this limitation, Stayman et al. applied a greedy algorithm [Stayman et al. 2013]. In this 

context, the detectability index servers as a fitness function to identify the ideal projections. 

The trajectory optimization algorithm calculates iteratively the detectability index and, in each 

iteration, the next best projection with the highest detectability index is chosen. This projec-

tion is then added to the growing set of ideal projections. 

To illustrate this approach, we show an example in Figure 6.5 with a set of 5 projections with 

the goal to find the best first 3 projections. In the first iteration, the set of ideal projections is 

empty. The detectability index d’ is calculated for each individual projection. In our example. 

the third projection has the highest detectability index and therefore will be added to the set of 

ideal projections. In the second iteration, the already selected third projection will be added to 

each of the remaining projections and the detectability index is recalculated. In this iteration, 

the system matrix A contains two projections (see section 2.3). After each iteration, its size 

increases by one more projection. 

In this study, we will optimize the acquisition trajectory for different number of ideal projec-

tions with 𝑁 ∈ {8, 18, 24, 36, 72, 90, 120}. 
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Figure 6.5: A greedy algorithm is used as an optimization algorithm to find out the set of ideal projections 
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Weighting Map: 

A weighting map is applied to reduce the detectability index of the projections near the al-

ready selected projections. This procedure helps to have more angle information about the 

feature, since adjacent projections to already chosen ones are less likely to be selected. As a 

weighting term, we selected a factor of 0.5. Furthermore, the number of projections to be 

weighted is dynamically selected depending on the desired number of ideal projections as fol-

lows: 

𝑁𝑅𝑖𝑔ℎ𝑡/𝐿𝑒𝑓𝑡 = 
1

2
 .

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑖𝑑𝑒𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (6.3) 

 

• Model Observers 

Table 6-1 contains the expressions for the detectability index in spatial and Fourier domain 

for the two 3D model observers PW (see section 5.1) and NPW (see section 5.2). 

Table 6-1: Detectability Index for various 3D model observer 

Observer 𝒅´𝟑𝑫
𝟐  (Spatial) 𝒅´𝟑𝑫

𝟐  (Fourier) 

𝑷𝑾 MO (𝑔 𝜇𝑓)
𝑇 𝐶𝑛

−1 (𝑔 𝜇𝑓) ∭
(𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)

2

𝑁𝑃𝑆
 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧 

𝑵𝑷𝑾 MO  
[(𝑔 𝜇𝑓)

𝑇
 (𝑔 𝜇𝑓)]

2

(𝑔 𝜇𝑓)𝑇 𝐶𝑛 (𝑔 𝜇𝑓)
  

[∭(𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)
2𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧]

2

∭𝑁𝑃𝑆 ∙  (𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘)2 𝑑𝑓𝑥𝑑𝑓𝑦𝑑𝑓𝑧
 

 

For the calculation of local MTF and NPS, we will use the Fessler’s predictors introduced in 

equations (5.71) and (5.72). For illustration, we write them again in the following table com-

pared with their measurement formulas. 

Table 6-2: Measurement and prediction formulas for MTF and NPS 

 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 

𝑴𝑻𝑭 |ℱ{𝑃𝑆𝐹(𝑥, 𝑦)}|   
|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗}|

|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}|
 

𝑵𝑷𝑺  
∆𝑥 ∆𝑦

𝐿𝑥 𝐿𝑦
 
1

𝑁
 ∑|ℱ{𝑅𝑂𝐼𝑖(𝑥, 𝑦)  − 𝑅𝑂𝐼̅̅ ̅̅

�̅�}|
2

𝑁

𝑖=1

 
|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗}|

|ℱ{𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 +  𝛽𝑹𝑒𝑗}|
2 
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Regularization: 

The regularization strength parameter 𝛽 in MTF and NPS will be considered as constant, as 

this is eligible in most cases [Stayman et al. 2013]. In this work, we set 𝛽 = 105. However, it 

has to be selected carefully, as it affects considerably the spatial resolution and the amount of 

noise in CT images. Figure 6.6 shows examples of the reconstruction of a low-contrast sphere 

for varying values of 𝛽. 

 

Figure 6.6: Example of a reconstruction of a low-contrast sphere for varying values of β [Uneri et al. 2018] 

 

Fisher Information Matrix: 

The calculations of MTF and NPS depend on the evaluation of the term, 

𝐹𝐼𝑀 =  𝑨𝑇𝑫{𝑦}𝑨 (6.4) 

This term is referred to as the Fisher Information Matrix (FIM). By multiplying it with the lo-

cation vector 𝑒𝑗, the column corresponding to the voxel j is extracted. However, an explicit 

determination of FIM and then extracting the j-th column, is computationally very difficult 

due to the huge size of the system matrix A. In his trajectory optimization algorithm, Stayman 

used one of the approximations formulated by him and Fessler earlier [Stayman et al. 2013]. 

These approximations deliver accurate results and requires less computation time [Stayman et 

al. 2004]. But since they are approximations by nature, we use a different approach here to get 

the accurate results. These steps are listed in the following scheme: 

1. Create a volume where the voxel representing the feature location is set to 1. This cor-

responds to the unit vector 𝑒. → 𝑒𝑗 

2. Generate simulated projections of this volume using the system matrix A (illustrated in 

section 2.3). This step is also called forward projection. Here a pre-programmed For-

ward-Projector of the commercially available reconstruction framework CERA will be 

applied [Siemens 2016]. → 𝑨𝑒𝑗 

3. Weight the generated projections with the acquired projections. → 𝑫{𝑦}𝑨𝑒𝑗 
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4. The weighted projections are then back-projected using the transpose of the system 

matrix A. This step is a part of the FDK reconstruction and has been explained in sec-

tion 3.2. → 𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗 

 

• Speed-Up Computation 

Since MTF and NPS must be evaluated for each set of projections in each iteration (Total of 

6480 (=360*18) calculations to obtain the first 18 ideal projections), different techniques can 

be adopted to speed up the optimization. In the optimization algorithm of Fisher et al., it took 

several hours for 18 iterations for a volume of size (400 x 400 x 400) voxels [Fischer 2014]. 

With the following approaches (similar to [Gang et al. 2016]) we reduced the computation 

time for 18 iterations to less than 11 minutes and evaluating the detectability index requires 

only 0.09 s to 0.11 s on a HP Z820 workstation with an Intel(R) Xeon(R) CPU E5-2630 0 at 

2.60 GHz (2 Processors) and 256 GB of RAM: 

 

First: For each projection 𝑖 the term (𝑨𝒊
𝑇𝑫{𝑦𝑖}𝑨𝒊𝑒𝑗) will be precomputed and stored prior to 

the optimization algorithm. Then a summation of these terms over the considered set of pro-

jections leads to the total term (𝑨𝑇𝑫{𝑦}𝑨𝑒𝑗). As can be seen, the single terms only depend of 

the feature position and so they can be reused and do not have to be recalculated when we ex-

amine different model observers for the same feature. 

 

Second: The term (𝑨𝒊
𝑇𝑫{𝑦𝑖}𝑨𝒊𝑒𝑗) is an array of 0.5 GB in size for a volume size of (512 x 

512 x 512) voxels. For the acquired 360 projections, we need 180 GB of memory to store the 

precomputing results. In addition, the size of the RAM limits the number of projections in one 

set. A 4 GB RAM can only add up to a maximum of 8 arrays of 0.5 GB. To avoid this prob-

lem, the individual terms are calculated only for the volume-of-interest, which is significantly 

smaller than the entire volume. For example, for the sphere feature, the size of an array is only 

0.44 MB. Thus, only ca. 161 MB of memory is needed. This is more than 1000 times less 

memory need than before. In our simulations, the size of the VOI was chosen to be (49 x 49 x 

49) voxels around the sphere and (49 x 49 x 31) for the cylinder. 

Further acceleration measures are possible. For example, the implementation of certain func-

tions can be parallelized and executed on the GPU. 
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• Optimization for multiple features 

The Optimization module can be expanded to consider multiple features in different locations. 

With each iteration a detectability index associated with every task function is determined. 

The optimizer can then be written as [Ouadah et al. 2017]: 

argmax
Ω

 [min{ 𝑑1
´2(𝑊𝑇𝑎𝑠𝑘,1), 𝑑2

´2(𝑊𝑇𝑎𝑠𝑘,2),… , 𝑑𝐿
´2(𝑊𝑇𝑎𝑠𝑘,𝐿)}] 

(6.5) 

This optimizer aims to maximize the minimum detectability over L task functions. It guaran-

tees a specific minimum detectability for all tasks. As this problem is non-convex, it can be 

solved by using the covariance matrix adaptation-evolution strategy (CMA-ES) algorithm 

[Ouadah et al. 2017]. 

 

6.1.5 Reconstruction module 

• Reconstruction Method 

The selected projections are further processed with CERA, a Siemens software package for 

CT reconstruction. It offers a high-speed processing using CUDA-based GPU implementation 

and parallel computing [Siemens 2016]. CUDA is a parallel language of Nvidia to execute 

code on the graphics card. As a reconstruction method, we used the filtered Backprojection 

technique. But we have to be aware that the estimation of MTF and NPS is based on the Pe-

nalized Likelihood algorithm and must be actually reconstructed with this method to achieve 

the best reconstruction quality. However, we assume that the ideal projections should also de-

liver good results for different reconstruction approaches. 

Additional pre- and postprocessing steps enhance the quality of the reconstructed volume. Ex-

amples of these functions are [Siemens 2016]: 

• Bad Pixel Correction: A detector with defective pixels results in wrong measured values. 

The bad pixel correction module approximates new values for these pixels according to 

the surrounding pixels. 

• Beam Hardening Correction: This module compensates the non-linear attenuation when 

the X-ray passes through different material. 

• Discrete Fourier Transform Filtering: This high-pass filtering step has been already pre-

sented in section 3.2. In this study we use a Shepp kernel filter. Parameters like the convo-

lution length and scale are set automatically by CERA. 
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• Projection Matrices 

To define the geometry of the acquisition trajectory, each position of the source-detector is 

modelled with a projection matrix. This matrix implicitly describes the relation between the 

voxels of the volume and the pixels of the detector for every projection. It is of dimension 3 x 

4 and has 10 degrees of freedom (DoF) [Fischer 2014]. 

• 3 DoF, describes the position of the source 

• 3 DoF, describes the orientation of the main X-ray beam 

• 2 DoF, depends on the pixel length and the source-detector-distance 

• 2 DoF, depends on the shift of the detector against the main X-ray beam in both directions 

in the detector plane 

It is not to be confused with the system matrix A, which explicitly defines the contribution of 

each voxel to each pixel. 

 

6.1.6 Evaluation module 

The evaluation module is essential for assessing and comparing the quality of the reconstruc-

tion for different sets of projections. For this purpose, we will use the following two error 

metrics, which have been already presented in section 3.3: 

• Standard deviation SD 

• Root Mean Square Error RMSE 

As reference reconstruction we use an FDK reconstruction with 2000 projections. To be able 

to compare the different reconstructions visually, we scale them with the identical histogram 

range. In this study, however, we will scale the entire reconstruction and the VOI reconstruc-

tion differently to enhance its contrast. This is useful because the feature has a different mate-

rial than the phantom. 
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6.2 Trajectory Optimization for 2D features 

6.2.1 Flowchart of the task-based 2D detectability index 

The trajectory optimization algorithm presented in section 6.1.1 is extended to perform the 

optimization for 2D features. Mainly, we will add an observer module and extend the evalua-

tion module to include the CHO model observers. In this work, we use the CHO observers to 

evaluate to results of the optimization with the PW- and NPW-based observers and not for the 

optimization itself. Figure 6.7 shows the flowchart of this algorithm. In the following sec-

tions, we will discuss in particular the added modules in more detail. 

 

6.2.2 Object module 

Just as for the optimization for 3D features, we also use the same phantom here. As a feature, 

we take the horizontal cross-sectional area of the cylinder. So, the feature is a circle with a di-

ameter of 3.1 mm and Titanium as material. Another possibility would be to consider one of 

the main circles of the sphere. A square as feature can also be examined here if we use the 

longitudinal cross-section of the cylinder. More complicated features can also be explored. 

But since they are very difficult to define in binary form, they can be also extracted from a 

reference reconstruction. This method was implemented in the optimization algorithm in this 

work. The user can choose between two options (1: Binary definition, 2: Extract from the re-

construction) when defining the features. The second possibility is more general but has the 

disadvantage that possible reconstruction errors such as artifacts can be taken into account. 

The Fourier representation of a circle feature as a function of its diameter can be seen in the 

examples in Figure 5.3. It can be observed that, the task function of a small circle accounts 

high-frequency components while a large circle has primarily low and midfrequency compo-

nents. 

 

6.2.3 Simulation module 

Since we have the same phantom as in the optimization for 3D features, we will use the same 

acquired 360 projections for the optimization. 

 

  



Methods 

67 

 

Figure 6.7: Flowchart of the task-driven trajectory optimization for 2D features 
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6.2.4 Observer module 

One of the main differences between the optimization for 2D and 3D features is the introduc-

tion of an Observer module. For some model observers, knowledge about human perception 

is incorporated. Two important parameters play a role here. The contrast sensitivity function 

of the human eye, which is modeled by an eye filter (see section 5.6.3) and the internal noise 

(see section 5.6.4). We have presented two eye filters in the basics chapter. However, since 

they both provide similar results, we will continue to use only the filter in equation (5.78). 

This outcome has also been reported by Bouwman et al., when he examined the influence of 

multiple eye filters on the detection accuracy of a disk-shaped object [Bouwman et al. 2014]. 

The eye filter is expressed as a function of the angular frequency 𝑓𝑑𝑒𝑔 (cycles per degree). 

However, since it is multiplied by MTF, NPS and W which are represented in 𝑓𝑥 and 𝑓𝑦 (in 

the unit mm-1) in the Fourier domain, it must be formulated depending on both and not of 

𝑓𝑑𝑒𝑔. Such a conversion has been represented by Zhao et al. and is [Zhao et al. 2017]: 

𝑓𝑥,𝑦 = 𝑓𝑑𝑒𝑔  ∙  𝑡𝑎𝑛
−1 (

1

𝑑𝑣𝑖𝑒𝑤
) ∙  (

𝑎𝐷𝑖𝑠𝑝𝑙𝑎𝑦

𝑎𝐼𝑚𝑎𝑔𝑒
𝜆). (6.6) 

Where, 𝑑𝑣𝑖𝑒𝑤 is the viewing distance in mm (distance between the human observer and the 

display), 𝑎𝐷𝑖𝑠𝑝𝑙𝑎𝑦 is the display pixel pitch, 𝑎𝐼𝑚𝑎𝑔𝑒 is the pixel pitch of the image (corre-

sponds to the pixel pitch of the detector), and 𝜆 is a display zoom factor. In this work, we 

have: 𝑑𝑣𝑖𝑒𝑤 = 50 mm, 𝑎𝐷𝑖𝑠𝑝𝑙𝑎𝑦 = 0.258 mm for a display of type HP LP3065 with a resolu-

tion of 2560 x 1600 pixels, 𝑎𝐼𝑚𝑎𝑔𝑒 = 0.1 mm, and 𝜆 = 1. 

In Figure 6.8 we show a 2D and a cross-sectional 3D view of the used eye filter. It can be 

seen that the filter suppresses low and high frequencies. 

 

Figure 6.8: 2D and 3D visualization of the eye filter. fx and fy are the spatial frequencies in the 𝒙 and 𝒚 di-

rections, respectively 
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6.2.5 Optimization module 

Since a 2D feature is one pixel “thick” in z coordinate direction in reality, the optimization al-

gorithm explained in section 6.1.4 remains unchanged. 

 

• Model Observers 

A summary of the 2D model observers discussed in chapter 5 is given in the Fourier domain 

in Table 6-3. It should be noted that the 3D 𝑀𝑇𝐹, 𝑁𝑃𝑆 and 𝑊𝑇𝑎𝑠𝑘 should be integrated over 

the frequency direction 𝑓𝑧 before the multiplication with the eye filter E. In general, this inte-

gration step should be performed across the direction orthogonal to the 2D image. In our case, 

it is the 𝑧 direction. 

Table 6-3: Detectability Index for various 2D model observer 

Observer 𝒅´𝟑𝑫
𝟐  (Fourier) 

𝑷𝑾 MO ∬
(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2

∫𝑁𝑃𝑆 𝑑𝑓𝑧
 𝑑𝑓𝑥𝑑𝑓𝑦 

𝑷𝑾𝑬𝒊 MO ∬
𝐸2(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2

𝐸2 ∫𝑁𝑃𝑆 𝑑𝑓𝑧 + 𝑁𝑖
 𝑑𝑓𝑥𝑑𝑓𝑦 

𝑵𝑷𝑾 MO 
[∬(∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2 𝑑𝑓𝑥𝑑𝑓𝑦]
2

∬(∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 𝑑𝑓𝑥𝑑𝑓𝑦
 

𝑵𝑷𝑾𝑬 MO 
[∬𝐸2  ∙  (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2 𝑑𝑓𝑥𝑑𝑓𝑦]
2

∬(𝐸4  ∙ ∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙ 𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 𝑑𝑓𝑥𝑑𝑓𝑦
 

𝑵𝑷𝑾𝑬𝒊 MO 
[∬𝐸2  ∙  (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)

2 𝑑𝑓𝑥𝑑𝑓𝑦]
2

∬(𝐸4  ∙  ∫𝑁𝑃𝑆 𝑑𝑓𝑧) ∙ (∫𝑀𝑇𝐹 ∙  𝑊𝑇𝑎𝑠𝑘 𝑑𝑓𝑧)2 + 𝑁𝑖  𝑑𝑓𝑥𝑑𝑓𝑦
 

 

6.2.6 Reconstruction module 

Both the reconstruction method and the reconstruction parameters are the same as for the re-

construction of the 3D features (see section 6.1.5). There are several methods in the literature 

to improve the quality of the reconstruction, such as incorporating prior knowledge about the 

object into the reconstruction [Stayman et al. 2012]. Since this is not the goal of this study, 

such methods are not integrated into this work. 
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6.2.7 Evaluation module 

Besides the standard metrics SD and RMSE (see section 3.3), we will use the CHO model ob-

servers for the evaluation of the reconstruction. The aim is to calculate the detectability index 

of the set of projections selected by the PW- and NPW-based model observers and figure out 

which model they match best. 

 

• Channelized Hotelling Observers 

The CHO model observer computes a scalar test statistic L according to the equation (5.53). 

Then a decision in terms of the detection task is made in favor of the feature present hypothe-

sis if the calculated test statistic is greater than a threshold criterion. In this work, we will ra-

ther compare the values of the calculated test statistic L for different reconstructions to each 

other. The highest value here means that the detectability with the corresponding set of pro-

jections is also the highest. 

However, the choice of the number of channels and their parameters is very important for the 

results of the CHO observers. The channel selection was chosen in accordance with values 

from the literature. It was validated for nodule detection in medical CT and delivered good 

correlation with the results of a human observer [Wunderlich et al. 2008]. Below, we intro-

duce the channels that are used in this study. 

 

GB channels: 

For the Gabor channels, we select the following parameters: 

a) 4 passbands [
1

64
,
1

32
] , [

1

32
,
1

16
] , [

1

16
,
1

8
] , 𝑎𝑛𝑑 [

1

8
,
1

4
] cycles/pixel, with 4 central frequen-

cies 𝑓𝑐 =
3

128
,
3

64
,
3

32
, 𝑎𝑛𝑑

3

16
 cycles/pixel and widths 𝜔𝑠 = 56.48, 28.24, 14.12,

𝑎𝑛𝑑 7.06 pixels 

b) 5 Orientations 𝜃 = 0,
1

5
𝜋,

2

5
𝜋,

3

5
𝜋, 𝑎𝑛𝑑 

4

5
𝜋 

c) 2 phase offsets 𝛾 = 0,
1

2
𝜋 

This makes 40 channels in total. Figure 6.9 shows the first 15 Gabor channels. 
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Figure 6.9: Spatial form of the first 15 Gabor channels 
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S-DOG and D-DOG channels: 

Since all other parameters except the standard deviation 𝜎𝑗 are constant, only these will be 

modified to create new channels. A total of 3 S-DOG and 10 D-DOG channels are generated. 

Figure 6.10 illustrates the frequency response for the 3 S-DOG channels and the first 5 D-

DOG channels. 

 

Figure 6.10: Images of the used 3 S-DOG channels and the first 5 D-DOG channels 

 

SQR channels: 

We selected 4 SQR channels with the following passbands [
1

64
,
1

32
] , [

1

32
,
1

16
] , [

1

16
,
1

8
] ,

𝑎𝑛𝑑 [
1

8
,
1

4
] cycles/pixel. In order to understand the dimensionality of these channels, we also 

show the SQR channels in 3D in Figure 6.11. 

 

Figure 6.11: 2D and 3D representation of the used SQR channels 
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7 Results and Discussion 

7.1 Trajectory Optimization for 3D features 

This chapter presents the results of the trajectory optimization for the two 3D features (Sphere 

and Cylinder) and two 3D model observers (PW and NPW) presented in section 6.1. Figure 

7.1 shows the arrangement of the coordinate system for each feature. This layout defines the 

sectional views shown later for the reconstructed volume. The origin is located in the center 

point of the sphere or cylinder respectively. The Z-axis of the coordinate system is defined to 

be in the same direction as the axis of rotation. The X-axis is defined to be perpendicular to 

the front view of the phantom. Then, the Y-axis is the third axis perpendicular to the XZ 

plane. 

 

Figure 7.1: Phantom with the indicated sectional views (XY, XZ and YZ) for each feature (Sphere and 

Cylinder) 

 

7.1.1 Feature 1: Sphere 

For the feature “Sphere”, three different sets with 8, 24 and 90 projections are computed with 

equidistant distributed projections and projections selected with the proposed trajectory opti-

mization algorithm. Their corresponding reconstruction will be compared and discussed in 

this section. The results with the additional sets (18, 36, 72 and 120 projections) are shown in 

Appendix B. 
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• Trajectory optimization with a set of 8 ideal projections: 

In Figure 7.2, three reconstructions (B, C and D), based on 8 different distributed projections, 

are shown and compared to a reconstruction with 360 projections, which serves as a reference 

reconstruction. Each image shows a zoomed region (Magnification of factor 3) around the 

sphere in different planes. The lower images are a 3D rendering with a fixed threshold that 

differentiates between material and environment. This threshold is the same for all reconstruc-

tions, which is legal because the gray values were previously matched. 

We clearly state that the reconstruction with the 8 projections given by the optimization algo-

rithm (C and D) yields much better results than the reconstruction with the 8 equidistant pro-

jections (B). In each case, SD and RMSE were evaluated and listed in Table 7-1. 

 

Figure 7.2: Four FDK reconstructions of the phantom with focus on the sphere are schown. A: Reference 

reconstruction with full angular range (360 projections). B: Reconstruction with 8 equi-

distance distributed projections. C and D: Reconstructions with 8 projections selected 

based on the NPW and PW model observers, respectively 
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Table 7-1: Quantitative evaluation of standard trajectories with 360 and 8 equidistant distributed projec-

tions and optimized trajectories for a set of 8 projections with NPW and PW model ob-

servers in comparison to the reference reconstruction with 2000 projections (lower val-

ues of SD and RMSE correspond to better results) 

 𝑬𝒒𝒖𝒊 𝟑𝟔𝟎 𝑬𝒒𝒖𝒊 𝟖 𝑶𝒑𝒕 𝟖 (𝑵𝑷𝑾) 𝑶𝒑𝒕 𝟖 (𝑷𝑾) 

𝑺𝑫 0.96 4.41 1.53 1.93 

𝑹𝑴𝑺𝑬 1.04 4.88 1.99 3.13 

 

Comparing SD for the three reconstructions, we realize that the NPW- and PW-based optimi-

zation improves this metric by 65 % and 56 % respectively compared to the equidistance re-

construction. 

From Figure 7.2 we see that especially in the XY and XZ planes, that the equidistance trajec-

tory exhibits strong artifacts. This can be seen very well in the poor 3D reconstruction, since a 

complete half of the sphere is missing. For the PW-based reconstruction, the XY plane and 

the 3D representation show a strong geometrical deviation about an axis that is inclined by 

around 25° to the X-axis. To understand the reasons behind these deviations in the reconstruc-

tion, we display the standard and task-based optimized orbits in Figure 7.3. This figure shows 

also the source-detector X-rays that passes through the center of the sphere. 

From Figure 7.3 we can clearly observer two facts: 

First, we notice that projections that cause artifacts due to the lack of penetration of the phan-

tom in Y-direction are avoided in both optimized trajectories (B and C). This optimization in-

sight can be mathematically demonstrated as follows: 

 

Figure 7.3: Illustration of the task-based optimized trajectories with 8 projections using the PW and NPW 

model observers for the feature “Sphere” 

 



Results and Discussion 

76 

For the used phantom with edge length 𝑙 = 4.5 cm and a linear attenuation coefficient 𝜇 =

1.533 cm-1, the ideal ratio of the initial and the measured X-ray value according to the Lam-

bert-Beer’s Law along this direction is given as follows: 𝐼 𝐼0⁄  =  𝑒−µ𝑙 = 𝑒−4.5∗1.533 = 0.001. 

For the imaging system we set the noise level to 1 % which corresponds to the ratio 𝐼 𝐼0⁄  =

0.01. This means that high-attenuation projections in the Y-direction, where scatter and noise 

dominate, have a very poor detectability index. These projections then have been neglected by 

both model observers. This lack of penetration can also be triggered by the presence of a very 

high-density material which causes the X-ray to be almost completely attenuated, resulting in 

dark zones on the projections. 

Second, the optimized orbit based on the PW model observer is shown to favor only two lim-

ited angular range of views. These views are the projections with the least attenuation through 

the phantom at the location of the sphere. However, this limited angular range restricts the 

amount of information that can be gained during the reconstruction and strong artifacts like 

the geometric deviation are present in the final volume. In contrast, the NPW-based optimiza-

tion delivers more widely distributed projections which results in more angular information. 

This explains why the quality of the reconstruction for the PW model observer is clearly 

worse compared the NPW model observer for this part. 

 

• Trajectory optimization with a set of 24 ideal projections: 

Figure 7.4 evaluates the reconstruction quality of the sphere over a range of 24 projections. 

The quantitative evaluation with SD and RMSE indicates a better performance of the NPW-

based optimization (SD = 1.44 and RMSE = 1.70) as compared to an optimization with the 

PW model observer (SD = 1.18 and RMSE = 3.49). Identical to the optimization with 8 pro-

jections, the reconstruction with the projections selected by the PW model observer leads to 

geometrical deviations in the XY plane. 

To demonstrate this, representations of the equidistance and optimized trajectories with a set 

of 24 projections are illustrated in Figure 7.5. The angular range of the projections selected by 

the PW model observer is similar to the results of the optimization with only 8 projections. 

All projections are present within two angular views. For the NPW-based optimization, we 

can clearly identify five angular ranges that are distributed over the entire circular orbit. 
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Figure 7.4: Trajectory optimization evaluated with 24 projections. As in Figure 7.2, both model observers 

improve the quality of the reconstruction compared with a reconstruction with 24 equi-

distance distributed projections 
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Figure 7.5: Illustration of the task-based optimized trajectories with 24 projections using the PW and 

NPW model observers 

 

 

• Trajectory optimization with a set of 90 ideal projections: 

Figure 7.6 qualitatively shows that in this case the PW model observer (SD = 1.00) outper-

forms the NPW model observer (SD = 1.30) and the uniform circular orbit (SD = 1.34) for a 

set of 90 selected projections. For optimization with a low number of projections, the NPW 

model observer has delivered better results. For a higher number however, the quality of the 

reconstruction based on the PW model observer optimization is better. This has also been con-

firmed for the set of 120 projections, where SD was 1.27 and 1.02 respectively for NPW and 

PW (see reconstructions in Appendix C.4). Comparing with SD = 1.25 for a trajectory with 90 

uniformly distributed projections, the PW model observer has enhanced the quality of the re-

construction with 18 % while the NPW model observer achieved no visible improvement. 
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Figure 7.6: Trajectory optimization evaluated with 90 projections. For a high number of projections, the 

PW model observer improves the quality of the reconstruction better than the NPW 

model observer. The equidistance trajectory still shows some artifacts 
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Another way to compare both model observers is to look at their results after each iteration. 

Since the detectability index increases after each iteration, we show in Figure 7.7, the values 

normalized to 1. Here we display the calculated detectability index after each iteration until 

the 10-th iteration for an optimization with the NPW (left) and PW (right) model observers. 

The dotted blue line shows the projection chosen in this iteration. The angle of this projection 

is given on the X-axis, which ranges up to 360°. 

 

Progress of the NPW detectability index: 

In the first iteration, the NPW model observer shows two very narrow areas with two peaks 

very well. These two areas refer to the projections that look directly at the sphere and separate 

it from the phantom. At these two positions, the X-ray passes through the sphere without the 

phantom attenuating it. These two projections are then chosen during the first and second iter-

ations. Until the 10-th iteration, a differentiability between the calculated values of the detect-

ability index of the associated projections can be observed very well. The next ideal projec-

tion increases the detectability index so that it is recognizable.  

 

Progress of the PW detectability index: 

In contrast, the PW model observer shows a different behavior. In the first iteration, two areas 

with two minima are more visible. These correspond to the projections in the Y-direction and 

are therefore avoided. After each iteration, the difference between favorable and poor projec-

tions becomes smaller. After the 10-th iteration, this differentiability is very small and can 

therefore lead to incorrect optimization results, since each projection then increases the detect-

ability index by almost the same proportion. However, this finding can be useful in the pure 

detection task of a feature. Then the PW model observer can identify the presence of a feature 

with less projections than the NPW model observer. This also explains why the PW detecta-

bility index does not change very much when a new best projection is added. Then the model 

observer has already recognized the feature "sphere" and confirmed its presence. In the case 

of the NPW model observer, this finding seems to be confirmed only after several iterations, 

which of course yields very good results in the optimization as we need a good differentiation 

of the projections. 
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Figure 7.7: Map of the normalized detectability index for each iteration of the trajectory optimization al-

gorithm. The detectability index is shown over all circular angles for both the PW and 

NPW model observers. In each iteration the projection with the highest detectability in-

dex is chosen. The dotted blue line indicates the selected projection 
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7.1.2 Feature 2: Cylinder 

As a second feature, we will examine in this section the trajectory optimization for a cylinder. 

The cylinder is made of titanium and has a lower attenuation coefficient (0.742 cm-1) com-

pared to the phantom that is made of steel (1.5433 cm-1). In the following, the cylinder is used 

to evaluate the model observers regarding a low-contrast feature. In the previous section 7.1.1, 

the evaluation was performed for a high-contrast feature because both the sphere and the 

phantom have identical attenuation coefficients. 

 

• Trajectory optimization with a set of 18 ideal projections: 

Figure 7.8 (C and D) shows the image reconstructions associated with the selected projections 

computed from the NPW and PW model observers compared to a full reconstruction with 360 

projections (A) and a reconstruction with 18 uniformly distributed projections (B). With the 

standard trajectory (B) the cylinder completely disappears. The task-driven optimized trajec-

tories (C and D) considerably outperform the equidistance trajectory, with the greatest im-

provement is observed in the three planes of the NPW-based optimization. The detectability 

index for the optimized trajectory increased by a factor of 1.21 and 1.41 respectively for the 

NPW and PW model observers compared to the standard circular orbit. Like shown in Table 

7-2, both the NPW- and PW-based optimization improves the standard deviation by 72 % and 

73 %, respectively. 

Table 7-2: Quantitative evaluation of standard trajectories with 360 and 18 equidistant distributed projec-

tions and optimized trajectories for a set of 18 projections with NPW and PW model ob-

servers in comparison to the reference reconstruction with 2000 projections 

 𝑬𝒒𝒖𝒊 𝟑𝟔𝟎 𝑬𝒒𝒖𝒊 𝟏𝟖 𝑶𝒑𝒕 𝟏𝟖 (𝑵𝑷𝑾) 𝑶𝒑𝒕 𝟏𝟖 (𝑷𝑾) 

𝑺𝑫 0.52 3.62 1.00 0.99 

𝑹𝑴𝑺𝑬 0.54 3.97 2.08 4.71 

 

Figure 7.8 (D) shows the geometrical deviation of the cylinder in planes parallel to the XY 

plane. The largest deviation occurs around the X-axis. This effect was also observed for the 

feature “sphere”, which is probably caused by the limited angular acquisition. Plotting the op-

timized trajectories against the standard equidistance trajectory in Figure 7.9, confirms these 

findings. This effect can also be observed in the XZ plane. We note that the cross-section of 

the cylinder is best reconstructed with the NPW model observer. In the PW-based reconstruc-

tion, the cross-section is bigger than it is in real. 
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Figure 7.8: Four FDK reconstructions of the phantom with focus on the Cylinder are plotted. A: Refer-

ence reconstruction with 360 projections. B: Reconstruction with 18 equidistance dis-

tributed projections. C and D: Reconstructions with 18 projections selected based on the 

NPW and PW model observers, respectively 

 

 

Figure 7.9: Illustration of the task-based optimized trajectories with 18 projections using the PW and 

NPW model observers for the feature “Cylinder” 
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For the feature “sphere”, we were able to achieve good reconstruction results even with only 8 

projections (see Figure 7.2). For the cylinder, although we were able to improve the quality of 

the reconstruction with the identical number of projections compared to the standard trajec-

tory (see Appendix C.1), it was still poor compared to the reference reconstruction. This also 

explains the bad values of RMSE. These were 3.81 and 4.83 for the NPW- and PW-based op-

timized trajectories, respectively. For a reconstruction with 360 projections, this value was 

only 0.54. To get the first good results with the optimization algorithm, we need at least 18 

projections (see Figure 7.8). Two reasons can be decisive here: 

First, the cylinder has a low attenuation coefficient and thus it appears with a low contrast in 

the reconstructed volume. Therefore, we need a higher number of projections to improve its 

contrast. 

Secondly, the cylinder is geometrically a bit more complicated than the sphere, since in the 

three main orthogonal planes it gives two different cut surfaces than the sphere showing the 

same view in the three planes. If we cut off the cylinder with a plane at an angle (in a similar 

way to the geometry of the cone-beam), the result is an ellipse as a cutting curve. 

 

• Trajectory optimization with a set of 24 ideal projections: 

The reconstruction of the cylinder under three different trajectories with 24 projections is plot-

ted in Figure 7.10. The SD metric is almost identical for both optimized trajectories (0.99 for 

NPW and 0.92 for PW). In the XY plane, brighter areas can be seen in the NPW-based recon-

struction. This explains the slightly worse value of SD against the PW-based reconstruction. 

Compared to SD = 1.41 for the equidistant trajectory, this is still a very good improvement in 

terms of the data variation within the feature. However, referring to the agreement with the 

reference reconstruction, the NPW-based trajectory provides the better match: here we have 

RMSE = 1.68 for NPW and 4.08 for PW. 

 

• Trajectory optimization with a set of 90 ideal projections: 

In Figure 7.11 we see that the PW-based optimization delivers a slightly better reconstruction 

than the optimization based on the NPW model observer and the equidistant distributed acqui-

sition with 90 projections. This is consistent with the results found for the feature “sphere” for 

a high number of ideal projections. 

For SD and RMSE, we have identical values for both models. For the NPW-based optimiza-

tion, SD and RMSE were 0.62 and 2.05, respectively. For the PW optimization SD and 

RMSE were 0.60 and 2.05 respectively. Although both models are quantitatively the same, 
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qualitatively the NPW model observer delivers slightly worse images: in the XY and XZ 

planes, an artifact in the form of a line is very well recognizable. This artifact lies in the Y-di-

rection and probably appeared due to the absorption problems in this direction. 

 

 

Figure 7.10: Trajectory optimization evaluated with 24 projections. As in Figure 7.8, both model observ-

ers improved considerably the quality of the reconstruction compared with a recon-

struction with 24 equidistance distributed projections 
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Figure 7.11: Trajectory optimization evaluated with 90 projections. For a high number of projections, the 

PW model observer improves the quality of the reconstruction better than the NPW 

model observer. The equidistance trajectory and the NPW-based optimized trajectory 

still show some artifacts 
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7.2 Trajectory Optimization for 2D features 

In this section we present firstly the results of the trajectory optimization for the 2D feature 

"circle" with five different 2D model observers (NPW, NPWE, NPWEi, PW and PWEi). As 

in the previous section for 3D features, we will illustrate here only a part of the results for the 

following sets of projections: 18, 24 and 90 projections. The corresponding reconstructions 

are given in Figure 7.12. The optimization with the remaining sets can be found in Appendix 

D. Secondly, we evaluate the results of the PW- and NPW-based model observers with the 

CHO model observers. Our goal is to find out if such models are suitable for the trajectory op-

timization. 

In order to investigate the influence of the eye filter and the internal noise on the Detectability 

Index, we consider the three NPW-based model observers (NPW, NPWE and NPWEi) and 

the other two PW-based model observers (PW and PWEi) separately. A quantitative evalua-

tion of the selected trajectories is given in Table 7-3. The green mark indicates that the model 

observer in the first column would be the best choice according to the metrics or the CHO 

model observers in the first line. 

 

NPW-based model observers: 

For almost all sets of projections (small variations in the metrics are neglected), the NPW 

model observer has the best values for the standard deviation (SD). It means that the recon-

struction with such a model has less noise around the feature. Based on the evaluation with 

RMSE, on the contrary, the NPWE model observer has yielded much better results in 6 out of 

7 sets of projections (except for 90 projections). Thus, with this model, a good agreement with 

the reference reconstruction can be achieved. Especially with 120 projections, we could use 

the NPWE model observer to get a 50 % better RMSE value than the NPW model observer. 

For all CHO model observers, assuming a 5 % error variation in the values, we could observe 

a match with the RMSE values and thus also with the NPWE model observer. The NPWEi 

model observer has delivered the worst results. 

 

PW-based model observers: 

In the evaluation of the PW and PWEi model observers, we can observe a separation of the 

suitability of each model in certain ranges of the number of projections. At low numbers (up 

to 36 projections in our case), the PW model observer was better for both metrics (SD and 

RMSE). For a higher number of projections, it was rather the NPWEi model observer, which 
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then provided the better reconstruction quality. Both findings are also confirmed by the CHO 

models. 

 

Table 7-3: Quantitative evaluation (SD and RMSE) of the optimized trajectories for different number of 

projections (N). The CHO model observers serve here to calculate the test statistic L for 

the set of projections selected by the NPW- or PW-based model observer 

 

 

 

To give a better illustration of the results, we graphically show in Appendix E the overall re-

sults for both metrics (SD and RMSE). The progressions of the individual graphs confirm 

what we have discussed in this section. 

 

ModelObserver N CHO GB CHO S-DOG CHO D-DOG CHO SQR SD RMSE

NPW 8 0,55 0,47 0,29 0,90 1,28 3,88

NPWE 8 0,82 0,90 0,45 1,42 1,29 3,24

NPWEi 8 0,83 0,86 0,42 1,36 1,65 3,43

NPW 18 0,82 0,60 0,39 1,22 0,89 3,61

NPWE 18 0,77 0,70 0,44 1,38 0,98 3,15

NPWEi 18 0,98 0,72 0,44 1,37 1,01 3,43

NPW 24 1,07 0,69 0,44 1,33 0,86 3,39

NPWE 24 0,82 0,72 0,44 1,33 0,96 3,21

NPWEi 24 1,18 0,78 0,48 1,42 0,90 3,23

NPW 36 0,94 0,66 0,42 1,28 0,80 3,21

NPWE 36 0,93 0,76 0,45 1,37 0,72 2,78

NPWEi 36 0,88 0,75 0,47 1,40 0,71 2,97

NPW 72 1,04 0,73 0,47 1,39 0,65 2,93

NPWE 72 1,27 1,03 0,55 1,57 1,18 2,63

NPWEi 72 1,05 0,81 0,50 1,53 0,70 3,22

NPW 90 1,82 1,14 0,65 1,92 0,57 2,41

NPWE 90 1,85 1,24 0,67 1,91 0,93 2,63

NPWEi 90 1,38 1,19 0,65 2,01 0,64 2,13

NPW 120 1,61 0,98 0,59 1,79 0,60 2,76

NPWE 120 1,85 1,91 0,82 2,27 0,59 1,42

NPWEi 120 1,63 0,88 0,55 1,63 0,68 3,04

PW 8 2,87 0,52 0,34 1,09 1,23 3,64

PWEi 8 1,39 0,55 0,35 1,04 1,35 3,78

PW 18 1,04 0,74 0,47 1,46 0,92 3,61

PWEi 18 1,17 0,81 0,44 1,37 0,86 3,76

PW 24 0,96 0,66 0,44 1,35 0,88 3,89

PWEi 24 0,91 0,63 0,42 1,27 0,93 3,94

PW 36 1,14 0,63 0,42 1,31 0,85 4,04

PWEi 36 0,89 0,65 0,43 1,33 0,81 3,87

PW 72 1,37 0,65 0,44 1,34 0,72 3,99

PWEi 72 1,52 0,82 0,51 1,53 0,69 2,72

PW 90 1,85 0,92 0,56 1,63 0,51 2,49

PWEi 90 2,10 1,27 0,65 1,83 0,65 1,72

PW 120 1,42 0,72 0,47 1,41 0,66 3,35

PWEi 120 1,60 0,83 0,52 1,51 0,62 2,50
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Figure 7.12: Reconstruction of a single slice with 18, 24 and 90 equidistant projections. The same slice is 

also reconstructed with 18, 24 and 90 optimized projections based on five different 2D 

model observers 
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8 Conclusions 

Task-based trajectory optimization algorithm: 

In this work we introduced a task-based trajectory optimization algorithm for an industrial CT 

application which incorporates CAD data of the object to be scanned. This optimization algo-

rithm, which is implemented with different model observers successfully finds the set of ideal 

projections that have the highest amount of information for a feature inside the object and thus 

provides high quality of image reconstruction for the related region. This is often the case in 

many industrial applications where only a specific region-of-interest (or volume-of-interest) is 

relevant and has to be reconstructed with high image quality and preferably with few projec-

tions to significantly reduce the scan time. 

 

Computing time: 

Regarding the computing time of our proposed trajectory optimization algorithm, we have 

runtimes of only few minutes on a commercial workstation compared to several hours for a 

previous implementation in the literature [Fischer et al. 2016]. These speed-up improvements 

were necessary to evaluate different features with different model observers and for different 

set of projections in a reasonable amount of time. However, for an inline CT application, this 

optimization algorithm must be applied only once for an object, as the output can then be used 

many times for the same object series. 

 

Trajectory optimization of high- vs. low-contrast 3D features: 

As we have demonstrated in sections 7.1.1 and 7.1.2, the optimization algorithm delivers 

good results for features with high- and low-contrast. Especially the trajectory optimization of 

a low-contrast feature has considerably demonstrated the benefits of an optimized trajectory, 

as the standard trajectory requires more projections to successfully detect the low-contrast 

feature. For such features, the proposed optimization algorithm provides high quality of re-

construction by using fewer projections. 

 

Trajectory optimization with low vs. high number of ideal projections for 3D features: 

Generally, one can state that the NPW model observer is well suited to provide high image 

quality for the reconstruction with small numbers of projections selected by the proposed op-

timization algorithm. In contrast, the PW model observer showed good imaging results when 

optimizing over a large set of projections. Based on the qualitative metric SD, this change has 

occurred in about 72 projections for both the high and low-contrast features. 
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Trajectory optimization of a simple vs. more complex 3D features: 

The findings for the trajectory optimization for high- and low-contrast features and for a 

lower and higher number of projections also apply to a slightly more complicated feature. 

What changes is that, for a satisfactory reconstruction, we need more projections than for a 

simpler feature. For the sphere, we were able to achieve good reconstruction quality with the 

first 8 optimized projections. For the cylinder this was not possible and only with 18 opti-

mized projections the reconstruction was satisfactory. 

 

Detection task: 

The PW model observer is more sensitive towards a detection task. They can correctly (in our 

case) detect the presence of a feature with less projections than the NPW model observer. 

However, this high sensitivity can lead to false detection results. In order to investigate this, 

several objects with and without the feature need to be examined to qualitatively describe the 

number of false detections. However, this is not part of this work and can be investigated in a 

future study. 

 

Analysis of the 2D model observers that incorporate the human perception: 

For the trajectory optimization of 2D features, the model observers that incorporate the human 

perception have demonstrated in certain cases a discernible and qualitatively measured im-

provement over the purely mathematical PW and NPW model observers. 

Based on SD as a metric, the NPW model observer was better for 6 out of the 7 sets of projec-

tions. However, if we consider RMSE as the assessment metric, then we find that the NPWE 

(thus adding the eye filter) provides the better match with the real part. 

In the case of the PWEi model observer, an enhancement in the quality of the reconstruction 

for a high number of projections was observed. However, for a small set of projections (up to 

36 projections) the PW model observer outperformed the PWEi model observer. 

Here we can summarize that the anthropomorphic model observers are suitable for the trajec-

tory optimization, but their application depends very much on the number of projections and 

on what goal is pursued: that is, whether we want less noise in the reconstruction or rather we 

want good agreement with the reference reconstruction. 

 

Analysis of the Channelized Hotelling Observers (CHO) towards trajectory optimization: 

The CHO model observers have demonstrated a very good agreement with the results from 

the quantitative analysis of the NPW and PW-based 2D model observers. Then the 
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qualitatively good reconstructions were always and with almost all the CHO model observers 

recognized. However, as we have adopted the design and the tuning of the channels from an 

earlier study, it would be highly advisable to optimize these parameters for each individual 

case to increase the quality of the optimization. 

 

Possible extensions of the proposed optimization framework: 

• The proposed trajectory optimization algorithm can be extended to include more arbi-

trary geometries (e.g., a 3D spherical trajectory instead of a simple circular orbit, vari-

ation of the source-object-distance (SOD) or the source-detector-distance (SDD), dif-

ferent magnifications of the X-ray source, etc.). 

 

• The metrics MTF and NPS (see equations (5.71) and (5.72)) were measured locally at 

a single point, which is mostly the center of the feature. The validity of this approach 

was discussed in section 5.6.1, then for a small VOI both values change only very 

slightly within it. An important challenge would be to relate these metrics to the entire 

volume-of-interest rather than a single point when optimizing for a large feature. The 

calculation of the average values over VOI could be an option. 

 

• For simplicity, the regularization strength parameter β was considered as constant. 

However, previous work [Gang et al. 2014] showed that the implementation of a reg-

ularization map with a spatially-varying parameter could be helpful to determine the 

detectability index. 

 

• In general, our optimization algorithm has delivered very good results for simulated 

data. Next, it would be important to test the algorithm for real measurements as well. 

Then in a real measurement, various types of artifacts can occur, which we have only 

added up to a certain amount in the simulated data. In addition, the misalignment be-

tween the real and simulated trajectories can also have an impact. Then we would op-

timize in the wrong place, which can provide suboptimal projection choices. This also 

offers the possibility to perform a sensitivity analysis for the optimization algorithm 

against geometrical variations of the trajectory or even of the object itself. 

 

• In this work we focused on the optimization of the trajectory. In order to further im-

prove the quality of the reconstruction, it would be optimal to combine our results 
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with further measures for the optimization of the reconstruction algorithm or the re-

construction itself. In addition, we reconstructed the selected projections using the 

FDK method. However, for the determination of the parameters MTF and NPS, we 

used the PL approach. Therefore, it is advisable to integrate the PL reconstruction into 

our algorithm in order to achieve the optimal image quality. This method also offers 

more freedom in the parameter design and is more suitable for the reconstruction of 

arbitrary trajectories than the FDK method, especially if we extend the optimization 

to a 3D trajectory. 

 

• In this work we examined three different task functions: 3D sphere, 3D cylinder and 

2D circle. These features are a bit simpler than what can be found in a complex indus-

trial component. Therefore (like proposed above), the validity of this optimization al-

gorithm should be tested on real applications or more complex task functions like 

cracks or other defects in the material. 

 

• In section 7.2 we have optimized the trajectory to the middle circle of the cylinder. A 

couple of 2D model observers have delivered very good reconstruction quality and 

that with just a few projections. Of course, this is because we do not consider the en-

tire structure of the cylinder, but just a 2D slice. This offers the possibility for the cyl-

inder to optimize the trajectory for each of its 2D slice and then add the selected pro-

jections together. That could be particularly purposeful and qualitatively much better 

for very complex features. 
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Appendix 

Appendix A: Dimensions of the used phantom. The phantom is composed of three parts: 

The body, a sphere and a cylinder. Measurements are given in millimeters 
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Appendix B: Results of the trajectory optimization for the sphere as feature for different 

number of ideal projections and for two different 3D model observers 

Appendix B.1: Reconstruction of the sphere with 18 ideal projections 

 

Appendix B.2: Reconstruction of the sphere with 36 ideal projections 

 



Appendix 

102 

Appendix B.3: Reconstruction of the sphere with 72 ideal projections 

 

Appendix B.4: Reconstruction of the sphere with 120 ideal projections 
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Appendix C: Results of the trajectory optimization for the cylinder as feature for different 

number of ideal projections and for two different 3D model observers 

Appendix C.1: Reconstruction of the cylinder with 8 ideal projections 

 

Appendix C.2: Reconstruction of the cylinder with 36 ideal projections 
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Appendix C.3: Reconstruction of the cylinder with 72 ideal projections 

 

Appendix C.4: Reconstruction of the cylinder with 120 ideal projections 
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Appendix D: Results of the trajectory optimization for the circle as feature for different num-

ber of ideal projections and for five different 2D model observers 
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Appendix E: Results of the evaluation (SD and RMSE) of the trajectory optimization for the 

circle as feature for different number of ideal projections and for five different 2D model ob-

servers 

 


