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Abstract: In order to improve the longitudinal control behavior of automated vehicles, a
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The underlying nonlinear model of vehicle and powertrain dynamics makes use of the estimated
torque signal which is calculated in the engine management system, as well as of vehicle speed
and acceleration measurements. An Extended Kalman Filter is implemented to both estimate
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parameter estimate. The contributions of this paper build the foundation to further examine
the potential of improvement in fuel savings, planning accuracy and passenger comfort.
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1. INTRODUCTION

The general task of motion control of automated vehicles
can be separated in three main parts: First, a motion
planning instance is planning a path and speed profile
or a trajectory. This instance needs to deal with the
nonholonomic properties of the vehicle and plans several
maneuvers to a goal. Second, a path following or trajectory
controller calculates a steering angle command for lateral
motion and a desired vehicle acceleration (or tire force
in some implementations) for the longitudinal motion of
the vehicle. Third, these commands are passed to actuator
controllers which transform them into input commands
for the actuators. In case of longitudinal control, this
input command is the accelerator pedal, engine throttle
or torque demand value (depending on the interface to
the engine control unit) as well as a brake demand value.
The controller also has to consider vehicle and powertrain
dynamics or compensate for the resulting effects and other
disturbances.

Precise trajectory following is essential for different rea-
sons. For example, big deviations from the reference point
on the trajectory do not allow to perform time critical
scenarios. If for example a vehicle plans to enter an inter-
section just before an intersecting car and the vehicle lags
behind its planned position, the risk to create unwanted
traffic scenarios or even accidents increases significantly.
Or, assuming that this effect is known to the engineers
calibrating the planning algorithms, it has to be considered
as uncertainty which leads to an overly defensive planning
behavior. For the same reason, if longitudinal deviations
are too high, vehicles trying to build a platoon need to keep
larger safety distances up to a point where the fuel saving
effect of forming the platoon is reduced drastically. Also in

regular automated operation, the efforts of the controller
to compensate for deviations from the planned trajectory
lead to overshoots in the torque demand to the engine,
which has a negative effect on fuel consumption. There is
big potential in fuel savings if smooth accelerations can be
realized. Furthermore, speed and acceleration overshoots
can be felt by passengers and hence have a negative ef-
fect on passenger comfort. High efforts have been done
in recent years to optimize driveability for conventional
vehicles working in open loop manual operation, where the
driver sets the desired acceleration via the throttle pedal,
but they mostly focus on reducing disturbances at high
frequencies due to gearshifts or load changes.

Fully automated vehicles need to be able to cope with
conditions appearing at steep hill climbing and parking a
vehicle onto a target point at an accuracy of a few centime-
ters. These scenarios require a very accurate longitudinal
actuator controller which is capable of compensating for
road slope, friction and rolling resistances and takes into
account changes in vehicle mass.

Available solutions for closed loop operation highly focus
on cruise control or adaptive cruise control mode, scenarios
in which vehicles are operating at higher speeds in areas
where the influence of road gradients can be neglected.

To realize such a controller, it is necessary to take into
account major effects of powertrain and longitudinal ve-
hicle dynamics whilst keeping complexity low to reduce
computational resource demand. This paper proposes an
improved control scheme for longitudinal control of auto-
mated vehicles. The implementation of this control scheme
consists of three parts. First, the derivation of a dynamical
longitudinal vehicle model containing the effects of road
slope, friction and rolling resistance. Second, the imple-
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mentation of a state and parameter estimator which is able
to quickly adopt for changes in vehicle mass. These two
parts together with the definition of the control scheme
are contributions of this paper, whereas the third part,
the implementation of the model based controller is left to
future work.

In the following, the remainder of the paper will give
an overview over related work in Section 2, explain the
planned controller structure in Section 3, derive the lon-
gitudinal vehicle dynamics in Section 4, before explaining
the state and parameter estimator in Section 5. Simulation
results are given in Section 6 before Section 7 gives a
conclusion.

2. RELATED WORK

In several publications about autonomous vehicles one
can find solutions for longitudinal controllers. Many pub-
lications appeared about the participants of the DARPA
Urban Challenge during which many teams including the
winning Tartan Racing Team (Urmson et al. (2008) as
well as Ben Franklin Racing Team (Bohren et al. (2009)
were using a solution directly actuating throttle and brake
pedal via an electromechanical actuator instead of being
able to use the torque interface. With such a solution, due
to mechanical backlash effects it is very hard to accurately
control vehicle acceleration. They further mention the use
of a proportional-integral (PI) controller after linearization
of throttle and brake dynamics.

Team AnnieWAY as well as Daimler’s Bertha Drive Ve-
hicle described in Ziegler et al. (2013) mention to use
the integral anti-windup feedback controller from Geiger
et al. (2012) to reactively compensate for disturbances
like aerodynamic drag and road slope, but do not actively
consider the resulting forces in their controller.

The vehicle described in Aeberhard et al. (2015) about
BMW Group’s Highly Automated Driving Project uses a
combination of controllers published in Werling (2010) and
Bartono (2004). Werling (2010) mentions to calculate the
desired tire force in the trajectory controller part and uses
a separate controller with a simple anti windup integrator
to compensate for wind drag, road slope and vehicle mass
changes. It does not make use of the torque interface
but mentions to directly calculate the desired throttle
angle out of a map with desired longitudinal force and
engine speed as inputs. This map together with a speed
dependent compensation term needs to be calibrated in
vehicle experiments with much effort.

Bartono (2004) uses an inverse powertrain model to cal-
culate the desired engine torque out of the desired vehicle
acceleration. To reduce modeling effort, the model does
not directly take into account road slope, wind- or rolling
resistance nor the effect of changing vehicle mass. The sum
of all these effects are modeled as a resulting disturbing
acceleration which is estimated in a disturbance observer.
Since the work focuses on the special case of following a
lead vehicle in Adaptive Cruise Control (ACC) and Stop
& Go scenarios, this disturbance observer is implemented
using the distance information to the lead vehicle and
hence cannot be used in scenarios without a lead vehicle.

Gehrling (2000) focuses on control schemes for vehicle
platoons and presents a control loop for acceleration con-
trol using feed forward control to linearize the nonlinear
vehicle dynamics. Throttle angle is used as input variable
to the engine, probably lacking the existence of a modern
torque based engine control management. The relation of
acceleration, speed and throttle angle is approximated in
an experimentally derived map. The influence of vehicle
mass, road grade is not considered in this approach, except
that resulting disturbances are compensated by a PID
controller.

Sauter and Flad (2014) designs an ADAS which decreases
the drivers pedal position value in order to realize sav-
ings in fuel consumption. A Model Predictive Controller
(MPC) scheme is used to determine this accelerator pedal
value difference, although the paper also states the diffi-
culty of this approach due to missing predictions of the
drivers future pedal values. Since the accelerator pedal is
used as an input variable to realize torque, a lookup table
is used to map the engine torque prediction depending on
engine speed and accelerator pedal, an approach which is
not as accurate as using the more complex model inside
of an engine control unit. In the vehicle model, road slope
and friction is considered, whereas vehicle mass is modeled
as a constant value.

André et al. (2015) converts accelerator pedal value into
half shaft torque, which is considered proportional to ac-
celeration but neglecting resistance. This approach is con-
sidered good enough for a more or less exact interpretation
of the pedal value as the drivers acceleration demand but
not suitable for achieving an exact acceleration value in
automated trajectory control. Vehicle mass is estimated in
a Kalman filter but the paper does not take into account
aerodynamic drag or road resistance.

As seen in this section, todays longitudinal controllers
for highly automated vehicle operation have the following
drawbacks: First, none of the controllers actively take into
account the effects of changing vehicle mass or changes
in road slope but treat them as disturbances. This leaves
compensation to the feedback controller in a reactive way,
which is less effective than proactively take countermea-
sures before deviations from the desired trajectory occur.
Second, although the planning module calculates trajecto-
ries containing future demand values, none of the control
schemes make use of this information but only use the
current acceleration or longitudinal force demand value to
command an actual torque demand value to the engine
(or brake in case of deceleration). With the knowledge of
future demand values in the case of automated driving
in contradiction to the case of manual operation, where
no information about the future plans of the driver is
available but has to be predicted, one can make use of
this information throughout the whole controller chain.

Different theoretical foundations exist for designing sta-
bilizing nonlinear MPCs (see de Nicolao et al. (1998),
Wan and Kothare (2003), Magni and Scattolini (2006)).
Another difficulty for nonlinear MPC is the real time
implementation on an embedded platform. Here recent
advances have been made to create solutions with reduced
computational load. For example, many advances have
been made on solving the involved optimal control problem
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efficiently (see Biral et al. (2016) for an overview). Further,
Explicit NMPC (Johansen (2004), Alessio and Bemporad
(2009)) can be used to to solve the optimal control prob-
lem offline and store the solutions to reduce the online
computational load to that of a (highly dimensional) look-
up table search.

3. PROPOSED CONTROLLER STRUCTURE

Therefore, we propose the following controller structure
(see Figure 1): A motion planner creates trajectories,
meaning desired values of vehicle position and speed at
each time step for a certain look ahead into the future.
State of the art trajectory controllers transform this in-
formation into desired values for steering and acceleration
(or longitudinal force) at the current time step, without
passing the information about desired values in the future
to the lower level controller.

Our proposal is to calculate trajectories of speed (by
nature containing future values) and using them in the
lower level longitudinal controller. This naturally leads to
a MPC scheme which calculates the torque demand value
for the powertrain or engine control unit. The benefit of
this approach should be explained in an example: Let us
examine the case that due to controller errors one of the
state variables, for example vehicle acceleration, is too big
compared to the desired value. A conventional controller,
lacking information about desired values in the future,
will tend to reduce the acceleration much more, than a
predictive controller which has knowledge about that in
the next time steps, the desired acceleration and hence
the torque demand value will increase.

Ideally, the powertrain or engine controller is also capa-
ble of using future trajectory information, but we focus
on the longitudinal control unit and leave the other out
of the scope of this work. We only require to get an
estimated value of the current engine and brake torque
back from the powertrain control unit and measurement
values for vehicle speed and acceleration from the vehi-
cle. To filter these noisy measurements and estimate the
most influential parameter in the equation, namely the
vehicle mass, an adaptive state and parameter observer is
proposed, which updates parameter values in the model
used in the model predictive controller. This allows to
improve the reference tracking capability of the controller
and as a side effect makes the controller more robust to
model errors and badly estimated parameters. Further,
constraints which might be occurring in the realization
of the demanded vehicle acceleration (for example the
maximum torque created by the engine might be suddenly
limited due to failure mode operation of a combustion
engine and resulting cylinder cut off) should be detected
by the longitudinal controller and communicated to the
higher level control and planning modules. This enables
the planning algorithm to adopt for future maneuvers.

3.1 Torque Structure of Engine Management System

Modern Engine Management Systems (EMS) have inte-
grated torque models which calculate the engines indicated
torque and torque losses as a multidimensional function
of various engine parameters. Depending on the type of

Fig. 1. Proposed controller structure for longitudinal vehi-
cle control

engine, these parameters could be relative load, air/fuel
ratio, spark advance, intake and exhaust valve timings,
valve lift and number of active cylinders for SI engines. In
diesel engines, the resulting torque is mainly determined
by the injection quantity and start of combustion, which is
given by the injection pattern of many pre-, main- and post
injections. These parametric torque models are calibrated
for each engine with high effort on a stationary engine test
bed, collecting measurement data in the whole variation
space over weeks. Since both the engines indicated torque
and torque losses are available on the Controller Area
Network (CAN) we propose to use these values in the
absence of expensive torque measurement devices. From
the authors experience in torque structure calibration it
is known that the typical accuracy achieved by an EMS
torque structure is around 5-10% of the real torque mea-
sured on an engine test bed.

In the case of electric engines, the indicated torque is
proportional to the measured electrical current and hence
a torque estimation is also available in vehicles with
electric or hybrid powertrains. This makes the proposed
structure compliant with all common types of vehicles,
although for the rest of the paper, special emphasis is
put on a passenger car with a conventional powertrain
driven by an IC engine, with automatic gearbox and torque
converter.

4. VEHICLE AND POWERTRAIN DYNAMICS

A derivation of the vehicle and powertrain equations can
be found in Rajamani (2011), with the difference that
there the final equations do not contain the terms from
resulting forces due to road grade and rolling resistance.
Therefore these equations are derived in this section for
vehicle dynamics equations which contain the most impor-
tant effects on longitudinal motion but remain as simple
as possible to reduce both computational complexity and
complexity in controller design. The following assumptions
are made for modeling longitudinal vehicle and powertrain
dynamics:
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The acceleration signal (corrected for bias, but noisy) and
the road slope is assumed to be known from measurement
input from a gyroscope, which we presume to be available
in a highly automated vehicle from an integrated IMU/INS
accelerometer. An estimation of the engine torque is avail-
able the engine control unit (see Section 3.1). The influence
of powertrain elasticity and backlash effects is small and
can be neglected. The effects of tire slip are neglected,
since they are small during normal operation, where the
planning module will plan trajectories far away from the
physical limits. It is assumed that the effect of power losses
during gear shifts is compensated by a powertrain control
unit and therefore only the case of a transmission in steady
state is considered.

For a future implementation of the MPC for the whole
operating range of the vehicle, the nonlinear behavior
of the torque converter needs to be taken into account.
The static model of Kotwicki (1982) is proposed for this
task. For the derivation of the vehicle mass estimator in
Section 5 it is sufficient to investigate the special case of a
locked torque converter, because the estimation process
can be reduced to phases of a drive cycle where the
converter is locked.

4.1 Vehicle Equations

Applying Newton’s law and building the dynamic equilib-
rium of forces, one will get:

m · v̇ = Ftire − Fpitch − Faero − Frr (1)

Ftire is the longitudinal tire force from all tires (see
Section 4.2). Fpitch = m · g · sinϕ is the resulting gravity
force on the vehicle due to changing road slope ϕ, the
gravity constant g, Faero the aerodynamic drag force :

Faero = cx ·A · pu

2 ·R · T
· (v + vwind)

2
(2)

with A is the frontal area of the vehicle, pu is the ambient
pressure, the ideal gas constant R , T is the ambient
temperature and cx is the aerodynamic drag coefficient.
The simplification Caero = cx ·A · pu

2·R·T
is used in future.

The rolling resistance Frr = Crr ·m · g · cosϕ is approxi-
mated by a linear correlation between the rolling resistance
coefficient Crr and the vertical tire force. Hence, the re-
sulting vehicle dynamics can be described as:

m·v̇ = Ftire−m·g·(sinϕ+ Crr · cosϕ)−Caero·(v + vwind)
2

(3)

4.2 Powertrain Equations

Assuming the torque converter is fully locked, the torque
at the gearbox Tg works directly against the engine net
torque Te and therefore the engine dynamics can be
written as Ie · ω̇e = Te − Tg with the engine inertia Ie, the
engine speed ωe, and the wheel dynamics as:

Iw · ω̇w = Tw − Tbr − r · Ftire (4)

with the inertia of all wheels Iw, the wheel speed ωw,
the wheel torque induced by the engine Te,w, the braking
torque Tbr, the effective wheel radius r and ω̇w = 1

r v̇
further

Ftire =
1

r
· Te,w − 1

r
· Tbr −

Iw
r2

· v̇ (5)

So, with the total powertrain ratio R and the powertrain
efficiency ηpwt and Te,w = ηpwt ·R · Tg and ωe = R · ωw it
can be written:

Ftire =
ηpwt ·R · Te − Tbr

r
−

(
R2 · Ie + 1

R · Iw
)

r2
· v̇ (6)

4.3 Resulting vehicle dynamics and discussion

Inserting (6) in Equation (3), and simplifying

Ires =
(R2·Ie+ 1

R ·Iw)
r2 the resulting vehicle equation can be

written as:

(m+ Ires) · v̇ =
ηpwt ·R · Te − Tbr

r
−

−m · g · (sinϕ+ Crr · cosϕ)− Caero · (v + vwind)
2

(7)

The effective wheel radius r in Equation 7 dynamically
changes at high rotational speeds, but can be modeled as
static for low vehicle speeds. It is assumed that the effective
wheel radius can be obtained using an approach similar
to Carlson and Gerdes (2005) and is available on the
CAN Bus. Nevertheless, for simplification in the dynamic
equations, it is treated as time invariant.

The value of the resulting powertrain inertia Ires can be
obtained using a method described in Van Karsen et al.
(2007).

The total powertrain ratio R is assumed to be known from
the gear manufacturer.

The rolling resistance coefficient Crr and the aerodynamic
drag coefficent Caero can be obtained by performing coast
down tests for which the vehicle speed trajectory is mea-
sured after letting a vehicle roll with detached powertrain
until it stops, usually in two directions on a plane surface to
compensate for wind forces and road slope disturbances.
Methodologies are described in Hamabe et al. (1985) or
Djordjevic et al. (2009). Typical values for Crr are around
0.015 for passenger cars according to Wang et al. (2004).

Since the gross vehicle mass m is the sum of the net vehicle
mass plus vehicle load plus fuel mass, it can be considered
as slowly varying parameter due to fuel consumption,
assuming that the vehicle load remains constant during
one trip. The effect of changing vehicle mass should
be considered in the powertrain model and therefore a
method for online estimation is proposed in the next
section.

5. STATE AND PARAMETER ESTIMATION

Since the correct knowledge of the vehicle mass has a
very high impact on the quality of vehicle longitudinal
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able the engine control unit (see Section 3.1). The influence
of powertrain elasticity and backlash effects is small and
can be neglected. The effects of tire slip are neglected,
since they are small during normal operation, where the
planning module will plan trajectories far away from the
physical limits. It is assumed that the effect of power losses
during gear shifts is compensated by a powertrain control
unit and therefore only the case of a transmission in steady
state is considered.

For a future implementation of the MPC for the whole
operating range of the vehicle, the nonlinear behavior
of the torque converter needs to be taken into account.
The static model of Kotwicki (1982) is proposed for this
task. For the derivation of the vehicle mass estimator in
Section 5 it is sufficient to investigate the special case of a
locked torque converter, because the estimation process
can be reduced to phases of a drive cycle where the
converter is locked.

4.1 Vehicle Equations

Applying Newton’s law and building the dynamic equilib-
rium of forces, one will get:

m · v̇ = Ftire − Fpitch − Faero − Frr (1)

Ftire is the longitudinal tire force from all tires (see
Section 4.2). Fpitch = m · g · sinϕ is the resulting gravity
force on the vehicle due to changing road slope ϕ, the
gravity constant g, Faero the aerodynamic drag force :

Faero = cx ·A · pu

2 ·R · T
· (v + vwind)

2
(2)

with A is the frontal area of the vehicle, pu is the ambient
pressure, the ideal gas constant R , T is the ambient
temperature and cx is the aerodynamic drag coefficient.
The simplification Caero = cx ·A · pu

2·R·T
is used in future.

The rolling resistance Frr = Crr ·m · g · cosϕ is approxi-
mated by a linear correlation between the rolling resistance
coefficient Crr and the vertical tire force. Hence, the re-
sulting vehicle dynamics can be described as:

m·v̇ = Ftire−m·g·(sinϕ+ Crr · cosϕ)−Caero·(v + vwind)
2

(3)

4.2 Powertrain Equations

Assuming the torque converter is fully locked, the torque
at the gearbox Tg works directly against the engine net
torque Te and therefore the engine dynamics can be
written as Ie · ω̇e = Te − Tg with the engine inertia Ie, the
engine speed ωe, and the wheel dynamics as:

Iw · ω̇w = Tw − Tbr − r · Ftire (4)

with the inertia of all wheels Iw, the wheel speed ωw,
the wheel torque induced by the engine Te,w, the braking
torque Tbr, the effective wheel radius r and ω̇w = 1

r v̇
further

Ftire =
1

r
· Te,w − 1

r
· Tbr −

Iw
r2

· v̇ (5)

So, with the total powertrain ratio R and the powertrain
efficiency ηpwt and Te,w = ηpwt ·R · Tg and ωe = R · ωw it
can be written:

Ftire =
ηpwt ·R · Te − Tbr

r
−

(
R2 · Ie + 1

R · Iw
)

r2
· v̇ (6)

4.3 Resulting vehicle dynamics and discussion

Inserting (6) in Equation (3), and simplifying

Ires =
(R2·Ie+ 1

R ·Iw)
r2 the resulting vehicle equation can be

written as:

(m+ Ires) · v̇ =
ηpwt ·R · Te − Tbr

r
−

−m · g · (sinϕ+ Crr · cosϕ)− Caero · (v + vwind)
2

(7)

The effective wheel radius r in Equation 7 dynamically
changes at high rotational speeds, but can be modeled as
static for low vehicle speeds. It is assumed that the effective
wheel radius can be obtained using an approach similar
to Carlson and Gerdes (2005) and is available on the
CAN Bus. Nevertheless, for simplification in the dynamic
equations, it is treated as time invariant.

The value of the resulting powertrain inertia Ires can be
obtained using a method described in Van Karsen et al.
(2007).

The total powertrain ratio R is assumed to be known from
the gear manufacturer.

The rolling resistance coefficient Crr and the aerodynamic
drag coefficent Caero can be obtained by performing coast
down tests for which the vehicle speed trajectory is mea-
sured after letting a vehicle roll with detached powertrain
until it stops, usually in two directions on a plane surface to
compensate for wind forces and road slope disturbances.
Methodologies are described in Hamabe et al. (1985) or
Djordjevic et al. (2009). Typical values for Crr are around
0.015 for passenger cars according to Wang et al. (2004).

Since the gross vehicle mass m is the sum of the net vehicle
mass plus vehicle load plus fuel mass, it can be considered
as slowly varying parameter due to fuel consumption,
assuming that the vehicle load remains constant during
one trip. The effect of changing vehicle mass should
be considered in the powertrain model and therefore a
method for online estimation is proposed in the next
section.

5. STATE AND PARAMETER ESTIMATION

Since the correct knowledge of the vehicle mass has a
very high impact on the quality of vehicle longitudinal
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control, it should be estimated online while driving. Fur-
ther, it is desirable not to use noisy measurement signals
of acceleration and speed directly in a controller but to
provide filtered estimates instead. A time discrete Ex-
tended Kalman Filter (EKF) as can be found in Simon
(2006) can be used to perform both tasks in parallel. To
implement the EKF, Equation 7 is further simplified with
the assumption that wind speed needs to be neglected
lacking a proper estimate. Remember that the equation
includes the assumption of a locked torque converter,
which is valid since it is possible to use the observer as
a parameter estimator only in locked torque converter
mode by introducing gain switching of the artificial process
noise covariance on the vehicle mass prohibit adaptation in
modes where the torque converter is in regular operation.
In order to estimate the vehicle mass parameter, it is
treated as an additional state which leads to the state
vector x = [ v a m ]

T
. Euler discretization with time step

Ts further leads to the time discrete state space equations
for the nonlinear state dynamics:

[
vk
ak
mk

]
=

[
vk−1 + Ts ∗ ak−1

fa(uk−1, ϕk−1, vk−1)
mk−1 + ωm

]
(8a)

with

fa =
1

m̃k−1
·
(
uk−1−m·g ·(sinϕ+Crr ·cosϕ)−Caero ·v2k−1

)

(8b)

where m̃ = m + Ires and the input uk =
ηpwt·R·Tek−Tbrk

r .
The vehicle mass m is considered as constant. Adding
artificial (white) process noise ωm is a trick to allow the
EKF to adapt to the true value. The measurement equa-
tions can be written as vk = vmk + υv and ak = amk + υa
with (white) measurement noise υv and υa for speed and
acceleration measurements. So the state space equations
can be written as:

xk = f(xk−1, uk−1,ωk−1)
yk = h(xk) + υk

(9)

and therefore with the Jacobians

F k−1 =
∂f

∂x

∣∣∣∣
x̂k−1,uk−1

=




1 Ts 0

− 2

m̃0
· Caero · v0 0

∂fa
∂m

0 0 1




Hk =
∂h

∂x

∣∣∣∣
x̂k

=

[
1 0 0
0 1 0

]

(10)

with

∂fa
∂m = − 1

m̃2
0
· (uk−1+Caero ·v02)− g

m̃0
· (sinϕ+Crr · cosϕ).

The a priori (denoted by -) EKF equations can be written
for the predictions of the state x̂− and covariance matrix
P−:

x̂−
k = f(x̂k−1,uk−1)

P−
k = F k−1P k−1F

T
k−1 +LQLT (11)

and the innovations for the a posteriori (denoted by +)
estimates as

x̂+
k = x̂−

k +Kk

(
yk −Hx̂−

k

)
P+

k = (I −KkH)P−
k (I −KkH)

T
+KkRKT

k

(12)

with the Kalman Gain K

Kk = P−
k H

T
(
HP−

k H
T +MRMT

)−1

(13)

where Q is the process noise covariance matrix and R
is the measurement noise covariance matrix, and the
matrices L and M are the Jacobians:

L =
∂f

∂ω

∣∣∣∣
x̂k−1,uk−1

=

[
0 0 0
0 0 1
0 0 1

]
(14)

M =
∂h

∂υ

∣∣∣∣
x̂k

=

[
1 0
0 1

]
(15)

6. SIMULATION RESULTS

Vehicle dynamics Equation (7) was used to simulate the
longitudinal behavior of the vehicle. To make the simu-
lation more realistic, colored noise was added on vehicle
speed and acceleration. Additionally, to simulate a more
realistic engine behavior, first order dynamics with a time
constant of 0.2 was used to delay engine torque demand to
the actual engine torque applied to the vehicle equation.
Figure 2 shows the simulation results, in which repeated
speed profiles were simulated in closed loop to demonstrate
the capabilities of the EKF to filter the acceleration and
speed signals (upper two subplots, with a zoom into a
detail on the right hand side in Figure 2) and to estimate
the vehicle mass m̂ online. One can see that m̂ converges
to the true value of 1200 kg after a few seconds (center
subplot). The state estimate errors ea = a − â for the
vehicle acceleration and ev = v − v̂ for vehicle speed
show that the estimates are slightly biased during the first
seconds before the vehicle mass estimate is closer to the
true value, and are very accurate after the estimation has
converged (lower subplots).

7. CONCLUSION AND OUTLOOK

The main contributions presented in this paper are (a)
the proposition of a novel model based controller scheme
for longitudinal low level control of automated vehicles,
including (b) the algebraic model equations and (c) a state
and parameter observer for online estimation of the vehicle
mass. The main difference to state-of-the art solutions
is that the information about future demand values is
used throughout all controller components, whereas other
solutions typically do not make use of this information.
The model equations as basis for further implementation
of this model based controller could be derived. As first
step, a state and parameter observer based on an Extended
Kalman Filter was implemented and validated through
simulation. As future steps, vehicle tests are planned,
before implementing and testing the model based control
scheme in closed loop. Investigations on the performance
of the longitudinal controller in automated mode are
planned. The contributions of this paper build the foun-
dation to further examine the potential of improvement in
fuel savings, planning accuracy and passenger comfort.
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Fig. 2. Simulation of a drive cycle with vehicle mass es-
timation. Although the initial estimate of the vehicle
mass is wrong, it converges together with the states
estimates to the true values within seconds, and esti-
mation errors e become close to zero.
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