2018 21st International Conference on Intelligent Transportation Systems (ITSC)

Maui, Hawaii, USA, November 4-7, 2018

Deep Reinforcement Learning for Predictive Longitudinal Control of
Automated Vehicles

Martin Buechel® and Alois Knoll2

Abstract—This paper presents a predictive controller for
longitudinal motion of automated vehicles based on Deep
Reinforcement Learning. It uses advance information about
future speed reference values and road grade changes. The
incorporation of this information leads to a new design param-
eter with a high influence on learning speed: the selection of
proper advance knowledge signals during training. We propose
a design method which shows improved learning performance
in our experiments. The performance of our controller is
explored through simulation of a real world driving scenario
in a parking garage. We demonstrate that our Reinforcement
Learning agent can learn a behavior close to the optimal
solution of a Nonlinear Model Predictive Controller, but at
reduced computational costs.

I. INTRODUCTION

Although several solutions exist to solve the problem of
longitudinal control of automated vehicles, there are still on-
going efforts to improve control accuracy within the research
community (e.g. [1]-[3]). These efforts try to overcome the
limitations of classical control solutions, like Proportional-
Integral (PI) controllers, which are easy to implement and
computationally cheap, but perform poorly regarding con-
trol accuracy, comfort, and fuel consumption, especially
in presence of disturbances and parameter variations, like
road grade changes or a changing vehicle mass [4], [5].
Automated vehicles, especially when connected to intelligent
infrastructure (see for example the Providentia project [6]),
will have access to considerably accurate advance informa-
tion about future speed demand values, arising from better
planning capabilities.

Many existing control solutions are tailored to the use
case of cruise control or adaptive cruise control and can
only be applied to traffic scenarios with presence of a lead
vehicle ([7]-[15]). For highly automated driving (see [16]),
a solution is needed which covers the full range of driving
scenarios. In [5], we already proposed an adaptive, Nonlinear
Model Predictive Control (NMPC) scheme and showed that
it is possible to increase control accuracy by including the
advance knowledge about desired trajectories as well as
future road grade changes. Recent studies [17] show that
the computational complexity of solving the optimal control
problem in the NMPC approach still poses challenges for real
world applications, when long prediction horizons arise. We
desire to incorporate advance knowledge of several seconds

IMartin Buechel is with fortiss GmbH, Munich, Germany.

2 Alois Knoll is with the Department of Robotics, Artificial Intelligence
and Embedded Systems, Technical University of Munich (TUM), Munich,
Germany

978-1-7281-0323-5/18/$31.00 ©2018 IEEE

augmented
state

Critic

reward

reference trajectory
advance knowlege
Environment <—

state action

Fig. 1. The Predictive Reinforcement Learning Controller architecture
enables the incorporation of advance knowledge about desired reference
values, as well as expected disturbances.

in combination with small sample times, which results in a
prediction horizon in the order of 20 time steps.

Another drawback of model predictive control schemes is
the necessity to accurately determine the model parameters,
since the robustness to parameter deviations is limited. The
identification of these parameters also poses challenges to
the practitioner. Other researchers also started working in a
direction of model-free longitudinal vehicle control in order
to avoid the determination of vehicle model parameters [1].

In recent years, significant progress has been made on Re-
inforcement Learning (RL) algorithms [18] to solve continu-
ous control problems. The very recent success of applications
of Deep Reinforcement Learning on problems like playing
the game of Go [19], or learning to play chess [20], was
perceived as a breakthrough in artificial intelligence. Within
Reinforcement Learning, there is a family of model-free
algorithms, which learn a (near-optimal) policy by letting an
agent interact with the environment, without the need of prior
modeling or parameter identification. There is evidence that
RL algorithms are capable to find a close-to-optimal solution
compared to Model Predictive approaches [21].

This paper investigates the application of a model-free
Deep Reinforcement Learning algorithm on the problem of
predictive longitudinal control of an automated vehicle, as an
alternative to Model Predictive Control. We analyze the in-
corporation of advance knowledge into that approach, which
leads to the open question of how to design the trajectories of

2391

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

advance information during the learning phase. We propose
a method to design advance knowledge trajectories and show
that it’s application improves learning speed.

The paper is organized as follows: We first give an
overview over related work in Section II, explain the problem
formulation and the proposed algorithm in Sections III and
IV, before presenting simulation details in Section V and
results in Section VI. Section VII finally gives a conclusion
and outlook on future research.

II. RELATED WORK

We first want to look into applications of Reinforcement
Learning in the automated vehicle domain, and then compare
various applications of RL for continuous control.

Sallab et al. [22] propose to apply Deep Reinforcement
Learning for the end-to-end learning of automated driving,
creating actuator commands based on raw sensor inputs. An
end-to-end approach was also published in [23], but using
supervised learning to train a Convolutional Neural Network
to generate steering commands from front camera images.

Mirchevska et al. [24] apply a Fitted Q-iteration algo-
rithm in combination with Extremely Randomized Trees
as function approximator to learn the high-level decision
making in highway scenarios involving interactions with
other road users. They proposed to leave low level commands
for steering and acceleration to classic planning and control
modules.

Various papers apply RL for (adaptive) cruise controllers.
All these methods can only be applied under the assumption
of the presence of a lead vehicle. [2] implemented an
adaptive longitudinal control method using Neural Dynamic
Programming for the acceleration decision while using Inter-
nal Model Control for the acceleration tracking. [25] adopted
a Policy Gradient RL method to learn a discrete control
policy for the adaptive cruise control case. They found that
this results in oscillating behavior and propose to extend
their algorithm to work in a continuous action space. [26]
presents an approach to tune fuzzy controllers using Rein-
forcement Learning and applies the method to longitudinal
vehicle control in a cruise control scenario with a leading
vehicle. Due to the nature of fuzzy controllers, it does not
exploit information about future vehicle speed or road slope
changes. [27] applies Least Squares Policy Iteration to tune
the parameters of a PI controller for a cruise controller and
validates the proposed solution on an experimental vehicle.
The set of possible actions are experimentally predefined
combinations of proportional and integral coefficients for
different vehicle speed levels. This approach demands a high
tuning effort and leaves little room for optimization to the
RL algorithm. No predictive information can be incorporated.
[28] investigates the application of policy search for learning
to control a throttle valve position control using the PILCO
algorithm.

Looking at generic Reinforcement Learning algorithms
to solve continuous control problems, [29] bench-marked
several RL algorithms for continuous control problems. Ac-
cording to their work, the most promising algorithms are

the Truncated Natural Policy Gradient (TNPG) [29], the
Trust Region Policy Optimization (TRPO) [30], and the Deep
Deterministic Policy Gradient (DDPG) algorithm [31]. They
found that classical algorithms, like REINFORCE [32] suffer
from convergence to local optima.

To the best of the author’s knowledge, no application of
Deep Reinforcement Learning for the task of the low-level
longitudinal vehicle control has been proposed, and hence is
regarded as one of the contributions of this paper.

A second contribution is the proposal of a Predictive Re-
inforcement Learning Controller which not only incorporates
information about reference trajectories, but also about future
disturbances (see Figure 1). We will discuss that this leads
to the question about how to design the advance knowledge
trajectories during training of our RL agent, and come up
with a proposal. The proposed method is regarded as a third
contribution of this paper.

III. PROBLEM FORMULATION

A. Longitudinal vehicle control

We want to find a solution for the task of longitudinal
control of automated vehicles, assuming the control mod-
ule receives reference speed trajectories from a trajectory
planning module. We also assume that information about
future disturbances regarding road slope changes is available
within a prediction horizon of a few seconds and can be
exploited in the control module. The longitudinal control
module should be capable to send wheel torque demand
commands to an actuator module, which actuates on both
engine and break. The wheel torque demand will be realized
only with a certain delay arising from internal dynamics of
the actuators. The reference trajectory information should be
incorporated in order to overcome this limitation and hence
allows to create smoother control signals to increase comfort
and reduce energy consumption.

B. Reinforcement Learning problem

To implement a Reinforcement Learning based controller,
we consider a standard RL setup for continuous control in
which an agent interacts with an environment F at each
discrete time-step ¢. At each ¢, the agent gets an observation
o; from the environment, performs an action u; € RY based
on that observation, and receives a scalar reward ;. We
further assume the systems state s; is fully observed, hence
St = O¢.

The agent’s behavior is defined by a deterministic policy
m, while the environment E might be stochastic. E is
modeled as a Markov Decision Process with an initial state
distribution p(s1), the transition dynamics p(s;+1]|s¢, us) and
the reward function r(s¢, u;). The goal of a Reinforcement
Learning algorithm is to learn a policy 7 (s, u) which max-
imizes the expected return IE(R) from the start state. The
return is defined as the sum of discounted future reward
Ry = .7, 4U=0r(s;,u;) with the discount factor v €
[0,1].

2392

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

IV. ALGORITHM

We propose to apply a variant of the Deep Deterministic
Policy Gradient (DDPG) algorithm [31]. DDPG is an evo-
lution of the Deterministic Policy Gradient (DPG) algorithm
[33]. It is a model-free, off-policy algorithm of the family of
actor-critic networks [18], which uses Deep Neural Networks
(DNN) as function approximators. DDPG allows to learn
policies in high-dimensional, continuous state and action
spaces. For completeness, a short version of the explanation
of the algorithm from the original paper [31] is given here
before presenting the algorithm with our modifications:

DDPG uses the action-value function Q(s,u) which de-
notes the expected return from any state s when performing
action u. For a deterministic policy w(s) and using the
Bellmann equation, () can be written as

Q" (st,ut) =
]E’I‘t75t+1~E[T(St7 ut) + ’YQH(StﬁLla M(St+1))]. (])

Since Q" is only dependent on the environment, it can be
learned off-policy, meaning taking actions from a different
policy 3. The action-value function @ is approximated by a
DNN with parameters #%, which can be updated minimizing
the loss:

L(QQ) = EsthB,utNB,nNE[(Q(Sta utleQ) - yt)z] (2)

where

yr = (s, ur) + YQ(St41, u(5¢4+1109). (3)

In order to stabilize learning, DDPG applies an idea from
[34] and uses replay buffers and a separate target network
which calculates y;. Replay buffers act to randomly choose
samples out of the history of collected tuples of starting
state, action, target state and reward. This is necessary to
let the algorithm see independent and identically distributed
samples, an assumption of the underlying Markov Chain
theory, which does not hold in dynamic environments.

The actor policy p(s|0*) is updated using:

Voud =
Esprf’ [qu(Sv U‘GQ) |s:sf,,u:u(5t)v9wu(5‘eu) |5:5t] 4)

which is the policy gradient [33]. In order to have the
learning components less sensitive to state information of
different units and ranges across different environments, a
technique called batch normalization [35] is applied. To sta-
bilize Q-learning, copies of the actor and critic network are
created and used for calculating the target values (Equation
3). The weights of these target networks are updated to
slowly track the learned networks: 6’ < 70 + (1 — 7)¢’
with 7 < 1.

A. State augmentation for predictive control

In order to incorporate advance knowledge to let the
agent learn a predictive control policy, the state vec-
tor s is augmented with the reference trajectory vector
P =[pt,...pr4n,], with reference state information over
the prediction horizon N,,, and advance knowledge vectors
A; = oy, ... 44 N,], containing information over the ad-
vance knowledge horizon N,.

B. Choice of excitation signal

The task of Reinforcement Learning for predictive tracking
control poses an additional design option to the engineer: the
choice of a good reference trajectory during Reinforcement
Learning. If advance knowledge about expected disturbances
is incorporated, another degree of freedom is added. Since
this proposal is a novelty, we want to discuss this here and
want to show later that the choice of reference trajectories
during the learning phase plays a crucial role for learning
performance.

One intuitive choice of reference trajectories for learning
would be to train our agent on the same scenario on which
we want to evaluate it. One might also believe, that our agent
will learn to perform well on this single scenario quickly, but
perform poorly on a different one which lies outside the state
and action space visited during learning, due to extrapolation
effects.

In order to perform well in the whole state space, we need
to visit these states also during learning. Covering the whole
state space during vehicle testing might be a challenge on test
tracks. Considering to perform the training on vehicle test
beds gives additional possibilities to the design of advance
knowledge trajectories.

We suggest to apply a method from nonlinear dynamic
system identification [36] which is broadly used in the
domain of internal combustion engine identification, and
propose to use Amplitude Modulated Pseudo Random Binary
Signals (APRBS) [37][38] for the training phase. APRBS are
a sequence of steps with arbitrary amplitudes and a varying
step length. We propose to modify the original DDPG
algorithm to include the generation of APRBS reference
trajectories for each episode during learning. Details about
the calculation of APRBS reference signals are given in [38].

C. PRLC-A longitudinal vehicle controller

Our target is to learn a policy which lets a vehicle follow
a given speed reference trajectory v = [vf, v, |, ..., v, Np].
In order to make it predictive, we first augment the state
with information dependent on v, but instead of reference
speed values, we calculate P = [es, €41, .. -7€t+Np] with
e; = vf — vg, which is the deviation of desired speed values
from the actual vehicle speed at each time step over the
prediction horizon.

We further additionally include advance knowledge infor-
mation about current and future road slope. For simplicity
we keep the advance knowledge horizon N, identical to the
prediction horizon N, hence the observations are defined as

Ot = [Ut7at7€t,€t+17--~7€t+Npa<Pta99t+17~-~799t+Np]’ with

2393

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

the vehicle’s acceleration a; at time ¢ and the road grade
information ¢ over the prediction horizon. We call our
controller the “Predictive Reinforcement Learning Controller
with Incorporated Advance Knowledge (PRLC-A)”.

D. Reward function

To reduce the steady state error of the resulting policy,
we use a non-quadratic reward function [39] instead of a
common quadratic reward function. We also want to penalize
high control output values, so we define

(&)

r(se,ur) = —(qlvf — o] + plu)).
E. Proposed algorithm

The resulting Algorithm 1 is an enhancement to the DDPG
algorithm from [31].

Algorithm 1
1: Randomly initialize critic network Q(s,u|0%) and
actor 1i(s|0#) with weights % and 6*
2: Initialize target network Q' and p’ with weights
09 +— 69 o +— g+

3: Initialize replay buffer R
4: for episode = 1, M do
5. Initialize a random process N for action exploration
6: Create reference trajectory signal using APRBS
Generator
7: Receive initial observation state s;
8 fort=1, T do
Select action u; = u(s¢|0*) + N according to
the current policy and exploration noise
10: Execute action u; and observe reward r; and new
state S;y1
11: Store transition (s¢,ws, ¢, Se41) in R
12: Sample a random minibatch of N transitions
(Si, Uy T4y Si+1) from R
13: Set y; =13 + Q' (si11, 1t (55111009
14: Update critic by minimizing the loss:
L(69) = % >y — Q(s1,ue|09))?
15: Update the actor policy using the sampled policy
gradient:
Voud =
% Zz VUQ(57 uwQ)|s:si,u:u(si)v9“u(5|eﬂ)‘57:
16: Update the target networks:

99" «— 769 + (1 — 7)6%
O 10" + (1 — 7)o
17: end for
18: end for

V. SIMULATION DETAILS

To validate the proposed controller, real data from a
driving scenario in a parking garage was taken as reference
to feed a simulation. The vehicle should follow a speed
profile (Figure 2) with different speed levels coming from
a planning module, in which higher speeds are requested for
longer straight, open passages and speed is reduced to drive
around corners or in tight passages.

—_ 3
)
£
>
] 27
[
v
Q
]
o 11
S
<
[
> 0
— 0.151
5
o
= 0.10
S
(]
B 0051
o
T 0.00 A
e
—0.05 4
0 20 40 60 80 100 120 140
time [s]
Fig. 2. Evaluation of a Predictive Reinforcement Learning Controller in

a real world example. The reference speed trajectories are taken from a
driving scenario in a parking garage. The Predictive Reinforcement Learning
Controller with incorporated advance knowledge about future road grade
changes (PRLC-A) performs well in tracking the desired vehicle speed v<.

A. Simulation environment

According to [5], the discrete vehicle speed dynamics is
modeled with the input u; = M¢ as

(6)

with sample time 7', road grade ¢ and vehicle mass m.
Function h describing the first order torque response M, to
a torque demand M? due to the internal engine dynamics is
given as

Viy1 = Tg(h(ut)7vta§0t7m) + v

My, = h(Mf)
1
= Wl (Mtd - Mw,t—l) + Mw,t—l- (7)
Tt
As in [5], we use a different time constant 7, for engine

and 7, for brake torque build-up.
Function g describes the powertrain dynamics as

My +
Mw)v b 7m = :
g(ity Uty Pt) (m+L~es) Ters
1

— W (mg (Sin Pt + CT- COS (pt) — Cdvg) (8)

with I,.s; as the resulting mass from powertrain inertia,
ress the effective wheel radius, C, the rolling resistance
coefficient and C'; the aerodynamic drag coefficient. Further,

Mw = Thpwt Rpwt Me - Mbr (9)

with powertrain efficiency 7., powertrain ratio Ry, en-
gine torque M, and break torque Mj,.

B. Implementation details

The longitudinal vehicle dynamics model according to (6-
7) was implemented as OpenAl gym [40] environment in
Python. The RL agent was trained with a modified baseline
implementation from [41] of Algorithm 1 (in Python and

2394

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

Tensorflow) which was trained in the following manner:
Unless mentioned, our hyper-parameters were identical to the
appendix of [31] with DNNs for actor and critic, containing
2 hidden layers with Rectified Linear Units and a tanh layer
for the output. Networks were optimized with an Adam
optimizer. As proposed in [41], we used 64 units in the
hidden layers. The discount factor v = 0.99 and for the soft
target updates a 7 = 0.01 was used. We applied Gaussian
noise with ¢ = 0.02, since learning performance with
parameter noise did not show good learning performance,
but this finding was not analyzed any further.

Find the parameters used for our experiments in Table 1.

TABLE I
VEHICLE EQUATION SYMBOLS AND SIMULATION PARAMETER

Symbol H Description H [Unit] ‘

v Vehicle speed [m/s]
M.y, Wheel torque [Nm]
Md Wheel torque demand [Nm)]
Me Engine net torque [Nm]
My, Brake torque [Nm]

© Road grade [deg]

m Vehicle mass 2000 [kg]
Lres Mass resulting from powertrain inertia 50 [kg]
Npwt Powertrain efficiency 0.89 [-]

R Powertrain ratio 8.446 [-]
Teff Effective wheel radius 0.3 [m]

Mgrag Maximum negative engine drag torque -20 [Nm]

g Gravitational constant 9.81 [N]

Cr Rolling resistance coefficient 0.015 [-]

Cyq Aerodynamic drag coefficient 0.4262 [kg/m]

N Prediction horizon 20

T Controller sampling time 0.05 [s]

Te Time constant of engine torque response 0.15 [s]
Thr Time constant of brake torque response 0.05 [s]

VI. RESULTS

A. Comparison of learning speed

We evaluate the learning performance by training a DDPG
agent with reference and advance knowledge information
from the real world data set from Figure 2. In other words, we
let our agent learn by repeatedly driving through a simulated
parking garage, and evaluate the performance on the same
driving scenario by calculating the evaluation return.

We then perform training runs on APRBS sequences
and evaluate on the parking garage data set as before, and
compare the results.

Figure 3 shows the comparison of the learning curves as
a mean over 20 runs with a total of 1M steps with 95%
confidence intervals. We can see that the learning speed of
our approach using APRBS signals is considerably better
than when training on the evaluation data set.

0.00
_———N s~
/"‘~/’h‘—_’\, =~
—0.251
—0.50 1
£
El -0.751
o
S —1.00
=
©
3
£ _1.251
w
-1.50 1
—1.751 == Training on real world dataset
= Training on APRBS signals
—2.00 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Samples le6
Fig. 3. Comparison of learning speed when the agent trains on different

data sets. The learning performance when learning on APRBS signals, as
we propose, is considerably better.

=
o
L

d

vehicle speed
[m/s]
w
<

o

o]
L
[

o
L

acceleration
[m/s?]

0

reward [-]
1
w

—— reward

0 2 4 6 8 10
time [s]

Fig. 4. Vehicle speed response during learning. The predictive policy learns
a smooth response behavior to a sequence of short APRBS step responses.
The perturbations on the acceleration a are due to action noise and only
occur during learning. Please consider the different time scale compared to
Figures 2 and 5.

B. Training using APRBS sequence

We can see a typical APRBS sequence of steps of random
length and vehicle speed demand values in Figure 4. One can
see that the PRLC controller learns well to generate smooth
transitions to the step demand values, thanks to the predictive
nature. Perturbations on the acceleration signal are due to
exploration noise, which is necessary during training. Once
we observe the agents performance has converged, we stop
training and use the generated policy in a closed loop manner
without any action noise.

C. Comparison of computation times

A comparison of computation times to calculate the
control action of the NMPC approach from [5] with the
PRLC-A controller is given in Table II. Times shown are
mean values over 2500 cycles and evaluated on a Laptop
with an Intel Core i7-6700HQ CPU with 2.6GHz and 16GB

2395

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

= N N
© =) N}
| ! L

vehicle speed v [m/s]

~
o
L

I
EN
f

=
[N}
L

90 95 100 105 110 115
time [s]

Fig. 5. Comparison of tracking performances of the proposed PRLC-A
controller with results from a PI controller and a NMPC controller. The
Predictive Reinforcement Learning controller shows a performance close to
the optimal solution of the NMPC.

RAM. The NMPC controller was implemented in Matlab and
the PRLC-A was inference only with Tensorflow on a CPU,
so both were not optimized for fast execution. Although the
results are not directly comparable due to implementation
in different languages, we find the execution time of the
PRLC-A controller is between 30 to 70 times faster, while
being almost insensitive to increasing prediction horizons.

TABLE II
RESULTS: EVALUATION OF COMPUTATION TIMES FOR PRLC-A
COMPARED TO NMPC WITH DIFFERENT PREDICTION HORIZONS N,

Controller Np=10 Np=15 Np=20
PRLC-A 1.112 [ms] | 1.112 [ms] | 1.113 [ms]
NMPC 37.1 [ms] 57.5 [ms] 81.1 [ms]

D. Evaluation of PRLC-A controller

We then evaluated the performance of a resulting con-
troller which was trained on ARPBS signals in comparison to
other existing control solutions. First, a standard PI controller
was tuned to aperiodic step responses in flat terrain and the
relevant speed range, to avoid uncomfortable oscillations.
Second, the NMPC controller from [5] was evaluated, which
includes identical advance knowledge to calculate the opti-
mal control command.

We evaluate the controllers on the parking garage data
set from Figure 2. Figure 5 shows the same evaluation but
includes the comparison data. It shows a zoom to the most
critical part between seconds 90 and 115 of the data set,
when right after climbing up the ramp at increased speed,
the vehicle is requested to slow down in order to safely pass
a narrow passage at a gate.

We can observe that the PI controller has difficulties to
cope with the disturbance due to the ramp, and produces a
big undershoot when decelerating. The PRLC-A controller
performs close to the optimal solution of the NMPC con-
troller.

VII. CONCLUSION AND OUTLOOK

We demonstrated that Deep Reinforcement Learning has
the potential to be used for predictive tracking control
which incorporates advance knowledge of disturbances. We
applied this technique to low-level longitudinal control of
automated vehicles, which are able to provide such infor-
mation. We found that the design of the trajectories for
reference values and advance knowledge has a high impact
on learning speed and proposed a method for the design of
training experiments. We showed that a Deep Reinforcement
Learning based controller, once trained, has considerably low
computing times compared to a Nonlinear Model Predictive
Controller, while achieving close-to-optimal performance.

For a practical implementation of the proposed approach,
many obstacles have to be considered. We found a high vari-
ance between different training runs, which has two implica-
tions. First, without performing time consuming evaluation
runs, it is challenging to choose the best policy. Second,
the training time necessary to achieve an acceptable control
performance is high, and one can expect that more training
samples will be necessary for real world application. We
assumed, that no other disturbances or variable parameters,
like wind or a changing vehicle mass, are present. Also, no
measurement noise was simulated. We want to investigate
the robustness of the approach against these influences. To
further improve learning performance and stabilize training,
we want to look into ideas from Apprenticeship Learning or
Imitation Learning.

ACKNOWLEDGMENTS

The German Federal Ministry of Transport and Digi-
tal Infrastructure supported this work within the project
“Providentia”. The financial support is gratefully acknowl-
edged.

REFERENCES

[1] P. Polack, B. D’Andréa-Novel, M. Fliess, A. de la Fortelle, and
L. Menhour, “Finite-Time Stabilization of Longitudinal Control
for Autonomous Vehicles via a Model-Free Approach,” [FAC-
PapersOnLine, 2017. [Online]. Available: http://arxiv.org/abs/1704.
01383

[2] Q. Zhu, B. Dai, Z. Huang, Z. Sun, and D. Liu, “An Adaptive
Longitudinal Control Method for Autonomous Follow Driving Based
on Neural Dynamic Programming and Internal Model Structure,”
International Journal of Advanced Robotic Systems, vol. 14, no. 6,
pp. 1-13, 2017.

[3] L. Menhour, B. D’Andrea-Novel, M. Fliess, D. Gruyer, and
H. Mounier, “An Efficient Model-Free Setting for Longitudinal and
Lateral Vehicle Control: Validation Through the Interconnected Pro-
SiVIC/RTMaps Prototyping Platform,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 19, no. 2, pp. 461-475, 2018.

[4] M. Buechel and A. Knoll, “A Parameter Estimator for a
Model Based Adaptive Control Scheme for Longitudinal Control
of Automated Vehicles,” 9th IFAC Symposium on Intelligent
Autonomous Vehicles (IAV 2016), vol. 49, no. 15, pp. 181-186, 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
52405896316310059

, “An Adaptive Nonlinear Model Predictive Controller for

Longitudinal Motion of Automated Vehicles,” in 2016 IEEE

Conference on Control Applications (CCA), 2016, pp. 103-108.

[Online]. Available: http://ieeexplore.ieee.org/document/7587829/

[5]

2396

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

G. Hinz, M. Buechel, E Diehl, G. Chen, and A.-k.
Kraemmer, “Designing a Far-Reaching View for Highway Traffic
Scenarios with 5G-Based Intelligent Infrastructure,” in 8. Tagung
Fahrerassistenzsysteme TUEV - Sued, 2017. [Online]. Available:
https://mediatum.ub.tum.de/doc/1421303/1421303.pdf

T. Radke, “Energieoptimale Laengsfuehrung von Kraftfahrzeugen
durch Einsatz vorausschauender Fahrstrategien,” Ph.D. dissertation,
Karlsruher Institut fuer Technologie (KIT), 2013. [Online]. Available:
http://dx.doi.org/10.5445/KSP/1000035819

R. Schmied, H. Waschl, R. Quirynen, and M. Diehl, “Nonlinear MPC
for Emission Efficient Cooperative Adaptive Cruise Control,” [FAC-
PapersOnLine, vol. 48, no. 2014, pp. 160-165, 2015.

D. Corona, M. Lazar, B. De Schutter, and M. Heemels, “A Hybrid
MPC Approach to the Design of a Smart Adaptive Cruise Controller,”
Proceedings of the IEEE International Conference on Control Appli-
cations, pp. 231-236, 2006.

T. V. Keulen, G. Naus, and B. D. Jager, “Predictive Cruise Control in
Hybrid Electric Vehicles,” World Electric Vehicle Journal, vol. 3, pp.
494-504, 2009.

W. Qiu, Q. U. Ting, Y. U. Shuyou, G. U. O. Hongyan, and C. Hong,
“Autonomous Vehicle Longitudinal Following Control Based On
Model Predictive Control,” in Proceedings of the 34th Chinese Control
Conference, Hangzhou, 2015, pp. 8126-8131.

D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, “Full-range
Adaptive Cruise Control Based on Supervised Adaptive Dynamic
Programming,” Neurocomputing, vol. 125, no. 2014, pp. 57-67, 2014.
Z. Xiangrui and W. Junmin, “A Parallel Hybrid Electric Vehicle En-
ergy Management Strategy Using Stochastic Model Predictive Control
With Road Grade Preview,” IEEE Transactions on Control Systems
Technology, 2015.

S. E. Li, Z. Jia, K. Li, and B. Cheng, “Fast Online Computation of
a Model Predictive Controller and Its Application to Fuel Economy
Oriented Adaptive Cruise Control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 3, pp. 1199-1209, 2015.

H.-H. Chiang, “Longitudinal and Lateral Control Design for Vehicle
Automated Driving,” Ph.D. dissertation, Department of Electrical and
Control Engineering National Chiao Tung University, 2008.

SAE, “SAE Document J3016 - Taxonomy and Definitions for
Terms Related to On-Road Motor Vehicle Automated Driving
Systems,” 2016. [Online]. Available: https://www.sae.org/standards/
content/j3016{_}201609/

S. S. Dughman and J. A. Rossiter, “The Feasibility of Parametric
Approaches to Predictive Control when Using Far Future Feed For-
ward Information,” IEEE International Conference on Control and
Automation, ICCA, no. 1, pp. 1101-1106, 2017.

R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction,” Cambridge, MA, p. 333, 2017. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antono-glou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M.-1. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the Game of Go with Deep Neural
Networks and Tree Search,” Nature, vol. 529, no. 7587, pp. 484-489,
2016. [Online]. Available: http://dx.doi.org/10.1038/nature16961

D. Silver, T. Hubert, J. Schrittwieser, I. Antono-glou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
T. Lillicrap, K. Simonyan, and D. Hassabis, ‘“Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning
Algorithm,” arXiv preprint, pp. 1-19, 2017. [Online]. Available:
http://arxiv.org/abs/1712.01815

D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforce-
ment Learning Versus Model Predictive Control: A Comparison on
a Power System Problem,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 39, no. 2, pp. 517-529, 2009.
A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep
Reinforcement Learning Framework for Autonomous Driving,”
Electronic Imaging, pp. 70-76, 2017. [Online]. Available: https:
/farxiv.org/pdf/1704.02532.pdf

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

2397

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to End Learning
for Self-Driving Cars,” arXiv preprint, 2016. [Online]. Available:

http://arxiv.org/abs/1604.07316
B. Mirchevska, M. Blum, L. Louis, J. Boedecker, and M. Werling,

“Reinforcement Learning for Autonomous Maneuvering in Highway
Scenarios,” Walting, pp. 32-41, 2017.

C. Desjardins and B. Chaib-draa, “Cooperative Adaptive Cruise Con-
trol: A Reinforcement Learning Approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1248-1260,
2011.

X. Dai, C.-k. K. Li, S. Member, A. B. Rad, S. Member, A. B. Rad,
and S. Member, “An Approach to Tune Fuzzy Controllers Based
on Reinforcement Learning for Autonomous Vehicle Control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp.
285-293, 2005.

J. Wang, X. Xu, D. Liu, Z. Sun, and Q. Chen, “Self-learning Cruise
Control using Kernel-based Least Squares Policy Iteration,” IEEE
Transactions on Control Systems Technology, vol. 22, no. 3, pp. 1078—
1087, 2014.

B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll,
Learning Throttle Valve Control Using Policy Search. Berlin Heidel-
berg: Springer, 2013.

Y. Duan, X. Chen, J. Schulman, and P. Abbeel, “Benchmarking Deep
Reinforcement Learning for Continuous Control,” arXiv, 2016.

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel,
“Trust Region Policy Optimization,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), 2015, pp.
1889-1897. [Online]. Available: http://arxiv.org/abs/1502.05477

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous Control with
Deep Reinforcement Learning,” arXiv preprint arXiv:1509.02971, pp.
1-14, 2015. [Online]. Available: http://arxiv.org/abs/1509.02971

R. J. Willia, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8,
no. 3, pp. 229-256, 1992.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic Policy Gradient Algorithms,” Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp.
387-395, 2014.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” arXiv preprint, pp. 1-9, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

S. JToffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv
preprint, 2015. [Online]. Available: http://arxiv.org/abs/1502.03167
O. Nelles, Nonlinear System Identification. ~ Heidelberg: Springer,
2001.

M. Vogels, E. Martini, K. Gschweitl, P. Mathis, H. Altenstrasser, and
M. Buechel, “Dynamic Powertrain Calibration: Using Transient DoE
and Modelling Techniques,” Design of experiments (DoE): In: Engine
Development 1I, Haus der Technik Fachbuch, vol. 49, 2005.

M. Deflorian and S. Zaglaver, “Design of Experi-
ments for Nonlinear Dynamic System Identification,” 18th
IFAC World Con-gress, pp. 13179-13184, 2011. [On-

line]. Available: http://www.nt.ntnu.no/users/skoge/prost/proceedings/
ifacl1-proceedings/data/html/papers/1502.pdf

J. M. Engel and R. Babuska, “On-line Reinforcement Learning for
Nonlinear Motion Control: Quadratic and Non-quadratic Reward
Functions,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 19,
pp. 70437048, 2014.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAl Gym,” pp. 1-4, 2016. [Online].
Available: http://arxiv.org/abs/1606.01540

P. Dhariwal, C. Hesse, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, “OpenAl Baselines,” https://github.com/openai/baselines,
2017.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:35:24 UTC from IEEE Xplore. Restrictions apply.

