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Abstract

Exponential growth in data generation, emerged from an increase in the number of devices connected
to the World Wide Web, and also an increase in the precision of data gathered pose a threat to
data centers while opening new potential for data analysis when the processing is kept tractable.
To deal with this ever growing and already enormous amount of data, hardware acceleration is
receiving much attention due to its great efficiency and parallel capabilities. Hardware acceleration
provides the best in class performance and power consumption properties; however, it is hindered
by high research and development costs and long times-to-market that are repeated for each new
application. In this perspective, by means of easier reconfigurability, better availability, and more
convenient integration with the current infrastructures, field programmable gate arrays (FPGAs)
are already finding their way into industrial data centers and commercial acceleration services.

We propose a reconfigurable hardware-based streaming architecture, namely flexible query processor
(FQP), that constitutes a family of stream processing blocks that support dynamic changes to
queries and streams, as well as static changes to the processor-internal fabric in order to maximize
performance for given workloads. While processing incoming tuples, FQP can accept new queries,
a key characteristic distinguishing FQP from related approaches. As an extension to FQP, we add
the support for flexible data dimensions, in particular a segment-at-a-time mechanism, to realize
processing of tuples of variable sizes. While many of these features are readily available in software,
their hardware-based realizations have been one of the main shortcomings of existing research
efforts.

FQP is designed to support the stream join parallelization, as one of the most resource-intensive
operations. As a result, it utilizes a bidirectional data-flow model that was the only available
stream join parallelization model at the time. This model complicated the design of FQP by forcing
streams into two separate data-paths, imposing large controlling logics in each processing block
to prevent race conditions and to ensure the correct execution. To address these fundamental
issues, we introduce a novel unidirectional data-flow model for low-latency stream join processing
parallelization, referred to as SplitJoin, that operates by splitting the join operation into independent
storing and processing steps that gracefully scale with respect to the number of cores.

In the context of stream processing, it is common to have queries that use multiple data streams
simultaneously. This marks the multiway stream joins operator as one of the essential blocks of
our query processor. The challenges for multiway stream joins come from the required real-time
join operator reordering when intermediate results are not materialized (due to their potentially
large sizes). We propose a scalable circular pipeline design, namely Circular-MJ, which realizes the
various necessary join trees using a fixed operator ordering and an arbitrary tuple input mechanism.
Circular-MJ reduces the reordering challenge to an input reordering problem, which is later addressed
by a pipeline distribution chain. We further propose an optimized pipeline stream join (Stashed-MJ)
that uses a best-effort buffering technique to maintain intermediate results. Lastly, we present a
parallelized version of our multiway stream join by integrating our proposed pipelines into a parallel
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unidirectional flow-based architecture (Parallel-MJ).

As another crucial operator necessary for our query processor, we propose our novel hash-based
stream join solution (HB-SJ) in hardware to accelerate processing of equi-joins, the most common
type of join operators. HB-SJ utilizes two Murmur3 hash functions with four storage tables. In
case the selected row is full in all four tables, the new tuple is inserted into an overflow buffer. To
preserve the tuples’ arrival ordering (necessary in the count-based sliding window), our solution
uses an order sliding window. Choosing proper parameters for HB-SJ enables extremely fast (in the
order of nanoseconds) sliding window lookups independent of the actual size of the window.

As the last part in this dissertation, we present our simplex stream processor (SSP), a successor
to our custom flexible query processor that targets real-time stream processing while providing
modular components. SSP benefits from our stream customized network-on-chip which uses a
unidirectional data-flow model. By benefiting from our proposed solutions (i.e., SplitJoin, Stashed-MJ,
Parallel-MJ, HB-SJ), SSP introduces libraries for the communication network and processing blocks,
with a consistent interface that allows the further addition of components. As a proof of concept,
we benchmark a modified version of the TPC-H third query on our SSP, realized in VHDL, while
presenting the query mapping, programming, and processing steps in detail.
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Zusammenfassung

Die exponentielle Zunahme an maschinell generierten Daten stellt Datencenter vor neue Herausfor-
derungen. Dieser Trend wird getrieben durch eine steigende Anzahl an internetfähigen Geräten und
der Erhebungsgenauigkeit von Sensoren. Dies ermöglicht aber auch neue Anwendungszenarien in
der Datenanalyse. Um mit den steigenden Datenmengen umgehen zu können bekommt Hardwarebe-
schleunigung wegen ihrer Effizienz sowie Parallelisierungseigenschaften derzeit große Aufmerksamkeit.
Field Programmable Gate Arrays (FPGAs) haben in diesem Zusammenhang wegen ihrer einfachen
Rekonfigurierbarkeit, ihrer hohen Verfügbarkeit sowie der komfortablen Integration in existierende
Infrastrukturen bereits Einzug in industrielle Datencenter und kommerzielle Beschleunigungsservices
gefunden.

In dieser Arbeit wird eine rekonfigurierbare Hardware-basierte Streamingarchitektur, auch Flexible
Query Processor (FQP) genannt, vorgestellt. FQP besteht aus einer Familie von Datenstromverarbei-
tungsblöcken. Diese Blöcke passen sich dynamisch an die Anfragen und Datenströme an. Weiters
werden statische Anpassungen im prozessorinternen Gefüge zur Leistungssteigerung für bestimmte
Arbeitslasten eingesetzt. Im Gegensatz zu anderen Ansätzen akzeptiert FQP neue Anfragen auch
während der Verarbeitung eingehender Datensätze. Eine Erweiterung von FQP, der Segment-at-
a-time Mechanismus, flexiblisiert die Datendimensionen wodurch Datensätze unterschiedlicher
Größe verarbeitet werden können. Viele dieser Eigenschaften sind in Software verfügbar, eine
Hardware-basierte Umsetzungen ist eine Lücke in der aktuellen Forschung.

Das Ziel von FQP ist Stream Joins, eine der ressourcenintensivsten Operationen, zu parallelisieren.
FQP verwendet ein bidirektionales Datenflussmodell, welches das einzige zu dieser Zeit verfügbare
Parallelisierungsmodell darstellte. Dieses Modell erschwerte das Design von FQP. Es erfordert
aufwendig Kontrollogik da Streams in zwei separate Datenpfade aufgeteilt werden. Die Kontrollogik
ist erforderlich um Race Conditions zu verhindern und die korrekte Ausführung zu garantieren. Wir
stellen ein neues unidirektionales Datenflussmodell vor, genannt Stream Join Parallelisierung
(SplitJoin), welches die Join Operationen in unabhängige Speicher- und Verarbeitungsschritte
unterteilt, welche wiederum mit der Anzahl der Kerne skalieren.

Anfragen greifen auf mehrer Datenströme gleichzeitig zu. Der Multiway Stream Join ist ein wichtiger
Verarbeitungsblock um diese Aufgabe zu erfüllen, hat aber siginifikante Skalierungsprobleme bei
der Analyse von Datenströmen mit Hardwarebeschleunigung.

Die Herausforderungen bei Multiway Stream Join ist dabei die Neuanordnung der Join Operatoren
in Echtzeit sofern Zwischenergebnisse nicht materialisiert werden. Die Arbeit stellt hierzu ein
skalierbares ringförmiges Pipelinedesign mit Namen Circular-MJ vor, welches die verschiedenen not-
wendigen Join-Bäume durch eine starre Operatoranordnung sowie einen willkürlichen Datensätzen
realisiert. Circular-MJ reduziert das Neuanordungsproblem der Operatoren auf das Eingabeordungs-
problem, welches durch eine Pipeline an Verteiler gelöst wird. Darüber hinaus wird eine optimierte
Pipeline Stream Join (Stashed-MJ) vorgestellt. Dieser verwendet einen best-effort Pufferansatz um
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Zwischenergebnisse zu verwalten. Zuletzt wird eine parallelisierte Version des Multiway Stream
Joins präsentiert, welche die vorgestellten Pipelines in eine parallele unidirektionale flow-basierte
Architektur integriert (Parallel-MJ).

Als weiteren wichtigen Operator für den Queryprozessor, wird eine neuartige Hash-basierte
Hardwarelösung zur Beschleunigung von Equi-Joins auf Streams (HB-SJ) vorgestellt. HB-SJ verwendet
dazu zwei Murmur3 Hashfunktionen mit vier Speichertabellen. Falls die ausgewählte Reihe in allen
vier Tabellen gefüllt ist, wird der neue Datensatz in einen Überflusspuffer eingefügt. Um die
Ordnung der Datensätze nach Ankunft zu garantieren wird ein Sliding Window eingesetzt. Durch
eine angepasste Konfiguration für HB-SJ werden extrem schnelle Sliding Window Zugriffe unabhängig
der Größe erreicht.

Hardwarebeschleuniger bieten gute Leistung bei niedrigem Energieverbrauch. Hohe Forschungs-
und Entwicklungskosten sowie lange Zeiten bis zur Marktreife, die sich für jede neue Anwendung
wiederholen, beeinträchtigen jedoch aktuell ihren Erfolg. Im letzten Teil dieser Dissertation wird
Simplex Stream Processor (SSP), der Nachfolger des nutzerspezifischen Queryprozessors, vorgestellt.
Dieser basiert auf modularen Komponenten um die Echtzeit Verarbeitung von Datenströmen zu
erreichen. Diese basiert wiederum auf dem zuvor beschriebenen unidirektionalen Datenflussmodell.
SSP definiert Bibliotheken für das Kommunikationsnetzwerk und die Verarbeitungsblöcke mit einer
definierten Schnittstelle, welche das nachträgliche Hinzufügen von Komponenten ermöglicht. Als
Machbarkeitsnachweis haben wurde eine modifizierte Version der dritten TPC-H Query mit SSP

relisiert und gemessen.
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Chapter 1

Introduction

Traditionally, the data management community has developed specialized solutions that focus on
either extreme of a data spectrum between volume and velocity, yielding to large-volume batch
processing systems, e.g., Hadoop [1], Spark [104], and high-velocity stream processing systems, e.g.,
Flink [20], Storm [87], Spark Streaming [105], respectively. However, the current trend, led by the
Internet of Things (IoT) paradigm, leans towards the large-volume processing of rich data produced
by distributed sensors in real-time at a high velocity for reactive and automated decision making.
While the aforementioned specialized platforms have proven to achieve a certain balance between
speed and scale, their performance is still inadequate in light of the emerging real-time applications.

This remarkable shift towards big data presents an interesting opportunity to study the interplay
of software and hardware in order to understand the limitations of the current co-design space
for distributed systems, which must be fully explored before resorting to specialized systems such
as ASICs, FPGAs, and GPUs. Each hardware accelerator has a unique performance profile with
enormous potential for speed and size to compete with or to complement CPUs, as envisioned in
Figure 1.0.1. In this work, we primarily focus on cost-effective, power-efficient hardware acceleration
solutions which excel at analytical computations by tapping into inherent low-level hardware
parallelism. To motivate the adoption of these emerging hardware accelerators, we describe the
four primary challenges faced by today’s general-purpose processors.

Large & Complex Control Units —

The design of general-purpose processors is based on the execution of consecutive operations on data
residing in main memory. This architecture must guarantee a correct sequential order execution.
As a result, processors include complex logic to increase performance (e.g., super pipelining and
out-of-order execution). Any performance gain comes at the cost of devoting up to 95% of resources

1



Latency
(lower is better)

Data Size



Gigabyte

Real-time
Analytics

Application Specific 
Integrated Chip

General Purpose 
Processors

Graphic Processors

Field Programmable 
Gate Arrays

< 1 … 100 microseconds

1 … 100 milliseconds >

Terabyte Petabyte

1 … 100 seconds >

 10 minutes <

Figure 1.0.1: Envisioned acceleration technology outlook.

(i.e., transistors) to these control units [103].

Memory Wall and Von Neumann Bottleneck —

The current computer architecture suffers from the limited bandwidth between CPU and memory.
This issue is referred to as the memory wall and is becoming a major scalability limitation as
the gap between CPU and memory speed increases. To mitigate this issue, processors have been
equipped with large cache units, but their effectiveness heavily depends on the memory access
patterns. Additionally, the von Neumann bottleneck further contributes to the memory wall by
sharing the limited memory bandwidth between both instructions and data.

Redundant Memory Accesses —

The present-day system enforces that data arriving from an I/O device is first read/written to main
memory before it is processed by the CPU, resulting in a substantial loss of memory bandwidth.
Consider a simple data stream filtering operation that does not require the incoming data stream
to be first written to main memory. In theory, the data arriving from the I/O should be streamed
directly through the processor; however, today’s computer architecture prevents this basic modus
operandi.

Power Consumption —

2
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Manufacturers often aim at increasing the transistor density together with higher clock speed,
but the increase in the clock speed (leading to a higher deriving voltage for the chip) results in a
superlinear increase in power consumption and a greater need for heat dissipation [4].

These performance limiting factors in today’s computer architecture have generated a growing
interest in accelerating distributed data management and data stream processing using custom
hardware solutions [86, 63, 44, 48, 76, 66, 101, 67, 98] and more general hardware acceleration at
cloud-scale [79, 19, 41, 96, 72, 21]. In our past work on designing custom hardware accelerators
for data streams (see Figure 1.0.2), we have demonstrated the use of a much simpler control logic
with better usage of chip area, thereby achieving higher performance per transistor ratio [66, 67].
We can substantially reduce the memory wall overhead by coupling processor and local memory,
instantiating as many of these components as necessary. Through this coupling, the redundant
memory access is reduced by avoiding to copy and read memory whenever possible. The use of many
low-frequency, but specialized, chips may circumvent the need for generalized but high-frequency
processors. Despite the great potentials of hardware accelerators, there is a pressing need to navigate
this complex and growing landscape before solutions can be deployed in a large-scale environment.

However, today’s hardware accelerators comes in variety of forms as demonstrated in Figure 1.0.3,
ranging from embedded hardware features, e.g., hardware threading and Single-Instruction Multiple
Data (SIMD), in general-purpose processors (e.g., CPUs) to more specialized processors such as
GPUs, FPGAs, ASICs. For example, graphics processing units (GPUs) offer massive parallelism
and floating-point computation based on an architecture equipped with thousands of lightweight
cores coupled with substantially higher memory bandwidth compared to CPUs. Due to the fixed
architecture of GPUs, only specific types of applications or algorithms can benefit from its superior
parallelism, such as tasks that follow a regular pattern (e.g., matrix computation). In contrast, a
field-programmable gate array (FPGA) is an integrated circuit that can be configured to encode
any algorithm, even irregular ones. FPGAs can be configured to construct an optimal architecture
of custom cores engineered for a targeted algorithm. FPGAs contain compute components which
are configurable logic blocks (CLBs) consisting of Lookup Tables (LUTs) and SRAM; memory
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components including registers, distributed RAMs, and Block RAMs (BRAMs); and communication
components that consist of configurable interconnects and wiring. Any circuit design developed for
FPGAs can be directly burned onto application-specific integrated circuits (ASICs), which provide
greater performance in exchange for flexibility. Although the reminder of this work focus on FPGAs,
many parts of the content discussed are equally applicable to other forms of acceleration.

This work targets the hardware acceleration of data processing with a focus on data streams by
providing a novel custom processor architecture that provides two forms of flexibilities. The first
form comes from having modular, processing and communication, components that are rearrangeable
to construct a custom topology for a specific application. The second form is realized by providing
the re-programmability feature in the communication network and some of processing components
to make it possible to adapt a running instance of our solution to new changes and demands in
real-time.

The goal of our solution is to drastically reduce cost, complexity, and time-to-market factors
while presenting extreme benefits of hardware acceleration, i.e., superior performance and power
consumption.

1.1 Motivation

Digital technology, as well as its challenges and opportunities, is growing at a rapid pace [50, 52,
83, 6, 9]. This growth is not only in the number of connected devices but also in the velocity and
volume of the collected data.

On the positive side, a large part of information in the digital world is unimportant and transient [89]
(e.g., unsaved phonecalls). Furthermore, in practice, we overlook less important data because of
limitations on storage and processing technology. This situation has spawned real-time stream
analysis and similar concepts.

As an example of these limitations, we refer to the square kilometre array (SKA), a large radio
telescope project planned for construction in Australia, New Zealand, and South Africa. It will
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have a total collection area of approximately one square kilometer. The SKA will collect in excess
of an exabyte of data per day [55]. Research is already underway on how to handle such a large
volume of data, such as approaches to the real-time detection of binary pulsars [93]. A common
feature of most such research is that it explores the processing of transient data to extract more
valuable data. This can be in the form of evaluation results or refined raw data that, owing to the
reduced volume, can be stored and trivially reprocessed later.

The storage and processing limitations as well as the remarkable shift toward big data present
an interesting opportunity to study the interplay of software and hardware. This can help us
understand the advantages and disadvantages of the current hardware and software co-design space
for distributed systems, which must be fully explored before resorting to specialized systems such
as application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGAs), and
graphics processing units (GPUs). Each hardware accelerator has a unique performance profile
with enormous potential to compete with software solutions or complement them [24].

The adoption of hardware accelerators, particularly FPGAs, is gaining momentum in both industry
and academia. Such cloud providers as Amazon are building new distributed infrastructures
that offer FPGAs1 connected to general-purpose processors (CPUs) using a PCIe connection [71].
Furthermore, the FPGAs employed share the same memory address space as the CPUs, which
can spawn new applications of FPGAs using co-placement and co-processor strategies. Microsoft’s
configurable cloud [21] also uses a layer of FPGAs between network switches and servers to filter and
manipulate dataflows at line rate. Another prominent deployment example is IBM’s FPGA-based
acceleration within the SuperVessel OpenPOWER development cloud [5]. Google’s tensor processing
unit (TPU), designed for distributed machine learning workloads, is also gaining traction in its
data centers, although current TPUs are based on ASIC chips [8].

1.2 Problem Statement

Despite enormous throughput and latency benefits, custom hardware also comes with its own
drawbacks. The first drawback is the difficulty of adapting the hardware to changes in currently
utilized algorithms or adopting new approaches. If these changes are not foreseen in the initial
design, it will be a complex and time consuming task to redesign the system to apply/include the
changes, assuming that we are dealing with re-programmable hardware such as FPGAs and not
application specific integrated systems (ASICs).

The second drawback is the difficulty of upgrading the hardware platform, as the custom design
utilized also needs to be readjusted and redesigned for the new platform. This issue arises since there

1Xilinx UltraScale+ VU9P fabricated using a 16 nm process, and with approximately 2.5 million logic elements
and 6,800 digital signal processing (DSP) engines.
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is no default/base architecture to handle the compatibility between various hardware generations.
Although defining some standards in the hardware design makes it easier to upgrade the platform
later, this poses a risk to the efficiency of newer designs and also to the complexity of hardware
design and development. Additionally, there is a large amount of time required to redesign and
rebuild hardware to accommodate a new approach. This means that if a solutions is needed quickly
and is not expected to be used for a long period, it may not be a good choice to go for a hardware
solution.

The third drawback is the complexity of a hardware solution integration into the rest of the
system. To mitigate this drawback, the common practice is to bundle the hardware with general
purpose processors using standard interfaces such as PCIe. Although using FPGAs in the computer
architecture, built with generality in mind, degrades some of their properties such as power
consumption (considering the whole system), still, the boosted performance and the access to
additional features provided by general purpose systems makes this practice favorable.

In this dissertation, we focus on distributed real-time analytics over continuous data streams
using FPGAs. To cope with the lack of flexibility of custom hardware solutions, state-of-the-art
approaches assume that the set of queries is known in advance. Essentially, past works rely on
the compilation of static queries and fixed stream schemas onto hardware designs synthesized to
configure FPGAs [63]. These hardware-accelerated approaches are characterized by a processing
pipeline that synthesizes static (sets of) queries into circuits operating on a FPGA. Since some of
the inner operations (i.e., logic-optimization and technology mapping) in the synthesis process are
NP-hard [29], existing synthesis algorithms are heuristic in nature. They commonly suffer from
the drastic increase in synthesis time as designs grow in size and complexity, and the synthesis
often takes hours to days to complete. As a result, most FPGA-based solutions are too inflexible to
support ad-hoc and interactive queries that must be able to change operations on the fly.

Designing hardware based on the compilation of static queries is not suitable for modern-day
stream processing needs, which require fast, on the fly reconfiguration. Furthermore, many of
the existing approaches assume a complete system halt during any synthesis modification [63, 76].
While synthesis and stream processing may overlap to some extent, a significant amount of time
and effort is still required to reconfigure, which may take from several minutes up to hours. More
importantly, this approach requires additional logic for buffering, handling of dropped tuples,
requests for re-transmissions, and additional data flow control tasks, all of which renders this
style of processing difficult, if not impossible, in practice. These concerns are often ignored in the
approaches listed above, which assume that processing stops entirely before a new query-stream
processing cycle starts.

Even if the latency hit due to synthesis could be tolerated in certain domains, substantial time and
effort is still required to halt, re-configure, and resume operation. Also, extra logic is required for
buffering, handling of dropped tuples, requests for re-transmissions, and other non-trivial data flow
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control logic to resume the operation. Therefore, any practical hardware solution must deliver a
flexible design with acceptable processing performance.

1.3 Approach

In this work, we fill the gap between software solutions that are known to provide the greatest
degree of flexibility and hardware solutions that are famous for their massive performance and
efficiency.

As the first step towards our goal, we propose a flexible query processor, namely FQP, that uses
rearrangeable components for a straightforward customization. As one of the key building blocks,
FQP benefits from an online programmable-block (OP-Block) which adds support for real-time updates
in the execution instructions. The FQP data-path is specially designed to support stream join
parallelization as one of the most resource-intensive operators in stream processing. Unfortunately,
this limits the flexibility of our processor by forcing a bidirectional data-flow design for its data-
path. From these limitations, we can refer to the challenging operation of tasks (to processing
blocks) assignment. As a result of the bidirectional design of the data-path, there are less available
placement choices which increase this operation complexity.

As the second step, we address the problem imposed by the bidirectional data-flow by proposing
SplitJoin a scalable architecture for stream join parallelization based on a unidirectional data-flow.
SplitJoin also provides a scalable ordering technique for the results, which is crucial for some real-time
applications.

Since most queries deal with multiway joins, as our third step we propose a novel scalable architecture,
namely Circular-MJ, to add support for this essential operator in our query processor. Additionally, we
design and develop a novel hash-based equi-join operator (HB-SJ) to additionally support ultra-fast
processing using an indexing technique.

As the final step in this work, we propose a novel redesigned successor to our FQP based on the
unidirectional data-flow, referred to as simplex stream processor (SSP). This processor is constructed
on top of a network-on-chip, customized for streams, that allows addition or modification of
processing components in a straightforward way.

In the following, we describe the aforementioned steps in more details.
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1.3.1 Configurable Stream Processor

We propose a streaming architecture composed of a configurable number of stream processing
elements called online programmable-blocks (OP-Blocks) that accept new queries in an online
fashion without disrupting the processing of incoming data streams. Essentially, input queries are
interspersed into the data input stream and update the processing on-the-fly. While supporting
query modifications at run-time is trivial for software-based techniques, they are not well-studied for
hardware-based approaches. Moreover, our design allows for OP-Blocks to be statically inter-connected
to form different topologies, specifically tailored to the queries being processed.

Together with a number of auxiliary components for query and tuple buffering, routing, and
dispatching, the OP-Blocks form an instance of the FQP that operates entirely on the FPGA. The
inter-connection topology for the OP-Blocks can be chosen in the manner most advantageous for the
queries to be processed. For example, if the query workload lends itself for parallelism, a parallel
topology can be chosen, whereas for workloads with more data dependency, a pipelined topology
can be chosen. The choice of topology is performed statically and an instance of FQP is synthesized
that realizes this topology. The OP-Block is the processing core that implements the actual query
operators. It enables online changes to queries based on a number of parameters, including variable
tuple size, projection attributes, selection conditions, join conditions, and join-window size.

In the design of FQP, we dealt with a number of challenges: First, a static FPGA-based query
processor must over-provision resources to handle the largest expected (intermediate) tuple size,
which under-utilizes system resources. Second, the change in tuple size between the join operation’s
inputs and output adds new challenges, especially when there is the need to use the join result as
input for other operations. Third, determining a minimal processing core that can efficiently handle
a variety of query operators, some of which are stateless, while others are stateful.

1.3.2 Parallel Stream Join Architecture

Scalable stream processing is an integral part of a growing number of data management applications
such as real-time data analytics [82], algorithmic trading [77], intrusion detection [31], and targeted
advertising [35]. What is common among these scenarios is a predefined set of streaming queries
(e.g., ad campaigns or trading strategies) and an unbounded event stream of incoming data (e.g.,
user profiles or stock feeds) that must be processed against the queries in real-time.

In data stream processing, the execution of continuous queries (i.e., repetitive tasks) on potentially
unbounded streams using a finite-window semantics provides a key motivation for acceleration. In
the context of stream processing stream join parallelization has received great attention due to its
computational complexity [39, 85, 27, 45, 90]; still, the existing hardware approaches suffer from
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lack of scalability for practical use.

Besides leveraging hardware acceleration, coping with the high-velocity of unbounded incoming
streams has forced the stream operation model to shift away from the traditional “store and process”
model that has been prevalent in database systems for decades. However, the mindset of sequential
stream join processing (or constructing lengthy processing pipelines) and, essentially, thinking of a
stream as a sliding window (or a long chain of sequentially incoming tuples to resemble database
relations) has continued to shape the way stream processing is carried out today, even on low-latency
and high-throughput stream processing platforms.

We tackle two main shortcomings of existing stream join processing architectures: the sequential
operation model (i.e., “store” and “process”) and the linear data flow model (i.e., “left-to-right” and
“right-to-left” flows). We propose SplitJoin, the first step in re-thinking the stream join operation
model, which is built on the implicit assumption that storage of newly incoming data, whether
stored in a relation or a memory buffer, must always precede processing. Instead, we abstract
the computation steps as two independent and concurrent steps, namely, (i) “storage” and (ii)
“processing”.2 This new splitting abstraction of join cores enables unprecedented scalability by
allowing the system to distribute the execution across many independent storage cores3 and
processing cores. Second, we change the way tuples enter and leave the sliding windows, namely, by
dropping the need to have separate left and right data flows (bidirectional flow). SplitJoin introduces
a novel top-down data flow (unidirectional flow), where incoming tuples (from both streams) are
simply arriving via the same path downstream (preserving input stream order), while the join
results are further pushed and merged downstream using a novel relaxed adjustable punctuation
(RAP) technique (preserving the output stream order). Unlike recent advances in stream join
processing [39, 85, 76, 75], SplitJoin does not rely on central coordination for propagating and ordering
the input/output streams.

SplitJoin’s top-down (unidirectional) data flow trivially satisfies the ordering of incoming tuples and
eliminates the in-flight race condition between the left and right streams as tuples travel from
one core to the next. Unlike existing approaches [85, 75], the top-down flow also eliminates the
need for communication between the join cores. In SplitJoin, the top-down flow is realized using a
distribution tree for routing incoming tuples into their corresponding sub-window that addresses
the scaling issues of adding new join cores. The adopted distribution mechanism nicely fits into the
coordination-free protocol of SplitJoin for distributing new tuples to both storage and processing
cores. For example, all join cores receive the newly incoming tuples (achieving the desired expedited
delivery, without the linear forwarding used in [75]), while only one storage core stores the new
tuple. Both the storage and eviction of tuples to and from cores are done in a round-robin fashion;
thus, naturally, in the same order that cores store a new tuple, they evict their oldest tuple (again,
without any explicit coordination). This can be generalized to batches of tuples instead of a single

2In relational databases, tuples are first stored in relations prior to being processed (e.g., performing a join) while
in a stream join, the incoming tuples are first processed and subsequently stored in sliding windows [53].

3A storage core is an abstraction for an in-memory sliding window, tightly coupled with a join core.
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tuple as well.

SplitJoin has provably lower runtime complexity as compared to state-of-the-art parallel distributed
join algorithms [85, 75]. SplitJoin exhibits an overall system latency of O(logb k), where k is the
number of join cores and b is the branching factor of the distribution tree. In contrast, the state-of-
the-art handshake join has O(k), while the original version resulted in an O(n) latency, where n is
the number of tuples a window can hold (k � n) [85, 75].

SplitJoin’s coordination-free distribution also lends itself to a simpler resiliency against failures; for
example, core failures do not halt or disrupt the entire join computation and affect only the failed
nodes (the loss is limited to only failed nodes). In contrast, in a linear left-to-right data flow, if any
cores fails, then, on average, half of the cores may not receive any data.

1.3.3 Circular Pipeline Design for Multiway Stream Joins

Considering the crucial role of joins as resource-intensive operators in relational databases, it is not
of a surprise that stream joins have also been the focus of much research on data streams [53, 39,
85, 43, 28, 68]. For example, consider TPC-H [30] where 20 queries (out of 22) contain join operator
while 12 of them use multi-way joins some up to 7 joins. However, the importance of joins is no
longer limited to only the classical relational setting. The emergence of Internet of Things (IoT)
has introduced a wide wave of applications that rely on sensing, gathering, and processing data
from an increasingly large number of connected devices. These applications range from scientific
and engineering domains to complex pattern matching methodologies [14, 73].

As an example, consider the deployment of smart meters to analyze households power consumption
and weather forecast live feeds. By analyzing these live streams, we can evaluate the correlations
between these two streams and how fast the weather forecast fluctuations affect the power
consumption. Discovering these patterns are critical to plan and optimize power plants to improve
their efficiency and reliability (e.g., avoid blackouts). In smart home setting, one can imagine
enhancing the household with solar and wind power, each resulting in generating its own live feeds,
that can be combined with the weather forecast and the power consumption feeds, thus, demanding
the ability to join multiple data streams. As a result, coping with a multitude of data streams is
unavoidable in the IoT when one expects to have millions to billions of connected devices [25, 32]
to enable real-time analysis of their live feeds.

In stream processing, software platforms offer flexible communication, where we find anycast and
multicast connections between internal components without a significant decrease in performance.
As an example, consider a system with four internal components A, B, C, and D, where a point-
to-point connection between them could form a data path similar to A → B → C → D. In
a software platform, establishing additional communications, i.e., A → D and B → D, is not
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detrimental, particularly given the flexible shared memory hierarchy. State-of-the-art software
approaches in a multiway stream join benefit from this provided flexibility that leads to an
unstructured4 architecture. However, on hardware, it is essential to predetermine and plan the
necessary communication channels; otherwise, design performance, complexity, and cost rapidly
increase since all communications have to be exclusively realized using physical connections. This
situation motivates our complete reconsideration of the hardware design rather than simply relying
on the reimplementation of available software solutions.

From the hardware acceleration perspective, executing continuous queries (i.e., repetitive tasks)
on potentially unbounded streams using finite-window semantics offers a unique opportunity. A
hardware solution presents negligible, if any, gains when executing an operation only once versus
its competing software variant; however, when this operation repeats many times, the amortized
gains increase far beyond that of a software variant.

It is nontrivial to build multiway join operators by cascading operators designed for two streams
because each new tuple, depending on its origin, requires its own order of join operators for
processing. In a straightforward hardware design, this requirement leads to an unstructured design
due to the required anycast connections between the join operators. Therefore, designing a scalable
(with respect to the number streams) architecture for multiway stream joins in hardware remains a
major challenge.

We propose a novel circular pipeline architecture for multiway stream joins (Circular-MJ), which
is centered around direct neighbor-to-neighbor communication. We use two fundamental steps
to reshape the problem of multiway joins to design a scalable hardware architecture. First, we
transform the problem of unstructured multiway stream join design into a join reordering problem
in a structured design. This means that we do not need anycast connections between the join
operators. Second, we eliminate the join operator reordering problem by moving the reordering task
to tuple insertion circuitry using a pipelined distribution chain. The operator reordering causes a
scalability issue in hardware that is eliminated by this step.

Depending on the streams’ characteristics and the join operators’ properties, materializing interme-
diate results5 in a buffer may provide performance improvements by avoiding the recomputation
of already processed tuples. In our proposed Circular-MJ, the processing engine for each stream is
placed in a separate stage, and accessing this buffer from independent pipeline stages imposes a
resource sharing challenge in a hardware realization. First, having a shared unit between multiple
stages violates the main concept of pipeline design, which is the separation of concerns. Second,
this sharing can result in race conditions between the storage and processing of multiple tuples at
different stages, which then require expensive stalls in the pipeline.

4We refer to an architecture as unstructured when internal nodes have anycast, multicast, or broadcast connections
within the system.

5Outputs of each join operator inside a join tree.
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To avoid the recomputation, we propose Stashed-MJ, a custom two-stage pipeline that includes a
stash6. The novelty of our approach is to benefit from the reduction in the number of pipeline
stages (two rather than three) in favor of better utilizing the available processing units and avoiding
the recomputation of already processed data. Note that there is always one idle processing unit
for the stage that hosts the current tuple sliding window in the three-stage design. Therefore,
the processing unit in the first stage operates on two windows but not simultaneously, which also
eliminates the resource sharing challenge.

Additionally, to scale up the processing throughput of our multiway stream join, we propose
Parallel-MJ, an enhanced design of our multiway join pipeline mapped into a unidirectional flow-based
parallelized architecture suggested by our SplitJoin.

1.3.4 Simplex Stream Processor on a Custom Network-on-Chip

Many solutions in stream processing have been reported in recent years, such as [17, 15, 62, 23,
31, 47, 33], which are primarily software approaches, and [63, 78, 36, 12, 101], which also benefit
from hardware platforms. However, many of these approaches provide either no support or only
limited support for hardware acceleration. The main reason for this limitation is the complex and
time-consuming process of hardware design, development, and adoption, which even renders the
hardware solutions inapplicable because some applications and demands tend to update or change
frequently.

This part of the dissertation focuses on reducing the complexity of the hardware design in stream
processing systems, and the time gap between new demands and the adoption of a hardware
approach. We propose a simplex stream processor (SSP) that benefits from a stream customized
network-on-chip (SCNoC) and a library of hardware components as well as a predefined interface
and methodology to re-customize the available components or add new ones.

There are three key differentiating factors that separate SSP from its predecessor, flexible query
processor (FQP) [66, 67].

The FQP uses a bidirectional dataflow (Figure 7.1.2a) that is necessary for the join parallelization
capability of the stream. This requires challenging mappings to place operators and route
intermediate results from the output of an operator to the input of another one.

The SSP architecture uses a unidirectional dataflow (Figure 7.1.2b) that is not dedicated to any
specific type of stream. This architecture is made possible by the introduction of join parallelization
to the stream using a single data path in [68]. As a result of this architecture, the processing
components can be simply placed one after another as opposed to the arrangement in the FQP.

6We refer to an intermediate result buffer with additional control circuitries as a stash.
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In the SSP architecture, the concepts of the distribution network and processing components
are realized independently. We subsequently use modular interfaces to connect the distribution
network and processing components. This type of implementation provides the simplicity of adding
processing components where needed in the distribution network, which routes corresponding
streams to each component using defined instruction sets. This allows for the straightforward (no
need for complex mappings) selection of an architecture for a set of queries. By contrast, in the FQP,
queries are placed on a rigid chain of processing components using a complex mapping algorithm.
Moreover, a set of queries targeting a specific area of processing may not even require many stream
join operators. However, the FQP architecture was built on two data paths (Figure 7.1.2a), and
therefore remains mainly underutilized because one (mandated by the join operation) of the data
paths remains idle. In SSP the bandwidth of all available data paths is well utilized because it is
not limited to specific operations.

The SSP architecture is designed based on two (one input and one output) port components for
processing and transmission, whereas the FQP has components with five (two input and three
output) ports. In terms of hardware solutions, the number of ports has a close relation to the cost,
complexity, and efficiency of a component. In SSP, each component implements a consume-and-
produce model that simplifies the system architecture. This change has removed the need for large
and complex switching and control circuitries responsible for consistently receiving, processing, and
transmitting streams and results from multiple ports.

In SSP, tuples for distinct streams involved in the join operation arrive in order, whereas in the
FQP, there are two separate paths, and this leads to out-of-order arrivals. Consequently, complex
buffering and controlling circuitries are required to ensure the consistency of the results.

The aforementioned factors render SSP a practical framework for constructing a query processor
with various degrees of flexibility that allow for fine-grained and coarse-grained adjustments for
specific applications.

1.4 Contributions

We present the following contributions from our flexible query processor (FQP):

i. We design a parameterizable stream processing element, called OP-Block, that lies at the core
of a hardware-based flexible query processor (FQP). Through hardware specialization and
dividing the chip area into many small, self-contained, independent OP-Block instantiations,
we eliminate the need for large and overly complex control units for coordination, and achieve
better chip area utilization.
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ii. Enable the fine-grained dynamic reconfiguration of the OP-Block that allows the application to
re-program it in an online fashion without disrupting query processing.

iii. Present the coarse-grained static reconfiguration of the OP-Block inter-connection topology
that allows us to attach and connect several OP-Blocks to realize complex queries and to adapt
to the specific processing needs of these queries.

The main contributions from our stream join parallelization work, SplitJoin, are:

i. We propose a scalable architecture for stream join parallelization, called SplitJoin, that removes
inter-core communications and dependencies. SplitJoin introduces a unidirectional data-flow
model to achieve a coordination-free protocol which eliminates the need for the limiting
bidirectional data-flow model used in the original FQP.

ii. Present a coordination-free protocol that does not rely on global knowledge to produce ordered
join output streams by proposing a relaxed adjustable punctuation technique with tunable
precision.

iii. Provide the hardware (in addition to the software) design and development of SplitJoin, while
evaluating its advantages in regard to the previous approaches.

In our multiway stream joins work we make the following contributions:

i. We propose a scalable multiway stream join (Circular-MJ) on hardware that is built on a circular
chain of dedicated stages (one per stream) and that benefits from pipeline parallelism.

ii. We present a novel two-stage pipeline (Stashed-MJ) that benefits from a stash (intermediate
results buffer) to accelerate processing throughput.

iii. We enhance our multiway stream join pipeline to integrate it into the parallel architecture to
linearly scale the processing capabilities of our solution (Parallel-MJ).

Finally, for our simplex stream processor, referred to as SSP, we make the following contributions:

i. We propose a stream customized network-on-chip (SCNoC) with instruction sets for routing
instructions and tuples.

ii. We propose SSP with a configurable topology (placement of processing components in the
distribution network) and instruction sets built on our SCNoC.
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iii. We propose a hash-based stream join (HB-SJ) architecture for fast equi-join processing
and integrate it into a modified version of our circular multiway stream join (Circular-MJ)
architecture.

iv. We present a hardware architecture for the aggregation and groupby operators.

v. We present a mapping of and implement the TPC-H on a new instance of SSP and evaluate it
based on certain performance metrics.

Parts of the content and contributions of this work have been published in or have been submitted
to the following venues:

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. Flexible query processor on FPGAs. Journal
Proceedings of the VLDB Endowment, Volume 6 Issue 12, pages 1310-1313, 2013

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. Configurable hardware-based streaming archi-
tecture using Online Programmable-Blocks. 31st IEEE International Conference on Data
Engineering (ICDE), pages 819-830, 2015

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. The FQP Vision: Flexible Query Processing on a
Reconfigurable Computing Fabric. ACM SIGMOD Record, Volume 44 Issue 2, pages 5-10,
2015

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. SplitJoin: A Scalable, Low-latency Stream Join
Architecture with Adjustable Ordering Precision. USENIX Annual Technical Conference
(USENIX ATC 16), pages 493-505, 2016

• M. Najafi, K. Zhang, M. Sadoghi and H.-A. Jacobsen. Hardware Acceleration Landscape
for Distributed Real-Time Analytics: Virtues and Limitations. 37th IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 1938-1948, 2017

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. A Scalable Circular Pipeline Design for Multi-Way
Stream Joins in Hardware. 34th IEEE International Conference on Data Engineering (ICDE),
pages 1280-1283, 2018

• M. Najafi, M. Sadoghi and H.-A. Jacobsen. Scalable Multiway Stream Joins in Hardware.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2019 (accepted for publica-
tion)

• M. Najafi and H.-A. Jacobsen. A Simplex Stream Processor on a Custom Network-on-Chip.
Submitted to IEEE Transactions on Knowledge and Data Engineering (TKDE), 2019
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1.5. ORGANIZATION

1.5 Organization

The rest of this document is organized as follows. Chapter 2 presents related work in the area of
hardware acceleration with emphasis on stream processing. Chapter 3 provides background on field
programmable gate arrays (FPGAs) as the common hardware acceleration framework. Chapter
4 explores the design and realization of our flexible query processor, referred to as FQP. Chapter
5 starts with the design and realization of our parallel stream join in software and ends with its
scalable hardware design, realization, and comparisons. Chapter 6 presents our novel circular
multiway stream joins hardware architecture, referred to as Circular-MJ, and continues by proposing
an optimized architecture which avoids recomputing the processed data using a best-effort buffering
technique, referred to as Stashed-MJ. Finally, Chapter 7 presents our simplex stream processor,
referred to as SSP, and includes an unidirectional custom communication network while presenting
the design and realization of our other major components such as: a hash-based stream join, an
orderby operator, and an aggregation-groupby operator.
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Chapter 2

Background

2.1 Stream Processing Model

Our data stream processing model follows an attribute-value pair form, which closely resembles a
database tuple. Our data stream language follows the traditional database SPJ queries including
selection (σ), projection (π), and join (./, ./θ) operators.

In fact, we use a subset of the PADRES SQL (PSQL) [34], an expressive SQL-based declarative
language for registering continuous queries against data streams over a count-based sliding window
model. Essentially, the sliding window is a snapshot of an observed finite portion of the data stream.
Formally, the stream processing model is defined as follows: Given a stream of tuples and a set of
SPJ queries, execute the queries continuously over the data stream and output the resulting tuples.

Join operator: For join, there are two input streams, R and S. Each time a new tuple arrives in
the window of one stream, the tuple is compared against all existing tuples in the other stream’s
window. For each match, a result tuple consisting of the two matching tuples is produced.

Projection and selection operators: In contrast to the join operator, stateless operators, such as
projection and selection, are executed on each tuple independently. For the selection operator, a
tuple is not filtered, if it satisfies the selection condition, and for the projection, the resulting tuple
includes only the projected fields.

The design presented in this work supports selection and projection operators over a single stream,
join operators over two streams, and allows for arbitrary logic formula to express the selection and
join conditions using {=, 6=, <, >, ≤, ≥}.
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Figure 2.2.1: Sliding window concept in stream join.
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Figure 2.2.2: Traditional stream join architecture.

2.2 Stream Join Operation

The relational join (theta join) between two non-stream relations R and S, defined as R ./θ S,
produces the set of all resulting pairs (r, s), which satisfy the join condition θ(r, s) and r ∈ R,
s ∈ S. Extending this definition to stream join implies the same join processing semantics with the
exception that streams, unlike relations, are unbounded. To mitigate the challenge of unbounded
streams, with respect to both processing and storage limitations, streams are conceptually seen
as bounded sliding windows of tuples, as shown in Figure 2.2.1. The size of these windows are
defined as a function of time or number of tuples, referred to as time-based or count-based windows,
respectively.

Figure 2.2.2 shows the traditional architecture of a join operator that receives Tuple-R and Tuple-S
from streams R and S, respectively. JC stands for join core, which performs the join operation.
To process the tuples shown in the figure, Tuple-R is inserted into Window-R, then it is evaluated
against all existing tuples in Window-S and the join results are returned. Similarly, Tuple-S is
inserted into Window-S and the same join procedure is applied.
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CHAPTER 2. BACKGROUND

2.3 FPGA Hardware Platform

Field Programmable Gate Arrays (FPGAs) are reconfigurable chips that realize a high-level hardware
design. Design entry starts with the modeling of the hardware design using a high-level hardware
description language, such as Verilog, VHDL, or SystemVerilog. These allow users to specify the
circuit behaviorally using traditional C/C++-style constructs for condition, loop, and data types.

Summary of FPGA Building Blocks —

FPGAs contain a matrix of interconnected discrete random access memory cells which can realize
any Boolean function. Each memory cell, called a Look-Up-Table (LUT), is essentially implemented
as a 2N bit array, where N is the number of address lines for the LUT. Each LUT is capable of
implementing an N -input and 1-bit output Boolean function (circuit) by saving all possible output
valuations for each N -input combination. Therefore, the LUT realizes a truth-table which is itself a
fundamental component of the FPGA fabric that is inter-connected with other blocks to construct
more practical and complex logical circuits.

An FPGA also offers two on-chip memory options: Block RAM (BRAM) and Distributed RAM
(DRAM). BRAMs are discrete dual-ported single-cycle access latency, on-chip memories that offer
several kilobits of storage. These can either be initialized with data at configuration time or be
internally updated at run-time. Block RAM in the Xilinx Vertex 5 family of FPGAs is available
as 36Kb x 1 discrete blocks but each can be used as two independent 18Kb x 1 blocks. Moreover,
several BRAM blocks can be tied together to create wide-ported memories, without paying any
fan-out penalty. DRAM is realized by configuring several LUT-based cells to act as memory. DRAM
is expensive and is generally discouraged, as it reduces the logic real estate available on the FPGA
and incurs higher signal routing cost.

FPGAs’ internal memories offer low-latency access (on the order of the FPGA’s operating clock
frequency) and read/write from/to them does not translate to the so-called redundant memory
accesses issue in a well distributed hardware design.

Design Synthesis Steps —

Once the design description is completed a synthesis tool is used to convert the circuit description
into a netlist file which contains circuit implementation consisting of gate instances and connections
(nets) between them. A netlist is platform independent and does not include any user specified
timing constraints which are essential to ensure that a circuit meets the design requirements (e.g.,
operating frequency, data processing throughput etc.). Once the netlist has been generated, it needs
to be customized for implementation on a specific target technology. This step is called, design
mapping and is carried out by vendor specific tools that replace generic netlist gate instances with
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2.3. FPGA HARDWARE PLATFORM

appropriate instances from a hardware library that meet user specified timing, energy and device
space constraints. The design mapped output is in vendor specific circuit format and is targeted to
run on a particular FPGA technology.

Finally, a place and route tool maps the timing critical design components to the appropriate
sections of the FPGA and optimizes on-chip signal routes. Both of these steps significantly impact
the overall maximum clock frequency the design can be safely run at, without causing timing
violations and other erratic behavior. In addition, with the knowledge of the underlying FPGA
architecture, the initial design description can be varied to take advantage of the special features of
the physical hardware and reduce signal routing cost to potentially speed up the design operation.

In the final step, the design is compiled and encoded into a bitstream file that is used to configure the
FPGA. The bitstream can either be downloaded to the FPGA via the JTAG port or be stored on an
on-board memory to configure the FPGA every time upon powerup. Lastly, it is important to note
that all design steps are carried out in software through vendor-provided integrated development
environments (IDE)1.

1For example, the Integrated Software Environment (ISE), i.e., also known as IDE, is the Xilinx design software suite
that offers a comprehensive front-to-back design environment from design entry through Xilinx device programming
and verification, http://www.xilinx.com/univ/dtools.htm.
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Chapter 3

Related Work

3.1 Parallel Stream Join

Work related to our approach can be broadly classified into stream join algorithms [39, 85, 75, 66, 53,
56], or more generally speaking, stream processing in software [23, 26, 7], approaches to performance-
optimize stream processing through emerging hardware mechanisms [100], in particular, through
FPGA-based acceleration [44, 63], but also, through GPUs and processor-based I/O processing
innovations [88]. The survey [102] covers other related work and topics including concepts such as
ordering in stream join. SplitJoin can be incorporated in any of the existing streaming engines (i.e.,
[13, 57, 2]).

Stream Join Algorithms —

An early stream join was formalized by Kang’s three-step procedure [53]. Subsequently, Gedik
et al. [39] introduced the parallel CellJoin, designed for a heterogeneous architecture, aiming
to substantially improve stream join processing performance. However, CellJoin requires a re-
partitioning task for each newly incoming tuple, which limits its scalability [39]. The problem of
distributed stream join processing has also been studied with respect to elasticity and reduction of
memory footprint, applicable to cloud computing [56].

Teubner et al. introduced a bi-direction data flow-oriented stream join processing approach, called
the handshake join [85]. To reduce delay in the linear chaining, Teubner et al. [75] introduced a
low-latency handshake join that uses a fast forwarding mechanism to expedite tuple delivery to
all sub-windows by replicating every tuple k times, where the stream is split over k join cores.
This mechanism is illustrated in Figure 5.3.1. Furthermore, the bi-directional flow complicates the
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logic for serializing the two pipes connecting consecutive join cores that is necessary in order to
avoid race conditions due to concurrent in-flight tuples (i.e., tuples traveling between neighboring
processing cores).

Stream Processing Acceleration —

Stream processing has received much attention over the past few years. Many viable research
prototypes and products have been developed, such as NiagaraCQ [26], TelegraphCQ [23], and
Borealis [7], to just name a few. Most existing systems are fully software-based and support a rich
query language, but stream join acceleration has not been the main focus of these approaches.

Since the inception of stream processing, the development of optimizations both at the query-level
and at the engine-level have been widely explored. For example, co-processor-based solutions
utilizing GPUs [88, 39] and more recently hardware-based solutions employing FPGAs have received
attention [86, 44, 63, 99, 81]. For example, Tumeo et al. demonstrated how to use GPUs to accelerate
regular expression-based stream processing language constructs [88]. The challenge in utilizing
GPUs lies in transforming a given algorithm to use the highly parallel GPU architecture that has
primarily been designed to perform high-throughput matrix computations and not, foremost, low
latency processing.

Past work showed that FPGAs are a viable option for accelerating certain data management tasks
in general and stream processing in particular [86, 44, 63, 99, 81, 18, 64]. For example, Hagiescu
et al. [44] identify compute-intensive nodes in the query plan of a streaming computation. To
increase performance in the hardware design that realizes the streaming computation, these nodes
are replicated, which, due to the stateless nature of the query language considered, poses few
issues. A main difference from our work is the restriction to stateless operations and the lack of
a capability to flexibly update the streaming computation. Similarly, Mueller et al. [63] present
Glacier, a component library and compiler, that compiles streaming queries into logic circuits on an
operator-level basis. Both approaches are characterized by the goal of hardware-aware acceleration
of streams, yet our solution is also applicable to non-FPGA parallel hardware.

3.2 Multiway Stream Join

Multiway join processing has received considerable attention because it is among a number of
critical operations used in many applications, such as data mining, analytics and IoT [40, 60, 51,
46, 92, 10, 59, 110, 49, 42, 38, 109, 108, 106]. Among these approaches, the approaches proposed
by Zhang et al. [106] and Zhou et al. [108] optimize the communication costs of multiway joins in
distributed systems. The approaches proposed by Gu et al. [42] and Aghbari et al. [10] focus on the
distribution of loads on clusters to accelerate the processing, while others focus on the optimization
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of multiway joins in sensor networks [110].

A multiway stream join operator named MJoin is presented in [95] based on a hashing technique.
MJoin generalizes the symmetric binary hash join and the XJoin [91] algorithm for more than
two input streams. Viglas et al. [95] demonstrate the benefits of MJoin over trees of binary joins,
and Valsomatzis et al. [92] present a main-memory variant of MJoin that processes input data in
batches with the objective of improving CPU efficiency. An extensive study of multiway stream
joins in addition to performance improvements using various algorithms to maintain windows lazily
in MJoin is presented in [70].

MJoin and, in general, multiway stream join solutions in software assume a communication model
where any core can communicate with any other core, a model that cannot be directly realized in
hardware, whereas our approach is based only on neighbor-to-neighbor communication.

Wang et al. [97] propose a multiway join operator distribution scheme called pipelined state
partitioning (PSP). PSP partitions sliding windows (states) into disjoint slices in the time domain
and then distributes the fine-grained states over a cluster, forming a virtual computation ring for
processing incoming data streams. The proposed ring architecture defines various paths (each
dedicated to a stream) between disjoint slices, resulting in an unstructured data path. Additionally,
Wang’s approach uses time-sliced windows, which require coordination to ensure state consistency,
while our solution operates based on assigning an independent sliding window to each pipeline
stage, thereby eliminating any need for coordination.

The caching mechanism presented by Babu et al. [16] adaptively allocates caches for pairs of streams
based on a given order of join operators to improve processing throughput, which shares concepts
similar to our Stashed-MJ. However, Badu et al.’s solution does not trivially map to a hardware
realization due to the required flexibility to add and remove caches for various operators. In contrast,
our approach uses a custom architecture that does not require expensive circuitry to achieve the
required flexibility.

Work related to stream join acceleration can be broadly classified into software-based stream join
algorithms [53, 39, 85, 43, 28, 107, 11, 94, 68] and hardware-based counterparts such as [100, 69,
67, 98, 56].

Gedik et al. [39] introduced the parallel CellJoin, designed for a heterogeneous architecture, which
aims to substantially improve stream join performance by spreading tasks among processing elements
to operate in parallel. However, CellJoin requires repartitioning through a central coordinator
for each newly incoming tuple, which limits its scalability. The problem of distributed stream
join processing has also been studied with respect to elasticity and memory reduction, which is
applicable to cloud computing [43].
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CellJoin’s coordination challenge is partially addressed by the handshake join [85] which transforms
the stream join into a data flow problem (evolved from Kang’s three-step procedure [53]): tuples
flow from left-to-right (for the first stream) and from right-to-left (for the second stream) while
passing through each join core. Another approach, named SplitJoin, that similarly divides the
sliding window into smaller subwindows is proposed in [68]. In contrast to [85], SplitJoin uses
a unidirectional distribution mechanism (uni-flow) to transfer incoming tuples to independent
processing (join) cores.

3.3 Hardware Stream Processor

Work related to our approach can be broadly classified into stream processing in software [23, 26, 7],
approaches to performance-optimize stream processing through emerging hardware mechanisms [100],
in particular, through FPGA-based acceleration [61, 44, 63, 84].

Additionally, since the inception of stream processing, the development of optimizations, both at
the query-level and at the engine-level have been widely explored. For example, co-processor-based
solutions utilizing GPUs [88] and more recently hardware-based solutions employing FPGAs have
received attention [44, 84, 63, 99, 80, 81]. Below, we discuss these approaches and describe how our
approach differs.

Software Approaches —

Stream processing has received much attention over the past few years. Many viable research
prototypes and products have been developed, such as NiagaraCQ [26], TelegraphCQ [23], and
Borealis [7], to just name a few.

Tumeo et al. showed how to use GPUs to accelerate regular expression-based stream processing
language constructs [88]. The challenge in utilizing GPUs lies in transforming a given algorithm
to use the highly parallel GPU architecture that has primarily been designed to perform high-
throughput matrix computations and not, foremost, low latency processing. Also, the use of GPUs
for acceleration suffers from similar memory wall and redundant memory access problems. The
memory wall problem is even further exasperated in the case of GPUs due to additionally needing to
transfer data from main memory to the GPU’s memory. The use of FPGAs in our approach allows
us to adapt and customize the underlying computing platform to match the algorithm, instead of
having to work with a given architecture and programming model. This flexibility also gives us
the freedom to exploit other application characteristics that a general purpose environment cannot
offer.

Most existing systems are fully software-based, support a rich query language, but acceleration
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through FPGAs has not been attempted in these approaches.

Aurora and Borealis. The Aurora and Borealis stream processing engines [22] make it possible to
implement continuous queries by using a predefined set of operators that share concepts with those
used here. By contrast, however, our approach targets hardware platforms with different criteria.
Although the expected processing speedup and efficiency of a hardware solution are significant, a
new system design is needed to use this approach on a hardware platform. Therefore, this work
focuses on a detailed hardware design and relevant considerations.

The Borealis is a distributed stream processing system that inherits core stream processing
functionality from Aurora and distribution functionality from Medusa (Brown) [17]. The Borealis
modifies and extends both systems in nontrivial and critical ways to provide advanced capabilities
that are commonly required by emerging stream processing applications.

STREAM. STREAM (Stanford) [15, 62] focuses on the development of a general-purpose data
stream management system (DSMS) for processing continuous queries over multiple continuous
data streams and stored relations similar to Aurora.

TelegraphCQ. Similar to previous approaches, TelegraphCQ [23] implements a stream processing
engine. STREAM and TelegraphCQ both implement variants of CQL, the Continuous Query
Language. CQL is a straightforward extension of SQL for manipulating streams where, instead of
defining relations, we work with operators for streams.

CQL is the streaming-based version of SQL, with stream-relation and relation-stream operators
rather than the relation-relation operators in SQL.

Gigascope. Gigascope [31] is a high-performance streaming database designed for monitoring
networks with high-rate data streams using inexpensive processors. Because Gigascope is a
stream-only database, it does not support stored relations or continuous queries. This restriction
significantly simplifies and streamlines the implementation.

Hardware Approaches —

To further narrow our discussion, we focus on distributed real-time analytics over continuous data
streams using FPGAs.

Past work showed that FPGAs are a viable option for accelerating certain data management tasks
in general and stream processing in particular [44, 84, 63, 99, 80, 81].

Hagiescu et al. [44] identify compute intensive nodes in the query plan of a streaming computation.
To increase performance, in the hardware design that realizes the streaming computation, these
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nodes are replicated, which due to the stateless nature of the query language considered, poses few
issues. An ulterior benefit is that design synthesis is sped up, as replicated nodes, are synthesized
only once. A main difference to our work is the restriction to stateless operations and the lack to
flexibly update the streaming computation.

Lockwood et al. [61] present an FPGA library to accelerate the development and verification of
(financial) applications in hardware. Similarly, Mueller et al. [63] present Glacier, a component
library and compiler, that compiles continuous queries into logic circuits on an operator-level basis.
Both approaches are characterized by the goal of representing queries in logic circuits to achieve the
best possible performance. While performance is a major design goal for us as well, we additionally
aim at offering the application flexibility to update queries at run-time.

Sukhwani et al. [84] present a solution to offload compute intensive parts from an analytics query
running on a standard CPU to an FPGA connected via the PCIe bus. Major speedups are due
to moving compressed data between the compute elements via direct memory access (DMA). For
latency sensitive processing, the approach is limited by the speed at which data can be copied from
memory to the FPGA via the PCIe bus. While the use of DMA relieves the CPU from these copying
tasks, the involved latency overhead cannot be avoided. In comparison to our approach, Sukhwani
et al. [84] aim to accelerate traditional query-retrieve-style processing, unlike the streaming query
model that we aim to support.

Streams on Wires. Hardware solutions are known for their inflexibility to updates. To address
this, the concept of Streams on Wires [63] assumes that the set of queries is known in advance. Past
work has relied on the compilation of static queries and fixed-stream schema onto hardware designs
synthesized to configure FPGAs. Depending on the complexity of the design, this synthesis step
can last minutes or even hours. This is not suitable for the needs of modern-day stream processing:
fast and on-the-fly reconfiguration. Furthermore, prevalent approaches assume a complete halt to
the hardware reconfiguration phase [63, 78]. This requires additional logic for buffering, handling
of dropped tuples, requests for retransmissions, and additional dataflow-controlling tasks, which
renders this style of processing difficult in practice.

SPARC M7. Oracle SPARC M7 [12] is a commercial chip that contains stream-processing
hardware accessed through the DAX API. Using this API allows access to this hardware using
common software commands to efficiently manipulate and process large amounts of data. Units
such as this are not directly comparable with our solution because they use a fixed architecture
customized for specific tasks (e.g. data filtering).

Q100. Wu et al. in [101] proposed a domain-specific database processor named Q100 to efficiently
handle database applications. The Q100 contains a heterogeneous collection of fixed-function ASIC
tiles, each of which implements a well-known relational operator, such as a join or sort.
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In contrast to Q100, which is built for database operations, our solution is custom designed for
stream processing, which fundamentally changes the hardware architecture design requirements.
Our solution is designed to support various query types in the stream processing and its framework
allows the rearrangement of components and utilization of almost any type of processing component.

With regard to similar approaches, we can refer to the IBM Netezza [36], which is a commercial
product that exploits parameterizable circuits to offload query computation. The IBM Netezza is a
parallelized system that is purpose-built for data warehousing. It is commonly referred to as a data
warehouse appliance designed specifically for running complex data warehousing workloads. The
concept of an appliance is realized by integrating the database, server, and storage into a system
that is easy to deploy and manage. In any database system, the main bottleneck is input/output.
The Netezza reduces this bottleneck by using a commodity FPGA by pushing the SQL closer to
the silicon to help improve input/output ports performance. This core component of the appliance
is referred to as the database accelerator.

The IBM Netezza targets many aspects of data handling and processing centered on databases and
warehousing. Our porposed solution can be complementary, and is usable as a component in the
Netezza to handle streaming data workloads with the additional coarse-grained and fine-grained
flexibilities provided in our solution.

Utilizing general purpose soft-cores on FPGA may also seem like a viable alternative. However,
soft-cores are meant to support complex computing tasks that are too expensive to be realized in
hardware and are not computationally intensive to become a system bottleneck. A comparison
along these lines for event processing operations showed that general purpose soft-cores are not
interesting from performance perspective, at least in the targeted context [77].
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Chapter 4

Configurable Stream Processor

The limitations of traditional general-purpose processors have motivated the use of specialized
hardware solutions (e.g., FPGAs) to achieve higher performance in stream processing. However,
state-of-the-art hardware-only solutions have limited support to adapt to changes in the query
workload.

In this work, we present a reconfigurable hardware-based streaming architecture that offers the
flexibility to accept new queries and to change existing ones without the need for expensive hardware
reconfiguration. We introduce the Online Programmable Block (OP-Block), a "Lego-like" connectable
stream processing element, for constructing a custom Flexible Query Processor (FQP), suitable to a
wide range of data streaming applications, including real-time data analytics, information filtering,
intrusion detection, algorithmic trading, targeted advertising, and complex event processing.

Through evaluations, we conclude that updating OP-Blocks to support new queries takes on the
order of nano to micro-seconds (e.g., 40 ns to realize a join operator on an OP-Block), a feature
critical to support of streaming applications on FPGAs.

This section presents the following contributions:

1. The design of a parameterizable stream processing element called Online Programmable-Block
(OP-Block) that lies at the core of a hardware-based Flexible Query Processor (FQP). Our
design enables a streaming architecture by decomposing and implementing complex queries
into simpler OP-Block components. Through hardware specialization and dividing chip area
into many small, self-contained, independent OP-Block instantiations, we eliminate the need
for large and overly complex control units for coordination, and achieve better chip area
utilization.
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2. We enable processor and memory coupling within the OP-Block that supports direct I/O access
to provide an explicit link between I/O ports and processing unit(s) within the OP-Block,
which reduces problems that are due to the memory wall and redundant memory accesses.

3. We support dedicated instruction memory within the OP-Block that provides low latency
access to both queries and data, and avoids complex and expensive instruction fetching that
are common for moving data between CPUs and external memory in today’s computing
architecture, thereby, addressing the von Neumann bottleneck.

4. We enable the fine-grained dynamic reconfiguration of the OP-Block that allows the application
to re-program it in an online fashion without disrupting query processing.

5. We enable the coarse-grained static reconfiguration of the OP-Block inter-connection topology
that allows us to attach and connect several OP-Blocks to realize complex queries and to adapt
to the specific processing needs of these queries.

6. We support variable tuple sizes by proposing the segment-at-a-time processing model, namely,
an abstraction that divides a tuple into smaller chunks that are streamed and processed as a
consecutive set of segments. This strategy avoids the need for over-provisioning of hardware
resources.

4.1 Stream Processor Design

In this section, we describe the design of our custom stream processing element, called OP-Block.
We describe its instruction set, internal architecture, design rationale, and present an example of
how queries are programmed and executed.

4.1.1 OP-Block Design Overview

We designed the Online Programmable-Block (OP-Block) specifically tailored to the processing
characteristics of data streams, such as shared processing of a set of queries over numerous tuples,
reduction of redundant memory accesses due to streaming nature of I/O and processing, and the
need to sustain predicable processing latency for high tuple rates.

Moreover, our design has been heavily influenced by the requirements of the stream join operator,
as it is often the most involved query operator. In its basic form, the join operator consumes
two input streams and produces one output stream. To maximize the input tuple rate and the
processing throughput, each stream is supported by a dedicated port and a window buffer, realized
by non-shared BRAM memory in the FPGA.
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Figure 4.1.1: OP-Block: I/O ports.

The design of the OP-Block, including its I/O ports, is shown in Figure 4.1.1. The width of each port
is equal to the size of a single tuple in addition to bits reserved for auxiliary signals. One input
stream is fed to the OP-Block from the upper-left port (Stream R), while the other input stream
and queries enter from the lower-right port (Stream S/Query). For continued processing, tuples in
window buffers are emitted from the upper-right and lower-left ports, while intermediate results
are always emitted from the upper-right port. The final processing result, upon completion of the
query, is emitted from the lower port (Final Result), where the processing results become available.

OP-Blocks can be connected via their left and right I/O ports. We refer to such a configuration as a
pipeline since each OP-Block behaves similar to a pipeline stage in the data stream processing. In
this way, join operators with large window buffers or query plans with data dependency between
operators, that cannot be processed by a single OP-Block, can be mapped across multiple OP-Blocks. In
addition, OP-Blocks can be arranged in a parallel manner serving to support independent query plans
(e.g., query plans comprised of multiple queries, not sharing intermediate results, thus, amenable
for parallel processing.) Furthermore, hybrid constellations of OP-Blocks combining pipelining and
parallelism, for example, are an option for building custom stream processing architectures that are
specifically tailored to given query plans.

4.1.2 Instruction Format

Before presenting our detailed design, we describe the instruction format, which defines the
instruction set and data layout of tuples the OP-Block understands. A query, its operators, and
stream tuples are translated into the instruction set and data format. Below, we use the terms
instruction and query/operator interchangeably, referring to instruction when describing stream
processor internals.

Our OP-Block design is configurable via a number of synthesis-time parameters such as: attribute
and value widths (in bits), number of attribute-value pairs, and size of internal buffers, including
window buffers for the join operator. Assuming a tuple size of 64-bit (32-bit attribute and 32-bit

31



4.1. STREAM PROCESSOR DESIGN

Buffer Manager-R

Processing Unit

Coordinator Unit

Window Buffer-R

Window Buffer-S

Block ID
Buffer 

Manager-S

M
u

x

OP-Block

Query Buffer

Bypass 
Unit

Tuple mTuple m+1Tuple m+2

Tuple SizeTuple n+2 Tuple n+1 Tuple n

Stream R

Operator 1Operator 2

Sel <Att,Val> Sel <Cond>Prj <Att>

Final Result

Stream S
Query

Stream R
Intermediate 

Results

Stream S
Query

Figure 4.1.2: OP-Block: internal architecture.

value), our instruction and data format is shown in Figure 4.1.4. In the figure, bold dashed lines
represent bytes and faint dashed lines represent bits in a byte. We call each sequence of nine
consecutive bytes a chunk. A tuple is comprised of one chunk.

The selection, projection, and join operators together with a reset instruction are identified by the
Inst bits (cf. Figure 4.1.4). A single OP-Block is capable of supporting multiple instructions and
can be used to implement selection, projection, and join operators.

The first byte of each chunk contains two bits: S and Q. The S bit specifies the data stream a
tuple belongs to, either zero, for Stream R, or one, for Stream S. The Q bit differentiates between
the type of input, either zero, a tuple, or one, an instruction (i.e., a query operator). The remaining
parts in a tuple are the attribute and value fields, in byte positions 2-5 and 6-9, respectively. Each
instruction is targeted at a specific OP-Block, among the existing blocks determined by the Block ID
(B-ID) field. In addition, a Chunk Count (CC) specifies the number of chunks per instruction. For
example, a 2-bit Inst and 4-bit B-ID field are sufficient to discern 4 instructions and 16 OP-Blocks,
respectively; by tuning these simple design parameters, additional instructions and OP-Blocks can be
supported.

The selection operator is comprised of an attribute, a value, and a condition field (i.e., encapsulated
in three chunks), the join operator requires an attribute and a condition field (i.e., two chunks),
and the projection operator requires an attribute field (i.e., two chunks). The reset instruction
serves to initialize an OP-Block. By using the Policies field, reset selects the stream result output
port for a given query to process.
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4.1.3 Architecture

The OP-Block is comprised of hardware components working in parallel to maximize processing
performance. The OP-Block’s internal architecture is shown in Figure 5.5.1. Some component names
carry the postfix -R and -S, which indicates that they are handling either Stream R or Stream S,
respectively.

Window Buffer (-R&-S) is a memory unit which realizes the sliding window concept for a join
operator. The buffer is comprised of a synthesis-time definable parameter for setting the maximum
number of tuples for each buffer (at runtime for larger buffer sizes, multiple OP-Blocks can be
connected). This buffer also serves to store query operator parameters such as list of projected
attributes, selection conditions, and join conditions (cf. Query Buffer in Figure 5.5.1). The memory
is implemented with BRAMs, the dedicated high-performance memory of the FPGA. Essentially,
the window buffer acts as low-latency, on-chip data and instruction cache that is embedded within
each OP-Block.

Buffer Manager-R handles Stream R in addition to forwarding intermediate results to neighboring
blocks connected to its output port.1 This component tracks the status of its associated window
buffer (i.e., full vs. empty), and based on requests on the OP-Block’s input port and grants from the
Coordinator Unit, pushes and pops tuples to and from Window Buffer-R. To maximize parallelism,
this component has two independent reception and transmission controllers. The reception controller
is responsible to retrieve tuples from Stream R and inform other units about a tuple newly inserted
into Window Buffer-R. The transmission controller sends out tuples available in the window buffer,
including intermediate result tuples, through the Stream R output port.

Buffer Manager-S is similar to Buffer Manager-R, except that it additionally handles instructions
arriving at the Stream S input port. In case an instruction is targeted at the current OP-Block the
reception controller inserts it into the instruction region of Window Buffer-S (cf. Figure 5.5.1.)
This region is separated from the rest of the buffer window (i.e., the region for tuples) and expands
as more instructions are inserted into the OP-Block.

The Bypass Unit acts as tuple relay mechanism that enables queries and tuples to flow through
the OP-Block topology. Recall that OP-Blocks are inter-connected based on a synthesis-time defined
topology, and OP-Blocks may be assigned at runtime to different queries, which is the key to our
coarse- and fine-grained flexible query processing architecture. For example, to get a tuple to the
right query, and subsequently to the right OP-Block, we need a relay mechanism to move the tuple
from a source (an OP-Block) to a destination (another OP-Block), where the path from the source to
the destination may span many intermediate OP-Blocks. All the intermediate OP-Blocks act as bypass
for the sake of moving the tuple to its destination.

1Intermediate results are tuples resulting from one operator fed, as input, to another operator in the query plan.
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Figure 4.1.3: Simultaneous tuple transmission issue.

Thus, the Bypass Unit passes the input from the OP-Block Stream S input to its Stream S output
port, provided the input is targeted at subsequent blocks. This component has a small internal
buffer which is managed by two independent controllers that read/write incoming instructions
from/to the buffer. The buffer is required to facilitate the transmission of tuples from the input to
the output port without involving other OP-Block internal units.

In case the instruction available at the Stream S input port does not belong to the current OP-Block,
the write controller sends a request, for a bypass operation to the Coordinator Unit. After receiving
a grant signal, the write controller reads the CC field of the instruction to determine the number of
chunks to bypass, which is stored in the first chunk of each instruction. Subsequently, the write
controller continues to store the rest of the instruction chunks in the internal buffer, in addition
to the first chunk. Simultaneously, the read controller sends a request for transmission to its
neighboring block connected to its Stream S output port, as long as its internal buffer is not empty.

The Coordinator Unit controls permissions and priorities to manage data transmission requests to
ensure query processing correctness. For example, one important rule dictates that on each side of
an OP-Block, only one of the reception and transmission controllers is allowed to operate at each
time interval. In other words, Buffer Manager-R reception and Buffer Manager-S transmission
controllers or Buffer Manager-R transmission and Buffer Manager-S reception controllers are not
allowed to work simultaneously. This rule prevents the simultaneous transmission and reception of
tuples on each side of the block. Therefore, by enforcing that only one tuple is moved at a time
between two neighboring OP-Blocks greatly simplifies the control logic and the overall design. The
possibly erroneous outcome when not following this rule is shown in Figure 4.1.3. Another rule
prohibits changes to the contents of window buffers, while the the Processing Unit is running. This
simplification applies only to the window buffer whose change in content affects the resulting output
stream.

The Processing Unit (PU) is the execution core of the OP-Block. It is activated when a new tuple is
inserted. Then, based on the programmed queries, it executes every instruction in the Query Buffer
on the new tuple. For example, assume the OP-Block is programmed with two selection operators
and a new tuple enters, then the PU executes the corresponding instructions over the tuple in
consecutive steps. In case of a join operator, this unit joins the new tuple with every available
tuple in the opposite window buffer. Our current implementation is based on the nested loop join
algorithm.
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The PU has an execution and a transmission control unit. The execution unit fetches and executes
instructions on tuples, while the transmission unit outputs the query result tuples. The state
diagrams for the controllers of both units are shown in Figure 4.1.5: After receiving a new tuple,
the execution controller determines in the Opr-Addr state, the address from where to fetch the first
operator from within Window Buffer-S. Then, it reads it in state Opr-Read. For a selection, an
extra step is required to read the third instruction chunk, which is done in state Opr-Sec-Read.

In the Tuples-Addr and the Execution states, the addresses of tuples to process are calculated
and the tuples are read from either one or both of the window buffers. Actual processing is done in
the Execution state. Finally, addresses for the remaining instructions and tuples are updated for
the next iteration in Update-Addr-Ptrs state. When there are no more operations to perform, the
execution controller terminates in state Exe-Idle.

As the execution controller starts processing, the transmission controller waits (in Exe-Wait state)
for result tuples that it can pass on. In the Execution state, the execution controller triggers the
transmission controller, where the transmission controller then emits the result tuples in Trans
First-Chunk and Trans Second-Chunk states, respectively. Trans Second-Chunk is utilized in
the case of a join operator where the resulting tuple is the concatenation of the two input tuples.

Finally, the Filter Unit is attached to the Final Result output port of the OP-Block as shown in
Figure 4.2.2. It serves as an output buffer, which mitigates stalls imposed by erratic saturation
(i.e., a temporal increase in the match rate) in output buffer queues.

4.1.4 Operation Example

Next, we describe how a query is programmed and executed via a number of OP-Blocks. Consider
the following query (Figure 4.1.7) that filters out customers with age less than or equal 25.
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CREATE STREAM CS_SEL
AS
SELECT *

FROM
Customer_Stream
WHERE Age > 25

CREATE STREAM
CS_PROJ AS
SELECT Name, Price

FROM CS_SEL

Figure 4.1.7: SQL code example of a query.

To apply this query to an OP-Block first, we issue a reset instruction to configure the OP-Block output
port. Second, we issue a selection instruction that contains selection operator fields (i.e., condition,
attribute, and value). Finally, we issue a projection instruction to project out undesired fields.

To apply the selection operator, Buffer Manager-S within the OP-Block receives instructions that
carry the selection condition and writes them into the Query Buffer.

During processing, Customer input tuples enter the OP-Block from the Stream R input port. Each
tuple in the Customer stream is handled by the Buffer Manager-R and is placed in Window Buffer-R.
Next, the Processing Unit is notified, which then executes the selection and the projection operators
on the newly entered tuple.

In general, a selection, projection, or join operator is executed by an OP-Block in four steps:

1. Arriving tuple is stored in one of the two window buffers.

2. Depending on the operator one or more tuples are fetched by the PU from the window buffers.

3. The actual operation is applied to the tuples accordingly.

4. The resulting tuples (if any) are transferred out via Final Result or Stream S output port.

Issuing a query involving a join is similar to projection and selection. However, for joins, two input
streams, Stream R and Stream S, are handled at the input ports.

4.1.5 Design Rationale

Here, we summarize how the characteristics of stream processing influenced the design of the
OP-Block as well as how and why we were able to address some of the well-known disadvantages of
today’s computer architectures.

Design for Parallelism and Pipelining —
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Each OP-Block is self-contained and a set of OP-Blocks can be inter-connected to form a query-specific
topology. Each arrangement (cf. Figure 4.1.8) can be optimized with respect to two different design
criteria, namely, parallelism and pipelining. Consider the stream processor as a grid of connected
OP-Blocks. The width of the OP-Block grid dictates the degree of available pipelining for complex
queries that have large inter-dependency pipelines. The length of an OP-Block grid controls the level
of inter- and intra-query parallelism, in which there is no data dependencies among the OP-Blocks

(i.e., operations are not blocking).

The goal of our architecture is to provide the necessary framework to allow query assignment to
determine an optimal topology given statistics about the workload. The framework supports the
mapping of a logical OP-Block configuration (i.e., logical query plan) to a fixed OP-Block grid (i.e.,
physical query plan).

Design for Direct I/O Access —

Stream processing applications are often characterized by high I/O rates [37]. In our design,
OP-Blocks are directly connected to the system’s I/O ports without requiring redirecting the data
flow through main memory, thus, alleviating the memory wall issue and avoiding redundant memory
accesses.

The redundant memory access problem is a major source of memory bandwidth consumption
in today’s computer architecture: Input arriving from an I/O device is first written to memory
(initiated by the CPU) and subsequently, for processing, the CPU reads the data again from main
memory to process it. Output is processed analogously. As a result, read and write from and to I/O
sum up to at least two redundant memory accesses that are remarkably expensive in the face of
processing potentially unbounded and high-rate streams, especially, if the executed queries do not
build up much state or are entirely stateless. Figure 4.1.6(a) and (b) show the difference between
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the data path a stream takes from input to output in the conventional system bus and the OP-Block

architecture, respectively.

In our design, we use the FPGA’s on-chip BRAMs, which are distributed across the chip and
tightly coupled with the OP-Block. There is no need for shared memory between OP-Blocks, which
contributes to the scalability of FQP by avoiding memory access coordination and coherency issues.
Within an OP-Block, BRAMs serve as local memory elements, such as internal buffers to decouple
OP-Block elements and to realize window buffers for the join operator.

Design for High Performance/Transistor-Count Ratio —

The focus on building custom hardware, only tailored to stream processing, allows us to drastically
simplify the design of the OP-Block by eliminating and simplifying the central coordination and
control logic without which general purpose processors would not function. For example, no
sophisticated (central) memory system is required between input ports and core processing units.
Relatively speaking, the net result is that fewer chip resources have to be devoted to control units
and cache units, respectively. This leaves more resources for the OP-Block’s Processing Unit. For
example, in our design more than 60% of the chip resources make up the PU.

Design for Flexibility —

Related approaches, dedicated to accelerating stream processing through FPGAs, require lengthy
re-synthesis in face of supporting new or updated queries in their designs. Also, apart from needing
to modify queries online, data streams tend to evolve (e.g., arrival distribution variations and data
format changes) over time [37]. Our design features online programmability as its main and distinct
characteristics, as compared to the state-of-art in accelerating stream processing with FPGAs. Also,
in our design, an OP-Block features an instruction memory (cf. Query Buffer in Figure 5.5.1). Query
operators reside in this memory, which can be updated at runtime to modify the executed operator
and query. Our design avoids the von Neumann bottleneck, as it keeps instructions inside the
processing core, the OP-Block. Essentially, we realize the concept of processing data (streams) over
instructions, not the conventional model of executing instructions over data, where both reside in a
deep cache hierarchy.

Design for Simplicity —

To overcome issues relating to design complexity, we divide our hardware design into an intra- and
inter-OP-Block design. The intra-OP-Block design relates to the internal architecture of an OP-Block

and includes instructions set, port configurations, input/output data format, and design of internal
components like Coordinator and Processing Unit. The inter-OP-Block design specifies how multiple
OP-Blocks are inter-connected to each other to build a stream processor. For example, OP-Blocks can
be instantiated serially (in a chain cf. Figure 4.2.2) to realize operators in a query plan or to build
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CREATE STREAM CS_SEL1 AS
SELECT *

FROM Customer_Stream
WHERE Age > 25;

CREATE STREAM CS_OUT1 AS
SELECT *

FROM CS_SEL1 [Rows 1536], Product_Streams [Rows 1536]
WHERE Order ID = Product ID;

CREATE STREAM CS_SEL2 AS
SELECT *

FROM CS_SEL1
WHERE Gender = female;

CREATE STREAM CS_OUT2 AS
SELECT *

FROM CS_SEL2 [Rows 2048], Product_Streams [Rows 2048]
WHERE Order ID = Product ID;

Figure 4.2.1: SQL code example of a query.

a join operator with large window buffers. This results in a performance gain by adding processing
pipeline stages as illustrate in Figure 4.1.8. OP-Blocks can also be instantiated in parallel to realize
independent query plans which increase performance by adding processing units in parallel, as
shown in Figure 4.1.8.

Design for Fine- and Coarse-Grained Configurability —

The inter-OP-Block design enables building a custom topology for a specific stream computation.
For example, one computation may require high filtering throughput while another one may aim
to support complex join correlations between large tuple windows. The former can benefit from
using many parallel blocks since stateless filtering is easily separable, while the latter, due to data
dependencies, has to be processed more serially, obtaining speedup from pipelining. Consequently, a
single architecture for all stream computations is not the best option, rather a configurable topology
is what is needed. On the one hand, our design supports fine-grained configuration by allowing
the application to insert queries at runtime and, on the other hand, course-grained configuration
by allowing to custom assemble a new instance of a stream processor that supports an altogether
different set of stream computation requirements.

4.2 FQP Configuration Examples

In this section, we exemplify how multiple OP-Blocks can be configured into different inter-connection
topologies to realize a given query on the FQP. We discuss pre-processing steps that prepare the
input for processing. We also illustrate how queries are mapped onto the processor’s configuration
— a step referred to as query assignment. We qualitatively discuss the trade-offs that result from
different OP-Block configurations realizing the same query. A quantitative evaluation is presented in
Section 4.5 and a formal treatment of query assignment is deferred to future work.

39



4.2. FQP CONFIGURATION EXAMPLES

OP-Block
#1

Final Result

OP-Block
#2

Filter Filter

Result Aggregation Buffer

OP-Block
#3

OP-Block
#4

Filter Filter

OP-Block
#5

Filter

OP-Block
#6

OP-Block
#7

OP-Block
#8

OP-Block
#9

Selection 
(Age>25)

Join Over Product ID
<Window Size: 1536 Tuples>

Selection 
(Gender=female)

Join Over Product ID
<Window Size: 2048 Tuples>

Filter Filter Filter Filter

Result 
Stream

Product 
Stream

Customer 
Stream

Figure 4.2.2: Query assignment in OP-Chain topology.

During pre-processing, queries and streams are transformed into the appropriate input format, —
the instruction format described in Section 4.1.2, — understandable by the stream processor. A
single query may map to multiple instructions executed by the processor.

In our below example, the query (cf. Figure 4.2.1) filters out customers who bought a specific
product and are older than 25 over a window of size 1536 (i.e., 512×3) and also customers who are
female in addition to being older than 25 over a window of size 2048 (512×4).

Also, during pre-processing, in a step resembling query compilation, the instructions representing
the query plan are assigned to appropriate blocks of the FQP configuration. We refer to this step
as query assignment, which receives queries and block topology as input and, based on the location
of each operator in the query plan and positions of OP-Blocks in the topology, assigns each operator
(or set of operators) to a specific OP-Block.

The query assignment is a critical step in efficiently utilizing the statically allocated hardware
resources (i.e., the block topology) with regards to latency, throughput, and power consumption.
For example, to reduce latency, a selection operator, should be assigned to an OP-Block closets
to the processor’s entry point. As a result, query assignment may trigger the reprogramming of
other OP-Blocks to free up specific blocks in favor of overall processing performance. In contrast, a
poorly chosen query assignment may increase query execution latency, leave some blocks un-utilized,
negatively affecting energy use, and degrade the overall processing performance. Generally speaking,
the query assignment complexity increases with the size of the query and the number of OP-Blocks.

We now illustrate the assignment task, first, given a chain of OP-Blocks as underlying processing
topology and, later, a parallel configuration.

OP-Chain topology — A chain of OP-Blocks (OP-Chain), inter-connected in a pipelined manner,
is shown in Figure 4.2.2, where queries are processed against Customer and Product streams
entering the chain. Stream processing results are collected from individual OP-Blocks and are guided
to FQP’s output via the Result Aggregation Buffer, which is a result gathering tree-like structure
with buffers in its internal nodes.

We start the assignment of the SQL query from Figure 4.2.1 to the OP-Chain in Figure 4.2.2
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by mapping the selection operator on age to OP-Block-#1 and program it by a reset and a select
instruction. The reset instruction sets the OP-Block-#1 result port to thr Stream R output port,
where the selected tuples are passed on to OP-Block-#1’s right neighbor for subsequent join processing.
Both instructions are inserted into the chain through OP-Block-#9’s Stream S input port, where, by
carrying the identifier of their target OP-Block, they bypass other OP-Blocks, before reaching the
target block.

We can realize join operators with various window sizes equal to multiples of the OP-Blocks’ window
sizes. In this example, each OP-Block has a window size of 512 tuples; therefore, three OP-Blocks are
required to realize the join operator in Figure 4.2.1 with window size 1536 (3×512). To apply the
join operator, two instructions, for each of OP-Blocks-#(2-4), are issued. Again, reset is the first
instruction, but in contrast to the previous operator, it sets the result port to be the Final Result
port in OP-Blocks-#(2-4), where tuples are gathered by the Result Aggregation Buffer for transfer as
processor output.

The selection operator on gender is mapped to OP-Block-#5 and the remaining join operator is
mapped to OP-Blocks-#(6-9). To realize a window size of 2048 (4×512) four OP-Blocks are needed.

In stream processing mode, the stream processor receives Customer tuples from the Stream R input
port of OP-Block-#1, applies the selection operator, and emits filtered tuples as intermediate result
stream through its Stream R output port. Furthermore, the processor receives Product tuples
via the Stream S input port of OP-Block-#9 and produces the result streams at Final Result port
of OP-Blocks-#(2-4) & #(6-9), respectively. Note that the second selection operator is applied at
OP-Block-#5 and the intermediate result stream is sent to OP-Block-#6 from Stream R’s output port
of OP-Block-#5.

Partially Parallel Topology —

In the query assignment for the OP-Chain topology, we assigned the join operators to multiple OP-
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Blocks to accelerate the processing by benefiting from pipelining. Figure 4.2.3 shows the assignment
of the same query to fewer OP-Blocks arranged in a partially parallel topology: OP-Blocks-#1 & #2
and OP-Blocks-#3 & #4 are each pipelined and parallel to each other. Since this assignment does
not allow for data dependencies between parallel parts. The query is duplicated at the first selection
operator, Selection(Age>25), repeating this operator in both parallel branches. The rest of the
query assignment is similar to the one in the OP-Chain.

One advantage of the parallel topology is that it requires fewer processing cycles for streams to
reach the corresponding OP-Blocks. Thus, overall, it enables lower latency processing. For example,
the Product stream in the OP-Chain configuration has to pass through four OP-Blocks bypassing
one OP-Block to reach OP-Block-#4 (the first join operator), while in the parallel configuration, the
stream is directly injected into the first join operator.

In the configuration in Figure 4.2.3, OP-Blocks-#2 & #4 have window sizes of 1536 and 2048,
respectively. However, there is no limit in the number of OP-Blocks and their configurations;
instantiating more OP-Blocks to benefit from pipelining is a viable alternative.

4.3 Segment-at-a-time Processing

Not only queries change throughout the life of an application, but the streams themselves evolve
as well. Their properties such as schema, tuple size, and input rate change continuously. These
features are at odds with today’s FPGA-based stream processing solutions, which have, for the
most part, been tailored to process one specific tuple width before requiring re-synthesis if tuple size
changes are permitted at all. This degree of flexibility poses a severe challenge for a hardware-based
solution, as opposed to its software counter-part. Our design has been specifically built to afford
this flexibility. The OP-Block-based design of FQP supports varying size tuples, thus, allowing for
evolving data streams.

Generally speaking, hardware systems have fixed size input ports, internal communication buses,
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and output ports. FQP is no exception. However, flexibility in the face of varying size data streams
stems from the way an OP-Block processes incoming tuples. The parametrized design of the OP-Block

allows us to define its ports’ width prior to design synthesis. By default, we configure FQP with a
64-bit port width. As a result, for any tuple larger than 64 bits, it is divided into 64-bit segments
at the entry-point to FQP. The tuple segments arrive at the input port of an OP-Block as shown
in Figure 4.3.3. Then, the OP-Block processes each segment, one at a time, and hands over the
resulting segments to the Filter Unit through its Final Result port.

Figure 4.4.1 shows the segment-at-a-time processing mechanism in more details. Prior to processing
a segmented tuple, queries also need to be updated to handle the segments. In our example, the
query consists of two segments, of which the first segment corresponds to the first segment of
the tuple, while the second segment of the query corresponds to the second segment of the tuple.
Segmentation of queries is performed in software outside of FQP.

The PU fetches the first segment of the tuple from the Window Buffer-R as well as the first segment
of the query. Then, the PU executes the segment of the query and produces a result segment with
an additional flag which shows if the first segment of the tuple satisfies the (query) conditions in
the first segment of the query. This process is repeated for the second segment of the tuple etc.

All resulting tuple segments are transmitted to and stored in internal buffers of the Filter Unit
(FU), which evaluates the validity of the entire resulting tuple. For example, in a selection operator,
one of the tuple segments may not pass the selection condition, while others do2, which would
render the entire tuple invalid. After receiving the final segment and positively validating the result,
the FU hands the tuple (a segment at a time) over to the RAB to transfer it to the output port of
FQP. Otherwise, the FU drops all result segments.

Segment-at-a-Time Processing for Join Operator —

Query assignment is a task performed in software that maps the input queries onto the available
blocks of the FQP configuration. This task determines the placement of operators, which is not
known a priori (i.e., we do not know where a join operator executes). Segment-at-a-time processing

2E.g., the higher order bits pass the condition, while the lower order ones do not (for two segments).
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is necessary to support the further processing of tuples that result from a join operation as often,
the join result is comprised of both input tuples (unless attributes are projected out).

Segment-at-a-Time Tuple Size Limit —

The maximally accepted tuple size is determined by the size of Window Buffer-(R&L) in the
OP-Block. From a conceptual point of view, the size of Window Buffer-R is not limited for stateless
operators (i.e., select and project), while this is not the case for stateful operators (i.e., join). The
actual limit depends on the resources available on the FPGA, which is highly device-specific and
will only increase in future FPGAs. With today’s technology, we have synthesized blocks with
window sizes of up to 4K bytes.

4.4 Variable Tuple Size Example

Here, we give an example to illustrate the segment-at-a-time mechanism realized by the OP-Blocks.
Assume a Customer stream with Customer ID and Age fields.

CREATE STREAM CS_SEL
AS
SELECT *

FROM
Customer_Stream
WHERE Age > 25

Furthermore, assume a query to segregate customers into two groups, those who are older and
those who are younger than 25 years of age (e.g., a retailer wanting to compute recommendations
based on age.)

This query is programmed onto the OP-Block and executed over the customer tuples as shown
in Figure 4.3.4. As the Customer stream evolves over time, new attributes, such as Height and
Weight, are added (e.g., for the retailer to better differentiate recommendations.)

CREATE STREAM CS_SEL AS
SELECT *

FROM Customer_Stream
WHERE Age > 25, Height <

180

Thus, the query is re-written as follows and through the segment-at-a-time mechanism, the OP-Block

can execute the new query over the larger tuples without any changes as shown in Figure 4.4.2.
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Figure 4.4.1: OP-Block Segment-at-a-time.
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Figure 4.4.2: Segregation query.

Table 4.5.1: OP-Chain synthesis parameters.

Buffer size OP-Block

Figure(#) R-Pipe T-Pipe Filter-U Buffer-N Count Win-Buf

4.5.2 20 20 4 4 16 4-256
4.5.7 20 20 4 4 16 8-16

4.5.3 & 4.5.4 4 4 4 4 2-28 4-4K
4.5.6 4 4 4 4 2-28 8
4.5.5 - - 2 2 2-512 8

The processing of the updated (larger) tuple is done in four steps. In Step 1, after the query for the
updated tuple schema was re-programmed onto its (target) OP-Block, the updated (enlarged) tuple
is divided into two segments at the entry point of the FQP. In Step 2, that is, after the segments
arrive at the target OP-Block, the Processing Unit fetches the first part of the query (Age > 25)
and executes it on the first segment of the tuple. In Step 3, the same process is repeated for the
second part of the query (Height < 180) and the second segment of the tuple. Each one of these
steps produces a resulting tuple segment together with a validation flag. Finally, in Step 4, the
resulting tuple segments are processed jointly using the Filter Unit. In case all segments have
satisfied the query conditions, they are handed over to the RAB for transfer to the output port
of the FQP. In this example, for illustration purposes, we have kept the data stream simple. In
practice, segment-at-a-time is applicable to larger tuples with more attribute-value fields.

4.5 Experimental Results

In this section, we evaluate our approach. We implemented the proposed design in VHDL and
configured various OP-Chain topologies on the Xilinx ML505 development board to demonstrate
the applicability of OP-Blocks as building blocks to develop custom stream processors. The detailed
specification for the Virtex-5 FPGA on this board is given in Table 4.5.3.
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Table 4.5.2: OP-Block resource utilization.

Component FLOP/LATCH LUT MUXFX CARRY BRAM DRAM OTHERS

Buffer Manager-R 37 214 2 15 - - 2
Buffer Manager-S 55 100 - 15 - - 2
Window Buffer-R - - - - 2 - -
Window Buffer-S - - - - 2 - -

Bypass Unit 16 22 - - - 11 1
Coordinator Unit 4 19 1 - - - -
Processing Unit 327 533 7 119 - - 2

Ethernet
MAC

+
UDP/IP
Stack

Pipeline Buffers
FQP:

Flexible Query
Processor

Virtex-5 FPGA

Receive 

Transmit

Profiler
System

Figure 4.5.1: Data stream reception and transmission stages.

In our experiments, input is generated by a workload generator and passed through an Ethernet
component and pipelined reception buffers to the stream processor, as shown in Figure 4.5.1. The
input streams consist of 64-bit tuples (i.e., 32-bit attribute and 32-bit value).

We synthesized the OP-Chain design on our development workstation, loading the resulting bit
file onto the FPGA using the JTAG interface. This bit file contains all required information to
configure the FPGA. Our evaluation machine has an Intel Core i7-3720QM processor and 16 GB
DDR3 RAM running Window 7 Professional (Service Pack 1). In each experiment, we used different
parameters for a specific evaluation objective; parameters (specified by figure number) are given in
Table 4.5.1.

R-Pipe, T-Pipe, Filter-U, and Buffer-N specify buffer sizes (in number of tuples) for reception and
transmission pipelines, Filter Unit, and Buffer Node, respectively. Buffer Node is a two-to-one
merger component including memory, used in each of the internal nodes of the Result Aggregation
Buffer.3 Finally, Count specifies the number of OP-Blocks in the experiment and Win-Buf specifies
the size of each window buffer in an OP-Block.

3Buffer Nodes are connected in a binary tree-like structure to pass on results. Leaves are connected to OP-Blocks
(i.e., to the Filter Unit) and the root is connected to the output port of the FQP.
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Table 4.5.3: Virtex-5 (XC5VLX50T) specification.

Slices 8,160
Distributed RAM (Kb) 780
DSP48E Slices 288
BRAM Blocks (Kb) 4,752
RocketIO Transceivers 12
Max User I/O 480

Table 4.5.4: Instruction latencies in OP-Block
(operating clock frequency: 125MHz).

Operation Latency (#cycles) Duration (ns)

Selection 6 48
Projection 5 40
Join 5 40
Reset 4 32
Bypass 2+2 32

4.5.1 OP-Block Analysis

The resource utilization, reported by the Xilinx synthesis tool, for an OP-Block capable of processing
tuples with a 64-bit width (32-bit attribute, 32-bit value) and window buffers, each with the size of
64 tuples, and a buffer size of 4 tuples for the Bypass Unit (BU) is presented in Table 4.5.2. The
data shows that the window buffers consume two block RAMs (BRAMs) and the buffer for the BU
consumes 11 distributed RAMs (DRAMs).

LUTs realize logical operations and latches (flip flops) store values between operations. An OP-Block’s
PU consumes 533 and 327 of these resources, respectively, thus, accounting for more than 60% and
74% of them, respectively. This underlines the significant increase of relative chip area dedicated to
raw processing power in our design as compared to the 5% area dedicated to the Arithmetic Logical
Unit by general purposes processors. Also, the increase in size of the PU (i.e., adding more complex
arithmetic operations or using multiple parallel execution units) has almost no effect on the size of
other components, which means that the performance/transistor ratio (the raw processing power)
has even more room for improvements in our design.

4.5.2 Query Insertion and Modification Latencies

Each instruction (i.e., query operator) takes a number of cycles to program the OP-Block based on
factors such as the chosen topology and current system load. In case there are no stalls, latencies
for instruction insertion are given in Table 4.5.4.

The latencies presented in Table 4.5.4 assume that all instruction chunks are available at the
Stream S input port of the OP-Block. In case an instruction is not targeted at the current OP-Block,
a bypass is performed in two steps. First, taking two clock cycles, the current OP-Block decides on
the bypass based on the data available on its port (from its right neighbor) and starts the reception
of the data. Second, also taking two cycles, the current OP-Block initiates a transmission to its left
neighbor. Reception and transmission operate independently from one another by using the shared
buffer in the BU until all instruction chunks have been bypassed.

The instruction insertion latencies demonstrate that query programming is accomplished in a matter
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Figure 4.5.2: Effect of window size on input throughput.
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of nanoseconds, clearly, a viable alternative to the comparatively long synthesis times that range
from hours to days and FPGA re-configuration times that range from seconds to minutes.

4.5.3 Performance Evaluation

The rate at which the processor can accept input, the input throughput, can be determined based on
the number of OP-Blocks executing in parallel in addition to each OP-Block’s window size. Figure 4.5.2
shows the maximum input rate sustained by an OP-Chain consisting of 16 OP-Blocks with window
sizes varying from 4 to 256 tuples (for each OP-Block) running at a clock frequency of 125MHz. This
chain realizes an equi-join operator on two input data streams. The number of processed tuples per
second decreases as we allocate larger windows to each OP-Block, which is expected as each OP-Block

requires more clock cycles to process a larger window.

To run controlled experiments, we define the match probability (MP) as the probability for two
tuples to have the same value, i.e., resulting in a match for an equi-join.

Figure 4.5.7 shows the effect of MP on the maximally sustained input rate (red diagrams) and
maximally sustained output rate (blue diagrams). These experiments are based on an OP-Chain
instance with 16 OP-Blocks in two configurations of 8 and 16 tuples per window in each OP-Block.

In the OP-chain configuration, the maximum input rate of ∼1.26 million tuples per second can
be sustained by the available output bandwidth. However, an increase in MP, impacts the tuples
produced as output, saturating the output bandwidth that then again aversely effects the input
rate. At an MP of 0.05 (5%), the output bandwidth is saturated, which decreases the output rate:
More tuples match as part of a join and are forwarded as results.

4.5.4 Scalability Evaluation

Figure 4.5.3 shows reported clock frequencies for various OP-Chain configurations with different
number of OP-Blocks and window buffers. The results show close to constant clock speeds as the
design gets bigger. In hardware design, this is an indication for the scalability behavior of a design,
i.e., in our case, with increasing number of OP-Blocks, the clock frequency at which the FQP runs
remains unchanged.

For window sizes beyond a certain limit, the clock frequency an OP-Chain can support significantly
drops due to the design footprint approaching the given FPGA’s resource limits. For the FPGA we
have available, this materializes as follows: For 2 blocks and a 2K window size and for 4 blocks and
a 1K window size (8 and 512; 16 and 256.)
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Figure 4.5.6: OP-Chain resource utilization on Virtex-5
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The synthesis tool aims to utilize every available FPGA resource to realize a given design. However,
when a design becomes larger, it has fewer options available (e.g., for placement and routing). As a
result, the synthesis tool may end up mapping components far from each other, which degrades the
sustainable clock frequency for the realized design. This limitation is known by FPGA designers,
who generally recommend a 70-80% resource utilization for the given FPGA to prevent a clock
frequency drop [29]. There are optimization options in synthesis tools to mitigate this issue like
options aiming at trading off speed for area and options to tune the amount of optimization to
apply during synthesis to mapping, placement, and routing. Playing with these parameters could
result in better configurations. However, since logic synthesis is time-consuming, studying the
detailed effects of each parameter is beyond our current means.

Figure 4.5.6 shows the percentage of utilized resources on the Virtex-5 (XC5VLX50T) FPGA. Here,
the window size is fixed to 8 tuples for each OP-Block.

Synthesis tools commonly favor speed (i.e., higher clock frequency) for smaller designs. As a result,
FPGA resources (i.e., slices and BRAMs) may be utilized partially. This effect is seen in the BRAM
utilization between OP-Chains with 16 and 28 OP-Blocks. Figure 4.5.6 shows that for the former
OP-Chain almost all BRAMs are allocated, while we were still able to realize the latter and bigger
OP-Chain.

Resource utilization information is beneficial to determine underutilized FPGA resources to further
improve design performance by tuning.
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Figure 4.5.7: Effect of match probability on input (red) and output (blue) throughput.

4.5.5 Power Consideration

Power consumption is an important design requirement that impacts the energy budget alloted
to a given component and the rate of thermal dissipation, which is a concern for chips as their
packaging (die) size shrinks.

Figure 4.5.4 reports on power consumption estimates of various OP-Chain configurations based
on default activity rates reported by the ISE Xilinx XPower Analyzer (Release: 14.4 - P.49d).
Static power consumption remains almost constant (∼670 milliwatt), which is an indication that
all resources are powered regardless of their utilization in this FPGA.

Our measurements show a direct relation between power consumption and number of OP-Blocks.
For lower OP-Block counts, static power consumption dominates, while for larger counts, dynamic
power consumption dominates the total chip power consumption. Consumption ranges from 1 to 2
watts, which is comparably low given the ∼100 watts power draw of modern CPUs.

4.5.6 Synthesis Challenges

Here, we measure the synthesis time for various different configurations of our stream processor.
Figure 4.5.5 reports synthesis times for OP-Chain designs with varying number of OP-Blocks.

Our synthesis time measurements do not include the Ethernet MAC module and the pipeline
reception and transmission buffers (cf. Figure 4.5.1). Additionally, synthesis optimization options
were kept to default settings.
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Figure 4.5.8: Partially parallel FQP topology.

Table 4.5.5: Tuple processing rate.

Operators # Operators Million Tuples/s

Selection 24×8 230.6
Projection 24×16 272.6
Join 24 34.5
Chained Join (4) 6 8.6

The measurements show that synthesis times grow rapidly as the design includes more OP-Blocks.
Unfortunately, today’s synthesis tools do not seem to be capable yet to fully exploit the parallelism
available in multi-core processors in the synthesis computations. This is mostly due to the complexity
inherent in the various synthesis process steps (i.e., heuristic nature due to NP-hardness of underlying
synthesis problems).

From a high-level, these measurements underline again the main advantage of our design, as being
the capability to flexibly process queries at run-time without having to incur expensive re-synthesis
overhead.

4.5.7 Segment-at-a-time Processing

We developed all FQP components in VHDL that are configured and synthesized on our Xilinx
ML505 development board. In our experiments, the input was generated by a workload generator
and passed through an Ethernet component and pipelined reception buffers to the FQP stream
processor. The input streams consist of 64-bit long tuples (i.e., 32-bit attribute and 32-bit value).

Raw Processing Power Evaluation —

We first present the raw processing power of various queries by focusing on the number of operators
on a topology similar to Figure 4.5.8, where window size is 16 and clock frequency is 125MHz.
For the selection and projection operators, OP-Block is capable of supporting |Window Buffer-L|/2
independent selection operators or |Window Buffer-L| independent projection operators. Each
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Figure 4.5.9: Effect of tuple size on input tuple rate and input throughput.

OP-Block is capable of realizing a single join operator. OP-Blocks connected in a chain (OP-Chain)
can realize join operators with even larger window buffers. For example, utilizing two, three, or
four OP-Blocks increases the window size two, three, or four times, respectively. The processing
performance of each OP-Block for the join operator tightly depends on its window buffers’ sizes. For
a window size of 16 tuples, the current version of OP-Block is capable of processing 1.44 million
tuples per second. The raw processing power of the topology given in Figure 4.5.8 is summarized in
Table 4.5.5.

Each OP-Block is capable of processing at the rate of 9.61M, 11.36M, or 1.44M tuples per second
for the selection, projection, and join operator, respectively, which translates to 230.6M, 272.6M,
or 34.5M tuples per second for the topology in Figure 4.5.8. By chaining 4 OP-Blocks we have 6
OP-Chains each with a window size of 4×16 and a total processing rate of 8.6M tuples per second.

Segment-at-a-Time Evaluation —

To evaluate our segment-at-a-time feature of OP-Block, and to study its influences on the input rate,
we utilized a data stream by varying the number of attribute-value pairs per tuple (1 to 16), in
which the size of each attribute-value pair is 64 bytes. The clock frequency in this experiment was
125MHz. Figure 4.5.9 demonstrates the input tuple rate achieved as we feed larger tuples to an
OP-Block. By feeding larger tuples, the sustainable input tuple rate decreases as expected, since the
size of tuple and the number of attribute-value pairs doubles each time. However, interestingly for
a double size tuple the processing time does not necessarily double as seen in this figure. This is
due to the reduction in the amortized cost of tuple handling that is mostly for the first segment
and decreases for the subsequent segments. These results are for the selection operator, but they
are applicable for other operators including the projection and join operators.

53



4.5. EXPERIMENTAL RESULTS

54



Chapter 5

Parallel Stream Join Architecture

There is a rising interest in accelerating stream processing through modern parallel hardware, yet it
remains a challenge as how to exploit the available resources to achieve higher throughput without
sacrificing latency due to the increased length of processing pipeline and communication path and
the need for central coordination. To achieve these objectives, we introduce a novel top-down data
flow model for stream join processing (arguably, one of the most resource-intensive operators in
stream processing), called SplitJoin, that operates by splitting the join operation into independent
storing and processing steps that gracefully scale with respect to the number of cores. Furthermore,
SplitJoin eliminates the need for global coordination while preserving the order of input streams by
re-thinking how streams are channeled into distributed join computation cores and maintaining
the order of output streams by proposing a novel distributed punctuation technique. Throughout
our experimental analysis, SplitJoin offered up to 60% improvement in throughput while reducing
latency by up to 3.3X compared to state-of-the-art solutions.

This section presents the following contributions:

1. we propose SplitJoin, a novel scalable stream join architecture that is highly parallelizable and
removes inter-core communications and dependencies,

2. we introduce a new splitting abstraction in SplitJoin to “process” and “store” incoming data
streams concurrently and independently,

3. we propose a top-down data flow model to achieve a coordination-free protocol for distributing
and parallelizing stream join processing,

4. we develop a distribution tree with logarithmic access-latency for routing of incoming data to
storage and processing cores, while preserving the ordering of incoming tuples,
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Figure 5.1.1: Stream join data flow models (JC stands for join core): (a) bi-directional and (b) uni-directional
(top-down).

5. we design a coordination-free protocol that does not rely on global knowledge to produce
ordered join output streams by proposing a relaxed adjustable punctuation (RAP) technique
with tunable precision, and

6. we conduct an extensive analytical and experimental study of SplitJoin as compared to existing
state-of-the-art solutions.

7. Present a case study for design decision importance for hardware acceleration, including
design and development of a general flow-based framework to realize a parallel stream join
based on two bi-flow and uni-flow models on hardware.

8. Explore uni-flow and bi-flow hardware design decisions and their effects on throughput, latency,
and power consumption.

5.1 SplitJoin

In this section, we describe SplitJoin and highlight two of its key properties, namely, the top-down
data flow and the splitting of the join computation into independent storage and processing steps.
Together, these properties remove any need for coordination and dependencies among join cores,
which enables a high-degree of parallelism for SplitJoin without sacrificing latency.

5.1.1 Overview

SplitJoin diverts from the bi-directional data flow-oriented processing of existing approaches [85, 75].
As illustrated in Figure 5.1.1, SplitJoin introduces a single top-down data flow that fundamentally
changes the overall tuple processing architecture. First, the join cores are no longer chained linearly
(i.e., avoiding linear latency overhead). In fact, they are now completely independent (i.e., also
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Figure 5.1.3: SplitJoin storing and processing steps.

avoiding inter-core communication overhead). Second, both streams travel through a single path
entering each join core; thus, eliminating all complexity due to potential race conditions caused by
in-flight tuples and complexity due to ensuring the correct tuple-arrival order, namely, the FIFO
property is trivially satisfied by using a single (logical) path. Third, the communication path can
be fully utilized to sustain the maximum throughput and each tuple no longer needs to pass every
join core.

Another important aspect of SplitJoin is the simplification and decomposition of join processing itself.
SplitJoin splits the dominant join abstraction that enforces the “storing” and “processing” steps to be
coupled and done in a serial order. SplitJoin views these steps as two independent steps, namely, (i)
“storing” and (ii) “processing”. In fact, SplitJoin goes one step further and shows that not only these
steps could be done in parallel, they can also be distributed to independent join cores. Therefore,
unlike traditional parallel join processing that divides a single window into a set of sub-windows,
where each is assigned to a core, SplitJoin introduces separate storage and processing cores that
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Figure 5.1.5: SplitJoin data distribution and processing example.

operate independently of each other as shown in Figure 5.1.2. The storage core is responsible for
storing new tuples, while the processing core is responsible for the actual join operation of a new
tuple in one stream with the existing tuples in the other stream. The splitting line in Figure 5.1.2
conceptually divides our join processing architecture into two separate parts, in which a region
represents a stream’s window and the associated buffer. We use the term right-region when referring
to Window-R and left-region for Window-S. For each incoming tuple, a region either does processing
or storing.

The split mechanism is illustrated in Figure 5.1.3, where the incoming tuples are fed to SplitJoin

one after another. In the first step, Tuple-R is inserted into both regions. The right-region is
responsible for storing Tuple-R in its sliding window, while the left-region is responsible for the
processing of the replicated copy of Tuple-R (i.e., the join comparison). The temporary tuple
replication eliminates all inter-region communication among storage and processing cores. The
replicated tuples are simply discarded once the processing is completed.
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5.1.2 SplitJoin Parallelism

In SplitJoin, we parallelize the stream join computation by dividing each sliding window into a set
of disjoint sub-windows. Each sub-window is assigned independently to a join core as shown in
Figure 5.1.4 (i.e., acting as a local buffer for each core). Each join core (JC ) consists of a left- and
a right-region. The division of the sliding window among join cores is accompanied by a Distributor
unit to transmit incoming tuples to the join cores.

In the parallelized version of SplitJoin, all join cores receive the new incoming tuple. In each join
core, depending on the tuple origin i.e., whether R or S stream, the processing and storage steps
are orchestrated. For example, if the incoming tuple belongs to the R stream, Tuple-R, then
all processing cores dedicated to the left-region compare Tuple-R against all the tuples in the S
stream sub-windows. Simultaneously, Tuple-R is also stored in the storage core of exactly one
right-region. The assignment of Tuple-R follows an arbitration of the tuple to a storage core based
on a round-robin selection. In other words, each region, based on its position number 1 and the
number of seen tuples, independently determines its turn to store an incoming tuple. The proposed
assignment model eliminates the need for a central coordinator for tuple assignment, which is a key
contributor for achieving scalability in SplitJoin architecture. Notably, transmitting an incoming
tuple to each join core translates into writing a tuple to the join core’s local buffer (independent of
any other join cores) that resembles a simple queue with a single producer and a single consumer,
in which the producer is the Distributor and the consumer is join core itself.

1Position number refers to the logical location of a join core among other join cores.
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5.1.3 Scalable Distribution Tree

The decoupling of storage and processing in SplitJoin simplifies parallelization by distributing sub-
windows among many independent join cores. To fully leverage potential parallelism, we also need
an efficient tuple distribution and routing mechanism.

In SplitJoin, to distribute the stream’s transmission load in a balanced and scalable manner, we use
a k-ary tree as the distribution network. As the network grows in size, the Distributor is replicated
and its replicas are placed in the tree’s inner nodes to achieve the desired scalability. As the number
of SplitJoin join cores increases, we increase the fanout of each Distributor before increasing the
depth of the distribution tree.

By applying replication recursively, we scale the distribution network as well as the number of join
cores for SplitJoin. The resulting system, including the input data distribution network, SplitJoin’s join
cores, and the output data gathering network (similar in structure to the input network), is shown
in Figure 5.3.2, where the horizontal bars illustrate the input distribution and output gathering
networks.

The distribution network is the same for both count-based and time-based sliding window joins.
However, in the time-based version each tuple carries an extra field for its timestamp. This field is
to keep track of the lifespan of each tuple to realize the time-based sliding window semantic.

5.1.4 Expiration and Replacement Policies

Tuple expiration is a crucial step to ensure the correctness of the stream join semantic. In the
count-based sliding window, the number of tuples in each window is specified explicitly while in the
time-based sliding window a lifespan l (e.g., l = 10 minutes) defines when a tuple must be expired.

SplitJoin supports both passive and active expiration techniques. The passive approach is primarily
intended for the count-based sliding window, in which the incoming tuples simply overwrite the
oldest tuples in the window. The expiration is done implicitly and mimics the functionality of a
FIFO buffer. Once a window is full, the stored tuples are expired in order of their arrival. In the
active expiration, geared towards the time-based sliding window, each join core locally manages the
expiration of tuples from its sub-window. The expiration task for each sub-window is postponed
until a tuple from the opposing stream with timestamp of t is received for processing. Then, in
the region responsible for processing, just prior to the join computation, for each tuple with a
timestamp ti, if (t− ti) > l, then the tuple is expired. Basically, tuples are expired when they fall
off the user-defined lifespan (l) of the time-based window size.
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Note the expiration is a local operation within a region and does not involve global coordination
because tuples arrive with monotonically increasing timestamps and order is preserved when they
are added and stored in a sub-window. The expiration task starts from the end (with the oldest
tuple) of each sub-window and ends when a tuple younger than the user-defined lifespan is found.
In other words, instead of sending explicit expiry messages with a timestamp, we rely on the
timestamp of tuples in the input streams that must be routed to all nodes anyway. Therefore, the
expiration messages are implicitly piggybacked on the incoming tuples as a way to broadcast the
synchronized time without the need for global coordination.

In Figure 5.1.5, we illustrate how tuples are stored and processed in SplitJoin join cores. Assuming
that we have a sequence of tuples as shown in the upper part of the figure, each tuple is transferred
by the distribution tree to all join cores. Each Tuple-R is stored in exactly one right-region while
processed by the left-region of all join cores. Likewise, for tuples from the S stream, they are stored
in the left-regions and are processed by the right-regions.

As we can see in Figure 5.1.5, the tuples are distributed in-order. The tuples reach the storage cores
through the same path (i.e., the top-down flow), and the expiration procedure is preformed based
on the order of incoming tuples (for both count-based and time-based sliding windows). Thus,
unlike the bi-directional model used in [85, 75], neither the concurrency nor the race condition
issues arise.

During processing, each region emits resulting tuples to be collected by the result gathering network.
The processing step for each tuple in each region is completed by emitting an end notice from that
region, referred to as a star punctuation mark. These marks serve to preserve the order of join
results as we describe in detail in Section 5.2.

5.1.5 SplitJoin Algorithms

Tuple distribution in SplitJoin is specified in Algorithm 1. Upon arrival of a new tuple, regardless of
its source stream, the tuple is broadcast to all join cores (Line 3).

Algorithm 1: SplitJoin distribution network.
1 SplitJoin() begin
2 while still a tuple to consume do
3 broadcast tuple t to all Join Cores begin
4 forall join cores do
5 Join_Core(t, source);

In each join core, as presented in Algorithm 2, depending on the tuple’s source (Lines 2 and 11),
from R or S stream, the tuple is sent to the right-region for storage and to the left-region for
processing or vice versa.
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Algorithm 2: A join core in SplitJoin.
1 Join_Core(t, source) begin
2 if source = Stream R then // right-region
3 Expiration_Process(t, sub-window S);
4 Processing_Core(t, sub-window S);
5 if R_store_counter = node_id then
6 Storage_Core(t, sub-window R);
7 if R_store_counter = number of join cores then
8 R_store_counter ← 0;
9 else

10 R_store_counter ← R_store_counter + 1;
11 else // left-region

Algorithm 3: Matches between t and sub-window X.
1 Processing_Core(t, sub-window X) begin
2 forall ti-tuple in sub-window X do
3 compare ti-tuple with t; if match then
4 emit the matched result;
5 if i ≡ 0 (mod ordering_precision) then
6 emit punctuation star;

Finally, in the expiration process specified in Algorithm 4, the tuples that are too old to be
considered for the join are expired from the end of the sub-window by computing their lifespan
using their timestamp and the timestamp of the new tuple.

The pseudo code for the processing core (i.e., the join comparison) is specified in Algorithm 3. An
incoming tuple is compared with all tuples in the opposite sub-window (Lines 2-4). More importantly,
this step is executed concurrently for each sub-window in every region. After processing (Lines 5-6),
based on the chosen ordering precision, the star marker is produced and emitted. Also note that the
goal of SplitJoin is to provide an efficient and coordination-free architecture for performing stream
joins, and the particular choice of join algorithm is orthogonal. In this work, we adopted a simple
variation of nested-loop join; however, within each core, one may choose any join algorithms such
as hash- or index-based join.

Algorithm 4: Expiring old tuples for time-based version.
1 Expiration_Process(t, sub-window X) begin
2 i← the end of sub-window X;
3 while ti.timestamp - t.timestamp > Time Window Size do
4 omit ti from sub-window X;
5 i← i− 1;

5.2 Punctuated Result Collection

In SplitJoin, we employ a result gathering network (similar to our data distribution network) and a
punctuation technique to preserve the ordering for the join result output. The full architecture
of SplitJoin, that includes the distribution network, join cores (JCs), and the collection network, is
illustrated in Figure 5.3.2.
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In SplitJoin, we utilized a 2-ary collection tree to gather and merge join results as depicted in
Figure 5.1.6. The result tuples of each processing core are gathered from the leaves of the collection
tree. Each core has its own dedicated FIFO buffer. The collection tree employs a Merger unit and
a FIFO buffer in each of its intermediate nodes (except in the root). Moving toward the tree’s root
(from top to bottom), at each node, the data in the two input buffers is merged into the buffer of
that node. Merging continues up to the root, which contains the last buffer emitting the gathered
join results.

5.2.1 Punctuation-based Ordering

SplitJoin architecture preserves the ordering of result tuples. The precision of the output order
can be determined by a tunable system parameter, without significant changes in the processing
architecture. To realize this flexibility in our design, we developed a relaxed adjustable punctuation
(RAP) strategy. We define two levels of ordering guarantees for join results: the outer and inner
ordering.

Definition 1. The outer ordering of join results ensures that for any two consecutive incoming
tuples, join results of the first tuple always precede the join results of the second tuple.

Definition 2. The inner ordering of join results ensures that for a single incoming tuple in one
stream, join results are ordered in ascending order from the oldest to the most recently inserted
tuple in the other stream.

Our proposed relaxation enables us to maintain strict outer ordering while adjusting the precision
of the inner ordering (essentially, not maintaining the inner ordering) in order to substantially
reduce the overall cost of ordering. Furthermore, our technique supports strict outer and inner
ordering as well.

In RAP, we define a simple punctuation emission rule for each core (the same simple rule applies to
all cores), that is, the emission of a punctuation at the end of the processing of every newly inserted
tuple (preserving the outer ordering and relaxing the inner ordering). In other words, each join core
emits a punctuation after the end of processing a newly inserted tuple with all tuples in the other
window. We differentiate this punctuation from result tuples by a star, as shown in Figure 5.1.6.

SplitJoin cores insert both the join results and punctuation marks to collection tree leaves. The
punctuation acts as a border between the join results of two consecutively inserted tuples (outer
order). As join results and punctuations are pushed down the collection tree towards the root, at
each node of the tree, the join results and their corresponding punctuation marker (stars) from the
two buffers are merged into the FIFO buffer of their parent node. When the Merger in the parent
node receives a star from one of its inputs, it disables that input and continues to receive resulting
tuples from the other buffer until it receives a star from that buffer as well. The Merger merges
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Figure 5.2.1: Punctuated resulting stream.

two punctuations (stars) into one and pushes it to its FIFO buffer. This scenario repeats until the
star reaches the output of the collection tree.

Since join results are pushed down in the order in which the newly inserted tuple arrives, the outer
ordering for each core is trivially satisfied due to the single top-down FIFO flow of SplitJoin that
starts from the root of the distribution tree (for inserting new tuples) and ends at the root of the
collection tree (for merging the join results). This flow is shown in Figure 5.2.1.

The final step in the result gathering network employs a Combiner rather than a Merger. On the
right side of the split are the punctuated results, ordered by the tuples from the S stream, while on
the left side, the punctuation is based on the arrival sequences of tuples from the R stream. These
two sets of punctuated result tuples are consumable as separate streams. However, to emit only one
stream as output, we use a Combiner which simply fetches the resulting tuples and punctuations
from their input and puts them into the output buffer. The Combiner keeps track of the origin of
punctuations (whether from the right- or left-regions) by flagging the stars with R and S, as shown
in Figure 5.2.1.

In Figure 5.2.1, the upper flow is the result stream from the right-regions, punctuated by the order
of S stream tuples, while the middle one is the result stream from the left-regions, punctuated
by the order of R stream tuples. The lower flow demonstrates the combined result stream that
includes all result tuples in addition to punctuations. For example, R1-X is specified by two R
punctuations and includes the result tuples which start with R1.

Adjusting the punctuation interval is straightforward and only requires us to tune the punctuation
emission rate in SplitJoin’s cores. Each core can simply change the frequency at which a punctuation
is generated. For example, each core can be tuned to produce a punctuation after joining one newly
inserted tuple (strict outer ordering) or after every five tuples (relaxed outer ordering). We could
also adjust the precision of inner ordering by increasing the frequency of punctuation generation.
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Algorithm 5: Punctuation-based N-ary merger.
1 N-ary_Merger(t) begin
2 foreach right(or left)-region of core1..N in sequence do
3 while a resulting tuple (t) is available in output buffer till the first star do
4 pop t from join core’s output buffer;
5 push t to Merger’s output buffer;
6 push out the end of result star;

For example, to produce a strict inner ordering, each incoming tuple is compared with tuples in the
opposite window (starting from the oldest to the most recently inserted one), followed by outputs
for both the join result and the punctuation marker for every comparison. Therefore, if each core
has a window size of w, then up to w punctuation markers (i.e., stars) are produced for every newly
inserted tuple. For a relaxed inner ordering, only one punctuation is produced after joining the
incoming tuples with all the tuples in the opposite window. At the other extreme, when no ordering
is required, we could simply disable the punctuation generation altogether.

5.2.2 Ordering Algorithm

For the result gathering network, we utilized a k-ary tree. Algorithm 5 specifies the pseudo-code
for an N-ary (e.g., 2-ary) Merger given an N-ary result gathering tree. The Merger is connected to
the output FIFO buffer of N regions and collects the resulting tuples and punctuations into its
own output FIFO buffer, which is subsequently fed to the next intermediate node (its parent) in
the tree. This is repeated up to the root of the tree, where result tuples are punctuated by tuple
arrival order from the two stream types (either R or S).

The Merger connects to the output buffers of the same source, either left or right regions (cf. Line 2
of Algorithm 5). Each Merger collects the results in the same order as the join cores store the new
incoming tuples. For example, assuming that the first Tuple-R is stored in the left most join core
in its right-region, as shown in Figure 5.1.5. The Merger then begins the collection of results from
the comparison of Tuple-S with the R sub-window in the left most right-region as well.

In the result gathering, the Merger fetches tuples from the first region’s buffer and stores them in
its own output buffer until it reaches the first star in (Line 3∼Line 5). Then it repeats the same
procedure for the next region’s buffer until it receives a star from there too.

After receiving a punctuation mark from the last region, the Merger forwards the punctuation to
its output buffer (cf. Line 6). Note that each Merger emits only one punctuation mark for every
pair of punctuation (i.e., one punctuation mark from each join core).

Using a higher ordering precision increases the number of punctuation marks between result tuples
of each region. For example, instead of having one punctuation mark after comparison of a tuple
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Figure 5.3.1: Low-latency handshake join overview [75].

with the whole sub-window, we can have one punctuation after each 10 comparisons. Since tuples
in the sub-window are already stored in the order of their arrival, the intermediate punctuations
preserve the result ordering while gathering the results from all the join cores. For obtaining a
higher precisions, Mergers follow the same procedure as before.

5.3 Runtime Complexity

In this section, we present a brief analytical model to study the runtime complexity of SplitJoin

relative to related techniques [85, 75]. In the analysis, we use the following definitions.

Definition 3. We define the processing latency (PL) as the time from when a tuple arrives at the
join operator until the tuple is compared and joined with all tuples in the other window and all the
matching results are produced.

Definition 4. We define the visiting latency (VL) as the time required for two tuples from both
streams to be compared with each other.

5.3.1 Low-latency Handshake Join Analysis

The processing latency for low-latency handshake join (cf. Figure 5.3.1) is given as follows:

PL = TCL + ((k − 1)× (TCL + TML)) + (w × TP ) + TCol (5.3.1)

where TCL represents the communication time between cores and k the number of processing cores.
TML accounts for the tuple monitoring time in both streams, required to prevent missing results
between tuples in the fast-forwarding buffers (i.e., race conditions). Therefore, the cost of propagating
a single tuple to all cores by replication and fast-forwarding is captured by ((k− 1)× (TCL +TML)).
The size of each sub-window in each core is denoted by w. TP represents the processing time to
perform the join operation between each pair of tuples. To simplify the analysis, we assume that
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all join cores are working in parallel. Finally, TCol presents the time required to collect all the
matching results. In [75] the authors rely on a linear collector method for gathering the results that
has the potential to break the strict neighbor-to-neighbor communication model of handshake join.

In theory, assuming a fixed-size sub-window, we can increase the number of processing cores to
support larger windows. Therefore, the join’s latency scales linearly in the number of processing
cores, i.e., as O(k), — optimistically assuming that central coordination would not become a
bottleneck while ignoring the effect of the result collection method.

To calculate the visiting latency, we assume that the number of in-flight tuples from the two streams
that must be compared (i.e., the monitoring time TML) is negligible. While this assumption renders
the model less realistic (which was also implicitly assumed in [75]), it simplifies the visiting latency
analysis.

Any pair of tuples from both streams meet each other in, at most, one location; let this location
be α as shown in Figure 5.3.1. α could be in any core. If α happens to be on the first core, then
the latency is lower, while if it is on the last core, then the latency is higher. Thus, we define the
average visiting latency as follows:

V Lavg = TCL + (b (k − 1)
2 c × (TCL + TML)) + ((w2 )× TP ) (5.3.2)

(b (k−1)
2 c × (TCL + TML)) determines the average time to reach location α (essentially, reaching the

mid-point of core chain) and (w2 )× TP captures the processing time for half the tuples at α. The
visiting latency scales linearly with the number of processing cores O(k), assuming (TCL + TML) is
constant, irrespective of the number of cores.

To simplify the analysis, we ignore the overhead of central coordination in low-latency handshake
join [75]. The coordinator requires sending an explicit expiry message for every tuple [75]. On
average, these messages double the communication traffic between the central coordinator and each
join core, significantly affecting the performance as observed in our experimental evaluation.

5.3.2 SplitJoin Analysis

SplitJoin utilizes a distribution tree to deliver incoming tuples to each join core in O(logbk) time,
where k is the number of join cores and b is the branching factor of the distribution tree. We define
Path1···k as a distribution route that a tuple must travel to reach the join cores 1 · · · k, respectively.
Let TCP athi,Depthj

be the communication cost (duration) of transferring a tuple to the ith path at
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depth j. We define the processing latency for SplitJoin as follows:

PL = max
i=1···k

(
∑

j=1···logbk

TCP athi,Depthj
+ (w × TPi

)) + TCol (5.3.3)

where TPi
is the processing time to perform the join operation between each pair of tuples for the

ith core. Assuming the communication times, TCP athi,Depthj
, are roughly equal, then it follows that:

PL = max
i=1···k

(TCP athi
× logbk) + (w × TPi

)) + TCol (5.3.4)

If we further assume homogeneous join cores and homogeneous distribution routes within the tree
and also decompose TCol into smaller units of work, then it follows that:

PL = (TCL × logbk) + (w × TP ) + (TCL × logck) (5.3.5)

where logc k defines the depth of the result gathering tree with the branching factor of c (from
root to leaves). Assuming a fixed-size sub-window, as we increase the number of join cores, latency
increases logarithmically, O(logb k) (assuming b < c), for SplitJoin as opposed to the linear increase
(O(k)) observed in [75].

Supposing two consecutive tuples from both streams meet at the point α, as shown in Figure 5.3.2,
then their communication times in the distribution tree mostly overlap with each other because
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Figure 5.4.1: Sliding window concept in stream join.

they are pushed to the distribution tree one after another. They travel together (using the FIFO
strategy) to reach the targeted join core. As above, here, we also assume homogeneous join cores
and communication costs within the distribution tree. Then, the average visiting latency of SplitJoin

is given by:
V Lavg = (TCL × logbk) + (w2 × TP ) (5.3.6)

Thus, the average visiting latency is also logarithmic in the number of join cores, compared to the
linear order in [75].

5.4 SplitJoin in Hardware

The relational join (theta join) between two non-stream relations R and S, defined as R ./θ S,
produces the set of all resulting pairs (r, s), which satisfy the join condition θ(r, s) and r ∈ R,
s ∈ S. Extending this definition to stream join implies the same join processing semantics with the
exception that streams, unlike relations, are unbounded. To mitigate the challenge of unbounded
streams, with respect to both processing and storage limitations, streams are conceptually seen
as bounded sliding windows of tuples, as shown in Figure 5.4.1. The size of these windows are
defined as a function of time or number of tuples, referred to as time-based or count-based windows,
respectively.

Figure 5.4.2 shows the traditional architecture of a join operator that receives Tuple-R and Tuple-S
from streams R and S, respectively. JC stands for join core, which performs the join operation.
To process the tuples shown in the figure, Tuple-R is inserted into Window-R, then it is evaluated
against all existing tuples in Window-S and the join results are returned. Similarly, Tuple-S is
inserted into Window-S and the same join procedure is applied.
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5.5 Flow-based Stream Join in Hardware

We focus on the design and realization of a parallel and distributed stream join in hardware based
on the flow-based model. Furthermore, we compare the join core internal architecture for both
uni-flow and bi-flow models. Our parallel uni-flow hardware stream join architecture comprises
three main parts: (1) distribution network, (2) processing (join cores), and (3) result gathering
network, as shown in Figure 5.5.3.

Distribution Network —

The distribution network is responsible for transferring incoming tuples from the system input to
all join cores. In this work, we present two alternatives for this network: (1) a lightweight design
and (2) a scalable design.

The lightweight network distributes incoming tuples to all join cores at once without extra
components, which is preferable for comparably small solutions, while the scalable variant uses
a hierarchical architecture for the distribution. Here, we only present the design of the scalable
network, while our experiments include evaluations for both.
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Figure 5.5.3: Uni-flow parallel stream join hardware architecture.

In the scalable distribution network, we use DNode to build a hierarchical network. DNode receives
a tuple in its input port and broadcasts it to all its output ports. All DNodes rely on the same
communication protocol, making it straightforward to scale the design by cascading them. DNodes
store incoming tuples as long as their internal buffer is not full. As output, each DNode sends out
the stored tuples, one tuple in each clock cycle, provided the next DNodes are not full. The upper
part of Figure 5.5.3 demonstrates the distribution network comprised of DNodes. Here, we see a
1→ 2 fan-out size from each level to the next level from top to bottom. Other fan-out sizes (e.g.,
1→ 4) could be interesting to explore since they reduce the height of the distribution network and
lower communication latency.

The scalable distribution network consumes more resources (i.e., DNodes’ pipeline buffers) than
the lightweight variant and adds a few clock cycles, depending on its height, to the distribution
latency (though it does not affect the tuple insertion throughput). On the other hand, the scalable
distribution network pays off as the number of join cores increases, since it does not suffer from the
clock frequency drop (degrading the performance) as observed in the lightweight design.

The DNodes arrangement, as shown in Figure 5.5.3, forms a pipelined distribution network. Utilizing
more join cores logarithmically increases the number of pipeline stages. This means it takes more
clock cycles for a tuple to reach the join cores. Nonetheless, a constant transfer rate of tuples from
one pipeline stage to the next keeps the distribution throughput intact, regardless of the number of
stages.

Join Cores —

In our parallel hardware design, the actual stream join processing is performed in join cores. Each
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join core individually implements the original join operator (without posing any limitation on the
chosen join algorithm, e.g., nested-loop join or hash join) but on a fraction of the original sliding
window.

The internal architecture of our hardware join core based on the uni-flow model is shown in
Figure 5.5.2, and it has Fetcher, Storage Core, and Processing Core as its main building blocks.
Fetcher is an intermediate buffer that separates a join core from the distribution network. This
reduces the communication path latency and improves the maximum clock frequency. The Storage
Core is responsible for storing (and consequently expiring) tuples from R or S streams into their
corresponding sub-window. The distribution task of assigning tuples to each Storage Core is
performed in a round-robin fashion. The Storage Core remembers the number of tuples received
from each stream and (by knowing the number of join cores and its own position in them) stores a
tuple based on its turn.

The state diagram for the Storage Core controller is presented in Figure 5.5.4. A join operator
can be dynamically programmed without the need for synthesis (individually for each join core)
by an instruction which has two segments. The first segment defines join parameters such as the
number of join cores and the current join core position among them, while the second segment
carries the join operator conditions. The join operator programming is performed in Operator Store
1 and Operator Store 2. This makes it possible to update the current join operator in real-time.
After programming, Storage Core is ready to accept tuples from both streams. While receiving a
tuple from the S stream, when it is the current join core’s turn to store, the tuple is stored in its
corresponding sub-window in the Store in Window S state; otherwise, the storage task is skipped
by moving to the S Store Done state. The procedure for the reception of tuples from the R stream
follows an identical procedure.

The Processing Core is responsible for the actual execution in which each new tuple (or a chunk
of tuples) is compared to all tuples in the sub-window of other stream by pulling them up one at a
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Figure 5.5.6: Throughput measurements for flow-based stream join on hardware.

time and comparing them with the newly arrived tuple.

Figure 5.5.5 presents the state diagram of the Processing Core controller. In the initial step it
reads the join operator in Operator Read 1 and Operator Read 2 states. The actual comparison is
performed in the Join Processing state, where tuples are read from their corresponding sub-window,
one read per cycle. In case a match is found, it is emitted in Emit Result. Finally, at the end
of processing, the controller waits in the Join Wait state for another tuple to process. After a
new tuple reception, the whole execution repeats itself by means of a direct transition to the Join
Processing state.

Result Gathering Network —

The result gathering network is responsible for collecting result tuples from join cores. Similar
to the distribution network, we propose two (1) lightweight and (2) scalable alternatives for this
network. We focus on the latter for descriptions while comparing both of them in the evaluation
section.

The lower part of Figure 5.5.3 demonstrates the design of the result gathering network using GNodes.
Each GNode collects resulting tuples from two sources connected to its two upper ports using a
Toggle Grant mechanism that toggles the collection permission for its previous nodes in each clock
cycle. As a result, each source (i.e., a join core or a previous GNode) pushes out a resulting tuple to
the next GNode once every two clock cycles.

The Toggle Grant mechanism simplifies the design of the result collection; instead of using a
two-directional handshake between two connected GNodes to transfer a resulting tuple, we use a
single-directional signaling, in which each GNode looks only at permission to push out one of the
results stored in its buffer. The destination (next) GNode simply toggles this permission each cycle
without the need for any special control unit.
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Figure 5.5.7: Throughput measurements for flow-based stream join on software.

GNodes configuration, as shown in Figure 5.5.3, provides a pipeline result gathering network where
in each stage, tuples from two sources are merged into one and are pushed to the next pipeline stage
from top to bottom (respecting our unidirectional top-down flow model). The pipelining mechanism
reduces the effective fan-in size in each pipeline stage and thereby prevents clock frequency drop.

In Figure 5.5.3, arrows in the distribution and result gathering network are data buses that define
the width of received tuples, including their 2-bit headers. The header defines whether we are
dealing with a new join operator or a tuple belonging to either the R or S stream. The width of
the data bus for result tuples is twice (not counting the header) the size of the input data bus since
a result is comprised of two input tuples that have met the join condition(s).

Flow-based Hardware Design Comparison —

In the uni-flow model, data passes in a single top-down flow, in which each join core receives tuples
directly from the distributor and operates independently from other join cores (Figure 5.1.1b). The
uni-flow design offers full utilization of the communication channel’s bandwidth, specifically from
the input to each join core, since all tuples travel over the same path to each join core. Therefore,
regardless of the incoming tuple rate for each stream, every tuple has access to the full bandwidth.
To clarify this issue for the bi-flow model, assume we are receiving tuples only from stream R; then,
all communication channels for stream S are left unutilized. Even with an equal tuple rate for
both streams, it is impossible to achieve simultaneous transmission of both TR and TS between two
neighboring join cores due to the locks needed to avoid race conditions. Furthermore, comparing
the internal design of a join core based on the bi-flow model, Figure 5.5.1, and one based on
uni-flow Figure 5.5.2, we see a significant reduction in the number of internal components that
correspondingly reduces the design complexity. Neighbor-to-neighbor tuple traveling circuitries for
two streams are eliminated from Buffer Manager-R & -S and Coordination Unit, as they are
reduced and merged to form Fetcher and Storage Core in the join core based on the uni-flow
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model. This improvement also reduces the number of I/Os from five to two, which significantly
reduces the hardware complexity, as the number of I/Os is often an important indication of
complexity and final cost of a hardware design.

5.6 Experimental Results

In this section, we experimentally evaluate our SplitJoin implementation. All experiments are
performed on a 32-core system. Our system is a Dell PowerEdge R820 featuring 4 × Intel E5-4650
processors and 32 × 16GB DDR3 memory (RDIMM, 1600 MHz, Low Volt, Dual Rank, x4). We
ran our benchmarks on Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-57-generic x86_64) installed on a
Docker container [74] running on the same host OS.

5.6.1 Experimental Setup

We adopted the benchmark used in recent stream join approaches [39, 85, 75]. In this benchmark two
streams R = (x:int, y:float, z:char[20]) and S = (a:int, b:float, c:double, d:bool)
are joined via the two-dimensional band join, as follows:

WHERE r.x BETWEEN s.a-10 AND s.a+10
AND r.y BETWEEN s.b-10 AND s.b+10

In our evaluations, we used the low-latency (referred to as LH vs. SplitJoin (SJ)) and the original
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handshake join libraries that were kindly provided by the authors of [85, 75]. Also in line with
related approaches, integers and floats were generated following a uniform distribution in the range
of 1− 104, unless otherwise stated.

The results cover the end-to-end evaluation, including data distribution network, SplitJoin storage
and processing cores, the result gathering network, and also the proposed punctuated ordering
mechanism. The punctuation precision is based on the outer tuple ordering as shown in Figure 5.2.1,
unless otherwise stated.

In our time-based window realization, we generated timestamps on-the-fly using the system call
clock_gettime(). Using a synthetic timing mechanism, as we experimented, further improves the
overall performance by about 15% by relieving the overhead incurred by system calls.

5.6.2 Performance and Scalability

We evaluate SplitJoin performance by measuring latency and throughput metrics as we scale the
level of parallelism. In general, key factors that influence the stream join performance are how the
input streams are flowing through the join cores and how the joined results are collected and flow
to the output.

In Figure 5.6.1, we demonstrate throughput results of SplitJoin in comparison with [75]. As we
scale the number of join cores, we observe that both solutions scale gracefully; however, SplitJoin

outperforms the low-latency handshake join by up to 60% (comparison between 15-min sliding
windows). Theoretically, the performance of both approaches should be similar, as both utilize
all join cores in parallel to process incoming tuples. However, the core-to-core communication
and mandatory expiry messages in low-latency handshake join (necessary for both time-based and
count-based join versions) impose a noticeable penalty.

In Figure 5.6.1, we also observe how the two approaches perform for different time-based window
sizes. When the join core count is 32, we observe a drop in performance in both of the approaches.
This is due to the existence of extra threads to perform other (non-processing) tasks such as
stream distribution and result gathering in case of SplitJoin, and tuple assignment, expiry message
generation, and result gathering in case of the low-latency handshake join. Since our system has
only 32 processing cores, by instantiating 32 join cores, the operating system is forced to perform
context switches, resulting in system saturation and performance drop.
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5.6.3 Latency Evaluations

In Figure 5.6.4, we present an abstract model of our end-to-end processing pipeline stages. The
grayed parts show intermediate and pipeline buffers. In the measurements, we are reporting the
latency of the distribution stage (dis), which also includes the time that tuples are waiting in the
pipeline stage between the distribution and execution stages. The latency of the execution stage
(exe) is the latency attributed to the time that it takes a tuple to pass through the processing and
storage steps in the join core, which also includes the tuple expiration process for the time-based
sliding window. The latency for the last stage includes the time that resulting tuples are waiting
in the pipeline stage between the execution and result gathering stages and also the time for the
Merger and the Collector units to bring them to the output of SplitJoin. Latency reports for these
measurements plus the processing, end-to-end (ete), and latency of SplitJoin, for the time-based
sliding window, are presented in Figure 5.6.3.

Processing Pipeline Stage Latency —

In the distribution network, as we increase the number of join cores, incoming tuples are distributed
between larger number of join cores instead of having to pile up in the pipeline buffer for fewer join
cores. Therefore, increasing the number of join cores, inherently reduces the waiting time in the
distribution stage as shown in Figure 5.6.3.

Since our evaluation system has only four processor sockets, the increase in the size of the distribution
network has no significant effect on the performance except when the size of the sliding window
is small. In the execution stage, the increase in the number of join cores for a given window size
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Figure 5.6.5: Count-based SplitJoin throughput.

translates into smaller sub-windows for each join core and the latency also proportionally decreases.

Among our three pipeline stages, the result gathering network with punctuation ordering had the
highest latency impact. This latency was mainly due to the waiting times of the Mergers on one of
their input ports to receive a punctuation mark (star) before starting to read from their next port.

Visiting Latency: In Figure 5.6.2, we observe the average visiting latency (Tmatch −max(tr, ts))
for SplitJoin with 5, 10, and 15 minutes sliding windows, and low-latency handshake join with a 15 minutes
sliding window for varying number of join cores. The tr and ts stand for initial timestamp of r and
s tuples, respectively.

As we evaluated the average visiting latency (cf. Section 5.3), the latency increases logarithmically,
O(logb k), for SplitJoin as opposed to linearly, O(k), for the low-latency handshake join [75]. By
comparing the average visiting latency for the 15-min version of SplitJoin and low-latency handshake join,
when we use four join cores, the latency is quite similar; however, once the number of join cores
increases, the gap between SplitJoin and low-latency handshake join widens drastically by a factor of up
to 3.3X (8.1ms vs. 26.8ms for 28 join cores).

We observe an increase in latency while reaching 32 join cores which is again due to the lack of
enough resources for the other (non-processing) tasks. Since low-latency handshake join requires to
perform additional costly tasks, such as emitting individual expiry message for each tuple, the
resource contention shows a more significant impact on latency as seen when instantiating 32 join
cores.
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5.6.4 Count-based Sliding Window

Although the count-based and time-based versions of SplitJoin behave similarly, there are two
key differences: (1) having no space allocated for timestamp values and no on-the-fly generation
of timestamps through a costly system call and (2) having a fixed window size for count-based
semantics as opposed to the time-based semantics where the window size varies depending on
the incoming tuple rate. These differences result in roughly 20% improvement in performance for
SplitJoin using a count-based instead of time-based sliding window. For example, SplitJoin instantiated
with 28 join cores over a 15-min sliding window (shown in Figure 5.6.1) sustains an input rate of
4400 tuples/second, which roughly translates to window sizes of 221 for each stream. But for the
count-based window, if we set the window size to (221), SplitJoin can process up to 5200 tuples/second,
as shown in Figure 5.6.5.

In the count-based results shown in Figure 5.6.5, we observe two effects: (1) larger window sizes
result in fewer punctuation marks, assuming the same input throughput, since in the outer tuple
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ordering each join core produces one punctuation mark at the end of each tuple processing and
(2) a larger sub-window per join core additionally increases the processing efficiency by reducing
the impact of other (non-processing) pipeline stages. Based on these observations, doubling the
window size while fixing the number of join cores reduces the processing throughput.

For each window size, by increasing the number of join cores (JCs), we observe a relative
improvement in the throughput except when using 32 join cores. Over-utilizing system resources
(i.e., using 32 join cores) has more impact on the throughput for smaller window sizes. Larger
windows keep join cores busier, thus, new tuples are processed after longer waits. This relieves
other tasks (i.e., distribution), reducing the effect of resource contention.

In Figure 5.6.7, we present the latency of the processing pipeline stages, the average processing
latency (ete), and visiting (vis) latency for SplitJoin for the count-based sliding window. SplitJoin

scales gracefully as we increase the number of join cores; in particular, using 28 join cores, the
visiting latency is improved by more than 2.5X and 8.3X as compared to the time-based version of
SplitJoin and the low-latency handshake join, respectively.

5.6.5 Effect of Selectivity

The selectivity (also called match probability) is one of the major factors affecting join performance.
Often a low selectivity is assumed in most related work [39, 85, 75]. However, it is important to
analyze the sensitivity of a join algorithm with respect to the selectivity in order to assess the
generality of the approach.

The effect of varying the selectivity on the input throughput is illustrated in Figure 5.6.6. The key
observation is that SplitJoin’s latency scales reasonably, and it is robust to changes of selectivity,
even for sliding windows as large as 28× 215 tuples.

5.6.6 Effect of Punctuation Precision

Figure 5.6.8 demonstrates the effect of the ordering precision on the processing performance. In
this diagram, we utilize 28 join cores with varying sub-window sizes (212 − 215) per join core. The
ordering precision starts from one punctuation per sub-window processing, referred to as relaxed
inner ordering, and progressively increases the precision until one punctuation mark (star) is
produced after each comparison (represented as 21 on the x-axis) within each sub-window, referred
to as strict inner ordering.

The relaxed inner ordering is the same as the strict outer ordering. Therefore, the highest
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punctuation interval for each window size in Figure 5.6.8 represents the effect of strict outer
ordering on the throughput for that window size.

As we increase the precision (e.g., focusing on a sub-window size of 215), from 211− 215, its effect on
the overall performance is negligible, since the number of punctuations produced per each incoming
tuple in each join core is relatively low (i.e., 1, 2, 4, 8, and 16 punctuations, respectively) compared
to the sub-window size which is 215. However, as we continue to increase the precision from the
interval 210 down to 21, the number of punctuations becomes comparable to the sub-window size for
each join core, and as expected, negatively affects the performance of SplitJoin. This highlights the
importance of balancing ordering precision versus overall performance. In fact, since the precision
is adjustable, to achieve a desired throughput, SplitJoin could adaptively adjust the precision interval
to achieve a sweet spot between the ordering precision and the sustainable input throughput.

5.6.7 Hardware Splitjoin Evaluations

For hardware experiments, we synthesized and programmed our solution on a ML505 evaluation
platform featuring a Virtex-5 XC5VLX50T FPGA. Additionally, we synthesized our solution on
a more recent VC707 Evaluation board featuring a Virtex-7 XC7VX485T FPGA. For software
experiments, we used a 32-core Dell PowerEdge R820 featuring 4 × Intel E5-4650 (TDP: 130 Watt)
processors and 32 × 16GB (PC3-12800) memory, running Ubuntu 14.04.2 LTS.

We realized parallel stream join based on bi-flow model using a simplified OP-Chain topology from
FQP2, proposed in [67]. We used the Xilinx synthesis tool chain to synthesize, map, place, and
route both of the bi-flow and uni-flow parallel hardware realizations and loaded the resulting bit file
onto our FPGA using a JTAG interface. This bit file contains all required information to configure
the FPGA.

The input streams consist of 64-bit tuples that are joined against each other using an equi-join,
though there is no limitation on the condition(s) used. Both of the realizations have the ability to
adopt larger tuples that are defined by pre-synthesis parameters.

Throughput Evaluation —

Throughput measurements for bi-flow and uni-flow parallel stream join realizations are presented in
Figure 5.5.6. For the uni-flow version, we were able to instantiate 16 join cores on our platform with
up to W : 213 window size (per stream), as we see in Figure 5.5.6a. We observe a linear speedup
with respects to the number of join cores as expected. We were not able to realize window sizes
larger than 211 when instantiating 32 and 64 join cores due to the extra consumption of memory
resources in the distribution and result gathering networks and auxiliary components.

2FQP is available in VHSIC Hardware Description Language (VHDL).
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Figure 5.6.9: Latency reports for uni-flow parallel stream join on hardware.

Figure 5.5.6b presents the comparison between the input throughput in a parallel stream join
based on uni-flow and bi-flow models as we change the window size. We observe nearly an order
of magnitude speedup when using a uni-flow compared to a bi-flow model. Although in theory,
both models are similar in their parallelization concept, the simpler architecture in uni-flow brings
superior performance. We were not able to instantiate 16 join cores with 213 in bi-flow hardware,
unlike the uni-flow one, because each join core is more complex and requires a greater amount of
resources to realize it.

Figure 5.5.6c presents extracted (from a synthesis report) throughput on a mid-size, but more
recent, Virtex-7 (XC7VX485T) FPGA. We were able to realize a uni-flow parallel stream join with
as many as 512 join cores and window sizes as large as 218. We used a 300MHz clock frequency for
this evaluation as provided by the synthesis report. As a result of having more join cores and a
higher clock frequency, we see acceleration of around two orders of magnitude when we utilize a
window size of 213 compared to the realization on Virtex-5 (Figure 5.5.6a).

We ran our experiments on the software realization of a uni-flow parallel stream join (available
from [68]) and the throughput results are presented in Figure 5.5.7 for 16 and 28 join cores. Similar
to the experimental setup in [68], the maximum input throughputs were achieved while using 28
cores out of 32 on our platform since some internal components in SplitJoin, i.e., the distribution and
result gathering network, also consume a portion of the processors’ capacity.

Although the operating frequency of the Virtex-7 FPGA is significantly lower than that of the
processors used in our system, 300MHz compared to the processor base frequency of 2.7GHz
and max turbo of 3.3GHz, still we observed around 15× acceleration compared to the software
realization (28 join cores) while using the same window size (218) on both platforms (Figures 5.5.6c
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Figure 5.6.11: Uni-flow design clock frequencies on
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and 5.5.7). Two factors are main contributors to this throughput gain: 1) ability to instantiate
more join cores compared to the software version, since they operate in parallel and linearly increase
the processing throughput as a function of their count. 2) utilizing internal BRAMs in FPGA
by essentially coupling data and processing in each join core, while in the software variant, the
sliding window data resides in the main memory. This data has to move back-and-forth through
the memory hierarchy for each incoming tuple.

Latency Evaluation —

We refer to latency as the time it takes to process and emit all results for a newly inserted tuple.
We mainly focus on latency comparisons between the hardware and software realizations of the
uni-flow model for a parallel stream join. The measurements for these comparisons are shown in
Figures 5.6.9 and 5.6.10.

Figure 5.6.9 captures the latency observed with respects to the number of clock cycles and the
execution time (µsecond). For realization on Virtex-5 (V 5), we used the lightweight distribution
and result gathering networks since the system is relatively small; however, for the synthesized
design on Virtex-7 (V 7), we have reports for both lightweight and scalable (specified by s in figures)
variants of distribution and result gathering networks.

As we increase the number of join cores, we do not observe a significant difference in the number of
cycles required to process a tuple in either realization. The distribution network in the lightweight
design requires fewer cycles to transfer incoming tuples to all join cores while on the scalable version,
a tuple has to travel through multiple distribution levels (log2 N , where N is the number of join
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cores) to reach join cores; however, this advantage is neutralized by the greater latency in the
lightweight result gathering network. The cost of round-robin collection from join cores, one after
another, quickly becomes dominant as we approach larger numbers of join cores. However, by
taking into account the clock frequency drop in the lightweight solution as we increase the number
of join cores, the actual difference in latency becomes significant, as shown in Figure 5.6.9.

Utilizing a window size of 218 for each stream, the hardware version (Figure 5.6.9) shows around
two orders of magnitude improvement in latency compared to the software variant (Figure 5.6.10),
mainly due to massive parallelism and memory and processing coupling.

Scalability Evaluation —

The scalability of a hardware design is determined by how the maximum operating clock frequency
is affected as we scale up the system. Here we scale up our solution by increasing the number of
join cores that translates to a linearly increase in the processing throughput.

Figure 5.6.11 shows how clock frequency changes as we increase the number of join cores for
lightweight versions on Virtex-5 (V5) and Virtex-7 (V7) and scalable version on Virtex-7 (V7s).
For the realization on our Virtex-5 FPGA, we do not see any significant drop as we increase the
number of join cores. Although we are using the lightweight version, the system size (number of
join cores) is rather small to show its effect; actually, we even see an increase in the clock frequency
when utilizing 16 join cores that is due to heuristic mapping algorithms adopted by the synthesis
tool3.

For larger uni-flow based realization with more join cores, we see how the clock frequency of the
lightweight version drops as we increase the number of join cores. Since the Virtex-7 FPGA supports
higher clock frequencies, compared to the Virtex-5, it is more sensitive to large fanout sizes and
longer signal paths; therefore, we see this effect even when using 8 and 16 join cores. For the
hardware realization based on uni-flow with scalable distribution and result gathering networks, we
observe no significant variations in the clock frequency as we scale up the system.

Power Consumption Evaluation —

The extracted power consumption reports when using 16 join cores with a total window size of 213

(for each stream) consumed 1647.53mW and 800.35mW power for parallel stream join based on
bi-flow and uni-flow, respectively. As expected simpler design and correspondingly smaller circuit
size resulted in more than 50% power saving in utilizing uni-flow compared to bi-flow.

3Using more restrictions (such as using a higher clock constraint, e.g., 190MHz) it is possible to achieve higher
clock frequencies when utilizing fewer number of join cores.
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Chapter 6

Scalable Multiway Stream Joins in
Hardware

Efficient real-time analytics are an integral part of an increasing number of data management
applications, such as computational targeted advertising, algorithmic trading, and Internet of
Things. In this section, we primarily focus on accelerating stream joins, which are arguably one
of the most commonly used and resource-intensive operators in stream processing. We propose
a scalable circular pipeline design (Circular-MJ) in hardware to orchestrate a multiway join while
minimizing data flow disruption. In this circular design, each new tuple (given its origin stream)
starts its processing from a specific join core and passes through all respective join cores in a
pipeline sequence to produce the final results. We also present a novel two-stage pipeline stream join
(Stashed-MJ) that uses a best-effort buffering technique (referred to as stash) to maintain intermediate
results. If an overwrite is detected in the stash, our design automatically resorts to recomputing
intermediate results. Finally, we present a parallelized version of our multiway stream join by
integrating our proposed pipelines into a parallel unidirectional flow-based architecture (Parallel-MJ).
Our experimental results demonstrate a linear throughput scaling with respect to the numbers of
streams and processing cores.

This section presents the following contributions:

1. We propose a scalable multiway stream join (Circular-MJ) on hardware that is built on a circular
chain of dedicated stages (one per stream) and that benefits from pipeline parallelism.

2. We present a novel two-stage pipeline (Stashed-MJ) that benefits from a stash (intermediate
results buffer) to accelerate processing throughput.
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Figure 6.1.1: Reordering operators in multiway stream joins.

3. We enhance our multiway stream join pipeline to integrate it into the parallel architecture to
linearly scale the processing capabilities of our solution (Parallel-MJ).

6.1 Multiway Stream Join

A conventional join operates on tuples originating from two sources. Naturally, we should be able to
cascade the join operators to support more than two sources (streams). However, avoiding arbitrary
(unstructured) communications between processing components, which is a crucial property for
hardware design, introduces the challenge of real-time join operator reordering, as demonstrated
in Figure 6.1.1. Here, tuples from streams S1 and S2 keep the order of join operators intact (left
figure), while a new tuple from stream S3 requires operator reordering (right figure). Without the
reordering, we have to recompute all intermediate join results between all existing tuples in the
sliding windows of S1 and S2, which is not feasible due to the size and complexity of this processing.
The reordering challenge is exacerbated when working with a hardware system, where changes in
the data path and control circuitry of a design, particularly as it is scaled up (i.e., in the number of
streams), have severe effects on the design complexity, performance, and cost of the system.

Each new tuple insertion into the multiway stream join updates its sliding window and
subsequently may produce new intermediate results. Without materializing the intermediate
results, we need to sequentially cascade the join operators and feed each new tuple always from
the bottom (input port) of the cascaded architecture. Each new tuple and subsequently its
intermediate results pass through all join operators for processing, which leads to a right-deep join
tree architecture.
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Figure 6.1.2: Multiway stream joins with circular
design.
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Figure 6.1.3: Intermediate result generation in a
pipeline stage.

6.1.1 Multiway Join with a Circular Pipeline

Designing hardware based on join reordering poses a scalability issue due to the required crossbar
connection1 between processing units (join operators) and sliding windows.

To address this issue, we need to fix the order of join operators, which hardwires each sliding
window to only one processing unit. This approach eliminates the need for a crossbar. To fix
each join operator’s location on the right-deep join tree, we propose a circular data path design
that connects all operators together, as shown in Figure 6.1.2. In this design, each join operator
is connected to only one sliding window with two entries. Each operator receives its new tuples,
determined based on their origin, from its right entry. The left entries are placed in the closed
circular path, which carries the intermediate results from one join operator to the next join operator.
The resulting tuples are emitted after processing a new tuple in exactly N − 1 operators, where
we have N streams. The remaining operator is responsible for storing the new tuple in its sliding
window.

Using this design (Figure 6.1.2), we propose a scalable circular pipeline for multiway stream
joins in hardware (referred to as Circular-MJ), as shown in Figure 6.1.4. This pipeline has the same
number of stages as input streams. Each stage is placed between two isolating sets of registers
and is responsible for processing a new tuple against a specific sliding window. If the window in a
stage belongs to the current tuple’s origin, store and expiration tasks are performed rather than
the processing. To handle data transfer between stages in a scalable manner, we arrange the stages
in a circular architecture such that the intermediate results of each stage are fed to another stage
as input.

1A type of connection that provides the possibility for every input to access all output ports.
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Figure 6.1.4: Circular-MJ architecture.

6.1.2 Circular Pipeline Design Rationale

The decision that has heavily influenced our design is to have an independent operation on each
window, assuming that we already have the intermediate results from another join operator(s).
Therefore, we design N stages, where each stage is responsible for processing, storage, and expiration
operations on a single sliding window. To handle data transfer between stages in a scalable manner,
we arrange the stages in a circular architecture such that the intermediate results of each stage are
fed to another stage as input.

The key intuition of our circular design is that rather than adapting the order of join operations
to incoming tuples, we adapt the insertion location for incoming tuples using a pipelined distribution
chain. In other words, rather than having single entry and reordering join operators, we change
the architecture to have an adaptive entry to fix the order of join operators and to respectively
hardwire each sliding window to a separate processing unit (see Figure 6.1.4).

Our circular design differs from a conventional pipeline in three aspects: (1) a circular bus that
passes through all stages within the pipeline that relies exclusively on direct neighbor-to-neighbor
communication; (2) arbitrary access to any stage in the pipeline rather than physically fixing each
stream to one join operator in the pipeline; (3) arbitrary output collection from all stages, which is
necessary to offload the final results while sustaining high throughput.
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6.1.3 Circular-MJ Architecture

In our circular pipeline, each stage is connected to its two neighboring stages using the circular
bus, as shown in Figure 6.1.4. This bus provides a processing path that encompasses all pipeline
stages. Each stage contains three main components: (1) a stage buffer, (2) a join core, and (3) an
order control unit. To feed the incoming tuples to the stages, we use a pipelined chain of registers
(referred to as a distribution chain) that carries new tuples to their corresponding stage. The
purpose of the distribution chain is to keep the circular pipeline at full utilization and maximize
processing throughput.

(1) The stage buffer collects intermediate results from a previous stage and feeds these results
one-by-one to its stage’s join core. The existence of this buffer is necessary to prevent stalls caused
by the joint burst of intermediate results and new tuples. A stall may occur due to low selectivity
(high match probabilities2) in multiple consecutive join operators in the deep join tree, which leads
to the generation of many intermediate results.

In the stall scenario, all stage buffers are full, and each stage is waiting for the next stage to
consume some of the intermediate results in its buffer for further processing. Consider this scenario
from the perspective of the ith stage, which is waiting for the (i+ 1)th stage to consume some of
the intermediate results in its stage buffer. Then, given N streams, the nth stage waits for the 1st

stage, and this dependency reaches the (i− 1)th stage, which is waiting for the ith stage since the
pipeline stages are arranged in a circular architecture. Therefore, the ith stage is waiting for itself
to continue the processing, which translates to a stall. Using a stage buffer at the entry of each
stage prevents stalls from occurring by providing extra space to store intermediate results. In this
way, the ith stage can push its produced intermediate results without waiting for the next stage to
consume the results.

Furthermore, we give priority to intermediate results over new tuples, which further reduces
the probability of a stall occurring. This means that when there is a choice between processing
an intermediate result or a new tuple, the stage controller selects the former to reduce the stage
buffer’s fill ratio. Additionally, to prevent stalls, we drop an intermediate result when the stage
buffer fill ratio exceeds a specified threshold. However, this can lead to producing only a subset of
the join results.

(2) The order control unit is responsible for governing the correct execution order, considering
the out-of-order tuple insertion into the processing pipeline by the distribution chain.

Each new tuple is stored in its corresponding sliding window while other join cores are still
(concurrently) processing (computing the join) previously received tuples and their intermediate

2The probability that any two consecutive tuples (each from one of the streams) satisfy a join condition. Thus, as
selectivity increases, the match probability (mp) decreases.
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Figure 6.1.5: Order control unit architecture.

results. This is referred to as the out-of-order tuple insertion in our solution. Without handling
this case, the intermediate results from the previously inserted tuples are considered against an
incorrect set of tuples that can lead to missing or extraneous results.

This unit becomes involved in two tasks of a new tuple store and lookup, as shown in Figure 6.1.5.
This unit has an order buffer (OBuf) that stores newly received tuples from the distribution chain
and an expiry buffer (EBuf) that stores expired tuples from the sliding window. Having the uniform
distribution for the tuples’ origin (stream number), we suggest that the size of OBuf and EBuf be
the same as the number of streams. This results in better utilization of the join cores.

The order control unit has an out-of-order calculator, which counts the number of tuples that
belong to its stage’s sliding window that are stored in this window prematurely3. To avoid incorrect
matches with prematurely stored tuples, the order control unit uses a refine component to drop
these tuples. To avoid missing matches with prematurely expired tuples, a compare component
performs an additional comparison of the same number of prematurely stored tuples with the last
expired tuples in the EBuf.

(3) The join core contains its dedicated stream’s sliding window in addition to the processing,
storage, and expiration components that operate on this window. The sliding window can be count-
or time-based, and the joining algorithm can encompass different approaches ranging from the
nested loop approach used for general joins to the hash-based approach used for equi-joins. In this
work, we mainly focus on the count-based sliding window, which requires more complex control
logic to guarantee the correct execution order. In the case of having time-based sliding windows,
the timestamps inherently filter out extra results, while the expiration from each window must be
delayed to ensure that there are no missing results.

3Earlier than their order corresponding to the current tuple under processing.
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6.1.4 Circular-MJ Operation

According to the join operator placement (assuming a linear mapping of S1..n to join cores 1..N) in
Circular-MJ a new tuple from Si starts processing from the pipeline stage i+1 to face its corresponding
join condition. With a circular bus, the processing of a new tuple from stream Sn (TSn

) starts from
the 1st stage. Starting from an earlier stage, we need to have the union of the new tuple with all
tuples in that stage’s sliding window since there is no condition between them. This is impractical
due to the potentially large number of intermediate results from the union operator.

Each new tuple is transported to each pipeline stage by the distribution chain. As demonstrated
in Figure 6.1.4, each distribution chain pipeline buffer has one input and two output ports (except
for the last one). When this buffer is empty, it accepts a new tuple from its previous buffer and
holds this new tuple in both of its output ports. Once the new tuple is consumed by the join core
and the next buffer is also empty (ready to receive a new tuple), the current buffer pushes this new
tuple to the next buffer and waits to receive another new tuple. The last buffer in the chain drops
its tuple as soon as it is consumed by the last join core.

Join Core Lookup and Storage —

After processing in one stage, the intermediate results are pushed to the next pipeline stage for
the next processing step. All join cores temporarily receive a copy of each new tuple, but only the
join core that is home to the new tuple’s sliding window stores this tuple.

There are three possibilities when a new tuple enters a pipeline stage. In the first case, the
new tuple belongs to neither the current stage nor the previous stage’s sliding windows. Here, the
new tuple is temporarily stored in the OBuf without triggering any further operations. In the
second case, the new tuple belongs to this stage’s sliding window, and it is stored there. The new
tuple is also stored in the OBuf, while the expired tuple from the sliding window is stored in the
EBuf, as shown in Figure 6.1.5a. In the third case, the new tuple belongs to the sliding window of
the previous stage. Here, the new tuple is stored in the OBuf and triggers the processing. The
generated intermediate results are pushed (one-by-one) to the next stage for further processing.

The circular bus that carries the intermediate results between the pipeline stages has a reserved
field for each stream, and each stage fills its corresponding field with the tuple that has met its join
condition. When a stage fills the last reserved field, the final result is pushed out from the join core
to the result collection circuitry, as shown in Figure 6.1.4, to transfer to the system’s output. The
reserved fields and an example of filling one of them are shown in Figure 6.1.3. In this example, the
join condition could be between streams S2 (or S1) and S3.

Join Core Lookup and Store/Expire Controller —
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Figure 6.1.6: Join core lookup and store/expire
controller state diagram.
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Figure 6.1.6 presents the state diagram for the join core lookup and store/expire controller.
When receiving a new tuple belonging to this stage’s sliding window from the distribution chain,
the storage and expiration tasks are performed in the NT store state. When the new tuple belongs
to the previous join core’s window, it triggers the join execution. Here, the controller inserts this
tuple into the join core in the NT insert state, while the actual processing occurs in the NT process.
Whenever a match is found, it is sent to the next stage in the trans match state. The end of
join execution is signaled to the next stage by sending an end flag in the NT finish signal state.
Informing the end of execution is important since it enables the next stage to prepare to receive
another set4 of intermediate results or a new tuple.

After receiving an intermediate result, the join core controller feeds the relevant (extracted)
tuple to the join core in the NIR insert. The processing occurs in the NIR process state, and the
resulting data are either sent to another state as an intermediate result in the trans match to next
stage or are sent to the result collection circuitry in the trans match to output state. The main
difference in processing intermediate results in comparison to new tuples is that in the former, the
controller waits for the end flag before it moves to the NIR finish signal state. This processing
approach simplifies the refinement of results in the order control unit by avoiding the involvement
of other new tuples in the middle of processing a set of intermediate results.

Order Unit Controller —

During processing, the order unit controller refines the resulting tuples to avoid any missed
4All the results produced in a join core from a new tuple or an intermediate result are referred to as a set.
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or extra results. The order unit controller state diagram is shown in Figure 6.1.7. When a new
tuple (received from the distribution chain) belongs to the current stage’s window, in addition to
being stored in the OBuf, it is also stored in the window and correspondingly expires a tuple that
is stored in the EBuf. The storage of the new tuple in OBuf and EBuf is performed in the NT
OBuf store and NE EBuf store states, respectively. The OBuf and EBuf both use a FIFO strategy.
When the first tuple in the OBuf belongs to the current stage’s window, the controller drops it
from the OBuf and also drops the first (oldest) tuple in the EBuf.

After receiving a new tuple or an intermediate result to process, the order unit controller (using
the OBuf) counts the number of previously stored tuples in the sliding window of the current
stage in the count early inserts state. Note that the in-order insertion of new tuples in the OBuf
preserves the actual tuple arrival ordering regardless of their origin. Subsequently, the order unit
controller waits for the matches from the join core in the wait for match state. After receiving a
match, the order unit controller transitions to the match state, and the match result is dropped
if its constructing tuples exist in the prematurely stored tuples in the OBuf; otherwise, it is sent
out to the next stage as an intermediate result in the check for invalid match and trans states,
respectively.

After the end of processing in the join core, the state machine moves to the JC process end
state, and the order unit controller processes the current tuple with the same number of tuples in
the EBuf as the prematurely stored ones in the OBuf in the process with EBuf state. Finally, after
receiving the end flag from the previous stage, the current tuple is looked up and removed from the
OBuf in the PTuple OBuf remove state.

6.2 Multiway Stream Join with Stash

In the previous section, we focused on our scalable circular pipeline for multiway joins (Circular-MJ).
In this section, we focus on optimizing the pipeline for nonindexable stream joins by introducing
Stashed-MJ, which features novel buffering and improved pipelining. The first property of the Stashed-

MJ design is the integration of a buffer, referred to as a stash, to materialize the intermediate results
to substantially improve the throughput by avoiding recomputing previously processed tuples, as
shown in Figure 6.2.2. The second property is centered around improving resource utilization. In
Circular-MJ, only N − 1 of N stages perform the processing such that, for each stream, one stage
is always occupied with the storage and expiration tasks. Therefore, there is always one unused
processing unit in the circular pipeline.

Integrating the stash into Circular-MJ (Figure 6.1.4) poses an important design challenge because
we are now forced to share the buffer among multiple processing units, which are placed into two
or more separate pipeline stages. This raises two concerns. First, having a shared block between
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two pipeline stages that could be accessed frequently and in parallel violates the main concept of
the circular pipeline design, which is based on the separation of concerns and a strictly one-way
neighbor-to-neighbor communication. Second, this sharing can result in race conditions between
the concurrent processing of a new tuple and storing the matched results of an earlier tuple, which
now requires expensive pipeline stalls for coordination.

6.2.1 Stashed-MJ Design and Rationale

In Circular-MJ, we utilize three pipeline stages for a 3-way stream join operation. For every tuple
insertion, two of these stages process this tuple against the sliding window of other streams, while
the remaining stage is responsible for storing this tuple in its stream’s sliding window and expiring
the oldest tuple from it. There are two key insights that guide our new custom design: (1) storage
and expiration operations are relatively less expensive compared to processing (particularly in
nested-loop stream joins) and (2) storage and expiration are performed on a sliding window separate
from the windows used for processing. By exploiting these insights, we reduce the number of
pipeline stages to two by performing storage and expiration in parallel with the processing in the
first pipeline stage. Consequently, the processing unit in the first stage has to operate on two sliding
windows, depending on the newly received tuples’ origin, but not simultaneously. This provides us
with the opportunity to offload the processing operations of two streams (S1 and S2 in Figure 6.2.2)
that are involved in updating the stash onto this stage, which eliminates the sharing challenge.

Stashed-MJ Design —

We present our Stashed-MJ architecture for a 3-way stream join including the stash (on the pair
of streams S1 and S2) in Figure 6.2.1. The design is divided into three regions, each shown with
a gray background. The upper region shows the main execution unit, including the two-stage
pipeline, while the middle one depicts the interconnection circuitry, and the lower region specifies
the memory components, consisting of sliding windows and the stash.

The first stage of the pipeline is responsible for the join operation on a new tuple against WS1

(S1 sliding window), WS2 , or the stash. The actual execution is performed in the processing unit,
and if there is an intermediate result, it is stored in the stash after passing through the result
storage unit. The storage in the stash occurs after receiving a grant signal from the S1&S2 storage
and expiration unit, indicating that the new tuple-related storage and expiration tasks are over.
This results in better utilization of the stash due to the removal of expired intermediate results,
which frees space for new ones, including the current tuple intermediate results. The second stage
of the pipeline performs the join operation on a new tuple against WS2 or WS3 , in addition to the
storage and expiration operations related to tuples from stream S3.

The two-stage concept simplifies the design when considering the stash since the processing of
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Figure 6.2.1: Stashed-MJ architecture.

tuples from streams S1 and S2 with WS2 and WS1 , respectively, is performed only in the first stage.
Therefore, the intermediate results are produced on the same stage in which the stash is located.
This eliminates transport of the intermediate results between stages and inherently removes their
corresponding race conditions.

Stashed-MJ Operation —

After receiving a new tuple from stream S1 (TS1), it is processed against WS2 while being
inserted into WS1 and expiring the oldest tuple. The expired tuple’s key is used by the S1&S2

storage and expiration unit to probe and expire all intermediate results in the stash that include this
tuple. Meanwhile, the result storage unit enables the S1&S2 storage and expiration and processing
units to operate in parallel, thus minimizing the time spent in this stage. While the intermediate
results are being stored in the stash, they are also sent (one-by-one) to the second pipeline stage to
be processed against WS3 .

A new TS3 is joined first against the stash only if it has all the intermediate results (no recent
overwrite in the stash), and then the final results are emitted directly from the first stage. TS3-
related store and expiration tasks are performed in the second stage by the S3 storage and expiration
unit. If the stash does not contain all of the intermediate results, then TS3 is processed against
WS1 and WS2 in the first and second stages, respectively.
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Stash Effectiveness —

As demonstrated in Figure 6.2.2, materializing intermediate results in a buffer accelerates the
entire execution for tuples from stream S3 since they are only compared with the intermediate
results in this buffer. However, there are two major challenges regarding this buffer, which we
elaborate on next.

The first challenge is the buffer’s effectiveness with respect to the processing throughput. Assume
that we have a stash for a pair of streams S1 and S2 similar to Figure 6.2.2. Receiving tuples from
streams S1 and S2 does not benefit from this buffer since they have to be processed against WS2

and WS1 , respectively, and then against WS3 . However, a tuple from stream S3 only needs to be
processed against the materialized intermediate results, whereas without this buffer, we have to
reorder the join operators, process TS3 with WS1 and then process the intermediate results within
WS2 . Furthermore, this buffer provides a tradeoff between using increased storage vs. reduced
computation, which can improve system power consumption in addition to enhancing the processing
throughput when properly utilized.

Depending on the match probability, the number of intermediate results could vary from a few
tuples up to a size of WS1 ×WS2 , which makes the size of this buffer another concern. Opting
for a small size increases the possibility of overwrite, which renders the existence of this buffer
ineffective since we need to reprocess tuples from stream S3 with both WS1 and WS2 to avoid
missing any results. Meanwhile, a large buffer could make the solution less effective by consuming
a large amount of memory.

To address these challenges, the intermediate buffer can be effective if the following two conditions
hold: (1) the expected tuple rate from stream S3 is high compared to other streams since this buffer
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is only used when receiving tuples from this stream and (2) the expected number of intermediate
results is not great compared to the sliding windows’ size, which is further elaborated in Section 6.2.3.

6.2.2 Stash Internal Architecture and Operation

We use a circular buffer that stores intermediate results (any pair of tuples that have satisfied the
join condition) in addition to a valid bit for each. A true (logical value of one) valid bit shows that
the content for that buffer slot is valid and vice versa. Figure 6.2.3 shows the main components for
the stash.

Stash Expiration —

Upon receiving a new tuple, the S1&S2 storage and expiration unit, shown in Figure 6.2.1, stores
the tuple in its corresponding sliding window. At the same time, this unit also expires the oldest
tuple in the sliding window, which is followed by an expiration process on the stash. The S1&S2

storage and expiration unit uses the key of the recently expired tuple to search for the intermediate
results that include this key in the stash. Expiration in the stash is performed by setting the valid
bit of the expired intermediate results to false.

The expiration process can expire the intermediate results from any location in the stash. This
leads to a noncontinuous use of the stash, which we refer to as intermittent usage. The intermittent
usage forces a full stash search for every probing to avoid missing any results.

Stash Insertion —

Processing new tuples in the processing unit produces intermediate results that are initially
stored in the result storage unit. After receiving the grant (ready) indication from the S1&S2 storage
and expiration unit, which indicates the end of insertion in the sliding window and expiration from
the stash, the result storage unit starts storing its intermediate results in their specified (by the
stash controller) locations and correspondingly sets their valid bits to true. After each storage, the
stash controller searches for another empty location for the next intermediate result insertion.

Invalid Stash —

Based on the join selectivity, the number of intermediate results could exceed the size of the
stash, which leads to overwriting of the (still valid) intermediate results. We refer to this state of
the stash as invalid since after overwriting, the stash no longer

contains all intermediate results, which makes it unusable. In this invalid state, the pipeline
design in Figure 6.2.1 performs its normal operation while ignoring the intermediate results in the
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stash. However, the stash continues its storage and expiration operations with the exception that it
only stores the new intermediate results in a continuous order without checking whether each slot
is empty. This makes it possible for the stash to recover from the invalid state.

Stash Recovery —

For each overwrite, the stash controller preserves the latest keys from both tuples (in the
intermediate result) in the overwrite key buffer. After every expiration, the controller checks the
expired tuple’s key with each of these preserved keys in the overwrite key buffer ; when there is a
match, the controller marks that key as passed. If both of the preserved keys receive a passed mark,
then the stash returns to its valid state.

As an example of the stash recovery, assume that TxS1 generates the last intermediate result
(TxS1-TyS2), which causes an overwrite in the stash. Therefore, the keys of these two tuples are
preserved in the overwrite key buffer. Receiving an expiration request for TxS1 means that there
has been no overwrite on the intermediate results for tuples in WS1 after the insertion of TxS1 since
TxS1 has performed the last overwrite itself. The same concept also applies to TyS2 after receiving
its expiration. Again, this means that there has been no overwriting of the intermediate results for
tuples in WS2 after the insertion of TyS2 . Summarizing the last two statements implies that the
stash currently contains all intermediate results.

We refer to this transition to the valid state as stash recovery. Note that a new overwrite
again resets both of the preserved keys’ statuses to the failed mark. Additionally, shifting the
intermediate results to remove the gap created by the expiration can improve the recovery process.
This eliminates the situation in which we overwrite a valid intermediate result when there are still
empty locations in the stash.

6.2.3 Stashed-MJ Analysis

Here, we present an analytical evaluation of Stashed-MJ with both disabled and enabled stashes.

Stashed-MJ with Disabled Stash —

The processing latency is calculated as follows:

Latency =P (TS1)× (Tproc(WS2 ) +mr(TS1 ,WS2 ) × Tproc(WS3 ))+

P (TS2)× (Tproc(WS1 ) +mr(TS2 ,WS1 ) × Tproc(WS3 ))+

P (TS3)× (Tproc(WS1 ) +mr(TS3 ,WS1 ) × Tproc(WS2 ))

(6.2.1)

where P (TSx
) defines the probability of having a tuple from stream Sx; match-rate (mr(TSx ,WSy ))
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specifies the average number of resulting tuples per inserted new tuple (TSx), which is determined by
the match probability and the size of the sliding window (WSy ) used for comparison; and Tproc(WSx )

determines the required time to process a specific sliding window (WSx
) against a tuple.

Note that we no longer have Tstore_expire in the equations since the storage and expiration
operations are overlapped with the processing operation on another window.

If we assume that all P (TSx
), Tproc(WSx ), and mr(TSx ,Wi) are identical, then the equation

simplifies to:

Latency = Tproc(W ) × (1 +mr(T,W )) (6.2.2)

For the throughput evaluation, we observe that the time to process one tuple in the second
stage of the pipeline is interleaved with the time to process the next incoming tuple in the first
stage since they are executed in parallel. This pipelining effect also applies to other stages, leading
to the following throughput equation for our two-stage pipeline, assuming similar properties for all
streams:

Throughput = 1
Tproc(W ) × (1 + U(mr − 1)× (mr − 1)) (6.2.3)

where U(x) is the unit step function. This equation also confirms that for match_rate ≤ 1, the
throughput of the system remains independent of the number of streams and correspondingly the
number of pipeline stages.

Stashed-MJ with Enabled Stash —

The inclusion of the stash in the pipeline architecture changes the time required to process a
tuple for stream S3 compared to the previous equations. Assuming that we have a stash in the
valid state, the average processing latency for a tuple that uses this stash is calculated as follows:

Latency for TS3 = Tproc(Stash) (6.2.4)

since TS3 is only compared against the stash in the first stage and the results are emitted directly
from this stage. Note that the time to store and expire in/from WS3 is a small constant and is
overlapped by the processing of TS3 in the first stage.

For tuples from S1 and S2 that do not benefit from the stash, the latency is calculated using
the previous equations. Although the match rate does not exist in this equation, it and the size of
the sliding windows define the proper size for the stash that affects the latency. Since we only have
one working stage in our pipeline when using the stash, the throughput would be the reverse of
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latency for the stream that uses the stash (here, S3).

Throughput for TS3 = 1
Tproc(Stash)

(6.2.5)

Using the evaluations for the throughput of Stashed-MJ with and without the stash, the
effectiveness of the stash is analytically confirmed if the following condition holds:

Tproc(Stash) ≤Tproc(W ) × (1 + U(mr − 1)× (mr − 1)) (6.2.6)

The processing time is directly related to the number of tuples for the comparison. Consequently,
using a stash ≥ sliding window not only provides no improvements but also imposes performance
penalties due to the additional circuitries and memory resources.

6.2.4 Parallel Multiway Stream Join

The stream join parallelization model (presented as SplitJoin [68]) relies upon a single data flow
(uni-flow) that is shared between streams. Therefore, there is no need to have a per-stream-dedicated
data path, and we are not limited by the number of streams. This allows us to hide the multiway
stream join implementation internally within each global5 join core (G-JC) without influencing the
overall parallel architecture.

To integrate our Circular-MJ (or Stashed-MJ but with disabled stash) into the uni-flow model, we
use the same architecture presented in Figure 6.2.1 with the addition of store-expire turn counters
in the input of each Circular-MJ which resides inside a G-JC. In the parallel architecture, referred to
as Parallel-MJ, we replicate the G-JCs to obtain linear throughput scaling.

Store-expire turn counters preserve the position of a G-JC among other G-JCs (P ), which is
later used to calculate the storage turn of incoming tuples in parallel stream joins based on the
uni-flow model. Each counter (CSj

) is dedicated to a stream (Sj) and counts the number of tuples
received from that stream. In each G-JC (i), a new tuple from (Sj) is stored, and the oldest tuple
is expired from its corresponding sliding window when (i ≡ CSj

mod P ), while all other global
join cores process this tuple in parallel. Except for the storage and expiration operations, which are
performed in a round-robin fashion, the Circular-MJ pipeline remains as before, and it executes the
join operators on each incoming tuple in parallel with others in other G-JCs.

5We refer to each separate compute unit in the parallelized architecture as a global join core (G-JC). Each G-JC
can contain a Circular-MJ (or a Stashed-MJ with disabled stash) realization.
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Figure 6.2.4: Stream count effect on input throughput (w : 214).
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6.3 Stashed-MJ Extensions & Discussions

6.3.1 Stashed-MJ Window Access Pattern

In the two-state pipeline since WS2 is shared between the first and second stages, in a few cases it
is locked by the second stage to avoid any race condition between the processing of tuple in the
second stage and storage of a newer tuple in the first stage.

Table 6.3.1 shows the access pattern in each stage of the pipeline (Figure 6.2.1) while receiving
new tuples. Here PU refers to the processing unit, and SEU refers to the S1&S2 storage and
expiration unit. Since we have two stages and three streams, we have nine arrival order (tuples’
origin) possibilities. In this table, we observe a read (TS1 & TS3) and a write (TS2 & TS3) access
conflict, which are shown by green and red colors, respectively. The read access conflict can be
resolved by using a dual read port memory for WS2 , but we need to stall the pipeline to address the
write access conflict, which is handled by the window S2 access lock signal in Figure 6.2.1. Having
the stash (in the functional state) eliminates both of these conflicts since all processing for TS3 is
performed in the first pipeline stage.

6.3.2 Stash Storage Pattern in the Invalid State

As discussed earlier in Figure 6.5.9, at approximately 450ms we observe a peak that brings the
stash to the invalid state. The detailed behavior of the stash in this state is shown using the valid
bits in Figure 6.3.1. The first signal (from the top) in this diagram shows the status of the stash,
i.e., valid (normal operating) or invalid. After the overwrite, this signal is pulled up, and the stash
goes into the invalid state while monitoring expirations for recovery. Here, we observe how the
storage pattern changes from almost random (based on available slots freed by previous expirations)

Table 6.3.1: Pipeline stages access pattern (disabled stash).

Pipeline Stage 1 Pipeline Stage 2
Tuple PU SEU Tuple PU SEU
TS1 WS2 WS1 TS1 WS3 −
TS1 WS2 WS1 TS2 WS3 −
TS1 WS2 WS1 TS3 WS2 WS3
TS2 WS1 WS2 TS1 WS3 −
TS2 WS1 WS2 TS2 WS3 −
TS2 WS1 WS2 TS3 WS2 WS3
TS3 WS1 − TS1 WS3 −
TS3 WS1 − TS2 WS3 −
TS3 WS1 − TS3 WS2 WS3
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to contiguous, as the stash controller sequentially stores intermediate results regardless of the valid
bits’ status. This change in pattern simplifies the recovery circuitries. After recovery, the status
signal returns to zero (valid state), and the storage pattern returns to its previous form.
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Figure 6.3.1: Stash behavior in the invalid state (w : 210, s : 25,mp : 0.001%).

6.3.3 Stash with Recomputation Support

One challenge with the original stash design is its limited functionality when it is in the invalid
state; depending on the stash size, sliding window size, and match rate, there could be a scenarios
in which the stash remains mostly in the invalid state by just a few extra overwrites compared to
its size. Another challenge arising from the intermittent usage is the necessity to process the whole
stash regardless of the number of intermediate results in it.

To address these challenges, we propose an extension to our stash design to support partial
recomputation when the stash is in the invalid state, which also eliminates the intermittent usage
and enhances stash processing throughput. Figure 6.3.2 presents our enhanced stash design with
an extra field of the sliding window index for each storage location and an Overwrite Index Buffer
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Figure 6.3.2: Stash with recomputation support.

in addition to the existing components in the original design.

Addressing Intermittent Usage —

In our enhanced stash, after expiration, we have the storage reclamation process, which shifts
the intermediate results to omit the gaps caused by the expiration. As a result, after this process, all
intermediate results are placed consecutively in the enhanced stash without a gap. The procedure
of omitting gaps by the storage reclamation process is shown in Figure 6.3.2, where the recently
expired result is indicated by blue color. The important benefit of this is limiting stash computation
only to the available intermediate results and not the whole stash. In the worst-case scenario, the
storage reclamation process needs to traverse (shift results) across the whole stash to omit gaps
created by the expiration; however, there is no penalty since the reclamation process overlaps with
the processing of the current tuple with its corresponding sliding window.

Partial Recomputation —
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Every time the stash stores an intermediate result, it also saves the sliding window index of that
result in the same location (outer ring in Figure 6.3.2). When the stash is full, the next intermediate
result overwrites an existing one, and the index of the overwritten result is recorded in the first
field of the Overwrite Index Buffer table. Afterward, every new overwrite in the stash updates the
last field of this table with the index of the overwritten result.

The enhanced stash uses an insertion-sort process to keep the intermediate results sorted
in relation to their sliding window index. Suppose the stash has entered the invalid state; the
processing unit uses the fields in the Overwrite Index Buffer table for recomputation of the removed
(overwritten) intermediate results instead of processing the whole sliding window. For example, the
recomputation range for the stash in Figure 6.3.2 is from five to ten. Our pipeline solution considers
sliding windows as circular buffers; as a result, having a smaller value in the last compared to the
first field implies that the interval to recompute is from the first index to the end of the window
and then from the beginning of the window to the last index.

Insertion-Sort Process —

The key factor that enables the partial recomputation is the insertion-sort process, which runs
after the storage reclamation and stores the new intermediate results in their respective slot in the
stash. To find the right slot, the stash controller starts from the element with the minimum index
value and traverses the stash until it reaches an element with an index bigger than the index of the
current intermediate result. It then shifts other elements in the direction toward larger indexes to
open a free slot.

The actual sliding window execution starts from an index of zero to the end of the sliding
window, and the intermediate results are produced in increasing order with respect to their sliding
window index. Thus, while processing the current tuple, for every extra new intermediate result, the
insertion-sort process resumes searching from the slot next to the previously inserted intermediate
result. By choosing a reasonable size (determined based on the expected number of intermediate
results and with an upper bound of sliding window size) for the stash, there are only limited
penalties since all auxiliary operations are performed in parallel with the processing of the current
tuple with its corresponding sliding window. When the stash is full, the insertion-sort process leads
to overwriting of the intermediate results with lower index values as shown in Figure 6.3.2. Here,
two new insertions (shown in green) lead to two overwrites (shown in red), which are later handled
by the partial recomputation concept.

Notably, by utilizing the new stash, it is no longer possible to merge intermediate results of
S1-S2 and S2-S1 into one stash because the enhanced stash is sorted based on sliding window
indexes. Therefore, we need separate stashes for S1-S2 and S2-S1.
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Figure 6.4.1: Linear-MJ architecture.

6.4 Supplemental Material

6.4.1 Multiway Stream Join Architectural Challenges

Using the right-deep join tree architecture, we reach a set of linearly connected processing
stages where each one performs a join operation relevant to the current tuple under processing;
correspondingly, the intermediate results are sent to the next stage for further processing. We
propose a linear pipeline multiway stream join architecture (Linear-MJ) based on this arrangement,
shown in Figure 6.4.1, to further describe the challenges of a straightforward hardware architecture.

In this architecture, storage and expiration tasks are challenging since each processing unit (in
each stage) has the possibility to access each one of the sliding windows. Storing a tuple in advance
(i.e., in the first stage) may lead to missing results since the oldest tuple will expire sooner than its
order. Similarly, storing a tuple later (i.e., in the last stage) in the pipeline delays expiration of
the oldest tuple from its corresponding window, which may lead to invalid results from the match
between newer tuples and the oldest tuple.

To deal with this issue, we use a buffer (Int-buf ) in each pipeline stage starting with a size of
N − 1, assuming we have N streams, from the left-most stage to the size of 1 in the last processing
stage. In the last stage of the pipeline, we use a dedicated storage & expiry unit to store new tuples
and expire oldest ones. Each new tuple overwrites the oldest tuple on Int-Buf, while a copy is sent
to the Int-Buf of the next stage when its processing in the current stage is over. Since we delay
the storage of new tuples to the last pipeline stage, each stage takes care of in-order processing
to guarantee correct results. In each stage, all new tuples that arrived prior to the current tuple,
which are under processing and belong to the sliding window in this stage (assume m), are also
considered for processing. Consequently, we need to exclude the matches that are from the last m
tuples in the sliding window since they were supposed to be expired.
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Architecture Drawbacks —

Although Linear-MJ utilizes point-to-point communications between the processing units, it lacks
the scalability perspective due to the N − to − N crossbar switch present in the window access
manager of Figure 6.4.1. The existence of this switch is necessary for this design since each pipeline
stage can implement any join operator, and therefore it can access any of sliding windows. Another
drawback of the Linear-MJ architecture is the window access conflicts that may arise from the
concurrent read requests to the same window from multiple join cores, more severe concurrent
read requests (from join cores), and write requests from the storage and expiry unit. Although the
multiple read requests can be addressed by optimizing the crossbar switch and also using locks
to mitigate the concurrent read-write request conflicts, these optimizations and locks put a great
strain on the design complexity, resource consumption, and actual processing performance of the
hardware realization.

6.4.2 Effects of Parallelization on Match Burst Rate

One challenge for the stash in our multi-stream join is when there are large bursts of tuples
that satisfy the join operator conditions. One of the interesting features of parallelization using
flow-related algorithms (i.e., uni-flow) is that they inherently mitigate this issue since they distribute
tuples (usually in a round-robin fashion) among independent join cores. As a result, each join core
receives only a fraction of the bursts, and this fraction decreases as we increase the number of
(global) join cores.

6.4.3 Time-Based Multiway Stream Join

Extension of the pipeline multiway stream join and stash architecture for the time-based sliding
window is rather straightforward by updating the expiration logics. In the time-based sliding
window, we preserve the timestamps that are later used for expiration; therefore, the expiration can
be postponed to the time of processing a sliding window or a stash. The rest of the architecture
remains the same as the current solution for the count-based sliding windows.

6.4.4 Extending the Buffering (Stash) for All Streams

Generalizing the concept of the stash poses several fundamental challenges when going beyond
three streams in a pipeline architecture.

In our Stashed-MJ design, the (first) stash stores the intermediate results for the processing
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of stream S1 against stream S2 and vice versa. Therefore, there is a significant speedup in the
processing of the tuples from stream S3 since they are only considered against the intermediate
results in the stash instead of being compared with the whole sliding windows of streams S1 and
S2. Note that the stash concept utilization is rewarding when the following condition is expected:
stashsize << slidingwindows′sizes (S1 and S2 streams). The application of the stash concept
on the other two streams proves to be challenging, which we explain in the following descriptive
example.

Assume we add a second stash for another pair of streams, e.g., S1 and S3. As a result, we
expect to have a speedup in the processing of tuples from stream S2 since they are only considered
against the stash on streams S1 and S3. However, this is not the case in practice. Indeed, there is
a speedup in the processing of tuples from stream S2 against their corresponding stash, but we still
need to process these tuples against sliding window S1 to produce intermediate results for the first
stash on streams S1 and S2.

Therefore, although tuples from stream S2 are processed faster, the pipeline still has to wait
for the processing of these tuples with sliding window S1 to produce intermediate results for the
first stash (on streams S1 and S2). Note that this was not the case with the first stash since there
was no further processing of tuples from stream S3 against the other streams’ sliding windows.
Thus, incorporating additional stashes becomes ineffective. In this regard, the proposed concept is
effective for the use cases where a stream (that benefits from the stash) has a significantly higher
input rate than the other streams, as evaluated in Figure 6.5.12b.

6.4.5 Hardware Optimization Using a Stash

Stash size is expected to be small (assume that this is a condition) compared to the sliding window
size. Hardware platforms commonly offer some small portions of internal memory (like BRAMs in
FPGAs) that provide huge bandwidth. Assuming the stash condition size holds, we can benefit from
this fast internal memory for stash realization. Additionally, we can process multiple intermediate
results (stored in the stash) in parallel due to the large access bandwidth of these memories. This
provides a linear speedup in relation to the number of intermediate results processed in parallel.

6.4.6 Extending Stash for Parallel-MJ

Incorporating the stash concept inside each G-JC proves challenging, which we explain using an
example. Assume we have a 3-way stream join, where each stream’s sliding window is divided
(equally) among G-JCs in Parallel-MJ. In this example, we also assume that our Parallel-MJ has 6
G-JCs. This way we will have 6 instances of Stashed-MJ and each one resides inside one of the G-JCs.
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Note that each Stashed-MJ keeps only one-sixth (referred to as a sub-window) of the sliding window
for each stream and correspondingly stores one-sixth of the received tuples from each stream.

Now, we receive a TxS1 , which is stored in its corresponding sub-window in the first G-JC.
Assume TxS1 also produces intermediate results (TxS1-TyS2) and (TxS1-TzS2) in the first and
second G-JCs, respectively. These two intermediate results are also stored in the stash of their
corresponding G-JCs.

After a period, TxS1 is expired from the sub-window in the first G-JC. Correspondingly, its
intermediate result (TxS1-TyS2) is also expired from the stash in the first G-JC. However, (TxS1-
TzS2) remains in the stash of the second G-JC since it has not seen the expiration of TxS1 , which
occurred in the first G-JC. This intermediate result can produce incorrect final results since it is
processed by upcoming new tuples. Therefore, utilizing stash in the parallelized solution and in a
scalable manner, namely, avoiding central coordination among G-JCs, remains a challenge to be
addressed in future works.

6.4.7 Stage Buffer Potentials in Circular-MJ

As a side benefit, the existence of a stage buffer improves pipeline performance by eliminating the
time that a stage needs to wait for the next stage to become ready to receive the next intermediate
result. If a join condition (in a stage) is expected to have low selectivity, it is possible to selectively
increase the buffer size of the next pipeline stage instead of over-provisioning buffers’ sizes for the
whole pipeline. Additionally, having multiple intermediate results ready at the entrance of a join
core opens the opportunity to process them concurrently. This is done by swiping a sliding window
once while comparing it with multiple intermediate results (instead of one) in the nested-loop
algorithm to boost the processing throughput, which we leave for a future work.

6.4.8 Ensuring Match Result Correctness Using the Control Unit

The order control unit (Figure 6.1.5b) uses the preserved arrival order in OBuf and EBuf to avoid
missing matches. Consider the specified data for OBuf and EBuf components in Figure 6.4.2 and
a join condition between streams S2 and S3. In this snapshot, both tuples from stream S3 have
arrived after tuples from streams S2 and S1, but they are stored in the sliding window and have
expired at T(n)S3 and T(n+1)S3. When the next tuple to process is an intermediate result that
contains TS2, the refine unit (Figure 6.1.5b) drops the matches between this intermediate result
and T(x)S3 and T(x+1)S3 while the compare unit looks for the matches between this intermediate
result and T(n)S3 and T(n+1)S3. The number of tuples to skip from the head of sliding window,
which is also the number of tuples to consider from EBuf, is calculated by counting the tuples that
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Figure 6.4.2: Order control unit operation example.

have arrived after the tuple under processing (here the intermediate result contains TS2) and is
stored in the sliding window).

6.4.9 Rationale to Fix the Join Order as the Right-Deep Join Tree

To ensure flexibility in changing the order of join operators on the fly, we need to have a broadcast
connection from each join core to all other join cores. For example, with 6 streams, we need to
have 6×(256-bit or more, depending on the size of the final results of the multiway join operator)
outward connections between each join core and the other join cores (this translates to at least
6 large multiplexers and 6×6×256-bit wires), even without considering the insertion and result
gathering circuitries. Unlike in software solutions, such large connections are not suitable for a
hardware realization, at least not for general cases. In fact, we argue that even when a realization
is possible, its performance and scalability characteristics are questionable.

In software, connections like these are readily (and almost trivially) possible through the shared
memory hierarchy without significant penalties since there are no physical wirings between the
operators. In that case, we need to transfer an intermediate result to one of the join core routines
(implemented in software); the corresponding routine simply reads this intermediate result, which
is stored in the main memory. Even with proper optimizations, the intermediate result can be also
kept in the processor’s cache (or even the processor’s internal register banks), which could reduce
the data access latency significantly.

For the algorithms used in software, it is not advisable to fix the join orders as the right-deep
tree since we need to reorder the join operators on the fly based on the currently received tuple.
However, our approach benefits from a circular design that incorporates a fixed-order right-deep
join tree to avoid the large number of connections and multiplexers between the join cores to be
able to implement our solution in hardware.
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6.5 Experimental Results

We realized our scalable multiway stream join pipeline (Circular-MJ), optimized pipeline with stash
(Stashed-MJ), and parallel pipeline (Parallel-MJ) in VHDL, and we synthesized and implemented it
on a Virtex-UltraScale XCVU190 FPGA. For evaluations, we used Questa Advanced Simulator
to extract cycle-accurate measurements (with a clock frequency of 100 MHz), thus guaranteeing
the same performance for the actual hardware. For the synthesis and implementation steps on
the FPGA, we used the Xilinx Vivado 2017.2.1 tool, and our VHDL realizations are also valid for
building an ASIC solution.

Each input stream consists of 64-bit (32-bit key and 32-bit value) tuples that are joined against
other streams’ sliding windows. Our realizations have the ability to adopt larger tuples that are
defined by presynthesis parameters. In the experimental results, w indicates the window size, and
mp stands for the match probability.

We use the same probabilities to have a new tuple from each individual stream, unless explicitly
specified. We utilize both uniform and normal distributions6 and a range limiter function7 from the
OSVVM library8 to assign a stream identifier (origin) for each new tuple. We have demonstrated
two examples for the stream origin assignment using µ:2, σ:1 and µ:5, σ:2 parameters in Figure 6.5.4.

6.5.1 Circular-MJ Evaluations

In the first part of our evaluations, we consider the effect of different parameters on our Circular-MJ

realization. Our focus here is on the design and architecture of the pipeline, which is orthogonal to
the choice of join algorithms employed. In our experiments, we primarily use a nested loop in each
join operator. This allows better evaluation of our pipeline properties since the long processing
times for each tuple force intermediate results to accumulate in the stage buffers and put the
pipeline under stress. Additionally, we present throughput measurements for a Circular-MJ using a
hash-based join to demonstrate the independence of our pipeline designs from the choice of join
algorithms.

Stream Count Effect —

To measure the effect of the number of streams on the input throughput, we use join conditions
with high selectivity (low match probability) to approach the maximum sustainable throughput,
presented in Figure 6.2.4a. As expected due to the parallelism resulting from pipelining, an increase
in the number of pipeline stages linearly improves the processing throughput. This shows the

6RandTyp := Op.setRandomParm(NORMAL, Mean, Deviation).
7RandVal := Op.Randslv(1, 6).
8The Open Source VHDL Verification Methodology.
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Figure 6.5.1: Match probability effect on stage buffer usage (1ststage, 6 − way,w : 214).

effectiveness of the distribution chain since it is able to keep the pipeline stages busy, which is the
key factor in achieving parallelism via pipelining. On the left side of this figure, we first observe
a warm-up phase where we have a super-linear reduction in the input throughput as the sliding
windows are filled. The vertically dash lines specify the end of the warm-up phase for pipelines
with a different number of streams.

Figures 6.2.4b and 6.2.4c present the input throughput for lower selectivities. We only observe
a small reduction in the input throughput in Figure 6.2.4b, while the measurements for match
probability (mp) of 0.01%, Figure 6.2.4c, show much lower and also sporadic throughput readings
due to overloading and congestion of the pipeline stages. Due to the higher match probability,
we have more intermediate results at each pipeline stage, which is the reason for the reduced
throughput. Here, each pipeline stage receives many intermediate results from its previous stage,
which prolongs the reception of new tuples. Therefore, the throughput, which is the number of new
tuples inserted per second, drops to approximately 1000 tuples/s (note that y-axis values should
be multiplied by 103). Because there are more streams, a larger number of intermediate results are
produced (e.g., per 8 streams instead of per 5 streams ), which has a greater impact on the pipeline
interruption.

Selectivity Effect on Throughput —

We use a 6-way stream join realization and measure the maximum, average, and minimum input
throughputs as we vary the match probability in Figure 6.2.5.

At match probabilities between 0.0001% and 0.001%, we observe a small slowdown in the average
input throughput from 10K to 9K tuples/s. As the match probability further increases to 0.01%
and 0.1%, the input

throughput drops to less than 1K and 100 tuples/s, respectively. Notice that Figure 6.2.5
presents the warm-up phase, while the actual throughput measurements for match probabilities of
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Figure 6.5.2: Stage buffer usage (3 − way,w : 214,mp : 0.1%).

0.0001%, 0.001%, and 0.01% settle at approximately 10K, 7K, and 1K tuples/s, respectively.

The drop in throughput as a function of increasing match probability is expected due to the
superlinear growth in the number of intermediate results. This scenario is better demonstrated
in Figure 6.5.1, where we observe a significant increase in the average and maximum numbers of
tuples in the stage buffer as we increase the match probability. The reason for a large gap between
the average and maximum numbers of tuples in this buffer is the burst generation of intermediate
results. A join core in a pipeline stage may remain idle for a short period but can produce multiple
intermediate results when it receives a new tuple (or an intermediate result) to process, while the
join core in the next pipeline stage consumes the intermediate results one at a time, which forces
the remaining results to wait in the stage buffer.

Steady-State Throughput Measurements —

After the warm-up phase, the behavior of Circular-MJ does not experience significant fluctuations.
Figure 6.5.3 presents steady-state throughput measurements upon changing the tuples’ origin
distribution mean (µ) from 1 to 6 in our 6-way Circular-MJ while keeping the deviation (σ) at 1.
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Figure 6.5.3: Steady-state throughput measurements (6 − way,w : 214, σ : 1).
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Figure 6.5.7: Stage buffer average usage for all pipeline stages (6 − way,w : 214, σ : 1,mp : 0.01).

We also vary the match probabilities from 0.0001% to 0.01%. As we increase the tuples’ origin
distribution mean (µ) from 1 to 6, we observe a slight improvement in the input throughput when
the match probability is low. This is due to the parallelism from pipelining improvements as a result
of having less blockage in the early stages of the distribution chain, which allows faster consumption
of new tuples assigned to the earlier pipeline stages. Note that the distribution chain spreads new
tuples from the first pipeline stage to the last one, although the routing times of new tuples in the
distribution chain are negligible compared to that of processing a new tuple.

The uniform distribution results in higher throughput when the match probability is low since
all pipeline stages receive, on average, the same number of new tuples, which overall leads to
improved parallel processing. As the match probability increases, the uniform (as opposed to the
normal) distribution causes congestion in multiple pipeline stages simultaneously, which has a higher
impact on the distribution of new tuples and correspondingly on the processing throughput. This
scenario is also confirmed by the higher number of tuples in the stage buffer (shown in Figures 6.5.6
and 6.5.7).

To evaluate the effects of the mean (µ) and deviation (σ) on the throughput, we use a high
match probability to put Circular-MJ under a heavy load (Figure 6.5.5). In the ideal case, the
measurements should report the same throughput, thus demonstrating a perfect distribution of
tuples to all pipeline stages. Note that in every tuple insertion, all processing units in the pipeline
are involved in the execution. Therefore, in the ideal case, independent of the origin of the incoming
tuples, we should see the same throughput. The measurements in Figure 6.5.5 nicely demonstrate
that the added penalties by the distribution chain and neighbor-to-neighbor stage dependencies are
not critical and do not heavily influence the processing throughput.

Stage Buffer Usage Analysis —

In Figure 6.5.2, we see the stage buffers’ usage for all three stages of a circular 3-way stream
join pipeline. Here, we use a smaller number of streams to draw a more clear comparison. We

117



6.5. EXPERIMENTAL RESULTS

2 3 4 5 6 7 8 9 10
0
2
4
6

Stream Count

T
hr
ou

gh
pu

t
(×

10
6
tu
p
le
s
/
s
)

Figure 6.5.8: Steady-state throughput measurements with hash-based stream join (w : 214,mp : 0.0001%).
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observe similar growth in the usage of all three stage buffers, where the average and maximum
values settle at approximately 0.7 and 50 tuples, respectively. The similar usage patterns for all
stage buffers shows that the circular pipeline is working in a balanced state, meaning that there are
no starved or overloaded stages.

Figure 6.5.6 presents the maximum number of intermediate results in a stage buffer during
the whole experiment for a 6-way Circular-MJ while changing the match probability and the normal
distribution mean (µ). An increase in the match probability rapidly increases the usage due to the
higher production rate of intermediate results.

In Figure 6.5.7, we report the average value for the number of tuples in the stage buffer for all
six stages of a 6-way Circular-MJ. As expected, the average number of tuples remains small even for
the high match probability of 0.01%. However, we observe an oscillation between odd and even
stages that is common in systems with feedback as long as it remains at a small margin.

Considering both Figures 6.5.6 and 6.5.7, our measurements show that the uniform distribution
of tuples’ origin puts a greater strain on the circular pipeline since it spreads new tuples uniformly
between all stages, which increases the chance of stalls, as also shown in Figure 6.5.3. This is
evident from the higher average number of tuples that accumulate in stage buffers. Furthermore,
we observe a small average value for the stage buffers’ usage (Figure 6.5.7), regardless of the high
burst generation of intermediate results. Therefore, Circular-MJ remains operational with smaller
stage buffers than the maximum values presented in Figure 6.5.6.
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Hash-Based Stream Join Measurements —

To demonstrate the applicability of our solution in the deployment of other join algorithms,
we present measurements for a Circular-MJ realization that benefits from a hash-based equi-join
hardware in Figure 6.5.8. Here, the input throughput mainly depends on the efficiency of the
hashing algorithm. As expected, our hash-based solution presents a significantly higher throughput,
which is due to the fast probing of hashed sliding windows. Similar to the nested-loop Circular-MJ,
we see improvements in the processing throughput as we increase the number of streams, which is
due to the increase in parallelism from pipelining.

6.5.2 Stashed-MJ Evaluations

In this section, we evaluate our optimized pipelined stream join (Stashed-MJ) with stash enabled and
disabled.

Stash Activity Monitoring —

For a small stash (specified by s), the progress timeline in our Stashed-MJis demonstrated in
Figure 6.5.9. It takes approximately 25ms for the stash to

proceed beyond its warm-up phase (specified by the first vertically dotted line). During this
time, the number of intermediate results in the stash grows until it reaches a value (here 19) defined
by the arriving tuples’ match probability and the size of the sliding windows. At approximately
450ms, we observe a peak in Figure 6.5.9 that leads to overwriting the stash because the number of
intermediate results grows larger than its size. After the overwrite, the stash goes into the invalid
state while monitoring expirations for recovery, which occurs at approximately 550ms.

The peak in Figure 6.5.9 is later followed by a drop caused by the following sequence of events.
First, the stash storage mechanism in the invalid state can overwrite valid results even when there
are free slots available. Second, in our example, the full utilization of the stash was caused by a
temporal increase in the match rate. Afterwards, the presence of fewer valid intermediate results in
the stash and the decrease in the match rate (after the temporal increase) result in (temporally)
fewer valid intermediate results in the stash and, in turn, this transient valley.

Stash Usage Analysis —

Experiments for stash usage in Stashed-MJ over a pair of S1&S2 streams are presented in
Figure 6.5.10. For a window size of 215, the warm-up period lasts for approximately 100K tuple
insertions, roughly equal to 3 × 215. The higher match probability leads to more intermediate
results in the stash.
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Figure 6.5.12: a) Intermittent usage issue on a large stash. b) Tuples’ origin stream effect when using a stash.
c) Stash (disabled vs. enabled) effect on throughput. d & e) Match probability effect in Parallel-MJ throughput
(G− JCs : 16( ), 32( ),& 64( )).
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Stash Overwrite Effect —

The effect of an overwrite in the stash on throughput is also shown in Figure 6.5.11. At
approximately 11s from the start of processing, while the stash is almost at the end of its warm-up
period, we observe a significant drop in throughput that is due to an overwrite in the stash. Because
the stash is in the invalid state, our Stashed-MJ uses the same processing path (resulting in a less
variable throughput) as the other streams to process S3, which reduces the throughput.

Excessively Large Stash Effect —

Figure 6.5.12a presents the effect of choosing a large stash on the input throughput, which leads
to a significant drop after the first expiration at approximately 3s after the start of processing.
Before the first expiration, there is no need to traverse the whole stash since there has been no
intermittent usage yet. Afterwards, we need to process the whole stash, which results in a significant
performance drop when the stash size is comparably larger than the sliding windows. We observe
an approximately fivefold reduction of the average throughput after the first expiration when using
a stash size of 216 compared to 212.

Tuples’ Origin Stream Effect —

In Figure 6.5.12b, we observe the effect of the percentage of reception from the S3 stream
compared to other two streams in our Stashed-MJ with stash. For example, 33% means that on
average, we are receiving the same number of tuples from all three streams. Each sample in this
diagram presents the maximum, average, and minimum values of 100 samples. Since there are no
stashes for the other stream pairs, tuples from the S1 and S2 streams have to be processed against
other sliding windows, while tuples from the S3 stream are only evaluated against the intermediate
results available in the stash. This is the reason for the large gap between the maximum and
minimum throughputs, as S3 tuples are processed much faster than the others.

Steady-State Measurements —

The steady-state throughput measurements for our Stashed-MJ with and without stash are
presented in Figure 6.5.12c. For match probabilities higher than 0.01%, we do not see any
improvement from the stash; however, as we reduce this probability, the stash becomes more
effective. A match probability of 0.01% and a window size of 214 produces more results than a
214 (window size). Therefore, the stash stays in the invalid state permanently, meaning it will be
ignored by the pipeline. We see a slight degradation in throughput from the pipeline without stash,
which is due to the stash circuitry overhead. For smaller match probabilities for the same window
size, we observe a significant boost in throughput that is directly proportional to the inverse

One interesting observation is the slightly lower input throughput of Stashed-MJ (especially when
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Figure 6.5.13: G-JC count effect on throughput (w : 214,mp : 0.001%).

disabling the stash) compared to a 3-way Circular-MJ as demonstrated in Figures 6.2.4 and 6.5.12c,
respectively. The reason for the lower throughput is that Circular-MJ utilizes three processing units
compared to two for Stashed-MJ. Therefore, Circular-MJ benefits more from parallelism due to pipelining,
resulting in slightly higher input throughput.

6.5.3 Parallel-MJ Evaluations

Next, we present experimental evaluations of our parallel stream join built by integrating Stashed-MJ

(without stash) into the uni-flow parallel stream join architecture, referred to as Parallel-MJ. The
integration of Circular-MJ into the uni-flow parallel architecture follows analogously but is omitted in
the interest of space.

Global Join Core Count Effect —

Figure 6.5.13 illustrates the throughput measurements as the number of G-JCs (G-JCs) increases.
In each diagram, we see a warm-up period in which the system throughput drops as the sliding
windows fill up. The end of the warm-up period is shown by the dotted vertical line in the figure.
The measurements show a linear acceleration. Using 8 G-JCs, we obtain a throughput of ∼ 47K
tuples/s, which is approximately 8× higher than ∼ 5.97K tuples/s as observed in Figure 6.5.12c.
Similarly, utilizing 16, 32, 64, and 128 G-JCs leads to an average throughput of 97K, 194K, 386K,
and 763K tuples/s, respectively.

Throughput Sensitivity to Match-Rate —

The spikes in the diagram (see Figure 6.5.13) highlight the sensitivity of the input throughput
to the match-rate (mr), which is especially noticeable in our solution due to the propagation of
intermediate result bursts to multiple pipeline stages. For example, having two matches (intermediate
results) in the first pipeline stage drops the throughput to half compared to having one match.
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We observe that by increasing the number of G-JCs, the number of spikes decreases significantly
for two reasons. First, the division of windows into more sub-windows decreases the number of
matches (intermediate results in the first stage) in each G-JC. The second reason is the overlapping
of processing time for those matches in independent G-JCs. For example, assume we expect four
matches on average in the first pipeline stage. Using two G-JCs, we will have two matches on
average in each G-JC, and we only observe the time for processing two matches since the two G-JCs
operate in parallel.

Match Probability Effect —

Figures 6.5.12d and 6.5.12e present throughput measurements for Parallel-MJ realizations with
16, 32, and 64 G-JCs as we increase the match probability from right to left. For stream joins on
more than two streams, the increase in the match probability increases the number of resulting
tuples, which leads to saturation of the result collection circuitry. This limits the input throughput
by means of feedback. However, this is not the case in our pipeline solution since the number of
matches in the first stage is multiplied by the processing time in the second stage, which limits the
throughput. This means that each generated intermediate result in the first stage has to wait for
the processing of the preceding results in the second stage.
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Chapter 7

Simplex Stream Processor on a
Custom Network-on-Chip

Stream processing acceleration is driven by the continuously increasing volume and velocity of data
generated on the Web as well as the limitations of storage, computation, and power consumption.
Hardware solutions provide the best in terms of class performance and power consumption, but the
relevant solutions are hindered by the high cost of research and development, and the long time
needed to market the applications. In this work, we propose our simplex stream processor (SSP), a
complete rethinking of a previously proposed customized and flexible query processor that targets
real-time stream processing. SSP uses unidirectional dataflow not dedicated to any specific type
of stream. Therefore, its processing components are simply placed one after another on a single
general data path that facilitates query (operator) mapping.

In SSP, the concepts of the distribution network and processing components are implemented as
two separate entities connected to each other using generic interfaces. This approach allows for
the straightforward adoption of a proper architecture for a family of queries, rather than forcing a
relatively rigid chain of processing blocks to implement the queries.

Our experimental evaluations of the third query mapping of the TPC-H without further
optimization yielded processing times of 300, 1220, and 3520 milliseconds for data streams with
scale factor sizes of one, four, and 10 GB, respectively.

This section presents the following contributions:

1. We propose a stream customized network-on-chip (SCNoC) with instruction sets for routing
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instructions and tuples.

2. We propose SSP with a configurable topology (placement of processing components in the
distribution network) and instruction sets built on our SCNoC.

3. We propose a hash-based stream join (HB-SJ) architecture for fast equi-join processing
and integrate it into a modified version of our circular multiway stream join (Circular-MJ)
architecture.

4. We present a hardware architecture for the aggregation and groupby operators.

5. We present a mapping of and implement the TPC-H on a new instance of SSP and evaluate it
based on certain performance metrics.

7.1 SSP Architecture

We first present our vision for SSP and then describe the complete system stack, including software
and hardware stacks for data handling and processing.

7.1.1 System Vision

The complete software/hardware components of SSP are shown in Figure 7.2.5. When working with
a specialized hardware, filtering unimportant (for current query processing) parts of data is crucial
to delivering a practical system. However, these parts need to be reattached to the resulting tuples.
We assume that we have an age attribute in our tuples that is not used in the given query; however,
we need this attribute in the resulting tuples. To avoid using valuable hardware resources to transfer
this attribute, we need to cut it from the input tuples and reattach it to the corresponding resulting
tuples.

The components to perform this task are shown in the upper part of Figure 7.2.5. We decompose
each tuple into necessary and unnecessary segments using a decomposer. The former are passed to
the SSP hardware for processing while the latter are stored in a table-like data structure. After the
processing, the resulting tuples receive their detached segments using the composer component,
and the complete resulting tuples are sent to the system output.

SSP is designed to be flexible enough to accept new queries or updates to existing queries as
long as they follow the logic of the chosen SSP topology. The query assigner component, which is
responsible for inserting query plans, and the SSP hardware are shown in the middle of Figure 7.2.5.
After receiving a new query, the query assigner maps it to the available processing blocks and
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generates the corresponding instructions to program the query. These instructions are fed into the
SSP hardware through the input port to the data streams.

As the last part of our system, the SSP designer provides the flexibility to design a custom
topology in a graphical user interface by using the provided component libraries without digging into
the details of hardware design and development. Following topology design, it is first synthesized
and then programmed into the FPGA.

7.1.2 Topology Brick

The processing components of SSP are packed, in addition to the local data distribution and
collection components, into specific sets that we refer to as topology bricks, shown in the lower part
of Figure 7.2.6. The way in which the topology bricks are connected defines the topology of an
SSP instance that characterizes the capabilities and properties of the system. Each topology brick
contains two SCNoC components of LSwitch and Collector, in addition to a set of data handling and
processing components specified by the bypass and PUnit 1..N labels in Figure 7.2.6.

7.1.3 Data Handling and Processing Blocks

The processing units/components (PUnits) follow a straightforward protocol for receiving data/in-
structions from a single-input port and push the resulting data from their single-output port. They
can implement any type of execution engine, ranging from simple filtering units to highly specialized
hardware or even general-purpose processors (i.e. ARM cores). PUnits can have their own dedicated
memory or use a shared memory hierarchy with other PUnits through a dedicated port based on
the application requirements.

7.1.4 OP Block

Although the SSP architecture supports and even motivates the use of general-purpose processing
cores (i.e. ARM cores) to handle small but control-intensive tasks within queries, we also have
the option of using custom-programmable processors for the dataflow processing pattern of the
streams. As an example of such processors, we present our OP-Block that is redesigned based on the
unidirectional dataflow processing model, and is shown in Figure 7.1.1a. The main challenge in the
design of OP-Block is the processing (and parallelization) of the resource-intensive join operation in
stream processing. The current realization of OP-Block benefits from a dedicated memory storage to
realize the sliding-window buffers needed for the join operation, which are also used as instruction
storage.
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The original OP-Block and the redesigned (successor) OP-Block are illustrated in Figures 7.1.1b
and 7.1.1a, respectively. In the redesigned model, data pass in a single top-down flow, in which an OP-

Block receives tuples directly from the LSwitch. Each OP-Block is placed inside a PUnit and operates
independently of the other PUnits. The redesigned architecture fully utilizes the communication
bandwidth provided because all tuples travel through the same path to the processing core, unlike
the double-path architecture of the original OP-Block. Therefore, regardless of the incoming tuple
rate for each stream, every tuple has access to the full bandwidth. The same concept applies when
using more OP-Blocks (PUnits) to parallelize a processing task, as shown in Figure 7.1.2b.

In the design of FQP the OP-Blocks are connected to one another as in the model shown in
Figure 7.1.2a, which, in addition to complicating operations on more than two streams, significantly
degrades performance owing to the underutilized communication bandwidth. To solve this problem
for the original OP-Block, assume that we are receiving tuples only from stream R; then, all
communication channels for stream S are left unutilized. Even with an equal tuple rate for both
streams, it is impossible to achieve the simultaneous transmission of both TR and TS between
neighboring join cores due to the locks needed to avoid race conditions.

Comparing the internal design of an OP-Block, utilized as a join core based on the original
model, Figure 7.1.1b, with one based on the redesigned architecture, Figure 7.1.1a, we observe
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a significant reduction in the number of internal components that correspondingly reduces the
design complexity. Neighbor-to-neighbor tuple transfer circuitries for two streams are eliminated
from the buffer manager-R & -S and the coordination unit components. They are reduced and
merged to form the fetcher and storage core components in the redesigned architecture. This
improvement reduces the number of input/output ports from five to two, which significantly reduces
the hardware complexity because the number of input/output ports is often an important indication
of the complexity and final cost of hardware design. We omit further description of the supported
operations and their instruction sets as they are similar to the ones presented in [67].

7.1.5 Complementary Custom Blocks

We briefly describe the important processing and data handling components that we designed and
implemented (in VHDL), and then customized for our case study benchmark on our SSP, which is
the TPC-H third query presented in Section 7.3.1.

Multiway Stream Join —

Considering the crucial role of joins as among the most resource-intensive operators in relational
databases, it is not surprising that stream joins have been the focus of considerable research on data
streams [53, 39, 85, 43, 28, 100, 54, 69, 44]. For example, consider TPC-H [30], where 20 queries (of
22) contain a join operator, and 12 of them use multiway joins, some up to seven joins. However, the
importance of joins is no longer limited to only the classic relational setting. The emergence of the
Internet of Things (IoT) has introduced a wave of applications that rely on sensing, gathering, and
processing data from an increasingly large number of connected devices. These applications range
from the scientific and engineering domains to complex pattern matching methodologies [14, 58, 73].

In SSP, we utilize an instance of our Circular-MJ, presented in [65], placed inside a PUnit to support
multiway stream joins when needed. Circular-MJ benefits from a scalable pipelining mechanism for
processing. The abstract architecture of Circular-MJ is shown in Figure 7.1.3.

In the design of Circular-MJ each join core (operator) is connected to only one sliding window
with two entries. Each core receives its new tuples determined based on their origin from its entry
that is connected to a distribution chain. Each join core’s side input ports are placed in a circular
data path that carries intermediate results from one join core to the next. The resulting tuples
are emitted after processing a new tuple in exactly N − 1 cores, where we have N streams. The
remaining core is responsible for storing the new tuple in its sliding window.

The Circular-MJ pipeline has the same number of stages (join cores) as input streams. Each stage
is placed between isolating sets of registers, and is responsible for processing a new tuple against a
specific sliding window. When the window in a stage belongs to the origin of the given tuple, the
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Figure 7.1.3: Scalable multiway stream joins (Circular-MJ).

store and expiration tasks are performed instead of processing.

In a general Circular-MJ, there is a relation between each of two streams that requires that the
circular design has a scalable architecture; however, in the TPC-H third query, the lineitem and
customer streams are both related to different attributes of the orders’ stream. This property of
this query allows for further customization of our Circular-MJ.

Hash-based Stream Join —

Using a nested loop algorithm, although sufficient for the proof of concept of our SSP makes it
impossible to execute the TPC-H benchmarks in a reasonably short time because of their sizes. To
accelerate execution, we propose a hardware hash-based stream join solution that, as the name
suggests, benefits from a customized hashing mechanism to process equi-joins.

Figure 7.1.4 presents the abstract architecture of our hash-based stream join unit. It shows only
the unit used to process a stream (e.g. R) against an opposing stream (e.g. S). For a complete
join, we need to duplicate this architecture for processing in the other direction. Alternatively, we
can use the unit in Figure 7.1.4 in each of the join cores in the Circular-MJwhere, depending on the
number of stages, we can perform anywhere from two-way up to N-way stream joins.

Our hash-based stream join unit, shown in Figure 7.1.4, utilizes two Murmur3 hash functions
with four storage tables. If the selected index (row) is full in all four tables, the new tuple is
inserted into an overflow buffer. To preserve the order of arrival of the tuples (necessary in the
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Figure 7.1.4: Hash-based architecture for stream join (HB-SJ).

count-based sliding window), our proposed solution uses an order sliding window. The order sliding
window preserves the location of each new tuple storage (one of hash tables or the overflow buffer)
in addition to the hash table index. The expiration task occurs before the insertion of a new tuple
by removing the oldest tuple, determined by the oldest tuple in the order sliding window. For a
new tuple search, the hash table key is calculated first and then all four hash tables are examined in
parallel against the join condition to find their matches. At the end of the operation, the overflow
buffer is searched using a nested loop join to find matches that are not stored in the hash tables.
Although the overflow buffer is relatively small, we can use a faster algorithm for the search to
accelerate processing as it is still the most time-consuming operation in our HB-SJ.

The architecture of the time-based sliding window does not contain the order sliding window,
and expiration is performed on a new tuple storage and a new tuple search. Moreover, further
adjustments in the number of hash functions and tables, and the use of other extensions (i.e. Cuckoo
hashing scheme), are beneficial for the efficiency of hash tables, although they remain beyond the
scope of SSP.

Aggregation-GroupBy —

In queries, it is common to have a grouping operator that is based on some specified fields while

131



7.1. SSP ARCHITECTURE

Aggregation-Groupby

Aggregations 
Core

G
ro

u
p

 B
u

ff
erGroup Finder Group #2

Group #1

...

...

Group #3

Group #N

Aggregation-Groupby 
Controller

IdleIdle Emit 
Result
Emit 

Result

Group 
Search
Group 
Search

ResetReset

Update 
Group
Update 
Group

New 
Group
New 

Group

(a) Building blocks

Aggregation-Groupby

Aggregations 
Core

G
ro

u
p

 B
u

ff
erGroup Finder Group #2

Group #1

...

...

Group #3

Group #N

Aggregation-Groupby 
Controller

IdleIdle Emit 
Result
Emit 

Result

Group 
Search
Group 
Search

ResetReset

Update 
Group
Update 
Group

New 
Group
New 

Group

(b) Controller

Figure 7.1.5: Aggregation-GroupBy unit.

the other fields are aggregated using one or multiple arithmetic operators. Because the aggregation
is performed on some elements of each group, it is more efficient in the hardware design to combine
these two (aggregation and groupBy) operators into one unit, as shown in Figure 7.1.5a.

Figure 7.1.5a shows the building blocks of the aggregation-groupBy unit and Figure 7.1.5b
presents a simplified state diagram of the controller. On the insertion of a new tuple (or the
intermediate result), the group finder unit searches the group buffer to find its relevant group.
When a matching group is found, the aggregation task is performed (in the aggregation core) on
that group and the new tuple. The resulting data are inserted into the group buffer. If no match is
found, a new group is created and filled with the new tuple.

The architecture of the order by operator is similar to that of the aggregation-groupBy unit
but with no aggregation core. In the order by operator, the group finder searches for the correct
location of each new group and inserts it. We use bubble sort to insert each new group into its
corresponding sorted location.

7.1.6 Synchronizer Blocks

When merging multiple data paths for the processing of a query or set of queries, a synchronizer
component is needed, and is placed in one of the PUnits. A common approach to synchronization
is to use tokens generated in a component, where the correct order of tuples (e.g. from multiple
streams) relative to one another is available. Later in the processing path, these tokens are used to
restore the correct order of tuples when multiple data paths meet one another.
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7.1.7 Parallel Processing

Because the SCNoC distributes incoming tuples without changing the order of arrival, we can
use parallelization inside or across multiple topology bricks. The processing throughput for such
stateless operators (i.e. selection) is already high on hardware. However, we can still parallelize
them using a block to reindex a stream into multiple sub-streams that can be divided by the next
LSwitch for distribution among separate processing blocks.

For more complex state operators such as join, in our parallelization technique, each processing
block performs the requested task based on its location in the SSP topology. As an example,
in stream join parallelization, the architecture of SplitJoin [68] can be implemented both inside
and across topology bricks. For parallelization inside topology bricks, a LSwitch replicates and
distributes the incoming streams to all processing units responsible for the join operation, similar
to what is shown in Figure 7.1.2b. Each PUnit behaves as a separate join core and, depending on
its position among the join cores, stores one of multiple received tuples in its respective sub-sliding
window, while all join cores perform the search task on each incoming tuple as presented in [68].

7.2 SCNoC Architecture

A processing engine that integrates all or most of the necessary components to perform a
task is referred to as a system-on-a-chip (SoC). SoCs have the best in-class performance and
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Figure 7.2.1: SCNoC architecture.
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Figure 7.2.2: SCNoC flow model.

efficiency because they bring these components close to one another, removing most unnecessary
intercomponent interfaces and their added latency. SoCs are particularly interesting in data stream
handling owing to the high velocity and volume of streams because every added latency to the
processing path superlinearly increases the cost of the system.

7.2.1 Background

Each SoC solution benefits from a particular type of communication sub-system to transfer data
between various components, such as a processor, a coprocessor, a DMA1 controller, and peripherals.

1Direct memory access.
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Figure 7.2.3: SCNoC communication blocks.

SoCs commonly use a bus (e.g., the ARM AMBA2) system that acts as communication sub-system.
A bus consists of an access controller and a set of wirings that connect all internal components of
an SoC.

Despite the simplicity of the conventional bus architecture, it fails to scale when the number
of connected components increases. Thus, we are forced to rely on distributed architectures, e.g.
network-on-chip (NoC). NoC solutions have their own challenges and opportunities. They provide
a substantial bandwidth advantage over bus sub-systems, but at the expense of extra controlling
logics (terms of both hardware and software) to ensure consistency of communication.

7.2.2 Main Drawback

Typical NoCs are designed for general-use cases to handle a wide range of workloads. However, this
generality is not needed, or can at least be reduced in stream processing in favor of simpler and more
efficient communication circuitries, resulting in better efficiency and performance characteristics.

A data stream is a (potentially unbounded) sequence of tuples that flow one after another. This
flow-based property of data streams motivates a processing architecture that avoids circulating data
between the internal components. As an example, filtering the resulting data from an aggregation
unit using a selection unit, and then sending the filtered data back to the same aggregation unit
(to perform another type of operation) leads to circulation that causes major issues in real-time
processing. A circular path in a digital system, constantly receiving new data, inherently adds the
possibility of deadlock that necessitates complex buffering and communication circuitries to reduce
the chance of congestion.

To benefit from the flow-based property of streams, our SSP utilizes a stream -customized
network-on-chip (SCNoC), as illustrated in Figure 7.2.1.

2Advanced microcontroller bus architecture.
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7.2.3 Design Rationale

A major decision that heavily influences our SCNoC architecture is to limit internal (interblock)
communication to unidirectional rather than bidirectional communication. Although this eliminates
the possibility of returning data to a former processing block, it leads to a data path suitable for
real-time processing by forbidding inefficient query mappings. In other words, the design of our
SCNoC targets a paradigm where the processing is in the flow of streams. It is possible to add
feedback paths to the SCNoC architecture by using a branch component (Figure 7.2.1) instead of
a processing unit (PUnit) and feeding the output port to one of the open entrances of the SCNoC

architecture. However, this approach is not recommended due to additional complexities, such as
race conditions. If such a feedback is necessary in the processing of a query, the approach advised
for SSP is to implement the entire feedback part (including its feedback path) in a single PUnit.

Figure 7.2.1 presents a 2D implementation of our SCNoC including some of its main components
such as GSwitch-L and LSwitchthat perform the main data routing tasks. After implementing
a topology of SCNoC that is reconfigurable based on the application requirements, the routing
instructions are fed to SCNoC to program GSwitch-Ls and LSwitchs. Subsequently, streams of data
are routed and brought to their corresponding PUnits by the GSwitch-L and LSwitch components.

The processing flow model supported by our SCNoC (Figure 7.2.1) is illustrated in a linear model
in Figure 7.2.2. In this model, we examine a set of flowing streams, and place processing units and
branches on them to produce the final results of a query.

7.2.4 GSwitch

SCNoC is constructed from programmable (global) switches that we refer to as GSwitch. We propose
two architectures for a GSwitch, specified by -L and -D. We provide in-depth descriptions of its
design and implementation for GSwitch-L because it is used throughout this work and in the
benchmarks. However, we only briefly introduce the properties of GSwitch-D and leave further
descriptions of its design and explorations of its performance to future work.

GSwitches are responsible for bringing data to a specific set of PUnits. The main properties of
the design of a GSwitch are 1) data pipelining to mitigate processing stalls, and 2) the number of
flows to be routed, or more precisely, the number of input ports (x) routed to a number of output
ports (y).

GSwitch-L —

GSwitch-L is a variant of GSwitch with two input (x=2 ) and two output (y=2 ) ports, as shown
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in Figure 7.2.3a. This unit has a stream routing table that indicates the output port of each stream.
The routing information in this table is programmed using its corresponding instructions. Each
row in this table belongs to a stream and contains three fields: 1) stream ID; 2) # segments, which
specifies the size of each tuple in terms of number of chunks;3 and 3) a destination port, which can
be one or both of the output ports. The GSwitch controller monitors incoming tuples from both
input ports, and, when there are instructions related to this unit, it updates the table based on the
tuples, and then pushes them to the output ports to reach their target blocks.

The input and output buffers reduce stalls in the flow of data because they allow for the insertion
of new data even when the processing blocks in the outputs are busy. Therefore, these buffers
improve pipelining parallelism. In the other words, the input and output buffers allow the GSwitch
controller to route currently available data ahead of time without waiting for the processing blocks
in the output.

GSwitch-D —

We refer to a GSwitch design customized for distribution as GSwitch-D, which is preferable
when our application requires large data broadcasts, i.e. at the input of SCNoC where streams are
distributed according to their selected processing paths. The abstract architecture of the GSwitch-D
(x=1, y=bounded n) is shown in Figure 7.2.3b. The design consists of a stream routing table that
preserves stream IDs with their corresponding masks. There is a one-to-one assignment between
each bit in the mask field and its corresponding output port, and each port’s bit determines whether
a stream must be sent out to that port. The masking information is programmed through an SCNoC

instruction used by the GSwitch-D controller.

In hardware, elements of the internal memory are limited and expensive resources. An interesting
design aspect of GSwitch-D is the use of a shared circular buffer for all ports to reduce memory
usage. Using a first-in, first-out, (FIFO) policy, each port collector benefits from the larger buffer,
which adds more elasticity to the processing data path. Using this shared buffer, we reduce the
chance of resource starvation in some GSwitch-D output ports while overloading the processing
units in the other output ports, which improves processing efficiency and performance.

Compared with GSwitch-L, which has two input and two output ports, GSwitch-D is more
suited to large fan-outs, where a single input is fed to many other units.

7.2.5 LSwitch

Each GSwitch-L is connected to the processing and data handling blocks through a local switch
referred to as LSwitch. Figure 7.2.3c illustrates the internal building blocks of LSwitch. This unit

3The size of each chunk is defined statically (e.g. 64 bits) in our hardware specifications.
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utilizes a programmable 1− to−N switch to distribute tuples and instructions to blocks connected
to its output ports. The stream routing table in LSwitch has two fields: 1) stream ID and a 2)
destination port filter. LSwitch uses a masking technique to specify the port(s) of egress for each
stream. For this reason, the destination port filter uses one-bit mask per port, which enables data
transmission over that port in the same manner as in GSwitch-D. The LSwitch controller fills this
table as it receives instructions from the LSwitch input port. If an instruction does not belong to
the given LSwitch, this controller broadcasts it to all of its output ports.

LSwitch is designed to support up to N blocks in its output, where the value of N is determined
based on the application requirements. Interconnect in Figure 7.2.3c is the main component affected
by the size of N . Using a small interconnect can lead to the underutilization of SCNoC because the
number of processing components (limited by N) is not sufficient to fully utilize the bandwidth
provided by components of the communication network. Further, aiming for a large interconnect
can negatively affect the frequency of the working clock4 of the SCNoC, especially when parallel
processing on a large number of processing blocks is needed. One can exploit multiple GSwitch-L
units to instantiate multiple LSwitch units, each with an appropriate interconnect size.

7.2.6 Collector

Following the distribution of the input tuples to PUnits and other data handling blocks by LSwitch,
an Collector (Figure 7.2.6) gathers the resulting tuples from them. Collector can use a hierarchical
or linear architecture to gather the data, each with its advantages and disadvantages. The former
architecture is suitable for a relatively large number of processing blocks as the collection task can
be performed in parallel for all PUnits. The latter architecture favors topology bricks with fewer
blocks because it gathers the resulting tuples one after another from them, which leads to poor
scalability in relation to the number of blocks; however, it requires fewer resources to operate.

If a processing block has resulting tuples that are wider than the input, they are broken into
smaller (as wide as the input) segments. Collector needs to ensure that it gathers all segments of a
tuple from a block before starting the collection from another block. This is done by assigning an
unused (NULL) stream ID to all segments of a tuple except the first one, which carries its origin
stream ID. Whenever Collector starts the collection task from a block, it continues to gather all
segments of a tuple one after another until it observes a segment with an existing stream ID. It
then starts collecting a tuple from another block based on the defined priorities.

4A major parameter of the hardware that has a direct relation to processing performance.
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7.2.7 Instruction Set

As mentioned in the foregoing, the challenge in the design of SCNoC is to maintain its architecture
as simple and lightweight as possible while providing sufficient routing flexibility to bring streams
to their corresponding processing blocks. In this regard, the GSwitch-L and LSwitch units are
programmed using unique instructions of their own, as shown in Figure 7.2.4.

At the beginning of each tuple, there are a few bits, e.g. two or more bits, depending on the
maximum number of supported streams, that specify the ID of each stream and the type of data
(instruction or tuple). For example, a value of 1 in the stream ID field (Figure 7.2.4) defines the
given data as a network instruction, whereas 0 defines these data as a processing block instruction.
Other values are used to specify data stream IDs.

0 B-ID S_FilterStream_ID  0 1

E.g., 1110 -> send Stream_ID to OPBs (from left to right) 1st, 2nd, 3rd, but not 4th

LSwitch

0

Join

B-ID Inst = 3 Seg-Count  

Store-ID

INST_CC0 0

0 ...0 0 Cond-2... Cond-4...Cond-1... Cond-3...

Max Current

GSwitch-L 0 B-ID PortStream_ID  0 1 Seg-Count

Figure 7.2.4: GSwitch-L and LSwitch instruction sets.

The instruction for GSwitch-L consists of the following: 1) B-ID that defines the ID of the
target block for this instruction, 2) stream-ID that specifies the stream in which this instruction
carries its routing information, 3) port that determines the mask of the egress port for the specified
stream, and 4) seg-count that indicates the number of segments for each tuple for the specified
stream. The remaining fields are undefined, and can be utilized in future extensions. As an example,
data with fields ”1 : 23 : 4 : south : 3 : ...” programs a GSwitch-L with a block ID of 23 to route 3
Segment-size tuples of a stream with ID 4 to its south port.

Similarly, the LSwitch instruction contains the B-ID and stream-ID fields, but it uses S-filter to
specify the egress port(s).

7.2.8 Network Interface

An inherent problem in custom hardware is its sensitivity to data size. For example, when we design
and build hardware for 64-bit-wide data, this hardware cannot process wide data without considering
them in the initial design. The communication network in SCNoC is designed to accept wider data
units by breaking the data into smaller segments. However, resource over-provisioning results in a
significant increase in cost as the width of the data increases, which renders it impractical.

For a large practical solution, we propose using parallel-to-serial and serial-to-parallel network
interfaces (NIs) to avoid the substantial amount of wiring otherwise needed between internal blocks.
Figure 7.2.6 illustrates these interfaces in triangle pairs, where an NI converts the parallel data into
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serial while the other performs the reverse operation. The optimum number of serial lines between
each pair of NIs can be determined based on the application and the technological specifications
used. For example, when the processing effort and time in a PUnit are significant, the results come
one after another in large intervals, which allows the use of fewer serial lines. Having more transfers
necessitates the use of more serial lines. When the full bandwidth is required, it is advisable to use
parallel communication rather than serial communication.

7.3 Experimental Results

We prototyped SSP, including its SCNoC and all required custom blocks, in VHDL. To extract the
hardware properties, we synthesized and implemented our solution on a VCU110 development
board featuring the Virtex UltraScale XCVU190-2FLGC2104E FPGA. We used Xilinx Vivado
Design Suite (ver. 2017.2) for the synthesis and analysis of the HDL design. In the im-
plementation, we used module analysis5 [3], also referred to as out-of-context implementation,
allows us to analyze a module independent of the remainder of the design to determine the
resource utilization and extract the timing analysis. For functional evaluations, we used the Questa
Advanced Simulator to perform cycle6-accurate7 measurements.

We used the TPC-H DBGen tool [30] to generate the benchmarking tables, and used our parser
(written in Python) to decompose and parse rows of tables into tuples of streams to feed into
SSP. DBGen allows us to roughly choose the size of the database (tables) by a scale factor (SF)
parameter. In this work, we used SF=1 (equivalent to a database size of 1 GB) as default, unless
otherwise stated. In the following, we present a prototype of the TPC-H third query on the SSP

framework for the evaluations in this work.

7.3.1 TPC-H Third Query Prototype

To evaluate the functionality and properties of our SSP, we describe in detail the query mapping (to
the processing blocks) and programming steps to implement the TPC-H third (shipping priority)
query. This query retrieved the shipping priority and potential revenue, defined as the sum of

5The module analysis flow implements a module out-of-context (OOC) of the top-level design. The module is
implemented in a specific part/package combination with a fixed location in the device (FPGA). input/output
buffers, global clocks, and other chip-level resources are not inserted but can be instantiated within the module. The
OOC is an important feature most useful in large hardware systems (designs), where the independent synthesis and
implementation of the modules are necessary to extract the hardware properties. Modifying and reimplementing
a large-scale system on a device takes hours or even days to complete by a synthesis tool, whereas a significantly
shorter time for synthesis tool is needed for each system module owing to its smaller size.

6A digital hardware operates with pulses of an oscillator. The amount of time between pulses is referred to as a
clock cycle or the inverse of clock frequency. For example, a hardware operating at a 100-MHz frequency has a clock
cycle of 10 nanoseconds.

7A simulation that conforms to the cycle-by-cycle behavior of the target hardware.
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l_extendedprice× (1− l_discount), of the orders with the largest revenue of those that had not
been shipped by a given date. Orders were listed in decreasing order of revenue. If there were more
than ten unshipped orders, only ten orders with the largest revenue were listed. Further details are
available in the TPC-H benchmark TM standard specification manual [30].

TPC-H Query Modification —

To execute the third query on our SSP, we needed to change the concept of the tables to sliding
windows and feed each row in a table as a tuple to our stream processing engine. In queries with
state operators, various sizes of the sliding window and the order of the reception of new tuples with
respect to the origins of the streams affected the results. This is a property of stream processing
engines that needs to be accounted for in practical use cases. Therefore, considering the effects of
these factors is beyond the scope of this work.

To feed the rows of tables as tuples to SSP we allocate a sufficient number of bits per field used
in the processing. In Figure 7.1.6, we show the mapping of the attributes of the third query table
into different fields, where each attribute field is specified by a number of bits. Subsequently, the
total width of a tuple for each stream was calculated by the sum of the bits of its fields.

Query Assignment —

The choice of the topology of SSP is flexible and can be determined depending on the system
requirements. In the following, we present an example of the TPC-H third query assignment
to a SSP instance drawn in detail in Figure 7.1.7. The assigned components are color-coded to
demonstrate the mapping between the VHDL implementation and the SSP topology.

The SSP instance for this example has four topology bricks arranged in four rows and one
column. Note that there is no limit on the size and form of the chosen topology. In Figure 7.1.7a,
the indexing values defined by ROW and COLUMN refer to each topology brick. For example, the
first brick contains a bypass unit, a selection (Q3_SEL1) on the lineitem stream (built from its
equivalent table), a selection (Q3_SEL2) on the customer stream, and a selection (Q3_SEL3) on
the orders’ stream.

A bypass unit is a pass-through without any internal component, and having one of these units
in each topology brick is necessary to transfer instructions to the next row brick. The existence of
the bypass unit prevents additional complications in the logic of other processing units by offloading
the unrelated task of bypassing streams and instructions. Therefore, a topology brick can contain
at least two units while the upper limit is defined by the application requirements and fan-out
limitations of the chosen hardware.

The implementation of TOPO_MATRIX_INSTANCE in VHDL, Figure 7.1.7a, included the
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Figure 7.3.1: Circular-MJ architecture customized for TPC-H 3rd query.

identifiers of processing units instantiated subsequently using the VHDL GENERATE construct,
as shown in Figure 7.1.7b. As an example, the C_TPCH_Q3_CMJOIN_Inst hardware unit was
instantiated and connected to the remaining components because its identifier (Q3_CMJOIN)
existed, in Figure 7.1.7a.

From each tuple, only the necessary fields were fed into the hardware to avoid transmitting/han-
dling unnecessary data. This part inherently implemented the projection operation as a task of the
decomposer component (presented in Figure 7.2.5) in the complete system. The remaining operators
were placed in the SSP instance, as shown in Figure 7.1.7c, with the exception of the aggregation
and groupBy operators, which were merged together in one unit, Q3_GROUPBY_AGG, in
Figure 7.1.7a.

To simplify the representation, we show the communication network (SCNoC) separate from the
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Figure 7.3.2: Input throughput vs. hash table size (w : 210).

SSP processing units in Figure 7.1.7d. The respective instructions for the programming of the SCNoC

for the TPC-H third query are shown in Figure 7.1.7e. These instructions were fed into the SSP

hardware one-by-one to define the paths of the streams in each GSwitch and LSwitch. In addition
to the third query streams, we defined an extra stream that only contained one tuple to indicate the
end of the streams, referred to as END_MESSAGE. The end tuple was fed into the SSP hardware
after the end of all streams. The existence of this tuple was necessary for the groupBy and orderBy
operators to notify them of the end of operations, pushing the resulting data from them.

Multiway Hash-based Stream Joins —

We use our hash-based join in a custom three-way stream join for the third query to show the
potential throughput while making it possible to execute TPC-H benchmarks in reasonable time.
Using our hash-based approach, we need to replicate the orders’ stream stage, once indexed, based
on the o_custkey field and once based on the o_orderkey field. The resulting architecture, the
customized version of Circular-MJ (Figure 7.1.3), is shown in Figure 7.3.1a. Note that, due to the
simplification of the multiway stream join operator in the third query, we do not need the circular
path, which is shown by a disconnection mark in this figure. Because each incoming tuple was
processed in, at most, one of the indexed sliding windows (either o_custkey or o_orderkey), we
can further optimize the design by placing both the indexed order stream stages into one stage to
improve the efficiency of the system, which leads to the architecture shown in Figure 7.3.1b.

In Figure 7.3.1b, each new tuple is stored in its corresponding sliding window. To process the
orders’ stream, tuples start execution at the customer stage, and the resulting tuples are emitted
from the lineitem stage. The customer stream tuples start execution at the orders’ stage, and the
intermediate results of this stage pass through the customer stage without processing . The final
results are output from the lineitem stage. Finally, tuples of the lineitem stream start processing at
the orders’ stage, and the resulting tuples are emitted from the customer stage.
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Figure 7.3.3: Input throughput vs. database size (w : 210, ht : 211).
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7.3.2 Throughput Measurements

When working with database benchmarks (i.e. TPC-H), most join operators use equal conditions
(equi-join), where using hashing techniques is the natural approach for acceleration. However,
following acceleration using our proposed hash-based solution, the multiway equi-join operator
remains the bottleneck in the TPC-H third query processing. The severity of this bottleneck is
determined by the effectiveness of the hashing technique utilized.

The effect of the size of the hash table (ht) used in the optimized Circular-MJ in Figure 7.3.1b on
the number of cycles needed to process all data streams is presented in Figure 7.3.2. The product
of the cycle count and cycle period (i.e. 6.5 nanoseconds; extracted from the implementations,
Figure 7.3.7) specifies the processing time. For example, with ht = 29, the entire query execution
lasts 968.5 milliseconds ((149× 106)× (6.5× 10−9)). As shown in this figure, an increase in the size
of the hash tables, from left to right, improves processing throughput due to a reduction in the
number of tuple insertion collisions in the hash tables. This significantly reduces the number of
tuples in the overflow buffer (Figure 7.1.4), which uses a slow nested loop search.
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The effect of the size of the data stream (equivalent to the size of the database generated by
the DBGen tool) on processing times for the TPC-H third query is illustrated in Figure 7.3.3. We
observe a linear increase in processing time with the size of the data stream. With a clock period
of 10 nanoseconds (clock frequency of 100 MHz), data streams of sizes one, two, four, six, eight, or
10 GB were processed in 300 (30× (10× 10−9)× 106), 610, 1220, 1850, 2670, or 3520 milliseconds,
respectively.

The effectiveness of our hashing mechanism was determined by the number of tuples stored in
the overflow buffer, as shown in Figure 7.3.4. A small number means fewer tuple insertion collisions
and, therefore, more effective hashing, and vice versa. We show four sub-figures here, and each
presents the effect on a single indexed attribute. This effectiveness was also influenced by the
pattern of the received values and the size of each stream. In this figure, we observe a slower growth
in the number of tuples in the overflow buffer for the order and customer streams compared with
the lineitem stream; this result was obtained owing to the large difference in the sizes of these
streams. In other words, we fed SSP with more tuples from the lineitem stream compared with the
other two streams.

We observed a similar increase in the use of the overflow buffer as we reduced the size of the hash
table for each stream. An interesting observation was the slow growth in the use of the overflow
buffer for the o_cust attribute compared with the o_orderkey attribute (both from the orders’
stream) due to the reception of more diverse values for the o_cust attribute with regard to the
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(a) 10 nanoseconds. (b) 9 nanoseconds. (c) 8 nanoseconds. (d) 7 nanoseconds. (e) 6.5 nanoseconds.
Figure 7.3.6: Clock frequency period effect on the power consumption of various system parts.
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Figure 7.3.5 presents variations in the input throughput with the number of processing cycles
for different hash table sizes ranging from 25 to 211. By reducing the effectiveness of the hashing
mechanism, more tuples are stored in the overflow buffer. This translates into a more sequential
comparison of tuples, which significantly reduces processing throughput. As a side effect, we can
also clearly see the warm-up phase in the experiments with smaller hash tables, which shows longer
processing times as a function of an increase in the number of tuples in the overflow buffer.

7.3.3 Evaluating the Implementation

A detailed summary of the hierarchical resource utilization for the third TPC-H query is presented
in Table 7.3.1. The third TPC-H query is a particularly resource-intensive query due to its multiway
stream join operator. However, the implementation on a state-of-the-art FPGA consumes only a
fraction of the available resources. This demonstrates the applicability of SSP to deploy multiple
queries with even more complex processing components.

In Table 7.3.1, we observe low use of block RAM tiles (six of 3,780) for hash tables and
their corresponding components in the custom multiway stream join (Figure 7.3.1b). In this
implementation, we used small sliding windows because the memory resources provided in an FPGA
are valuable and limited. When working with large sliding windows, a decision concerning the use
of one or multiple external memory chips (directly connected to the FPGA) needs to be made.
This decision frees up valuable FPGA memory resources for logics and crucial buffering.

The TPC-H third query used five GSwitch-Ls (Figure 7.1.7), and they consumed a negligible
amount of FPGA resources. Similarly, the LSwitchs consumed minimal resources from our FPGA,
as observed in the resource utilization report of LSwitch in the second topology brick (Brick_2).
Therefore, our SCNoC complied with its objectives of simple and undemanding communication
components.

Brick_1 contained the selection operators and consumed a negligible amount of resources, as
expected of stateless operators, whereas brick_2 consumed the most resources due to its multiway
stream join operator. Brick_3 contained the aggregation-groupBy operator and brick_4 contained
the order by operator; however, they also consumed a negligibly small amount of resources compared
with the second topology brick.

In Table 7.3.1, we observe the resource consumption in the implementation of the pipeline stages
for our custom multiway stream joins. PipeStage2 used double the resources for the other two
stages because it contained two separate instances of our HB-SJ, although sharing some components
resulted in a slight reduction in terms of resource consumption.
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7.3.4 Power Consumption Evaluations

Dynamic power consumption measurements, including the contributions of different types of FPGA
resources, are presented in Figure 7.3.6. In these measurements, clocks shows the power consumed
by the clock network, and signals shows the power consumed by the interconnections between
components. Logic refers to the processing and routing components realized by FPGA configurable
logic blocks (CLBs). BRAM shows the power consumed by memory elements in the design, and
DSP presents the power consumed by the built-in (faster and more efficient) digital signal processing
units, such as float multipliers.

In our case study, the processing throughput improved linearly in relation to the frequency of
the operating clock. The ratios of processing throughput to power consumption for various working
clock frequencies are presented in Figure 7.3.7. Although the difference in this ratio is better
shown in ASIC solutions, owing to their higher clock frequencies and fixed implementation, we still
observed a clear peak at a clock period of 7 nanoseconds (∼142 MHz). In these implementations, we
kept the other realization conditions intact to reduce the chance of changes in the implementation
by using the synthesis tool due to its internal optimization. However, opting for a higher clock
frequency (e.g. clock periods smaller than 6.5 nanoseconds) forced the synthesis tool to use more
intrusive optimization techniques (i.e. replication of processing logic) to achieve the targeted clock
frequency. In Figure 7.3.6, we observe a similar consumption for each category of components
across multiple realizations, each with a different clock frequency. This implies that the synthesis
tool generated similar implementations for various clock frequencies.

7.3.5 Implementing Stateless Queries

As expected of a hardware solution, the implementations of queries centered around stateless
operators result in a very large processing throughput. This is the main reason for why we observed
a first layer of hardware to filter incoming data before they were processed in the general-purpose
processors in the computing centers.

The TPC-H first query (pricing summary report) is a good example of such queries. This query
reports the volume of business that is billed, shipped, and returned. In this query, following the
projection, lineitem tuples are fed into a selection operator, and the intermediate results are sent
to an aggregation operator. At the end, the outcome of the aggregation operator is processed
by a groupBy operator and then an orderBy operator. With only a single processing path, our
SSP processed a database of size 1 GB in less than 22.4 million cycles, which translates into 224
milliseconds at a clock frequency of 100 MHz. Moreover, in such queries, it is possible to simply
replicate the processing path multiple times to obtain a linear speedup.
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Chapter 8

Conclusions

In this dissertation, we focused on hardware accelerated stream processing with the flexibility
to adjust to query changes. This flexibility is essential to many streaming applications such as
real-time data analytics, information filtering, and complex event processing.

Our proposed architecture tackle some well-known challenges, i.e., the memory-wall, power-wall,
von Neumann bottleneck, and, overall, a staggering design complexity, using three mechanisms:
(1) task-specialization and division of complex queries into small, self-contained, and independent
components; (2) avoiding centralized and complex coordination units; and (3) increasing processor
and memory coupling.

We used modular architectures in our designs while ensuring a distinct separation between the
communication and processing components which are connected with well-defined interfaces. This
greatly simplifies the addition of new components (e.g., query operators) or further developments
on the architectures.
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8.1 Summary

Our main goal has been to propose flexible hardware that can be used for various types of stream
processing queries. Here we summarize our steps toward the flexible hardware accelerated stream
processing in this dissertation.

In the first step in our research, we proposed the FQP which provides course- and fine-grained
flexibility. The course-grained flexibility enables the selection of an appropriate topology for a set
of queries using a set of predefined components that can be beneficial when utilizing reconfigurable
hardware, i.e., FPGA. The fine-grained flexibility is made possible by the proposed programmable
components (i.e., OP-Blocks and data routing switches) that enable the possibility of real-time
updates on the processing procedure, provided these updates are supported by the programmable
components.

The FQP had to use a bidirectional data-flow architecture as the only available method (at the
time of its design) to support stream join parallelization. This choice imposed further complexities
on query mapping (to FQP components). To address this issue, in the next step in our work we
proposed SplitJoin, which benefited from a unidirectional data-flow architecture for the stream join
parallelization.

To further tackle the stream join complexity, arguably as the most resource-intensive operation
in stream processing, we proposed Circular-MJ to add the support for multiway stream join, as the
next step in our research. Additionally, we designed and proposed some other important processing
components, i.e., Stashed-MJ, to add a buffering capability to the stream join and HB-SJ, to support
high-throughput stream processing for equi-join operations.

In the last step in this dissertation, we brought all of our concepts together in the design of our
simplex stream processor (SSP) which benefits from our stream customized network-on-chip and
the unidirectional data-flow architecture to build an elegant architecture.

We designed SSP with the modularity concept in mind. This modularity and the architecture
simplicity, granted by the unidirectional data-flow, significantly improve two properties of the SSP ’s
predecessor (FQP). The first property is the support to add new components, that is improved due
to the components’ reduced number of input/output ports. This is important to motivate designers
to build a rich open-source library, guaranteeing the wide-spread application of our solution. The
other improved property is the query mapping which is now performed based on a straightforward
component assignment on a topology with a linear arrangement of processing components.
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8.2 Future Work

As common with hardware solutions, we need supplementary components (as previously shown
in Figure 7.2.5) for our processor to readily utilize it in practice. In this regard, the following
components are crucial to have a complete system for straightforward real-world integration:

i. Decomposer/Composer: to reduce the complexity of the main execution engine, we need
to offload data manipulation operations to independent components. As common in data-
intensive applications, we expect to have enormous data volumes at the input of our system.
A large part of this data would not be interesting for the actual processing. Therefore,
feeding the whole data volume to the executing engine of our system (SSP) is not practical.
Also preprocessing of this large data volume using a general-purpose processor would be
challenging due to the extreme memory and processing limitations (as already discussed in
this dissertation). The common approach is to have a hardware processing layer to filter this
data. As a result, we only need to feed the smaller but crucial data into the executing engine.
This ensures that the processing components are fully utilized that is one of the main targets
for efficient high-performance systems. Some parts of the data may not be necessary for the
processing but still, they are important to be included in the processed data by the executed
engine. To avoid feeding the unnecessary data to the executing engine we foresee the need for
a decomposer component to separate different parts of the data and feed the right part to
the executing engine and correspondingly a need for a composer component to add back the
important data parts to the executing engine’s resulting data.

ii. SSP Designer: our proposed stream processing architecture is based on a robust and
modular definition of components and communication network interfaces. However, a system
architecture still needs to arrange the right processing topology for its intended query. This
arrangement is done by selecting the processing components from the provided library and
placing them in the provided communication network architecture. Having a graphical user
interface would make this arrangement as simple of drawing a block diagram. Ideally, we can
have an automated design software which receives the queries and builds the right topology
based on them.

iii. Further Processing Components: although we have provided the design for crucial
operators, there are still other missing processing components. In our vision, we think of
having an open-source community where individual designers can use from and contribute to
the SSP library. This step would be essential for the wide-spread use of SSP and also motivates
its further developments.

iv. Query Assigner: as two other important components in the complete system, we need to
have a query assigner and a compiler to handle the query updates on the execution engine (SSP)
in real-time. The support for size and type of these updates depends on the reprogramming
properties of utilized processing components. Placing a selection component only allows for
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updates on the filtering conditions while an OP-Block or even a general-purpose core (e.g.,
ARM core) allows for significant updates on the running queries without a need for a change
in the topology.
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