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Abstract

Mars has become a focal point of space in-situ exploration. The associated exploration tasks are currently
performed using large tele-controlled rovers. In the future these large rovers shall be complemented by
swarms of small rovers and crawlers that are operating in a much more independent manner. Positioning
is needed both for navigating the exploring vehicles and for referencing observations. The current lack of
infrastructures makes these tasks challenging. The aim is thus to enable positioning with minimum means,
e.g. using the lander and a sparse network of anchor stations.

Cameras play an essential role in this context. By using stereo cameras, mounted on the rovers, the
egomotion and a map of the environment can be estimated simultaneously. This is called (visual) simultane-
ous localization and mapping (SLAM). Consequently, a rover can create a reference frame, i.e., navigation
frame, with the origin at the starting position, and represent its trajectory and map in the frame by applying
SLAM algorithms. The transformation from the navigation frame to a global reference frame can be re-
solved by using anchor points with known location in both frames. However, the accumulation of errors in
the camera tracking strongly limits the accuracy of the positioning and the mapping, except if loop closures
can be established. The latter constrains the trajectories and slows down the exploration. Additionally, the
stereo camera rigs, used in the present context, require large baselines for accurately estimating the system
scale and thus the true position. Such rigs cannot be adapted to small rovers. Monocular systems are more
appropriate on such rovers.

We solved the challenges posed by the use of monocular cameras and the lack of loop closures in
the exploration paths by a sensor fusion algorithm based on monocular pictures and ranges to a single
anchor point, e.g., the landing site. Unlike conventional radio-based positioning, the present work shows the
potential associated with the combination of a single wireless link connection and pictures from a monocular
camera.

With a swarm of robots equipped with monocular cameras and communication links, ranges can be
determined between each pair of rovers. Any static rover can thus act as an anchor for the aforementioned
sensor fusion method. In the case of moving robots, we propose a more advanced scheme. It performs
relative pose and scale estimation and achieves a further improved performance. Unlike conventional map
merging approaches, our method does not require the exchange of images or feature descriptors. As a
consequence, the data rates are low. In addition, the estimation of the relative pose allows for multi-view
vision with a large baseline. In the case, of two rovers, the resulting virtual stereo rig can be larger by order
of magnitude as compared to a physical stereo rig. We also developed a common field of view detection
algorithm for cooperative scene reconstruction in order to take advantage of these capabilities.

We also developed a swarm navigation solution based on pose graph optimization by applying the pro-
posed relative pose estimation. We considered both centralized and distributed solutions. Since the cooper-
ative pose estimation requires data exchange among rovers, the communication requirements increase with
the number of rovers in the swarm. As a consequence, we developed an adaptive swarm grouping method,
which takes both geometric distance and common field of view of cameras as the metric. This allows to
significantly reduce the communication load in the system.

Besides for Mars, the proposed methods can also be applied and extended to other scientific missions
as well as to terrestrial applications, such as autonomous car-driving, disaster rescues, and cooperative
mapping.
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List of Symbols

�·�× skew symmetric matrix constructed from a 3D vector
�· vector with geometric meaning in Cartesian coordinates
·̃ vector with geometric meaning in Homogeneous coordinates
·(·) superscript denoting the reference frame of a point
j· superscript on the left denoting the rover index in a swarm
·[k] subscript with square brackets denoting the time index of a variable
(W ) global reference frame
(N) navigation reference frame
(Nj) navigation reference frame of rover j in a swarm
(C) camera body reference frame
R(P→Q) rotation between reference frame (P ) and frame (Q)
�t(P→Q) translation between reference frame (P ) and frame (Q)
�O origin of a reference frame
�X point location in 3D space
�c camera location in 3D space
�β location in 2D planar motion
φ attitude (heading angle) in 2D planar motion
x pose vector including both position and attitude parameters
f camera focal length
d depth of a point in the space
KC camera intrinsic matrix
P camera projection matrix
�b baseline between two cameras in a stereo rig
π(·) projection function which projects a 3D point to a 2D location in the camera image plane
π−1(·) function which back-projects a 2D point in the camera image plane to 3D space
ui 2D feature location of point i in the image plane
µi noisy measurements of ui
r true range
ρ noisy ranging measurement of r
Σ covariance matrix
ξ vector containing parameters to be estimated
J Jacobian matrix
sg global scale factor
sr relative scale factor
θ relative heading angle between two coplanar cameras
α azimuth angle of a 2D point in polar coordinates
Np number of points
Nk number of keyframes
Nr number of rovers in a swarm
m index of class in grouping and clustering
M total number of classes in grouping and clustering
λ eigenvalue of a matrix
γ̃ plane equation parameterized by homogeneous coordinates
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1. Introduction

Mars exploration is an exciting and meaningful mission for scientists and the whole human race. The
information and knowledge obtained by exploring Mars can guide us to a better understanding of the solar
system, the earth, and possibly life. The exploration tasks include the measurement of physical quantities
on Mars, surface terrain mapping, detection of water and biochemical hints, etc. The tasks require Mars
rovers that are capable of collecting sensor measurements and scientific samples in various landscapes such
as plains, canyons and caves, and the position of the rovers should be available with respect to a global
reference frame. However, unlike the condition on the earth with global navigation satellite systems (GNSS),
the possible infrastructures to position the Mars rovers are rather restricted. Only the orbiters and the landing
site can serve as reference infrastructures with known absolute coordinates on Mars. Nevertheless, the
visible time of the orbiters is limited due to the low number of satellites with long revisit period, and
a rover will lose line-of-sight connections to the landing site when it travels far away from the landing
point. In such lack-of-infrastructure condition, camera plays an important role not only in perception and
mapping, but also in autonomous positioning and navigation of the robots. By applying visual cues, a
rover is capable of positioning itself by matching with known landmarks in the existing map. Moreover, a
moving robot can accomplish egomotion estimation using cameras according to the change in the images
over time, namely the visual odometry (VO) technique. Maimone et al. has shown in [1] that in the past
Mars rover mission, visual odometry has significantly outperformed conventional wheel odometer, since the
rugged surface full of sands significantly affects the performance of a wheel odometer. Meanwhile, cameras
can build a three-dimensional (3D) map during sensing, while its location in the map is estimated. This
enables the exploration approach of the simultaneous localization and mapping (SLAM), which estimates
the trajectory of the vehicle and simultaneously reconstructs the map of the sensed environment.

However, as a dead reckoning system, the error of visual odometry accumulates over time, so the esti-
mated trajectory will drift from the true one. To diminish the accumulation of error, loop closure techniques
are proposed in visual simultaneous localization and mapping (VSLAM) researches. The camera can de-
tect and recognize some visual cues which already exists in the map the robot has built. As a result, the
whole estimated trajectory and the map can be corrected by closing the measurement loop, since the errors
are highly correlated temporally. However, the loop closure technique requires the vehicle to revisit some
already mapped place, which significantly degrades the exploration efficiency. Both the error accumulation
and the efficiency problem become more crucial if the mission plans to explore an immense region such
as Valles Marineris, the 4,000-km-long canyon on Mars with enormous scientific attractions to be investi-
gated [2]. In addition, the remote control mode of the rover is impractical for such large-scale exploration
missions. Due to the long distance between Mars and Earth, it takes a few minutes for signal one-way prop-
agation even at speed of light. Remotely controlling a rover from earth to investigate a large area may take
ages, not to mention the radio connection cannot be consistently retained given the few infrastructure. As
a potential solution to the challenges, researchers from German Aerospace Center (DLR) propose to use an
autonomous and cooperative robotic swarm of independent rovers, crawlers and potentially flying platforms
to explore Valles Marineris [3]. Fig. 1.1 shows the concept of Mars exploration using robotic swarms.

A cooperative robotic swarm with communication links among each other has the following advantages
compared with a single rover:

1) Different regions can be explored in parallel using a swarm, so that the efficiency of information collec-
tion is significantly enhanced;

2) The observability of the perception sensors, e.g., cameras, is better in the swarm case, since occlusions
have smaller impact thanks to the independent mobility of individual platforms;
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12 1. Introduction

Figure 1.1: Mars Marineris exploration using robotic swarms [4]

3) In terrains such as caves and canyons, the radio connection will be interrupted for a single rover, while
the communication and line of sight connection can still be retained in swarm case by using another
rover as relay;

4) The swarm elements can form a sensor network and jointly position themselves using ranging measure-
ments from wireless radio (for instance, applying the methods described in work from Staudinger et al.
[5] and Zhu et al. [6]);

5) The formation of the swarm is variable, so that better geometry can be achieved by controlling the
rovers both in swarm positioning tasks (as shown in work from Zhang et al. [7]) and in camera-based
multi-view mapping tasks;

6) A robotic swarm is robust against failure of a single platform, because the whole mission normally can
tolerate certain failures in one or a small portion of the swarm elements.
On the other hand, the design of individual platforms for a robotic swarm must be miniaturized, given the

constraints on cost, size, and weight for the mission. This brings new challenges to the swarm navigation.
Compared with single-rover-based approaches, a swarm element in ordinary has much smaller size, so that
the payload, the storage and the computational power is more limited. Hence in most cases either it cannot
afford to equip a stereo camera rig, or a stereo rig has barely advantage comparing with a monocular camera
due to the very short baseline and the limited resolution. As a result, the design of the visual navigation
methods for a swarm should be based on the monocular camera assumption. Since the depth information
of the captured scenes is lost in perspective projection, the three-dimensional (3D) position of the points
of interest cannot be reconstructed without ambiguity using a single camera. The estimated trajectories
and maps using a monocular camera have a global scale ambiguity. Although the relative scale between
two ego-motion steps can be estimated using a camera, the product of these relative scales accumulates
the estimation error exponentially. This is the well-known challenging scale drift problem in monocular
VSLAM. The topic of scales will be explained in more details in Section 4.1. In addition, the rovers in a
swarm need to jointly navigate themselves and observe scenes of interest, and to coordinate the exploration
task cooperatively (such as in work from Wiedemann et al. [8]). As a result, the swarm navigation requires
not only the navigation of a single rover, but also the relative positioning between swarm elements.

To provide a solution for the above challenges, this thesis proposes to apply sensor fusion for swarm nav-
igation using monocular cameras and ranging measurements between swarm elements. The range estimates
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can be obtained from round trip delay (RTD) estimation exploiting pilot signals in the mobile communica-
tion channel, which is available between any pair of vehicles due to the cooperative essence among swarm
elements. In addition, by exchanging basic information, the swarm can outperform a single platform in
accuracy by jointly positioning the rovers. The main contributions of the thesis are:
1) A global scale estimation method using an onboard monocular camera and ranging measurements from

the communication link to a single static station, e.g., another rover in static mode;
2) A tight coupling sensor fusion algorithm using a monocular camera and sparse ranging measurements

from a static station. By fusing with the ranging measurements, the error of the visual SLAM is bounded
at a low level without requiring to revisit mapped locations for loop closure;

3) An innovative relative pose and scale estimation method for two dynamic rovers equipped with monoc-
ular cameras and connected by a communication link;

4) It is shown that the visual SLAM accuracy can be significantly improved by tightly coupled fusion of
the visual and ranging measurements from the two cooperative rovers;

5) A swarm navigation solution based on pose graph optimization by applying the proposed relative pose
estimation. Both centralized and distributed solutions are considered;

6) A common field of view detection algorithm for two independent cameras;
7) An adaptive swarm grouping method, which takes both geometric distance and common field of view

as metric. By applying the grouping strategy, the intra-group communication load can be bounded to a
feasible level.
Such methods can be equally applied or easily adapted on a number of applications in terrestrial envi-

ronments. For example, Scaramuzza et al. propose in [9] to use a swarm of vision-controlled microaerial
vehicles (MAVs) to execute searching, surveillance, and rescue missions in GNSS-denied environments. In
addition, the infrastructures on the earth provides more possibilities to obtain ranging measurements. For
example, the cellular networks provide pilot signals for ranging using time of arrival (TOA) estimates. The
widely used long-term evolution advanced (LTE-A) system proposes and analyzes device-to-device com-
munication channels in [10] since specification release 12. In the standard [11], Fine Timing Measurement
is standardized for WiFi radio networks. Moreover, in the upcoming fifth-generation of wireless mobile
telecommunications technology (5G), device-to-device communication, which has ranging capability, is
thoroughly analyzed, for instance by [12] and plays a significant role in mobile communication systems in
the future. Therefore, the methods of swarm visual navigation can also potentially provide a solution for
terrestrial applications such as the positioning of connected vehicle networks on the road with car-to-car
communications and ranging links, especially in the GNSS-degraded urban canyons. Despite the variety of
the application scenarios, in order to keep representative and consistent, the following chapters of this work
will be introduced based on the typical Mars exploration scenario.

This dissertation is organized as following: In Chapter 2, the sensor measurement models and the system
model are introduced. Then, the visual navigation problem using visual sensor only, e.g., a stereo camera
rig, on an individual vehicle is discussed in Chapter 3. The visual SLAM framework is reviewed and a
general spatial uncertainty model is introduced. According to the uncertainty analysis, the reason why
monocular cameras are preferred in our application is explained. In Chapter 4, the scale estimation problem
in monocular visual navigation is explained, and we propose a method that jointly estimates the global scale
of the monocular camera and the relative pose between a dynamic rover and a static station by exploiting
visual measurements from monocular cameras and sparse ranging measurements from a radio link. Based
on that, a tight coupling sensor fusion method is proposed which outperforms the vision only approach in
SLAM but with similar computational complexity. Chapter 5 discusses the scenarios of two dynamic rovers.
It is shown that the relative pose between two dynamic rovers can be estimated without any scale ambiguity
by using the monocular cameras and the ranging measurements from the radio link between the two rovers.
Furthermore, the egomotion estimation accuracy can be improved by exploiting the data from the two rovers
using our tight coupling sensor fusion method. The approaches do not demand to transmit any image data
or feature descriptors, which has relatively weak demands on the communication bandwidth. In addition,
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a common field of view detection algorithm is proposed to aid the 3D reconstruction using two monocular
cameras mounted on different rovers. As an extension from a pair of vehicles, swarm navigation methods are
proposed in Chapter 6. The swarm pose estimation methods using sensor fusion for both centralized mode
and distributed mode are discussed. Additionally, as a solution to the scalability problem of large robotic
swarms, an adaptive grouping algorithm is proposed by considering both relative geometry information and
common field of view of the cameras on different rovers. At the end of the dissertation, a conclusion of this
work is drawn. The simulation and test results are shown directly in each corresponding section.



2. Measurement Models and System Models

The swarm system being discussed consists of several autonomous vehicles equipped with cameras and radio
front-ends with ranging capability. The models of both optical measurements and range measurements are
described in this chapter. Moreover, the detailed model of the autonomous swarm is provided.

In the remainder of this dissertation, a superscript with parentheses (·) is used to denote the reference
frame in which the vector is represented. Vectors such as �c ∈ R3 with geometric meanings are written with
an arrow. Time, denoted with square brackets [·], is measured in keyframes, i.e., the time reference instances
in which both the range measurements and the trajectory estimation are available. The homogeneous co-
ordinates in the extended Euclidean plane are written as ũ ∈ P2. For scenarios with multiple robots in a
swarm, a superscript j before a variable denotes the index of the robot. Moreover, this work uses [A,B]
and [A|B] to denote the horizontal concatenation of two matrices, and uses [A;B] to denote the vertical
concatenation.

2.1 Reference Frame Transformation

Generally, the transformation between two three dimensional (3D) reference frames (P ) and (Q) follows

�X (Q) = R(P→Q)
�X (P ) + �t(P→Q), (2.1)

where �X (P ) and �X (Q) denote the coordinates of an arbitrary 3D point �X ∈ R3 expressed in the correspond-
ing (P ) and (Q) frames, R(P→Q) ∈ SO(3) denotes the orthonormal rotation matrix, and �t(P→Q) denotes
the translation vector from the origin of (P ) to the origin of (Q). The transformation has six degrees of
freedom (DOF). It is fully parameterized by �t(P→Q) and R(P→Q). If such parameters are given or can be
calculated, any point in one of the reference frame can be transformed to its coordinates in the other one.
Fig. 2.1 illustrates the transformation by a simple example.

By specifying the 3D point in Equation (2.1) using two special points, i.e., the origins of the two coor-
dinate systems �OP and �OQ, the following relations can be obtained:

�O (Q)
P = �t(P→Q); (2.2)

0 = R(P→Q)
�O (P )
Q + �t(P→Q). (2.3)

Furthermore, the inverse transformation can be derived:

R(Q→P ) = R−1
(P→Q) = RT

(P→Q); (2.4)

�t(Q→P ) = �O (P )
Q = −RT

(P→Q)
�t(P→Q). (2.5)

Optionally, the rigid body transformation between two reference frames can also be parameterized by
elements of special Euclidean group SE(3). By choosing one coordinate system as a reference, e.g., (Q), it
can be parameterized as an identity matrix CQ = I4 ∈ SE(3). Another coordinate frame can be represented
by

CP = C(P→Q) =

�
R(P→Q) �t(P→Q)

0 1

�
∈ SE(3). (2.6)

An advantage of such parameterization is that if the point is represented by homogeneous coordinates,
i.e.,

X̃ =

�
�X
1

�
∈ P3, with �X ∈ R3, (2.7)
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Figure 2.1: Basic coordinate transformation between two reference frames

the coordinates of the point can be easily transformed between two frames by

X̃(Q) = C(P→Q)X̃
(P ), (2.8)

where X̃(P ), X̃(Q) ∈ P3. In this representation, the inverse transformation is simply the inverse of the
matrix:

C(Q→P ) =

�
RT

(P→Q) −RT
(P→Q)

�t(P→Q)

0 1

�
= C−1

(P→Q). (2.9)

Furthermore, consecutive transformation among multiple reference frames can be calculated by the multi-
plication of the transformation matrices, e.g.,

C(P→Q) = C(R→Q)C(P→R). (2.10)

The two ways of parameterizing the transformation between different coordinate systems are mathe-
matically equivalent. One can choose either one according to the problem to simplify the expression in
derivation.

2.2 Camera Model

The digital image sensor of cameras is the core sensing technology in visual navigation. A digital image
sensor can generate free electrons from the sensed photons on the image plane, and create electrical signals
according to the accumulated electrons during the exposure period. The signal is sampled at discrete pixels
that are uniformly distributed in the image plane. As a result, through particular onboard signal processing
such as filtering and quantization, the sensor generates a digital image I , which represents an amplitude
measure of the illuminance during the exposure time on the image plane Ω ⊂ R2. For a grayscale image,
I ∈ ZNh×Nw is an integer-valued matrix that represents the amount of intensity values at each pixel, where
Nh and Nw are the number of the pixels in the dimensions of the height and the width respectively. In
most common cases, intensity values range from 0 (black) to 255 (white) as the result of 8 bits quantization.
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Figure 2.2: Pinhole camera model

The intensity values in the measurement image I are noisy due to various error sources. We model the
measurement noise as additive noise:

I = I0 + nI . (2.11)

The noise nI is normally referred as photometric noise in literatures, since it represents the raw photometric
error in the image intensity values.

Modern image sensors are capable of generating colored digital images with multiple channels of color
space in order to adapt to the perception of human eyes. However, for autonomous visual navigation appli-
cations, it is essential to extract geometric information from the luminance of the images, and the processing
should be ideally real-time. The gain in geometry extraction from the color information is usually insignif-
icant compared to using monochrome luminance, while processing colored images requires at least three
times as much the computational power as grayscale image with the same resolution. Moreover, with the
same generation of technology, a monochrome camera can achieve higher frame rate than a colored camera
with similar costs and resolution, which is crucial for reliable motion tracking using vision. As a result, in
the following part of this work, it is assumed by default that the image measurements are in grayscale. The
conversion from colored to grayscale image and the conversions among different color spaces can be found
in manuals such as [13] and [14].

Most of the digital cameras are designed based on the notion of pinhole imaging, which captures the light
rays passing through the aperture of the lens. Fig. 2.2 shows the projective geometry of the pinhole model.
Assume the origin of the reference frame is at the center of the aperture. For a point in three-dimensional
(3D) space with coordinates �X = [Xx, Xy, Xz]T , the model approximates the projection of the point onto
the camera’s image plane Ω0 as an ideal pinhole camera. The image plane is perpendicular to the optical
axis and the distance between the plane and the aperture center is the focal length f . According to Fermat’s
principle in optics, the projection of the 3D point on the image plane has coordinates

�c = [cx, cy, cz]
T =

�
−f

Xx

Xz
,−f

Xy

Xz
,−f

�T
. (2.12)

Concerning the projection using the pinhole model, the image of an object on the plane Ω0 has been rotated
by π around the z-axis compared to the original object. To simplify the analysis, one can introduce an
equivalent virtual image plane Ω, which is at the same side of the lens as the visible object. Ω is parallel
to Ω0 and is located at distance f in front of the aperture. The same points projected on the two planes are
bijectively related by a rotation mapping. As a result, the projection of an object on Ω will have the same
size as the original image but is no longer rotated. Without loss of generality, Ω is used to refer to the image
plane in the following parts of this dissertation.
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Figure 2.3: Camera reference frame
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The camera reference frame (C) is defined as in Fig. 2.3. The origin of the reference frame is set at
the projection center, i.e., the center of the lens aperture. For a 3D point �X (C)

i = [X(C)
x , X(C)

y , X(C)
z ], the

projection of it on the image plane is

�u (C)
i =

�
f
X(C)

x

X(C)
z

, f
X(C)

y

X(C)
z

, f

�T

. (2.13)

Following the convention of the pixel-counting, the two-dimensional (2D) position of a point in an image
I is measured from the top-left corner of the image. As a result, the corresponding 2D position ui =
[ui,x, ui,y]T ∈ Ω ⊂ R2 can be related to the 3D point as

ui =

�
f
X(C)

x

X(C)
z

+
Nw

2
, f

X(C)
y

X(C)
z

+
Nh

2

�T

. (2.14)

Using homogeneous coordinates, the perspective projection can be written as the following linear equa-
tion

ũi = di

�
ui
1

�
=




f 0 Nw/2
0 f Nh/2
0 0 1








X(C)

x

X(C)
y

X(C)
z



 = KC
�X (C)
i , (2.15)

where di = X(C)
z is the depth of the point. The matrix KC in Eqn. (2.15) is called camera intrinsic matrix.

Its parameters are only dependent on the camera and the lens used. It should be mentioned that the linearity
only holds for the homogeneous coordinate representation. In Euclidean coordinates, the mapping from the
3D point coordinates to the 2D position on the image plane is non-linear.

In practice, the optical system of a camera does not perfectly match the pinhole model. As a result, the
obtained image has lens distortion to be modeled. For most of the cameras, the main geometric abberation of
lenses is modeled as radial distortions and tangential distortions, which are reviewed in the state-of-the-art
work by Fryer and Brown in [15]. Quantitatively, the undistorted 2D point ui can be modeled as a function
of distorted measurement ǔi = [ǔi,x, ǔi,y]T as

ui = ǔi+ δuri+ δuti = ǔi+

�
δx(k1r2 + k2r4 + k3r6 + o(r8))
δy(k1r2 + k2r4 + k3r6 + o(r8))

�
+

�
2p1δxδy + p2(r2 + 2δx2)
p1(r2 + 2δy2) + 2p2δxδy

�
, (2.16)

where δx = ǔi,x −Nw/2, δy = ǔi,y −Nh/2 are the 2D coordinates with respect to the principal point, and
r =

�
δx2 + δy2 is the corresponding radial distance. As an approximation, high order terms in the model

are ignored, which have little impact on the accuracy of the model according to [15]. The radial distortion
δuri refers to the barrel or pincushion distortion, which is symmetric with respect to the optical axis. The
cause of it is the fact that the optical system cannot produce perfect rectilinear perspective projection. The
tangential distortion occurs because the lenses are not perfectly parallel to the imaging plane. Additionally,
in practice, the focal length of the x and y axis can be slightly different, and the two axes can be slightly
skew due to imprecision in the manufacture. A more general expression of the camera intrinsic matrix can
be written as

KC =




fx γskew Nw/2
0 fy Nh/2
0 0 1



 , (2.17)

where γskew is the skew coefficient which is usually tiny for a well manufactured camera.
Using known visual patterns, e.g., a checkerboard, the lens distortion parameters [k1, k2, k3, p1, p2] as

well as the intrinsic matrix KC can be estimated by camera calibration methods such as [16] and [17].
Because the sensors are calibrated cameras in most applications of visual navigation, in the following part
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of this work, it is assumed that KC is known and the lens distortion has already been corrected for the 2D
points in the image, i.e., only the undistorted location ui is considered.

The transformation between the camera inertial frame (C) and other reference frames, e.g., the world
frame denoted by (W ), is dependent on the position and attitude of the camera. The camera position
is always set to be the projection center of the lens, i.e., point O in Fig. 2.3. For a camera at position
�c (W ) ∈ R3 in the world frame, the following equation describes the transformation between the two frames:

�X (C) = R(W→C)
�X (W ) + �t(W→C), (2.18)

where �X (W ) ∈ R3 is the coordinates of an arbitrary point in world frame, and �X (C) is the same
point in camera frame. R(W→C) denotes the rotation between the two reference frames, and its inverse
R(C→W ) = RT

(W→C) ∈ SO(3) is used to represent the attitude of the camera in the world frame.
�t(W→C) = −R(W→C)�c

(W ) is the translation between the two reference frames. As a result, the projec-
tive geometry of a 3D point in world frame is described by

ũi = di

�
ui
1

�
= KC

�
R(W→C)|−R(W→C)�c

(W )
� � �X (W )

i
1

�
= PX̃(W )

i , (2.19)

where X̃(W )
i ∈ P3 is the homogeneous coordinates of the point in world frame, and P is called projection

matrix.
In Euclidean space, the 2D coordinates of a projected point in the image plane is related to the camera

pose and the 3D location of the point by

ui =

�
1 0 0
0 1 0

�
ũi

�
0 0 1

�
ũi

=

�
1 0 0
0 1 0

�
KCRT

(C→W )(
�X (W )
i − �c (W ))

�
0 0 1

�
KCRT

(C→W )(
�X (W )
i − �c (W ))

. (2.20)

In order to simplify the notation, a function π(·) : (R3, se(3)) → R2 is defined to map the 3D point
position and the extrinsic parameters, i.e., the camera pose using particular parameterizations, to the 2D
coordinates on the image plane. The camera pose can be represented using Lie algebra of SE(3) group
or other equivalent parameterizations. A brief introduction of parameterizing rotations and poses using Lie
groups and Lie algebras can be found in [18]. Optionally, one can separate the parameterization of the
camera pose to attitude and position. For instance, if a rotation matrix R(C→W ) is used to represent the
camera attitude, the projection function in Eqn. (2.20) becomes

ui = π( �X (W )
i , R(C→W ),�c

(W )). (2.21)

In visual navigation, the location of the 2D feature points are estimated using the noisy 2D image I
in Eqn. (2.11). As a result, the 2D coordinates of the points are also imperfect. To distinguish from the
photometric error in intensity domain, the error of the point location in the image plane nui ∈ R2 is normally
referred as geometric error. The following measurement model is used in this work under Gaussian noise
assumption

µi = ui + nui, E{nui} = �0, E{nuin
T
ui} = Σui. (2.22)

In practice, the geometric error is dependent on various ad-hoc factors, e.g., the type of feature detector, the
property of the feature in the environment, etc. The Gaussian noise assumption may not always precisely
model the geometric error distribution. However, developing a precise error model considering all the
impacts is not part of the main goal of this thesis, and the feasibility of modelling the ad-hoc factors given
restricted resources is disputable. Therefore, as a compromise, the visual positioning and sensor fusion
methods developed in this work is based on the Gaussian assumption in Eqn. (2.22) for geometric noise.
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Figure 2.4: General model of a stereo camera rig.

2.3 Stereo Camera Rig Model

According to the pinhole camera model which was introduced in Section 2.2, the z-component of a point’s
coordinates in camera frame, i.e., the depth information, is unrecoverable from the 2D measurements on the
image plane. However, using two cameras with known relative pose with common field of view, the depth
of the matched feature points can be estimated. Therefore, stereo camera rigs (two cameras with a fixed
baseline) are widely used in computer vision and robotics so that 3D information can be obtained.

Fig. 2.4 shows the general model of a stereo camera rig. For a stereo camera rig, the relative pose
from the two cameras are fixed, which can be represented by a baseline vector �b and a relative rotation
Rb ∈ SO(3). The baseline vector and the relative rotation parameters are normally defined as extrinsic
parameters of the stereo rig. Without loss of generality, it is assumed that the camera frame of the stereo
rig (C) is the same as the camera inertial frame of the first camera. A feature point �X (C)

i is visible from
both cameras. Applying pinhole model, Eqn. (2.23) describes the projection from the point to the first (left)
camera’s image plane ΩL ⊂ R2 as:

ũi,L = di,L

�
ui,L
1

�
= KL

�X (C)
i . (2.23)

At the same time, the projection of the point on the second (right) camera ΩR ⊂ R2 is expressed as:

ũi,R = di,R

�
ui,R
1

�
= KRRb( �X

(C)
i −�b). (2.24)

Using the 2D measurements from both cameras µi,L = ui,L + nuiL and µi,R = ui,R + nuiR with indepen-
dent noise processes for both cameras and noise covariance E{nuiLnT

uiL} = ΣuiL, E{nuiRnT
uiR} = ΣuiR

respectively, the 3D coordinates of the feature point can be estimated using triangulation by minimizing the
reprojection error in both views:

X̂i(C) = argmin
�X (C)
i

���π( �X (C)
i , I3,�0)− µi,L

���
2

Σ−1
uiL

+
���π( �X (C)

i , Rb,�b)− µi,R

���
2

Σ−1
uiR

, (2.25)
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Figure 2.5: Projection model for a well-aligned stereo camera rig

where the projection function π(·) was defined in Section 2.2 and I3 is three dimensional identity matrix.
� · �Σ−1 denotes the Mahalanobis distance with respect to covariance matrix Σ. As a direct solution of the
nonlinear optimization in Eqn. (2.25), Hartley and Sturm proposed the state-of-the-art polynomial trian-
gulation algorithm, which is shown to outperform most other triangulation algorithms. The details of the
algorithm can be found in [19] and [20].

Using a pattern with known structure and size, e.g., a checker board, both the intrinsic parameters
KL,KR and the extrinsic parameters �b, Rb can be obtained through calibration. State of the art stereo
camera calibration algorithms can be found in [21] and [22]. In this work, the cameras are calibrated using
the camera calibration toolbox from OpenCV and Caltech, which is available at [23] and [24].

As a special case, if the two cameras in the stereo rig are the same, and are well aligned, i.e., KL =
KR = KC ,�b = [bx, 0, 0]T , Rb = I3 in Eqn. (2.25), the model is as expressed in Fig. 2.5. This special set-up
has some nice properties. According to projective geometry, for a 2D feature point ui,L = [uix,L, uiy,L]T , the
possible positions of the corresponding 3D point �X (C)

i is represented by a line in the space. By projecting
the line to the right view camera, one can obtain a line on the image plane, which is called epipolar line.
The 2D measurement of the same point in the right image ui,R can only locate on the epipolar line. (A brief
introduction of general epipolar geometry can be found in Section 4.1. More details can be found in [20].)
For a well-aligned stereo camera rig, the epipolar lines are parallel to the x-axis of the camera frame. As
a result, in the absence of noise, the y-coordinates of any pair of feature points are always the same. The
search space of feature matching is reduced to searching along the pixels in the other image with the same y
coordinates. (In practice, a margin is required in order to tolerate noisy measurements.) Moreover, the depth
of the 3D point is the same for both views with coplanar image planes, i.e., di,L = di,R = di. Intuitively, it
can be obtained from the geometry that

(bx + uix,R)− uix,L
bx

=
di − f

di
. (2.26)
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Therefore, the depth can be calculated using the disparity of the x-component of the 2D feature locations.
Denoting the disparity with δx = uix,L − uix,R, the depth can be recovered as

di =
f

δx
bx. (2.27)

Consequently, the coordinates of the 3D point can be reconstructed by

�X (C)
i = K−1

C di




uix,L
uiy,L
1



 (2.28)

In the presence of measurement noise, the disparity is calculated using the noisy 2D geometric measure-
ments as δ̂x = µix,L − µix,R. The depth can be estimated using Eqn. (2.28) as

d̂i =
f

µix,L − µix,R
bx, (2.29)

which has some spatial uncertainty due to the noise in µix,L and µix,R. If the left and right cameras are the
same and are well aligned, it can be assumed that ΣuiL = ΣuiR.

The coordinates of the 3D point which minimizes the summation of the reprojection error in both views,
as described in Eqn. (2.25), is estimated by

X̂i(C) = K−1
C d̂i




µix,L

(µiy,L + µiy,R)/2
1



 . (2.30)

The uncertainty of the estimated depth and 3D coordinates will be discussed in detail in Section 3.4.
In practice, for a camera with specific sensor size, the opening angle of the field of view is determined

by the focal length of the main lens as

ϕ = 2 tan−1

�
Nw

2f

�
. (2.31)

The closest visible point in the common field of view has depth

dmin = bx cot(ϕ/2) = 2fbx/Nw. (2.32)

Fig. 2.6 illustrates an instance of the nearest visible point which locates in the common field of view of the
left and right cameras.

By knowing the intrinsic and extrinsic parameters from calibration, the images obtained from a general
stereo rig can be transformed to equivalent co-planar images using image rectification techniques, so that the
3D reconstruction is much easier using the model in Fig 2.5. A state-of-the-art image rectification algorithm
was proposed in [25] by Loop and Zhang. Following the approach, images taken from a general stereo rig
can be transformed and processed using the coplanar model.

For simplicity but without loss of generality, it is assumed in this dissertation that the image planes of
two cameras are well aligned in a stereo rig so that the model in Fig. 2.5 applies, and the intrinsic matrices
are the same for the left and right cameras, i.e., KL = KR = KC .
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Figure 2.6: Nearest visible point in the common field of view.

2.4 Ranging Measurements

A rover is capable of measuring distance relative to a certain point using wireless radio signals. In a co-
operative swarm, the radio links between vehicles can be utilized to obtain ranging measurements with-
out using additional sensors. Fig. 2.7 shows the set-up for a one way ranging scenario. The transmitter
(TX) sends a set of pilot signal s(t) over the communication channel. Assuming the receiver (RX) has
reliable channel estimation capability, the received signal after channel compensation can be denoted as
r(t) = s(t − τ − δt) + n(t), where τ is the propagation delay, δt the clock offset between TX and RX,
and n(t) the noise. Accurate ranging measurements can be obtained using time of arrival (ToA) estimates
if the clocks of the transmitter and the receiver are well synchronized, i.e. δt is known. By correlating the
received signal with a local replica of the pilot signal, the ToA estimate can be obtained by

τ̂ToA = argmax
τToA

�
s∗(t− τToA − δt)r(t)dt. (2.33)

Ideally, in noise-free case, the peak of the correlation will be found at τToA = τ . Then, the ranging measure-
ment based on ToA is calculated as ρ = c0τ̂ToA with c0 the propagation speed of the wavefront. However,
in many applications, the clock synchronization cannot fulfill the ranging accuracy requirements. In such
situations, the ToA estimate τ̂ToA is biased from the true propagation delay τ by a clock offset, which can
result in a large bias in the corresponding ranging measurement ρ, since c0 is essentially the speed of the
light in vacuum.

In order to mitigate the impact of the clock synchronization, it is chosen to utilize two way ranging based
on round-trip delay (RTD) to measure the distance. Fig. 2.8 shows the concept of the RTD based ranging.
A rover transmits pilot signals to another node, e.g., another rover or a base station. Then, the receiver side
relays the pilot signal back. The rover receives the return link signal rRL(t) = s(t− τFL − τRL) + nRTD(t),
since the clock offsets ±δt cancel. The received signal is correlated with the local replica to estimate the

Figure 2.7: One way ranging based on ToA.
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Figure 2.8: Two way ranging based on RTD.

round-trip delay as

τ̂RTD = argmax
τRTD

� ∞

0
s∗(t− τRTD)rRL(t)dt. (2.34)

The ranging measurement is calculated as ρ = c0τ̂RTD/2. Since the clock offsets in the forward link and
the back link are cancelled out, the RTD based ranging approach does not require clock synchronization
between devices. The clock offset impact can be ignored in RTD based methods, as long as the clocks on
the platforms are sufficiently stable over a short period of time. The detailed system design of an RTD-based
ranging system is introduced in [5].

For a transmitter located at �xt(t) and a receiver located at �xr(t), the ranging measurement model can be
generally described as:

ρ(t) = F (t) + η(t), (2.35)

where F (t) = ��xt(t) − �xr(t)� is the true range between the two points at time instant t and η(t) is the
measurement noise. If the channel can be accurately estimated, the ranging noise can be modelled as a
zero-mean Gaussian random variable, i.e.,

E{η(t)} = 0, E{η(t)ηT (t)} = Σρ(t). (2.36)

Using the wireless radio based ranging sensor, the range is estimated with respect to the reference
point of the antenna. When the ranging measurements are fused with the camera measurements, there is
a fixed transformation between the two reference frames. For a mobile robotic platform, the relative pose
between the camera and the antenna can be measured in calibration phase, i.e., �x (C)

a can be obtained from
calibration. If the ranging antenna is mounted sufficiently close to the camera projection center (compared
with the ranging noise level), the impact can be omitted, otherwise this offset must be corrected when fusing
ranging measurements with images. For simplicity but without loss of generality, in the following part of
this work, the mismatch between the two frames are assumed to be corrected using the calibration data, so
that the corrected origin of the camera frame (C) aligns with the antenna reference point.

2.5 System Model of a Robotic Swarm

As argued in Chapter 1, robotic swarms have several advantages in efficiency and robustness in exploration
tasks compared with a single Mars rover. A cooperative robotic swarm is a group of decentralized platforms
which move individually but cooperate with each other through communication links. Each swarm element
is capable of navigating autonomously using onboard sensors.

In this work, the vehicles are only equipped with monocular cameras and radio front-ends with ranging
capability. Basic communications among swarm elements are available through the wireless radio links.
Compared with multi-agent SLAM based on map merging on a central control unit such as [26, 27, 28],
swarm based approach is more robust against single point failures. However, it requires distributed oper-
ations on each rover, so that the computational power are more restricted and the communication delay is
less tolerated. As a result, in this thesis we are committed to develop swarm navigation solutions which do
not require to transmit images or feature descriptors.
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Figure 2.9: Reference frames in a robotic swarm.

Fig. 2.9 shows an instance of UGV (Unmanned Ground Vehicle) swarms. The motion of the rovers are
constrained to be planar. Nevertheless, the feature points in the environment are distributed in 3D space.
We define a navigation frame (N) as a fixed reference frame for each rover with its origin at the starting
location of the rover. The navigation frame of each rover is related to the world reference frame by a specific
transformation dependent on the initial position and attitude of vehicle. For rover j, any point represented
in its navigation frame (Nj) can be transformed from the world frame into that frame by:

�X
(Nj)
i = R(W→Nj)

�X (W )
i + �O

(Nj)
W , (2.37)

where �O
(Nj)
W denotes the coordinates of the world frame origin in navigation frame (Nj). In planar motion,

the poses (including position and attitude) of the agents in a robotic swarm can be illustrated as in Fig. 2.10.
In the plot, the long edge of the triangles illustrates the virtual image plane of the onboard cameras. Orange
triangles indicate the poses of the rovers at the current time instant, while the blue ones indicate the past
trajectories.

Moreover, ( kj ) is used to express the j-th rover’s local reference frame at time k, which varies as the
rover moves. Assuming the camera is fixed on the rover, the local body frame can be transformed to the local
camera frame by a fixed transformation. Without loss of generality, it is assumed that the camera is mounted
on the rover to look forward, so that ( kj ) aligns with the local camera frame. (The detailed definition of
the camera frame is described in section 2.2.) For other set-ups, the relative transformation can be obtained
from hardware calibration. The relations of the world frame, navigation frame and the local camera frame
are illustrated in Fig. 2.11.

Let �cj (W )
[k] ∈ R3 be the position of the robot j in world frame (W ) at time k, and R( kj →W ) ∈ SO(3)

be the rotation matrix representing the absolute attitude in the world frame. There are various ways to
parameterize the orthonormal rotation matrix with 3 degrees of freedom, such as using Euler angles, unit
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Figure 2.10: Reference frames in a robotic swarm in planar motion.

Figure 2.11: Reference frames of the swarm element j.
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quaternions, Rodrigues parameters, and Lie algebras, etc. A detailed comparison among different attitude
parameterizations can be found in [29]. Generally, they can be transformed to each other. Assuming that the
rovers and the mounted onboard sensors are rigid, the pose of rover j at time instant k can be expressed by
an element of special Euclidean group as

Cj (W )
[k] =

�
R( kj →W ) �cj (W )

[k]

0 1

�
∈ SE(3). (2.38)

For vehicles constrained to be moving in a plane, the world reference frame (W ) can be selected so that
the z−axis is perpendicular to the motion plane, i.e.,

∀j, k, �cj (W )
[k] =

�
�βj (W )
[k]

0

�
∈ R3, (2.39)

where
�βj (W )
[k] =

�
cj (W )
[k],x, cj (W )

[k],y

�T
∈ R2 (2.40)

denotes the 2D position in the motion plane. Moreover, the attitude of the rover can be parameterized by a
one dimensional heading angle φj (W )

[k] in the plane. Consequently, the pose of vehicle j at time instant k can
be parameterized by three parameters as

xj (W )
[k] =

�
cj (W )
[k],x, cj (W )

[k],y, φj (W )
[k]

�T
∈ R3. (2.41)

The position and attitude of the rover in 3D space is calculated from the three pose parameters of xj (W )
[k] by

�cj (W )
[k] =




cj (W )
[k],x

cj (W )
[k],y

0



 , R( kj →W ) =




cos( φj (W )

[k] ) 0 sin( φj (W )
[k] )

− sin( φj (W )
[k] ) 0 cos( φj (W )

[k] )

0 −1 0



 . (2.42)

It is intuitive that the planar rigid body motion can be expressed using two-dimensional special Euclidean
group SE(2). The poses parameterization is actually the vector form of the corresponding Lie algebra, i.e.,
xj (W )
[k] ∈ vec(se(2)). The reason for still using SE(3) to denote the rover poses is that even though the

motion is constrained to be planar, the VSLAM problem still need to be able to cope with map points in 3D
space. The model allows the future extension of the proposed methods to 3D SLAM.

The pose change of a dynamic rover follows the rigid body motion transformation:

Cj (W )
[k+1] = Cj (W )

[k] C( kj +1→ kj ), (2.43)

with

C( kj +1→ kj ) =

�
R( kj +1→ kj ) �cj ( kj )

[k+1]

0 1

�
∈ SE(3). (2.44)

More specifically, with planar motion constraint, the rigid body transformation has only three degrees of
freedom (DOF), which can be expressed by the 2D relative position �βj ( kj )

[k+1] and heading angle φj ( kj )
[k+1] =

φj (W )
[k+1] − φj (W )

[k] as

�cj ( kj )
[k+1] =

�
�βj ( kj )
[k+1]

0

�
, with �βj ( kj )

[k+1] ∈ R2, (2.45)
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R( kj +1→ kj ) =





cos( φj ( kj )
[k+1]) 0 sin( φj ( kj )

[k+1])

− sin( φj ( kj )
[k+1]) 0 cos( φj ( kj )

[k+1])

0 −1 0



 . (2.46)

As a result, for a robotic swarm consisting of Nr rovers, the poses of the rovers in world frame at time
instant k can be represented as { Cj (W )

[k] |j = 1...Nr}. In planar motion case, the poses can be parameterized

by { xj (W )
[k] |j = 1...Nr}. The estimation of the rovers’ trajectories until current instant Nk, i.e., estimating

{ xj (W )
[k] |j = 1...Nr, k = 1...Nk} using the onboard cameras and the intra-swarm radio links, is the core

problem of swarm navigation as well as the main goal of this dissertation.





3. Stand-alone Visual Navigation of a Single Vehicle – a Review and an
Uncertainty Model

An autonomous vehicle can estimate its ego-motion based on visual cues. At the same time, a map of the
environment can be created simultaneously using cameras. An overview of the estimation problem behind
visual navigation techniques is provided in this chapter. In addition, the general methodology framework
of visual navigation is introduced. The introduction is based on a stereo camera rig, since it is capable
of recovering the depth information, which is lost in perspective projection, without using other sensors.
On the contrary, the estimated vehicle trajectory and map point locations based on monocular vision is
affected by a metric ambiguity, which is widely investigated by the research community as the scale problem.
Subsequently, a general uncertainty model for visual SLAM is discussed based on the Cramér-Rao lower
bound (CRLB) of the applied estimator. It is shown that from the aspect of estimation uncertainty, the
advantage of a stereo rig over a monocular camera becomes increasingly marginal if the visual features
are getting farther away while the stereo baseline length is limited. As a result, for miniaturized swarm
platforms with limited size and costs, using a monocular camera and recovering the scale with other sensors
can be a more favored solution than conventional stereo-vision based solution.

3.1 Framework of Visual Navigation using Cameras

For a single autonomous vehicle equipped with fix-mounted cameras, the pose of the vehicle and that of
the camera are not distinguished in this dissertation, because the difference can be obtained by calibration.
The images captured by a camera will change as the vehicle moves. By tracking particular image features
associated with the static environment, methods can be applied to estimate the motion of the camera. Conse-
quently, the relative pose, i.e., relative position and attitude, with respect to the initial position of the vehicle
can be estimated using visual cues. Therefore, given a known initial position and attitude of the vehicle in a
global coordinate frame, the following poses in the defined frame can be resolved. In this dissertation, we
assume that the dynamic features in the environment can be detected and excluded using techniques such as
outlier rejection, so that all the tracked features are static.

As introduced in section 2.2, the raw measurements obtained from a camera are pixel’s intensities of the
images. We denote the intensities of the image at time epoch k by I[k] ∈ ZNh×Nw , where Nh and Nw are
respectively the height and the width of the image in pixels, determined by the resolution of the sensor. In
order to exploit the luminance measurements to estimate the geometric information, there are generally two
categories of approaches:direct methods and indirect methods. Engel, Koltun and Cremers have reviewed
different categories of approaches in [30].

The direct methods utilize the pixel intensity values directly to estimate the camera motion. It is as-
sumed that the points corresponding to the visible pixels forms continuous surfaces in the 3D space and the
luminance of them are invariant over short time. The direct approaches do not detect points of interest from
the images, but monitor the luminance change of the points corresponding to the pixels. For each pixel,
direct methods treat the intensity value as a one-dimensional photometric measurement. For a pixel at h-th
row and w-th column of the image with intensity value I[k](h,w) at time k, the position of the 3D map point
corresponding to the pixel can be parameterized with one degree of freedom depth dh,w as:

�Xh,w = dh,wK
−1
C




w
h
1



 , (3.1)
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where KC is the camera intrinsic matrix. When the camera is moving, it is assumed that the pixel projected
from the point �Xh,w should also has intensity value I[k](h,w). As a result, the motion of the camera is
reflected by the variation of the intensity distribution over frames. The optimal estimate can be obtained by
minimizing the photometric residual between the map points and the intensity measurements as:

x̂[k+1] = argmin
x[k+1]

Nh�

h=1

Nw�

w=1

���I[k](h,w)− I[k+1]

�
π( �Xh,w, x[k+1])

����
2

Σ−1
I

, (3.2)

where π( �Xh,w, x[k+1]) : R3 × se(3) → Z2 denotes the function projects 3D point �Xh,w to (rounded) pixel
location in the image taken from the camera with pose x[k+1].

Direct methods can build dense maps by assigning each pixel to a map point in the 3D space, such
as in work [31]. However, it should be mentioned that direct methods do not necessarily estimate the
camera egomotion and 3D map points location in a dense sense using all pixels. When a dense map is
not required, direct methods can only use the pixels with intensity gradients to obtain more accurate result
with a sparse or semi-dense map, e.g., see the work [32, 33, 34] from Engel et al. Direct approaches can
exploit various forms of information in the image without distinguishing it to be an edge, a corner, or other
features. However, due to the basic assumptions, the direct methods are significantly sensitive to the light
condition changes, shadows and occlusions. Additionally, the motion tracking directly using intensities has
a nonlinear cost function (see Eqn. (3.2)) with many local minima. Initializing with the last image, the
optimization solver requires a short baseline between two consecutive frames for a good initialization in
order to ensure convergence to the correct solution.

On the other hand, the indirect methods first apply feature detectors to locate features of interests in the
image, e.g., corners, edges, light blobs, etc., so that a set of geometric measurements {µi[k] = S(I[k]) ⊂
Ω|i = 1, ..., Np} are established from the image intensities, in which S(·) is the function for feature location
detection and Ω ⊂ R2 denotes the 2D image plane. An indirect methods must determine the type of
feature to detect. Edge detectors can well handle indoor artificial environments with particular a priori
model. Nevertheless, for outdoor environments such us Mars exploration scenarios, stable corner features
are most precious and widely used in feature-based visual navigation. For corner features, the extracted
points location are used as two-dimensional geometric measurements for motion tracking, i.e., µi,[k+1] ∈
R2. Moreover, the descriptive characteristics of the detected features, e.g., the local histogram, the local
intensity gradients, etc., are extracted by a vector named as feature descriptor. Then the corner points are
tracked in consecutive image frames by applying the feature descriptor, and the motion of the camera can
be estimated by minimizing the residual between the projection of the tracked features and the geometric
measurements:

x̂[k+1] = argmin
x[k+1]

Np�

i=1

���µi,[k+1] − π( �Xi, x[k+1])
���
2

Σ−1
u,i[k+1]

, (3.3)

where x[k+1] denotes the camera pose at time k+1. µi,[k+1] denotes the 2D geometric measurements of the
i-th tracked feature with noise covariance Σu,i[k+1], and Xi is the coordinates of the corresponding feature
position in the 3D physical space.

It has been proved that five non-colinear points are theoretically sufficient for motion estimation between
two images [35], and it is also verified that the number of tracked features is one of the most significant fac-
tors affecting the motion estimation accuracy [36]. Compared with direct methods, the extracted feature
points are more stable to be tracked and located, since a unique multi-dimensional descriptor vector is as-
signed to each feature to characterize it. As an analog, the direct methods ’detect’ the pixels as features,
and build a one-dimensional feature descriptor by only using the intensity value, which is less represen-
tative than descriptors in indirect methods. Moreover, many corner detection methods such as [37] can
achieve sub-pixel precision, while the direct methods are limited by the spatial sampling frequency of the
pixels. Therefore, considering our visual navigation application scenario on Mars, we choose to use indirect
methods based on reliable sparse feature points.
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Figure 3.1: Bayesian network expression of a general instance of visual navigation

Denoting the camera pose at time k by a state vector x[k], Fig. 3.1 demonstrates a general instance
of visual navigation scenarios for two consecutive time epochs using a Bayesian network model. We use
the set { �Xi|i = 1, ..., Np} to denote the static 3D feature points in the surrounding environment. For
the instance in the figure, Np = 4. The visible features at time instant k is a subset of it, denoted by
{ �Xi|vi[k] = 1} ⊆ { �Xi|i = 1, ..., Np}, where vi[k] is a binary visibility masking that vi[k] = 1 if feature
i is visible to the camera at time instant k, otherwise vi[k] = 0. In the example, v1[k] = v2[k] = v3[k] =

v3[k+1] = v4[k+1] = 1. The 2D position of a point �Xi ∈ R3 projected on the virtual image plane of camera
k can be expressed as ui[k] using the camera model introduced in Section 2.2. It should be mentioned
that the graph model can be adapted to both the monocular camera case and the stereo camera case. For
a monocular camera VSLAM problem, ui[k] ∈ R2, while for a stereo rig, the geometric measurement
ui[k] = [uix[k],L, uiy[k],L, uix[k],R, uiy[k],R]

T ∈ R4 includes measurements from both left and right cameras.
µi[k] is the corresponding noisy measurement. ν[k] denotes the control input at time k.

In a Bayesian network model, each random variable is conditionally independent of all its non-
descendant nodes given all its parent nodes. Without loss of generality, the following assumptions are
made:
1) The measurements of different features in the image plane are independent;
2) The state propagation of the vehicle is a Markov process, i.e., the parameters at time instant k + 1 is

independent of earlier states given the state vector and the control input at time k;
3) If no further information or constraint is provided, the 3D positions of the feature points in the space are

static and independent to each other.
As a result, the visual navigation problem at time instant Nk can be modeled by a directed graph as the
Bayesian network in Fig. 3.1 (extended to time Nk). The joint probability density function of the random
variables in the whole graph is

pjoint = p(x[0], x[1], ..., x[Nk], ν[0], ..., ν[Nk−1], �X1, ..., �XNp , µ1[1], ..., µNp[1], ..., µNp[Nk]), (3.4)

where x[0] is the state vector corresponding to the initial pose of the camera.
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According to the conditional independence of the variables in the Bayesian network, the joint probability
can be factorized as

pjoint =

Np�

i=1

Nk�

k=1

p(µi[k]| �Xi, x[k])
vi[k]p( �Xi)p(x[k]|x[k−1], ν[k−1])p(ν[k−1])p(x[0]), (3.5)

where vi[k] is the binary visibility masking for feature i at time k.
There are different applications with distinct problem set-ups in visual navigation. If the vehicle has

no clue about its egomotion nor the surrounding environment, it is required to use cameras to estimate its
motion while building a map simultaneously. This is known as the classic simultaneously localization and
mapping (SLAM) problem in robotics. The problem can be formulated as a maximum a posteriori (MAP)
estimation as

{x̂[k], X̂i} = argmax
{x[k], �Xi}

p(x[0], x[1], ..., x[Nk],
�X1, ... �XNp |µ1[1], ..., µNp[Nk], ν[0], ..., ν[Nk−1]). (3.6)

In relative positioning tasks, the a priori distribution of the initial states x[0] is assumed to be known. Without
loss of generality, the initial position is assumed to be at �0 in the navigation coordinates frame. Moreover,
the control input command is known to the platform, while it cannot obtain the a priori distribution of the
feature points position p( �Xi) in exploration missions. As a result, using the factorization in Eqn. (3.5), the
optimal solution of the MAP estimator is:

{x̂[k], X̂i} = argmax
{x[k], �Xi}

Np�

i=1

Nk�

k=1

p(µi[k]| �Xi, x[k])
vi[k]p(x[k]|x[k−1], ν[k−1]). (3.7)

Therefore, the pose of the vehicle in visual SLAM tasks can be estimated by the following maximum
likelihood (ML) estimator

{x̂[k], X̂i} = argmax
{x[k], �Xi}

Np�

i=1

Nk�

k=1

�
vi[k] log p(µi[k]| �Xi, x[k]) + log p(x[k]|x[k−1], ν[k−1])

�
. (3.8)

The state transition of the platform can be modeled as:

x[k] = T[k](x[k−1], ν[k−1]) + w[k], (3.9)

where T[k](x[k−1], ν[k−1]) is the state transition function of the platform from time k − 1 to time k, and w[k]

is the process noise with covariance matrix Σw. With a precise motion model, the term p(x[k]|x[k−1], ν[k−1])
in Eqn. (3.8) is determined by the process noise distribution. If a reliable motion model is unavailable, the
covariance of the process noise would be large. Even though, the robustness of the solution is improved by
including the motion model, because the estimation drift is still limited by the model when the measurements
data has significantly poor quality, e.g., when the images suddenly blackout.

If the 2D geometric measurement noise distribution is modeled as Gaussian, the likelihood function
writes

p(µi[k]| �Xi, x[k]) =
1

2π
|Σu|−

1
2 e−

1
2 (µi[k]−ui[k])

TΣ−1
u (µi[k]−ui[k]), (3.10)

where ui[k] = π( �Xi, x[k]) is the projected 2D point locations given the parameters, and Σu is the covariance
matrix of the measurements. The details of the projection function were introduced in Section 2.2. With the
Gaussian noise assumption on both the measurement noise and the process noise, the ML estimator has the
same solution as the following least-squares estimator:

{x̂[k], X̂i} = argmin
{x[k], �Xi}

Np�

i=1

Nk�

k=1

�
vi[k](µi[k] − π( �Xi, x[k]))

TΣ−1
u (µi[k] − π( �Xi, x[k])) (3.11)

+ (x[k] − T[k](x[k−1], ν[k−1]))
TΣ−1

w (x[k] − T[k](x[k−1], ν[k−1]))
�
. (3.12)
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In many applications of visual SLAM, a reliable motion model is difficult to achieve, e.g., for a handhold
camera. In such cases, the noise covariance det(Σw) � det(Σu). As a result, if the camera measurements
are reliable while a precise motion model is missing, we can solve the problem with the measurements only:

{x̂[k], X̂i} = argmin
{x[k], �Xi}

Np�

i=1

Nk�

k=1

vi[k](µi[k] − π( �Xi, x[k]))
TΣ−1

u (µi[k] − π( �Xi, x[k])). (3.13)

Eqn. (3.13) is the state-of-the-art bundle adjustment problem in computer vision.
The cost function in the optimization is non-linear with respect to the parameters {x[k], �Xi} to be esti-

mated. Therefore, in order to obtain the correct global minimum solution, it is essential to have good initial
guess of the parameters. This requirement is fulfilled by applying motion tracking and map points recon-
struction methods. It has been proved that using images from moving cameras, it is feasible to estimate the
camera poses {x̂[k]} and 3D map points positions {X̂i} by exploiting visual odometry (VO) approaches.

With additional information, the above visual SLAM problem can be simplified to other sub-problems in
the same framework. If an autonomous vehicle navigate itself using detectable landmarks with known posi-
tion, i.e., { �Xi} is known, it is a landmark-based navigation problem which estimates the state vectors {x[k]}
using the visual measurements. On the other hand, if the poses of the rover can be estimated reliably using
other sensors, e.g., GNSS (Global Navigation Satellite System) receivers and IMUs (Inertial Measurement
Units), the framework simplifies to a mapping problem.

As the camera moves with the vehicle, there will be consistently new image measurements. As a result,
the Bayesian Network in Fig. 3.1 will grow over time, and meanwhile, the dimension of the optimization will
significantly expand. To cope with the problem, the marginalization of the whole distribution is essential.
A state-of-the-art solution is to use the extended Kalman filter (EKF) technique. The papers [38], [39] and
[40] all describe EKF-based visual SLAM approaches. For the category of methods applying EKF, the pose
of the camera at time k and the position of the 3D map points are stacked into a state vector. Through
prediction and update phases using new measurements from time k+1, a marginalized optimal solution can
be obtained. However, for the specific visual SLAM problem, EKF-based approaches have a few crucial
problems. First of all, the EKF linearize the state-space and the measurement function at each step with
the available knowledge. When better estimation is obtained as new measurements are fed in, there is no
chance for relinearization for the past estimation. Secondly, the filter has to take all the map points into the
state vector, so that the dimension of the state space increases significantly over long term, which makes
the calculation of the matrix inversion too slow for practical usage. Last but not least, the true positions of
static 3D feature points are actually constant and independent on each other. By stacking all the map points
into the state vector, the positions become time-correlated during the filtering, which can generate biased
estimation as the example in [41]. The consistency of EKF-based SLAM is analyzed in [42].

As an improvement, the particle filter (PF) technique uses Monto-Carlo method to estimate the probabil-
ity density function, which does not require a linear state-space model. Therefore, by using a particle filter,
the relinearization problem of EKF can be avoided. Montemerlo et al. propose a breakthrough algorithm
FastSLAM in [43] that uses Rao-Blackwellized particle filter to solve the SLAM problem. Following the
framework, Eade and Drummond proposed a monocular camera based SLAM algorithm in [44], which is
shown to outperform the EKF based approaches in complexity to achieve similar accuracy. In [45], Sim et
al. proposed a state of the art PF-based stereo SLAM method. However, although the Monto-Carlo based
PF can cope with linearity in the measurement equations, the other problems of Bayesian filter based ap-
proaches still remain. For example, if the particle number is not sufficiently large (as a compromise for
computational complexity), the particles will congregate after some resampling processes [46]. If the parti-
cles drift away from the true trajectory after particle congregation happens, the PF cannot be recovered from
it. The reason behind is that the Bayesian filters are based on the hidden Markov model (HMM) as shown
in Fig. 3.2. A HMM relies on two assumptions:
1) The state transition is a Markov process;
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Figure 3.2: Hidden Markov model with control inputs

2) The measurements at time instant k are only dependent on the current state.
However, in the visual SLAM problem, the visual measurements are dependent both on the geometric states
of the camera and on 3D feature points which are visible over multiple frames. The two assumptions of
HMM are violated. Therefore, the Bayesian filters are not the optimal estimator for visual SLAM problems.

As an improved solution, the graph optimization based approaches are proposed. Instead of marginaliz-
ing out all the old states, graph-based methods optimize the whole trajectory with all the available informa-
tion. However, the dimension of the parameter space is too high for real-time processing if all the frames are
included. As a result, the graph based methods only use keyframes for the batch optimization. The criterion
of the keyframe selection will be introduced in Section 3.2. Some recent Bayesian filter based VSLAM
algorithm such as [47] is also keyframe-based, but the problems caused by the HMM still remain. To further
reduce the computational complexity for the graph optimization, the approaches exploit the (approximate)
sparsity characteristic of the graph information matrix to marginalize the inactive graph nodes, e.g., the map
points that are invisible for a period of time. State of the art inference algorithms for the SLAM graph opti-
mization are [48] and factor graph based [49]. Due to the advantages over Bayesian filter based approaches,
we choose to use graph-based optimization in this work.

It should be mentioned that if only a single camera is available, the estimation of both the camera
motion and the map point position has a global scale ambiguity, while a well calibrated stereo camera rig
with sufficient baseline length does not have the problem. The state-of-the-art visual navigation methods
based on monocular cameras and the scale problem are reviewed in detail in Section 4.1. In this Chapter we
start with the methods using stereo camera rigs, which do not need to tackle with the scale problem yet.

3.2 Visual Navigation using a Stereo Camera Rig – a Review

Visual navigation using passive sensing vision is normally based on a calibrated stereo camera rig. With
the aiding of the baseline information between the two cameras, the depth information lost in perspective
projection can be reconstructed so that both the ego-motion trajectory and the 3D map can be estimated
without any scale ambiguity. Because both the egomotion and the 3D location of the feature points are
estimated, visual navigation provides a possible solution to the SLAM problem. In some applications which
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concern the pose estimation more than building a map, the onboard system will not save the map points given
limited amount of storage. This leads to visual odometry approaches, e.g., the state-of-the-art approach
proposed by Nister et al. in [50]. The visual odometry technique has been successfully applied in Mars
exploration in the past years [1]. However, the visual odometry is based on dead-reckoning concept, so
the pose estimation will drift from the true value over time, which is a crucial issue if one wants to move
toward full autonomy. Using the stored map points, the camera system is able to detect the places it has
visited before and add geometric constraints on the estimated parameters, which is normally referred as
loop closing (from the concept of control loop). With loop closure, the accumulated estimation error can be
significantly reduced. In this section, we will introduce the basic procedure of feature points based visual
navigation methods. Related state of the art work in visual odometry and visual SLAM will also be reviewed.
However, due to the huge amount of scholar work in the visual navigation field in the past years, it is rather
challenging to provide a complete review including all important approaches. Therefore, we only mention
those are most relevant to our work. As precious references, important approaches of visual odometry are
reviewed in [51], and a thorough overview of the most recent visual SLAM work can be found in [52].

As defined in Section 2.3 and shown in Fig. 2.5, we choose to use well aligned stereo camera rigs
with two identical cameras. The origin of the camera frame is defined at the projection center of the left
camera, and both cameras have the same attitude. The position of the right camera is �b (C) = [bx, 0, 0]T .
ΩL,ΩR ⊂ R2 are the left and right virtual image planes, respectively. Applying the pinhole model, the
perspective projection of point i to the left camera can be formulated as

ũi,L = di

�
ui,L
1

�T
= KC

�X (C)
i , (3.14)

where di = X(C)
i,z is the depth of the point, and K is the camera intrinsic matrix. ui,L ∈ R2 denotes

the Cartesian coordinates of the point’s two-dimensional (2D) location in the image, and ũi,L ∈ P2 is the
corresponding homogeneous coordinates in the extended Euclidean space. The projection of the same point
on the right camera is

ũi,R = di

�
ui,R
1

�T
= KC( �X

(C)
i −�b (C)). (3.15)

In Section 2.5, we defined navigation frame (N) as a fixed coordinate frame with its origin at the starting
location of the rover. The projection of a point in the navigation frame is shown in Fig. 3.3. For a dynamic
stereo rig with position �c (N)

[k] and attitude R(k→N) in the navigation frame at time k, the 3D coordinates of a
point in the camera frame (C) is related to that in the navigation frame (N) as

�X (C)
i = �X (N)

i − �c (N)
[k] . (3.16)

As a result, the feature location in the left and right views of the stereo rig at time instant k are respectively:

ui[k],L = π( �X (N)
i , R(k→N),�c

(N)
[k] ) =

�
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�
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�X (N)
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[k]

� (3.17)
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� . (3.18)
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Figure 3.3: Projection of a point in navigation frame

As shown in Section 2.5, for a stereo rig mounted on a vehicle constrained to be moving in a plane, the
pose can be parameterized by the state parameters x(N)

[k] = [c(N)
[k],x, c

(N)
[k],y,φ

(N)
[k] ]

T as

�c (N)
[k] =




c(N)
[k],x

c(N)
[k],y

0



 , R(N→k) =




cos(φ(N)

[k] ) − sin(φ(N)
[k] ) 0

0 0 −1

sin(φ(N)
[k] ) cos(φ(N)

[k] ) 0



 . (3.19)

The corresponding planar position of the rover is defined as �β (N)
k = [c(N)

[k],x, c
(N)
[k],y]

T .
We define a projection function for stereo rigs in planar motion: πS(·) : (R3, vec(se(2))) → R4 for the

point i and the vehicle pose at time k so that

ui[k] =

�
ui[k],L
ui[k],R

�
= πS( �X

(N)
i , x(N)

[k] ) ∈ R4. (3.20)

The corresponding noisy measurements are denoted by

µi[k] = ui[k] + ni[k] ∈ R4, (3.21)

with E{ni[k]} = �0, E{ni[k]n
T
i[k]} = Σu,i[k]. E{·} denotes the expected value function.

As reviewed in Section 3.1, there are direct and indirect visual navigation methods, and we focus on
feature based indirect methods in our application. Feature points that are well distinguishable and trackable
are crucial for visual odometry and VSLAM algorithms. Features are located in the images by feature
detectors and are extracted into a feature descriptor vector. Normally the detectors and descriptors are
designed jointly to achieve best performance. Widely used feature point detectors and descriptors includes
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the Harris corner detector [53], the Shi-Tomasi corner detector [54], the FAST feature detector [55], the
BRIEF descriptor [56], the SIFT feature [37], the SURF feature [57], and the ORB feature [58]. Using
feature detectors, several feature points can be matched between the stereo images and tracked over frames
for a certain period of time.

Constrained by the stereo baseline and the projection equation Eqn. (3.17) and (3.18), the 3D position
(in the camera frame) of any feature point matched between the left and right view can be estimated using
triangulation methods. If the same feature is matched across two consecutive frames as the camera moves,
the relative motion can be resolved by applying the geometric constraints [20] in rigid body motion. As
a result, the motion tracking can be executed if a sufficient number of feature points can be matched and
tracked. More specifically, to start the tracking, given a set of stereo measurements {µi,[1] : i = 1, ..., Np}
and the initial camera pose in the navigation frame x(N)

[1] , the 3D position of the point i can be estimated by
stereo triangulation as

X̂(N)
i = π−1

S (µi[1], x
(N)
[1] ). (3.22)

Using {µi[2] : i = 1, ..., Np}, i.e., the feature location of the same point in the following frame, the relative
motion between the two consecutive frames can be estimated. There are two ways of calculating the relative
motion. The first category of approaches triangulate the 3D points location in the camera frame at frame
number 2. Then the egomotion of the camera is extracted using the two matched groups of local point
clouds. Typical work using such method is the visual odometry of Mars exploration rovers from NASA [1].
However, the error resides in both triangulated 3D locations degrades the accuracy of the motion estimation.
Nistér et al. proposed a visual odometry method in [50] based on the minimization of 2D reprojection error
from the 3D point to the second image plane, and indicated that it outperforms the point cloud matching
methods. More generally, using Np tracked features at frame k, the pose of the vehicle at time k + 1 can be
estimated by minimizing the reprojection error

x̂(N)
[k+1] = argmin

x(N)
[k+1]

Np�

i=1

���µi[k+1] − πS(X̂
(N)
i , x(N)

[k+1])
���
2

Σ−1
u,i[k+1]

, (3.23)

where � · �Σ−1 denotes the Mahalanobis distance with respect to covariance Σ. Using the estimated pose,
the 3D position of the new features detected in frame k+ 1 can be updated using π−1

S (·). Consequently, the
motion tracking can be continued as long as a sufficient number of features can be tracked in consecutive
frames.

The problem that estimates the camera pose using n points with known 3D position and the correspond-
ing 2D locations on the image plane is referred to as Perspective n-Point (PnP) problem. The PnP problem
has been investigated by many authors. There are 6 DOF in the unknown camera pose, while each point pro-
vides two measurement equations. Hence the researches mainly focus on the cases that n = 3, 4, 5, since the
cases n < 3 will result in an underdetermined system and the PnP problem with n ≥ 6 points can be solved
by simple direct linear transformation (DLT) algorithm [20]. In Nistér’s visual odometry method in [50],
5-points (P5P) algorithm is applied. The 5-point algorithm from Nistér in [35] and that from Li and Hartley
in [59] are the most widely used PnP methods in visual navigation. The 3-point algorithms, e.g., [60] and
[61], have been proved to have non-unique (but finite) solutions. By adding a 4-th point, P4P methods such
as [62] and [63] can obtain a unique pose solution, but there are more degenerated situations compared with
5-point algorithms. Another state of the art approach of general PnP problem is the EPnP method [64] from
Lepetit et al., which is able to obtain an accurate solution with O(n) computational complexity. In practice,
PnP algorithms are normally used along with outlier rejection methods such as RANSAC [65], so that the
mismatched features can be excluded from the calculation.

Since there is an error in the motion estimation at each frame, estimating the trajectory properly is
essential to reduce the drift caused by undetected outliers and by error accumulation. Using Bayesian filters
is an intuitive solution to the visual navigation problem. Due to the nonlinearity of the measurement model



40 3. Stand-alone Visual Navigation of a Single Vehicle – a Review and an Uncertainty Model

in Eqn. (3.17) and Eqn. (3.18), either an extended Kalman filter (EKF) or a particle filter can be used.
The Bayesian filter optimizes the camera states estimation at time k + 1 given the states at time k and all
the measurements from beginning. A state of the art Bayesian filter based method is the visual odometry
approach proposed by Kitt et al. in [66]. The method utilizes the geometry constraints among the four
views in two consecutive stereo frames by using trifocal tensor and applies an EKF framework to track the
camera motion consistently. Other important methods during the development of EKF based stereo visual
navigation include [67], [68], and [69], etc. In [45], Sim et al. proposed a visual SLAM algorithm using
Rao-Blackwellised particle filter, which outperforms EKF based approaches in the linearization error. In
the Bayesian filter based methods, the latest camera pose and all the (active) map points are stacked into the
state vector. As discussed in Section 3.1, the Bayesian filter approach essentially marginalizes the overall
joint distribution by assuming a hidden Markov model so that all the old camera poses are discarded by
exploiting the conditional independency. However, the assumption is not always valid. The linearization
error in the measurement equation in the past cannot be corrected using the following measurements using
Bayesian filters. Since the obtained motion estimates follow dead-reckoning principle, the estimation error
due to unprecise linearization will accumulate over time.

The other category of methods propose to use a batch optimization to maximize the a posterior proba-
bility of the SLAM problem, which can be modeled by a pose graph. A state of the art approach is proposed
by Dellaert and Kaess in [70]. The so called "Square Root SAM" algorithm exploits a factor graph model
[71], [72] to deal with the probabilistic inference in the graph. Other important algorithms using graph
based batch optimization include [73], [49], etc. In these methods, a global optimization for both 3D point
position and the vehicle poses is performed using Nk keyframes and Np map points:

{x̂(N)
[k] , X̂

(N)
i } = argmin

{x(N)
[k] , �X (N)

i }

Np�

i=1

Nk�

k=1

Sik(x
(N)
[k] ,

�X (N)
i ), (3.24)

with Sik(x
(N)
[k] ,

�X (N)
i ) = vi[k]

���µi[k] − πS( �X
(N)
i , x(N)

[k] )
���
2

Σ−1
u,ik

, (3.25)

where vi[k] is the binary visibility mask the same as defined in Section 3.1, which assumes vi[k] = 1 if feature
i is visible to the camera at time instant k, otherwise vi[k] = 0. Therefore, by executing the optimization in
Eqn. (3.24), the rover obtains a set of egomotion estimates expressed in its navigation frame, i.e., {x̂(N)

[k] }.
Since the relation between the visual measurements and the pose parameters to be estimated is highly non-
linear, a coarse pose and map points’ location estimation is required so that the batch optimization can
converge to the correct global optimum. Therefore, the accuracy of the motion tracking in Eqn. (3.23) is
crucial to the convergence of the graph optimization.

In order to accelerate the VSLAM, Klein and Murray proposed a breakthrough approach in [74] abbre-
viated as Parallel Tracking And Mapping (PTAM), which is designed for monocular camera based SLAM.
In the PTAM method, the motion tracking and the global batch optimization are separated into two threads.
The tracking thread can provide a fast coarse estimate of the parameters, while the mapping thread calcu-
lates accurate camera poses and a map with global consistency by exploiting batch optimization using only
keyframes. As a result, the method enables a real time visual SLAM framework with sufficient robustness
and accuracy. Many following state of the art approaches are based on the same structure, e.g., the widely
used ORB-SLAM algorithm [75] and LSD-SLAM [34].

As the development of visual navigation, most recent state-of-the-art visual SLAM algorithms are
keyframe-based. The difference between the images at two consecutive frames are normally quite small,
provided that neither the movement of the rover is significantly fast nor the frame rate of the camera is
significantly low. As a result, on the one hand, the information gain is limited for very similar consecutive
images, so the computational power and the storage space can be saved by only processing keyframes. On
the other hand, the motion estimation using images with tiny displacements has higher uncertainty, since the
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geometric noise and biases can be dominant in such cases. More detailed discussion can be found in Section
3.3. Keyframes are normally selected following two criterion:
1) The neighbor keyframes must have common field-of-view (FoV) and enough tracked common feature

points;
2) The images of neighbor keyframes must be sufficiently different, i.e., there must be sufficient position

displacement for tracked features.
By applying the keyframe selection, the visual odometry and visual SLAM methods can make the best effort
to retain the drift low while keeping the processing power requirements in the feasible range.

An important difference between VO and VSLAM is the capability of detecting loop closure. By saving
the parameters and the features at keyframes, VSLAM techniques are able to calculate the similarity between
a new image and the old keyframes. If the similarity is significant, the robot can make the conclusion that the
two images are representing the same scene, and the relative geometry can be estimated using the location
of the common features. This process adds an a priori constraint between two camera pose nodes in the pose
graph, so that the drift of the whole trajectory can be mitigated by closing the loop (following the feedback
control loop philosophy). Most loop closure algorithms are based on bag of visual words (BoW) [76], which
trains a visual vocabulary using feature descriptors and represents an arbitrary image using the histogram of
the appeared visual words in the vocabulary. State of the art loop closure approaches include [77] and [78].
In [79], Williams et al. reviewed the state of the art methods of loop closing by then.

Loop closure is a powerful tool and can effectively mitigate the drifts accumulated in trajectory esti-
mation. However, it requires to revisit mapped areas and to ensure a successful loop closure detection, the
appearance of the environment should not change significantly after a while. These constraints have lim-
ited the application of the loop closing techniques in practice. A main contribution of this work is to have
comparable performance as VSLAM without revisiting old places for loop closure by exploiting additional
ranging measurements from radio links. The detailed sensor fusion methods are introduced in Chapter 4, 5
and 6.

3.3 General Uncertainty Model for Geometric Estimation using Vision Systems

In the field of navigation, it is crucial to model the uncertainty in pose estimation, so that the reliability of
the estimation can be evaluated. Since the pose estimation and the mapping problem are tightly correlated,
researchers proposed to use SLAM techniques to solve the joint problem. Therefore, the geometric estima-
tion uncertainty of the camera poses and the map points position should be discussed jointly as well. In this
section, we propose a generalized uncertainty model of the 3D reconstruction and pose estimation using 2D
feature locations from multiple views. For the common sensor set-up of stereo camera rigs or monocular
cameras, the uncertainty model can be easily specialized from the proposed general model. If the multiple
views have particular geometric constraints, e.g., taken from a camera in planar motion, the corresponding
uncertainty model is simply a specialized case of this general uncertainty model. As described in Section
2.2, for the projection from point �X (W )

i to camera at k-th view, the 2D location of a point in the image plane
Ω[k] is a function π(·) of the 3D point position �X (W )

i and camera extrinsic parameters, i.e., camera position
�c (W )
[k] ∈ R3 and attitude R(k→W ) ∈ SO(3), which can be parameterized together as a 6 degrees of freedom

(DOF) pose vector x[k] ∈ R6. The relation can be denoted by

ui[k] = π( �X (W )
i , x[k]).

Explicitly, the x− and y− components of the 2D feature point are expressed as:
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�
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� (3.26)
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ui[k],y =
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� (3.27)

with KC as the intrinsic matrix of the camera.
Due to the presence of noise, in feature-based algorithms using the feature locations on the image plane

as measurements, the accuracy of the estimated parameters is limited. The accuracy can be evaluated by the
Cramér-Rao lower bound (CRLB) [80].

Assuming all the 2D measurements are independent and identically distributed (i.i.d.), by stacking all
the parameters into a vector θ, the log-likelihood function of all the measurements given the parameters can
be written as

log (p(µ|θ)) =
NQ�

q=1

log (p(µq|θ)) ,

with µ = {µi[k]|i = 1...Np, k = 1...Nk} = {µ1, ..., µq, ..., µNQ} and state vector

θ =
�
�X1, ..., �XNp , x1, ..., xNk

�T
∈ RM×1. (3.28)

There are in total M = 3Np+6Nk parameters in the vector θ (M = 3Np+7Nk if the attitude is parameter-
ized using 4 dimensional vectors such as unit quaternions). If the camera motion is constrained to be planar,
the camera pose can be parameterized by a vector with 3 degrees of freedom. In such cases, the parameter
vector has a reduced dimension of M = 3Np + 3Nk. These dimensions change with different applications.
A general uncertainty model regardless the dimensions is discussed here. According to the definition, the
Fisher information matrix of estimating θ using µ can be written as

Iθ = −E
�
∇2 log (p(µ|θ))

�
.

The Hessian matrix of the measurements is calculated as following:

∇2 log (p(µ|θ)) =
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.

As a result, using an unbiased maximum likelihood estimator, e.g., bundle adjustment, the parameter
estimation accuracy is bounded by the following CRLB:

var(θ) ≥ CRLB(θ) = I−1
θ .

The variance of each parameter is bounded by the diagonal terms of the inverse of the Fisher information
matrix by

var(θm) ≥ (I−1
θ )mm.

It should be noted that since the projection function is non-linear, the calculation of the Hessian matrix
is dependent on the value of the estimated parameters. Hence before exploiting the maximum likelihood
estimator, an initial coarse estimate of the parameters are required in practice. In addition, the bounds of the
attitude parameters are related to the parameterization used to represent the camera attitude, so the bound
on attitude parameters would vary if a different parameterization was chosen.

In simplified scenarios that some of the parameters are known or can be estimated accurately using other
sensors, the Fisher information matrix would be a submatrix of the above Iθ. For instance, if the positions
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of the tracked 3D landmarks { �X (W )
i } are known, the state vector only consists of the camera positions

and attitudes, and the corresponding CRLB for the trajectory can be calculated. As another example, if
the camera motion can be accurately estimated by a tracking system, the bound of the 3D reconstruction
accuracy exploiting structure from motion (SFM) techniques can be obtained.

If we further assume (as in most state-of-the-art approaches) that the outliers in feature tracking are
already removed using outlier rejection schemes such as RANSAC [65], so that the 2D feature location
measurements of the inliers are multivariate Gaussian distributed variables. The likelihood function of the
camera pose xk and the location of the 3D feature point �X (W )

i given the 2D feature measurements is

p(µik| �X
(W )
i , xk) =

1

2π
|Σu|−

1
2 e−

1
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where

Σu =

�
σ2
x �σxσy

�σxσy σ2
y

�
=

�
σ2
x σxy
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�
(3.29)

is the covariance matrix of the 2D measurement. The corresponding log-likelihood function is

log
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The log-likelihood function of all the measurements given the parameters is

log (p(µ|θ)) = −1
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The partial differences of the function with respect to the m-th parameter θm (under the Gaussian noise
assumption) can be calculated by
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As a result, for Gaussian noise, the entries of the Fisher information matrix can be calculated analytically
by
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If the FIM is a full-rank diagonal matrix, i.e., [Iθ]m1m2 = 0 ⇐⇒ m1 �= m2, the variance of the m-th
estimated parameter is bounded by

var(θm) ≥
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, (3.31)
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which is equivalent to the classic uncertainty linear propagation for Gaussian variables. In most state-of-the-
art uncertainty analysis work such as [81], [82] and [83], the spatial uncertainty is analyzed by linearizing
the function between the measurement space and the parameter space, followed by a Gaussian distribution
covariance propagation. However, it can be easily concluded from Eqn. (3.26) and Eqn. (3.27) that the FIM
of the general visual SLAM problem is only block-diagonal but non-diagonal. Therefore, under the Gaussian
noise assumption, it is more precise to analyze the spatial uncertainty using the CRLB than traditional
covariance propagation methods.

3.4 Performance Limitation of a Short-baseline Stereo Rig

For a stereo camera rig, 2D feature points in the left and right images, which are projected from the same
3D point in the space, can be paired using feature matching methods. Then, the depth of the feature point
can be reconstructed using the 2D locations measurements. When estimating the depth of a pair of matched
3D point using Eqn. (2.29), it is intuitive that the noisy 2D measurements will result in spatial uncertainty
in 3D reconstruction.

Let us assume a stereo rig with the same and well aligned left and right cameras. The baseline length
is bx. The noisy 2D geometric measurements of a pair of matched feature points can be denoted as µi,L =
ui,L + nuiL and µi,R = ui,R + nuiR. The measurement noise distributions are assumed to be zero mean
Gaussian with noise covariance

E{nuiLn
T
uiL} = E{nuiRn

T
uiR} = Σui =

�
σ2
x σxy

σxy σ2
y

�
. (3.32)

In such condition, the measurement disparity δµx = µix,L − µix,R = δx+ nδx is also Gaussian distributed
with mean value δx = uix,L−uix,R and covariance 2σ2

x. The depth value is inverse to the Gaussian random
variable as

d̂ =
f

δµ
bx. (3.33)

It has been proved in [84] that the mean and covariance value do not exist for the inverse of a Gaussian
variable. Hence in order to analyze the spatial uncertainty of the depth estimator, we linearize the estimation
function by the first order approximation of the Taylor expansion as

d̂ =
fbx
δx

− fbx
δx2

(δµ− δx) = d+ Jδµ(δµ− δx), (3.34)

where Jδµ = −fbx
δx2 is the gradient of the depth with respect to the disparity value. As a result, under the first

order approximation, the estimated depth is also a Gaussian distributed random variable with mean value as
the true depth and variance

E{(d̂− d)2} = (Jδµ)
2E{(δµ− δx)2} = 2

�
fbx
δx2

�2

σ2
x. (3.35)

According to Eqn. (3.31) in Section 3.3, such approximated variance is equivalent to the CRLB of the
estimated parameter in one dimensional case. The corresponding standard deviation of the estimated depth
is

σd =

√
2fbx
δx2

σx =

√
2d

δx
σx =

√
2d2

fbx
σx. (3.36)

The following term in Eqn. (3.36) is the dilution of precision (DOP) for the depth estimation, which reflects
the geometric impact on the estimate:

dDOP =

√
2d2

fbx
. (3.37)
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(a) Near feature point (b) Far feature point
Figure 3.4: Examples of depth spatial uncertainty

It can be seen that for a specific stereo camera rig, if the optical lens is fixed, the 2D feature location
uncertainty is propagated to the depth estimation uncertainty with a factor quadratic to the true depth, and
inversely proportional to the baseline length. Therefore, for a stereo rig with fixed baseline length, the depth
estimation of a close feature point has lower uncertainty compared with a further one. On the other hand,
for a feature point with specific depth in the space, a short baseline stereo rig has larger spatial uncertainty
in depth estimation and 3D reconstruction.

Fig. 3.4 provides a qualitative example of the impact of the feature point depth on the spatial uncertainty
of the stereo reconstruction. In both subplots, the x− z plane of the camera coordinate frame is shown, and
the baseline length as well as the 2D feature position covariance are the same. In the Fig. 3.4a, the feature
point is close to the stereo camera rig. The spatial uncertainty of the estimated 3D position is bounded in a
relatively small area. At the same time, for a feature point which is distant from the stereo rig, as shown in
Fig. 3.4b, the spatial uncertainty, especially the depth error is much larger.

An example of the baseline length impact on the stereo reconstruction uncertainty is given in Fig. 3.5.
For a feature point in specific distance, a short baseline stereo rig may have huge spatial uncertainty in depth
estimation and 3D reconstruction.

Take the Bumblebee2 [85] stereo camera’s parameters as a realistic example. The well aligned stereo
camera rig consists two identical cameras with 1/3 inch imaging sensor and 1024 × 768 resolution. The
baseline length is 0.12 [m], and the optical lens has 2.5 [mm] focal length which is equivalent to 550 [pixel]
in the image plane. According to Eqn. (2.32), the theoretical minimal stereo sensing distance of the rig
is 0.1289 [m]. If the 2D feature location measurements have noise with 1 [pixel] standard deviation in the
x-axis, the relation between the feature point distance to the image plane d and the stereo depth estimation
uncertainty σd is plotted in Fig. 3.6. It can be observed from the curve that for a point which is 3 meters
away from the image plane, the depth reconstruction uncertainty using a Bumblebee2 stereo rig is around 20
centimeters. When the distance increases to 4 meters, the depth has a spatial uncertainty of 35 centimeters,
which is already comparable to the distance between two consecutive keyframes in state-of-the-art VSLAM
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(a) Long baseline (b) Short baseline
Figure 3.5: Baseline length impact on spatial uncertainty for specific depth

Figure 3.6: Uncertainty of the depth estimation with respect to the distance. σx = 1 [pixel], bx = 0.12 [m].

algorithms. For feature points that are 7 meters away, the uncertainty already rises to 1 meter. The 3D
reconstruction becomes too unreliable for the stereo rig with only 12 centimeters baseline length.

According to Eqn. (2.30), in stereo rig based 3D reconstruction, the geometric error in the z−axis of the
camera frame propagates to the other two dimensions. Therefore, the uncertainty of the depth estimation is
the crucial problem in stereo vision. If the covariance of the depth is high, the 3D reconstruction of the map
points becomes unreliable for navigation applications.



3.4 Performance Limitation of a Short-baseline Stereo Rig 47

In conclusion, reconstruction uncertainty for certain depth increases reversely with respect to the base-
line of the stereo rig. If the baseline is short, for the far-away objects and feature points, the depth estimation
will be highly unreliable. Furthermore, due to the resolution constraints of the camera sensor, the quantiza-
tion error in sensing will be so large that it has no more advantage over a monocular camera. As a result,
the weight, costs and computational complexity can be saved by using a monocular camera while without
losing too much performance, in the situation that the features are not close but the possible stereo rig base-
line length is limited. Hence in outdoor scenarios such as Mars exploration, it is more favorable to equip
a monocular camera instead of a stereo rig for a robotic swarm agent with small size. Due to the above
reasons, we choose to discuss the VSLAM problem for a swarm of cooperative small rovers equipped with
monocular cameras, and propose our contributions based on such sensor set-up.

Moreover, two independently moving monocular cameras are more flexible than a stereo camera rig with
a fixed baseline. In an exploration mission, the visible scenarios are always changing. For a stereo system
with certain field of view, if a feature point locates too close with respect to the baseline length, it will not
be observed by both cameras, or suffers from strong distortion at the image border areas even if it locates
in the common field of view. On the other hand, if a feature point is distant from the stereo system, the
stereo system will have few advantage over a monocular camera, as we discussed earlier. As a result, a fixed
baseline cannot guarantee good performance in various scenarios. As an improvement, using two monocular
cameras equipped on two independent mobile vehicles has more flexibility. Given a reliable relative pose
estimation, which will be discussed in Chapter 5, the two cameras can form a flexible stereo vision system. If
some landmarks or important feature points are far away, the two swarm elements can increase the baseline
length of the stereo system to improve the estimation accuracy. If the landmarks are very close, the vehicles
can move and adjust poses to reduce the baseline length and improve the co-observability. The common
field of view detection method will be introduced in Section 5.3.





4. Single Vehicle Navigation using a Monocular Camera and a Ranging
Radio Link

It has been introduced in the previous chapter that cameras play a significant role in autonomous navigation
of robotic platforms. VSLAM methods based on stereo camera rigs can estimate the poses of the platform
and map point locations with respect to the starting position. However, due to constraints on size, weight,
accommodation and cost, a stereo rig can often not be implemented on small rovers in robotic swarms.
Besides, the spatial uncertainty of stereo rig reconstruction has been discussed in detail in Section 3.4, and
it can be concluded that if the baseline length of the stereo rig is much smaller than the distance from the
image plane to the feature point, a stereo rig will not have significant advantage over a monocular camera.
As a result, in our application of using robotic swarms to explore Mars, we focus on developing methods
based on monocular cameras instead of stereo rigs.

However, due to the depth information is lost in the perspective projection for a single camera, the scale
information of the camera motion as well as the environment is unknown. The scale problem consists of
two challenges. First, the global scale cannot be reconstructed without other sensors or prior knowledge.
Secondly, though the relative scales between two consecutive motion steps can be estimated, the error in
the estimation propagates exponentially in the multiplication of the relative scales. Consequently, as time
passes, the estimated scale with respect to that at the beginning can be significantly wrong. This problem is
known as scale drift. In this chapter, the scale problem of monocular vision is reviewed in detail. Then, we
propose a method to solve both challenging scale problems using range measurements from a single radio
link between the monocular camera and an anchor point, e.g., a swarm element in static mode, or a base
station.

4.1 Visual Navigation with Scale Ambiguity using a Monocular Camera – a Review

The monocular camera based pose estimation problem was first investigated by the computer vision com-
munity, who are interested in 3D reconstruction of a scene using a set of images taken from multiple views.
Instead of using multiple cameras with accurately known extrinsic parameters, i.e., relative poses, one can
use a single monocular camera moving around the object to be reconstructed, and estimate the camera mo-
tion as well as the 3D points location by utilizing the images taken from different view points. This is the
structure from motion (SFM) concept. There are a few state-of-the-art SFM methods such as [86], [87]
and [88]. The SFM approaches match common features from two image views, and estimate relative pose
as well as the 3D location of the matched feature points according to epipolar geometry. Following the
procedure, new images are added one after another. At last, a global least batch optimization is executed
to refine the estimation results. There are several SFM methods that allow to use uncalibrated cameras, for
example, the work in [89], [90] and [91]. However, in our applications, we can calibrate the camera before
the mission, so we always assume that the camera intrinsic matrix KC is known and remains the same for
all the views. For a calibrated camera, the problem behind SFM methods is mathematically the same as the
monocular visual SLAM problem, except for higher real-time processing requirements.

In the rest part of this section, we briefly introduce the epipolar geometry and the corresponding motion
estimation method for VSLAM applications. Then, the scale problem is discussed, and we clarify the
definition of global scale and relative scale in this thesis. At last, a few related state-of-the-art monocular
VSLAM literatures are reviewed and discussed.

Unlike stereo systems with well-calibrated baseline information, the relative pose between any two
views taken from a monocular camera must be estimated from visual cues. Given two images with common
field of view of the same scene, the common points of interest visible in both views can be matched by
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Figure 4.1: Epipolar geometry of two views

feature detection and feature matching. The location of the feature points in the image planes follows
epipolar constraints, which is discussed in detail in [20]. As a basic introduction of it in our application,
Fig. 4.1 illustrates the epipolar constraint in two view geometry. As introduced in Section 2.2, for a camera
located at �c (W )

1 ∈ R3 with attitude R(C1→W ) in the reference frame (W ), an arbitrary 3D point in the space
�X (W ) ∈ R3 is projected to the camera image plane as

ũ1 = P1X̃
(W ) = KCR

T
(C1→W )(

�X (W ) − �c (W )
1 ), (4.1)

where ũ1 ∈ P2 denotes the 2D feature location in homogeneous coordinates, X̃(W ) the homogeneous
coordinates of �X (W ), and P1 ∈ R3×4 is the projection matrix. As a reverse problem, the 2D feature point
can be back-projected to the 3D space as a line due to the unawareness of the depth. The 3D coordinates of
the candidates location can be expressed as

X̃(W ) = P+
1 ũ1 + c̃(W )

1 ∈ P3, (4.2)

where (·)+ denotes the pseudoinverse of the matrix. The camera location in homogeneous coordinates
c̃(W )
1 ∈ P3 lies in the null space of the projection matrix P1, so the projected 2D location is invariant to the

change of the scaler factor ς . When the monocular camera moves (or more generally, for another camera
view with projection matrix P2 and projection center �c (W )

2 ∈ R3), the 3D point candidate positions can
be re-projected to the second image plane as a line l2. This line is called epipolar line. The location of
the same feature point on the second view must lie on the epipolar line, which provides a correspondence
relation between the location of a same feature point from two different views. It should be mentioned that
e2, the projection of the first camera center, locates on all the epipolar lines in the image plane, which is
called epipole. The equation of the epipolar line l2 can be expressed by the cross product of the epipole
coordinates ẽ2 ∈ P2 and the reprojected feature location for ς = 0 as P2P

+
1 ũ1. The coordinates in the

second image plane from the same feature point must fulfill the relation

ũT2 l2 = ũT2 [e2]×P2P
+
1 ũ1 = ũT2 Fũ1 = 0, (4.3)
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Figure 4.2: Scale ambiguity in the estimated translation

where [·]× is the skew symmetric constructor introduced in Appendix, and F = [e2]×P2P
+
1 is the well

known fundamental matrix which constrains the 2D locations of the same feature point in two image planes.
Since the intrinsic parameters of both views are known and are the same, the two view geometry can be
described by the epipolar constraint for calibrated cameras as

(K−1
C ũ2)

TE(K−1
C ũ1) = 0, (4.4)

where E = KT
CFKC is called essential matrix, which is only determined by the relative pose of the two

views. The essential matrix has one zero eigenvalue, and two equal non-zero eigenvalues. In addition, the
constraints are not violated if the matrix E is scaled by an arbitrary scalar factor, which is also reflected
by the epipolar constraint from Eqn. (4.4). There are only 5 degrees of freedom in E. (See [20] for more
details.) As a result, the essential matrix can be estimated given Np ≥ 5 pairs of matched features. Without
loss of generality, if we take the camera frame of the first view (C1) as reference frame, the two projection
matrix can be represented in such case as

P1 = KC [I3|�0], P2 = KC [R(C1→C2)|�t(C1→C2)]. (4.5)

Consequently, E can be decomposed as

E = [�t(C1→C2)]×R(C1→C2), (4.6)

where (C1) and (C2) are the camera frame for the two views respectively. As a result, the relative pose of
the two views can be extracted from the subspace of the matrix using singular value decomposition (SVD).
However, the extracted translation �t(C1→C2) is ambiguous by a positive scale factor, which is illustrated in
Fig. 4.2. It can be seen that the measurements in the two camera views are invariant to the scale change of
the whole scene. Given the 2D location of the feature point in two camera views, the metric length of the
translation baseline is proportional to the depth of the point in 3D space.

The original concept of scale in computer vision is used to describe the metric size of a scene. As shown
in Fig. 4.3, two features points are detected in the image as the vertices of an object. The real size of the
object is dependent on the distance between the camera and it. The image can represent either a small item
close by, or a large item far away. The scale of the visible scene from an image is proportional to the depth
of the object points. Consequently, the previous stated ambiguity of baseline length ��t(C1→C2)�, which is
also proportional to the depth of the matched feature points, is referred as the scale ambiguity in monocular
VSLAM.
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Figure 4.3: Feature depth and scale of a scene

Without a priori information about the scale of the observed scene, which is the ordinary situation in
exploration missions, one cannot estimate the absolute length of the translation between two camera views

s(1→2) = ��t(C1→C2)� = ��c (W )
2 − �c (W )

1 �. (4.7)

Nevertheless, by discomposing essential matrix E in Eqn. (4.6) using SVD with multiple matched feature
points, the direction of the translation can be calculated as a unit basis vector

��(C1→C2) =
�t(C1→C2)

��t(C1→C2)�
. (4.8)

Applying ��(C1→C2) as the baseline between two views, the 3D location of a matched feature point can be
triangulated as

X̂ = π−1(µ1, µ2,��(C1→C2), R(C1→C2)), (4.9)

where µ1, µ2 are noisy measurements of the 2D feature location u1, u2 ∈ R2.
If the images are taken consecutively from the moving camera, the camera pose of the new image can

be estimated with respect to the previous frames. Following the two-view epipolar geometry, the baseline
between the 2nd and the 3rd image view is estimated as

��(C2→C3) =
�t(C2→C3)

��t(C2→C3)�
. (4.10)

However, if the same feature point can be tracked over frames, additional constraints on the relative length
between the translations is introduced. Fig. 4.4 illustrates such constraints with a simple example. Since the
depth of the point with respect to image 2 is the same in the geometry of image pair 1-2 and image pair 2-3,
the relative translation length

sr,2 =
s(2→3)

s(1→2)
(4.11)
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Figure 4.4: Relative scale of consecutive frames

is fixed, even if the absolute length is unknown. As a result, the whole set that contains the estimated camera
poses and the corresponding triangulated 3D feature point positions only has a global scale ambiguity sg.
Without loss of generality, we can assume the first estimated translation has unit length and map it into sg,
so that the global scale can be defined as

sg = s(1→2) = ��c (W )
2 − �c (W )

1 �. (4.12)

In Section 2.5, we defined navigation frame (N) as a fixed coordinate frame with its origin at the starting
location of the rover. For monocular case, since the global scale is unavailable, we assume that the estimated
motion satisfies

l(1→2) = ��c (N)
2 − �c (N)

1 � !
= 1, (4.13)

so that all the camera and map point positions in the navigation frame (N) are all scaled from the metric
value in world frame by sg. For a moving camera, the length of translation at time k can be expressed as

s(k→k+1) = ��c (W )
[k+1] − �c (W )

[k] � = sg��c (N)
[k+1] − �c (N)

[k] � = sg

k�

κ=2

sr,κl(1→2) = sg

k�

κ=2

sr,κ. (4.14)

Consequently, we can express the monocular camera based motion tracking and feature triangulation in
navigation frame as

x̂(N)
[k+1] = argmin

x(N)
[k+1]

Np�

i=1

���µi[k+1] − π(X̂(N)
i , x(N)

[k+1])
���
2

Σ−1
u,i[k+1]

, (4.15)

where x(N)
[k+1] ∈ R6 consists both the camera position �c (N)

[k+1] and the rotation parameters at time k. Np is the
total number of the tracked feature points, and µi[k+1] denotes the 2D feature location measurements with
covariance Σu,i[k+1] for feature point i.

Following the basic concept, several monocular VSLAM approaches have been developed in the past
years. Motion tracking using Bayesian filters is a straightforward and effective solution. Davison et al.
proposed a monocular SLAM framework based on EKF (Extended Kalman Filter), for jointly estimating
the camera states and the map [38]. In [92], Civera, Davison and Montiel propose to parameter the 3D point
using inverse depth. The prameterization fits the Gaussian noise assumption of EKF better than conventional
methods. Other important Bayesian filter based work include [93], [94], [95] and [47].
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Another significant cluster of approaches executes the motion tracking in a simple dead reckoning way,
and uses multiple view optimization across various frames to estimate the camera poses and the position of
the map points more accurately. The optimization is normally referred as "bundle adjustment" in literatures,
which minimizes the overall reprojection error by:

{x̂(N)
[k] , X̂

(N)
i } = argmin

{x(N)
[k] , �X (N)

i }

Np�

i=1

Nk�

k=1

vi[k]

���µi[k] − π( �X (N)
i , x(N)

[k] )
���
2

Σ−1
u,i[k]

, (4.16)

where vi[k] is the visibility indicator for the i-th point in the k-th view. A breakthrough work using bundle
adjustment is the Parallel Tracking and Mapping (PTAM) algorithm [74] developed by Klein and Murray,
which divides the tracking and mapping into separate threads to accelerate the computation. On the one
hand, if all the frames are included in the optimization, the computational complexity is too high for realtime
processing. On the other hand, two close frames do not provide significantly different information. As
a result, PTAM uses only keyframes for global optimization, while the other frames are only used for
motion tracking. The algorithm shows good performance in both accuracy and speed. A large number of
following approaches are based on the PTAM framework, e.g., the work [96] and [97]. The state-of-the-
art ORB-SLAM method from Mur-Artal, Montiel and Tardós [98] is also developed based on the PTAM
framework. The method utilizes ORB features [58] and a few novel techniques. It is capable of providing
a robust real-time monocular SLAM solution over long distance even in relatively low frame rate. In [99],
Strasdat, Montiel, and Davison compared the performance of the Bayesian filter based methods and the batch
optimization (e.g., bundle adjustment) based methods. It has been concluded that if the computation resource
is extremely limited, filter based approaches has advantages, otherwise the performance of optimization
based ones is better. It is also verified that the number of tracked features in each frame is more important
than the number of frames included in the estimation.

The batch optimization problem in monocular visual SLAM can be equivalently described by a graph
model, which adapts to the long-researched graph-based SLAM framework from the robotics community,
e.g., the GraphSLAM algorithm [73]. A review and tutorial of the graph-based SLAM algorithms is written
by Grisetti et al. [100]. For the specific monocular VSLAM problem, the graph nodes have some sparse
structure since the features are usually only visible to a few frames. Applying such sparse structures, Kaess
proposed the state-of-the-art iSAM algorithm in [101], so that the optimization can be solved incrementally
in real-time by using a factor graph model. Based on the work, Kaess et al. proposed an improved iSAM2 in
[49] by applying a more advanced Bayesian tree graphic model, which showed improvement in both speed
and accuracy. Another widely used optimization tool for monocular SLAM is g2o [48], which follows a
similar idea that exploiting the sparsity of the problem to accelerate the least squares optimization.

As introduced earlier, a crucial problem of the monocular vision is that the scale of the translation is
unavailable in the motion estimation of consecutive frames. Though the relative scale sr between two motion
steps can be estimated, the estimation is erroneous in practice due to the existence of noise. According
to Eqn. (4.14), the error in relative scale estimation propagates and accumulates over time in a product
manner. Consequently, the error in absolute scale increases exponentially, which is known as the scale
drift problem. Strasdat, Montiel and Davison proposed a scale-aware loop closure method to deal with
the relative scene scale drift [102] while correcting the accumulated error in motion estimation. The scale
drift mitigation technique is applied in the state-of-the-art ORB-SLAM method [98]. Engel, Schöps and
Cremers proposed a large scale dense SLAM (LSD-SLAM) algorithm for monocular cameras using pixel
intensity values directly as measurements [33], which can also correct scale drifts over scenes when loop
closures are detected. All the aforementioned approaches require loop closure to mitigate the drift. However,
revisiting mapped places for loop closure may significantly reduce the task efficiency in an exploration
mission. Moreover, the global scale problem still remains. All these algorithms estimate the motion and
map points position only up to a global scale sg.



4.2 Global Scale Estimation using a Ranging Radio Link 55

A number of approaches have been considered for resolving the global scale ambiguity. Many of them
use IMUs, see for example Achtelik et al. [103] and Nützi et al. [104]. However, the translation estimation
from inertial sensors are calculated by two integrals from acceleration measurements. The error between
two keyframes can grow large if the motion is slow (it would take long time to establish another keyframe
since the scenes are varying slowly). Moreover, the sensor fusion of IMU and monocular camera is still
a solution based on a dead-reckoning system. Tabibiazar and Basir proposed an approach using range
measurements from cellular networks [105]. Their method requires at least 3 ranging links from known
anchor locations for estimating the robot’s position before integrating the result with vision-based estimates
(loose coupling). Three anchors are often not available in Mars exploration mission due to the lack of
infrastructure. Therefore, we developed a method in Section 4.2 for estimating the global scale in monocular
visual SLAM using sparse range measurements from a single ranging link. In the case of a swarm of robots
exploring Mars, these measurements could be performed between a single element at rest and all other
elements [5]. Strictly, the method does not depend on the method of ranging, as long as it is performed with
respect to a given location.

4.2 Global Scale Estimation using a Ranging Radio Link

As introduced in Section 4.1, navigation using a monocular camera has unobservability problem in states
estimation. Besides the initial pose of the rover in the global frame (W ), the global scale of the whole
system is not uniquely resolvable given the visual measurements. We will show in this section that for
dynamic rover in planar motion, by fusing sparse ranging measurements from a single radio link to an
anchor with a monocular camera, the global scale can be estimated. At the same time, the unobservable
state space in the global frame is reduced to only one dimensional as a polar angle, even if no initial pose is
provided. The anchor point can be either a base station, or another rover in static mode in the swarm.

Fig. 4.5 illustrates the basic geometry between the static anchor and the dynamic rover in the motion
plane. Without loss of generality, the reference frame origin is set to be the position of the base station.
The direction of the x-axis of the reference frame (W ) can be arbitrarily chosen. The initial heading of
the camera is defined as the y’-axis in the navigation frame (N). In order to improve the convergence of
the estimation, polar coordinates are used instead of Cartesian coordinates for position parameterizations.
The detailed explanation will be provided when we introduce the fusion method. As a result, the initial 2D
position of the rover �β (W )

[1] can be parameterized by the initial radius r[1] and the initial polar angle α in the
world frame (W ). The initial attitude of the rover is described by the angle α+ θ − π

2 , i.e.,

�β (W )
[1] = �t(N→W ) = r[1]R(α)[1, 0]T , (4.17)

R(1→W ) = R(N→W ) = R(α)R(θ − π

2
) = R(α+ θ − π

2
), (4.18)

where R(·) ∈ SO(2) is a 2D rotation matrix.
Using the images from the monocular cameras, the ego-motion of the rover in its navigation frame (N)

can be independently estimated up-to-scale as {β̂(N)
[k] } by exploiting a VSLAM algorithm. The time index

k is defined as the discrete keyframe numbers. The keyframe selection criterion was introduced in Section
3.2.

In the world reference frame (W ), the position of the rover at time k can be expressed in polar coordi-
nates as

�β (W )
[k] = sgR(N→W )

�β (N)
[k] + �t(N→W ). (4.19)

As a result, the coordinates of the trajectory in world frame and navigation frame can be related by a
similarity transformation T ∈ Sim(2) ⊂ R3×3. The transformation in Eqn. (4.19) can be parameterized by
4 parameters as:

�β (W )
[k] = R(α)

�
r[1][1, 0]

T + sgR(θ − π

2
)�β (N)

[k]

�
. (4.20)
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Figure 4.5: Geometry of the static station and the dynamic rover

Although the monocular camera itself can only estimate the motion up-to-scale, with the additional help
of a sparse set of noisy range measurements {ρ[k]} obtained at the time instant k, where

ρ[k] = r[k] + η[k] =
����β (W )

[k]

���+ η[k], (4.21)

a method for estimating the global scaling factor sg can be devised by exploiting ranging measured at
keyframes. It is assumed here that the range measurements has been corrected with the height difference be-
tween the base station transmission antenna and the receiver antenna on the rover, so that the measurements
are projected to the 2D motion plane.

After obtaining Nk keyframes, by fusing the camera-based trajectory estimates with the range mea-
surements, the global scale sg, initial attitude heading θ, and initial radius r[1] can be estimated by
least-squares optimization. Stacking the Nk range measurements and the three parameters into vectors
ρ = [ρ[1], ρ[2], ..., ρ[Nk]]

T and F (ξ) = [��β (W )
[1] �, ��β (W )

[2] �, ..., ��β (W )
[Nk]

�]T with ξ = [sg, θ, r[1]]
T , the problem

can be formulated as
ξ̂ = argmin

ξ
�ρ− F (ξ)�2Q−1 s.t. Bξ > 0. (4.22)

The inequality constraints are due to the positiveness of both the scale sg and the initial true range r[1].

B =

�
1 0 0
0 0 1

�
is a selection matrix used to set the constraints. Q is the covariance matrix of the noise

η = [η[1], η[2], ..., η[Nk]]
T .

Due to the presence of several local minima and the bounded search space, it is challenging to solve
the nonlinear inequality constrained optimization in Eqn. (4.22). However, not all minima violating the
constraints represent erroneous solution, due to the symmetric properties of the objective function. Define
Ak(sg, θ, r[1]) = (r[k](ξ) − ρ[k])

2. For any sg, θ and r[1], the value of object function is invariant to the
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Table 4.1: Transformation on the results from unconstrained optimization.
If Transformation

ŝg < 0 r̂[1] > 0 ŝg ← −ŝg θ̂ ← θ̂ + π

ŝg > 0 r̂[1] < 0 r̂[1] ← −r̂[1] θ̂ ← θ̂ + π
ŝg < 0 r̂[1] < 0 ŝg ← −ŝg r̂[1] ← −r̂[1]

following parameter change:

Ak(sg, θ, r[1]) = Ak(−sg, θ + π, r[1])

=Ak(sg, θ + π,−r[1]) = Ak(−sg, θ,−r[1]).
(4.23)

Consequently, we can obtain the estimates of the parameters by solving the corresponding unconstraint
problem and by transforming the results obtained with the relations given in Table 4.1.

The unconstrained optimization is still non-linear due to the property of function F (ξ), so it is solved
by linearizing at initial point ξ̂1 and updating the estimates iteratively. The convergence performance of
the optimization depends on the accuracy of the initial values. Estimating the scale sg is not significantly
sensitive to the initialization, since the ranging measurements constrain the scale of the trajectory to certain
extent. Moreover, for the reason that the ranging measurement ρ[1] is a precise approximation of r[1], the
most crucial factor is choosing the initial value of the heading angle θ. In practice, we initialize θ with
multiple hypothesis uniformly distributed in [0, 2π), and choose the result with smallest residual. Utilizing
the ranging measurement as initial value for ρ[1] is the main motivation of parameterizing the position by
polar coordinates. For a Cartesian coordinates parameterization, the initial value of the position has to be
searched in parallel in a two dimensional space. As a result, the solution of Eqn. (4.22) can be obtained by
iteratively solving the linearized problem as

ξ̂ = argmin
ξ

�ρ− Jξξ�2Q−1 (4.24)

ξ̂i+1 = ξ̂i +
�
Jξ(ξ̂i)

TQ−1Jξ(ξ̂i)
�−1

Jξ(ξ̂i)
TQ−1

�
ρ− F (ξ̂i)

�
(4.25)

where Jξ is the Jacobian matrix associated to the function F (ξ).
In order to solve the problem in Eq. (4.24), K ≥ 3 range measurements are required. Due to the high

nonlinearity of the objective function, the Levenberg-Marquardt algorithm is applied, instead of a Gauss-
Newton approach, in order to exploit its superior global minimization capabilities.

As a result, the global scale factor sg is estimated by combining ranging and visual measurements.
Consequently, the pose of the rover and the coordinates of the map points are estimated without scale
ambiguity. In addition, the initial heading of the rover θ, which refers to the radial direction between the
rover and the station, can be obtained from the estimation. It should be mentioned that the ranges are
invariant to the change of the initial polar angle α. Hence with a single radio link, the absolute position
of the rover in reference frame (W ) is ambiguous by the angle. The ambiguity can be resolved only if
additional set-ups are available, e.g., by adding the second station, or by using an antenna array to estimate
the angle of arrival.

The proposed scale estimation method using sparse range measurements is tested in simulation using
KITTI benchmark datasets [106]. We use the odometry dataset with provided ground truth to verify the
result. The range measurements

�
ρ[k]

�
are simulated from the true ranges to anchor point located at �0 with

additive Gaussian noise.
Fig. 4.6 shows the scale estimation result until keyframe 100 from KITTI odometry dataset 07. The

uncertainty of the range measurements is 1 [m]. The global scale sg is initialized arbitrarily (initialized as
sg = 1 in the simulation), which results in large initial error. With increasing number of measurements
from the camera and the ranging signal, the error of the estimated global scale declines quickly, and remains
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Figure 4.6: Scale estimation using KITTI odometry dataset 07

(a) Frame 2 (b) Frame 100
Figure 4.7: Estimated trajectory applying true global scale and the estimated scale for KITTI odometry dataset 07

low after 20 keyframes. As a straightforward comparison, Fig. 4.7 illustrates the difference between the
estimated full trajectory of the dataset using true global scale and estimated scale respectively. The red
trajectory represents the result scaled by the true global scale, and the blue one shows the trajectory using
the estimated scale. Fig. 4.7a illustrates result using the initial guess without any scale estimation. It can be
seen that with an arbitrarily initialized value, the global scale is significantly erroneous. Fig. 4.7b shows the
results using the estimated scale value at keyframe 100. At that moment, the estimated result almost align
with the ground truth. Therefore, the global scale can be reliably estimated using the proposed method.

To analyze the impact of the ranging noise on the estimation result, we execute the simulation by adding
different ranging noise on the measurements. Fig. 4.8 visualizes the result of the global scale estimation
error with respect to the ranging noise level. The images used in the simulation are taken from KITTI dataset
07. The curve shows the root-mean-square error (RMSE) of global scale estimation with respect to the
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Figure 4.8: Impact of ranging error on the scale estimation error

standard deviation of the range measurements. It can be seen that the scale estimation error is superlinearly
dependent on the range measurements error. The curve is generated using KITTI dataset 07 with ground
truth scale sg = 10.3624. The relative error is less than 0.8% when the ranging uncertainty is below 1 meter.
In practice, dependent on the requirements and constraints for the SLAM scenario, higher ranging accuracy
than 1 meter is feasible through signal design.

Fig. 4.9, Fig. 4.10 and Fig. 4.11 shows the estimated poses of the rover using images from KITTI
odometry dataset 04, 03 and 07 by applying the jointly estimated parameters ξ̂. The dataset 04 contains
images taken from a linear trajectory without any direction change. The three datasets represent different
typical motions of a dynamic rover. The dataset 03 is a forward trajectory with a few turns, and the dataset
07 consists of images taken from motions in a closed loop. In the figures, the red trajectories are the ground
truth, and the blue ones are the estimated trajectories. In the simulation, the standard deviation of the ranging
noise is 1 meter. It can be conclude from the results that using the proposed method, the poses of the rover
can be well estimated with only a single camera and sparse ranging measurements from a single base station.
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Figure 4.9: Pose estimation using KITTI odometry dataset 04, σρ=1 m

Figure 4.10: Pose estimation using KITTI odometry dataset 03, σρ=1 m
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Figure 4.11: Pose estimation using KITTI odometry dataset 07, σρ=1 m

4.3 Determine the Ambiguous Polar Angle

In the above section, we developed a sensor fusion method to estimate the global scale in monocular VSLAM
by exploiting range measurements from a single radio link. In the parameter estimation, the scale factor sg
is coupled with other geometric parameters of the relative pose between the rover and the base station. As
a result, the initial heading angle θ, and the initial relative distance r[1] are jointly estimated with the global
scale. However, using the monocular camera along with the range measurements from a single base station,
the relative polar angle α cannot be determined without ambiguity. In this section, we discuss the possibility
to resolve the polar angle ambiguity with additional information.

The first option is to use an antenna array instead of a single antenna for the onboard radio receiver.
Exploiting the phase difference of the received signal from the antennas in the array, the direction of arrival
(DoA) of the radio signal can be estimated by algorithm such as MUSIC [107].

When an antenna array is unavailable, the polar angle estimation needs to rely on a second base station,
which can either be another static rover in the swarm or be some infrastructure with known position. The
coordinates of the two stations in the global frame (W ) are assumed to be known. Here we discuss two
scenarios:
1) The rover can connect to both base stations simultaneously at some instant;
2) The rover connects to a second base station shortly after it loses connection to the first station.

Fig. 4.12 illustrates the first scenario: a mobile rover enters a zone with connectivity to two static
base stations. The two stations can be either infrastructures or two other rovers on static mode in a robotic
swarm. In such case, the model of the geometric parameters is shown in Fig. 4.13. As the single station
case, we choose the position of the first base station as the reference frame (W ). The navigation frame (N)
of the rover is related to (W ) by a transformation which can be parameterized by radius r[1], polar angle α
and heading angle θ. Using the method from Section 4.2, the rover can exploit its egomotion estimation in
navigation frame from the camera {β̂(N)

[k] } and the range measurements from the radio link {ρ[k]} to estimate
all the parameters except α. By adding the ranging measurements from the second base station {ρ�[k]}, the
2D position of the rover in the world frame can be solved with a mirroring ambiguity at any time instant k
by

β̂(W )
[k] = argmin

�β (W )
k

1

σ2
[k]

�
ρ[k] − ��β (W )

k − �x (W )
b �

�2
+

1

σ
�2
[k]

�
ρ�[k] − ��β (W )

k − �x (W )
b� �

�2
, (4.26)



62 4. Single Vehicle Navigation using a Monocular Camera and a Ranging Radio Link

Figure 4.12: Connect to two base stations simultaneously

Figure 4.13: Model for two station scenario



4.3 Determine the Ambiguous Polar Angle 63

Figure 4.14: Connect to a different base station after losing the connection to the previous one

where �x (W )
b� is the position of the second base station. The two solutions of the optimization in Eqn. (4.26)

reduce the ambiguity of the polar angle α to two possibilities, which corresponds to the heading angle value
θ and −θ, respectively. Consequently, with the estimated θ̂, the mirroring ambiguity can be resolved and the
whole geometry can be estimated without any ambiguity. The positioning accuracy can be improved either
by Bayesian filter based tracking or by batch optimization using measurements at multiple epochs as:

{β̂(W )
[k] } = argmin

{�β (W )
k }

���ρ− F ({�β (W )
k })

���
2

Q−1
+
���ρ� − F �({�β (W )

k })
���
2

Q�−1
, (4.27)

where ρ� = [ρ�[1], ρ
�
[2], ..., ρ

�
[Nk]

]T are the range measurements from the second station and F �({�β (W )
[k] }) =

[��β (W )
[1] −�x (W )

b� �, ��β (W )
[2] −�x (W )

b� �, ..., ��β (W )
[Nk]

−�x (W )
b� �]T describes the distance from the rover to the second

base station with position. Q and Q� are the covariance matrices of the ranging noise from the two radio
links respectively.

This scenario is actually a simplified situation of the single station case in Eqn. (4.22). However, due to
coverage problem, the rover cannot ensure consistent simultaneous connectivity to two stations. As a less
demanding scenario, Fig. 4.14 illustrates the situation that the rover connect to another station after it loses
the first station’s link during the motion for a while. Under such circumstance, the polar angle α can also be
determined without ambiguity.

During the whole handover process, the rover can estimate its egomotion (up to global scale) in its
navigation frame (N) using the onboard monocular camera. Denote the position in the navigation frame as
{β̂(N)

[k1]
|k1 = 1...Nk1}, {β̂(N)

[T+k2]
|k2 = 1...Nk2} and {β̂(N)

[τ ] |τ = Nk1 + 1...T} respectively for the periods of
time that the rover connects to the first station, the second station, and without any connection in between.

For each of the stations, the beacon location is the navigation frame of the rover can be parameterized
using range at the frame and azimuth angle ϕ, as shown in Fig. 4.15. The beacon direction azimuth angle
ϕ is an equivalent parameterization of the heading angle θ in the navigation frame. The transformation
between the two representations in Fig. 4.5 and Fig. 4.15 follows the relation

ϕ =
π

2
− θ + π =

3π

2
− θ. (4.28)

Since the heading angle of the first keyframe with connectivity can be estimated using the method in Section
4.2, the location of the two stations in the navigation frame, can be calculated as x̂(N)

b and x̂(N)
b� , according

to the estimated global scale and heading angle. If the position of both stations in the global frame is known,
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Figure 4.15: Beacon location in the navigation frame.

the positioning problem in the global reference frame (W ) is transferred to find the optimal similarity
transformation between the two reference frames. In the planar motion case, the problem is simplified to
the following least-squares estimation:

{t̂(N→W ), R̂(N→W ), ŝ(N→W )} = argmin
t,R,s

Nb�

i=1

�sRx̂(N)
bi

+ t− �x (W )
bi

�2, (4.29)

where t ∈ R2, R ∈ SO(2), s ∈ R, and Nb is the number of the reference points used to match the two
reference frames. For this two-station problem, Nb = 2.

If the transformation is constrained to be rigid transformation, i.e., s = 1, the problem is simplified
to the well-known Wahba’s problem [108]. The problem can be solved by Kabsch algorithm [109], which
calculate the estimated rotation using singular value decomposition (SVD). Based on the Kabsch algorithm,
the optimal transformation scale can be estimated as

ŝ(N→W ) =
max{SWW }
max{SNW } , (4.30)

where {SWW } and {SNW } are the singular values of the covariance matrices �x (W )
b (�x (W )

b )T +

�x (W )
b� (�x (W )

b� )T and x̂(N)
b (�x (W )

b )T + x̂(N)
b� (�x (W )

b� )T , respectively.
By knowing the coordinate transformation between the world frame and the navigation frame, the rover

trajectory can be transformed to estimates in the world frame without any ambiguity as:

β̂(W )
[k] = ŝ(N→W )R̂(N→W )β̂

(N)
[k] + t̂(N→W ). (4.31)

In addition, the attitude in the global reference frame can be estimated as:

R̂(k→W ) = R̂(N→W )R̂(k→N), (4.32)

where R̂(k→N) can be obtained from visual SLAM estimates.
As a result, using the ranging measurements from a second static base station, the rover pose relative to

the base stations can be estimated without ambiguity.
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Figure 4.16: Bayesian network expression of camera and ranging sensor fusion

4.4 Precise 2D Visual SLAM using Monocular Camera and Ranging Fusion

In the above methods which estimate the global scale and the rover pose, the visual and ranging measure-
ments from the two sensors are fused in a loose coupling way, i.e., the motion is estimated using the camera
only and then coupled with the range measurements for sensor fusion. In this section, we move a step further
towards tight coupling of the two sensors, so that the pose estimation from the VSLAM can be improved by
exploiting the ranging measurements.

As introduced in Section 3.2 and Section 4.1, the visual odometry technique is a navigation method
based on dead reckoning concept. For the reason that the error of motion estimation accumulates over
time, the estimated rover pose using camera only will drift from the true value as the rover moves. If the
camera can observe and detect some features which are already in the built map, the drift of the whole
trajectory can be mitigated using loop closure techniques, since the uncertainty of the prior probability
of the re-observed feature location is significantly reduced. However, revisiting a mapped place is not
feasible in many applications, which results in consistently increasing estimation uncertainty due to the lack
of loop closure. As a solution, a static base station can provide an anchor point to the rover, since the
noise of the ranging measurements can be assumed to be independent over time. By exploiting the ranging
measurements from the station and tightly coupling the sensors, the drift of the rover pose estimation can be
mitigated without revisiting mapped places.

By multiplying the estimated global scale to the camera-based position estimates, a set of camera co-
ordinates in the global frame metric can be obtained as {ŝgβ̂(N)

[k] |k = 1, ..., Nk}. The set of positions is a

coarse estimate of {�β (W )
k |k = 1, ..., Nk} (with a polar angle ambiguity α which can be potentially resolved

using the methods in Section 4.3). The coarse estimates can be used as initial values to fine tune the pose
estimation by applying a batch processing of the state variables stacked over time. The optimization is ex-
ecuted on the positions in the global frame (W ), so that the error in scale ŝg and in monocular egomotion
β̂(N)
[k] do not need to be considered separately. It should be mentioned that the following tight coupling fusion

can still improve the trajectory estimation accuracy if the polar angle α is not resolvable.
Fig. 4.16 illustrates the Bayesian network for the fusion of the visual features from the camera and

ranging measurements from the wireless radio link. Since control is not the main concern of our work,
without loss of generality, the known control input is ignored in the Bayesian network.
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The joint probability of the variables in the graph is

pjoint =

Np�

i=1

Nk�

k=1

p(x(W )
[0] , x(W )

[1] , ..., x(W )
[Nk]

, �X (W )
1 , ..., �X (W )

Np
, �X (W )

b , µ1[1], ..., µNp[Nk], ρ[1], ..., ρ[Nk]),

(4.33)
where x(W )

[k] denotes the pose of the rover in global frame at time k, �X (W )
b the anchor point position, �X (W )

i
the i-th feature position. ρ[k] and µi[k] are the corresponding ranging and visual measurements respectively.

In the sensor fusion, the noise of the feature location is independent of the ranging noise. Exploiting the
independency of the measurements, the joint probability can be factorized as

pjoint =

Np�

i=1

Nk�

k=1

p(µi[k]| �X
(W )
i , x(W )

[k] )vi[k]p( �X (W )
i )p(x(W )

[0] )p(x(W )
[k] |x(W )

[k−1])p(ρ[k]|x
(W )
[k] , �X (W )

b )p( �X (W )
b ),

(4.34)
where vi[k] is the binary visibility masking that vi[k] = 1 if the feature i is visible in keyframe k.

The SLAM task using the camera-ranging fusion can be formulated as the following MAP estimator:

{x̂(W )
[k] , X̂(W )

i } = argmax
{x(W )

[k] , �X (W )
i }

p(x(W )
[1] , ..., x(W )

[Nk]
, �X (W )

1 , ... �X (W )
Np

| �X (W )
b , µ1[1], ..., µNp[Nk], ρ1, ..., ρNk).

(4.35)
The a priori distribution of the initial states x(W )

[0] and the base station position �X (W )
b in the reference

frame can be estimated using the method in Section 4.2 and Section 4.3. Moreover, the a priori distribution
of the feature points p( �X (W )

i ) is unknown in exploration missions. Therefore, using the factorization in Eqn.
(4.34) and a specific state transition model, the optimal solution of the MAP estimator given the available
knowledge can be estimated by:

{x̂(W )
[k] , X̂(W )

i } = argmax
{x(W )

[k] , �X (W )
i }

Np�

i=1

Nk�

k=1

p(µi[k]| �X
(W )
i , x(W )

[k] )vi[k]p(ρ[k]|x
(W )
[k] , �X (W )

b )p(x(W )
[k] |x(W )

[k−1]). (4.36)

Without a proper motion model, the process noise of the state transition model has large covariance.
As a result, the motion model makes the pose estimation more robust against sensor data outages, but the
impact of the motion model can be ignored if the sensor measurements are consistently reliable. In such
conditions, the MAP estimator is approximately equivalent to the following log-likelihood estimator:

{x̂(W )
[k] , X̂(W )

i } = argmax
{x(W )

[k] , �X (W )
i }

Np�

i=1

Nk�

k=1

vi[k] log p(µi[k]| �X
(W )
i , x(W )

[k] )+
Nk�

k=1

log p(ρ[k]|x
(W )
[k] , �X (W )

b ). (4.37)

Under Gaussian noise assumption, the log-likelihood estimator can be transformed to the following
least-squares optimization

{x̂(W )
[k] , X̂(W )

i } = argmin
{x(W )

[k] , �X (W )
i }

Np�

i=1

Nk�

k=1

vi[k]�µi[k]−π( �X (W )
i , x(W )

[k] )�2
Σ−1

u
+

Nk�

k=1

�ρ[k]−F (x(W )
[k] , �X (W )

b )�2
Σ−1

ρ
,

(4.38)
where π(·) and F (·) is the projection function and the range function defined in Section 2.2 and 2.4 respec-
tively. Obviously, the both functions are non-linear with respect to the parameters to be estimated. Hence,
initial values for starting the parameter optimization are required. The coarse estimation of the camera poses
and the map point location is available from monocular visual SLAM output, while the global scale as well
as the relative pose between the rover and the static station can be obtained from the loose coupling fusion
that we proposed in Section 4.4 and 4.3.
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Figure 4.17: Trajectory estimation using camera and ranging sensor fusion, σρ = 0.1 m

Compared with the camera only bundle adjustment approach in Eqn. (3.13), the additional terms in-
troduced by the range measurements in the batch least squares optimization in Eqn. (4.38) help reduce the
drift of the dead-reckoning visual navigation system in the long run, because the static base station provides
an anchor point so that the ranging error does not accumulate over time. As a result, the error of the tra-
jectory and map points location estimation can be mitigated using the sensor fusion method without any
requirement to revisit old places for global loop closure.

Unlike sensors such as lidar, which provide dense ranging measurements, another advantage of the
fusion method is that the number of the ranging measurements is bounded by the number of keyframes
and increases at most linearly with time (when the radio link is available at every keyframe). In addition,
the range between the radio transmitter and the receiver is only a function of the rover position given a
known base station location. Consequently, the sparsity of the object function is not affected by introducing
the sparse range measurements, so that the smoothing algorithms such as iSAM2 [49] can be implemented
without any barrier.

Fig. 4.17 shows an instance of the rover trajectory estimation using monocular camera and sparse
ranging measurements from a single base station. The green curve is the true trajectory in the simulation,
and the feature points are drawn as black stars in the 3D space. The optimization is executed using the
GTSAM library [110]. In the simulation, the ranging noise standard deviation is 10 [cm], and the visual
measurement noise is 0.3 [pixel] for both image dimensions. The parameters are reasonable empirical values
according to our hardware measurements. The estimated trajectory using monocular VSLAM is plotted in
blue (scaled with the true global scale), and the red trajectory represents the estimation result using both the
visual measurements and the sparse ranging measurements from the static anchor point. It can be seen from
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Table 4.2: Estimation error of the rover position.
Vision-only Vision-range-fusion

RMSE(x̂) - [m] 0.9178 0.6493

the simulation result that the vision-only approach drifts slowly away from the true trajectory due to error
accumulation, even if the true global scale is assumed to be known. Meanwhile, the drift can be mitigated
if the ranging measurements are included in the optimization. The improvement is significant if the rover
travels for a long period of time without revisiting known places for loop closures. Table 4.2 shows the
root-mean-square-error (RMSE) of the rover positions in the world frame for both methods.



5. Visual Navigation of a Vehicle Pair in Robotic Swarms

As shown in Chapter 4, the scale problem in monocular VSLAM can be solved by introducing a single radio
link with ranging capability, e.g., from another static mode rover in the swarm. Moreover, the relative pose
between the dynamic rover and the base station can be estimated with an azimuth angle ambiguity. Based
on the initial coarse geometry estimation, the visual SLAM performance can be improved by tightly coupled
sensor fusion.

Besides the ego-motion estimation, we are also interested in the relative pose between a pair of vehicles
in swarm navigation. For instance, a rover exploring in caves (denoted as rover 1) may only have one radio
connection to another rover outside (rover 2). The rover 2 can serve as a relay to exchange data between
rover 1 and other vehicles in the swarm. At the same time, it can act as the static base station with ranging
link, so that the scale estimation and sensor fusion methods proposed in Chapter 4 can be applied on rover
1. However, even if the relay rover is aware of its position in the global frame, the estimated trajectory of
the exploring rover in the cave is still ambiguous due to the unobservable polar angle.

Compared with the case that a static rover serving as a base station, the dynamics of the second rover
introduces more degrees of freedom to be estimated. Nevertheless, at the same time, the egomotion estima-
tion capability of the rover also provides more information for estimating the geometric parameters. In this
chapter, we show that the relative pose between two dynamic rovers can be estimated, if one of the rovers
can transmit its local ego-motion estimates to the other one through the radio link. The approach does not
demand to transmit any image or feature descriptor data, so in general the communication throughput re-
quirements is feasible in practice. As a result, if one of the rover is aware of its pose in the global frame,
another rover can also localize itself in the same reference frame according to the estimated relative pose.

5.1 Scale and 2D Relative Pose Estimation using Monocular Camera and Ranging Fusion

Without any other anchor point with known absolute position, one can only estimate the position and attitude
of the cameras with respect to a known point in the navigation frame. We choose the initial position of the
camera projection center of rover 2 as the coordinate reference system’s origin, and the camera’s principal
axis as the y-axis. Fig. 5.1 illustrates the reference system and the geometry of the two rovers. The initial
position and attitude of the two rovers can be expressed in the reference frame as

�β1 (W )
[1] = r[1]R(α)[1, 0]T , R(N1→W ) = R(α+ θ − π

2
). (5.1)

�β2 (W )
[1] = [0, 0]T , R(N2→W ) = I2, (5.2)

where I2 denotes the two-dimensional identity matrix, and R(·) ∈ SO(2) denotes a 2D rotation matrix.
Using the images from the monocular cameras, the egomotion of the two rovers in their navigation

frames can be independently estimated up-to-scale as { �β1 (N1)
[k] } and { �β2 (N2)

[k] }. The global scales of the
two cameras are in general different, since we defined the global scale for a camera in Section 4.1 by
assuming that the first translation distance in the navigation frame is unit, and the motion of the two rovers
are independent. In the common reference frame (W ), the position of the two rovers at k-th keyframe can
be expressed as

�β1 (W )
[k] = s1 gR(N1→W )

�β1 (N1)
[k] + �β1 (W )

[1] (5.3)

�β2 (W )
[k] = s2 g

�β2 (N2)
[k] (5.4)

69
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Figure 5.1: Reference system and the geometry of the two rovers
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Although the monocular camera itself can only estimate the motion with a scale ambiguity, with the
additional help of a sparse set of noisy range measurements {ρ[k]}, where

ρ[k] =
��� �β1 (W )

[k] − �β2 (W )
[k]

���+ η[k], (5.5)

a method for estimating the scale factors s1 g, s2 g can be devised by exploiting consecutive ranging mea-
surements at keyframes. The true range between the two rovers at time k is

Gk( s1 g, s2 g,α, θ, r[1]) = r[k] =
��� �β1 (W )

[k] − �β2 (W )
[k]

���

=
��� s1 gR(α+ θ − π

2
) �β1 (N1)

[k] + r[1]R(α)[1, 0]T − s2 g
�β2 (N2)
[k]

��� ,
(5.6)

which is determined by the rover trajectories in navigation frames and 5 unknown scalar parameters: the
scale factors s1 g, s2 g ∈ R+,the polar angle α ∈ [0, 2π), the attitude angle θ ∈ [0, 2π), and the initial
distance r[1] ∈ R+. We stack them into a parameter vector ξ = [ s1 g, s2 g,α, θ, r[1]]

T .
Utilizing communication functionality of the radio link between the two rovers, rover 1 can transmit its

estimated motion (up-to-scale) to rover 2. Rover 2 serves as the master that obtains both local trajectory
estimates. Therefore, by using the available set of range measurements at time Nk, the unknown parameters
can be estimated by minimizing

ξ̂ = argmin
ξ

�ρ−G(ξ)�2Q−1 , s.t. Bξ > 0, (5.7)

where the vector ρ = [ρ[1], ρ[2], ..., ρ[Nk]]
T and G(ξ) = [G1(ξ), G2(ξ), ..., GNk(ξ)]

T .

B =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1





is a selection matrix used to impose the positiveness of both scales and the initial distance. Q is the co-
variance matrix of the noise η = [η[1], η[2], ..., η[Nk]]

T . The covariance of the range measurements can be
obtained from the signal receiver. The Cramér-Rao lower bound of the range estimation can be used as an
approximation when the covariance calculation is unavailable. If the ranging noise are uncorrelated, Q is a
diagonal matrix.

Due to the bounded search space and the presence of several local minima, it is challenging to solve
the nonlinear inequality constrained optimization in Eqn. (5.7). However, not all minima violating the con-
straints represent erroneous solution, due to the symmetric properties of the objective function. According
to Eq. (5.6), the norm Gk is invariant if the vector �β1 (W )

[k] − �β2 (W )
[k] is reversed in direction. Consequently,

for any parameter vector ξ, the value of the object function is invariant to the following parameter change:

Gk( s1 g, s2 g,α, θ, r[1])

=Gk(− s1 g, s2 g,α, θ + π, r[1])

=Gk(− s1 g,− s2 g,α+ π, θ + π, r[1])

=Gk(− s1 g,− s2 g,α, θ,−r[1])

=Gk(− s1 g, s2 g,α+ π, θ,−r[1])

=Gk( s1 g,− s2 g,α+ π, θ, r[1])

=Gk( s1 g,− s2 g,α, θ + π,−r[1])

=Gk( s1 g, s2 g,α+ π, θ + π,−r[1]).

(5.8)



72 5. Visual Navigation of a Vehicle Pair in Robotic Swarms

Table 5.1: Transformation on the results from unconstrained optimization.
If Transformation

ŝ1 g > 0 ŝ2 g < 0 r̂[1] > 0 ŝ1 g ← ŝ1 g ŝ2 g ← − ŝ2 g α̂ ← α̂+ π θ̂ ← θ̂ r̂[1] ← r̂[1]
ŝ1 g > 0 ŝ2 g < 0 r̂[1] < 0 ŝ1 g ← ŝ1 g ŝ2 g ← − ŝ2 g α̂ ← α̂ θ̂ ← θ̂ + π r̂[1] ← −r̂[1]
ŝ1 g > 0 ŝ2 g > 0 r̂[1] < 0 ŝ1 g ← ŝ1 g ŝ2 g ← ŝ2 g α̂ ← α̂+ π θ̂ ← θ̂ + π r̂[1] ← −r̂[1]
ŝ1 g < 0 ŝ2 g > 0 r̂[1] > 0 ŝ1 g ← − ŝ1 g ŝ2 g ← ŝ2 g α̂ ← α̂ θ̂ ← θ̂ + π r̂[1] ← r̂[1]
ŝ1 g < 0 ŝ2 g < 0 r̂[1] > 0 ŝ1 g ← − ŝ1 g ŝ2 g ← − ŝ2 g α̂ ← α̂+ π θ̂ ← θ̂ + π r̂[1] ← r̂[1]
ŝ1 g < 0 ŝ2 g < 0 r̂[1] < 0 ŝ1 g ← − ŝ1 g ŝ2 g ← − ŝ2 g α̂ ← α̂ θ̂ ← θ̂ r̂[1] ← −r̂[1]
ŝ1 g < 0 ŝ2 g > 0 r̂[1] < 0 ŝ1 g ← − ŝ1 g ŝ2 g ← ŝ2 g α̂ ← α̂+ π θ̂ ← θ̂ r̂[1] ← −r̂[1]

Therefore, due to the numerical symmetry property of the cost function, we can obtain the estimates of
the parameters by solving the corresponding unconstrained problem and by transforming the results obtained
with the relations given in Table 5.1.

For an unconstrained problem, the nonlinear optimization in Eqn. (5.7) can be solved by linearizing
the measurement function at an initial point (the initialization method is discussed later), and by iteratively
solving the linearized optimization and updating the estimated parameters as well as the linearization point
as

ξ̂ = argmin
ξ

�ρ− J(ξ)ξ�2Q−1 , (5.9)

with Jacobian matrix

J(ξ) =





∂G1(ξ)
∂ s1 g

∂G1(ξ)
∂ s2 g

∂G1(ξ)
∂α

∂G1(ξ)
∂θ

∂G1(ξ)
∂r[1]

∂G2(ξ)
∂ s1 g

∂G2(ξ)
∂ s2 g

∂G2(ξ)
∂α

∂G2(ξ)
∂θ

∂G2(ξ)
∂r[1]

...
∂GNk

(ξ)

∂ s1 g

∂GNk
(ξ)

∂ s2 g

∂GNk
(ξ)

∂α
∂GNk

(ξ)
∂θ

∂GNk
(ξ)

∂r[1]




. (5.10)

and the iterative update as

ξ̂i+1 = ξ̂i +
�
JT (ξ̂i)Q

−1J(ξ̂i)
�−1

JT (ξ̂i)Q
−1

�
ρ−G(ξ̂i)

�
. (5.11)

If s1 g, s2 g or r[1] are negative in the result, the parameters can be mapped to the symmetric solution in
the valid search space as shown in Table 5.1. Consequently, the scales of the trajectories s1 g and s2 g are
resolved. Additionally, the relative position and attitude between the two rovers are obtained. Combining
with the trajectory estimates in navigation frames, the relative pose at any keyframe k can be estimated
coarsely. As a distributed system, the master rover can transmit the estimation results to the other one using
the communication system.

In order to solve the problem in Eqn. (5.9), theoretically Nk ≥ 5 range measurements are required. Due
to the high nonlinearity of the objective function, the Levenberg-Marquardt algorithm is applied, instead
of a Gauss-Newton approach, in order to exploit its superior global minimization capabilities. In addition,
the initialization of the optimization is crucial due to the presence of a number of local minima. Although
a suboptimal solution may have similar residual as the global minimum, the estimated parameters can be
far away from the true value, leading to a wrong scale or pose. While ρ[1] is a precise approximation of
the initial range r[1] due to the high accuracy of ranging measurements, the scaling factor s1 g and s2 g are
significantly insensitive to the global minima problem, provided that the selected keyframes are sufficiently
spaced. The estimation of the polar angle α and the attitude angle θ presents larger difficulties. Fortunately,
the parameters to be estimated are constants and in most cases they do not need to be updated at high
frequency. Hence a serial search for the proper initialization of the two angles is feasible. It is remarkable
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Figure 5.2: Trajectories of the two rovers in Scenario #1.

that if the relative position between the two rovers can be estimated by other methods, e.g., using ranging
measurements from the swarm network in [5], the polar angle α could be precisely initialized. As a result,
the search space would even reduce to a one-dimensional set. The requirement in initialization also explains
why the problem with 3D motion is much more challenging. First of all, the local attitude angle have to
be expressed with three orientation parameters and the initial relative position need to be parameterized by
elevation and azimuth instead of α. Moreover, the objective function will have numerous local minima. As
a result, with limited computational power, it is significantly challenging to obtain correct parameters in the
3D motion setup.

We test the proposed method on multiple trajectories using simulation data with Gaussian additive noise.
The trajectories are generated with random walk processes as accelerations, starting from static locations
with random relative position and attitude. In the simulation, there are two noise sources added on the
measurements, the ranging noise with standard deviation σρ and the translation noise with σt. In order to
simulate a realistic scenario, the error of the trajectory estimation is added to all the translation estimates
instead of on positions, i.e., the error accumulates over frames.

For the trajectories shown in Fig. 5.2 with 500 keyframes from each camera, the root-mean-square-error
(RMSE) of the parameter estimation under different noise levels is shown in Table 5.2. All the RMSE are
calculated with ten repetitive runs with independent noise. Rover 2, i.e., the master node, is plotted in blue
and rover 1 is in red. Fig. 5.3 shows the first 30 frames of the rovers to illustrate the initial relative geometry
more clearly. In the serial search of initial values of the polar angle α and attitude angle θ, the grid size
is set to be 10 degrees in the simulation. It can be concluded from the results that in this scenario, the
optimization converges well even for 5 [cm] translation error and 20 [cm] ranging noise. The scale factor
of the trajectories for both rovers can be accurately estimated. An improvement in estimation precision
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Figure 5.3: First 30 frames of the two rovers in Scenario #1.

Table 5.2: Estimation error of scales and pose parameters in Scenario #1.
σt 1 [cm] 1 [cm] 3 [cm] 5 [cm] 5 [cm]
σρ 1 [cm] 10 [cm] 10 [cm] 10 [cm] 20 [cm]

RMSE( s1 g) 0.0016 0.0049 0.0120 0.0129 0.0086
RMSE( s2 g) 0.0015 0.0045 0.0127 0.0116 0.0067

RMSE(α) [deg] 3.3893 3.3426 8.2128 6.9004 8.8601
RMSE(θ) [deg] 0.6539 1.8069 4.2246 8.5225 6.2905
RMSE(r[1]) [m] 0.0171 0.0301 0.0596 0.1620 0.0716

of the angles can be obtained by setting a higher density of serial search values in the initialization of the
non-linear optimization.

Other scenarios are also simulated to test the performance of the proposed method in different motion
geometries. The trajectories of the rovers in various scenarios are shown in Fig. 5.4 and the corresponding
estimation results are given in Table 5.3. It can be concluded that the method performs well in various
scenarios with different geometries. A key factor that affects the precision of the estimation is the magnitude
of the simulated motion. If the change of distance between the two rovers is comparable to the ranging noise,
the measurement noise would be dominant in the estimation.

5.2 Cooperative Visual SLAM with a Ranging Link

5.2.1 Tight Coupling of Cameras and Ranging Measurements for a Pair of Rovers

As shown in the previous section, by utilizing range measurements between two dynamic rovers, the global
scale of monocular cameras on both rovers can be obtained from Eqn. (5.7), and the relative pose parameters
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Table 5.3: Estimation error of parameters in various scenarios.
Scenario # 2 3 4 5

σt 5 [cm] 5 [cm] 3 [cm] 1 [cm]
σρ 20 [cm] 10 [cm] 10 [cm] 5 [cm]

RMSE( s1 g) 0.0052 0.0030 0.0149 0.0009
RMSE( s2 g) 0.0018 0.0017 0.0048 0.0033

RMSE(α) [deg] 2.9416 9.7634 9.0721 5.8405
RMSE(θ) [deg] 3.5057 6.0490 8.6343 0.7336
RMSE(r[1]) [m] 0.1337 0.0717 0.0486 0.0205

(a) Scenario #2 (b) Scenario #3

(c) Scenario #4 (d) Scenario #5
Figure 5.4: Trajectories of the two rovers in various scenarios.

between the two trajectories can be estimated as [α̂, θ̂, r̂[1]]. Following the denotation in Eqn. (2.42), the
coarse estimates of the two vehicles’ pose in the global reference frame (W ) can be estimated accordingly
as

x̂1 (W )
[k] =

�
β̂1 (W )
[k]

φ̂1 (W )
[k]

�
, x̂2 (W )

[k] =

�
β̂2 (W )
[k]

φ̂2 (W )
[k]

�
, (5.12)

with
β̂1 (W )
[k] = ŝ1 gR(α̂+ θ̂ − π

2
) �β1 (N1)

[k] + r̂[1]R(α̂)[1, 0]T , β̂2 (W )
[k] = ŝ2 g

�β2 (N2)
[k] , (5.13)

and

φ̂1 (W )
[k] = A

�
R̂(N1→W )

k�

i=2

R̂(ji→ji−1)

�
, φ̂2 (W )

[k] = A

�
k�

i=2

R̂(ji→ji−1)

�
, (5.14)

where A(·) : SO(3) → R is the function that extract heading angle φ from the corresponding rotation
matrix, and the relative attitude change can be obtained from the visual navigation algorithm.
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Figure 5.5: Bayesian network of the relative pose estimation of two rovers.

In order to refine the result, by integrating the 2D feature location and ranging measurements, the trajec-
tory of both rovers can be estimated in a tightly coupled sensor fusion method. Similarly as in Section 4.4,
the error in scales ŝ1 g, ŝ2 g and in monocular egomotion β̂1 (N)

[k] , β̂2 (N)
[k] do not need to be considered sepa-

rately. Instead, a set of positions in global frame { �β1 (W )
[k] , �β2 (W )

[k] |k = 1, ..., Nk} is refined by combining
the estimated scale and positions in navigation frame as initial coarse estimates using Eqn. (5.13).

Fig. 5.5 shows the Bayesian network of a tight coupling sensor fusion method exploiting both the visual
measurements and the ranging measurements. Applying the dependency among the random variables in
the Bayesian network, the poses of the rover pair can be obtained from the sensor fusion by the following
maximum likelihood estimator:
�

x̂1 (W )
[k] , x̂2 (W )

[k] , �X (W )
i

�

= argmax
Nk�

k=1

Np�

i=1

p( µ1 i[k]|π( �X
(W )
i , x1 [k])

v1,i[k]p( µ2 i[k]|π( �X
(W )
i , x2 [k])

v2,i[k]p(ρ[k]| x1 [k], x2 [k]),
(5.15)

where v1,i[k] and v2,i[k] are the visibility mask for the two cameras respectively.
Under Gaussian noise assumption, the maximum likelihood estimation is equivalent to the following

least squares problem:

�
x̂1 (W )
[k] , x̂2 (W )

[k] , �X (W )
i

�

= argmin
Nk�

k=1

χk( x1 (W )
[k] , x2 (W )

[k] ) +
Nk�

k=1

Np�

i=1

(Sik( x1 (W )
[k] , �X (W )

i ) + Sik( x2 (W )
[k] , �X (W )

i )).
(5.16)
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In the fusion, Sik(·) = vi[k]

���µi[k] − π( �Xi, x[k])
���
2

Σ−1
u,ik

, and χk(·) is defined as

χk = wk

�����

�
1 0 0
0 1 0

�
x1 (W )
[k] −

�
1 0 0
0 1 0

�
x2 (W )
[k]

����− ρ[k]

�2

, (5.17)

where wk = (E{η2[k]})
−1. Due to the nonlinear nature of the problem, the coarse estimates are important

as proper initial values to ensure the convergence of the optimization. Using the coarse estimates as initial
value, the optimal estimation of the rovers’ poses is obtained by solving the non-linear optimization in Eqn.
(5.16). An iterative numerical solver such as Levenberg-Marquardt algorithm [111] can be used to solve the
optimization. Due to the sparsity of the measurement space, the optimization can also be carried out in an
incremental way by applying probability inference techniques such as [49].

The fusion algorithm does not require any common field-of-view for the two cameras, making the pro-
posed approach more flexible and efficient in exploration tasks. The two navigation tasks are only coupled
by the ranging, and remain otherwise independent.

5.2.2 CRLB of Cooperative Visual SLAM

Using the uncertainty model introduced in Section 3.3, the positioning accuracy using cameras is indicated
by the corresponding Cramér-Rao lower bound (CRLB). Similarly, the performance of the tightly coupled
sensor fusion using camera and ranging proposed in the previous section can also be reflected by the CRLB.

Stack all the measurements { µ1 i[k]}, { µ2 i[k]} and {ρ[k]} into a vector λ, and all the parameters { x1 (W )
[k] },

{ x2 (W )
[k] }, and { �X (W )

i } into Θ ∈ R3Np+6Nk , the CRLB of the estimated parameters is

CRLB(Θ) = I−1
Θ = −

�
E
�
∇2 log (p(λ|Θ))

��−1
. (5.18)

The log-likelihood function log (p(λ|Θ)) can be calculated using Fik(·) and χk(·) in Eqn. (5.16).
A representative trajectory, shown in Fig. 5.6, is generated to evaluate the CRLB in a simulation sce-

nario. We set 10000 feature points which are distributed randomly in the 3D space. The cameras’ intrinsic
parameters and sensor model are provided by a real camera with a resolution of 1024*768 pixels and pixel
density ≈ 213.33 [pixels/mm]. The 2D features are generated by using perspective projection with visibility
check. Gaussian white noise is added on both the 2D feature locations and the simulated range measure-
ments.

Fig. 5.7 shows the CRLB with respect to the ranging accuracy, represented by standard deviation of the
ranging noise. The y-axis is the CRLB for the x-component of rover 2’s position. In the plot, the feature
measurement noise level is σu = 0.1 [pixel]. It can be shown from the plot that when the ranging noise
is small, the CRLB of the fusion-based method is much lower than the vision-only approach. When the
ranging noise level is high, the fusion algorithm’s accuracy converge to the vision-only method.

Fig. 5.8 illustrates the relation between the CRLB and the feature location accuracy. In this scenario, the
ranging accuracy is fixed to 0.5 [m]. The performance of the vision-only approach degrades significantly
for feature location noise with standard deviation greater than 1 pixel. On the other hand, the bound for
the fusion algorithm is much lower with the aid of the ranging measurements. Similar results can also be
concluded for other components of the estimated parameters.

5.2.3 Simulation Results of Cooperative Visual SLAM

The trajectories of two rovers, shown in Fig. 5.9, are generated to evaluate the proposed cooperative sensor
fusion method in a simulated scenario. The left trajectory is from rover 1, while the right one is from rover
2. We set 10000 feature points distributed randomly in the 3D space. The intrinsic parameters and sensor
model are those of a real camera. The image sensor has a resolution of 1024*768 pixels, with pixel density
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Figure 5.6: First 50 keyframes of the trajectory

Figure 5.7: Change of CRLB with respect to σρ, σu = 0.1 [pixel]
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Figure 5.8: Change of CRLB with respect to σu, σρ = 0.5 [m]

≈ 213.33 [pixels/mm]. The focal length of the lenses is 2.5 [mm]. The 2D features are generated by using
perspective projection with visibility check. White noise is added on both the 2D feature locations and the
simulated range measurements.

The egomotion of the cameras is estimated coarsely using frame-by-frame visual odometry. To improve
the accuracy, the rover poses and map point locations are refined using global optimization, either with
VSLAM-only approach, i.e., bundle adjustment, or with the proposed sensor fusion approach exploiting the
ranging measurements between the two rovers. The true global scale is applied for the vision-only approach
for better comparison, which is unavailable in practice. The performance of the methods are shown in Fig.
5.10 and Fig. 5.11. In these two plots, the uncertainty of the feature location is 1 pixel, and the standard
deviation of the ranging noise is 0.9 [m]. The two figures shows the trajectory of rover 1. Fig. 5.10 is
a zoomed-in plot for a few representative keyframes in the trajectory. The red triangles denote the ground
truth of the camera poses. The magenta poses are the outcomes of the visual odometry, which are used as the
initial values in the optimization. Due to the error accumulation, the magenta trajectory drifts gradually away
from the true one. The green trajectory shows the estimation result of the camera-only bundle adjustment,
while the blue one shows the sensor fusion outcome when using both visual and ranging measurements.

It can be seen from the plots that the drifts in visual odometry can be mitigated by both global optimiza-
tion methods, but the sensor fusion algorithm outperforms the vision-only approach in accuracy. Similar
conclusions can be drawn for larger ranging noise. Fig. 5.12 and Fig. 5.13 illustrate the estimated trajec-
tories from both approaches with σρ = 1.7[m]. The accuracy of the sensor fusion method is still slightly
better.

Fig. 5.14 plots the root mean square error (RMSE) of the camera poses as function of the change of the
ranging noise level. Since the latter does not affect the VSLAM algorithm, the error of the bundle adjustment
approach remains mostly unchanged.
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Figure 5.9: The trajectories of the two rovers

Figure 5.10: A segment of the trajectory of rover 1 estimated using different methods, σρ = 0.9[m]
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Figure 5.11: The trajectory of rover 1 estimated using different methods, σρ = 0.9[m]

Figure 5.12: The zoomed in trajectory of rover 1 estimated using different methods, σρ = 1.7[m]
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Figure 5.13: The trajectory of rover 1 estimated using different methods, σρ = 1.7[m]

In conclusion, the sensor fusion approach significantly outperforms the vision-only method when the
ranging noise is low. The performance of the proposed fusion method reduces to the one of classic VSLAM
when the ranging measurement noise becomes very large (above meter level).
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Figure 5.14: The RMSE of the rover poses with respect to the ranging noise level

5.3 Common Field-of-View Detection of a Vehicle Pair 1

After knowing the relative pose between two rovers, the two monocular cameras on the rovers can establish
a stereo vision system with a variable baseline. If the communication link between the two rovers supports
sufficient data transmission capacity, one of the rover can transmit important images to the other for joint
scene reconstruction. Exploiting the stereo vision, the common visible parts of the images can be recon-
structed using state-of-the-art stereo 3D reconstruction algorithms such as the semi-global matching (SGM)
proposed by Hirschmüller [112]. Compared with the structure from motion approach using a single rover,
the variable baseline stereo in a robotic swarm has significant advantage in exploration efficiency, because
the rovers do not have to move back and forth to execute the 3D reconstruction, especially for long baseline
cases.

However, the automatic detection of overlapping regions in images of a scene taken by several cameras
is difficult, even if the relative positions and orientations of the cameras are known. The overlapping region
is both a function of the angle and distance of the object to the image plane, as illustrated in Fig. 5.17.

Local feature extraction is essential in feature based VSLAM algorithm, and the feature points can
also be exploited to detect the common field-of-view (FOV). Conventional FOV detection methods, e.g.,
Snavely’s approach in [113], are usually based on counting matching feature points. Bruckner et al. [114]
improved the approach by releasing the constraints on the correctness of the feature matching so that it is
more robust to outliers and matching errors. The approaches of extracting various sorts of local features
are reviewed in [115]. Nevertheless, the image regions not detected as features can also belong to the
overlapping area, which should be recognizable as common FOV regions as well. Fig. 5.15 and Fig. 5.16
shows an instance that more matched features does not necessarily result in larger common FOV of the two
images.

1This part of work was joint work with Christoph Bamann, Technische Universität München
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Figure 5.15: Small common FOV with many features.

Figure 5.16: Large common FOV with not many features

To realize the goal of detecting overlapping regions, image segmentation can be a solution. However,
the computational complexity is too high for realtime processing. It is sufficient to localize and track the
feature points in our mission, but not essential to completely understand the content of the image. Therefore,
in order to detect the common FOV efficiently, we propose a plane detection based approach that can fulfill
the target of common FOV detection in various scenarios while without using the complex segmentation
algorithm.

In many environments, the assumption that most feature points are approximately distributed on nearly
planar surfaces or facets is valid. In some environments, the majority of features is close to a plane, e.g.
the ground plane in the exploration of foreign planets. The statement is also valid for the facet planes in
structured areas. Also, for cameras with finite resolution, the features far away can also be treated as laying
on an infinite plane. This property is used in navigation, as in work of Xiao et al. [116] and Zhou et al. [117],
and provides reasonable results, if a large number of feature points can be detected. The method proposed
in this section does not require the features to be on a plane anymore - instead they can be approximately
on a multitude of planes that are automatically determined, and with outliers might even be far away from
those planes.

Without loss of generality, we consider the stereo vision with two cameras which are mounted on two
distinct robots in a swarm with time-varying baseline. With known initialization, e.g., using the method
proposed in Section 5.1 and Section 5.2, the relative pose between both cameras can be estimated, and the
pose change for each camera can be locally tracked using VSLAM and shared over the communication
channel efficiently. Consequently, it is acceptable to assume that the relative orientation as well as the
baseline of the two cameras are known. This allows to triangulate the matched feature points from both
views to obtain 3D coordinates. Provided the set of 3D points, we use fussy clustering algorithm to cluster
the feature points to a few planes. The number of the planes can be calculated adaptively. The features
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Figure 5.17: Depth Impact on Common Field-of-View

that are far away from any major plane are clustered as an outlier class, which will not be used in the
following common FOV detection step in Section 5.3.2, in order to increase the robustness of the method.
The applied adaptive fussy plane clustering method is introduced in Section 5.3.1. Moreover, the common
FOV detection method proposed in this work is invariant to baseline scale change between the two cameras.
As a result, the accuracy of the baseline length measurement does not affect the performance of the common
FOV algorithm, as shall be seen in Section 5.3.3.

In the following subsections, we use both Cartesian coordinates describing points in Euclidian space R
and homogeneous coordinates describing points in projective space P. The latter have an additional scale
coordinate compared with the Cartesian coordinates with same space dimension. In addition, the L2-norm
(Euclidean distance) of a vector is denoted by � · �2, and �·, ·� denotes the inner product of two vectors.

5.3.1 Adaptive Fussy Plane Clustering
Assume that Np matched feature points with triangulated 3D coordinates �X1, �X2, ..., �XNp ∈ R3 are the
only geometric information about the environment. Then hard clustering defines an initial allocation of
the 3D points to M clusters by minimizing the overall distances between data points and centers of the
clusters. The cluster number M should be initialized with a relative large number, and the similar clusters
will be merged afterwards, as introduced later in this Section. This allocates every point to a unique cluster.
Alternatively, fuzzy clustering defines a level of membership wim ∈ [0, 1] of point i in cluster m [118]. The
center �Om ∈ R3 of cluster m is defined by

�Om =

�Np

i=1(wim)ϑ �Xi
�Np

i=1(wim)ϑ
. (5.19)

and the weights are obtained by minimizing the weighted squared distance from those centers:

Np�

i=1

M�

m=1

(wim)ϑ� �Xi − �Om�22. (5.20)

The exponent ϑ is called fuzzifier. It characterizes the extent of overlap among different clusters. When
ϑ ≤ 1, the optimization becomes equivalent to hard clustering. The cluster centers �Om and membership
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levels wim can be calculated iteratively as in the widely used algorithm proposed in [118]. This defines the
initialization of the algorithm.

The points in the individual clusters should be in a plane. In order to determine that, one defines the
cluster covariance matrix for the m-th cluster by

Fm =

�Np

i=1(
�Xi − �Om)(wim)ϑ( �Xi − �Om)T

�Np

i=1(wim)ϑ
. (5.21)

The eigenvalues λ1m ≤ λ2m ≤ λ3m of Fm determine the shape of the cluster prototype. In the present
context, the prototypes should be planes, i.e. λ1m ∼ 0. In the case that λ1m/λ2m is larger than a threshold,
the cluster is disregarded.

The allocation of points to clusters was rather arbitrary so far. In the present paper, a large number of
cluster prototypes is used. The task is thus to merge clusters that are associated with the same plane. In a
first step, we define a metric for measuring the distance from the planes associated with cluster m. Let e1m
be the normalized first eigenvector of Fm, then this measure is

him = |�e1m, �Xi − �Om�|2. (5.22)

In order to handle noise and outliers, we introduce a 0-cluster. With these definition the weights are re-
computed by minimizing:

Np�

i=1

M�

m=1

(wim)ϑ�him�22 +
Np�

i=1

(wio)
ϑδ2. (5.23)

The rightmost summand makes the clustering process robust. If the distances of point �Xi to all the other
cluster prototypes are large compared to δ, its membership level wio to the outlier cluster is high, so that it
does not affect the calculation of the inlier prototypes.

Next clusters are compared: two clusters m1 and m2 are merged whenever the fuzzy inclusion similarity
measure χm1m2 between them exceeds a threshold, which is normally chosen to be 1/(M − 1) [119], i.e.
when

χm1m2 =

�Np

i=1min (wim1 , wim2)

min (
�Np

i=1wim1 ,
�Np

i=1wim2)
>

1

M − 1
. (5.24)

The set of new clusters leads to a new computation of the centers �Om according to Equation (5.19) and of
the cluster covariance matrix Fm according to Equation (5.21) and to another iteration of the algorithms.
The iteration ends, after the first iteration without merging.

The eigenvectors e2m and e3m describe the plane γm associated with the m-th cluster after merging.
This is the basis for computing the common field of view. Let M � be number of such planes.

5.3.2 Common Field-of-View Detection
The field of view of a camera is obtained by computing the first intersection of rays with the M � planes.
Thus projecting the visible region of one camera on the M � planes and then on the image plane of another
camera yields their common FOV.

The visible region of Camera 1 on the detected planes is defined both by the intersections of the planes
and the crop due to the limits of the camera’s sensor size. According to the projective geometry as introduced
in [20], each plane i can be expressed by homogeneous coordinates γ̃i ∈ P3, so that any points X̃ ∈ P3

in the plane satisfies γ̃Ti X̃ = 0. We first calculate the ray of the projection of the four vertex points of
the image from Camera 1 onto the plane i. For an image vertex point ũ1c ∈ P2, possible locations of the
corresponding 3D point can be calculated by using the back projection equation introduced in Eqn. (4.2) in
Section 4.1 as:

X̃(W )
1c (ς) = P+

1 ũ1c + ς c̃(W )
1 (5.25)
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where P1 denotes the camera matrix, (·)+ the pseudoinverse of the matrix, ũ1c the location of the vertex
point in the (virtual) image plane, and c̃(W )

1 = [(�c (W )
1 )T , 1]T ∈ P3 is the homogeneous coordinates of

the camera position in the global frame (W ). ς is a parameter reflecting the depth of the 3D points on
the ray. By solving γ̃Ti X̃

(W )
1c (ς) = 0 for ς , we determine the intersection points of the rays with the i-th

visible plane. This describes a polygon with four vertices for each plane. Determining the visible part of
the surfaces inscribed in these polygons, creates a facetted surface delimited by another polygon. This latter
polygon describes the limits of the field of view. The common field of view is obtained by back-projecting
the vertices of the latter polygon onto the image plane of Camera 2.

If there are multiple planes, i.e. M � > 1, any line lij , which denotes the intersection line between plane
γ̃i and γ̃j , is a FOV border for those planes. The actual FOV is obtained by combining the FOVs of all
planes.

5.3.3 Verification of Baseline-scale Invariance

An important property of our common FOV detection approach is that it is invariant under camera base-
line scaling. This property brings the advantage that the method is insensitive to the error in the ranging
measurements between the two rovers.

Without loss of generality, we simplify the problem by choosing a reference frame with Camera 1 at the
origin and its orientation aligned with the local frame of that camera. As a result, the projection matrix of
Camera 1 is P1 = K1RT

(C1→W )[I|− �c (W )
1 ] = K1[I,�0], in which K1 denotes the intrinsic camera matrix of

Camera 1, R(C1→W ) ∈ SO(3) the rotation matrix between camera and the world frame, and �c (W )
1 ∈ R3 the

location of the camera in world frame. The second camera is translated by t ∈ R3, and rotated by R ∈ R3×3.

Its projection matrix is P2 = K2RT
(C2→W )[I|−�c (W )

2 ] = K2[R|t]. The vector t = −RT
(C2→W )�c

(W )
2 −�c (W )

1
is the baseline between the two cameras. If the depth of the 3D feature point is not available, the vision
measurements are invariant to a scale change of the whole scenario. With the definition Λ = diag(1, 1, 1, s),
scaling of the baseline length by a factor s changes the projection matrix P2 to P �

2 = K2[R, st] = P2Λ.
Assuming that a 3D point with homogeneous coordinates X̃(W ) = [Xx, Xy, Xz, 1]T =

[( �X (W ))T , 1]T ∈ P3 is projected on the image planes of both cameras with coordinates ũ1 =
[ux1, uy1, 1]T ∈ P2 and ũ2 = [ux2, uy2, 1]T ∈ P2 respectively, implies that ũ1 = P1X̃(W ), ũ2 = P2X̃(W ).
Utilizing the cross-product constraints that ũ1 × (P1X̃(W )) = 0 and ũ2 × (P2X̃(W )) = 0, the unknown 3D
coordinates of the point can be triangulated with the 2D coordinates on the two image planes by solving the
normal equation

AX̃(W ) =





ux1(p31)
T − (p11)

T

uy1(p31)
T − (p21)

T

ux2(p32)
T − (p12)

T

uy2(p32)
T − (p22)

T



 X̃(W ) = 0 (5.26)

in which (pji )
T denotes the j-th row of the projection matrix Pi.

Replacing the baseline by the scaled baseline, implies replacing the terms in Eqn. (5.26) by rows P �
1 =

P1Λ = P1, P �
2 = P2Λ which leads to the equation

A�X̃(W ) = AΛX̃(W ) = 0. (5.27)

As a result, if X̃(W ) = [Xx, Xy, Xz, 1]T solves Eqn. (5.26), Eqn. (5.27) has the solution X̃(W )
s =

Λ−1X̃(W ) = [Xx, Xy, Xz, 1/s]T . Therefore, the impact of scaling the baseline length by s is that the
triangulated coordinates of the feature points are scaled by 1/s. The corresponding Cartesian coordinates
have the relation

�X (W )
s = [sXx, sXy, sXz]

T = s �X (W ). (5.28)
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If we compute a plane equation with three non-collinear points from that plane, the Cartesian coordinates
of which are triangulated as �X (W )

s1 , �X (W )
s1 and �X (W )

s3 ∈ R3 with the same scaled baseline, the plane can be
determined by

γ̃s =

�
( �X (W )

s1 − �X (W )
s2 )× ( �X (W )

s2 − �X (W )
s3 )

−( �X (W )
s1 × �X (W )

s2 )T �X (W )
s3

�
∈ P3. (5.29)

We can normalize the plane as γ̃s = [gT , 1]T . According to Eqn. (5.28), the impact of the scale is �X (W )
si =

s �X (W )
i , for i = 1, 2, 3. As a result, the plane equation follows that γ̃s = Λγ̃, where γ̃ is the plane equation

with true scale calculated with points coordinates �X (W )
1 , �X (W )

2 and �X (W )
3 .

For point ũ1 = [ux1, uy1, 1]T on the image plane of Camera 1, the back projection results in a ray

X̃(W )(ς) = P+
1 ũ1 + ς[0, 0, 0, 1]T (5.30)

in which ς is a scalar factor for parameterizing line equation. According to Eqn. (5.32), the ray intersects
plane γ̃ at

X̃(W )
b =

�
K+

1 ũ1
−gTK+

1 ũ1

�
∈ P3 (5.31)

γ̃T X̃(W )
b = [gT , 1][(K+

1 ũ1)
T , ς]T = 0. (5.32)

Similarly the ray intersects the plane γ̃s at X̃(W )
bs = [(K+

1 ũ1)T ,−gTK+
1 ũ1/s]T = Λ−1X̃(W )

b . Here X̃(W )
b

is the original point coordinates while X̃(W )
bs is the corresponding point on the plane calculated with scaled

baseline. The projection of X̃(W )
b on the image plane of Camera 2 yields ũ2 = P2X̃

(W )
b , while X̃(W )

bs is
projected to

ũ2s = P �
2X̃

(W )
bs = P2ΛΛ

−1X̃(W )
b = ũ2. (5.33)

Therefore, the planes induce the same homography between the two cameras for different baseline scales.
The result indicates that our plane-based common field-of-view detection algorithm is invariant under

baseline scaling if and only if we back-project the planes using the same baseline parameters that are utilized
to triangulate the feature points. Under this assumption, the method is thus robust against baseline length
measurement error.

5.3.4 Simulations of Common Field-of-View Detection
We tested the common FOV detection algorithm from Section 5.3.2 with several rather different pairs of
stereo images. The performance was rather similar in all cases. Thus we choose three typical scenario
to illustrate the results. The first scenario is a wall with items on the shelf. The second scenario is the
corner of a floor and walls. The third scenario uses a pair of stereo images from the NASA Mars rover
Sojourner. For the feature extraction, SURF detector and descriptor [57] are used for all three scenarios.
RANSAC (RANdom SAmple Cpponsensus) [65] is implemented to reduce the number of outliers, so that
the comparison is fair to the approaches in [113] and [114]. The results are illustrated in Fig. 5.18, 5.19,
and 5.20.

The highlighted part in the images are the detected common FOV. Yellow dots show the matched feature
points. The simulation results indicate that our overlapping detection algorithm performs very well in a
wide variety of scenarios.

Table 5.4 compares the values of the overlapping similarity metrics defined by feature point numbers
and overlapped pixel numbers. In the "Wall" scenario, 30 feature points are associated with an overlap of
45 percent. On Mars, 24 feature points are associated with an overlap of 70 percent. This shows that the
number of matched feature points is not a good measure for the common FOV.
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Figure 5.18: Common FOV Detection - Wall

Figure 5.19: Common FOV Detection - Floor

Figure 5.20: Common FOV Detection - Mars

Table 5.4: Common Field-of-View Detection Result
Detected Plane # Inlier Points Overlapped Pixel

Wall 1 30 45.25%
Floor 2 37 91.28%
Mars 1 24 73.50%





6. Visual Navigation of a Cooperative Robotic Swarm

In this chapter, we extend the sensor fusion based relative pose estimation method from Chapter 5 to a multi-
robot swarm navigation solution. This approach provides an accurate formation estimate for cooperative
SLAM of a robotic swarm by exploiting visual and ranging measurements. Compared with all the state
of the art multi-robot SLAM work, our method is based on the relative pose estimation exploiting sensor
fusion instead of scene detection and map merging. As a result, neither feature descriptors nor images are
required to be transmitted among rovers, so that the communication load is much more feasible in practice.
To cope with the scalability problem of swarms with large number of rovers, a grouping algorithm based on
inter-rover distance and common field of view is proposed.

6.1 Multi-Agent Visual Navigation–a Review

Inspired by some natural behaviors of animals, the utilization of multi-agent robotic swarms has raised
great interests for researchers in recent years [120]. The applications and research of robotic swarms are
reviewed in [121]. In exploration tasks, a robotic swarm consisting of several robotic platforms has a number
of advantages compared with a single rover. First of all, it is intuitive that the exploration efficiency and
flexibility can be significantly improved by using a robotic swarm due to better coverage from multiple
independently and simultaneously moving robots. Moreover, a swarm has better observation and perception
capability than a single robot. For example, two rovers equipped with monocular camera can form a variant
baseline stereo system if the relative pose of them is known. In such cases, the baseline length can be
adjusted according to the distance to the observed objects so that the best accuracy can be achieved, and
the cameras have mobility to deal with the occlusion problem in 3D reconstruction. In addition, there are
usually complicated terrains in exploration, in which a rover may lose its connection to the base station or
the orbiter. The connectivity between the rover and the base station can be improved by using a swarm, since
other rovers can serve as a relay point, and maintains connection to the anchor points. Last but not least,
multiple robots is more robust to individual failures than a single platform. If one of the rovers in the swarm
malfunctions, the whole exploration task can still be continued. Due to such advantages, it is interesting to
have a globally consistent estimate of the map and the robot poses, so that the robots can avoid collisions,
can be navigated autonomously, and extract maximum of information from the measurements.

At the same time, the increase of the robot number also introduces new challenges and problems. One
of the most challenging problem is that the egomotion estimation is executed in the local reference frame,
i.e., the estimated rover poses and map point locations are relative to the origin of a chosen navigation frame
(N). In order to estimate the relative poses and the formation of the swarm elements and to obtain a globally
consistent map, information needs to be shared among the robots. Relative pose estimation and the common
reference frame determination are two core problems in the swarm navigation. Several approaches have
been proposed to solve the multi-robot SLAM problem. In [122], Saeedi et al. reviewed some important
SLAM algorithms designed for multi-robot applications. Forster et al. proposed a monocular camera based
SLAM approach for multiple UAVs in [27]. The relative pose estimation in the methods is based on map
merging, which requires all the UAVs to transmit keyframe poses and local maps to a centralized server.
In [26], Fox et al. proposed an approach based on particle filters to map the environment with multiple
distributed robot platforms. The egomotion estimation is based on a laser scanner and a wheel odometer
on each rover, and the measurements are exchanged between a pair of rovers if they are in communication
range. The relative pose between the two rovers is also estimated by merging the local maps. Other map
merging based methods include [28, 123, 124].

91
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In [125], Saeedi et al. discussed the multi-robot SLAM problem as a general framework based on
particle filters, and divide the situations into the cases before and after the relative pose estimation is suc-
cessfully executed. As reviewed earlier, the relative pose can be estimated using local map merging using
different sensors. However, due to lack of a prior knowledge of a common reference frame in a distributed
robotic swarm, the merging based on data association using loop closure detection can become very wrong
if mismatch occurs. Indelman et al. remarked the common reference frame determination problem in data
association and map merging for multi-robot SLAM, and discussed the inference for the distributed system
in [126] and [127].

Another crucial issue in swarm navigation which limits the feasibility of the map merging based methods
is the requirements of the communication load. The limited communication has been considered in the
approach [26] from Fox et al. and the under water platform based work [128] from Paull et al. In [26], the
data transmission is only constrained on close rover pairs. In [128], the inference between the multiple AUVs
(Autonomous Underwater Vehicles) are calculated and the robot only transmit the necessary part of the pose
graph to each other, which effectively decreases the amount of data needed to be exchanged. However, the
relative pose estimation is assumed to be solved in this literature, for which the raw measurements still need
to be transmitted using the onboard sensor set-up. Carlone et al. proposed a particle filter based method
in [129], which estimates the relative pose by detecting another rover using lidar and vision. This requires
rendezvous of two robots with visible line of sight distance. Staudinger et al. proposed a radio based swarm
navigation system in GNSS-denied environment in [5]. By exploiting the ranging measurements obtained
from the intra-swarm communication links, the relative poses and the formation of the robotic swarm can be
estimated in a distributed way with respect to a common reference frame. The agreement of the reference
frame converges in a few steps of motion of the swarm. However, the method is based on pure radio but
without any other sensor for egomotion estimation and mapping, which has omitted many feasible sensor
measurements to improve the performance.

As a viable solution to the aforementioned problems in state-of-the-art approaches, we propose a swarm
localization method based on the fusion of visual and ranging measurements. The method is valid as long as
the neighboring robots are within radio line-of-sight distance, which is much larger than visually detectable
distance. Meanwhile, the communication load is significantly lower than map merging based methods.
Generally, the swarm in our set-up can be modeled by a Bayesian network like an example shown in Fig.
6.1. In this instance, the three rovers have communication links among each other. At an arbitrary time
instant k, the states of the rovers and the corresponding visual and ranging measurement nodes form a pose
graph. Applying the individual visual SLAM algorithm on each rover, the egomotion of the rover can be
estimated over time. As a result, the trajectories of all the swarm elements is represented by a large pose
graph. The methods for pose graph optimization such as [130] can be applied. It should be mentioned that
the egomotion estimation and the mapping using the onboard monocular cameras are referred to the local
frames of the rovers and have scale ambiguities. Our approach to merge the nodes from different rovers into
a global consistent pose graph will be introduced in the following sections.
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Figure 6.1: Model of the swarm as Bayesian network and pose graph

6.2 Swarm Navigation using Cooperative Vision

The approaches based on map merging and cooperative loop closure detection require to exchange maps
from different rovers. However, this demands significant amount of data to be transmitted over the com-
munication channel, since the feature descriptors or the raw visual measurements are essential to merge the
map. In many applications, e.g., the Mars exploration, the communication bandwidth and throughput cannot
fulfill the requirements. In this section, by applying the relative pose estimation from the ranging and cam-
era fusion introduced in Chapter 5, we propose to estimate the formation of the whole cooperative swarm
without transmitting any feature descriptor or raw measurements. In addition, compared with the perception
based relative pose estimation methods such as in [129] and [131], our method proposed in Chapter 5 do not



94 6. Visual Navigation of a Cooperative Robotic Swarm

Figure 6.2: Model of the swarm in centralized processing case

require another rover to appear in the field of view of the camera, and the radio line of sight is usually much
farther than the effective detection distance of the optical sensors.

We start with a simple centralized approach. Assume among the Nr rovers in the swarm, a central
unit with numbering j1 has connectivity with all the other rovers. The other rovers can transmit their
estimated trajectory in the local navigation frame { β̂

j (Nj)
[k] |k = 1, ..., Nk, j = j2, ..., jNr} to rover j1. At the

same time, the central unit can obtain ranging measurements { ρj [k]|k = 1, ...Nk, j = j2, ..., jNr} from the
communication links. Fig. 6.2 illustrates the scenario. With the local position estimates and the ranging
measurements, the global scale of the rovers sj1

g as well as sj g and the relative pose parameters ξj =

[ rj [1], αj , θj ] between the rover j1 and all the other rovers j can be estimated by exploiting the scale and
relative pose estimation method in Chapter 5. By combining the relative pose between all the trajectories,
the formation of the whole swarm can be obtained. This approach is simply an accumulation of estimation
result from the pairwise relative pose estimation, which may result in inconsistency of the global scale
estimation of the central unit sj1

g.

As an improvement for the swarm navigation, we can generalize the method in Chapter 5 to multi-
agent case. We choose the initial pose of the central unit as the reference frame (W ). The noisy range
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measurement between rover j1 and rover j at time k can be denoted as

ρj [k] =
��� �βj (W )

[k] − �βj1 (W )
[k]

���+ ηj [k]. (6.1)

The coordinates of the rovers in the reference frame (W ) is a function of the global scales and the relative
pose parameters that

�βj1 (W )
[k] = sj1

g
�β

j1 (Nj1 )

[k] , (6.2)
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Stacking the unknown parameters to a vector ξ = [ sj1
g, ξj2 , ..., ξjNr ]T , the true range between rover j1 and

any other rover j can be written as a function of ξ as
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Consequently, the scale and relative pose parameters can be estimated by the following optimization:

ξ̂ = argmin
ξ

jNr�

j=j2

� ρj − Hj (ξ)�2
Σ−1

ρj
, s.t. Bξ > 0, (6.5)

where ρj = [ ρj [1], ρj [2], ..., ρj [Nk]
]T , Hj (ξ) = [ Hj 1(ξ), Hj 2(ξ), ..., Hj Nk

(ξ)]T . Here it is assumed that the
ranging measurements between the central unit and different other rovers are independent. Σρj is the co-
variance matrix of the ranging measurements noise, which is diagonal if the noise is independent of time.
Similarly as in Eqn. (5.7), B is a selection matrix to ensure the positiveness of the scale and range parame-
ters. The same as the two rovers case, the problem can be decoupled to an unconstrained optimization and
parameters mapping introduced in Section 5.1. The unconstrained optimization can be solved analytically
using linearization and iterative optimization algorithm such as Levenberg-Marquart algorithm [111].
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With the above coarse estimation of the parameters vector ξ, the central unit can further fuse the sensor
data from the whole cooperative swarm in a tight coupling way to achieve better accuracy, i.e., optimizing
the parameters using the raw feature location measurements instead of the estimated trajectories. However,
this approach requires all the rovers to transmit their 2D features location and 3D map points location to the
central unit.

For a robotic swarm consisting of many rovers, the communication links may not afford the amount of
data to be transmitted, even though no feature descriptor is needed to be sent. As a result, we use loose cou-
pling sensor fusion in the swarm navigation. The VSLAM trajectory estimates { β̂

j (Nj)
[k] |k = 1, ..., Nk, j =

j1, ..., jNr} obtained with a monocular camera is calculated following a dead reckoning concept. The trans-
lation vectors are estimated between keyframes up to a global scale factor, and the poses are propagated
using the estimated motion. The rovers can transmit the estimated translation vectors and the correspond-
ing spatial uncertainty information to the other rovers (in the centralized case, to the central unit). For Nk

keyframes, the exchanged data from each rover is only Nk two-dimensional vectors and Nk corresponding
covariance matrices. The amount of data transmitted is much smaller than the tight coupling approach,
which requires to transmit up to NmNk 2D vectors for feature locations and Np 3D vectors for map point
locations as well as the corresponding covariance matrices. Consequently, the loose coupling is practically
more feasible for the swarm navigation application if real-time onboard processing is demanded.
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In order to obtain the trajectory of the whole swarm, it requires to estimate a vector ζ consisting of the
unknown parameters as

ζ = { �βj (W )
[k] |k = 1, ..., Nk, j = j1, ..., jNr}\{ �βj1 (W )

[1] }∪{ φj |j = j2, ..., jNr} ∈ R(2NrNk+Nr−3)×1, (6.7)

including both the positions of the Nr rovers over Nk keyframes and the relative attitude angles between the
navigation frames (Nj) and the common reference frame (W ). The angle for rover j is defined as shown in
Fig. (6.2) as

φj = αj + θj − π

2
. (6.8)

The reference frame is chosen according to the initial pose of the rover j1, so the position �βj1 (W )
[1] = �0 and

the angle φ1 = 0 are known values and thereby excluded from unknown vector.
The navigation solution using the loosely coupled sensor fusion can be obtained by optimizing
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where ρj ∈ RNk×1, Hj (ζ) ∈ RNk×1 are defined the same as in Eqn. (6.5), except that the entries Hj k(ζ)
is now a function of unknown vector ζ. The latter part of the Eqn. (6.9) contains the information from the
translation measurements estimated by the monocular vision. It should be mentioned that the vision based
egomotion estimates { �t

j (Nj)
[k] } are obtained in the navigation frames of the rovers. The translation in the

global frame and the navigation frames can be associated by

�βj (W )
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�βj (W )
[1] . (6.10)

Consequently, the true translation at time k in the navigation frame of rover j can be written as a function
of the unknown parameters in ζ as

Tj [k](ζ) =
�β
j (Nj)

[k] − �β
j (Nj)

[k−1] =
RT ( φj )( �βj (W )
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where the global scale is defined as the length of the first translation sj g = � �βj (W )
[2] − �βj (W )

[1] � as explained
in detail in Section 4.1.

In the optimization of Eqn. (6.9), there are 2NrNk + Nr − 3 unknown parameters to be estimated.
Meanwhile there exists in total (3Nr−1)Nk−2Nr measurements (2Nr(Nk−1) translation measurements
and (Nr−1)Nk ranging measurements). In order to have sufficient degrees of freedom to solve the equation,
it is essential that (3Nr − 1)Nk − 2Nr ≥ 2NrNk +Nr − 3, which can be simplified to the constraint (Nr −
1)(Nk − 3) ≥ 0. Therefore, at least 3 keyframes for each rover are required. Moreover, the optimization is
non-linear, so it demands coarse estimates as initial values to ensure the convergence to the correct optima.
Since the coarse global scale and relative pose estimation method in Section 5.1 requires Nk ≥ 5 keyframes,
at least 5 keyframes from each rover are necessary to obtain the swarm formation solution in the centralized
mode.

In practice, using centralized processing for a robotic swarm is inefficient. If the number of the rovers
Nr is large, the computational power required from the central unit will be too high for real-time processing.
Meanwhile, the multiple access efficiency of the communication channel decreases linearly with the number
of connected users. Therefore, a decentralized mode is preferred in swarm navigation, i.e., each rover can
exchange data and obtain ranging measurements only with its neighbors. If all the rovers have at least one
neighbor in its communication range, the swarm can be presented by a connected graph. Fig. 6.3 illustrates
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Figure 6.3: Model of the swarm in decentralized processing case

an example of the connectivity for a decentralized swarm. If some rovers are too far away from all the
others, one can use grouping strategy to divide the swarm into multiple groups and exploit the algorithm in
each group. The grouping strategy will be discussed in Section 6.3. To navigate the swarm, all the rovers
should agree on a common global coordinate system in the decentralized mode. Without loss of generality,
here we assume that the swarm reference frame (W ) is chosen according to the initial pose of the rover j1,
i.e., the orange camera in the example in Fig. 6.3. The coordinates represented in the navigation frame of
the reference rover (Nj1) is transformed to that in the swarm reference frame (W ) by multiplying a scale
factor sj1

g. The transformation of the two reference frames can be expressed by a similarity transformation

C(Nj1→W ) =

�
s(Nj1→W )R(Nj1→W ) �t(Nj1→W )

0 1

�
=

�
sj1
gI3 �0
0 1

�
∈ Sim(3). (6.12)

Moreover, all the rovers should transmit their local egomotion estimation from monocular VSLAM and
the ranging measurements to their neighbor nodes. For an arbitrary rover in the swarm jn, with the local
egomotion estimates and the ranging measurements from its neighbors, the relative pose with any neighbor
rover of it can be estimated by exploiting the scale and relative pose estimation method in Chapter 5. Using
rover jn’s navigation frame as reference frame, the global scale of the rover jn and its neighbor jm, as
well as the relative pose between the two rovers in the navigation frame (Njn), which is parameterized by
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ξjnjm = [ rjnjm
[1], αjnjm , θjnjm ] here, can be obtained. The coordinates transformation between the two

navigation frames can be represented by the following similarity transformation:
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in which φjnjm = αjnjm + θjnjm − π
2 .

According to the basic reference frame transformation introduced in Eqn. (2.10), by knowing the scales
and the relative poses, the coordinates in the navigation frame (Njm) can be transformed to that in the world
frame by C(Njm→W ) = C(Njn→W )C(Njm→Njn )

. Taking the scenario shown in Fig. 6.4 as an example, the
three nodes j1, jn, and jm can be merged into a pose graph in the swarm reference frame (W ) by knowing
the scale and relative pose estimation results between the two rover pairs.

Therefore, by exchanging the local relative pose estimation and the local knowledge of the swarm for-
mation with all the neighbors, the relative pose information can be merged to obtain a pose graph of the
whole formation, if and only if the graph is connected. The propagation delay of the information among
swarm elements is proportional to the L1-norm (Manhattan distance) of the longest path between two swarm
elements. As the geometric impact, if a node is in the central part of the swarm, the formation pose graph
merging will converge fast. On the contrary, for a rover at the edge of the swarm, the distance from the far-
thest node (measured in L1-norm) will be large, so the knowledge exchange has larger delay. For instance,
in Fig. 6.3, the building process of the formation pose graph will be much faster for rover j1 than that for
rover jm.

Compared with centralized case in Fig. 6.2, there exists loops in the graph since multiple close rovers
connect to each other as neighbor nodes. The redundancy provides better accuracy and robustness for the
swarm navigation. In an extreme case, if all the rovers are connected to each other, the constructed pose
graph will be a complete graph with Nr(Nr − 1)/2 edges, i.e. the geometry of the swarm is constrained by
as much as Nr(Nr − 1)/2 ranging measurements.

Similarly as in the centralized case, the formation of the swarm can be coarsely estimated by combining
the ranging measurements and VSLAM trajectory measurements from all the rovers as:

ζ̂ = argmin
ζ
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where ajnjm is the connectivity indicator that ajnjm = 1 if the two rovers are connected in the swarm,
otherwise ajnjm = 0. In Eqn. (6.17), the parameter vector ζ = { φj1j |j = j2, ..., jNr} ∪ { �βj (W )

[k] |k =

1, ..., Nk, j = j1, ..., jNr}\{ �βj1 (W )
[1] } ∈ R(2NrNk+Nr−3)×1 consists of Nr−1 attitude angles and 2NrNk−2

positions. (The reference frame is chosen according to the initial pose of the rover j1 so the pose �βj1 (W )
[1] is
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Figure 6.4: Merge of two scale and relative pose estimation results
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known.) The vector ρjnjm ∈ RNk×1 contains the ranging measurements between rover jm and jn for all Nk

keyframes. The true range function between the two rovers at keyframe Nk is defined as:

Hjnjm
k(ζ) =

��� �βjm (W )
[k] − �βjn (W )

[k]

��� . (6.18)

The translation function for rover j at keyframe Nk is calculated by
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If there is sufficient communication bandwidth and processing power so that all the rovers can transmit
all the visual measurements to the other swarm elements, the measurements can be processed in a tightly
coupled way. For large scale pose graph optimization and its convergence, state of the art methods are
proposed by Carlone et al. in [132], [133], [134], [135] and [136]. However, in our applications such as
autonomous swarm exploration, the requirements are unfeasible, so the loose coupling is preferred as a
trade-off between accuracy and processing power for the swarm navigation.

6.3 Autonomous Robotic Grouping exploiting Common Field-of-View 1

In cooperative swarm exploration, the autonomous navigation of the swarm elements relies on both onboard
sensors and cooperative information transferred over intra-swarm communication links. The data transmis-
sion requires multiple access and usually has particular requirements on the channel latency and delay to
ensure real-time processing of the data. As a result, robots are preferred to be divided into groups to increase
the efficiency of exploration and to reduce the communication needs. Moreover, by introducing the groups
which consists small number of rovers, the intra-group formation estimation can be realized more efficiently
by the centralized or decentralized swarm navigation method introduced in Section 6.2.

The groups are evolving over time due to the movement of the autonomous vehicles. The distance
of the robots is normally the dominant consideration in grouping. This is motivated by optimizing intra-
group communications and to ease collision avoidance. However, the overlapping FOV of the cameras is
also important for swarm VSLAM either for map merging methods in Section 6.1 or for multi-rover stereo
reconstruction mentioned in Chapter 5, but it is not considered in most cases. Zou and Tan exploit the
number of common feature points in their grouping strategy [137]. However, as we argued in Section 5.3,
this is often not a good measure of the overlap of FOVs. Take the common FOV detection results in Fig.
5.18 and 5.20 as an example. In the "Wall" scenario, 30 feature points are correctly associated with a pixel
overlapping rate of 45 percent. Meanwhile, for the Mars images, only 24 feature points are matched, but
70 percent of the two images is the common visible part. Therefore, it is more reasonable to apply the
percentage of the common FOV than the number of matched feature points as a metric. In this section, we
propose a grouping method based on the similarity metric that relies on both common FOV and Euclidean
distance. It is obtained from the above adaptive common FOV detection method.

6.3.1 Similarity Metric based on Field-of-View and Distance
Assume that Nr robotic rovers are to be divided into M groups according to a grouping metric, and that the
position of the robots cj (W ) ∈ R3 for j = 1, 2, ..., Nr, can be estimated by SLAM and swarm navigation
methods, a state-of-the-art choice of a grouping metric dij is based on distance between rover i and j as in
[138]:

dij = exp

�
−� �ci (W ) − �cj (W )�22

σ2

�
(6.20)

1This part of work was joint work with Christoph Bamann, Technische Universität München
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with σ being a parameter describing the decay rate of the metric as a function of distance. Close robots
are grouped when σ is large. In practice, σ is often chosen as being the standard deviation of the distance
among vehicles.

In order to include common FOV in the grouping strategy, we redefine the grouping metric by:

sij = κ · (qi + qj)/2 + (1− κ) · dij (6.21)

with qi = Noi/Npi, qj = Noj/Npj being the ratios of the pixel numbers in the overlapping regions and
the total pixel number of image i and j, respectively. The parameter 0 ≤ κ ≤ 1 allows to tune the relative
importance of distance and FOV in the grouping strategy. The grouping metric fulfills 0 ≤ sij ≤ 1 and
sii = 1.

6.3.2 Autonomous Robots Grouping Using Adaptive Similarity
Exploiting the connectivity between the rovers and the grouping metric in Eqn. (6.21), an undirected graph
can be defined to demonstrate the swarm. Let r[1], r[2], ..., r[Nr] be the positions of Nr robots, and let them
be the vertices of the graph, then connect every vertex-pair i, j ∈ {1, 2, ..., Nr} by an edge with weight sij .
This is a completely connected graph. The M -grouping problem transforms to a graph cut problem that
separates the vertices into M disjoint graphs in which the total weight of the remaining edges is maximized.
The graph cut problem is NP-hard. Fortunately, excellent suboptimal solutions can be found by using the
graph properties and invariants of graph-based matrices. Spectral clustering algorithms such as the Jordan-
Weiss algorithm [138] provide good solutions to the M -grouping problem. Spectral clustering uses the
property of graph Laplacian matrices that the number of zero eigenvalues in the Laplacian is the number
of connected components in the graph. The details of the Laplacian matrix definition and spectral graph
theory are introduced in [139]. The Jordan-Weiss algorithm clusters the eigenvectors corresponding to the
M largest eigenvalues of the normalized graph Laplacian matrix, which strengthens the cluster property
compared with the original data points. In practice, the group number M is usually determined according to
the exploration strategy. Nevertheless, if there is a demand to adaptively decide the group number, various
criterion can be used to estimate the optimal group number Mopt. One option of determining Mopt is to
maximize the mean intra-group connectivity by

Mopt = argmax
M

1

M

M�

i=1

λ2,i,M , M = 2, ...,Mmax (6.22)

where λ2,i,M denotes the algebraic connectivity (or Fiedler value) of the i-th cluster, which is the second
smallest eigenvalue of the graph Laplacian of a connected graph. A large Fiedler value implies that the con-
nections among the vertices of the graph are strong, while small Fiedler values indicate that many vertices
are connected only by links with a small total weight.

6.3.3 Simulations of Autonomous Grouping Algorithm
The autonomous grouping algorithm is simulated in two scenarios. Scenario 1 contains five cameras with
different positions and orientations that distributes as Fig. 6.5.

The robots are grouped using the grouping metric and algorithm introduced in Section 6.3. Assuming
that the robots are required to be divided into two groups, different results are obtained when κ is varied,
see Table 6.1. For small values of κ , the distance is the dominant, as expected.
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Figure 6.5: Perspective of Scenario 1

Table 6.1: Scenario 1 Grouping Result with M = 2
Adaptive Factor Result Group 1 Result Group 2
0 ≤ κ ≤ 0.4 {1,2} {3,4,5}
0.5 ≤ κ ≤ 1 {1,2,3} {4,5}

Fig. 6.6 illustrates the cameras distribution in Scenario 2. To make the condition more clear, we fix the
height of all the robots in the scenario.

Again we cluster the cameras into two distinct groups according to the adaptive similarity metric for
various κ values. The grouping result is provided in Table 6.2.

The increase of κ results in a larger impact of common FOV among cameras in the final grouping
strategy. To better illustrate it, we plot the average intra-group common FOV and average intra-group
distance measure dij with respect to the incremental adaptive factor κ in Fig. 6.7.

It can be concluded from the curve that for very small κ, the autonomous vehicles with short distance
are clustered together. However, the common FOV inside the groups are extremely small. By setting the
adaptive factor to a suitable value, the autonomous grouping algorithm results in a good trade-off between
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Figure 6.6: Perspective of Scenario 2

Table 6.2: Scenario 2 Grouping Result with M = 2
Adaptive Factor Result Group 1 Result Group 2
0 ≤ κ ≤ 0.3 {1,2,3,7} {4,5,6,8,9,10}
κ = 0.4 {1,2,3,6,7,8} {4,5,9,10}
κ = 0.5 {1,2,6,7,8} {3,4,5,9,10}
κ = 0.6 {1,6,7} {2,3,4,5,8,9,10}

0.7 ≤ κ ≤ 1 {1,6} {2,3,4,5,7,8,9,10}

the robots distance and the common FOV of the cameras. The same conclusion can be drawn for other value
of M as well. If M is determined adaptively, the total group number varies for different κ, but the trend
remains the same as in Fig. 6.7.

The variation of the autonomous grouping in the situation with vehicle mobility yields the simulation
results in Fig. 6.8. In the scenario, the swarm element No. 3 moves along the x-axis while the other
elements keep static. The number of the clusters is determined adaptively using the method described in
Section 6.3.2. In the simulation, the similarity weighting factor κ = 0.5, which indicates the distance and the
common FOV are treated with equal significance. From Fig. 6.8 we can observe that in the six snapshots
the grouping outcome varies as the swarm element moves, and the clusters are marked with different colors.
As the swarm element splits from the red group in Fig. 6.8d, 4 clusters are adapted autonomously by the
algorithm, and the moving element is clustered into an independent group. When it further approaches



104 6. Visual Navigation of a Cooperative Robotic Swarm

Figure 6.7: Average Intra-group Measures of Scenario 2 over κ

the blue cluster, the moving vehicle is merged into the blue cluster and the group number is again 3. The
simulation results indicate reliable grouping and group number adaption performance, and the advantage of
using a combination of distance and common FOV as metric can be observed. If only the common FOV is
considered, the situation in Fig. 6.8c, Fig. 6.8d and Fig. 6.8e would be the same, which is intuitively not as
reasonable as our results.

For the scenario that rover No. 3 moves along x-axis direction, Fig. 6.9 and Fig. 6.10 shows the
change of average intra-group common FOV percentage and distance as the rover moves, respectively. The
corresponding number of group which is optimized adaptively using Eqn. (6.22) is shown in Fig. 6.11.
In the plots, the blue curves are the results from conventional distance-only based grouping, while the
orange curves are the results from the proposed adaptive grouping method by considering both distance
and common FOV among rovers. In these simulations, the adaptive factor κ = 0.5. It can be shown that
the average intra-group common FOV using the proposed method is always larger than the distance-based
method. As a result, if the rovers execute camera-based joint mapping cooperatively with the other rovers
inside the group, the adaptive grouping strategy is more preferred. The common FOV advantage is more
significant if we increase κ, but the average intra-group distance will also increase, as reflected from Fig. 6.9
and Fig.6.10 for the case κ = 0.7. The appropriate κ value should be determined according to requirements
of the tasks in practice.
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Figure 6.8: Splitting and Merging of a Moving Vehicle
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Figure 6.9: Average intra-group common FOV as Rover No. 3 moves, κ = 0.5

Figure 6.10: Average intra-group distance as Rover No. 3 moves, κ = 0.5
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Figure 6.11: Number of groups, κ = 0.5

Figure 6.12: Average intra-group common FOV as Rover No. 3 moves, κ = 0.7
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Figure 6.13: Average intra-group distance as Rover No. 3 moves, κ = 0.7



7. Summary and Conclusions

In conclusion, this dissertation proposed a navigation and localization solution for cooperative robotic
swarms in planar motion. By taking the Mars exploration mission as an instance, this work focuses on the
situation that no reliable absolute positioning system such as GNSS is available. The sensor measurements
are taken from monocular cameras and ranging estimates calculated using pilot signals in communication
links. Such sensor set-up is feasible in practice for a robotic swarm, and the cameras as well as basic com-
munications are essential in exploration tasks. Additionally, we have quantitative discussion on the spatial
uncertainty of the camera system, which indicates that stereo camera rigs do not have significant advantage
over monocular cameras in swarm navigation applications as long as all rovers are connected to at least on
other rover for communications and ranging.

We propose sensor fusion methods for rover pairs. One of the rover pair can either be static or dynamic.
Both situations are discussed in detail. We have shown that compared with vision-only SLAM methods,
the rover pose estimation and the established map accuracy can be improved by tightly coupling the visual
and ranging measurements. In addition, the global scale problem in monocular VSLAM can be solved, and
the relative pose between the two rovers can be estimated jointly with the scales. As a result, if the pose
of one of the rovers is known in the global frame, the other rover can also position itself in the common
reference frame. In a degenerated case, if one of the rover is in static mode, the relative pose has a polar
angle ambiguity. The methods for resolving the ambiguity has been discussed. The proposed relative pose
estimation method has lower requirements on communication capacity compared with state-of-the-art map
merging based approaches.

Based on the calculated relative pose, a swarm formation estimation method is proposed. The whole
swarm can be modeled as a pose graph. By exchanging local belief of egomotion and relative pose estima-
tion, the pose of the whole swarm can be calculated in a common reference system by pose graph optimiza-
tion. Both the centralized and distributed strategies are discussed. The solution outperforms conventional
multi-robot SLAM approaches in the aspect of data transmission requirements. In the whole calculation, no
raw images or feature descriptors are required to be exchanged over communication links.

Moreover, for a pair of rovers with overlapping areas in their cameras’ views, 3D reconstruction can be
executed as a stereo system with variant baseline. Compared with structure from motion approach using a
single camera, the variant baseline stereo system can cope with the reconstruction of scenarios with large
scene depth, and has better efficiency in exploration tasks. As a basic step for the swarm-formed stereo
vision, an automatic common field of view detection algorithm is proposed. In addition, this dissertation
proposed an adaptive swarm grouping method based on both the relative distance and the common field of
view between the rovers. By grouping the rovers, the multiple access requirements for the swarm can be
relaxed, which makes the formation estimation more feasible.

As an extensive discussion, IMUs are widely used in robotic navigation, and can also provide scale in-
formation to monocular camera solutions. On the one hand, a visual-inertial system is yet a dead-reckoning
navigation solution. The error accumulation over long time is unbounded. It is still significantly beneficial
to introduce the ranging measurements to mitigate the drift. On the other hand, a visual-inertial system
can be compatibly integrated to our sensor fusion framework to improve the initialization and estimation
accuracy. IMU can be exploited as a complementary sensor to extend the approach in this work.
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Appendix

Mathematical notations

The cross product between two three dimensional vectors �a = [xa, ya, za]T and �b = [xb, yb, zb]T is calcu-
lated as �a×�b = [yazb − zayb, zaxb − xazb, xayb − yaxb]T . Equivalently, the same result can be generated
by matrix multiplication �a×�b = [a]×�b with

[a]× =




0 −za ya
za 0 −xa
−ya xa 0



 .

Note that the mapping from the set of three dimensional skew symmetric matrices to the set of three di-
mensional vectors is bijective. As a result, any cross product between two 3D vectors can be calculated by
constructing a skew symmetric matrix [·]× and doing basic matrix multiplication.
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Projection function and its Jacobian matrix

Projection from point �Xi to k-th camera:

dik[�u
(k)
i , 1]T = Kk[R(W→k), t(W→k)][ �X

(W )
i , 1]T = Kk[R(W→k),−R(W→k)�c

(W )
k ][ �X (W )

i , 1]T

dik is the depth of the point with respect to the camera, i.e.

dik = [0, 0, 1]KkR(W→k)

�
�X (W )
i − �c (W )

k

�
.

�u (k)
i,x =

[1, 0, 0]KkR(W→k)

�
�X (W )
i − �c (W )

k

�

[0, 0, 1]KkR(W→k)

�
�X (W )
i − �c (W )

k

�

�u (k)
i,y =

[0, 1, 0]KkR(W→k)

�
�X (W )
i − �c (W )

k

�

[0, 0, 1]KkR(W→k)

�
�X (W )
i − �c (W )

k

�

In 2D motion case, the pose of the camera can be parameterized by 3 parameters. If the proposed work
is extended to 3D scenarios, the camera pose has 6 degrees of freedom (3 from position and 3 from attitude).
The 3D attitude of the cameras is described by the special orthonormal group SO(3), which has different
parameterizations, e.g., Euler angle, angle-axis, Lie algebra, and quaternions, etc. As an example, here we
give the measurement equations in 3D case using attitude parameterized by unit quaternions. The update of
the attitude can either be based on infinitesimal rotations or use a Lagrange multiplier to maintain the unitary
constraint in nonlinear optimization. The former solution is widely used in literatures, and the latter solution
will be explained in detail in this appendix. The relation between an unit quaternion and its corresponding
rotation matrix is

R(q) =




1− 2q22 − 2q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) 1− 2q21 − 2q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) 1− 2q21 − 2q22



 .

If we denote the m-th row and n-th column entry of a matrix by (·)mn, we can obtain

dik = R31,k( �X
(W )
i,x − �c (W )

k,x ) +R32,k( �X
(W )
i,y − �c (W )

k,y ) +R33,k( �X
(W )
i,z − �c (W )

k,z ).

Here the formula is simplified since the last row of camera intrinsic matrix Kk is always [0, 0, 1].

�u (k)
i,x =

x̃ik
dik

�u (k)
i,y =

ỹik
dik

where

x̃ik =(K11R11,k +K12R21,k +K13R31,k)( �X
(W )
i,x − �c (W )

k,x )

+(K11R12,k +K12R22,k +K13R32,k)( �X
(W )
i,y − �c (W )

k,y )

+(K11R13,k +K12R23,k +K13R33,k)( �X
(W )
i,z − �c (W )

k,z )

ỹik =(K21R11,k +K22R21,k +K23R31,k)( �X
(W )
i,x − �c (W )

k,x )

+(K21R12,k +K22R22,k +K23R32,k)( �X
(W )
i,y − �c (W )

k,y )

+(K21R13,k +K22R23,k +K23R33,k)( �X
(W )
i,z − �c (W )

k,z )
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The first order partial derivative of the measurements with respect to the parameters are listed below.
Using the notation j = {1, 2, 3} to represent the matrix entries corresponding to the dimension of {x, y, z},
it is obvious that

∂�u (k)
i,x

∂ �X (W )
i,j

=

∂x̃ik

∂ �X (W )
i,j

dik − x̃ik
∂dik

∂ �X (W )
i,j

d2ik

∂�u (k)
i,y

∂ �X (W )
i,j

=

∂ỹik

∂ �X (W )
i,j

dik − ỹik
∂dik

∂ �X (W )
i,j

d2ik

with
∂x̃ik

∂ �X (W )
i,j

= K11R1j,k +K12R2j,k +K13R3j,k

∂ỹik

∂ �X (W )
i,j

= K21R1j,k +K22R2j,k +K23R3j,k

∂dik

∂ �X (W )
i,j

= R3j,k

Similarly, for the camera parameters,

∂�u (k)
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∂�c (W )
k,j

=

∂x̃ik

∂�c (W )
k,j

dik − x̃ik
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∂dik

∂�c (W )
k,j

d2ik
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= −R3j,k

∂�u (k)
i,x

∂qk,j
=

∂x̃ik
∂qk,j

dik − x̃ik
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with
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∂ỹik
∂qk,3

=K21( �X
(W )
i,x − �c (W )

k,x )
∂R11,k

∂qk,3
+K22( �X

(W )
i,x − �c (W )

k,x )
∂R21,k

∂qk,3
+K23( �X

(W )
i,x − �c (W )

k,x )
∂R31,k

∂qk,3

+K21( �X
(W )
i,y − �c (W )

k,y )
∂R12,k

∂qk,3
+K22( �X

(W )
i,y − �c (W )

k,y )
∂R22,k

∂qk,3
+K23( �X

(W )
i,y − �c (W )

k,y )
∂R32,k

∂qk,3

+K21( �X
(W )
i,z − �c (W )

k,z )
∂R13,k

∂qk,3
+K22( �X

(W )
i,z − �c (W )

k,z )
∂R23,k

∂qk,3

∂dik
∂qk,j

= ( �X (W )
i,x − �c (W )

k,x )
∂R31,k

∂qk,j
+ ( �X (W )

i,y − �c (W )
k,y )

∂R32,k

∂qk,j
+ ( �X (W )

i,z − �c (W )
k,z )

∂R33,k

∂qk,j

The Jacobian matrix of the measurements with respect to the parameters would be
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In the iteration, for the attitude parametrization as unit quaternions, only the q1, q2, q3 entries are updated
and q0 = ±

�
1− q21 − q22 − q23 . q0 > 0 means the rotation is between −π/2 and π/2, which is reasonable

for the update or refinement if the motion is not so much. Therefore the q0 can be kept the same sign as
the initial attitude before refinement. In the derivative of elements of R matrix, the q0 must be treated as a
function of qj for j=1,2,3, so

∂q0
∂qj

= −qj
q0
.

The derivatives of a rotation matrix with respect to the three quaternion entries q1, q2, q3 are calculated by:
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