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Smoothness is a main characteristic of goal-directed human movements. The suitability

of approaches quantifying movement smoothness is dependent on the analyzed signal’s

structure. Recently, activities of daily living (ADL) received strong interest in research on

aging and neurorehabilitation. Such tasks have complex signal structures and kinematic

parameters need to be adapted. In the present study we examined four different

approaches to quantify movement smoothness in ADL. We tested the appropriateness

of these approaches, namely the number of velocity peaks per meter (NoP), the spectral

arc length (SAL), the speed metric (SM) and the log dimensionless jerk (LDJ), by

comparing movement signals from eight healthy elderly (67.1a ± 7.1a) with eight healthy

young (26.9a ± 2.1a) participants performing an activity of daily living (making a cup

of tea). All approaches were able to identify group differences in smoothness (Cohen’s

d NoP = 2.53, SAL = 1.95, SM = 1.69, LDJ = 4.19), three revealed high to very

high sensitivity (z-scores: NoP = 1.96 ± 0.55, SAL = 1.60 ± 0.64, SM = 3.41 ±

3.03, LDJ = 5.28 ± 1.52), three showed low within-group variance (NoP = 0.72,

SAL = 0.60, SM = 0.11, LDJ = 0.71), two showed strong correlations between

the first and the second half of the task execution (intra-trial R2s: NoP = 0.22 n.s.,

SAL = 0.33, SM = 0.36, LDJ = 0.91), and one was independent of other kinematic

parameters (SM), while three showed strong models of multiple linear regression (R2s:

NoP= 0.61, SAL= 0.48, LDJ= 0.70). Based on our results we make suggestion toward

use examined smoothness measures. In total the log dimensionless jerk proved to be the

most appropriate in ADL, as long as trial durations are controlled.

Keywords: activity of daily living, smoothness, kinematics, number of peaks, spectral arc length, speed metric,

jerk

INTRODUCTION

Despite the great importance of analyzing ecologically valid activities in clinical research and
diagnostics, the quantification of activities of daily living (ADL) was typically limited to subjective
scorings of videos (1, 2) or timed trials (3–5), although a parametric quantification of movement
quality was not feasible. With technologies like advanced motion-tracking devices, it recently
became more feasible to investigate human behavior in a natural, ecological valid setting. In
the performance of such tasks, goals can be achieved in various ways and actions can’t be
precisely predicted (6). However, certain actions, like phases of inactivity, transporting, grasping,
rotating, circling, or balancing, repeatedly appear in ADL. In kinematic analyses, smoothness is a
main characteristic of goal-directed movements. It is suggested that the planning of movement
dynamics are based on smoothness (7). Thus, deficits in planning are reflected in reduced
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movement smoothness. Consequently, the assessment of
smoothness has become a central metric for the diagnosis and
supervision of motor rehabilitation in neurological disease.
Therefore research, especially in upper-limb rehabilitation in
stroke survivors, shows interest in quantifying smoothness
(8–13).

For different types of movement tasks, trajectories and
corresponding velocity profiles differ in the signals’ structures
(14). Assessing complex tasks, like ADL, the signal can show
peculiarities like phases of inactivity or different quantities of
actions (6, 15). This can lead to misestimations, when using
approaches that utilize data processing that is developed for
less complex signals, which can be periodic (16, 17) [brushing
teeth, sawing, or hammering (18)] or of short lengths (8)
[reaching or grasping movements (8, 13)]. Common smoothness
parameters can be of basically three different types: Velocity-
based parameters, acceleration-based parameters and arc-length-
based parameters. The present classification bases on the
differentiation between velocity peak, different kinds of jerk and
spectral analysis metrics (12, 17, 19), whereas spectral analysis
metrics follow the assumptiom that less smooth movements are
more complex in terms of their frequency composition when
approximating the original signal with a Fourier series [for an
easy introduction to spectral analysis see (20)]. Various velocity-
based parameters were suggested: the number of velocity peaks
(6, 21–23), the normalized average speed (12, 24), the relative
level of activity (6, 21, 24, 25), or the peak-based composition
of the velocity profile (12, 26). Acceleration-based parameters
are examining the rate of change of movement acceleration and
are usually forms of the jerk metric like the normalized jerk
(27, 28), the log dimensionless jerk (8), the normalized squared
jerk (14), or the normalized mean jerk (12). The arc-length-
based parameters measure movement smoothness by defining
the complexity of the signal by the arc length of its profile, that
is the velocity profile (8) or the profile of its power spectrum
(8, 17). So far, the were several attempts to compare and classify
smoothness metrics, including investigations in a stroke samples
(8, 12), a sample of patients with cerebral palsy (13), and of
a general kind (17). However this research focused on mainly
reaching movements and did not examine the behavior of
smoothness metrics when confronted with the complex signals of
ADL performance in healthy elderly. It has been shown that even
in healthy elderly movement smoothness is decreased (29–31),
however, not a drastically as in neurological patients.

In this study we assessed the validity of different smoothness
parameters by comparing the hand movements of young and
elderly participants in an ADL. We investigated to what degree
the used parameters were sensitive, variable, and independent of
general movement characteristics like velocities, trial durations,
path lengths, or the activity level. Further, we examined if the
parameters are quantifying a general ability to produce smooth
movements. ADL offer a way to examine behavior in the context
of disease and aging in an ecological valid way and should
therefore be considered in research and clinical assessment (6, 10,
11, 21, 32). This study tries to explore the behavior of different
parameters in an empirical way in order to give suggestions and
an outlook on future developments.

METHODS

We compared the movements of the dominant hand of 8 healthy
young adults (26.9a± 2.1a) with the movements of the dominant
hand of 8 healthy elderly participants (67.1a ± 7.1a). The ADL
task was to unimanually prepare a cup of tea with milk and sugar
(21). All participants were right handed and each participant
executed the task once. Ethical approval was obtained by the
local ethics committee of the Medical Faculty of the Technical
University of Munich. All subjects provided written informed
consent.

The experimental set-up was similar to the one in Gulde et al.
(21). Participants stood in front of a table with the following
items placed on its surface in a semi-circular order from left to
right: a container with room temperatured water, a milk carafe,
a saucer for used tea-bags, an open container with tea-bags, an
open container with sugar cubes, an open container with coffee
powder (as a distractor item), and an empty kettle. Additional
and in front, there were a mug and spoon located on the table.
Participants were asked to execute the task in a natural way
without emphasis on speed.

The positional data of the dorsum of the hand was obtained by
a Qualisys motion capturing system (Qualisys Inc. Gothenburg,
Sweden) incorporating 5 Oqus cameras sampling with a
frequency of 120Hz. There were no gaps in the recordings. All
post-processing was computed with MatLab (MATLAB R2017a,
MathWorks, MA). After differentiation the data were smoothed
using a 0.1s local regression filter (“loess”) (33). This short
smoothing window (12 frames) was chosen in order to preserve
as much information as possible, to not corrupt the outcomes of
spectral analysis, and in order to not fully eliminate noise, which
can have a specific impact on jerk metrics (17). The time to boil
the water, being dependent on water temperature and filling level,
was not excluded from the signal (typically no hand movements
occur in this waiting period). This was done in order to provoke
meaningless variance in the signal and activity index (relative
amount of time with hand movements).

The used smoothness parameters were the spectral arc length
(8), the (negative–see description) number of velocity peaks per
meter (21), the speed metric (12) and the log dimensionless jerk

(8). The spectral arc length is calculated from the arc length of the
power spectrum of a Fourier transformation of the velocity signal
(8).

spectral arc length , −
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Calculation of the spectral arc length based on a velocity profile
v, with [0, ωc] being the frequency band and V(ω) the Fourier
magnitude spectrum (8).

For the number of velocity peaks per meter all peaks of the
velocity profile, which exceed a prominence of 0.05 m/s, are
counted and divided by the traveled path length. The resulting
number is inverted, so that higher values indicate smoother
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movements (21).

number of velocity peaks per meter , −peaks/

∫

v

Calculation of the number of velocity peaks per meter based on
a velocity profile v and peaks being maxima with a prominence
exceeding 0.05 m/s (21).

The speed metric is obtained by dividing the average velocity
by the maximum velocity (12).

speed metric , ∅v/ max(v)

Calculation of the speed metric based on a velocity profile v (12).
The log dimensionless jerk results from the logarithm

naturalis of the sum of the squared acceleration multiplied with
the trial duration to the power of three and divided by the squared
peak velocity (8).

log dim. jerk , −ln(
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peak
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dt)

Calculation of the log dimensionless jerk based on a velocity
profile v with the time window t1 to t2 (8).

Note that all parameters but the speed metric output negative
values, and for every parameter values closer to zero represent
smoother movements. These four parameters were considered
as prototypical agents for the different classes of smoothness
measures listed in the introduction. The speed metric was added,
since its computation strongly differs from the peaks metric and
therefore its behavior could not have been derived.

The smoothness parameters were compared between groups
using t-tests for independent samples with α = 0.05. Effect-sizes
were calculated with Cohen’s d (34). Sensitivity and within-group
variability were analyzed on the basis of z-scores (reference:
distribution of elderly subjects). Sensitivity was expressed as
the mean z-score and within-group variability was calculated
by 1-std(z-scores)/mean(z-scores) (with =1 being perfectly stable
and <0 being perfectly unstable). The z-standardization was
performed in order to be able to compare the sensitivity between
the different parameters. Multiple linear regression models were
applied to check for independence from the following kinematic
parameters: trial duration (21), path length (21), mean peak
velocity (average of velocity peaks with a minimum prominence
of 0.05 m/s) (21), and relative activity (the relative amount of
the trial duration in which the hands rest, defined by a velocity
below 0.05 m/s) (21). The critical variance inflation factor (VIF)

was set to 5. To avoid a moderation of age, the models of
multiple linear regression were based on z-scores (within-group).
Further, the trials were split into two halves (on the basis of trial
duration) and the first half was compared to the second half of
the trial (intra-individually) by correlational analyses. This can be
considered as an alternative form of test-retest reliability, since by
splitting the task into halves we can examine the within-subject
behavior over two different tasks—which can be considered an
increased generalizability of the outcomes. Of course, this lacks
the comparison between two different time periods of the same
task, but this would be prone to learning effects (andmoderations
by age) and therefore changes in movement smoothness in
such a complex task and the reliability of a classic test-retest
approach would therefore be questionable. Additionally, the four
parameters were correlated with each other in order to get an
estimate, if they are generally measuring the same phenomenon.
The effect-sizes of the regressions were defined according to
Cohen (34) as r > 0.1 being weak, r > 0.3 being moderate
and r > 0.5 being strong. The small sample size can impact
the outcomes of the statistical tests, especially of the models
of multiple linear regression. The impact of variables can be
therefore misestimated. The statistical power for all tests was
determined post-hoc with a critical power of 0.80 using G∗Power
(G∗Power 3.192, 2014, HHU Düsseldorf, Germany).

TABLE 2 | The means and standard deviations for the sensitivity measure and the

within-group variability index for the four smoothness parameters.

Sensitivity Within-group

variability

Number of peaks per meter 1.96 ± 0.55 0.72

Spectral arc length 1.60 ± 0.64 0.60

Speed metric 3.41 ± 3.03 0.11

Log dimensionless jerk 5.28 ± 1.52 0.71

TABLE 3 | The R2-values of the intra-trial correlation, its p-values and power

estimates for the four smoothness parameters.

Intra-trial correlation p-value Power

Number of peaks per meter R2 = 0.22 0.07

Spectral arc length R2 = 0.33 0.02 0.75

Speed metric R2 = 0.36 0.01 0.80

Log dimensionless jerk R2 = 0.91 <0.01 1.00

TABLE 1 | The means, standard deviations, effect-sizes, p-values, and power estimates for the young and the elderly sample for the four smoothness parameters.

Young Elderly p-value Cohen’s d Power

Number of peaks per meter −5.43 ± 0.67 −7.82 ± 1.22 <0.01 2.53 1.00

Spectral arc length −12.55 ± 2.16 −17.97 ± 3.39 <0.01 1.95 0.95

Speed metric 0.12 ± 0.04 0.08 ± 0.01 0.02 1.69 0.88

Log dimensionless jerk −12.03 ± 0.70 −14.47 ± 0.46 0.01 4.19 1.00

Frontiers in Neurology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 615

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gulde and Hermsdörfer Smoothness

RESULTS

The comparison of the groups revealed significant differences
for all four parameters (Table 1) reaching from Cohen’s ds
of 1.69–4.19. In all cases the young participants’ movements
were classified as being smoother. The sensitivity was measured
by the z-scores of the young participants referenced to the
elderly participants. Table 2 contains the resulting magnitudes
of sensitivity and within-group variability for the different
parameters. Sensitivity was calculated 1.60–5.28 and within-
group variability 0.11–0.72. The results of the comparison of
the first half with the second half of each trial are covered
by Table 3, with R2s ranging from 0.22 to 0.91. Note, that
only the speed metric and the log dimensionless jerk reached
significance and delivered power estimates of at least 0.80. The
models of multiple linear regression showed significant models
for number of velocity peaks per meter, spectral arc length, and
log dimensionless jerk. Themodels for speedmetric were all non-
significant (Table 4). The correlations between the parameters
were, except log dimensionless jerk & speed metric, all significant
and strong (Table 5).

DISCUSSION

In the present study, we analyzed movement smoothness that
is known as a highly characteristic aspect of task performance.
Since measures of smoothness were typically established for
simple continuous or discrete movements, we here analyzed the
suitability of various measures for the evaluation of the complex
activity of daily living of tea making.

The comparison of the four smoothness parameters revealed
that all of the methods were able to detect the differences in
smoothness between young and elderly participants in the ADL
of tea making. With mean z-scores between 1.60 and 5.28 all
four parameters proved to be highly sensitive. Three of the
parameters showed a within-group variance index above or equal
0.6, meaning that within group variability was low in the number

of velocity peaks per meter, the spectral arc length, and the log
dimensionless jerk, while it was very high in the speed metric.
The intra-trial comparisons (first half vs. second half) further
revealed that three of the parameters were significantly correlated
between the two halves with the strength of the correlations
being strong. Note, that in one case the statistical power was
lower than 0.80 (spectral arc length). High correlations between
the two halves support a generalization beyond this specific
ADL. By splitting, two different tasks were artificially created
and in case of high intra-trial correlations, the metric shows
the capability to estimate the participant’s general and not task
restricted movement smoothness. Lastly, the models of multiple
linear regression revealed an impact of kinematic parameters on
three of the parameters. All of the models were strong (r >

0.5), although the sample size was small with 16 participants.
The small sample size could have led to missing a possible
dependence of the speed metric on kinematic parameters. Each
of the four parameters was strongly connected with at least one
other smoothness parameter (Table 5), leading to the assumption
that the used parameters are basically measuring the same
phenomenon.

Table 6 provides an overview of the outcomes of the
parameter analysis.

Of the four parameters, none proved to be fully suited for a
general quantification of smoothness in the tested ADL, although
log dimensionless jerk did reveal good characteristics except
its very strong association with trial duration. The number of
velocity peaks per meter was able to detect the group differences,
showed high sensitivity, low within-group variance, but the
correlation between the first and the second half of the trial was
non-significant (although a trend was observed, p= 0.07) and the
model of multiple linear regression revealed a strong dependence
on the traveled path length and mean peak velocity. The impact
of mean peak velocity on smoothness can be explained by the
fact that smooth movements promote faster movements and
the change in the signal-to-noise ratio (17). The dependence
on path length is surprisingly not an artifact of the calculation

TABLE 4 | The corrected R2-values of models of multiple linear regression, their p-values, power estimates, and the models’ factors for three of the four smoothness

parameters.

Corrected R2 p-value power Factors

Number of peaks per meter R2 = 0.61 <0.01 0.98 Path length (ß = −0.36, p = 0.05)

Mean peak velocity (ß = 0.66, p < 0.01)

Spectral arc length R2 = 0.48 <0.01 0.87 Trial duration (ß = −0.86, p < 0.01)

Mean peak velocity (ß = 0.60, p = 0.02)

Log dimensionless jerk R2 = 0.70 <0.01 1.00 Trial duration (ß = −0.85, p < 0.01)

For the speed metric, none of the models was significant.

TABLE 5 | Correlations between the four different smoothness parameters.

Number of peaks per meter Spectral arc length Speed metric

Log dimensionless jerk r = 0.79 (p < 0.01, power = 1.00) r = 0.77 (p < 0.01, power = 0.99) r = 0.50 (p = 0.051)

Speed metric r = 0.57 (p = 0.02, power = 0.73) r = 0.71 (p < 0.01, power = 0.96)

Spectral arc length r = 0.58 (p = 0.02, power = 0.75)
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TABLE 6 | Color-coded overview of the interpreted outcomes of the parameter analysis.

Group

differences

detected

Sensitivity Within-group

variance

Intra-trial

correlation

Dependence on kinematic

parameters

Number of velocity peaks per meter Yes High Low No Strong

(–) path length

(+) mean peak velocity

Spectral arc length Yes High Low Strong

(power<0.8)

Strong

(–) trial duration

(+) mean peak velocity

Speed metric Yes Very high Very high Strong None

Log dimensionless jerk Yes Very high Low Strong Strong

(–) trial duration

Green refers to good characteristics, yellow to acceptable characteristics and red to weaknesses.

Sensitivity was defined as 0.5≤ × <1.0 being moderate, 1.0≤ × <2.0 being high and x ≥ 2.0 being very high. Within-group variance was defined as x ≤ 0 being perfectly unstable,

0< × <0.2 being very high, 0.2≤ × <0.4 being high, 0.4≤ × <0.6 being moderate, 0.6≤ × <0.8 being low and 0.8≤ × being very low.

method of the parameter. The impact was negative, which means
that the smoothness decreases with longer trajectories. Smaller
movements, like repetitive approaches to the mug or hesitating
and retrieving the hand could explain this: They produce peaks
with small movements and at the same time add (unnecessary)
path length. This would make the parameter better suited for the
comparison of groups with similar path lengths and a comparable
number of actions, this is for instance given in stroke patients and
age-matched controls, who revealed comparable path lengths and
action steps in the ADL of tea making (6). The spectral arc length
was also able to detect the group differences, proved to be highly
sensitive, revealed a low within-group variance, but showed a
correlation in the intra-trial comparison with a power lower than
0.80, and revealed a strong dependence on kinematic parameters.
Trial duration negatively impacted the model, resulting in less
smooth movements in longer trials. The basis could be that
trial duration in both groups was strongly associated with the
general motor capability—this has been at least reported in stroke
patients (10). The model was also impacted by the mean peak
velocity, same as in the model for the number of velocity peaks
per meter (with comparable ßs of 0.60 and 0.66). This would
make the parameter well suited for comparisons with equal trial
durations and movement speeds (also see power of intra-trial
correlation). Unimanual ADL performance with the dominant
and the non-dominant hand would be a possibility, where young
as well as elderly revealed no difference in mean peak velocity
(21). The speed metric was able to detect to group differences,
proved highly sensitive and had a strong correlation in the intra-
trial comparison, but revealed a very high within-group variance.
It further proved to be independent of other commonly used
kinematic parameters, although this could be due to the small
sample size. It is advisable to use this parameter with caution,
due to its high within-group variance. It appeared to be not
suited for an analysis of the ADL. The log dimensionless jerk was
able to detect the group differences, proved highly sensitive and
was strongly correlated in the intra-trial comparison. It further
revealed a low within-group variance, but a strong dependence
on the trial duration. The impact of trial duration was negative,
same as for the spectral arc length. The log dimensionless jerk

appeared to be well suited for the analysis of ADL, as long as
the variability in the trial duration is controlled for. Although
trial duration andmovement capacity can be associated in patient
groups (10), there is evidence that trial durations in ADL are
based on other factors likemovement strategy or cognitive factors
in healthy adults (21), therefore controlling for trial duration
in spectral arc length as well a log dimensionless jerk appear
substantial.

CONCLUSIONS

The analysis of the four smoothness parameters revealed that
there is still the necessity for a novel, well-suited parameter
for the analysis of movement smoothness in ADL. Still, three
of the four parameters proved to deliver good estimates, when
controlling for certain aspects of an experiment. Since the sample
size was relatively small, our findings have to be interpreted
with care, although the statistical power was mostly high. In
addition, we tested only one ADL task and the question is how
much our findings can be extended to ADL in general. However,
certain patterns and combinations of actions, for instance phases
of inactivity, grasping, or transporting, repeatedly appear in
ADL. This is particularly true in an ADL that demands manual
interactions with serval objects like the one analyzed here. We
therefore believe that our findings can be generalized to a broad
class of ADL and draw the following recommendations for the
use of smoothness parameters in ADL: The number of velocity
peaks per meter needs comparisons with equal lengths of the
trajectories and comparable quantities of performed actions in a
task. The spectral arc length needs tasks with comparable trial
durations and movement speeds. The log dimensionless jerk,
having a very strong intra-trial correlation, very high sensitivity,
low within-group variability, but a very strong dependence on
trial duration, should deliver good estimates on a wide range of
ADL tasks, as long as the trial durations are controlled for. Given
these prerequisites, these three parameters (number of velocity
peaks per meter, spectral arc length & log dimensionless jerk)
can deliver appropriate estimates of movement smoothness in
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complex motor tasks like ADL. Future research should examine
the different sub-types of those measures and different ADL tasks
to see if the behavior of the parameter class and the ADL (tea
making) are generalizable.

The search for a universal smoothness parameter for
ADL should have a high priority in neurorehabilitational
research in order to assess motor capacity and supervise the
rehabilitation process of patients suffering from neurological
diseases like stroke, Parkinson’s disease, or cerebral palsy. So far,
comparisons of movement smoothness with control groups or in
patient groups with high (kinematic) variabiliy and during the
supervision of the rehabilitation process with changes in trial
durations, mean peak velocities, or path lengths, are limited. A
promising approach could be using wavelet transformation in
order to estimate the complexity of the signal (analog to the
spectral arc length metric).

LIMITATIONS

There are clear limitations in this study. Although examining
an ADL, ecological validity was limited by the unimanual
execution of the task. However, previous research has shown
that the transfer from bimanual to unimanual performance
has no interaction with age (21), and the unimanual execution
controlled for variability in hand use in bimanual conditions.
Considering the relatively small sample size, appropriate

statistical power was still given. Further, the examination of
a non-standardized, complex task with parameters that are
fitted to quantify movement smoothness in discrete, single

movement or cyclic tasks without further data processing like
segmentation is a questionable approach considering validity and
reliability. However, the results of this study strongly suggest
that it is indeed possible to quantify movement smoothness in
ADL by the existing parameter classes, although adaptations
are still necessary. Another limitation is the small sample size.
Therefore some associations could have been underestimated
(e.g., the dependence of the speed metric on other kinematic
parameters). Still, the analyses were able to reveal certain
associations and the power estimates were acceptably high. Last,
an assessment of test-retest reliability was only partially possible,
since in such complex task fast adaptations through learning
can be expected, as well as moderations of learning rates by
age.

AUTHOR CONTRIBUTIONS

PG and JH designed the study. PG performed the lab testing and
the kinematic and statistical analyses. All authors contributed
to the coordination of the study and the final draft of the
manuscript.

FUNDING

This study was funded by the EU Specific Targeted Research
Project CogWatch. This work was supported by the German
Research Foundation (DFG) and the Technical University of
Munich (TUM) in the framework of the Open Access Publishing
Program.

REFERENCES

1. Buxbaum L. Ideational apraxia and naturalistic action. Cogn Neuropsychol.

(1998) 15:617–43. doi: 10.1080/026432998381032

2. Giovannetti, T., Libon DJ, Buxbaum LJ, Schwartz MF. Naturalistic

action impairments in dementia. Neuropsychologia (2002) 40:1220–32.

doi: 10.1016/S0028-3932(01)00229-9

3. Bickerton, W., Riddoch MJ, Samson D, Balani AB, Mistry B, Humphreys

GW. Systematic assessment of apraxia and functional pedictions from the

Birmingham Cognitive Screen. J Neurol Neurosurg Psychiatry Pract Neurol.

(2012) 85:512–52. doi: 10.1136/jnnp-2011-300968

4. Ehrensperger, M., Berres M, Taylor KI, Monsch AU. Early detection

of Alzheimer’s disease with a total score of the German CERAD.

J Int Neuropsychol Soc. (2010) 16:910–20. doi: 10.1017/S13556177100

00822

5. Carr D, Barco PP, Wallendorf MJ, Snellgrove CA, Ott BR. Predicting road test

performance in drivers with dementia. J Am Geriatric Soc. (2011) 59:2112–7.

doi: 10.1111/j.1532-5415.2011.03657.x

6. Gulde P, Hughes C, Hermsdörfer J. Effects of stroke on ipsilesional end-

effector kinematics in amulti-step activity of daily living. Front HumNeurosci.

(2017) 11:42. doi: 10.3389/fnhum.2017.00042

7. Cruse H. On the cost functions for the control of the human arm movement.

Biol Cybernet. (1990) 62:519–28. doi: 10.1007/BF00205114

8. Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive

metric for quantifyingmovement smoothness. IEEE Trans Biomed Eng. (2012)

59:2126–36. doi: 10.1109/TBME.2011.2179545

9. Alt Murphy M, Willén C, Sunnerhagen K. Kinematic variables

quantifying upper-extremity performance after stroke during reaching

and drinking from a glass. Neurorehabil Neural Rep. (2011) 25:71–80.

doi: 10.1177/1545968310370748

10. Alt Murphy M, Willén C, Sunnerhagen K. Movement kinematics during

a drinking task are associated with the activity capacity level after

stroke. Neurorehabil Neural Rep. (2012) 26:1106–15. doi: 10.1177/154596831

2448234

11. Alt Murphy M, Willén C, Sunnerhagen K. Responsiveness of upper

extremity kinematic measures and clinical improvement during the first

three months after stroke. Neurorehabil Neural Rep. (2013) 27:844–53.

doi: 10.1177/1545968313491008

12. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al.

Movement smoothness changes during stroke recovery. J Neurosci. (2002)

22:8297–304. doi: 10.1523/JNEUROSCI.22-18-08297.2002

13. Rincón Montes V, Quijano Y, Chong Quero JE, Villanueva Ayala D, Pérez

Moreno JC. Comparison of 4 different smoothnessmetrics for the quantitative

assessment of movement’s quality in the upper limb of subjects with cerebral

palsy. In: PanAmeicanHealth Care Exchanges (PAHCE). Brasilia: IEEE (2014).

14. Hogan N, Sternad D. Sensitivity of smoothness measures to movement

duration, amplitude and arrests. J Motor Behav. (2009) 41:529–34.

doi: 10.3200/35-09-004-RC

15. Wood R. Task complexity: definition of the construct.Organ Behav HumDecis

Processes (1986) 37:60–82. doi: 10.1016/0749-5978(86)90044-0

16. Deeming T. Fourier analysis with unequally-spaced data. Astrophys Space Sci.

(1975) 36:137–58. doi: 10.1007/BF00681947

17. Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E. On

the analysis of movement smoothness. J Neuroeng Rehabil. (2015) 12:112.

doi: 10.1186/s12984-015-0090-9
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