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Abstract

Ramularia leaf spot has recently emerged as a major threat to barley production world-wide, causing 25% yield loss in many barley

growing regions. Here, we provide a new reference genome of the causal agent, the Dothideomycete Ramularia collo-cygni. The

assembly of 32 Mb consists of 78 scaffolds. We used RNA-seq to identify 11,622 genes of which 1,303 and 282 are coding for

predicted secreted proteins and putative effectors respectively.

The pathogen separated from its nearest sequenced relative, Zymoseptoria tritici�27 Ma. We calculated the divergence of the

two species on protein level and see remarkably high synonymous and nonsynonymous divergence. Unlike in many other plant

pathogens, the comparisons of transposable elements andgene distributions, show a very homogeneousgenome forR. collo-cygni.

We see no evidence for higher selective pressure on putative effectors or other secreted proteins and repetitive sequences are spread

evenly across the scaffolds. These findings could be associated to the predominantly endophytic life-style of the pathogen. We

hypothesize that R. collo-cygni only recently became pathogenic and that therefore its genome does not yet show the typical

pathogen characteristics. Becauseof its high scaffold length and improvedCDSannotations, ournew reference sequence provides a

valuable resource for the community for future comparative genomics and population genetics studies.
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Introduction

The filamentous ascomycete fungus Ramularia collo-cygni

was first described in 1893 as Ophiocladium hordei (Cavara

1893). It is the biotic agent of ramularia leaf spot (RLS) (Oxley

and Havis 2004), a disease typically occurring late in the grow-

ing season on the upper canopy (Salamati and Reitan 2006).

Since the mid-1980s it has become the major pathogen in

many barley growing regions worldwide and quickly devel-

oped resistance to major fungicides (Matusinsky et al. 2011;

Havis et al. 2015; Piotrowska et al. 2017). It can now be

detected in barley samples worldwide (Havis et al. 2015)

and in infected fields it is estimated to cause losses around

25% of the yield potential through a significant decrease of

kernel size and quality (Harvey 2002).
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A draft genome assembly of R. collo-cygni strain DK05,

isolated in Denmark, had been published previously

(McGrann et al. 2016). Like its closest sequenced relative

Zymoseptoria tritici, R. collo-cygni has few plant cell wall

degrading enzyme genes and a large number of gene clusters

associated with secondary metabolite production. These find-

ings are thought to be linked to the relatively long period of

asymptomatic growth of both pathogens inside the host.

We present an independent draft genome of a strain iso-

lated in southern Uruguay. The significantly increased scaffold

size enabled several analyses related to genome architecture.

Moreover, our improved annotation allows for more reliable

identification of genes that are under positive selection and

may be involved in pathogenicity.

Materials and Methods

Genome Assembly and Annotation

A detailed description of the genome sequencing strategy,

assembly and annotation can be found in the supplementary

files. In short: sequencing was done by Eurofins Genomics

GmbH, Germany, using a short distance library (SD) (insert

size, 500 bp, paired-end sequencing 2� 150 bp) and a LJD

(jumping distance 8-kb, paired-end sequencing 2� 300 bp).

RNA-seq was performed using TruSeq Rapid PE Cluster (PE-

402-4001) and the TruSeq Rapid SBS (FC-402-4001) Kits.

The assembly was performed by ALLPATHS-LG (Gnerre

et al. 2011) using �100-fold SD and �30-fold LJD coverage.

Gene models were generated by 1) Fgenesh (Salamov and

Solovyev 2000), 2) GeneMark-ES (Ter-Hovhannisyan et al.

2008), and 3) AUGUSTUS (Stanke et al. 2006). RNA-seq tran-

scripts were assembled using Trinity (Grabherr et al. 2011).

Gene models were visualized in Gbrowse (Donlin 2009),

allowing manual validation of coding sequences. The

best fitting model per locus was selected manually and

gene structures were adjusted by splitting or fusing of

gene models or redefining exon–intron boundaries if

necessary.

The protein coding genes were analyzed and functionally

annotated using the PEDANT system (Walter et al. 2009).

We combined SecretomeP1.1 (Bendtsen, Jensen, et al.

2004), SignalP3 (Bendtsen, Nielsen, et al. 2004), and

SignalP4.0 (Petersen et al. 2011) with TargetP1.1

(Emanuelsson et al. 2007), TMHMM2.0 (Krogh et al. 2001)

to predict secreted proteins. For effector prediction, this set

was submitted to EffectorP 2.0 (Sperschneider et al. 2016).

Repetitive elements were identified using the RepeatModeler

pipeline (smith 2013), which is based on RepeatScout (Price

et al. 2005).

Further Analyses

Orthologous genes for 10 main housekeeping genes we se-

lected from the proteomes of Urug2, 15 closely related

species and three more distal species that are available from

the FunyBASE (Marthey et al. 2008). We performed a

ClustalW pairwise alignment and multiple alignment with

standard parameters for the combined proteins of all species

(An, Aspergillus nidulans; Bc, Botrytis cinerea; Bg, B. graminis;

Cb, Cercospora beticola; Cg, Colletotrichum graminicola; Ds,

Dothistroma septosporum; Fg, Fusarium graminearum; Ff,

Fusarium fujikuroi; Mf, Pseudocercospora fijiensis; Mo,

Magnaporthe grisea; Pi, Piriformospora indica; Pr, P. tritici-

repentis; Pt, P. teres f. teres; Rc, R. collo-cygni; Sn, P. nodorum;

Sm, Sphaerulina musiva; Um, Ustalago maydis; Zt, Z. tritici;

Outgroup, Laccaria bicolor) using Mega X (Kumar et al. 2018)

Dating of the Zt–Rc split was done using the RelTime method

(Tamura et al. 2012), where Lb was used as an outgroup and

the data were calibrated using the Um to An split (Taylor and

Berbee 2006).

Orthologous genes to all single copy genes were identified

in the Zt proteome (BLASTP e-value: 10�10), only reciprocal

matches were used and globally aligned using t-coffee (de-

fault parameters) (supplementary table S5, Supplementary

Material online). Amino acids were replaced by codons from

the CDS sequence using pal2nal (Suyama et al. 2006). The

dN/dS ratios were calculated with PAML (Yn00 command)

(Yang and Nielsen 2000). Intergenic distances and TE dis-

tances were calculated using bedtools (closest) (Quinlan

and Hall 2010). Genome alignments between the assem-

bly of Urug2 and that of DK05 were inferred using nucmer

(with –maxmatch, otherwise default options) from the

MUMmer package (version 3.23) and alignments that

span >1 kb and are >90% identical in sequence were

plotted using Gnuplot.

Results

Genome Properties

Combining short distance with long jumping distance libraries

(LJDs), we obtained a �32-Mb assembly of R. collo-cygni iso-

late Urug2, in 78 scaffolds with an N50 scaffold size of

2.1 Mb, compared with 576 scaffolds and an N50 of 0.21

in the previous DK05 assembly (table 1). Dot plot analysis

comparing both Urug2 to DK05, shows strong linearity sug-

gesting little to no overassembly (supplementary fig. S1,

Supplementary Material online). To bolster gene annotations,

we sequenced mRNA isolated from R. collo-cygni grown un-

der six axenic conditions to generate a diverse set of tran-

scripts. Using these data mapped to the genome, the

annotation was manually corrected gene by gene, yielding a

more reliable set of gene models (example shown in supple-

mentary fig. S2, Supplementary Material online). The curated

R. collo-cygni genome contains 11,622 protein coding genes

of which 11,125 show expression evidence (95.7%, supple-

mentary table S1, Supplementary Material online). We pre-

dicted 1,303 secreted proteins ranging in length from 41 to
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3,256 amino-acids, representing around 9% of the predicted

proteome, among which 282 effector candidates genes

(putative effectors) (2%) (supplementary table S2,

Supplementary Material online). These numbers are an in-

crease over the previous R. collo-cygni assembly that con-

tained 1,053 putative secreted proteins and 150 effector

candidates.

The general genome features are comparable to other

Dothideomycete plant pathogens with available genome

sequences (Parastagonospora nodorum SN15, Hane et al.

2007; Syme et al. 2013, Pyrenophora tritici-repentis

BFP-ToxAC, Manning et al. 2013, Pyrenophora teres f. teres

0-1, Wyatt et al. 2018, and Z. tritici IPO323, Goodwin et al.

2011; table 1). We estimated genome completeness using

BUSCO (version 3.0.1). 96.8% of the genes were detected

as complete and single-copy in the R. collo-cygni Urug2 as-

sembly. This exceeds the completeness of R. collo-cygni DK05

(93.9%) and Z. tritici IPO323 (92.5%) and is similar to P. teres

f. teres 0-1 (supplementary table S3, Supplementary Material

online).

Gene Expression Analysis

We saw similar levels of gene expression in all six tested me-

dia, with a slightly larger fraction of genes expressed in Barley

Straw Agar (BSA), a host-mimicking agar medium compared

with neutral or pH-adjusted media (supplementary table S1,

fig. S3A, Supplementary Material online). We found a larger

number of differentially expressed genes (DEGs) (>4-fold

change) in BSA (supplementary fig. S3B, Supplementary

Material online). We expected that gene expression in BSA

most closely resembles infection of the plant. Indeed, we

found that the fraction of putative secreted proteins and ef-

fector candidates is two times higher in the BSA differentially

expressed genes than in the genome as a whole (resp. 22%

and 5%).

Strong Divergence from Z. tritici

We reconstructed a phylogenetic tree of R. collo-cygni, with

15 more closely and three more distantly related species

(fig. 1) and confirm that R. collo-cygni falls within the

Mycosphaerellaceae clade of the Dothideomycete class.

Ramularia collo-cygni (Rc) diverged from the closest se-

quenced relative, Z. tritici (Zt) 27 Ma. To gain insight in the

differentiation of R. collo-cygni from Z. tritici, we calculated

the ratio of non-synonymous over synonymous substitutions

(dN/dS) (fig. 2). The very high dS indicate that these two spe-

cies have significantly diverged since the split. When compar-

ing the dN/dS between the two species for the putative

secreted proteins and putative effectors, we find that the

putative secreted proteins show a slightly higher dN/dS ratio

than nonsecreted proteins (Dunn’s multiple comparisons

Kruskal–Wallis test, P¼ 4.7� 10�16). For the effectors this

difference is not significant (P¼ 0.16). Effectors and secreted

proteins also show no significant differences (P¼ 0.2). In

terms of absolute values and outliers, there are no putative

effectors that stand out. Similar results can be observed when

comparing differentially expressed genes on BSA. As men-

tioned above, these genes are hypothesized to be important

for virulence on barley, yet there are no significant differences

in dN/dS between these BSA up- or down regulated genes

and nonDEGs or between up or down regulated genes in

general (fig. 3C, Dunn’s multiple comparisons Kruskal–

Wallis test, P> 0.01).

The R. collo-cycni Genome Is Relatively Repeat Poor and
Homogeneous

We compared the content of noncoding sequences and re-

peat sequences like DNA transposons and other transposable

elements (TEs) (supplementary table S4, Supplementary

Material online). In terms of repeat sequence content, R.

collo-cygni is placed at the low end of the spectrum amongst

Table 1

Summary Statistics for Our Urug2 Genome, as well as Other Related Fungi

Ramularia

collo-cygni

Ramularia

collo-cygni

Phaeosphaeria

nodorum

Pyrenophora

tritici-repentis

Pyrenophora

teres-teres

Zymoseptoria

tritici

Isolate Urug2 DK05 Rcc001 SN15 BRP-ToxAC 0-1 IPO323

Genome size (Mb) 32.3 30.3 37.2 37.8 46.5 39.7

Chromosomes n.d. n.d. n.d. n.d. n.d. 21

Scaffolds 78 576 107 47 86 21

N50 scaffold (Mb) 2.1 0.21 0.17 1.9 1.73 Finished

GC-content (%) 49.7 51.4 50.2 51 46 51.7

Protein coding genes 11,622 11,617 14,885 12,141 11,541 10,933

Gene density (number of genes per Mb) 383 384 402 321 248 276

Total secreted Protein 1,303 1,053a 2,172 1,433 1,357 1,252

Number of predicted effectorsa 282 150a 625 382 337 380

NOTE.—Genome statistics were taken from the respective publications for each organism. The number of putative secreted proteins and effector candidates was recalculated
for each species except DK05, using our newest pipeline.

aDK05 gene/protein models were not publicly available.
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Dothideomycetes. Only 6% of the genome consists of TEs,

whereas in P. tritici-repentis, P. teres f. teres, and Z. tritici this is

21%, 38%, and 17%, respectively. Next, we compared the

distance of predicted genes to its nearest repeat sequence as

well as the general intergenic distance. Close association of

genes to TEs and large intergenic distance for regions

with high effector content are features of a so-called

“two-speed-genome” and often associated with accelerated

evolution (Raffaele and Kamoun 2012). Figure 3A shows that

intergenic distances are not differently distributed between

putative effectors genes or other genes and the mean values

for the difference to the nearest TE for putative effectors and

putative secreted proteins are not significantly different from

the distances for not secreted proteins (effector: 30: 1,739 bp,

FIG. 1.—Phylogenetic tree showing the relationship between Ramularia collo-cygni and 16 other fungi. (A) Maximum likelihood phylogenetic tree based

on the analysis of 10 housekeeping genes. Reported on the nodes are bootstrap values for 1,000 bootstraps. (B) Timetree results. Reported on the nodes are

the divergence times in mya. Bc, Botrytis cinerea; Bg, Blumeria graminis; Cg, Colletotrichum graminicola; Cb, Cercospora beticola; Ds, Dothistroma

septosporum; Fg, Fusarium graminearum; Ff, Fusarium fujikuroi; Mf, Pseudocercospora fijiensis; Mo, Magnaporthe grisea; Pr, Pyrenophora tritici-repentis;

Pt, Pyrenophora teres f. teres; Rc, R. collo-cygni; Sn, Parastagonospora nodorum; Sm, Sphaerulina musiva; Zt, Zymoseptoria tritici; An, Aspergillus nidulans;

Um, Ustalago maydis; Pi, Piriformospora indica; Outgroup, Laccaria bicolor.

FIG. 2.—dN/dS between Ramularia collo-cygni and Zymoseptoria tritici. (A) Scatter plot of the dS (x axis) against dN (y axis) for each predicted protein in a

pairwise comparison between R. collo-cygni and Z. tritici. (B) Violin diagrams of the dN/dS ratio for predicted proteins in a pairwise comparison between R.

collo-cygni and Z. tritici. Data colored based on whether the proteins are predicted to be putatively secreted proteins, putative effectors or other, nonsecreted,

proteins. Horizontal bar depicts the median.
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50: 1,646 bp, secreted 30: 1,659 bp, 50: 1,715 bp, nonsecreted:

30: 1724, 50: 1727) (Dunn’s multiple comparisons Kruskal–

Wallis test, P> 0.1). Lastly, we also do not find a significant

correlation between the number of TEs per kb/scaffold or the

number of effectors or secreted proteins (Spearman rho,

P> 0.01, fig. 3C; supplemantary fig. S4).

Discussion

A first draft genome of R. collo-cygni (isolate DK05) had been

available since 2016. The data suggested a genetic composi-

tion that might at least partially explain the lifestyle of R. collo-

cygni, which is characterized by a long endophytic phase

throughout the life cycle of the host and an intense parasitic

phase during crop senescence (McGrann et al. 2016). We

generated an independent draft genome and annotation

for another isolate (Urug2) to get better insights in the R.

collo-cygni genome structure. We assembled the 32-Mb ge-

nome into only 78 scaffolds with 11,622 high confidence

genes. Our expression data greatly helped with gene annota-

tions and provide interesting insights in genes expressed un-

der different axenic conditions. This will help researchers to

verify target gene candidates for functional studies, yet to

truly understand gene expression during the infection process,

additional RNA-Seq from infected plant tissue will be

required.

A

C

B

FIG. 3.—Intergenic distance and TEs in R. collo-cygni. (A) Density plot of the intergenic distances on the 50 end (x axis) against the 30 end (y axis) for each

predicted gene on the genome. Distances for all genes are binned in hexagons and colored using a blue to red scale, red indicating the largest amount of

genes per hexagon. Putative effectors are plotted as separate black dots. (B) Box plots of the distance to the nearest TE for each gene coding for predicted

nonsecreted (grey), putative secreted (yellow), or effector (green) proteins. (C) Density of putative effector encoding genes (top, green) and transposable

elements (bottom, grey) plotted in 10-kb nonoverlapping sliding windows along the genome (x axis). Density is defined as number of basepairs that is part of

a putative effector or TE in the window (y axis). A close-up of scaffolds 21-35 is provided in supplementary Fig. S4.
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Our sequencing approach allowed for comparative studies

and confirmed that unlike many other pathogens R. collo-

cygni did not undergo any genome expansions since it di-

verged from its nearest sequenced sister species 27 Ma.

Unlike what can be seen between certain fungal and oomy-

cete species, where the numbers of genes in some effector

families differ up to an order of magnitude (Stam et al. 2013)

the numbers of putative effectors in R. collo-cygni are com-

parable with that of related fungi.

We performed pairwise comparisons of the coding

sequences of R. collo-cygni and the related wheat patho-

gen Z. tritici. The dN/dS ratio has a simple and intuitive

interpretation of selection pressure, but comes with limi-

tations, especially when dS is high (Kryazhimskiy and

Plotkin 2008). However, our analyses provide interesting

insights. Contrary to the phenomenon observed in a large

number of other plant pathogens, we see little evidence

for accelerated evolution of secreted proteins, putative

effectors or genes that are likely differentially expressed

during infection, between R. collo-cygni and Z. tritici. This

is in stark contrast to for example Colletotrichum species,

where high dN/dS of effectors was associated with the

switch from endophytic to parasitic lifestyle (Hacquard

et al. 2016). This however, leaves the possibility that this

switch is still ongoing in R. collo-cygni. The species can

also infect other graminaceous hosts, but with less severe

symptoms it often appears endophytic (Kaczmarek et al.

2017).

From Z. tritici, R. collo-cygni’s nearest sequenced rela-

tive, we know that rapid pathogen evolution can often be

associated with high repeat content of the genome

(Poppe et al. 2015), or close physical association of TEs

with putative effector genes, which results in a so-called

“two-speed” genome architecture. Also for other

Dothideomycetes like P. nodorum (Richards et al. 2018)

and P. teres f. teres (Wyatt et al. 2018) this two speed

genome is evident. In P. tritici-repentis TE content has

even be directly associated with the pathogenicity of the

strains (Manning et al. 2013). In R. collo-cygni repeat con-

tent is low and secreted proteins or putative effectors are

not closely associated with TEs. Other examples of typical

“one-speed-genome” pathogen is the biotrophic barley

pathogen Blumeria graminis (Frantzeskakis et al. 2018).

However, that species is relatively unrelated and has a

very different lifestyle. Comparing the mechanisms that

drive evolution of pathogenicity in these two diverse one-

speed-genome barley pathogens will be particularly inter-

esting. Also, additional investigation is TEs and the

relatedness to host, host specificity and aggressiveness

as a pathogen in R. collo-cygni and other

Dothideomycetes will likely teach us more on how this

diverse class of cereal pathogens arose and became suc-

cessful. Our new reference genome and improved anno-

tation provides a starting point for doing so.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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