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Background: Carbon catabolite repression (CCR) controls the order in which different carbon sources are
metabolised. Although this system is one of the paradigms of regulation in bacteria, the underlying mechanisms
remain controversial. CCR involves the coordination of different subsystems of the cell - responsible for the uptake of
carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to
biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene
expression, and signalling, has motivated important modelling efforts over the past four decades, especially in the

Results: Starting from a simple core model with only four intracellular metabolites, we develop an ensemble of
model variants, all showing diauxic growth behaviour during a batch process. The model variants fall into one of the
four categories: flux balance models, kinetic models with growth dilution, kinetic models with regulation, and
resource allocation models. The model variants differ from one another in only a single aspect, each breaking the
symmetry between the two substrate assimilation pathways in a different manner, and can be quantitatively
compared using a so-called diauxic growth index. For each of the model variants, we predict the behaviour in two
new experimental conditions, namely a glucose pulse for a culture growing in minimal medium with lactose and a
batch culture with different initial concentrations of the components of the transport systems. When qualitatively
comparing these predictions with experimental data for these two conditions, a number of models can be excluded
while other model variants are still not discriminable. The best-performing model variants are based on inducer
inclusion and activation of enzymatic genes by a global transcription factor, but the other proposed factors may

Conclusions: The model ensemble presented here offers a better understanding of the variety of mechanisms that
have been proposed to play a role in CCR. In addition, it provides an educational resource for systems biology, as it
gives an introduction to a broad range of modeling approaches in the context of a simple but biologically relevant
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Background

Carbon catabolite repression (CCR) is the main mech-
anism controlling carbohydrate uptake in bacteria, and
therefore also controlling whether or not different car-
bon sources are metabolized in parallel or sequentially.
Although described as a paradigm of the regulation of
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bacterial metabolism, the underlying mechanisms remain
controversial (see [1, 2]). The system shows a high level
of complexity comprising metabolic, gene expression, and
signal processing. A typical example of CCR is the phe-
nomenon of diauxic growth (Fig. 1).

Different hypotheses concerning the dynamic function-
ing of the system have been explored by a variety of
modelling approaches [2]. The aim of this study is to
compare these hypotheses and their ability to capture
some key characteristics of CCR within a single mod-
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Fig. 1 Diauxic growth as a typical manifestation of carbon catabolite
repression in bacteria (experimental data are taken from [14]). The
plot shows the sequential uptake of glucose (blue circles) and lactose
(blue squares) by growing Escherichia coli bacteria on a mixture of
carbon sources. This leads to the two-stage accumulation of biomass
(red circles) at a high growth rate (on glucose) and a lower growth
rate (on lactose) until all carbon sources have been exhausted

eling framework. To this end, based on a (simple) core
model structure with only four intracellular metabolites,
we developed an ensemble of model variants, all showing
diauxic growth behaviour during batch cultivation with
two substrates. The model variants differ in only a few
structural properties and have only a small number of free
parameters. The use of small models with few parameters
allows us to focus on the underlying network structure
when comparing the different model variants.

Ensemble modeling approaches have been used to
explore and analyze different model structures and/or
different set of parameters (see [3, 4] for examples of
ensemble modelling). As can be seen in Fig. 2, we extend
the scope of ensemble modelling in the present study
by adding another dimension. Instead of restricting the
ensemble of model variants to static or dynamic models
that quantitatively describe the mechanisms of carbohy-
drate assimilation and its regulation, we also introduce
model variants that make up for a lack of mechanistic
information by using different (linear and nonlinear) opti-
mization programs, applied either statistically or dynam-
ically. A major representative of such optimization-based
models are flux balance models [5, 6].

The models in the ensemble can be categorized accord-
ing to regulatory, stoichiometric, and physiological con-
straints and differ from each other on only a single
aspect. We distinguish four groups of models: (1) flux
balance models that only define reaction kinetics for sub-
strate uptake and by-product excretion, (2) kinetic models
including the effect of growth dilution, (3) kinetic models
with regulation on the metabolic and/or genetic level, and

type of equation

static dynamic

Fig. 2 Overview of the ensemble modeling strategy employed in this
study. We do not only distinguish between the type of equations of
the model (static or dynamic), but also take into account mechanistic
models vs models based on (linear or nonlinear) optimization. The
vertical axis reflects the increasing complexity of the optimization
program: a non-linear problem is more difficult to solve than a linear
program. The zero of this axis corresponds to models without
optimization. Abbreviations used: AE (algebraic equations), ODE
(ordinary differential equations), FBA (flux balance analysis), dFBA
(dynamic flux balance analysis)

(4) resource allocation models. Figure 3 gives an overview
of all model variants considered here. To quantify the
output of the models and to allow a comparison of the
model variants, the diauxic growth index d is introduced,
indicating the degree of sequential utilization of the two
carbon sources.

In order to further assess the performance of the mod-
els, we analysed two new experimental conditions, namely
a glucose pulse applied to a culture growing on minimal
medium with lactose and a batch culture with unequal
initial conditions for the transport systems. In the lat-
ter case, the less preferred substrate, lactose, is used in
the pre-culture and therefore, the respective enzymes are
abundant at the beginning of the experiment. By compar-
ing experimental data for these two conditions with model
predictions, a number of models could be excluded, while
other model variants are still not discriminable.

Based on the analysis, we conclude that models includ-
ing known regulatory mechanisms like inducer exclu-
sion and activation of the expression of transporters and
enzymes by a global transcription factor [1] are best capa-
ble of accounting for the different experiments. It is likely,
however, that a precise quantitative explanation of the
control of the uptake and metabolization of carbohydrates
involves a superposition of several different molecular
mechanisms, acting on different time-scales. The precise
contribution of each individual mechanism during a spe-
cific stimulation of the system remains to be determined.

Methods

Description of model structure: kinetic model

All models of CCR included in the ensemble are vari-
ants of a simple model structure, based on the reaction
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Fig. 3 Overview of all model variants in the ensemble divided into four groups: constraint-based models, kinetic models with growth dilution,
kinetic models with regulatory mechanisms, and resource allocation models

scheme shown in Fig. 4. The models include both extra-
cellular and intracellular components, and they are based
on an explicit mass balance (because only in this way
mass conservation can be assured). Since the compo-
nents considered have a large number of molecules, a
deterministic approach is followed. The mass balances are
converted to a system of ordinary differential equations
(ODEs), where each state variable represents the con-
centration of an extracellular or intracellular quantity.
However, since different references are used when making
this conversion, the resulting ODEs are different for
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Fig. 4 Basic reaction scheme for the diauxic growth network. Shown
are all components, reaction rates (solid arrows), and catalytic activities
and regulatory interactions (broken arrows). For the macromolecules,
dilution by growth is considered in the model equations

intracellular and extracellular concentrations: for compo-
nents in the bioreactor, the volume of the liquid inside
the reactor is used, while for intracellular components the
biomass is an adequate reference [7]. Converting mass bal-
ance equations to equations for concentration variables
gives rise to dilution terms. In case of intracellular com-
ponents with high internal fluxes, growth dilution can be
neglected since this term contributes only marginally to
the solution of the ODE.

The rationale behind the choice of the model structure
schematized in Fig. 4 is as follows: in the extracellular
space, the bioreactor, nutrients are provided that allow the
biomass to grow. Therefore, the model takes into account
two substrates with concentrations S; and S; and the
entire biomass with concentration B. Each extracellular
substrate is taken up by a transport reaction ry; and con-
verted into intracellular components. Units used are g/!
for extracellular substrates and biomass concentrations,
mol/gDW for concentrations of intracellular components,
and mol/gDWh for rates. Biomass is growing with the
specific growth rate u (unit 1//4). The ODEs for substrate
and biomass are valid for all models:

5 =
B =

i=12 1)

2)

—Tsi Wi Br

u B,

with molecular weight w; of the substrates (rates r are
given on a molar basis, while the medium concentration
is given on a gram basis). The initial concentrations of the
substrates and the biomass are denoted by S;(0) = S? and
B(0) = B, respectively.
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Substrates are converted to X; and X», representing
small intracellular metabolites that in the case of lac-
tose also act as inducers of the transporter proteins (local
control). Dilution by growth is neglected for X; and Xj,
since the rates rg; are high in comparison with the growth
dilution term p X;. Transport reactions, also including
processes such as group translocation in case of a phos-
phorelay system [1], are under the control of enzymes
E; and E;. Both enzymes are synthesized; however, since
proteins are stable, a degradation process is not explicitly
taken into account, but only dilution by growth:

Xi=ri — ran (3)
Ei=re — uEk. (4)

The initial concentrations of the enzymes are denoted
by E;(0) = E?.

Carbohydrates feed into central metabolic pathways
such as glycolysis, the pentose phosphate pathway, and the
tricarbon acid cycle. These pathways are represented by
the intermediate metabolite M, for which we introduce
the following equation:

M=ry + raa—rp (5)

Since metabolites such as PEP, pyruvate, or fructose
1,6-bisphosphate are important messengers for metabolic
fluxes, for example in E. coli [8], metabolite M is necessary
for describing known basic regulatory schemes (global
control).

Finally, component B’ is representative of the main
biomass compartment, consisting of macromolecular
species like protein, RNA, DNA, lipid, etc. Component B’
has a central role since it represents the resources of the
cell. Resources are needed to synthesize enzymes that are
involved in metabolic reactions, or other proteins. The
component is represented by the following ODE:

B=r —uB, (6)

with rate of synthesis 7, and a growth dilution term p B'.
The utilization of resources for enzyme synthesis is not
included in the basic model structure, but explicitly added
in the resource allocation models.

Special attention needs to be given to the choice of the
growth rate . The growth rate of a population grow-
ing on a single substrate is related to the uptake rate
and the yield. For a mixture of substrates, more sophis-
ticated approaches can be found in literature ([9] and
references therein). Since in our case, the focus is on the
sequential uptake of substrates, in the kinetic models we
combine both uptake rates in a simple equation, using
yield coefficients Y; as weighting factors:

w=Y1ra + Yarg. (7)
The yield coefficients have the unit gDW /mol.
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Kinetic rate laws determine the velocity of substrate
conversion depending on the concentrations of the reac-
tants. Modelling intracellular networks requires in addi-
tion terms that take into account metabolic and genetic
regulation and signalling processes. The proposed scheme
contains five metabolic reactions (rg1, 752, 741, 42, 'p) and,
in addition for each enzyme, a term for synthesis (7,1, 7¢2)
and a term for growth dilution ( e1, u e2). In the basic
model structure, the kinetic rate laws are defined as fol-
lows:

S

_ S1 _ 2

ra = ka E1 g5, T2 = ko B 515,
Tel = ki fi, to = ko fo,

fa1 = kx1 X1, rar = ko Xo,

r, = ky M, (8)

Functions f; and f, are set to 1 here, but are further
developed in models with regulation to take into account
transcriptional control of enzyme synthesis.

Detailed kinetic modelling is often hampered by the
difficulty of determining parameter values in an experi-
mental set-up. The scaling of equations is an appropriate
method for reducing the number of parameters and bring-
ing the system into a defined time window [10]. As shown
in Additional file 1, the equation system can be reduced
in the number of parameters by an appropriate choice
of scaling factors. For our model, extracellular substrates
are scaled on the Michaelis-Menten constants K; of the
uptake rate, while biomass is scaled with respect to the
Michaelis-Menten constants K; and the yield coefficient
Y for the first substrate. In the scaling of all intracellu-
lar components, the yield coefficient for the first substrate
is present. In this way, the overall systems can be written
with new parameters that take into account the ratio of the
yield coefficients, the ratio of certain velocity constants,
and the ratio of the molecular weight of the substrates.
The equations of the rescaled model structure are given in
Additional file 1: Section A.1.

Other approaches to reduce the number of state vari-
ables and parameters are based on the (quasi-)steady-state
assumption for intracellular metabolites [11]. Using the
fact that reaction rates are explicit functions of the intra-
cellular metabolites, the quasi-steady-state assumption
for the fast variables Xi, X2, and M leads to a set of alge-
braic equations from which the fast variables (intracellu-
lar metabolite concentrations) can be solved as explicit
functions of the slow variables (enzyme concentrations,
external substrate concentrations) [12].

Description of model structure: dynamic flux balance
analysis model

Another use of the quasi-steady-state assumption does
not use the rate equations, but combines metabolic flux
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analysis for the fast part of the system with kinetic mod-
elling for the slow part. This requires the computation
of intracellular fluxes (rates at steady state) directly from
known uptake and excretion rates, without determining
the concentrations of intracellular metabolites, and the
use of these fluxes as inputs in the remaining ODEs. At
(quasi-)steady state, the incoming and outgoing fluxes are
equal for every intracellular metabolite and hence, the
following constraint holds for rate vector r:

Nr =0, (9)

with N as the stoichiometric matrix. For the intracellular
metabolic network of Fig. 4, we have:

1-10 0 O
N=]001-10 {, (10)
0101 -1

where the columns correspond to r1, 741, ¥s2, 42, and 7,
and the rows to X;, X, and M, respectively.

In order to combine the algebraic equations for the part
of the system that is at quasi-steady state with the ODEs
for the slow variables, we rewrite Eq. (9) by making appro-
priate substitutions for the rates of the uptake reactions
defined in Eq. (8):

E
h(S1) -1 0 0 0 rd1
N x = 0 0 h(S) -1 0 E = 0,(11)
0 1 0 1 -1 rd
b

where h(51) = ksl Sl/(l(1+Sl) and h(Sz) =ks2 Sz/(Kz—i—Sz).

Since the stoichiometric matrix has more columns
(unknown rates) than rows (mass balance equations), as is
generally the case, N’ x = 0 does not have a unique solu-
tion. Constraints on the upper and lower bounds of fluxes
and additional constraints can be provided to reduce the
space of solutions, and an objective function added to
select those solutions that optimize a specified criterion.
This methodology is called Flux Balance analysis (FBA) [6]
and the respective equations are given by:

max gT X,

st. N x = 0,

Hx < h, (12)

with a matrix H taking into account additional constraints
and / a vector of numerical bounds. We choose ¢ such that

cT x = 1y, in other words, the criterion to maximize is the

rate of accumulation of the main biomass component B'.
This rate is set equal to u.
The above linear optimisation problem can be solved at

every time point and the algebraic solution provided as

Page 50f 16

input to the ODE system for the slow variables, more pre-
cisely Egs. (1), (2), and (4) for the concentrations of sub-
strates, enzymes, and biomass. This approach is known as
dynamic FBA in the literature [5].

Numerical simulation, parameter estimation, and cluster

analysis

All simulations were performed with Matlab and all files

can be found here:
https://sourceforge.net/projects/diauxic-growth-

model-ensemble/

The dynamic optimization programs in some of the
resource allocation models were solved by means of
DOTcvp [13].

The rescaled models have only a small number of
parameters. Moreover, some of these parameters — like
the ratio of the molecular weights or the ratio of the
yield coefficients — are known from batch experiments
with single substrates [14]. For model C3 (crowding),
for example, only three free parameters, the two crowd-
ing coefficients and the upper limit on membrane space,
need to be determined. These remaining parameter val-
ues for the models were selected in two different ways.
First, for each model, parameters were estimated using
a stochastic search algorithm that maximizes the value
of d (diauxic growth index). Second, for some model
variants, parameters were estimated to reproduce time-
course data from a batch experiment with E. coli grow-
ing on glucose and lactose. Data were taken from [14]
and the model fits were shown in [2] but were not
documented there. A least-square problem was formu-
lated to minimize the differences between simulation
and experimental data. A simple genetic algorithm in
Matlab [15] was used to find the best-fit parameters,
setting the population size to 40 and the number of
generations between 30 and 40 (see also Additional
file 1). Since the number of parameters to be estimated
is low, in both optimization problems the algorithms
search nearly the complete parameter space and converge
quickly.

Simulations of the model with estimated parameters can
be found here:

https://sourceforge.net/projects/diauxic-growth-
model-ensemble/

For the hierarchical clustering of simulated time-
courses, the Euclidian distance between the time-
courses was determined and the inner squared dis-
tance between two clusters was calculated by means of
the Matlab routine linkage (with ward and euclidean
as parameters). For each cluster, the mean value of
the time-courses at each time point was calculated
as representative of the cluster. The maximal num-
ber of clusters was predefined in the Matlab routine
cluster.


https://sourceforge.net/projects/diauxic-growth-model-ensemble/
https://sourceforge.net/projects/diauxic-growth-model-ensemble/
https://sourceforge.net/projects/diauxic-growth-model-ensemble/
https://sourceforge.net/projects/diauxic-growth-model-ensemble/

Kremling et al. BMC Systems Biology (2018) 12:82

Results

Ensemble of CCR models

The models in the ensemble can be grouped into four
categories, characterized by different types of reaction
mechanisms and control structures. As a thought exper-
iment, consider the basic kinetic model structure of
Egs. (1)—(7), discussed in the “Methods” section, when
there is a perfect symmetry between the availability,
uptake, and metabolization of S; and Sy, that is, S1(0) =
852(0), rs1 = 752, Tg1 = T2, el = ez, and E1(0) = E(0).
Obviously, in this case the time-courses of the variables
will not exhibit diauxic growth. The same holds for the
basic flux balance model structure of Egs. (11)—(12).

The CCR models introduced below are all based on dif-
ferent single changes in the structure of the equations
and/or the parameter values to break the symmetry
between the pathways of the two substrates. For cho-
sen parameter values, all model variants are capable of
reproducing diauxic growth and growing on both sub-
strates separately. The equations of the individual model
variants, in particular the changes with respect to the
basic model structures, are detailed in Additional file 1:
Section A.2, together with a plot of the diauxic growth
behaviour generated by the model.

Group 1 consists of so-called constraint-based mod-
els and are variants of the flux balance analysis model
structure of Eqgs. (11)—(12). A first way to break the sym-
metry of the uptake pathways in this model structure is
to slighty modify the stoichiometric matrix (model C1).
Motivated by the diauxic growth behaviour observed with
glucose and acetate [16], we modified reaction r,, in Fig. 4.
In contrast to the reaction scheme of Fig. 4, in model
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C1 metabolite M is a central metabolite for substrate S;
only. From M, macromolecules are produced, but at the
same time X, as a side-product. Metabolite X, can be
excreted or converted directly into macromolecules (but
inefficiently, at a lower maximal rate than X;). In the
first growth phase, substrate S; is consumed and, assum-
ing the uptake reaction is reversible and the inefficient
biomass reaction is inactive, substrate Sy is produced.
In the second growth phase, only Sy is taken up and
converted into biomass. The modified scheme is shown
in Fig. 5.

A regulatory component in the original model set-up is
also sufficient to break the symmetry. Regulatory inter-
actions can be easily incorporated into the framework of
FBA (C2) by means of a set of rules in Boolean logic (reg-
ulatory FBA or rFBA, [17]). These logic rules relate an
environmental variable (e.g., the availability of a substrate)
to the presence or absence of enzymes (and thus their
corresponding reaction rates) in the model. The rules are
executed in a sequential manner resulting in a modified
stoichiometric matrix. In model C2, diauxic growth is
obtained by a single rule inactivating enzyme E,, and thus
the uptake of Sy, in case substrate S; is available (Fig. 5).

An interesting extension of FBA takes into account the
limited space available for transporters in the membrane,
and for enzymes in the cytoplasm more generally, an effect
called molecular crowding [18, 19]. Imposing a membrane
space constraint results in an additional linear inequality
in the constraint-based model (C3 in Fig. 5). Assuming
that E; and E; occupy different amounts of membrane
space is sufficient for breaking the symmetry between the
two substrates and for diauxic growth behaviour to occur.
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Fig. 5 Reaction schemes for models in group 1

(constraint-based models). Upper left: FBA (C1), upper right: regulatory FBA (C2), lower left:
molecular crowding and limits on membrane space (€3), lower right: costs and benefits of enzyme production (C2)
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A number of recent studies emphasized the characteri-
zation of enzyme production in terms of costs (ATP and
substrate usage) and benefits (generating energy and pre-
cursors for biomass) [20, 21]. These ideas are considered
in a further model variant based on FBA: for both path-
ways, from the uptake of S; and S; to central metabolism,
the trade-off between the cost of making the enzymes and
the benefits gained by their use in cellular metabolism
leads to an additional inequality in the model (C4 in
Fig. 5). The inequality expresses that the costs of enzyme
synthesis should not exceed the benefits by a specified
maximum amount.

Group 2 consists of mathematical models that include
kinetic terms for enzymatic reactions and enzyme synthe-
sis. The dynamics of the underlying biochemical reaction
systems have a crucial property: for state variables there
is usually a balance between reactions producing and con-
suming a component. In addition, what is overlooked in
many cases, a dilution term appears in ODEs for concen-
tration variables describing the dilution of enzymes and
metabolites due to growth of the population [22]. The
dilution term arises from the choice of biomass as the
reference volume of the intracellular state variables. As a
consequence, the concentration of enzymes and metabo-
lites decays if the rate of growth dilution exceeds the rate
of synthesis.

Dilution effects may give rise to diauxic growth. In order
to see this, consider kinetic models extended with an
additional regulatory interaction, the activation of enzyme
synthesis by the metabolites X; and X, (Fig. 6). The

Ui N1 - N4
(iif)

<—E1—A—|

S1 ——»

", x1\

Y
- E2 —

Fig. 6 Reaction schemes for models in group 2 (kinetics-based
models with growth dilution). The models include induction of
enzyme synthesis by the metabolites X; and X5. In blue are shown
different ways in which the dynamics of enzyme £ can be modified,
in every case leading to diauxic growth: (i) the maximum rate of
enzyme synthesis (N1), (ii) the initial enzyme concentration (N2), (iii)
the affinity of the inducer for its transcription factor and thus the
effect on enzyme synthesis (N3), or (iv) the maximum rate of
substrate uptake (N4)
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symmetry between the two carbon sources can be broken
by changing the values for (i) the maximum rate of enzyme
synthesis (N1), (ii) the initial enzyme concentration (N2),
(iii) the affinity of the inducer for its transcription factor
and thus the effect on enzyme synthesis (N3), or (iv) the
maximum rate of substrate uptake (N4). For the chosen
parameter values the enzymes of the preferred substrate
will accumulate, whereas those of the non-preferred sub-
strate will dilute out.

Models in group 3 extend the kinetic expressions used
so far by including additional regulatory mechanisms. The
most prominent regulatory effects described in the lit-
erature on E. coli are inducer exclusion and activation
by a global transcription factor. Inducer exclusion means
that a transport enzyme (e.g., for lactose uptake) or an
enzyme involved in metabolism of the substrate (e.g., glyc-
erol metabolism) is subject to control [1]. In the case of
lactose and glycerol, a component of the glucose trans-
port system (PEP-dependent phosphotransferase system,
PTS), the protein EIIA, acts as an inhibitor of the enzymes.
Metabolic regulation of the activity level of the enzymes
is very fast in comparison to gene expression regula-
tion. In the case of the glucose-lactose diauxie, a second
mechanism based on transcription regulation has been
described to control the enzyme concentration: cAMP, a
small molecule that is synthesized when the glycolytic flux
is low, acts as an activator of the global transcription factor
Crp. Crp is involved in a number of cellular processes and
most prominently in the control of nearly all carbohydrate
uptake systems.

Within our simplified scheme, the two mechanisms are
represented as follows (Fig. 7). In the case of inducer
exclusion (R1), metabolite X acts as a regulatory metabo-
lite and inhibits enzyme E; responsible for uptake of
substrate Sp. Activation by a transcription factor is a
two-step process: a lower flux through central metabolic
pathways will lead to lower concentrations of the metabo-
lites involved, in particular the central metabolite M. The
lower concentration of M leads to the synthesis of a sec-
ond messenger like cAMP and subsequent activation of
the transcription factor. Since the second messenger and
the transcription factor are not explicitly represented in
the model, metabolite M is assumed to directly act as an
inhibitor of the synthesis of E; (R2). Choosing numerical
values for strong inhibition by inducer inclusion alone, or
for strong activation by a global transcription factor alone,
is sufficient to obtain diauxic growth behaviour. Although
in both model variants induction of the transport system
by X7 and Xj is assumed as well, like in the models N1-N4,
this addition is not necessary for diauxic growth.

The central metabolite M offers further possibilities for
control schemes. As described for E. coli, the metabo-
lite fructose 1,6-bisphosphate is directly involved in the
activation and/or repression of transcription factor Cra
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Fig. 7 Reaction schemes for models in group 3 (kinetics-based models with regulation). Upper left: inducer exclusion (R1), upper right: activation by
a global transcription factor, itself inhibited by a central metabolite (R2), lower row: model variants with a central metabolite modifying the inducer

(FruR) [1]. Cra is involved in the control of gluconeo-
genesis. This regulatory mechanism is adapted to our
modelling framework in two different ways. First, M can
act as an activator of the consumption of metabolite X,
(R3). As a consequence, for a higher concentration of M,
the concentration of X, will be lower, which decreases
its ability to induce the uptake system of S,. Alterna-
tively, M can act as an inhibitor of the consumption of
metabolite X; (R4). In this way, for a higher concen-
tration of M, the concentration of X; will be higher as
well, which increases its ability to induce the uptake sys-
tem of the preferred substrate S;. For both schemes,
induction of the transport systems by X; and X, is
necessary.

An additional control scheme can be derived from the
following line of reasoning (which we could not relate
to any known regulatory mechanism in bacterial cells).
Assume again that metabolite M controls the synthesis of
the two enzymes, but in a different manner: high concen-
trations of M lead to synthesis of E1, whereas low concen-
trations lead to synthesis of Ej. If the total incoming flux
to M and the concentration of this metabolite are posi-
tively correlated, only the first substrate will be consumed
because only the first enzyme is synthesized. However, if
more complex kinetic expressions for the reaction pro-
ducing M are used, such as product activation, multiple
steady states may appear (R5). This is illustrated by the
bifurcation diagram in Fig. 8: the kinetic rate law leads to
two stable steady states for M depending on the incom-
ing flux. Assuming that the starting condition is such that

only enzyme E; is synthesized, the first substrate is taken
up (blue circle). As the concentration of S; decreases, the
incoming flux decreases as well and the system moves
along the upper stable branch to the left until the bifur-
cation point is reached, where it drops to the lower stable
branch. This leads to an increase in the amount of enzyme
E;> and the consequent uptake of S;. However, the flux
to M is lower in the second growth phase (green circle).
Note, that for bringing the system back to the first steady
state, a disturbance directly increasing M is necessary (it
is not sufficient to feed substrate S; again).

Group 4 comprises models that distribute cellular
resources over the network components. Resource allo-
cation can be integrated into the models in two different
ways, by the solution of an optimization problem or by
the definition of specific regulatory interactions influenc-
ing the kinetics of the reactions. Models in both subgroups
can be seen as variants of the basic kinetic model struc-
ture, but models in the first subgroup integrate elements
of the flux balance model structure as well, in particular
the determination of the value of some of the variables by
maximizing an objective function.

For the first subgroup of resource allocation models an
objective function is defined, corresponding to either the
maximization of the incoming fluxes or the maximiza-
tion of biomass over a time-interval running from 0 to
tend- In both cases, the resource to be allocated consists
of the intracellular compartment B’ (Fig. 9). In the first
model variant (A1), a fraction of B’ is available for the
two transport systems; that is, the (weighted) sum of the



Kremling et al. BMC Systems Biology (2018) 12:82

Page 9 0of 16

- E1 —

St — X1

RN

M— B

SZT» X2

~—E2 —

R5

M

expression
E1

expression N
E2 - _ Y =

flux to M

Fig. 8 Additional reaction scheme for models in group 3 (kinetics-based models with regulation). Left: the reactions producing M are activated by M
itself (product activation), in addition to the control of enzyme synthesis by M (R5). Right: depending on the incoming flux to M, two stable steady
states are possible, as shown in the bifurcation diagram. Solid red curves denote stable steady states, while the dashed red curve denotes the
unstable steady state. The circles mark the steady states at the beginning (blue) and at the end of the simulation (green)

concentrations of both enzymes is limited by an upper
bound smaller than B'. Like for the other model variants
in the ensemble, the symmetry can be broken (and sub-
strate S taken up preferentially) by a suitable choice of the
weights and other parameters.

The optimization problem for model Al is static, like in
dynamic FBA, in the sense that it is formulated at a spe-
cific time-point, for specific concentrations of substrates,
biomass, etc. The result of the optimization problem (the
enzyme concentrations) is fed into the ODEs governing
the dynamics of the other variables. The second model
variant (A2) involves a fully dynamic optimization prob-
lem. In this model the rates of enzyme synthesis r,;,
rather than the concentrations E;, depend on B/, and the

drain of resources towards enzyme synthesis is explicitly
accounted for in the ODE for B/, by including a reac-
tion with rate ;5. B, where 1,4, is the fraction of the
biomass component utilized for protein synthesis. The
resource is dynamically distributed over the enzymes so
as to maximize the biomass produced at t,,. In addition,
we require the size of the internal pool of M to be smaller
than a certain maximum value. Setting a limit for M has
a strong influence on the system dynamics in that, if the
parameter values for the two uptake pathways are differ-
ent, it breaks the symmetry between the two pathways and
causes one substrate to be preferred.

Cybernetic modelling was introduced some decades
ago to describe the behaviour of a population exhibiting

E‘1 - resource for E1 A4 - E‘1 T{ gu;;ﬁtfﬁer:;
st I N 5
M— B M— B
s2 — X2 / i s2 — X2 / i
Vo 7 R,
E2=- 3 resource for E2 ~E2— @ syninesis
~—E1 T{ A3

fractional uptake rates uy, u; of the substrates

Fig. 9 Reaction schemes for models in group 4 (resource-allocation-based models). Upper row: static (left) and dynamic (right) optimization for
resource allocation (A1 and A2). Lower plot: cybernetic modelling approach (A3). The rates of enzyme synthesis are set in proportion to the




Kremling et al. BMC Systems Biology (2018) 12:82

diauxic growth [23, 24]. The different variants of cyber-
netic modelling have notably been capable of accounting
for a variety of scenarios for simultaneous or preferential
uptake of carbon sources in E. coli [23, 25]. Cybernetic
models provide a coarse-grained description of micro-
bial kinetics and allocate resources to the synthesis or
the activity of specific enzymes in proportion to their
return, that is, the growth rate or the quantity of substrate
metabolized by the enzyme. They provide two handles for
resource allocation: control of enzyme activity and control
of enzyme synthesis [23, 24]. Our adaptation of cyber-
netic modelling, shown in Fig. 9, is restricted to the latter
option and accordingly modifies the rate expressions for
enzyme synthesis (A3). In order to break the symmetry in
this case, the maximum uptake rate for the two enzymes
was set to different values.

Finally, we consider model variants that distribute
energy for transport over the two transport systems. This
can be realized in two ways, as schematically shown
in Fig. 10. In the first variant, metabolite M is needed
directly for transport and its concentration is included
in the transport kinetics. Metabolite M here represents
an energy carrier like ATP. The ODE for M is updated
accordingly to take into account this additional mass flow,
and the stoichiometric coefficient for the production of M
from X; is changed to 2 (A4). The second variant mimics
the observation that group translocation processes trans-
fer phosphoryl groups from one protein to another, as
for the above-mentioned PTS (A5). In particular, metabo-
lite M can be seen as a proxy for PEP, that is, the energy
source for glucose transport in E. coli and other bacte-
ria, whereas the PTS is represented by the protein E7. The

Page 10 of 16

enzymes occur in a free (unphosphorylated) and a phos-
phorylated form to mimick energy consumption by the
transport reactions.

A long time ago already it was suggested that cellular
systems tend to extend their lifespan for as long as possible
([26], analysed also in [27]). In case a number of substrates
are available, this principle would automatically result in
the sequential uptake of the substrates, because it would
maximize the lifespan f,,; of the microorganism. In the
model variant A6 we therefore define an additional lifes-
pan variable and maximize this variable by means of the
so-called free time optimal control approach [27]. In order
to guarantee that the cells remain alive, we add a minimal
value for B’ as a constraint for the optimization process.
Again, the resources for synthesizing the enzymes are pro-
vided by compartment B’ (see Fig. 10 for the reaction
scheme). Interestingly, no further structural modifications
or changes in kinetic parameter were necessary to obtain
diauxic growth behaviour for this model variant.

Diauxic growth index

Every model variant in the ensemble presented above is
capable of generating diauxic growth behaviour for cho-
sen parameter values. The different (rescaled) models
share parameters such as yield coefficients for substrate
uptake (Additional file 1: Section A.1). However, some
of the parameters are unique for a model variant and
determine its specificity (on average, there are 2 to 3
kinetic parameters to choose for each model). One could
ask whether this model-specific set of parameters can be
tuned in such a way that - possibly - a nearly “perfect”
diauxic growth behaviour is obtained. In order to answer
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Fig. 10 Reaction schemes for models in group 4 (resource-allocation-based models). Continued. Upper row: competition for M, the energy carrier
used in the transport reactions (A4) and PTS competition model (A5). Lower row: maximization of lifespan (A6)
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this question, we turn the intuitive notion of “perfect”
diauxic growth into a quantitative measure, by defining
the diauxic growth index, d. The index varies between
0 (no diauxic growth, that is, parallel uptake of both
substrates) and 1 (perfect sequential uptake). More pre-
cisely, d is defined as the (absolute) difference of both
uptake rates multiplied by the biomass, integrated over the
time-interval [0, £,,,4]:

lend

d = % / Ir(t) — ra(t)] b dt.
t=0

(13)

To motivate the definition of d, consider the initial value
so = 1 unit for a single substrate. With a yield coefficient
of 1, the integral for this substrate is f rbdt = sg = 1
(r is the uptake rate) when the substrate has been com-
pletely consumed by biomass b. For two substrates that are
consumed one after the other, the value of d obtained from
Eq. (13) must therefore be 1 and in the case of parallel
consumption of the two substrates d = 0.

For each model variant in the ensemble, we fine-tuned
the model-specific parameters with a stochastic search
algorithm (while keeping the same value for the shared
parameters), so as to maximize the diauxic growth index.
The number of model-specific parameters for each model
is low since most parameters in the scaled model are
given as ratios of two original parameters characterizing
the pathways for the two substrates (for example, maxi-
mal uptake rates or yield coefficients). We set the scaled
parameters to 1, so that the pathways for the two sub-
strates have the same kinetic properties. This ensures
that if diauxic growth occurs, it arises from the addi-
tional structural assumptions in the model variants that
break the symmetry between the pathways. In model R1
(inducer exclusion), for example, only the inhibition con-
stant K; remains to be chosen. Figure 11 shows time
course data for model variants R1 (nearly perfect diauxic
growth) and A5 (partial co-consumption).

The sorted indices thus obtained are also shown in
Fig. 11. As expected, most kinetic models with regula-
tion have a high index score, but it can be seen in Fig. 11
that models belonging to other categories may also show
nearly perfect diauxic growth, such as models N2 and A2.

Comparison with experimental data

As already shown in [2] (Fig. 3 therein), the predictions
from the models in the ensemble can be directly compared
with experimental data. We took data from a standard
diauxic growth experiment with glucose and lactose as
substrates for E. coli (Fig. 1) and adjusted the parameters
s0 as to obtain a good fit. Figure 12 shows a selection of fit-
ted models against experimental data (see also Additional
file 1: Section A .4).
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absolute difference of the uptake rates multiplied by the biomass,
that is, the integrand of the diauxic growth index d. Bottom plot:
Diauxic growth index for all model variants in the ensemble

Since a large number of model variants show a satis-
factory fit, additional experiments are needed for model
discrimination. These experiments should stimulate the
system in a different way than the reference batch exper-
iment of Fig. 1. We chose two dynamic experiments
from a large collection of experimental data [14]: first,
a dynamic pulse experiment where the preferred sub-
strate (glucose) is pulsed during exponential growth on a
non-preferred second substrate (lactose); and second, an
experiment in which an enzyme necessary for the assim-
ilation of the non-preferred substrate (LacZ) has a high
initial concentration at the beginning of the experiment
(Fig. 13).

In order to discriminate between the model variants, we
first simulated the reaction systems with the parameters
used in Fig. 11 in the conditions of the new experiments.
For the pulse experiment, the timing of the pulse was
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Fig. 12 Comparison of the predictions of some selected model variants (solid lines) with experimental data [14] (open circles and squares) after
parameter fitting. The substrates and biomass are shown in blue and red, respectively. More details on the fitting procedure can be found in the

adapted for each model according to the growth rate; that
is, for a model with a slower growth rate, the pulse was
applied later. The models N2 and A2 were omitted from
the analysis, since N2 imposes an initial condition con-
flicting with the conditions of the experiment with a high
initial enzyme concentration, and the dynamic program-
ming tool used for A2 [13] does not allow the occurrence
of externally-determined pulses.

Second, we clustered the predicted time-courses by
means of a hierarchical clustering algorithm with a Euclid-
ian distance measure and a predetermined number of
clusters. For each cluster, a representative time-course was
computed by taking the mean value of the model pre-
dictions at every time-point. The resulting clusters were
then qualitatively compared with the experimental data.

In particular, the following qualitative characteristics were
retained (Fig. 13). For the experiment with the high ini-
tial LacZ concentration, lactose is not taken up during
growth on glucose and LacZ is diluted out. However, the
expression of lacZ resumes after glucose depletion. In
the glucose pulse experiment, lactose uptake slows down
(slightly) after the pulse and LacZ synthesis stops, but both
resume shortly afterwards. Data were rescaled for the tim-
ing of the pulse to allow a fair comparison between the
models.

All simulated time-courses for the individual models
together with the mean time-courses of the clusters, as
well as the dendrograms returned by the clustering pro-
cedure, are shown in Additional file 1: Section A.3. Since
more than one measured state variable is available, the
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clustering procedure can be repeated for each measured
state variable and the intersections between clusters give
an indication of which model variants perform best. We
illustrate the outcome of this (repeated) clustering proce-
dure for the two experiments reported in Fig. 13. Inspec-
tion of the trend of the mean time-courses in a cluster
allows one to determine if the models in the cluster
are able to qualitatively reproduce the above-mentioned
characteristics of the experiments. For each experiment,
this results in a list of models whose predictions match
the time-course of the substrate, the time-course of the
enzyme, or both (Fig. 14).

For the experiment with the high initial enzyme con-
centration, most models fail to reproduce the character-
istic observation that lactose is not taken up although
the necessary enzyme is highly expressed. The only
model succeeding in accounting for both the substrate
and enzyme time-courses is R1, the inducer exclusion
model (Fig. 14). For the pulse experiment, the results are

somewhat ambiguous. A number of models reproduce
the substrate time-courses well. What poses a problem,
however, is that lactose uptake slows down after the glu-
cose pulse for a short time only, simultaneously with an
equally-short decrease of the LacZ concentration. Since
the LacZ concentration and lactose uptake both resume
after this short period, a number of models are - in prin-
ciple - able to account for the experiment. As indicated
in Fig. 14, models with inducer exclusion (R1) and with
global transcription factor activation (R2) are in the inter-
section, but also models that take into account control by
central metabolite M (R4) or a different rate constant for
gene expression (N1) are consistent with this experiment.

Discussion and conclusions

Carbon catabolite repression has been under investiga-
tion since a long period of time. For applications in
biotechnology, for example, the understanding of the
interplay between different carbohydrate uptake systems

Set of
models that agree
with substrate data

Initial condition
experiment

Set of
models that agree
with enzyme data

Set of
models that agree
with substrate data

R1, R2
(R4, R5, N1)

Pulse
experiment

Set of
models that agree
with enzyme data

Fig. 14 Left: intersection of the sets of models capable of qualitatively reproducing the substrate and/or the enzyme concentration time-courses
observed in the initial condition experiment. Right: intersection of the sets of models capable of qualitatively reproducing the substrate and/or the
enzyme concentration time-courses observed in the pulse experiment. The models in the intersection have been explicitly indicated (the results for
the models between brackets are ambiguous, see main text)
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is of crucial importance. Gaining a better comprehension
of their interactions allows modification in such a way
that both substrates are taken up in parallel rather than
sequentially [28, 29].

Ensemble modelling is an advanced method for describ-
ing cellular systems in case one is confronted with
large uncertainties. It allows different hypotheses to be
formulated and analysed first from a theoretical point of
view. Usually, when setting up a model ensemble, dif-
ferent kinetic parameters and/or network structures are
explored to find models that best account for the available
data and that can be used for making predictions in new
experimental scenarios. In the ensemble proposed here,
making predictions involves simulation but also solving an
optimization problem for some of the model variants. The
latter models are based on classical approaches, like flux
balance analysis and its derivatives, but also include new
schemes that distribute cellular resources over metabolic
pathways.

Note that the model variants involving optimization
provide explanations of diauxic growth that are not based
on the causal effect of regulatory mechanisms, but on
the assumption that microorganisms have evolved to opti-
mize a criterion that confers them a selective advan-
tage. The mechanisms underlying this supposedly optimal
behaviour may be unknown or debated.

All model variants in the ensemble are deterministic.
In the same way as the choice of a simple core struc-
ture for the models, we also opted for a simple trans-
lation of the network structure into a dynamic model.
Although stochastic effects play a pivotal role in gene
expression, the role of stochasticity in the other processes
involved in diauxic growth, which involve a large number
of molecules, have been less studied. Stochastic effects are
especially important in (positive) feedback control loops
and may in certain conditions lead to sub-populations
growing on different carbon sources [30]. Also, the tem-
poral behaviour of diauxic growth may be influenced by
stochastic effects and, for example, affect the duration of
the lag phase between glucose and a secondary carbon
source [31-33]. Stochastic models resembling some of the
variants in the model ensemble considered here have been
published in the literature [31, 34]. However, given that
the models most concerned by possible stochastic pro-
cesses, kinetic models with regulation, are already among
the best-scoring models, we do not believe that the use
of stochastic extensions for these models would have
affected the overall model ranking.

All model variants are capable

of reproducing a basic manifestation of CCR, namely
diauxic growth on two alternative substrates. Funda-
mentally, this capacity resides in breaking the symmetry
between the pathways for the two alternative substrates,
by tuning kinetic parameters, stoichiometric coefficients,
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or costs/benefits assigned to the enzymes. By introducing
a quantitative measure of diauxic growth d, the diauxic
growth index, we investigated to which extent the models
could be tuned so as to exhibit a perfect diauxic growth
phenotype. The index is based solely on observations of
the bio-reactor system, that is, the extracellular environ-
ment. In this way, the different mechanisms are assessed
only by their output and not by intracellular structures or
parameters, which allows an unbiased comparison of the
large variety of model variants in the ensemble.

We observed that regulatory models, in general, show
the highest values of d: three regulatory models rank
under the top-five models, whereas constraint-based
models rank between place 7 and 15, and resource alloca-
tion models between place 10 and 19, with the exception
of model A2. This indicates that the dynamics of gene
expression play a crucial role in CCR. Flux balance models
in which the dynamics of gene expression are ignored lead
to unsatisfactory behaviour (C3). Also, models taking into
account competition for an energy-carrier metabolite nec-
essary for transport (PTS or non-PTS variants) give a poor
result: for example, the PTS model (A5), even after fine-
tuning of the parameters, reaches a maximum value of
d = 0.59 only. Since a prerequisite for the choice of kinetic
parameters was that growth should be possible on a sin-
gle substrate, the choice of parameters is quite constrained
and limits the possibility to obtain diauxic growth.

While it was possible to reproduce the standard exper-
iment, consisting of diauxic growth of E. coli on minimal
medium with glucose and lactose with almost all model
variants, further data sets from [14] were used for model
inference. A glucose pulse experiment and an experiment
with a high initial concentration of LacZ were simulated
using the model variants and a simple clustering proce-
dure was carried out to group the predicted time-course
profiles of lactose and LacZ and compare these with
experimental data on a number of qualitative features. It
turned out that the model variants based on well-known
mechanisms (inducer exclusion and activation by a global
transcription factor) show a very good performance and
outperform other model variants. This does not rule out
any causal effect on CCR by the factors underlying the
latter models, but suggest that they complement rather
than replace inducer exclusion and transcription factor
activation.

In studies of diauxic growth, it is generally assumed that
the substrate with the higher maximal growth rate (4
is also the preferred substrate. This is the case for car-
bohydrates in E. coli. However, as a counter-example, it
was reported for Aromatoleum aromaticum EbN1 that
the organism prefers the substrate benzoate over succi-
nate, whereas initial growth on benzoate leads to a slower
growth rate than growth on succinate after the deple-
tion of benzoate (Fig. 1A in [35]). We analysed our model
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ensemble to see if there are any model variants in which
the preferred substrate could lead to a lower maximal
growth rate. As expected, model variants with regulatory
interactions could be quickly adjusted to represent this
observation. Also, model variants with an objective func-
tion maximizing the growth rate obviously fail to repro-
duce this inverse diauxie. It appears, however, that model
variant A2, based on the distribution of cellular resources
for enzyme synthesis via the solution of an optimal con-
trol problem, prefers the substrate with the lower maximal
growth rate if the upper bound for metabolite M is appro-
priately adjusted. Further analysis of the model ensemble
could be carried out with other data sets, for example on
the co-utilization of substrates in certain scenarios [9, 23].

In addition to clarifying the role played by differ-
ent mechanisms in CCR, and function as a guide for
experimental design, the collection of mathematical mod-
els presented here can also serve as an educational
resource. The broad spectrum of available modelling tech-
niques and tools for model analysis can be profitably
applied, compared, and evaluated with the help of a
simple and manageable - but relevant - example from
systems biology.

Additional file

Additional file 1: Additional file (Pdf format) includes the following
sections: 1. Rescaled model equations, 2. Detailed description of model
ensemble, 3. Results of cluster analysis, 4. Model fitting. (PDF 699 kb)
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