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Abstract

Targeting the PI3K pathway has achieved limited success in cancer therapy. One reason

for the disappointing activity of drugs that interfere with molecules that are important player

in this pathway is the induction of multiple feedback loops that have been only partially

understood. To understand these limitations and develop improved treatment strategies, we

comprehensively characterized molecular mechanisms of PI3K pathway signaling in blad-

der cancer cell lines upon using small molecule inhibitors and RNAi technologies against

all key molecules and protein complexes within the pathway and analyzed functional and

molecular consequences. When targeting either mTORC1, mTOR, AKT or PI3K, only S6K1

phosphorylation was affected in most cell lines examined. Dephosphorylation of 4E-BP1

required combined inhibition of PI3K and mTORC1, independent from AKT, and resulted

in a robust reduction in cell viability. Long-term inhibition of PI3K however resulted in a

PDK1-dependent, PIP3 and mTORC2 independent rephosphorylation of AKT. AKT repho-

sphorylation could also be induced by mTOR or PDK1 inhibition. Combining PI3K/mTOR

inhibitors with AKT or PDK1 inhibitors suppressed this rephosphorylation, induced apopto-

sis, decreased colony formation, cell viability and growth of tumor xenografts. Our findings

reveal novel molecular mechanisms that explain the requirement for simultaneous targeting

of PI3K, AKT and mTORC1 to achieve effective tumor growth inhibition.

Introduction

Frequent hyperactivation and deregulation of the phosphoinositide 3-kinase (PI3K)/ AKT/

mammalian target of rapamycin (mTOR) pathway in cancer has made it one of the most

investigated therapeutic targets in tumor therapy. Class IA PI3Ks, consisting of a p85 regula-

tory subunit and a p110 catalytic subunit, with the isoforms p110α, p110β, p110γ and p110δ,

phosphorylate phosphatidylinositol-4, 5 bisphosphate (PI-4,5-P2) to phosphatidylinositol-

3,4,5-trisphosphate (PIP3). This reaction is reversed by the protein phosphatase and tensin

homolog (PTEN) [1,2]). PIP3 initiates further signaling cascades by recruiting molecules such
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as AKT and PDK1 via their pleckstrin homology domains. AKT, a serine-threonine kinase, is

functionally activated by phosphorylation at two distinct amino acid residues, threonine 308

and serine 473, by PDK1 and mTORC2, respectively. mTORC2 is a protein complex including

the kinase mTOR and rapamycin-insensitive companion of mTOR (Rictor) [3]. Phosphory-

lated AKT in turn has the potential to regulate multiple downstream effectors and signaling

pathways that are involved for example in cell proliferation, apoptosis, migration, and metabo-

lism [4].

One downstream effector is the mTORC1 protein complex, which also contains the kinase

mTOR, together with regulatory-associated protein of mTOR (Raptor), mLST8, Deptor and

proline rich AKT substrate 40 kDa (PRAS40) [3]. Two important mTORC1 substrates are

ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E-

binding protein 1 (4EBP1). Phosphorylated S6K1 promotes the translation of 5’-terminal oli-

gopyrimidine mRNAs while phosphorylation of 4E-BP1 prevents its binding to eIF4E and

increases cap-dependent translation, thus controlling cellular protein synthesis and cell growth

[5]. In this process, phosphorylation of the aminoacid residues Thr37/46, Ser65 and Thr70 in

4E-BP1 are essential [6].

The activity of mTORC1 has multiple levels of contro [7]. Raptor recruits substrates,

including S6K1 and 4E-BP1, via their Tor signaling (TOS) motifs. It thus acts as a scaffolding

molecule and directs the catalytic activy of mTORC1 [8]. AKT can stimulate mTORC1 activity

by GTP-bound Rheb by regulating its GTPase activating protein (GAP) activity via phosphor-

ylation of tuberous sclerosis complex 2 (TSC2) [7]. Activation of mTORC1 is further regulated

by PRAS40 by competitive binding of its own TOS motif to Raptor. This inhibition can be

reversed by PRAS40 phosphorylation at distinct sites by AKT and mTOR.

The first agents to target the PI3K pathway were rapamycin analogues (rapalogs), which

bind to the protein FKBP-12 that complexes with mTOR, and thus allosterically inhibit

mTORC1 activity [9]. These drugs have shown potential for the treatment of renal cell carci-

noma, mantle cell lymphoma and neuroendocrine tumors which has fueled the development

of additional classes of PI3K pathway inhibitors targeting all or specific PI3K isoforms, AKT,

mTOR, or both PI3K and mTOR [10,11]. However, success in clinical trials has been lacking

so far, with FDA approval granted only for the use of a PI3K δ inhibitor in chronic lympho-

cytic leukemia (CLL) [12]. Preclinical studies have demonstrated that inhibitors of the PI3K

pathway can induce signaling feedback loops limiting their anti-tumor effects. For instance,

rapalogs lead to increased AKT and ERK phosphorylation whereas dual PI3K/mTOR inhibi-

tors lead to overexpression of different receptor tyrosine kinases [13]. Also, adaptive signaling

responses after PI3Kα inhibition that increase PIP3 synthesis and AKT phosphorylation or

enable SGK1-mediated mTORC1 activation have been recently described [14,15]. Successful

therapeutic targeting of PI3K signaling thus requires a thorough understanding of the bio-

chemical effects of PI3K pathway inhibition as well as effective drug combination strategies to

overcome feedback loops limiting efficacy.

The PI3K pathway is overactive in around 72% of metastatic urothelial bladder cancer

patients, making it an attractive target for therapy [16]. Currently, the average survival of these

patients is only 12–14 months due to limited progress in therapy development since more than

three decades, with PD1/PD-L1 immunotherapy only recently approved as second line therapy

[17,18]. Clinical trials with rapalogs and other target therapies in bladder cancer have also

demonstrated limited efficacy [19–22]. Our previous investigations have revealed that inhibi-

tion of both S6K1 and 4E-BP1 is necessary to efficiently suppress bladder cancer cell growth

and proliferation. Rapalogs and AKT inhibitors, however, result in only S6K1 but not 4E-BP1

dephosphorylation, with a limited anti-proliferative effect. On the other hand, dual PI3K/

mTOR inhibitors achieve dephosphorylation of both S6K1 and 4E-BP1, prohibiting cell cycle
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progression, but induce rephosphorylation of AKT after long term treatment [23,24]. In this

study, by using different types of PI3K pathway inhibitors and knockdown of selected mole-

cules in the pathway we demonstrate that parallel inhibition of mTORC1 and PI3K is crucial

for 4E-BP1 dephosphorlyation, independently of AKT signaling. Furthermore, we describe a

novel PI3K/PDK-1 dependent but PIP3 independent feedback loop resulting in AKT repho-

sphorylation upon long term PI3K inhibition that might limit therapy efficacy. This feedback

loop can be overcome by parallel inhibition of PI3K/AKT and mTORC1 to efficiently block

PI3K signaling, induction of apoptosis and tumor growth in bladder cancer.

Materials and methods

Cell lines and cell culture

Cell lines were maintained as early passages of subconfluent cultures in RPMI or DMEM

(Biochrom AG, Berlin, Germany) at 5% or 10% CO2, respectively, supplemented with 10%

FBS (Biochrom AG) and 1% NEAA (Biochrom AG). RT112 and 647V from the Leibniz insti-

tute German collection of microorganisms and cell cultures (Braunschweig, Germany),

UMUC3, J82 and T24 were obtained from the American type culture collection (Manassas,

VA, USA), 639 V and VmCUB1 were a kind gift from Professor Dr WA Schulz (Heinrich-

Heine-University, Düsseldorf, Germany) and 253J were kindly provided by Professor Dr G.

Unteregger (University of Saarland, Homburg/Saar, Germany). Cell lines were authenticated

by short tandem repeat profiling and tested for mycoplasma using PCR as described previously

[24,25].

Small molecule inhibitors

Stock solutions of NVP-BEZ235, RAD001, NVP-BKM120 and GSK2334470 (Selleckchem,

Munich, Germany), MK-2206 and INK128 (Active Biochem, Bonn, Germany), PIK-90

(Merck Chemicals GmbH, Darmstadt, Germany), NU7441 and KU60019 (Tocris Bioscience,

Bristol, United Kingdom) were prepared in DMSO. Working concentrations were freshly pre-

pared in medium with control corresponding to highest DMSO concentration.

Oligonucleotides, transfection and transduction

Cells were transfected with 10 nM siRNA oligonucleotides against Raptor (CCCGUCGAUCUU
CGUCUACGA), Rictor (UACGAGCGCUUCGAUAUCUCA)(Qiagen, Hiden, Germany) or negative

control stealth RNAi high GC duplex #2 (Life Technologies, Darmstadt, Germany) using Lipo-

fectamine RNAimax (Life Technolgies) per manufacturer’s instructions. Transduction of

mTOR or control shRNA adenovirus was performed as described previously [23].

Cell viability, apoptosis and cell cycle assays

CellTiter-Blue cell viability assay, caspase-Glo 3/7 assay (Promega Corporation) and click-it

EdU Alexa Fluor 488 flow cytometry cell cycle analysis (Life Technologies) were performed as

described [25].

Clonogenic assay

150 RT112 cells were seeded in a 6-well format and treated with indicated inhibitors every 48

or 72 hours over a period of 12 days. Colonies were then fixed using 6% v/v glutaraldehyde

and stained with 0.5% w/v crystal violet as described previously [26].
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Immunoblotting

Protein lysates were extracted and separated using SDS-PAGE and membranes were probed

using primary antibodies (Cell Signaling Technology, Beverly, MA, USA) against pAKT Thr

308, pAKT Ser 473, total AKT, pS6K1 Thr 389, total S6K1, p4EBP1 Thr 37/46, p4EBP1 Ser65,

total 4E-BP1, GAPDH, Raptor, Rictor, mTOR [23]. Chemiluminescence was analyzed on X-

ray films or the ChemiDoc XRS+ system/Quantity One 1-D software (Bio-Rad Laboratories

GmbH, Munich, Germany).

PIP3/PI(4,5)P2 quantification

PIP3 and PI(4,5)P2 level quantification and normalization was performed using ELISA kits

(Echelon Biosciences Inc, Salt lake city, UT, USA) using manufacturer’s protocol and as

described previously [15].

Chorioallantoic membrane (CAM) assay

The CAM assay was performed as described previously with seeding of 2 million cells on

embryonic day (ED) 9, topical treatments on ED 11 and 13 and tumor harvesting on ED 15.

Concentrations were calculated for the total embryo blood volume [24].

Immunohistochemistry (IHC)

IHC and Ki-67 staining quantification was performed as described previously [24].

Statistical analysis

Control or treatment conditions were compared using unpaired Student’s T test in Microsoft

Excel. Determination of synergy was performed using Compusyn software (ComboSyn, Inc.,

Parasmus, NJ, USA) [27].

Results

PI3K/mTOR inhibitors control S6K1 and 4E-BP1 dephosphorylation and

cell viability

Understanding regulation of 4E-BP1 is essential for targeting the PI3K signaling pathway

for tumor therapy [23]. We extended previous data, showing that the mTORC1 inhibitor

Everolimus (RAD001) robustly reduced S6K1 phosphorylation level. However, 4E-BP1 phos-

phorylation at Thr37/46 was not or only partially affected at high concentration and Ser65

phosphorylation level of 4E-BP1 was only downregulated at high concentration in the non-

responding cell lines 253J and 647V S1A Fig [23,28]. Cell viability was affected by 20 to 50%

Fig 1E. We next tested the effects of PI3K inhibition on 4E-BP1 phosphorylation using the

pan-PI3K inhibitors PIK-90 and NVP-BKM120 [29,30]. These inhibitors dose-dependently

diminished AKT phosphorylation at concentrations above 50–100 nM, accompanied by a par-

allel reduction in S6K1 phosphorylation and 10–50% effects on cell viability Fig 1A, 1B and 1E

and S2A and S2B Fig. 4E-BP1 dephosphorylation was observed only at higher non-specific

concentrations. When using the dual PI3K/mTOR inhibitor NVP-BEZ235, which targets the

kinase activities of both PI3K (IC50 4–75 nM) as well as mTOR (IC50 20 nM), dephosphoryla-

tion of S6K1 was achieved with 5 Nm S3A Fig [23,31]. The mTOR kinase inhibitor INK128

decreased AKT and S6K1 phosphorylation at concentrations between 1–10 nM Fig 1C and

S3B Fig. With both inhibitors, diminished 4E-BP1 phosphorylation was evident at almost

10-fold higher concentrations together with a 60–90% reduction in cell viability in all cell lines
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Fig 1. Effect of PI3K and PI3K/mTOR inhibitors on bladder cancer cell lines. (A-C) Cells were treated with indicated concentrations of

PIK-90, BKM-120 or INK128 for 1 hour and immunoblotting was performed on lysates with the denoted antibodies. (D) Cell lysates and

immunoblotting were performed with inhibitor or control treated cells for 1 hour after transduction with control (ctrl) or mTOR shRNA for

72 hours. (E) Cells were treated with respective inhibitors using indicated concentrations for 72 hours and cell viability assay was performed.

Results indicate the mean +/- standard error of relative cell fluorescence in arbitrary units expressed as a percentage of control. All results are

representative of at least three independent experiments.

https://doi.org/10.1371/journal.pone.0190854.g001
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tested Fig 1E. Possible off-target effects of NVP-BEZ235 resulting in 4E-BP1 dephosphoryla-

tion were excluded by using specific inhibitors against ATM (KU60019) and DNA-PK

(NU7441), as also PDK-1 (GSK2334470) S3C Fig [32].

mTOR silencing using an shRNA revealed that mTOR by itself only induced AKT and

S6K1 dephosphorylation Fig 1D. INK128 treatment of cells with silenced mTOR expression

continued to result in 4E-BP1 dephosphorylation. This indicates that either INK128 has an

additional effect on PI3K activity or that remaining very low expression level of mTOR are suf-

ficient to maintain 4E-BP1 phosphorylation.

Combined inhibition of PI3K and mTORC1 results in 4E-BP1

dephosphorylation

To examine the underlying molecular mechanisms of 4E-BP1 regulation, we combined

RAD001 with increasing concentrations of PIK-90. This treatment decreased 4E-BP1 phos-

phorylation at specific concentrations in all the cell lines examined Fig 2A and S4 Fig. Cell via-

bility was reduced by 70–80% using this combination Fig 2B and S4B Fig. Combination of

PIK-90 with an mTOR shRNA resulted in a 77% decrease in 4E-BP1 phosphorylation Fig 2C.

To determine whether mTORC1 or mTORC2 contributes to the observed effect, expression

of either Raptor or Rictor was suppressed by specific siRNAs in combination with PIK-90.

Raptor silencing decreased S6K1 phosphorylation and induced AKT hyperphosphorylation

with only a 19% decrease in 4E-BP1 dephosphorylation Fig 2D but the combination with PIK-

90 resulted in an 89% reduction in 4E-BP1 phosphorylation. Silencing the expression of Rictor

resulted in diminished AKT phosphorylation without affecting 4E-BP1 phosphorylation Fig

2E. Importantly, combination of the allosteric AKT inhibitor MK-2206 that dephosporylates

AKT and S6K1 with Raptor siRNA also failed to induce dephosphorylation of 4E-BP1 Fig 2F

[24].

Long-term PI3K/mTOR inhibition results in AKT rephosphorylation

NVP-BEZ235 treatment caused dephosphorylation of AKT at Thr 308 that recovered at 4–6

hours and was hyperphosphorylated at 24–48 hours after treatment Fig 3A and S5A Fig [23].

AKT at Ser 473, S6K1 and 4E-BP1, remained persistently dephosphorylated. Re-treatment of

cells one hour before harvesting had no major effect on the rephosphorylation indicating no

loss of inhibitor activity.

We then combined NVP-BEZ235 with the PDK1 inhibitor GSK2334470 to examine whether

PDK-1 is responsible for the AKT rephosphorylation Fig 3B and S5B Fig. GSK2334470 mono-

therapy resulted in AKT dephosphorylation at Thr 308 within one hour of treatment but a

hyperphosphorylation at both Thr 308 and Ser 473 was observed as described before [33]. How-

ever, combining GSK2334470 with NVP-BEZ235 successfully suppressed this rephosphoryla-

tion of AKT.

Recruitment of PDK1 to the cell membrane depends on generation of PIP3. In order to test

PIP3 level, we used a previously validated ELISA based quantification of PIP3 [15]. The PIP3/

PIP2 ratio decreased by 95% after 1 hour of and was not restored 24 hours after NVP-BEZ235

treatment Fig 3C indicating that PIP3 is not essential for the PDK-1 dependent rephosphoryla-

tion of AKT.

To further examine the role of PI3K or mTOR on inducing rephosphorylation of AKT

Thr308, we first treated cells with a combination of PIK-90 and GSK233470 that successfully

suppressed AKT rephosphorylation Fig 3D and S5C Fig. Next, we treated cells with a low dose

of INK128 or NVP-BEZ235 Fig 3E and 3F and S5D and S5E Fig to inhibit mTOR but not

PI3K. INK128 treatment caused dephosphorylation of S6K1 and AKT at predominantly Ser

Comprehensive analysis of PI3K inhibition in bladder cancer
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Fig 2. PI3K and mTORC1 regulate phosphorylation of 4E-BP1. Cells were treated with respective inhibitors at the indicated concentrations

for 1 hour and immunoblotting was performed on lysates with the denoted antibodies (a) or cell viability was detected after 72 hours of

treatment. Results indicate the mean +/- standard error of relative cell fluorescence in arbitrary units expressed as a percentage of control from

three independent experiments. (c) Cells were transduced with control (ctrl) or mTOR shRNA for 72 hours, or (d-f) transfected with control

(ctrl), Raptor or Rictor siRNAs for 48 hours. Cells were then treated with control or PIK-90 or MK-2206 at the indicated concentrations for 1

hour and immunoblotting was performed on lysates with the denoted antibodies. Normalized p4E-BP1 Thr 37/46 was calculated as percentage

of control. Results are representative of at least three independent experiments.

https://doi.org/10.1371/journal.pone.0190854.g002

Comprehensive analysis of PI3K inhibition in bladder cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0190854 January 22, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0190854.g002
https://doi.org/10.1371/journal.pone.0190854


Fig 3. Inhibition of PI3K results in a positive feedback loop on AKT. RT112 cells were treated with 200 nM NVP-BEZ235

for the indicated duration or with control (ctrl). (A) Cells that were treated for 24 and 48 hours were additionally retreated with

the same concentration for 1 hour (indicated by +, no retreatment indicated by -) and immunoblotting was performed with the

respective antibodies (B) NVP-BEZ235 or control treatment was combined with 500 nM of GSK2334470 for the indicated

duration or with control (ctrl). Immunoblotting was performed with the indicated antibodies. Results are representative of at

least three independent experiments. (C) T24 cells were treated with control (ctrl) or 100 nM of NVP-BEZ235 for 1 or 24 hours.

PIP3 and PI(4,5)P2 were extracted and the quantity was determined by ELISA. Results represent the mean +/- standard

deviation of triplicate wells and indicate the PIP3/PI(4,5)P2 relative to control expressed as percentage. Results are

representative of two independent experiments. � indicates p< 0.05 (unpaired Student’s T-test). (D-F) Cells were treated with

control (ctrl), 500 nM GSK2334470, 500 nM PIK-90, 25 nM INK128 or 10 nM NVP-BEZ235 for the indicated duration and

immunoblotting was performed on lysates with the indicated antibodies. Results are representative of at least three

independent experiments.

https://doi.org/10.1371/journal.pone.0190854.g003
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473 within 1 hour. However, at 24 hours AKT was rephosphorylated at both Ser and Thr resi-

dues. The Thr308 rephosphorylation could only be partially suppressed by a combination of

PDK1 and mTOR inhibitors. When using NVP-BEZ235, no dephosphorylation of AKT but

only of S6K1 was observed at 1 hour. Interestingly, AKT became hyperphosphorylated after

long-term treatment, which could not be prevented by additional PDK1 inhibition.

Combination of dual PI3K/mTOR and AKT inhibitors reduces tumor

growth

In order to translate these results to long-term survival we used colony formation assays. Col-

ony size decreased dramatically after NVP-BEZ235 treatment but 65% colonies continued to

survive Fig 4A and 4B.

No significant effects were observed using MK-2206 or GSK2334470, whereas combining

NVP-BEZ235 with either GSK2334470 or MK-2206 almost completely suppressed colony

formation.

The combination of MK-2206 and NVP-BEZ235 suppressed AKT hyperphosphorylation

24 hours after treatment and induced apoptosis measured by dephosphorylated Bad and cas-

pase 3/7 activity Fig 4C and 4D. Compared to NVP-BEZ235 monotherapy, cell cycle progres-

sion was not further affected S6A Fig. The combination index (CI) theorem demonstrated in

cell viability assays that both combinations were synergistic with CI values ranging from 0.08

to 0.87 S6B Fig and S1 Table. Dose reduction indices (DRI) for NVP-BEZ235 were greater

than 1, indicating that a comparable anti-tumor effect requires lower concentrations of

NVP-BEZ235 when combined with either PDK1 or AKT inhibitors.

Combination treatment of BEZ-235 and MK2206 strongly reduces tumor

growth

For translation the in vitro observations into a three-dimensional tumor xenograft system we

applied the chicken chorioallantoic membrane (CAM) mode [34]. Treatment of tumors with

either PIK-90 or RAD001 resulted in decreases in tumor weight of 35% or 20% respectively

with no effect of MK-2206 Fig 5A.

Combining PIK-90 with RAD001 or using NVP-BEZ235 resulted in a 60% decrease. How-

ever, combination of NVP-BEZ235 with MK-2206 resulted in an additional 46% reduction in

tumor weight as compared to treatment with NVP-BEZ235 alone. The level of Ki-67 expres-

sion was not reduced by MK-2206 but decreased by 13% with NVP-BEZ23 and 30% when

combining NVP-BEZ235 and MK-2206 Fig 5B and 5C [24].

Discussion

Understanding the complexity of the PI3K signaling pathway is a crucial prerequisite for

designing therapies that overcome the present limitations in clinical application. One of the

challenges is to understand the cellular response to a specific drug in a tumor entity in order to

understand what kind of feedback loops as cellular rescue mechanisms are induced after

treatment.

We have previously demonstrated that various classes of inhibitors against molecules in the

PI3K pathway differ in their effects on S6K1 and 4E-BP1 phosphorylation level. Understand-

ing the regulation of 4E-BP1 phosphorylation is imperative since its inhibition is required to

mediate an effective reduction in cell growth and proliferation [35]. Our previous results and

the present study demonstrate that the inhibition of either PI3K, AKT, mTORC1 or mTOR

alone is insufficient to reduce 4E-BP1 phosphorylation in most cell lines examined, whereas
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dual PI3K/mTOR inhibitors successfully suppress 4E-BP1 phosphorylation [23,24]. Regulation

of 4E-BP1 phosphorylation by parallel inactivation of both PI3K and mTOR is supported by

Fig 4. The combination of dual PI3K and AKT inhibitors regulate colony formation and apoptosis. (A) RT112 cells were treated with control (ctrl), 1000 nM MK-

2206, 500 nM GSK2334470, 200 nM NVP-BEZ235 or their combinations for 12 days and colonies were stained with 0.5% crystal violet. (B) Quantification of surviving

colonies in duplicate samples relative to control expressed as a percentage and three independent experiments. (C) Cells were lysed and immunoblotting was performed

with the indicated antibodies after treating cells with the respective inhibitors or control (ctrl) for the indicated time points. Results are representative of at least three

independent experiments. (D) RT112, T24 or 647V cells were treated with 200 nM, 100 nM and 200 nM NVP-BEZ235 respectively, 1000 nM MK-2206, their

combination or control (ctrl) for 48 hours and caspase 3/7 assay was performed. Results obtained in arbitrary luminescence units were normalized to the number of

living cells per trypan blue staining conducted in parallel and indicate the mean +/- standard error of three independent experiments relative to control expressed as a

percentage. � indicates p< 0.05 (unpaired Student’s T-test.

https://doi.org/10.1371/journal.pone.0190854.g004
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the concentration dependency of this effect with PI3K inhibitors, PIK-90 and BKM-120, the

dual PI3K/mTOR inhibitor NVP-BEZ235 as well as a combination of PIK90 and the

mTORC1 inhibitor RAD001. We extended these data by combining the PI3K inhibitor PIK-

90 with either mTOR shRNA, Raptor or Rictor siRNA. These data indicate that concomitant

inhibition of PI3K and mTORC1, but not mTORC2, results in 4E-BP1 dephosphorylation.

Furthermore, AKT inhibition failed to affect 4E-BP1 phosphorylation, alone or in combina-

tion with Raptor silencing.

It has been proposed that the lack of 4E-BP1 dephosphorylation observed with allosteric

mTORC1 inhibitors like rapalogs can be overcome by using ATP-competitive mTOR inhibi-

tors [36]. Using INK128 as an example of this class of mTOR inhibitors, we show here that

only at non-specific doses that besides mTORC1 additionally inhibit PI3K-AKT induce inhibi-

tory effects on 4E-BP1. Raptor regulates the catalytic activity of mTOR by controlling the rec-

ognition and recruitment of substrates via their TOS motifs [8,37,38]. Moreover, Raptor-free

Fig 5. Multiple targeting of the PI3K signaling pathway inhibits 3-dimensional tumor growth. RT112 cells were grown on the CAM as xenografts and were treated

with 1000 nM MK-2206, 2000 nM PIK-90, 5 nM RAD001, 200 nM NVP-BEZ235, their indicated combinations or control (ctrl). (A) Tumor weight shown as percentage

of control from 7–21 tumors per condition in two independent experiments. Horizontal line indicates median, upper whisker indicates the difference between maximum

and first quartile, and lower whisker indicates the difference between minimum and third quartile. � indicates p< 0.05. (B) Ki-67 positive cells were quantified from

three fields from at least three tumors treated with the indicated inhibitors and expressed as a percentage. � indicates p< 0.05 (unpaired Student’s T-test). (C)

Representative images of tumor sections treated with respective inhibitors and stained with Ki-67 antibody by immunohistochemistry. Scale bar indicates 20 um.

https://doi.org/10.1371/journal.pone.0190854.g005
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mTOR is capable of phosphorylating S6K1 but not 4E-BP1, providing a basis for the differen-

tial regulation of these two substrates by mTORC1[39]. Our results support this notion and

indicate that the regulation of 4E-BP1 by mTOR relies on the gatekeeper function of Raptor.

However, silencing either Raptor or mTOR expression alone did not reduce 4E-BP1 phos-

phorylation and required additional PI3K inhibition. Hence, PI3K may influence Raptor

function, directly or indirectly. Of note, the combined inhibition of Raptor and PI3K dephos-

phorylated 4E-BP1 more completely than inhibition of mTOR and PI3K. Taken together, we

postulate that formation of the mTORC1 protein complex rather than regulation of mTOR

kinase activity might be controlled by PI3K activity by a mechanism that is independent from

the PI3K/AKT axis and which is a crucial step in the control of 4E-BP1 activation. Interest-

ingly, dephosphorylation of S6K1 was observed using inhibitors of PI3K, AKT, PDK1 and also

mTOR or mTORC1. This indicates that S6K1 is regulated by mTORC1 and that in the context

of bladder cancer, inhibitors directed against upstream elements of the pathway do not activate

feedback elements such as GSK1 that can rescue mTORC1 activity as described in other tumor

entities[14]. Our results demonstrate a novel mechanism for the regulation of 4E-BP1 phos-

phorylation in bladder cancer, which is mediated by PI3K and mTORC1 but is not dependent

on activity of AKT Fig 6A.

From a translational perspective, we have also demonstrated that dual PI3K/mTOR inhibi-

tors result in a greater reduction in cell viability as compared to either PI3K, AKT or mTORC1

inhibitors alone Fig 1E and S4B Fig [24]. Previous reports investigating PI3K pathway inhibi-

tion in bladder cancer have demonstrated that cells possessing activating mutations in

Fig 6. Schematic representation of the effects of PI3K pathway inhibitors in BLCA. (A) For successful therapy response, dual mTOR and PI3K

inhibition is required to inhibit 4E-BP1 activity (B) Inhibition of PI3K leads to PDK1-mediated AKT rephosphorylation that does not require PIP3

and mTORC2 (C) Combination therapy with dual PI3K/mTOR and AKT inhibitors results in AKT and 4E-BP1 dephosphorylation, induction of

apoptosis and reduction of cell growth to enable effective tumor supression.

https://doi.org/10.1371/journal.pone.0190854.g006

Comprehensive analysis of PI3K inhibition in bladder cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0190854 January 22, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0190854.g006
https://doi.org/10.1371/journal.pone.0190854


PIK3CA are selectively sensitive to PI3K or AKT inhibition, while TSC1 or mTOR mutations

contribute to sensitivity to rapalogs [40–42]. Thus, monotherapy with those inhibitors is there-

fore only suitable for a highly selected patient population and final parameter for stratification

have not been validated to date. We therefore investigated combination therapies to improve

the efficacy in patients. The panel of cell lines included in our study possesses diverse molecu-

lar alterations in FGFR3, RAS, PIK3CA, PTEN, TSC1 and mTOR that are capable of influenc-

ing response to PI3K pathway inhibition and are very frequent in bladder cancer specimen

[24,43,44]. Our results indicate that bladder cancer cells are sensitive to dual PI3K/mTOR

inhibitors regardless of their genetic background. Furthermore, this response is greater than

that achieved with PI3K, AKT, mTOR or PDK1 inhibitors alone.

Despite the promising effects of dual PI3K/mTOR inhibitors in cell lines, a recent clinical

trial failed to demonstrate clinical benefit with NVP-BEZ235 as second line therapy in bladder

cancer patients with locally advanced or metastatic disease [45]. In this trial, stable disease or

partial response were observed in 3 out of 20 patients. NVP-BEZ235 also demonstrated an

unfavorable toxicity profile with 10 patients experiencing grade 3–4 adverse effects. A similar

pattern of clinical efficacy and toxicity has been demonstrated in clinical trials with other

tumor entities [12,46].

This failure may be explained in part by our observation that the efficacy of dual PI3K/

mTOR inhibitors is limited by a feedback activation of AKT over time. It has previously been

described that the p110β isoform results in a PIP3 dependent compensatory AKT phos-

phorylation following selective p110α inhibition [15]. We demonstrate here a novel feedback

activation of AKT that occurs despite suppression of all PI3K isoforms, requires additional

suppression of PDK1 activity and occurs independently of PIP3 synthesis, revealing an addi-

tional level of adaptive signaling after PI3K inhibition. Similar to previously published data,

PDK1 inhibition alone by GSK2334470 was insufficient to control AKT dephosphorylation

[14]. Our results indicate that this requires additional inhibition of PI3K Fig 3 and S4 and S5

Figs. We could also observe previously described AKT rephosphorylation following treatment

with mTOR kinase inhibitors that is proposed to depend on feedback activation of receptor

tyrosine kinases and formation of PIP3 [47]. In agreement with published results, this repho-

sphorylation could be partially suppressed by additional PDK1 inhibition for one hour [33].

However, at 24 hours this combination was insufficient to suppress AKT phosphorylation.

Our data indicate that this is due to persistence of PI3K activity and demonstrate a tight

interplay between mTOR, PI3K and PDK1 that can induce AKT rephosphorylation surpris-

ingly also independently of PIP3. The key molecule for maintaining phosphorylated AKT

despite concurrent mTOR and PDK1 inhibition seems to be PI3K. This suggests a novel link

between PI3K and AKT, independent of PIP3 dependent PDK1 regulation of AKT phosphory-

lation Fig 6B. Previously described PIP3 independent mechanisms of PDK1 mediated regula-

tion of AKT might play a role in this process and raise the intriguing possibility that PI3K

controls these processes by regulating protein complex formation [33,48]. Hence, if AKT

should not be targeted directly, for sustained dephosphorylation of AKT both PI3K and PDK1

must be simultaneously inhibited. These compensatory signaling mechanisms might operate

to ensure the persistence of activated AKT to enable or maintain cell proliferation in the pres-

ence of inhibitory signals.

AKT hyperphosphorylation resulting from dual PI3K/mTOR inhibitors was suppressed by

a combination treatment with AKT or PDK1 inhibitors. This combination was synergistic and

resulted in apoptosis induction, reduced colony formation ability and decreased tumor

growth, as compared to dual PI3K/mTOR inhibition alone Fig 6C. The combination therapy

also demonstrated DRI values greater than 1, which might permit a reduction in the dose of

NVP-BEZ235 to avoid its dose-dependent toxicities. The combined inhibition of PI3K, AKT
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and mTOR ensures the dephosphorylation of the essential downstream targets S6K1, 4E-BP1

and AKT and is required for an effective and sustained reduction in tumor growth. This pre-

clinical study provides an explanation for the limitations of the efficacy of targeting the PI3K

pathway in the clinic. We also present a novel treatment regimen that might benefit a broad

range of patients and could limit dose-dependent toxicities.

Conclusion

The PI3K signaling pathway is frequently altered in cancer and thus provides an attractive tar-

get for cancer therapy. However, inhibitors against this pathway showed very disappointing

results in clinical trials. We present a comprehensive analysis of functional and biochemical

effects using different classes of inhibitors to understand limitations and improve therapy

designs used to date. Our results demonstrate that PI3K/mTORC1 regulate 4E-BP1 phosphor-

ylation independent from AKT. Long-term inhibition of PI3K results in PDK1 mediated

rephosphorylation of AKT. Simultaneous targeting of PI3K, AKT and mTOR is required for

effective tumor suppression by promoting sustained AKT, S6K1 and 4E-BP1 dephosphoryla-

tion and induction of apoptosis. Since this therapy acts synergistic it might reduce adverse

effects as well as improve patient response.

Supporting information

S1 Fig. Effect of RAD001 on multiple bladder cancer cell lines. Cells were treated with

RAD001 at the indicated concentrations for 1 hour and immunoblotting was performed on

lysates with the denoted antibodies. Results are representative of at least three independent

experiments.

(TIF)

S2 Fig. Effect of PIK90 and BKM-120 on multiple bladder cancer cell lines. Cells were

treated with respective inhibitors at the indicated concentrations for 1 hour and immunoblot-

ting was performed on lysates with the denoted antibodies for PIK90 (A) and BKM-120 (B).

Results are representative of at least three independent experiments.

(TIF)

S3 Fig. Effect of PI3K, mTOR, and other Kinase inhibitors on multiple bladder cancer cell

lines. Cells were treated with respective inhibitors at the indicated concentrations for 1 hour

and immunoblotting was performed on lysates with the denoted antibodies for NVP-BEZ235

(A), BKM-120 (B) and KU60019, NU7441 and GSK2334470 (C). Results are representative of

at least three independent experiments.

(TIF)

S4 Fig. Combination of PI3K and mTORC1 inhibition on multiple bladder cancer cell

lines. Cells were treated with respective inhibitors at the indicated concentrations (A) for 1

hour and immunoblotting was performed on lysates with the denoted antibodies, (B) for 72

hours and cell viability assay was performed. Results indicate the mean +/- standard error of

relative cell fluorescence in arbitrary units expressed as a percentage of control from three

independent experiments.

(TIF)

S5 Fig. PI3K and PDK1 inhibition results in positive feedback loops of AKT phosphoryla-

tion. (A) T24 and 647V cells were treated with 100 nM or 200 nM NVP-BEZ235 respectively

for the indicated duration or with control (ctrl). Cells that were treated for 24 and 48 hours

were additionally retreated with the same concentration for 1 hour (indicated by +, no
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retreatment indicated by -) and immunoblotting was performed with the respective antibodies

(B) NVP-BEZ235 or control treatment was combined with 500 nM of GSK2334470 for the

indicated duration or with control (ctrl). Immunoblotting was performed with the indicated

antibodies. Results are representative of at least three independent experiments. (C to E) Cells

were treated with control (ctrl), 500 nM GSK2334470, 500 nM PIK-90, 25 nM INK128 or 10

nM NVP-BEZ235 for the indicated duration and immunoblotting was performed on lysates

with the indicated antibodies. Results are representative of at least three independent experi-

ments.

(TIF)

S6 Fig. Effects of BEZ-235 and MK-2206 on cell cycle progression and cell viability. (A)

Cells treated with 200 nM NVP-BEZ235, 1000 nM MK-2206, their combination or control for

24 hours were labeled with EdU and 7-AAD and the cell cycle distribution was analyzed.

Results indicate the mean +/- standard deviation of percentage of total cells in the respective

cell cycle phases and are representative of two independent experiments. � indicates p< 0.05.

(B) RT112, T24 or 647V cells were treated with indicated increasing concentrations of

BEZ235, 1000 nM MK-2206, 500 nM GSK2334470, their indicated combinations or with con-

trol (ctrl) for 72 hours and cell viability assay was performed. Results indicate the mean +/-

standard error of relative cell fluorescence in arbitrary units expressed as a percentage of con-

trol from three independent experiments.

(TIF)

S1 Table. Effects of combination therapy on cell viability using increasing concentrations

of NVP-BEZ235 with 500 nM GSK2334470 or 1000 nM MK-2206 were assessed using the

combination index theorem. For each combination, the combination index (CI) and dose

reduction index (DRI) were determined. All analysis was conducted on the average values

from three independent experiments, depicted in S6B Fig.

(EPS)
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