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Abstract

Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating conse-

quences for the patient. One recently established treatment is the implantation of flow-diver-

ters (FD). Methods to predict their treatment success before or directly after implantation

are not well investigated yet. The aim of this work was to quantitatively study hemodynamic

parameters in patient-specific models of treated cerebral aneurysms and its correlation with

the clinical outcome. Hemodynamics were evaluated using both computational fluid dynam-

ics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements

were done under similar flow conditions and results of both methods were comparatively

analyzed. For preoperative and postoperative distribution of hemodynamic parameters,

CFD simulations and PC-MRI velocity measurements showed similar results. In both cases

where no occlusion of the aneurysm was observed after six months, a flow reduction of

about 30-50% was found, while in the clinically successful case with complete occlusion of

the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in

any of the three models after treatment. The results are in agreement with recent studies

suggesting that CFD simulations can predict post-treatment aneurysm flow alteration

already before implantation of a FD and PC-MRI could validate the predicted hemodynamic

changes right after implantation of a FD.
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Introduction

A flow-diverter (FD) is a promising tool for the treatment of wide-necked and fusiform

aneurysms which has a low complication rate [1–4]. Nevertheless the prediction of the treat-

ment success is complicated since the flow parameters which influence the clinical outcome

are still not well understood. Commonly in clinical practice a post-treatment contrast agent

stasis is considered to assess the flow diverting effect immediately after the FD placement.

However the observed flow stasis could not be a predictor of a complete aneurysm occlusion

in some cases [5]. Therefore the clinical decision-making process is largely dependent on

global risk factors and on experience and qualification of the neurosurgeon or neuroradiolo-

gist [6].

A number of studies, both experimental and numerical, have been done during recent

years to find reliable hemodynamic parameters that could evaluate the FD performance and

predict the clinical outcome [7–9]. Tsang et al [10] found a correlation between a significant

change in turnover time after stenting and aneurysm occlusion, suggesting that it could be

one of the criteria to evaluate the flow diversion effect and clinical success. Similarly Janiga

et al [11] used the turnover time (residence time) to analyze different treatment scenarios

and select an appropriate stent model and position leading to maximal increase in residence

time.

Additionally some other parameters taking into account the flow pattern inside an aneu-

rysm sac could be considered. In an experimental study by Balasso et al [12] the FD perfor-

mance was assessed by complex analysis of a change of maximum velocity at the inflow zone,

in the dome and at the outflow zone of the aneurysm. Moreover in the study by Suzuki et al

[13] the relative reduction of the spatial-averaged and maximum velocity within the aneurysm

sac as well as the maximum wall shear stress (WSS) were considered to analyze the flow reduc-

tion effects after the treatment. Another alternative, proposed by Lieber et al, is an assessment

of the stenting effect according to kinetic energy reduction [14] and change of the vorticity

inside an aneurysm [15].

Despite recent achievements of numerical and experimental methods for evaluation of

the FD performance, their application in clinical practice is still constrained due to their

complexity and time restrictions. For example, evaluation of post-treatment blood flow

immediately after the stent placement using CFD methods is problematic, since typical

numerical simulation with FD could take several weeks depending on the size of the compu-

tational mesh. In the same time several feasibility studies showed that MRI could serve as a

tool for the clinical assessment of cerebral hemodynamics which could rapidly evaluate the

intra-aneurysmal flow field with sufficient precision [16–18]. However Pereira et al [19]

reported technical issues in the measurement of low velocities and the need for more valida-

tion work in a feasibility study regarding post-treatment evaluation of blood flow in aneu-

rysms after FD placement using MRI. Further MacDonald et al [20] assessed the pre- and

postoperative hemodynamic parameters for a giant cerebral aneurysm and found that the

intra-aneurysmal pressure derived from MRI measured velocity field differed only by 6.1%

from the pressure measured by invasive techniques. However there is a lack of studies which

evaluate hemodynamic changes in cerebral aneurysms after a FD placement using both

experimental and numerical methods.

The purpose of this work was to quantitatively study the distribution of hemodynamic

parameters in patient-specific models of cerebral aneurysms before and after treatment

with flow diverters using PC-MRI and CFD and to correlate these results with the clinical

outcome.
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Materials and methods

Ethics committee approval

As our experiments were conducted retrospectively with permanently anonymized patient

data, our local ethics committee deemed the study exempt from the requirement for approval.

Clinical cases

Twenty three patients treated with a FD at the department of Neuroradiology at the Klinikum

rechts der Isar between 2008 and 2014 were screened for availability of pre-treatment high spa-

tial resolution 3D angiographic data. These datasets were available for three patients, who were

included in this study and subgrouped regarding their clinical treatment outcome. This study

was HIPAA compliant and in line with the local ethical and legislative requirements. Patient

consent was not required due to the fully anonymous retrospective analysis.

Group A consisted of one patient (A01) with a clinically successful treatment. This aneu-

rysm showed no perfusion 6 months after FD placement. Group B included two patients (B01,

B02) who showed persistent perfusion of the aneurysm for more than 6 months after treat-

ment. A detailed information about the studied cases is presented in Table 1.

Experimental phantoms

Realistic silicone phantoms were produced for each patient. The patient’s pre-intervention CT

angiographic data was used to segment the aneurysm and adjacent vessels to generate STL

models. These STL models served as template for a high precision 3D wax printer. The silicone

Elastosil 601 was molded around the wax which was later removed using a dissolvent. For each

case 2 silicone phantoms were manufactured by Acandis (Pforzheim, Germany).

One phantom of each aneurysm was used to study preoperative hemodynamics. The other

one was used to study hemodynamic changes after the placement of the corresponding FD.

The aneurysm phantoms are presented in Fig 1. These phantoms were used for MRI flow mea-

surements. The dimensions of the studied phantoms are presented in Table 2.

Table 1. Clinical outcome for the treated aneurysms.

Case Sex Age FD used Clinical outcome

B01 M 30 In vivo:

SILK 4.5x60 mm

Leo 4.5x40 mm

In vitro:

DERIVO 5.0x50

mm

DERIVO 4.5x40

mm

Angiography after 6 months showed reduced but still existing perfusion of the

aneurysm. Occlusion was achieved one year later after additionally using 24

platin coils.

B02 M 58 In vivo:

Pipeline 4.5x20

mm

In vitro:

DERIVO 5.5x20

mm

Angiography after 6 month showed no delay in inflow and only a subtle delay

in outflow. The aneurysm was later treated with an additional FD which led to

occlusion of the aneurysm.

A01 F 48 In vivo:

SILK 3.5x25 mm

In vitro:

DERIVO 3.5x25

mm

Angiography after 7 month showed no perfusion of the aneurysm dome.

https://doi.org/10.1371/journal.pone.0190696.t001
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Experimental setup

The measurement setup (Fig 2) included a computer controlled piston pump (8). The valve (7)

mimicked the aortic valve. The compliance chamber (6) simulated the windkessel function of

Fig 1. Aneurysm phantoms used for hemodynamics studies. a)—B01; b)—B02; c)—A01.

https://doi.org/10.1371/journal.pone.0190696.g001

Table 2. Dimensions of the aneurysms. All dimensions are in mm.

№ Case Group Neck Length Width Height Aspect ratio

1 B01 B 19 19 16 20 1.1

2 B02 B 8 9 9 10 1.2

3 A01 A 5 6 6 6 1.1

https://doi.org/10.1371/journal.pone.0190696.t002

Fig 2. Scheme of experimental setup. 1—MRI Philips Ingenia 3T; 2—MRI handwrist-coil; 3—aneurysm phantom; 4

—inlet pressure sensor; 5—flow sensor; 6—compliance chamber; 7—valve; 8—piston pump; 9—photo diode; 10—

outlet pressure sensor; 11—LED; 12—pressure chamber; 13—measurement computer; 14—MRI computer.

https://doi.org/10.1371/journal.pone.0190696.g002
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the aorta. The experimental fluid was a 58% aqueous glycerol mixture, which exhibits Newto-

nian fluid behavior. The flow rate (5), the inlet pressure (4) and the outlet pressure (10) were

measured with the corresponding sensors and recorded by the measurement computer (13).

The aneurysm phantom (3) was placed inside a MRI hand wrist coil (2) which allowed for bet-

ter signal to contrast ratio and thus spatial resolution. The MRI (1) was synchronized with the

piston pump (8) using a photo diode (9) which provided a trigger signal. The pressure cham-

ber (12) was used to provide a constant diastolic pressure. The realistic inlet flow rate of 7 l/h
was used, which corresponded to the average velocity of 0.25 m/s for B01, 0.14 m/s for B02 and

0.19 m/s for A01 at the expanded inlet segment during the systolic peak.

The measurement protocol is available as supporting information file (S1 Protocol) or at

protocols.io (http://dx.doi.org/10.17504/protocols.io.kekctcw).

MRI settings

A 3T Philips Ingenia (Philips Healthcare, Netherlands) was used as MRI velocity measuring

system. The aneurysm phantoms were placed inside a hand wrist coil to maximize spatial reso-

lution and signal-to-noise ratio (SNR). A 4D phase contrast sequence with a multi-shot 3D

Gradient-Echo sequence with a turbo-factor of 5 without SENSE was used for image acquisi-

tion. The acquisition parameters were set to: TE = 2.9 ms, TR = 6.1 ms, α = 10˚. Flow in all 3

spatial directions (ap, rl, cc) were acquired consecutively in one single scan. Total scan dura-

tion was 30:44 min.

The quantitative velocity field was reconstructed with corrections for magnetic field inho-

mogeneities by static measurements. The spatial resolution was RLxAPxFH = 0.53x0.53x0.60

mm3 with a matrix size of 112x112x94 voxels. The temporal resolution was 71 ms. After inspec-

tion of the CFD velocity data velocity encoding level (VENC) was set to 100 cm/s for each spa-

tial direction to prevent aliasing in the aneurysm region. Partial volume effects close to the

vessel wall were neglected as the drop in magnitude signal for all cases with and without FD

was steep and abrupt.

CFD settings

The Navier-Stokes equations for incompressible fluid were utilized for CFD simulations. The

inlet velocity curves were obtained from the data of the MRI velocity measurements. The fluid

density was set to ρ = 1141 kg/m3 which corresponds to the density of the experimental fluid.

A Newtonian model was used to represent the fluid behavior. The viscosity was set to η = 4.1

mPa � s, which corresponded to the used experimental fluid.

For the numerical studies the geometrical models of the aneurysms were created using cor-

responding STL-models of the silicone phantoms. The geometrical models of Acandis

DERIVO FDs were created according to the manufacturer specifications. Fast virtual stenting

technique was used for the virtual deployment of the FDs in the aneurysm models. Here, nom-

inal diameters, initial lengths, strut diameters as well as strut angles were respected. Hence,

arbitrary configurations can be reproduced. This explicit method considers the individual

stent pores and is therefore clearly superior compared to simplified approaches such as the

assumption of a porous medium to account for flow-diverting effects. The virtually deployed

FDs were visually compared with the available in-vitro deployments and showed sufficient

correlation. A detailed description of the virtual stenting technique was presented in the stud-

ies by Berg et al [21, 22]. Furthermore, a validation of the fast virtual stenting approach can be

found in the study by Janiga et al. [11].

The hexahedral computational meshes were generated using snappyHexMesh tool from

OpenFOAM CFD Toolbox (CFD Direct, Caversham, England). Additional refinement of the
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cells around the FD was used to properly represent the minimal elements of FD braid. A mesh

independence test showed that generated meshes were sufficient to capture all significant fea-

tures of the flow pattern in the studied aneurysms. Five cardiac cycles were simulated to omit

the initial perturbations of the flow field. The results for the last cardiac cycle were used for

analysis.

Analysis of hemodynamic parameters

The moment of systolic peak was selected to analyze the hemodynamic parameters in the

aneurysms. This moment was used since hemodynamic parameters reach their maximum val-

ues at this time. The flow pattern in the central cross-section of each aneurysm was analyzed in

detail as well as the WSS distribution, streamlines, kinetic energy and recirculation. Addition-

ally, the hemodynamic changes after FD placement were analyzed and correlated with the

available clinical outcome.

The WSS was computed to analyze the shear stress distribution over the aneurysm sac. To

derive the WSS from the MRI-measured velocity field, the wall shear rate was computed,

which then was multiplied by dynamic viscosity η. The normalized WSS (nWSS) was used to

compare the WSS distribution between CFD and MRI:

nWSS ¼
WSSðx; y; zÞ

WSSmax
;

where WSS(x, y, z) is the WSS magnitude at the point with coordinates (x, y, z); WSSmax is the

maximum WSS magnitude over the aneurysm sac.

To evaluate a kinetic energy in the aneurysm sac we used a method proposed by Seong

et al. [14, 23], according to which a measure of the intra-aneurysmal kinetic energy E could be

estimated as a sum of squares of velocity magnitudes ui at every i-th measured point (x, y, z) in

the aneurysm sac, i.e.:

E ¼
XN

i¼1

u2

i ðx; y; zÞ; ð1Þ

where N is a number of measured points.

Mean kinetic energy over the cardiac cycle was employed to quantify hemodynamic

changes after the FD placement, which is an average of sum of instantaneous kinetic energies

over the cardiac cycle. Since CFD results have a much higher spatial and temporal resolution a

comparison of absolute values of kinetic energy (1) between MRI and CFD is not valid. There-

fore only relative kinetic energy reductions ER for CFD and MRI results were considered in

this study:

ER ¼
EnoFD � EFD

EnoFD
� 100%;

where EnoFD and EFD are the intra-aneurysmal kinetic energies before and after FD placement

respectively.

Another hemodynamic parameters used to assess FD performance were peak and mean

recirculation [15]. The instantaneous recirculation R could be obtained by computing vorticity
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ω of the intra-aneurysmal velocity field:

o ¼ r� u;

R ¼
Z Z

o � n dA ð2Þ

The mean recirculation Rm could be found by integrating Eq (2) over the cardiac cycle:

Rm ¼
1

T
�

Z T

0

jRjdt;

where T is the length of the cardiac cycle.

Results

Preoperative analysis

The central cross-sections of the aneurysm models were used to analyze the flow pattern in the

aneurysm sac. The cross-sections are presented in Figs 3, 4 and 5 for cases B01, B02 and A01

respectively. The CFD simulations and MRI measurements predicted a similar main flow pat-

tern for the all three cases. The region which belongs to the aneurysm sac itself, excluding the

parent artery, was used to compute an average intra-aneurysmal blood flow. It was done in

order to correctly compare the average intra-aneurysmal velocity before and after the treat-

ment. The obtained average intra-aneurysmal velocity is presented in Table 3. The average dif-

ference between CFD and MRI results was 9.47% for B01; 6.1% for B02 and 6.21% for A01.

The nWSS is shown in Fig 6 both for CFD and MRI. Similar general nWSS distributions

were observed for the aneurysm models, but detailed variations in WSS were not adequately

revealed by MRI. Regions of high nWSS (� 0.75) were found at the proximal and distal seg-

ments of the parent artery. Contrary, the aneurysm sac and aneurysm bleb were characterized

by low values of nWSS (� 0.25). However the distribution of nWSS for MRI was influenced by

noise and low spatial resolution.

Streamlines were computed from CFD data to detect vortices in the aneurysm sac. The

computed streamlines for the studied aneurysms are presented in Fig 7. The preoperative

blood flow in the aneurysms was characterized by the presence of a vortex in all three models.

Fig 3. Preoperative velocity distribution for central cross-section of B01 aneurysm. a) CFD simulation; b) MRI

measurement.

https://doi.org/10.1371/journal.pone.0190696.g003
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The swirling flow in the aneurysm sac produced the region of low velocities in the center of

the aneurysms.

Postoperative analysis

The flow-patterns in the aneurysms were decidedly changed after FD placement. The central

cross-sections for the treated aneurysms are presented in Figs 8, 9 and 10 for cases B01, B02

and A01 respectively. Both CFD and MRI showed a general similarity of flow-patterns for the

treated cases. However the presence of metallic braiding of the FD led to non-visualizable

regions in the central cross-sections for MRI data. The maximum velocity region was jailed by

Fig 4. Preoperative velocity distribution for central cross-section of B02 aneurysm. a) CFD simulation; b) MRI

measurement.

https://doi.org/10.1371/journal.pone.0190696.g004

Fig 5. Preoperative velocity distribution for central cross-section of A01 aneurysm. a) CFD simulation; b) MRI

measurement.

https://doi.org/10.1371/journal.pone.0190696.g005

Table 3. Hemodynamic parameters before and after the FD placement. noFD—before the treatment; FD—after the treatment; U—an average intra-aneurysmal velocity

during the systolic peak (m/s); E—mean kinematic energy (m2/s2); R—mean recirculation (mm2/s).

noFD FD

CFD MRI CFD MRI

U E R U E R U E R U E R

B01 0.089 806 92 0.081 2.8 87 0.039 395 16.56 0.040 1.32 18.27

B02 0.075 929 89 0.071 14.9 79 0.045 724 22.25 0.063 11.8 30.02

A01 0.416 2818 74 0.443 18.4 81 0.087 592 11.1 0.076 3.5 10.53

https://doi.org/10.1371/journal.pone.0190696.t003
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Fig 6. Pre-operative distribution of normalized wall shear stress in aneurysm models. a)—B01; b)—B02; c)—A01.

https://doi.org/10.1371/journal.pone.0190696.g006

Fig 7. Streamlines in cerebral aneurysms before flow-diverter placement. a)—B01; b)—B02; c)—A01.

https://doi.org/10.1371/journal.pone.0190696.g007
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Fig 8. Velocity distribution for central cross-section of B01 aneurysm after flow-diverter placement. a) CFD

simulation; b) MRI measurement.

https://doi.org/10.1371/journal.pone.0190696.g008

Fig 9. Velocity distribution for central cross-section of B02 aneurysm after flow-diverter placement. a) CFD

simulation; b) MRI measurement.

https://doi.org/10.1371/journal.pone.0190696.g009

Fig 10. Velocity distribution for central cross-section of A01 aneurysm after flow-diverter placement. a) CFD

simulation; b) MRI measurement.

https://doi.org/10.1371/journal.pone.0190696.g010
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the braid of FD, which led to reduction of blood flow in the aneurysm sac. The obtained

reduced intra-aneurysmal velocities for studied models are presented in Table 4. The observed

flow reduction was about 52%, 28% and 80% for cases B01, B02 and A01 respectively.

Also nWSS was computed to determine the changes in WSS distribution after treatment.

No significant changes in distribution pattern were found (Fig 11). However the average WSS

magnitude was decidedly reduced in all three cases. Streamlines were computed to determine

the changes of flow patterns after FD placement. The computed streamlines are presented in

Fig 12. The major part of the flow was redirected along the FD, while the intra-aneurysmal

flow was decidedly reduced. The vortex in the aneurysm sac disappeared in all three models.

Discussion

In the present study we analyzed the hemodynamic changes in cerebral aneurysms of 3

patients before and after FD treatment and correlated them with their known clinical outcome.

Similar velocities and flow patterns were obtained for both CFD and MRI methods while

Table 4. Relative change of hemodynamic parameters after the FD placement.

ΔU, % ΔE, % ΔR, %

CFD MRI CFD MRI CFD MRI

B01 56 51 51 53 82 79

B02 39 11 22 25 75 62

A01 79 83 79 81 85 87

https://doi.org/10.1371/journal.pone.0190696.t004

Fig 11. Distribution of normalized wall shear stress after flow-diverter placement. a)—B01; b)—B02; c)—A01.

https://doi.org/10.1371/journal.pone.0190696.g011
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substantial differences were found for calculated WSS. We observed a larger flow reduction for

the successfully treated aneurysm, while a smaller reduction was found for the two cases where

additional treatment was needed for occlusion.

A relative flow reduction is considered a major parameter correlated with the clinical out-

come of the treatment. Xiang et al [24] found a reduction of average aneurysmal velocity by

76% for the aneurysm which was occluded within the first three months and a reduction by

40% for the aneurysms that occluded after six months. It was proposed that the post-treatment

reduction of average intra-aneurysmal velocity could be correlated with aneurysm occlusion.

Also the flow reduction is used to evaluate the flow-diversion efficiency and is considered as

the objective function for optimization of FDs [25]. However Cebral et al [26] demonstrated

that the reduction of intra-aneurysmal velocity was not sufficient for a successful treatment of

aneurysms with a FD. Despite the decreased velocity in the aneurysm sac, an increase of intra-

aneurysmal pressure after the FD placement was observed for the ruptured cases.

The results of the present study are in agreement with recent studies, which proposed that

for a successful treatment with a FD the flow reduction should be at least one-third of the pre-

operative state [27–29]. On the other side, a flow reduction of 52% was observed for the the

giant fusiform aneurysm, where an immediate clinical success was not achieved. It demon-

strates that the clinical outcome is determined not only by the relative flow reduction, but it

depends on a complex set of parameters, which characterize the geometry of the aneurysm

[30, 31], the hemodynamics in the aneurysm sac [32], the aneurysm wall structure and blood

coagulation properties [33–35].

The preoperative state of all three aneurysms was characterized by the presence of a vortex

in the aneurysm sac. A zone of low velocities was observed in the center of the vortex, which

could contribute to thrombus formation [36–38]. The placement of FD led to significant

changes in flow-patterns for the all three cases. No vortex was observed in the aneurysms sac

after the treatment. The observed relative reduction of recirculation in the studied cases is in

Fig 12. Streamlines in cerebral aneurysms after flow-diverter placement. a)—B01; b)—B02; c)—A01.

https://doi.org/10.1371/journal.pone.0190696.g012
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agreement with results of Lieber et al [14] suggesting that clinical success cannot be deter-

mined by using only a recirculation as a criterion.

The virtual deployment of a FD enables a precise description of stent-induced hemodynam-

ics at no risk for the individual patient. In the frame of this study, a fast virtual stenting

approach was chosen based on Janiga et al. [39]. Its advantage clearly lies in the clinical appli-

cability, since realistic deformations are performed within seconds. Furthermore, the complete

geometric appearance of the stent (e.g., each single stent strut and individual pores) is consid-

ered. In contrast, other approaches reported in literature are either highly computationally

expensive or over-simplify those devices due to the consideration of porous media. In this

regard, the recent virtual FD deployments are well suited for the comparisons with the real

stentings of this study.

WSS distribution is another important parameter which is commonly analyzed for evalua-

tion of pre- and postoperative hemodynamics in cerebral aneurysms. There is still no clear the-

ory whether high or low WSS values are prone to aneurysm growth and rupture [40–42].

However in some cases a correlation of high WSS with the rupture of saccular aneurysms is

observed [9, 43]. In our study only the distribution of nWSS was considered, since a precise

calculation of WSS using the PC-MRI measurements was problematic due to the lack of spatial

resolution, especially close to the aneurysm wall, which correlates with results reported by

Petersson et al [44]. Therefore the absolute values of WSS were different for CFD and MRI

results and small alterations in WSS could not be revealed by MRI, however the distribution of

normalized WSS showed a similar pattern for both methods, which is in agreement with the

results of the recent study by Cibis et al [45].

This study has some limitations. A Newtonian fluid was used for investigation of the intra-

aneurysmal hemodynamics. However recent studies showed that non-Newtonian fluid behav-

ior could play a significant role in distribution of hemodynamic parameters in the aneurysm,

especially at zones of recirculating flow [46]. The use of rigid phantoms also could lead to over-

estimation of hemodynamic parameters such as peak velocity magnitude and WSS [47]. Addi-

tionally no patient-specific boundary conditions were available for the studied cases, which

could have a substantial effect on velocity calculations [48, 49]. However, the comparison of

CFD and MRI should not be affected by these shortcomings as similar parameters were used

for both methods. For better comparison within our simulations, we implanted similar FDs

(DERIVO) in all the different models. As sizing of the in-vitro FD was determined based on an

angiography of the respective phantom, slight differences in FD dimensions occurred com-

pared to the patients. This may limit the comparability with the in-vivo cases, however little

differences may be expected from different manufacturers and clinical corresponded well to

our experimental studies. Furthermore, only a single successful patient and two unsuccessful

ones were considered, limiting the generalizability of obtained individual results to other aneu-

rysms with anatomic/geometric variability due to the limited sample size of selected patients.

Future studies will address the listed limitations.

Conclusion

In the present work we quantitatively studied the hemodynamics in three patient-specific

aneurysms before and after FD treatment using both experimental and numerical methods.

For preoperative and postoperative distribution of hemodynamic parameters similarity

between results obtained by CFD simulations and MRI velocity measurements was shown. In

cases without aneurysm occlusion after FD placement a flow reduction of about 30-50% was

found, while for the clinically successful case the flow reduction was 80%. These results are in

agreement with recent studies of post-treatment complications after FD placement. Both CFD
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and MRI methods could be used for evaluation of cerebral hemodynamics before and after

treatment and could be used complementary in supporting a physician during an intervention

planning. While CFD may be advantageous in a pre-treatment planning to predict the hemo-

dynamic changes after a FD implementation, in-vivo MRI measurements are not dependent

on virtual stenting and thus could assess the blood flow right after FD deployment.

While velocity reduction is clearly one aspect of the mechanism of action, it is not solely

responsible for treatment success. The treatment result is more complicated and likely involves

an interaction between velocity reduction, hemodynamic changes and coagulation. While no

simulation can realistically incorporate all of these variables due to many unknowns, MRI

measurements could provide velocity information that may factor into treatment outcome.
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