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Abstract

The so called (sparse grid) combination technique is an elegant way of combining
the properties of sparse grids, while still being able to use PDE solvers, that support
only standard full grids. Since there are a lot of possible combinations (which don’t
necessarily have to resemble a sparse grid), it is possible to adapt the combination at
runtime to generate more optimal results for each use case, eliminating the need for
manual optimization.

The focus of this project was to implement such an adaptive algorithm in a framework
that only supported the static combination technique. The chosen refining criterion
was based on the difference between the solution of the PDE on two different grids
that are used in the combination. The resulting algorithm was tested with the plasma
physics framework GENE. Due to possibly remaining bugs only basic properties of the
implemented algorithm were examined.
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1. Introduction

Equidistant full grids are the simplest way to discretize the spatial dimension of PDEs.
The problem is, that they suffer from the curse of dimensionality. The number of needed
grid points increases exponentially in the number of dimensions, if the resolution of
the grid stays the same. There are many different approaches to reduce the number of
needed points, but especially for higher dimensions sparse grids seem to be a promising
approach. Their main disadvantage is the more complex implementation and so most
of today’s PDE solvers don’t support them. The so called combination technique offers
compatibility with existing solvers, while also preserving the properties of sparse grids
(in certain cases). Here multiple solutions of the problem on differently sized full grids
can be combined to resemble a sparse grid solution, but the technique is much more
flexible. Many different combinations are possible and to be able to fully exploit this
method, it makes sense to think about algorithms that optimize the combination at
runtime to achieve the best result possible.

The focus of this project was to implement such an adaptive algorithm into a frame-
work that is based on the works of [1] and that only supported the static combination
technique. The implementation was then tested with the plasma physics framework
GENE [2]??.

This paper will firstly introduce the theoretical background/motivation for using
sparse grids and the (adaptive) combination technique. Then it will go in to the details
of implementing such an adaptive algorithm into an existing framework. The paper
then concludes with the results that were achieved with this implementation on the
plasma physics framework GENE followed by an outlook on possible expansions of the
implementation and a conclusion.
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2. Theoretical background

2.1. Sparse Grids

As mentioned sparse grids, which are based on the work of [3] and which are described
in more detail in [4], try to improve on equidistant full grids by using less grid points
while achieving a similar accuracy. For this paper only full grids that have 2ni ± 1,
ni ∈ N+, i ∈ [d] grid points in dimension i are taken into account1, where d is the
dimension of the problem to be solved. If it is assumed, that there are the same number
of points 2n ± 1 in each dimension then the number of points has the complexity
O(2nd). A comparable sparse grid needs only O(nd−12n) points, while the results are
generally only slightly worse than on full grids. For a function that has a bounded
second derivative the error is only O(2−2nnd−1) compared to O(2−2n) in a full grid (in
the L2 norm). The problem is that sparse grids are a lot more complicated to implement
than full grids and so most PDE solvers don’t support them. Their structure is more
complex and they work on a hierarchical basis.

2.2. Combination Technique

The so called combination technique, which is described in more detail in [5] is a way
to get the complexities of sparse grids (both for the error and the number of points),
while still being compatible with full grid solvers. Here the result of the computations
on different full grids can be combined to approximate the result on a sparse grid. For
that we use the same full grids as described in the previous section. To combine the
result of a calculation on two full grids, one adds the values of grid points that exists in
both, and simply takes the values for points that exists only in one of the two grids.
Since the values of the points that are in both grids are sort of counted twice, one has
to subtract a third grid, which is made up of all grid points that are contained in both
grids. This approach can be generalized for a combination of arbitrarily many grids,
where it gets much harder to see which subgrids have to be subtracted to correct the
combination. It can happen that some subgrids have to be subtracted more than once
and it can also happen that some subgrids (of the initially subtracted subgrids) were

12ni + 1 points if there are values on the boundary, otherwise 2ni − 1
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2. Theoretical background

Figure 2.1.: Three possibilities of combining full grid solutions with the combination
technique. On the left the result is the standard sparse grid. The results of
the green grids are added together and the red grids are subtracted once to
get the grids on the bottom. The grey grids are the ones contained in the
resulting combined grid without taking part in the calculation.

subtracted too many times and have to be readded again. Both of these effects only
start to appear in dimensions d ≥ 3.

There is of course a way to mathematically formalize this approach. For that we
use the same full grids as in the previous section, that are determined by their index
vector ~n ∈N+

d. The grids that should be combined will from now on be called active
grids. These are the grids that are not contained by another grid in the combination
as a subgrid and they unambiguously identify a certain combination, since all of their
subgrids are contained in the combination by definition (even if they are not directly
needed for the calculations). A grid ~m is a subgrid of grid ~n, if ~m ≤ ~n (and ~m 6= ~n).
Let I be the set of the index vectors of all grids contained in the combination, then the
solution f ct of the combination can be described by the linear combination of the full
grid solutions f~n on grid ~n as follows:

f ct = ∑
~n∈I

c~n f~n (2.1)

The coefficient c~n denotes how many times each grid ~n has to be added or subtracted.
With χI being the characteristic function of the set I 2, it can be calculated as follows [6,

2χI(~x) = 1, if ~x ∈ I, else χI(~x) = 0
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2. Theoretical background

p. 114]:

c~n =
1

∑
~z=0

(−1)|~z|1 χI(~n +~z) (2.2)

If a coefficient is 0, no solution has to be calculated for the corresponding grid. Grids
that are not active and have a coefficient that is non-zero will be called correction grids
from now on.

Three possible grid combinations are shown in Figure 2.1. As can be seen one can
generate a sparse grid with this approach, but not only that.

It has to be mentioned that combining different full to a sparse grid is generally not
the same as doing the calculations on the sparse grids directly, but in [5] it was shown
that under certain assumptions the error of the combination has the same complexity
as the error on the sparse grid.

Since there are a lot of possible, feasible combinations and because it is generally not
obvious for a given problem, which combination might lead to the best results, it makes
sense to think about an algorithm that automatically tries to find the best combination.
This approach is described in the next section.

2.3. Adaptive Combination Technique

2.3.1. Basics

There are two main things that have to be considered when making the combination
technique adaptive. The general expansion strategy has to be chosen, which determines
which grids can be added or removed. Then an error/refining measure has to be
chosen, which decides which of the candidates (if any) is chosen. The general strategy
that is used in this paper is the same as described in [7].

All of the grids that are contained in a combination are divided into an active set A
and an old set O. The active set contains all active grids, which are colored green in all
figures in this paper. The old set consists of all correction grids, which are painted red,
and all other contained grids, which are painted grey.

In each expansion step the error measure is calculated for each grid in the active set.
If a grid is chosen for expansion, all forward neighbors, whose backward neighbors are
all in the old set, are added to the active set. The grid chosen for expansion is removed
from the active set, even if not all forward neighbors could be added. The complete
expansion step is summarized in Algorithm 1 and the expansion process is illustrated
in Figure 2.2. It is important to note that not all possible combinations can be generated
with this technique as illustrated in Figure 2.3.

4



2. Theoretical background

choose ~n ∈ A according to the error measure
O = O ∪~n
A = A \~n
for t = 1, ..., d do

~m = ~n +~et

if mu = 1∨ ~m− ~eu ∈ O for all u = 1, ..., d then
A = A ∪ ~m

end
end

Algorithm 1: Basic expansion step. Slightly modified version of the algorithm
presented in [7], that highlights that grids at the border don’t have a backward
neighbor in that direction.

Figure 2.2.: Possible expansions steps starting from a single grid. The green and red
grids have the same meaning as in figure 2.1 and the blue grid is the grid
that is chosen for expansion in each step.
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2. Theoretical background

Figure 2.3.: On the left there is an example for a possible result of the expansion
algorithm starting with only a singled grid. On the right there is an
impossible result. At least the grid marked with the ’?’ would have
to be contained in the combination for it to be valid, because it would be
impossible to add it (and all grids with a bigger index vector) with the given
algorithm. The middle example of Figure 2.1 would also be impossible.
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3. Implementation of the Adaptive
Combination Technique

3.1. Error Measure

For the implementation of the error measure as part of this project an approach was
chosen that compares the values of the solution on an active grid ~a to a correction
grid ~c that is a subgrid of it. The reason for including the correction grids in the error
measure is that they have a lower resolution then the active grids, so it is expected that
the solutions calculated on these grids are worse than on the active grids, which might
badly influence the combined solution.

Let f~a(x) be the solution of the problem for a point x in the active grid and f~c(x)
the same for a correction grid. Let X~c be the set of points in the grid ~c (which are are
contained in~a as well), then the error measure ε~a can be calculated as follows:

ε~a = max
x∈X~c

| f~a(x)− f~c(x)|
maxx∈X~c | f~a(x)|

d

∏
i=1

1
2ai

(3.1)

The basis of this error measure is the pointwise difference between the two solutions.
This difference is then divided by the maximum value of the solution on grid ~a to
keep small, unimportant fluctuations around 0 from completely dominating the error
measure. This is then again divided by (roughly) the number of points in ~a to favor
less computationally expensive expansions. The choice that the final error measure
is the maximum of these values and not something like the (squared) mean is purely
arbitrary and not based on empirical evidence.

For each active grid the partner needed for the error measure is chosen by decreasing
one index of~a until such a grid is hit. This is tried for every dimension until a partner
is found (always restarting from ~a). This means that there must be at least one such
partner for every active node. As it turns out, this is always the case, when the general
expansion strategy described in the previous section is used. The only thing that has
to be ensured, is that one doesn’t start with a single grid in the combination, but
starting with at least one additional grid in each dimension is already enough (in 2D
this corresponds to the left image in Figure 2.2).
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3. Implementation of the Adaptive Combination Technique

Figure 3.1.: On the left there is minimal starting grid for the used expansion strategy,
which ensures that every valid combination in 2D can be generated with
the given expansion rules. On the right there is the minimal starting grid
for the alternative expansion strategy. The possible expansions are marked
with an arrow. The circles in the corresponding color denote the grid pairs
that are used for calculating the error measure for the expansion.

Another expansion strategy was tried out shortly, but due to certain problems it was
not fully implemented as part of this work. Its ideas and problems are described in
Section 3.3.

3.1.1. Theoretical Problems

There are some fundamental problems with this form of adaptivity. One is rooted
deeply in the definition of the combination technique that is used here. Each grid that
gets added in the expansion has roughly twice as many points as its backward neighbor.
This means one can only add so many grids in a certain direction before the runtime
increases too much. This very variable runtime is especially problematic for clusters
where you have to specify the runtime of your algorithm beforehand. Either you have
to specify too many processes in the beginning which leads to idle processes or you
specify to few, than it will take much longer to finish. It is of course possible to set
a maximum number of grid points, that will be added, but that heavily reduces the
flexibility of the algorithm.

Then there is a problem that is connected to the applicability of this adaptive scheme
to PDEs (though it might also hold true for other use cases). It is unlikely for complex
PDEs to reach a sensible result on very coarse grids. That also means that the error
measure may not be very useful in this case, which leads to random looking expansions,
which may not even improve the convergence behavior of the PDE. It may even be
impossible for a certain PDE to converge with the given adaptive technique, since there
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3. Implementation of the Adaptive Combination Technique

will always be grids directly at the boundary, which have at least on dimension, in
which they only contain 2± 1 points and so for certain PDEs they might ruin the result
of the complete combination. For the last problem there is at least a static solution. It is
possible to introduce a ’minimum’ vector~b ∈N+

d. Now everything works as before,
but each grid ~n ∈N+

d now has 2ni+bi ± 1 points, which avoids grid that are to coarse
in certain dimensions, but this heavily reduces the flexibility of this approach.

In the framework that is presented in the next section this was implemented by
explicitly increasing the index vectors, so using vectors ~m := ~n+~b (so mi ∈N+ \ [bi], i ∈
[d]) since this approach was more natural to implement with the already existing
interfaces. It has the same effects, but some algorithm changes are now required. The
minimal starting grid is now~b + 1 (instead of 1) and in Algorithm 1 the check mu = 1
has to be changed to mu = bu + 1.

3.2. Concrete Implementation

3.2.1. Description of the Existing Framework

The presented algorithm was implemented into the code framework created as part
of [1]. The algorithm was integrated into the existing main program loop that is
described in Algorithm 2 (in its current form). In the loop a global master is responsible
to distribute the workload, consisting of the active and the correction grids, among
different process groups. Each group consists of a (globally) fixed number of processes,
that together calculate the solution for a given grid. The master communicates only
with one of these processes, the group manager. This manager splits the workload
between itself and all other processes in the group. This is done by actually splitting
the given grids, so each group member calculates a part of each grid that is given to
the group.

To avoid a divergence of the solution on the differently sized grids after some
iterations, the full grid solutions are regularly hierarchized and then combined to the
combination solution (which is distributed among all groups). This solution is then
used to reset the values on all fullgrids, where the values are then dehierarchized again.
For all simulations in this paper this was done every iteration. This approach has the
big advantage, that even grids that were not part of the combination can be populated
with the values from the combined solution, which made the implementation of the
expansion a lot simpler.
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3. Implementation of the Adaptive Combination Technique

*Distribute the grids among the processes
*Distribute the grid-group-map
*Initialize all new grids with the combined solution
Calculate the solution on each grid
”Calculate the error measure for each grid and determine the best
Determine the combined solution
”Update the combination scheme with the chosen expansions
”Remove all fullgrids from all processes

Algorithm 2: The main program loop. Steps marked with a * only need to be
executed when an expansion was added in the previous step. Steps that are
marked with ” only need to be executed when an expansions should happen in
the current step.

3.2.2. Implementation of the Expansion Algorithm

The described process structure makes the implementation of the adaptivity a bit more
complex since each group worker can only calculate the error information for its part of
each grid. This information than has to be combined in the manager. This is done for all
grids the group owns. The manager then sends the index vector and the error measure
of the grid with the biggest error measure to the master, which then determines the best
grids of all groups. The chosen grid is then sent back to the managers, which in turn
send it to the workers. All processes (master, manager, workers) then update their local
copy of the state of the combination. After such an update all grids are redistributed by
the global master.

The described process structure also makes the calculation of the error measures
on the workers quite difficult. As mentioned in the previous section, two grids are
needed for that, but it is impossible to guarantee that both of them are evaluated by
the same group, if duplicate calculations are to be avoided. So while distributing the
workload among the different process groups, the master creates a map, which maps
each grid to the process group that owns it. After the distribution is completed and
before the calculations are started the master sends this map to every group, which in
turn distribute it among their members. Since each group member knows the current
state of the combination, they can now calculate which grids are needed for the error
measure calculations and look up by which group they are owned. Now comes an
important implementation detail: The grids are split between the group members the
same way in every group. That means that if a point x is contained in grid g1 and was
given to the process with offset i in the group a, then it is guaranteed that each grid g2

that also contains x has to have the same offset i in its group b. This means every group
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3. Implementation of the Adaptive Combination Technique

member, by knowing its own offset in its group, can now calculate the error measure
for its part of each grid.

So after the master now sends the signal to each group to start the error measure
calculation, each group member iterates through every active grid and checks if the
group either owns that grid or the correction grid needed for the error measure
calculations. If the group owns both, all of its processes can simply do the calculations
on their own. If it owns the active node, then its processes wait to receive the information
of the group owning the partner grid, which in turn sends it. If neither the active grid
nor the correction grid is owned by a group, nothing has to be done for that active grid.

The loop to calculate the error measures is described in Algorithm 3.

foreach a ∈ A do
Calculate the error measure partner c
aGroupID = gridGroupMap[a]
cGroupID = gridGroupMap[c]
if myGroupID = aGroupID then

if myGroupID 6= cGroupID then
receive point data of c from cGroupID + myo f f set

end
calculate local error measure
the group manager combines the local error measures of its workers
the group manager updates the currently best error measure

end
else if myGroupID = cGroupID then

send point data of c to aGroupID + myo f f set
end

end
the manager sends the best error measure to the master

Algorithm 3: The loop that is executed on each process (except the global master)
when the error measure should be calculated.

This whole algorithm may be inefficient but due to the fact that there will generally
be a lot less expansion steps compared to total steps of the simulation the overhead
due to a non optimal algorithm should be negligible.

3.3. Failed Expansion Strategy

The first idea for an expansion strategy was to add at most one grid in every expansion
step, while using the same error measure as above. This is highly problematic, since it
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3. Implementation of the Adaptive Combination Technique

now becomes necessary to add a grid that is not a neighbor of an active (or a correction)
grid. To be exact one has to iterate over all grids, where at least one forward neighbor
is not already in the combination scheme. To check whether an expansion is valid or
not one uses the same criteria as in the used expansion strategy. Since the grid ~n, that
has a possible expansion as neighbor, may not be directly involved in the calculations,
there aren’t any values directly associated with it, with which the error measure can be
calculated. Nevertheless ~n is part of the combination, so by definition its points are all
contained in at least one active grid. So to get an error measure for this expansion one
needs to first search for at least one of these active grids. This is done by repeatedly
increasing the index in a certain dimension by one until an active grid is hit. This
dimension must be orthogonal to the expansion direction.

For this approach to work the minimal starting combination scheme has to be bigger
than in the used expansion strategy as illustrated in Figure 3.1. The reason is that it
would be impossible to ever get a grid, which doesn’t lie directly on the boundary in
the simpler starting position. Figure 3.2 shows a more advanced combination scheme
with this technique and illustrates that the grids used to determine the error measure
for an expansion might be far away from the expansion itself.

The main reason why this algorithm was not implemented is mainly its imple-
mentation complexity, while it is not obvious why it should be any better than the
implemented algorithm. Here it takes even more expansion steps until a correction
grid, that might lead to high error measures is replaced by correction grids with higher
resolution.

The main advantage of this approach would be that more combination schemes are
now reachable because the expansion is more fine grained.

12



3. Implementation of the Adaptive Combination Technique

Figure 3.2.: Illustration of the failed expansion strategy. The expansion indicated by
the red and black arrows show the disconnection between the grids used
to determine the error measure and the grid that will be added if the
expansion in question is chosen. For an explanation of the symbols see
Figure 3.1.
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4. Results

4.1. General

As mentioned the examples were tested with GENE [2], which deals with plasma
physics and the inner workings of which are described in more detail in [8], as under-
lying solver. While the solver uses six dimensions there are only three in which an
expansion makes sense, which is why all grid index vectors will be three dimensional.

Due to the complexity in the given code framework, it took a lot longer than expected
to implement the previously described algorithm. For that reason there was not enough
time to really test the implementation for remaining bugs and to tweak it for better
results.

The parameter file that was used as a basis for all tests can be found in the Appendix
A. Values that were changed for the tests are explicitly mentioned.

4.2. Test Scenarios

Since each combination is defined by its active grids, the state of a combination will be
described by a list of the indices of all active grids.

The reference for the correctness of the result was the fullgrid [6, 6, 6] (which is
denoted in the parameter file by lmin = 2 1 6 6 6 1 and by lmax = 2 1 6 6 6 1).
These results were then transferred to a [7, 7, 7] full grid through the hierarchization-
combination-dehierarchization-process mentioned in Section 3.2.1. This transfer was
done for all tests, where results were compared, to create common baseline.

Two different starting combinations were used for the expansion tests. The first one
is [5, 4, 4], [4, 5, 4], [4, 4, 5] (which is denoted in the parameter file by lmin = 2 1 4 4 4 1
and by lmax = 2 1 5 5 5 1), which will be called 444-scenario from now. With
this starting combination five test runs were made, where an expansion was done
every x iterations with x ∈ 250, 300, 400, 500, 600. The second starting configuration
was [6, 5, 5], [5, 6, 5], [5, 5, 6] (555-scenario). Here only one test run was made with
an expansion every 1200 iterations. The last test was made, because a test with
lmin = 2 1 4 4 4 1 and lmax = 2 1 7 7 7 1 with the static combination technique did not
converge to the reference solution of the full grid (with an relative mean square error

14



4. Results

a b #Groups #Procs. per Group Exp. 1 Exp. 2 Exp. 3

4 6 4 128 [6,4,4] 1.3 [7,4,4] 2.7 [5,4,5] 22
4 7 4 128 [7,4,4] 2.3 [8,4,4] 42 [6,4,5] 65
4 8 4 128 [9,4,4] 209 — —
5 6 4 128 [6,5,5] 5.0 [7,5,5] 5.2 [8,5,5] 6.7
5 6 4 64 [6,5,5] 5.2 [7,5,5] 6.1 [8,5,5] 7.0
5 6 2 128 [6,5,5] 5.1 [7,5,5] 5.1 [8,5,5] 6.7
6 7 4 128 [7,6,6] 9.7 [8,6,6] 13 —

Table 4.1.: The runtime of the expansion algorithm for different configurations. The
Exp. columns denote the active grid that was chosen for the expansion and
the runtime of the expansion algorithm in seconds.

of roughly 140%), while a static run with lmin = 2 1 5 5 5 1 and by lmax = 2 1 7 7 7 1
did converge (with a relative MSE of only 7.0%).

4.3. Runtime of the Expansion algorithm

It is expected that the runtime of the expansion algorithm itself scales roughly linearly
in the number of active grids and the number of points per active grid, but due to
the unpredictability in the distribution of the grids to the processes there is a big
random factor. These measurements exclude the filling of the new grids with values
but they include some folder operations that are necessary for the interface between
this framework and gene.

In the 555-scenario the measured runtime of all 4 expansion steps together was only
0.76s which seems quite low, but due to the expansion that only ever went in one
direction (which can be seen in the next section) the amount of active grids stayed
constant at 3.

Instead of the 444-scenarios some smaller special scenarios were used to test the
runtime. All of them ran only for up to 50 iterations, with up to 3 expansion steps. Here
the number of processes and the starting configurations varied, but the configurations
were always of the form lmin = 2 1 a a a 1 and by lmax = 2 1 b b b 1. The scenarios
that used 128 processes per group used p = 1 1 1 8 16 1 while the one scenario that
used 64 used p = 1 1 1 8 8 1. The results are listed in Table 4.1.

The most interesting measurements are bold. It is not clear why these take so long
for their expansion steps. It can’t be due to the increasing number of active nodes,
since none of these expansions increase this number. One possibility would be a very
suboptimal redistribution of the grids among the processes but it is questionable, if this
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4. Results

Active Grid [5, 4, 4] [6, 4, 4] [7, 4, 4] [8, 4, 4] [4, 5, 4] [9, 4, 4]
Error Measure 1.5 · 10−5 4.2 · 10−4 1.5 · 10−4 6.2 · 10−5 4.1 · 10−5 3.1 · 10−5

Active Grid [5, 5, 4] [4, 4, 5] [5, 4, 5] [6, 4, 5] [7, 4, 5] [8, 4, 5]
Error Measure 2.9 · 10−5 5.0 · 10−4 4.9 · 10−5 5.1 · 10−5 5.5 · 10−4 3.5 · 10−5

Active Grid [6, 5, 4] [7, 5, 4]
Error Measure 3.2 · 10−5 5.1 · 10−4

Table 4.2.: Active grids that were chosen for expansion in the 444-scenario with x = 400
(in order left to right then top to bottom)

Active Grid [6, 5, 5] [7, 5, 5] [8, 5, 5] [9, 5, 5]
Error Measure 1.22 · 10−6 3.2 · 10−6 1.9 · 10−5 7.6 · 10−6

Table 4.3.: Chosen expansion grids for the 555-scenario (in order left to right then top
to bottom)

can have such a big impact in these cases. Further testing has to be done, whether this
can be consistently reproduced or if these are just inconsistent measurement blips.

Except for the 209s these costs are still negligible compared to the runtime of the
complete simulations, especially if one considers that the number of expansion is
always far less than the number of iterations.

4.4. Expansion Patterns

For the 444-scenario with x = 400 the expansion represented in Table 4.2. As can be
seen the expansion was heavily skewed towards the first dimension. This was not
justified since the solution did not converge to the full grid reference (again with a
relative MSE of 140%). This convergence and expansion behavior was the same for
all 444-scenarios and as can be seen in Table 4.3 at least the expansion behavior of
the 555-scenario was also similar. Due to the long running time (> 30h) of the latter
scenario no convergence was tested here. A very small indication for the correctness
of the calculation of the error measure is that for the 555-scenario the calculated error
measures are generally lower than in the 444-example.
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5. Outlook

Due to the slow implementation progress a lot can still be done. The first thing that
comes to mind is that the algorithm has to be verified more rigorously. It may be
helpful to create simple examples, where optimal expansion strategies calculateable by
a human. After the correctness of the algorithm is verified (at least with a somewhat
high probability) it should be tried out on more examples with different configurations
(different starting grids, different amount of processes) and on different solvers, since
one solver is not enough to get a good idea of the performance of the presented
approach.

Then there are a lot of tweaks that can be made to te algorithm. Firstly the error
measure calculation can be changed by trying out different norms, using the average
error instead of the maximum, etc. The error measure can also be calculated on the
hierarchical basis to see if it makes a difference.

As mentioned in previous sections the algorithm has some fundamental flaws which
hinder its flexibility and effectiveness. One of them was that too coarse correction grids
are most likely the reason for a high error measures but the algorithm does not directly
increase the resolution of these grids, but only of the active grids, which already have
a higher resolution. Only after some expansions the correction grids tend to increase
their resolutions as well. It would be interesting to see if it is possible to implement
an efficient expansion algorithm that directly increases the resolution of the correction
grids.

Another big change would be to make the expansion strategy more flexible so that
more combination schemes are legal. This is connected to the idea that it would be nice
for the algorithm to realize on its own that it mustn’t allow grids that are to coarse in
certain directions to be involved in the calculation, which is now done by setting the
minimum index vector as described in Section 3.1.1.
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6. Conclusion

The results of the implemented algorithm were somewhat underwhelming. While the
runtime of the expansion algorithm itself was ok, the expansion patterns were not,
but this has more to do with the low amount of time that was invested to investigate
possible reasons. Additionally, for every fundamental problem the current algorithm
has there where some ideas of how to fix them or at least lessen their effect. So in the
end the results achieved in this project are only the foundation for further research that
explores the possibilities of using the adaptive combination technique for PDEs with
the presented framework.
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A. Basic Parameter file

[ct]
#last element has to be 1 -> specify species with special field
dim = 6
lmin = 2 1 5 5 5 1
lmax = 2 1 6 6 6 1
leval = 2 1 4 4 4 1
leval2 = 2 1 7 7 7 1
p = 1 1 1 4 8 1
ncombi = 6000
readspaces = 1
fg_file_path = ../plot.dat
fg_file_path2 = ../plot2.dat
boundary = 1 0 1 1 1 0
hierarchization_dims = 0 0 1 1 1 0
reduceCombinationDimsLmin = 0 0 0 0 0 0
reduceCombinationDimsLmax = 0 0 0 0 0 0

[application]
dt = 0.005
combitime = 10000
nsteps = 1
shat = 0.7960
kymin = 0.3000
lx = 4.18760
numspecies = 1
GENE_local = T
GENE_nonlinear = F

[preproc]
basename = ginstance
executable = ./gene_new_machine
mpi = mpirun

19



A. Basic Parameter file

sgpplib = [...]/combi/lib/sgpp
tasklib = [...]/combi/distributedcombigrid/examples/gene_distributed/lib
startscript = start.bat

[manager]
ngroup = 4
nprocs = 32

[faults]
[deactivated]
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