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Abstract

Microbes play a major role in our everyday lives. While some pose a deadly threat,
many of the ”good” bacteria are crucial for our bodies’ optimal functionality and disease-
free survival. The microbial communities persistent on or in individual body sites are
known as microbiomes. For example. the skin microbiome fends off invasive microbial
species, while the gut-brain axis links the gut microbiome to neurodevelopment and
neurodegeneration.

Advances in high throughput sequencing have deposited a vast amount of microbial
genetic data into public databases. This data describes the proteins that microbes are
able to synthesize and molecular functions they facilitate. Detailed understanding micro-
bial functionality, in turn, provides for a better understanding of organism interactions
with each other and their surroundings. Moreover, as microbial, and particularly bac-
terial, phylogeny-driven taxonomy is a dynamic and hotly debated field, I postulate in
this work that standardized functional assessment of organisms can provide for a more
stable and meaningful way for organism classification.

Earlier smaller scale efforts to assess similarity between microbes highlighted the im-
portance of functional evaluations. Here, I set out to evaluate the functional similarities
between bacteria using new protein sequence alignment algorithms and network clus-
tering techniques. The presented approaches are flexible and robust in the face of the
exponential growth of bacterial genetic data. First, I optimized the process of estab-
lishing functional similarities between proteins, increasing the speed of existing methods
by over 40-fold without sacrificing precision. This optimization has produced a set of
over 250 billion alignments of 31.5 million available microbial proteins, representable as
a similarity network. I evaluated many available techniques for clustering a network of
this size, which is expected to consistently grow over the coming years. I note that none
of the evaluated approaches worked within the limitations of available hardware and I
detail a possible new, t-SNE algorithm-based, solution. Going forward, both methods
will be incorporated into my existing fusion (functional similarity of organisms network)
platform. This platform, which is available to the general scientific public, provides a
means of functionally annotating new bacterial genomes in the context of others, thereby
facilitating further detailed research into emergence of microbial functionality, environ-
mental adaptation of microbes and functional interactions between microbes to name a
few.
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1 Introduction

1.1 Microbial similarities and functional capabilities

The study of bacteria, their relations to each other, and especially their functional prop-
erties (e.g. pathogenicity) has been of great scientific interest for centuries. From the
early discoveries of microorganisms in the late 17th century by Antoni van Leeuwenhoek[1,
2], to the complete sequencing of Haemophilus influenzae in 1995[3] many important
discoveries were made. Other central discoveries specifically towards understanding the
functional impact of microbes in our lives were made by Louis Pasteur and Robert Koch
in the late 19th century. Pasteur established bacteria to be one of the causative effects
of food spoilage[4, 5], more specifically beer and wine. His discoveries ultimately lead to
methods improving food safety, a process widely know as pasteurization. Robert Koch
on the other hand was one of the first to link bacteria to the development of anthrax,
tuberculosis and cholera[6, 7, 8]. Those early works predating modern taxonomy clearly
demonstrate the need to understand functionality facilitated by microbes. The first at-
tempts at bacterial classification were done by Ferdinand J. Cohn in 1875[9]. Those
ultimately culminated in Bergey’s Manual of Determinative Bacteriology by David Hen-
drick Bergey[10]. Bergey’s Manual of Determinative Bacteriology (later renamed to
Bergey’s Manual of Systematic Bacteriology[11, 12]) first described prokaryotic relations
based on their morphological and phenotypical properties. In later volumes taxonomic
classification was adapted to be based solely on genetic phylogeny, i.e. evolutionary rela-
tionships between individual organisms determined by (dis-)similarity of the 16s rRNA.
This process of identifying taxonomic relations remains the gold standard to this date.
This concept was pioneered in the late 1970s and improved upon through the 1980s by
Carl R. Woese and George E. Fox [13, 14, 15]. However, with the rise of modern genet-
ics and the ability to sequence and assemble complete bacterial genomes, Haemophilus
influenzae being the first fully sequenced bacterium in 1995[3], the case has been made
that taxonomic assessment using the whole genome will result in better classification. An
improved taxonomic classification generated on the full genomic information can be es-
tablished. However, if following the same principles as current taxonomic classification,
organisms will still be grouped based on their evolutionary relations. A classification
scheme like this will not reflect similarities in the functional capabilities microbial or-
ganisms are able to facilitate. Here I present an approach to generate functional profiles
for microbes that is to pick up on the intricate functional differences of microbes, and
relate them to each other accordingly.

One of the base requirements to establish functional profiles is the availability of
completely sequenced microbial genomes. Since the publication of H. influenzae’s whole
genome the number of completely sequenced bacteria available in public databases has
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1 Introduction

been increasing steadily. In early 2019 Genbank[16] reported a total of 12,000 completely
sequenced and assembled bacterial genomes. One critical observation is that the rate at
which new species were sequenced to completion, i.e. their complete genome was fully
assembled, stayed relatively stable until 2014 (see Figure 1.1). Interestingly enough
this is also the first time that twice as many new bacterial strains (“subspecies”) than
novel species were completely assembled. This trend continued, and grew even stronger
in recent years. By 2018 roughly 2,500 novel strains as opposed to 500 novel species
were fully sequenced and assembled. So far this amounts to 3,700 distinct species
of the 12,000 sequenced organisms. One reason for this observation is that today’s
assemblies are often driven by mapping to preexisting references, rather than doing de
novo assembly. This of course comes specifically in handy for novel strains, where the
assumption is that strains only differ little from the reference species. Another factor for
this observation are sequencing projects that investigate differences in strains found in
localized areas e.g disease outbreak areas or across different patients exhibiting the same
infections. In those cases, species extracted from different patients are labeled as distinct
strains. It is not unlikely that one such sequencing project adds more than 50 different
strains of one species to NCBI genome. While the majority of strains of one species
will share large parts of their genome, unique functional traits that set them apart can
still be detected. This is a particular problem in the state-of-the-art identification of
bacterial presence in environmental samples.

1.2 Current concept in microbial classification

One of the pillars of prokaryotic classification, respectively detection has been 16s rRNA
sequencing. 16s rRNA is a small, highly conserved sub-unit of the prokaryotic ribosomal
RNA sequence that can be used to distinguish if two organisms are of different species.
In fact, the current taxonomic classification scheme laid out in the most recent edition of
Bergey’s Manual is based on 16s rRNA similarity in conjunction with phenotypic traits.
However, with whole-genome sequencing getting ever cheaper and easier to accomplish,
it has become more apparent that high 16s rRNA similarity does not warrant close
similarity of the whole genome. Studies have shown, that there are many instances
where taxonomically close organisms (e.g. same genus different species) are functionally
more diverse, than some other organisms of a higher taxonomic rank[17, 18]. This of
course is even more difficult if horizontal gene transfer is taken into account, where
microbes share genetic material across species. This is in strong contrast to evolution
observed in eukaryotic organisms, where genetic traits are generally only acquired or
passed on from one generation to another.

This led me to ask, whether functional classification of microbial samples might be
beneficial over traditional taxonomic classification. Ultimately the question is what
microbes are capable of, rather than how close they are on the tree of life.

2
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Figure 1.1: Drastic increase in completely sequenced bacteria since 2014. Displayed
are the number of sequenced and fully assembled bacterial genomes available in
Genbank since 1999. Counts are separated into novel species (blue, cross), novel
strains of previously sequenced species (green, triangle) and both combined (yellow,
circle). Until 2010 the year by year increase stayed roughly stable. 2011 is the first
year where a larger increase was visible. 2012 presented the first year in which
more strains of previously sequenced species than novel species were completely
assembled. The trend curve from 2018 to 2019 is dashed as the count only reflect
the the number until beginning of April 2019.
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1 Introduction

1.3 Towards identifying functional similarities

To discern which functional capabilities a microbe offers we first have to establish what
we actually constitute as a function. I followed the approach of gene ontology and looked
at molecular function of proteins, i.e. any activity of a gene product. This is not only
restricted to enzymatic activity of proteins but also includes proteins like transporter,
signaling, regulation or binning proteins. Identifying functional capabilities of proteins
has been a staple in the field of computational biology for many years. A multitude of
databases like Brenda[19], Pfam[20] or Gene Ontology[21, 22] are available, describing
functional properties and protein similarities in various ways. Since I was primarily inter-
ested in functional similarity between two proteins, I specifically looked at the Enzyme
Commission[23] (E.C.) classification and molecular function portion of Gene Ontology.
Both of these schemata follow a hierarchy in describing the functional properties of
proteins. The E.C. classification follows a strict four level, tree like hierarchy, where
each consecutive level describes the enzymatic functional in more detail. As an example
EC 1.1.1.1 is classified as Oxidoreductase (EC 1.-.-.-) acting on the CH-OH group of
donors (EC 1.1.-.-) with NAD+ or NADP+ as acceptor (EC 1.1.1.-). The fourth and
final level is the generic name, i.e. alcohol dehydrogenase. Due to the nature of this
strict hierarchical structure, defining functional similarity based on EC number is fairly
straight forward. Depending on the chosen threshold, functional identity is a simple
binary decision, i.e. are the two EC annotations identical down to the defined level in
the hierarchy.

Gene ontology on the other hand is structured as three separate directed acyclic
graphs. Descriptors (nodes) are interconnected to each other with directed edges de-
scribing their relation (e.g. ‘is a’, ‘part of’, ‘regulates’). The only other restriction
imposed on the graph is that any path followed though the graph cannot loop back to
the originating node. In other words, the graph has to be acyclic. Out of the three
GO subgraphs, molecular function contains the information on functionality of proteins.
GO cannot be transferred into a tree structure since multiple paths leading from one
node to another with differing lengths can exists. Defining a strict hierarchy for GO is
therefore impossible. Additionally we can observe examples, where GO terms reach a
detail depth that is not reflected in EC annotations (see Figure 1.3). For example in-
ositol 2-dehydrogenase (GO:0050112) is listed as a child term of alcohol dehydrogenase
(GO:0004022) in the annotation scheme of Gene Ontology. One could argue that this
represents a more detailed description of the enzymatic activity. In the EC hierarchy
however inositol 2-dehydrogenase (EC 1.1.1.18) is described on the same level as alcohol
dehydrogenase (1.1.1.1), both being ”children” of EC 1.1.1.-. While the potential for in-
creased detail in GO is in general very desirable, it also leads to an increased complexity
when trying to establish functional similarity. This is especially significant if proteins
are annotated to different levels of completeness.

Many different techniques to assess similarity of graphs (or subgraphs) are available.
One that was specifically designed to work with GO is employed by the hosts of the
CAFA[24, 25] competition (Critical Assessment of Functional Annotations). While their
approach[26] is generalized and can be applied to much more than just binary data (i.e.
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1.3 Towards identifying functional similarities

Figure 1.2: Exemplary break down of the hierarchical EC annotation for alcohol
dehydrogenase. The Enzyme Commission annotation of is a hierarchical clas-
sification scheme consisting of four levels. Each consecutive level describes the
enzymatic functionality in increasing detail. Displayed is the EC annotation for
alcohol dehydrogenase (EC 1.1.1.1). Different levels of EC annotation are used to
describe predictive quality of function prediction algorithms like HFSP.

is a node present in a graph or not). If the method is simplified to suit the binary data,
it yields a distance that is the inverse of the Jaccard index. GO annotation has a much
higher complexity than the enzyme commission classification scheme. On the flip-side
the limited amount of data, respectively varying degrees of annotation completeness
for proteins of the same function introduce new challenges. While I ultimately see
GO as the superior annotation at its current state it proved too sparse to be useful
in creating a measure to compare functional similarity between proteins. Thus I used
the Enzyme Commission annotation in this work to establish a measure that can asses
functional similarity between proteins. In future applications it might be worth revisiting
GO. Apart from being potentially more descriptive and detailed, GO describes not only
enzymatic function but rather all molecular function.

Using a set of enzymes I optimized a measure that relies on sequence identity and
(ungapped) alignment length of pairwise protein sequence alignments to establish the
functional similarity between any two proteins. Homology-derived functional similarity
of proteins (or HFSP in short) follows principles similar to HSSP (Homology-derived
secondary structure or proteins)[27]. In its essence, HFSP states that sequence identify
by itself is not enough to warrant two proteins performing the same molecular function.
Short alignments (eg. 50 amino acids) require much higher sequence identity to make
reliable assumptions about functional similarity. On the other hand increasing alignment
length, allows for much larger variability in overall sequence identity, while still retaining
the same or similar function.
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1 Introduction

Figure 1.3: Gene Ontology annotation for alcohol dehydrogenase shows important
difference to EC annotation. Visualized is the Gene Ontology annotation of
alcohol dehydrogenase (EC 1.1.1.1). Individual GO terms are represented as box,
while term relations are visualized as arrows. Terms for both the biological process
as well as molecular function subtree as shown. Alcohol dehydrogenase is high-
lighted in yellow. In this specific case the EC annotation of alcohol dehydrogenase
is precisely reflected in the molecular function branch of the GO annotation. EC
1.-.-.- maps to GO:0016491; EC 1.1.-.- maps to GO:0016614, EC 1.1.1.- maps to
GO:0016616; EC 1.1.1.1 maps to GO:0004022. However here the GO annotation of
inositol 2-dehydrogenase activity (GO:0050112) is considered to be a child of alco-
hol dehydrogenase (GO:0004022). In a sense it is a more detailed description the
catalytic activity. In the EC annotation hierarchy however inositol 2-dehydrogenase
has its own fourth level EC annotation, namely 1.1.1.18.
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1.4 Functional similarity over taxonomic similarity

1.4 Functional similarity over taxonomic similarity

With the ability to determine if any two proteins share similar molecular function, the
idea can be applied to whole bacterial proteomes. To determine if two proteomes carry
similar functional capabilities, the entire pool of possible functions across all proteomes
has to establish first. Using HFSP, functional similarities between all proteins extracted
from a given set of proteomes are generated. The proteins are then related to each
other creating a similarity network. Using network analysis methods, proteins of similar
function are clustered into units representing specific functional properties. This process
generates the aforementioned pool of possible functionality. Now each organism can be
represented by a functional profile, a vector that list the presence of absence of functions
encoded for by the organisms proteome. It is of note that functional units can be specific
to proteomes, i.e. unique to certain organisms. Comparing the functional profiles of
individual microbes, functional similarity between organisms can finally be established.

Zhu et. al ’s work[18] serves as a proof of concept for this process. They determined
that classifying microbes by examining their functional potential correlates with tradi-
tional taxonomic classification. However, they were also able to pick up clear signals
suggesting cases where close taxonomic relation ship between organisms does not guar-
antee high functional similarity and vice versa.

The major drawback of Zhu et. al ’s study is their uses of limited data at that time.
The lack of information during the creation of the microbial functionality pool, has a
direct result in the resolution of final classification. For example, they suggest that
roughly two thirds of microbial functionality is organism unique, i.e. not present in any
but one organism. Additionally many of those functions are derived from hypothetical
proteins, in other words proteins predicted during the gene finding process of genetic
assembly. This fraction of the assumed functionality, will most certainly contain emer-
gent functionality that previously has not been described and might even be unique to
an organism. On the flip side however it will also introduce a significant error margin
potentially leading to a lower than presumed organism similarity. By introducing much
larger numbers of proteomes into the generation of the initial collection of microbial
functions, I will be able to achieve better resolution at describing the functional simi-
larity of microbes. Clades of functionally similar microbes should separate much clearer
from each other than previously observed. At the same time functionality that is unique
to single or a small group of organisms will be be more significant due to a reduction
of ”false uniques”. Additionally, with the knowledge of whether certain functionality
ascribed to organisms due to plasmids (i.e. horizontal gene transfer), lateral spread of
functionality in microbes can be traced as well. This plasticity of microbial capabilities
and as a matter of fact evolution, is something that is near impossible to trace by relying
on the more static nature of traditional taxonomy.

7



1 Introduction

1.5 Bridging the gap to communities

Given that a microbial community is a collection of microbial organisms, co-existing in
a confined environmental space, we can make certain assumptions about them. One
assumption is that if we are representing individual microbes as a repertoire of func-
tionality, the same can be applied to microbial communities. In this view, at its core
a microbial community is nothing but a collection of functional repertoires, a meta
functional repertoire. This assumption holds true, independent of whether they exist
in varying degrees of symbiosis or competition, i.e. whether microbes are capable of
existing on their own, or whether they need some kind of functional interaction with
other members of the community to survive. It can easily be the case that in one mi-
crobiome a specific subset of functions originates from one organism alone, whereas in a
different microbiome the same subset of functionality might be distributed over two or
more microbes. However, making the move to a grander scheme of understanding i.e.
away from the functional properties of a single organism towards regarding the micro-
bial community as an entity on its own it matters little which organism provides which
functionality.

By today’s standards a first step in investigating microbial communities is establishing
taxonomic composition i.e. clade abundances in the sample. Popular metagenome anal-
ysis suites to perform analysis like this are Qiime2[28], MOTHUR[29], bioBakery[30] or
MG-RAST[31]. The taxonomic composition is in most cases determined by one of two
common ways. Algorithms included for example in Qiime2 use abundances of 16s rRNA
information in the sample and compare those against databases like SILVA[32, 33] or
Greengenes[34, 35] to establish taxonomic clade compositions. The other increasingly
more common option is a hybrid approach that utilizes both 16s rRNA and other marker
genes. Examples for those hybrid approaches are MetaPhlan[36] (part of bioBakery)
and the algorithm used in MG-RAST. Taxonomic compositions established this way are
then often used in conjunction with prior knowledge of phenotypic behavior of organ-
isms belonging to detected clades to make inferences on the functional properties of said
metagenomic communities. Additionally, 16s rRNA fragments (and fragments of other
marker genes) can also be used as input into functional predictors, like PICRUSt[37].
However, PICRUSt still predicts function based on presence of marker genes, not the
actual functional properties of the microbiome’s gene content.

A more robust way of establishing functional properties of a microbial community
would of course be to assess the functional properties not simply based of the com-
munity’s taxonomic composition, or based of a few marker genes, but to directly infer
function of all present gene content. Zhu et al. developed mi-faser[38], an algorithm to
directly and reliably map reads from unassembled (meta-) genomes to a small but very
strict and well described set of enzymes and their respective KEGG[39, 40, 41] path-
ways. The beauty of mi-faser is that this concept works with any reference database, i.e.
the database could be replaced without the need to retrain or reoptimize the method.
The aforementioned concept of assigning functional profiles to individual microbes is
based on sorting proteins into functional units. By choosing a representative for each
described functional unit, a new reference database can be created. Combining such a

8
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reference database with a method like mi-faser could be used to infer molecular func-
tion to all reads present in a metagenomic sample. A functional profile for the whole
microbial community can be generated this way instead of relying on a few marker
genes, and inferring functional capabilities from taxonomic distribution. An approach
like this is becoming increasingly vital, as more and more “whole meta-genomes”, i.e.
more than just ribosomal RNA has been amplified and sequenced, are publicly avail-
able. Databases like the Sequence Read Archive (SRA)[42, 43] contain large collections
of reads, on both metagenomic as well as single organism scale, and are widely used
endpoints for researchers to retrieve datasets as well as deposit their sequencing data.
Aggregation services like MetaSeek[44] on the other hand increasingly simplifies nar-
rowing down available dataset to the desired data using a set of metadata properties.
Being able to compare functional compositions between metagenomes collected through
aggregation services will be more and more important in the future.

1.6 Genetic variation of host influences microbial composition
of microbiome

In the last last few years increasing evidence demonstrates a direct link between genetic
variation of host organisms and the microbial composition of their microbiomes [45,
46, 47]. The functional impact of the hosts genetic variations could be seen as an
environmental factor to the proliferation of certain microbial organisms. Understanding
the interaction between those two variables can be a crucial part of developing new
predictive models, as well as aid in optimizing clinical applications.

1.7 Contents of this work

In this work I postulate that a standardized functional assessment of organisms can
provide a far more stable and meaningful way for organism classification. I present the
concept of fusion and describe ideas and concepts to cope with the massive amount
of sequencing data. I detail the progress towards establish functional similarities for
today’s collection of fully sequenced microbial organisms (∼ 9000 bacteria & ∼ 45 million
proteins). I discuss the challenges in clustering resulting from the massive dataset and
offer possible solutions. Finally I describe how I provide already available data to the
scientific community.

Chapter 2 introduces HFSP[48] (Homology-derived Functional Similarity of Pro-
teins) the measure that is used to establish the functional similarities between proteins.
I use MMSeqs2[49] over PSI-BLAST [50] to greatly improve the speed at which protein
sequence alignments can be generated, i.e. a more than 40-fold reduction of compute
time.

Chapter 3 details the challenges I encountered in the attempt to cluster the protein
similarity network into functional units, and offer suggestions how to overcome those
challenges. Additionally, I lay out ideas and projects that could be enabled once the
clustering is solved.
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Chapter 4 describes fusionDB my effort to create a database of functional profiles
for microbes. fusionDB currently contains the functional profiles of 1,374 taxonomically
distinct bacterial organisms resulting from of a prove of concept analysis of fusion. Ad-
ditionally, fusionDB includes available environmental metadata associated with these
1,374 organisms.

Finally Chapter 5 highlights methodological approaches to variation analysis. Ideas
presented there could be used to establish links between genetic variation of host organ-
isms and their functional impact to the microbial composition of bacterial communities
inhabiting the host.
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2 HFSP: high speed homology-driven
function annotation of proteins

2.1 Preface

The first step in the fusion protocol to establish functional similarities between mi-
crobes is to establish the functional similarity between all microbial proteins. In order
to achieve this, I developed HFSP (Homology-derived Functional Similarity of Proteins).
HFSP follows the principles of HSSP (Homology-derived Secondary Structure of Pro-
teins). Hence, HFSP’s basis is a homology search that establishes alignments between
the microbial proteins. HSSP uses PSI-BLAST for this step. Despite being the de-
facto default homology search algorithm in the Bioinformatics community, PSI-BLAST
is a well known bottleneck in large scale alignment analysis. For my purposes where I
have to generate alignments between millions of proteins, this is especially noticeable.
To this end I opted to use the state-of-the-art homology search algorithm MMSeq2 in
PSI-BLAST’s stead.

Using MMSeqs2 I generated alignments between enzymes of an up to date set of
experimentally validated enzymes. The protein pairs’ resulting ungapped alignment
length and sequence identity places all enzyme pairs into a two dimensional space. I
also know for each pair if they share the same functional annotation determined by
the Enzyme Commission. Combining the knowledge of functional similarity and the
spacial placement of the enzyme pair I optimized a gradient decay curve that optimally
separates functionally identical from functionally different enzymes based on their shared
alignment length and sequence identity.

Evaluation of HFSP revealed more than 40-fold gain in speed over traditional meth-
ods, while maintaining high precision of the predictions. Additionally, I used HFSP
to evaluate functional annotation of proteins deposited in Swiss-Prot and Uniprot, and
discovered large parts with potential miss-annotation.

Implementation, evaluation and execution of the work was done by me. Martin
Steinegger help with the utilization of MMSeqs2, and provided adaptions to MMSeqs2
in order to be fully functional for the purpose of HFSP. The manuscript was drafted by
all authors.

2.2 Journal Article: Mahlich et al. Bioinformatics 2018
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Abstract

Motivation: The rapid drop in sequencing costs has produced many more (predicted) protein

sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many com-

putational methods have been developed for this purpose. Most of these methods employ

homology-based inference, approximated via sequence alignments, to transfer functional annota-

tions between proteins. The increase in the number of available sequences, however, has drastical-

ly increased the search space, thus significantly slowing down alignment methods.

Results: Here we describe homology-derived functional similarity of proteins (HFSP), a novel com-

putational method that uses results of a high-speed alignment algorithm, MMseqs2, to infer func-

tional similarity of proteins on the basis of their alignment length and sequence identity. We show

that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-

of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as

high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale func-

tional annotation efforts.

Contact: ymahlich@bromberglab.org or yanab@rci.rutgers.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent rapid drop in the cost of DNA-sequencing has produced

a large number of fully sequenced genomes. For prokaryotes, for ex-

ample, this represents a more than 6-fold growth (1400–9000 in

GenBank (Benson et al., 2013)) in the last 5 years alone. While

this increase in data enables many types of research, experimental

annotation lags far behind. In particular, the speed (or lack thereof)

of experimental evaluation and validation of protein molecular

functionality clearly necessitates computational approaches. In fact,

many methods (Jiang et al., 2016; Radivojac et al., 2013) have al-

ready been developed for this purpose, the vast majority of which

rely on transfer of functional annotation by homology (Loewenstein

et al., 2009). Mistakes in available annotations (Schnoes et al.,

2009), inconsistencies in experiments as well as simply missing or

yet unknown functions make these sequence similarity-based

methods error-prone (Clark and Radivojac, 2011). Furthermore,

organism-focused research interests result in more detailed annota-

tions for a non-random subset of proteins, where homologous pro-

teins of identical functionality in another species are often annotated

significantly less thoroughly. Evaluating the performance of compu-

tational annotation methods is complicated by the absence of large,

well curated and ‘evenly’ functionally annotated protein sets, repre-

senting the entire breadth of available biomolecular functionality.

Protein sets that are used as benchmarks of prediction employ an-

notation ontologies, i.e. standardized terms and their relationships.

One such benchmark set is enzymes with Enzyme Commission

(Bairoch, 2000) (EC) numbers. EC numbers reflect a four level hier-

archy, where each consecutive level is a more precise specification of

VC The Author(s) 2018. Published by Oxford University Press. i304
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the annotation on the previous level. For example, enzymes classified

as EC: 1.1.1.- are oxidoreductases (first level), acting on the CH-OH

group of electron donors (second level), with NADþ or NADPþ as an

electron acceptor (third level). The fourth and most specific level

might then annotate an enzyme as alcohol dehydrogenase (EC:

1.1.1.1), i.e. reducing the aldehyde group of the molecule. Note that

dashes (‘-’) in EC numbers indicate lack of specificity of functional an-

notation at that level. While EC numbers facilitate comparison of

functions across enzymes, the annotation specificity at the same EC

level varies; e.g. the class of serine/threonine protein kinases (EC:

2.7.11.-) contains a category EC: 2.7.11.1 (fourth level

annotation ¼ 1) that collects all kinases that are non-specific or whose

specificity has not been analyzed to date. On the other hand, serine/

threonine protein kinases with the fourth level annotations between 2

and 32 are very specifically annotated, with each category limited to

proteins that act on a particular substrate. Using EC annotations as a

benchmark, thus, comes at the expense of variability in annotations

even at the same level of the hierarchy. This, in turn, complicates

establishing functional similarity of two proteins in a precise and bal-

anced manner across the entire enzymatic activity spectrum.

By definition, using EC annotations also means missing out on

non-enzymatic functionality. Other ontologies, like the molecular

function branch of Gene ontology (Ashburner et al., 2000) (GO) do

not have this limitation. GO, however, employs a different, even

more detailed, strategy in defining function than EC. The number of

GO annotation levels varies by ontology sub-branch. Moreover, one

protein can (and likely does) have multiple functional GO terms

assigned to it (e.g. both copper ion binding and DNA binding terms

describe the function of P53; AmiGo 2.4.6; PMID: 15358771,

PMID: 7824276). Thus, comparing GO annotations may lead to

much stronger distortions of similarity than skewed or even incom-

plete EC numbers. Note that moonlighting (Khan et al., 2014) pro-

teins, i.e. proteins that can be assigned multiple specific functions,

further confuse functional similarity metrics.

As a consequence of the drastic increase in genomic and protein

sequences in need of annotation, the search space for all computa-

tional function assignment methods has also increased. A center-

piece of much of sequence analysis efforts is the Basic Local

Alignment Search Tool (BLAST) (Altschul et al., 1990; Altschul

et al., 1997) family. We note that with the quasi exponential growth

in search space, while PSI-BLAST (Altschul et al., 1997) may still re-

main viable for the analysis of a single protein, large scale evalua-

tions are not time-feasible. Many methods that reduce runtime

while retaining or increasing alignment accuracy have been devel-

oped over the last years, including caBLASTp (Daniels et al., 2013),

HHblits (Remmert et al., 2012) and MMseqs2 (Steinegger and

Soding, 2017). However, replacing (PSI-) BLAST in any bioinfor-

matics pipeline with another alignment method requires parameter

re-optimization or even a complete method overhaul.

Existing function prediction methods are very sophisticated,

using a variety of inputs (e.g. structure and literature mining) and

computational techniques (e.g. machine learning). However, here

we focused on Homology-derived Secondary Structure of Proteins

(HSSP) (Rost, 1999; Rost, 2002; Sander and Schneider, 1991)—a

simple distance metric that infers protein function and structure

similarity from sequence identity and alignment length. We opti-

mized HSSP parameters to classify protein pairs as functionally iden-

tical or different using the results of MMseqs2, a lightning-fast

alignment method. We found that our newly developed Homology-

derived Functional Similarity of Proteins (HFSP) method is 40-fold

faster than HSSP, while retaining HSSP precision in annotating en-

zymatic functionality of proteins (85% precision; Fig. 1).

Analyzing existing protein databases with our method, we

showed that currently available computationally determined anno-

tations in even the manually curated Swiss-Prot (The UniProt, 2017)

database are incorrect for at least a sixth of the cases. We suggest

that these errors are likely due to loosely defined rules of homology-

based propagation of functional annotations. With the number of

protein sequences in public databases bordering on 100 million and

growing, HFSP is well suited to help improve the quality of existing

and newly assigned functional annotations.

2 Materials and methods

2.1 Extraction of datasets
We extracted a set of reviewed proteins from Swiss-Prot with only

one, EC (Bairoch, 2000) annotation per protein (complete at all four

levels; 214 000 proteins; Swiss-Prot set). The 2002 (latest) formula

for computing the HSSP (Rost, 1999; Rost, 2002) distances was

developed on a combined set of Swiss-Prot (The UniProt, 2017) and

Protein Data Bank (Berman et al., 2002) proteins. To validate the

performance of HSSP reported in Rost (1999) and Rost (2002), we

extracted proteins from the Swiss-Prot set that had experimental evi-

dence of protein existence (e.g. crystal structure, protein detection

by antibodies, etc.) and an EC annotation in BRENDA (Placzek

et al., 2017). The resulting proteins (Swiss-Prot 2017 set; 7022 pro-

teins) were further filtered to retain entries appearing in the database

before January 2002 (Swiss-Prot 2002, 3, 908 proteins). Both Swiss-

Prot 2017 and 2002 datasets were extracted in October 2017

(Uniprot release 2017_09) and redundancy reduced to 98% se-

quence similarity and 98% target sequence coverage with CD-HIT

(Fu et al., 2012; Li and Godzik, 2006). Swiss-Prot 2002 contained

3801 proteins with 1481 unique EC annotations and Swiss-Prot

2017 containing 6835 proteins with 2552 unique EC annotations

(Supplementary Material).

Swiss-Prot 2017 was further split into sets containing only pro-

karyotic (Swiss-Protpro 2017, 2572 proteins) or eukaryotic (Swiss-

Proteuk 2017, 4263 proteins) proteins. Finally, we extracted two

more Swiss-Prot subsets from: (i) proteins that did not have an EC

annotation (293 058 proteins) and (ii) proteins with incomplete or

multiple EC annotations (48 536 proteins).

2.2 Aligning proteins
To augment the homology profiles used in alignments [by both PSI-

BLAST (Altschul et al., 1997) and MMseqs2], we computed align-

ments of all proteins in our datasets (Swiss-Prot 2002, Swiss-Prot

2017, Swiss-Protpro 2017 and Swiss-Proteuk 2017) against proteins

in the full (non-reduced) Swiss-Prot (Uniprot release 2017_09). For

each specific dataset, we then extracted only those alignments,

where both proteins were present in that set (e.g. both query and tar-

get protein in Swiss-Prot 2002).

PSI-BLAST alignments where created with NCBI-BLAST version

2.2.29þ. We ran three iterations of PSI-BLAST (-num_iterations 3).

In each iteration, the top 500 hits (E-value 10�10, -inclusion_ethresh

1e-10) were included into the profile. After the third round all align-

ments that satisfied the E-value �10�3 threshold (-evalue 1e-3) were

considered for evaluation of performance.

MMseqs2 (Steinegger and Soding, 2017) parameters were chosen

to mirror the PSI-BLAST runs. The alignment-mode (––alignment-

mode 3) was set to calculate sequence identity between query and tar-

get over the full alignment length, i.e. analogous to BLAST. We ran

three iterations (––num-iterations 3) of alignments including hits with

an E-value �10�10 into the generated profile (––e-profile 1e-10).
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Only alignments of protein pairs with and E-value �10�3 were

reported in the final result (-e 1e-3). The sensitivity (-s) cutoff for

MMseqs2 prefiltering step was set to 5.6 (default value).

It had taken MMseqs2 1228 CPU hours to complete the align-

ment of our Swiss-Prot enzyme set (214 000 proteins) to the full

(non-reduced) Swiss-Prot (555 594 proteins). Although MMSeqs2

was exceedingly fast for this set, note that it has been optimized to

deal with much larger databases and, thus, it did not reach its full

potential in speed. In earlier testing (Zhu et al., 2015; Zhu et al.,

2018) with a dataset of �4.2 million proteins, the all-to-all protein

alignment time for the MMseqs2 was �30 000 CPU hours

(4.2e6 � 4.2e6 ¼ �1.8e13 comparisons in roughly 4 days on 12

compute nodes with 24 CPUs each). In comparison, creating the

same PSI-BLAST alignments took �1.3 million CPU hours

(�3 months on 78 compute nodes with 8 CPUs each). From these

numbers, the HFSP speed-up (using MMseqs2) over HSSP (using

PSI-BLAST) was estimated at over 40-fold and expected to grow sig-

nificantly with database size.

2.3 Defining functional identity
Proteins sharing the same EC annotation at chosen (third or fourth

level) were assigned functional identity. For example, L-lactate de-

hydrogenase and D-lactate dehydrogenase have EC assignments

1.1.1.27 and 1.1.1.28, respectively. Thus, at EC level 4, the proteins

are different, but at EC level 3 they are the same, 1.1.1.

2.4 Retraining HSSP curve with MMseqs2
We used the Swiss-Prot 2002 proteins and their third EC level anno-

tations to develop the HFSP measure. Investigating the protein dis-

tribution of EC categories at the third EC level, we realized a strong

distortion toward a few EC categories with exceptionally many

associated proteins (Fig. 2C). This is in addition to other differences

between EC categories (Fig. 2A and B). To compensate for this cat-

egory bias, we limited the size of EC categories to no more than 50

proteins (randomly chosen for the 19 larger categories,

Supplementary Table S1). We then extracted all MMseqs2 align-

ments for all Swiss-Prot 2002 protein pairs in our set.

It has been previously shown that using class-balanced training

sets is beneficial in the development of data driven classification mod-

els (Rost and Sander, 1993; Wei and Dunbrack, 2013). We therefore

balanced the results in training to contain equal numbers of protein

pairs with the same versus different third level EC annotations.

We first used cross-validation for training/testing our method; i.e.

we split the data into 10 sets such that no sequence in one set shared

more than 40% identity with a sequence in another set (CD-HIT clus-

ters). In each of in 10 rounds of training, 1 set was retained for testing

and the other 9 were used for training. Note that in each round of

Fig. 1. HFSP precisely predicts functional identity. All Swiss-Prot 2002 protein pairwise alignments were mapped into the sequence identity versus ungapped

alignment length space. In (A) protein pairs were differentiated according to identity of their EC level 3 (same EC annotation are green circles; different annota-

tions are red triangles). The HFSP curve (HFSP¼ 0, light blue solid line) is shown relative to the HSSP curve (black dashed line). Protein pairs above the curve are

predicted to be of same function, pairs below the curve of different function. In (B, C) precision (circles) and recall (triangles) in predicting functional identity, at

third (blue, solid curve) and fourth (red, dashed curve) EC level for Swiss-Prot 2002. Arrows indicate performance at default cutoff of HFSP¼ 0. In (B) prediction

was done using the highest HFSP scoring alignment per protein. In (C) all alignments were used, resulting in significantly worse performance
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cross-validation, we reintroduced into the testing set those proteins,

which were originally removed for class balancing purposes. We opti-

mized the parameters [originally factor ¼ 480 and exponent¼ �0.32;

Equation. (1), Supplementary Table S2] of the 2002 HSSP formula

(Rost, 2002) to fit a new curve separating protein pairs of identical

function from those of different functions in the two-dimensional

space of sequence identity (y-axis) and ungapped alignment length

(alignment length�number of gaps; x-axis). Pairs of same function

proteins (identical annotation for EC) and a given threshold distance

away from the curve along the y-axis were true positives (TP). Pairs

that did not have the same function but were also above the threshold

were false positives (FP). False negatives (FN) were pairs of same

function but scoring below the threshold. We optimized for F1 score

[Equation (3)] using R’s implementation of the Nelder–Mead method

(Nelder and Mead, 1965), searching for a local optimal F1 score,

using combinations of exponents from �0.3 to �0.9 in steps of 0.05,

and factor from 300 to 1500 in steps of 50.

HSSP¼PIDE�

100; for L � 11

480 �L
�0:32 � 1þe

�
L

1000

0
@

1
A
; for 11 < L � 450

19:5; for L>450

8>>>>>>><
>>>>>>>:

(1)

PIDE ¼ Percent sequence identity of the alignment

L ¼ ungapped alignment length

precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
(2)

F1 score ¼ 2� precision� recall

precisionþ recall
(3)

HFSP values for protein pairs were calculated using MMseqs2

results; Pearson correlation coefficient of HFSP to the HSSP values

computed using PSI-BLAST results for same pairs. For each dataset, we

calculated precision (i.e. how often a prediction of identical function is

correct), recall (i.e. how many identical function pairs were correctly

identified) and the F1 score [Equations (2) and (3)] using HSSP and

HFSP distance thresholds to determine true/false positives/negatives.

After evaluation was completed, we retrained as described

above, but without testing, one HFSP curve on the complete bal-

anced set of Swiss-Prot 2002 protein pairs for all further use.

2.5 Using HFSP to make function predictions
We used the 6835 experimentally annotated proteins with 2552

unique EC annotations of Swiss-Prot 2017 as the reference database

for all further function predictions. For every protein, only the high-

est HFSP-scoring protein match (�0; excluding self-matches) was

used to annotate function. We thus predicted functions of proteins

in the complete Swiss-Prot set of enzymes. Curiously, some EC num-

bers used in Swiss-Prot protein annotation did not have any mem-

bers in the experimentally annotated Swiss-Prot 2017 reference set.

The proteins annotated with these EC numbers (32 201 proteins at

fourth and 381 proteins at third EC level, respectively) were consid-

ered false positives by default. Note that we are still unclear about

the origins and experimental support of these annotations.

Additionally, some proteins did not produce any alignments, and for

others the highest hits did not reach our HFSP cutoff ¼ 0. For these,

no functional assignment could be made.

3 Results

3.1 HFSP scores correlate with HSSP, but are produced

more than 40-fold faster
We trained, evaluated, and defined the HFSP [Homology-derived

Functional Similarity of Proteins; Equation (4)] as described in

Materials and Methods.

Fig. 2. Strong bias in EC distribution. Different EC categories contain different numbers of proteins with both general (A) EC level 1 and (B) more specific EC anno-

tations. (C) This bias is particularly obvious for third level EC categories, with 2.7.11.-, 2.7.10.- and 1.1.1.- being the most prominent (first three bars from right; all

ECs with more than 50 proteins are red)
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HFSP¼PIDE�

100; for L � 11

770 �L
�0:33 � 1þe

�
L

1000

0
@

1
A
; for 11 < L � 450

28:4; for L>450

8>>>>>>><
>>>>>>>:

(4)

HFSP uses MMseqs2 iterative profiles as they have three major

advantages over PSI-BLAST: (i) compositional bias correction to

suppress high scoring non-homologous alignments, (ii) profile com-

putation by only considering the 1000 most diverse sequences (PSI-

BLAST uses the n BEST scoring hits) and (iii) realignment to reduce

over-extension (Frith et al., 2008); over-extension includes sequen-

ces into the profile at the edges of the alignment threshold in con-

secutive iterations. Thus, MMseqs2 alignments of smaller and more

distant proteins tend to be more compact, favoring higher sequence

identity, and thus leading to slightly higher HSSP scores calculated

using the original equation [Equation (1)]. These differences in

alignment methods, however, do not significantly affect the HSSP

scores across the entire spectrum, especially for high sequence iden-

tity alignments (Pearson correlation coefficient between BLAST-

based and MMseqs2-based HSSP scores ¼ 0.95; Fig. 3).

3.2 HFSP precisely identifies the third, but not fourth,

level of EC annotations
In identifying pairs of proteins sharing the same function at the fourth

level of EC (Materials and Methods), HFSP attained precision of

44.1% 6 3.6 at HFSP 0 and recall of 71.5% 6 1.6 (in cross-

validation). This disappointing performance suggests that the increas-

ing resolution/fine-tuning of experimental molecular function annota-

tion is prohibitive for large-scale computational analyses of proteins;

i.e. for any given alignment scoring HFSP � 0, it is more likely that

the proteins in the alignment are not functionally identical.

In exploring this problem, we found that many highly sequence

similar protein pairs of different EC annotations contained homolo-

gous proteins that were assigned slightly different functionality in

different organisms. For example, proteins from the squalene cyclase

family (Interpro: IPR018333, Pfam: PF13243 and PF13249) were

annotated with different ECs; e.g. GERS_RHISY, a germanicol syn-

thase in the red mangrove, is assigned EC: 5.4.99.34 and has 93%

sequence identity (alignment length ¼ 758) to BAS_BRUGY, a Beta-

amyrin synthase of the Burma mangrove, which is annotated as EC:

5.4.99.39. This combination of sequence identity and alignment

length produces an HFSP score of 64.6. At this HFSP level protein

pairs are predicted to share the same EC annotation at fourth EC

level with a precision of>99%. Note that GERS_RHISY is the only

EC 5.4.99.34 protein to date. The publication describing its catalytic

activity (Basyuni et al., 2007), suggests that GERS_RHISY activity

warrants a brand new EC number (germanicol synthase), because it

primarily catalyzes germanicol synthesis. From our perspective,

GERS_RHISY should additionally carry the beta-amyrin synthase

annotation, since beta-amyrin (and lupeol) are synthesized in add-

ition to germanicol albeit at a lower rate. Note that this example

also recalls the problem of moonlighting proteins.

The above example reflects the general problem of unbalanced

annotation detail of different EC categories at the same level of an-

notation. For example, EC: 5.4.99.- is by choice of the EC meant to

temporarily ‘house’ a collection of enzyme reactions that have yet to

be more thoroughly categorized. Many members of EC: 5.4.99.- fall

into the same PFAM families, while catalyzing the conversion of the

same reactant into similar chemical compounds; i.e. the fourth level

EC annotations of these proteins convey only a small amount of

functional difference. However, 5.4.99.- also contains significantly

different proteins catalyzing different reactions, where fourth level

annotations convey very large differences. Note that in this scheme,

automated protein function annotation is significantly limited by

lack of awareness of what individual EC numbers represent; i.e. it is

incorrect to assume that the fourth, most precise, level EC annota-

tions, across the entire EC system, are similarly defined in terms of

depth of functional understanding and/or functional distances be-

tween proteins of the same third level EC. Note, however, that

increasing the HFSP threshold for calling protein functions identical

leads to significantly improved precision (if at significant cost to re-

call). For example, at HFSP cutoff¼20, 93% of the protein pairs

are correctly annotated to share functionality. In other words, pro-

tein pairs with higher HFSP score represent more reliable predic-

tions. This improvement is unsurprising as it is due in large part to

increasing sequence identity and is very likely reflective of closer

evolutionary relationships between proteins.

In identifying pairs of proteins sharing the same function at the

third level of EC, we found that performance improved drastically

at the default HFSP cutoff¼0. Here, our method attained precision

of 96% 6 1.2 at HFSP 0 and recall of 64% 6 1.6 (in cross-

validation, Fig. 1). These results suggest that in the absence of add-

itional knowledge about an aligned protein pair, it is prudent to

only accept higher scoring HFSP alignments (for fourth digit annota-

tions) or to move up in the required resolution of functional annota-

tion (i.e. to third EC level).

Finally, we tested HFSP precision and recall on proteins in Swiss-

Prot 2017 that were NOT in Swiss-Prot 2002 (which was used for

training of the HFSP curve), i.e. proteins that were added to Swiss-

Prot after January 2002. We found that performance for this subset

was similar to the expected performance at both the third and fourth

EC levels (Fig. 4), suggesting that our measure remains applicable

for newly added proteins AND enzyme classes (EC numbers).

Fig. 3. HSSP scores derived from MMSeqs2 and PSI-BLAST alignments

strongly correlate. HSSP scores derived from PSI-BLAST alignments (x-axis)

and MMSeqs2 (y-axis), respectively. The histograms display the number of

protein pairs in the respective ranges of HSSP scores. HSSP scores for both

methods highly correlate (Pearson correlation coefficient¼0.95)
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3.3 HFSP performance differs in annotating prokaryotic

versus eukaryotic proteins
We additionally evaluated the HFSP performance in annotating the eu-

karyotic versus prokaryotic proteins of the entire Swiss-Prot 2017 set

(Methods, Fig. 5A) at the third EC level. At our default cutoff of

HFSP ¼ 0, eukaryotic protein pairs were assigned functional similarity

correctly more often than prokaryotic ones (precision/recall 96 6 1.5/

62% versus 91 6 1.5/47%, respectively). Note that there were more eu-

karyotic proteins in our data than prokaryotic ones, which may have

contributed to this disparity during HFSP curve optimization. This

larger number of proteins can be explained by the eukaryotes (i) trend-

ing toward bigger proteomes and, perhaps more importantly, (ii) mak-

ing up a bigger fraction of model organisms, which are better studied.

Curiously, at the fourth EC level this trend was reversed, i.e. precision

was better for prokaryotes than for eukaryotes (precision/recall 62/55%

versus 42/79%, respectively, Fig. 5B). This observation may potentially

be due to a smaller number of homology-confusing multi-domain pro-

teins in prokaryotes. It may also reflect a lower enzymatic diversity of

prokaryotic proteins in our set: 1522 distinct EC annotations in eukar-

yotes versus 1403 in prokaryotes. Whether this difference is due to ac-

tual diversity or a result of experimental bias remains unclear.

3.4 HFSP accurately predicts unknown protein function

at all EC levels
There is a conceptual difference between annotating functionality of

an unknown protein and measuring functional similarity of two

proteins. That is, in assigning ONE specific protein function to a

newly obtained amino acid sequence is not the same as relying on

homology to identify proteins sharing the similar functionality in a

particular database. To use HFSP as a method of function prediction

we proposed simply relying on the ‘highest hit’; we have previously

shown that this approach is best for transferring functional annota-

tions with HSSP (Zhu et al., 2018) and suggest that similar logic

should apply here.

By mapping the highest HFSP match (at cutoff¼0 and exclud-

ing self-hits) for the experimentally annotated proteins of the

Swiss-Prot 2017 set, we were able to correctly identify the fourth

level EC function of 4668 (�83% of 5647) proteins. As expected,

the numbers were higher for the third level EC (5425 of 5647 pro-

teins, 96%). Note that this performance is the upper limit of actual

HFSP performance, as Swiss-Prot 2002, on which our method was

developed, is a subset of Swiss-Prot 2017. Also note that (i) 625

proteins in our Swiss-Prot 2017 set did not reach our HFSP

cutoff¼0 and (ii) 563 proteins did not align to any others in our

set. Of these, 645 proteins (291 and 354, respectively) proteins

were unique in our set; i.e. there was no other protein with the

same EC number at fourth EC level. Thus, 1188 proteins in our set

(�17% of 6835 in the set) could not be assigned function at all—

�8% due to HFSP limitations and �9% due to the absence of

homologs.

Fig. 4. HFSP performs as expected on newly added proteins. Precision and re-

call of function prediction at (A) third (dark blue) EC level of proteins in Swiss-

Prot 2002 and of those added since 2002 (Swiss-Prot 2002–2017; light blue)

are similar. However, for the fourth EC level, the (B) performance on newly

added proteins (dark red) is worse than for older ones (light red)

Fig. 5. Differing annotation performance for prokaryotic and eukaryotic pro-

teins at third and fourth EC level. (A) For the third EC level at default cutoff of

HFSP¼0, eukaryotic protein pairs are assigned functional similarity correctly

more often than prokaryotic ones. However, for high thresholds, i.e. higher

precision at the expense of recovered protein pairs, performance is similar.

(B) Performance is better for prokaryotes than eukaryotes at the fourth EC

level
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3.5 Functional annotations even in manually curated

databases are often incorrect
We applied the highest HFSP hit measure to evaluate EC annota-

tions in the entire Swiss-Prot set (Materials and Methods) on the

basis of their alignment to our experimentally annotated Swiss-prot

2017 set. We estimate that 142 831 of the 214 000 Swiss-Prot

enzymes (67%) are correctly annotated at the fourth level of EC

(Fig. 6). Curiously, 32 201 (15%) of the enzymes in Swiss-Prot had

no corresponding fourth level ECs (381 third level ECs) in Swiss-

Prot 2017, raising questions as to the accuracy of these annotations.

Another 4937 are deemed wrongly annotated (highest hit at

HFSP � 0 has a different EC number). While these proteins may in-

deed be assigned wrong functionality, this may also be due to error

in HFSP assignments at this level (17% false positives at this cutoff,

as described above for the Swiss-Prot 2017 experimentally-

annotated set). A more interesting finding, however, is that 34 031

(19%) of the proteins in this set could not be annotated at all by

HFSP, whether due to lack of alignments (17 519 proteins) or HFSP

highest hits unable to reach the cutoff (16 512 proteins). These 19%

of proteins that could not be annotated represent a more than 2-fold

higher number than expected (�8% as described above for the

Swiss-Prot 2017 set). We, thus, suggest that the Swiss-Prot EC anno-

tations of many of these 34 031 proteins, a sixth of the total number

of annotations, are incorrect.

3.6 Identifying proteins of new functionality is

simplified with HFSP
One problem of function transfer by homology methods is their in-

ability to identify proteins of completely novel, i.e. not found in the

reference database, functionality. Note that sequence similar pro-

teins are also likely functionally similar, but are clearly not necessar-

ily functionally identical. To evaluate how HFSP deals with proteins

of novel functionality, we extracted a set of proteins from Swiss-

Prot 2017, where no other protein in our set had the same fourth

EC level annotation (‘unknown’ functionality). These ‘unknown’

proteins, i.e. assigned to a fourth EC level category, which appear

just once in our set, are a minority (19%; 1317 of 6835 proteins), al-

beit a significant one. We asked if we could in advance identify these

‘unknown’ proteins, for which prediction of function could not be

made, rather than making incorrect predictions.

We separated function predictions for the 6835 proteins in

Swiss-Prot 2017 into three subsets (i) ‘unknown’, as described

above, and (ii) correctly and (iii) incorrectly predicted ‘known’, i.e.

proteins with fourth EC level annotations containing more than one

protein. We then compared the highest hit HFSP score distributions

for all three sets (Fig. 7). HFSP scores for correctly annotated pro-

teins with known functionality appear to come from a mixture of

two distributions. These are likely to be evolutionarily distant

(peak of the distribution at HFSP ¼ �20) versus close (peak at

HFSP ¼ �65) homologs. The peak of the distribution of ‘unknown’

protein scores is obviously different from either (HFSP ¼ �2).

However, the distribution of incorrect predictions for ‘known’

Fig. 6. More proteins in Swiss-Prot enzyme could not be assigned to function

than expected. Function predictions for proteins in Swiss-Prot 2017 with

unique (light purple) and non-unique (dark purple) fourth level EC annotation

and all proteins in Swiss-Prot with EC annotation complete on all four levels

that either share an EC with proteins in Reference (light teal) or not (dark teal)

Fig. 7. HFSP is robust to previously unseen enzymatic functionality. (A)

Proteins with no known homologs—approximated by investigating experi-

mentally annotated proteins which fall into a EC category unique to the pro-

tein (orange)—show on average smaller highest scoring HFSP hits than

proteins with existing homologs (green—correct predictions, blue—incorrect

predictions). Of all predictions at HFSP score�14, <10% of proteins with ‘un-

known’ and ‘known’ but falsely predicted function where observed (B, bottom

panel): highest HFSP score predictions for different protein subsets of the

non-reduced Swiss-Prot: (i) experimentally verified enzymes (reference—pur-

ple), (ii) enzymes with EC annotation complete on all four levels that are not

experimentally verified (complete EC—teal), (iii) enzymes with incomplete EC

annotation or multiple EC annotations (incomplete & multiple EC—black) and

(iv) proteins that are not annotated as enzymes (no EC—red); note that for

most proteins with no EC annotation there were no matched to the reference

database (268 857 proteins, 91%; B, top panel)
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proteins closely follows the ‘unknowns’ (Fig. 7A and Supplementary

Fig. S2A and B). Combined, ‘known incorrect’ and ‘unknown’,

make up less than 10% of all predictions at HFSP � 14 (false dis-

cover rate, FDR ¼ 9.6%), whereas between the default cutoff and

HFSP ¼ 14 (0 � HFSP < 14) this fraction is nearly 40%. Despite

the fact, that at this threshold only �6% of all predictions are of

‘unknown’ origin, these are still 30% of all ‘unknown’ proteins;

similarly �3% of all predictions, but 29% of all ‘known incorrect’

proteins are at HFSP � 14. These observations suggest that while we

cannot differentiate incorrect predictions from missing-reference

ones, HFSP handles new protein function, as well as that which it

has already seen, with higher scores indicating more reliable/correct

annotations.

Given the vast number of proteins that yet have to be functional-

ly annotated (e.g. TrEMBL is currently approaching 109 million

proteins), the number of potential EC functionalities missing from

our reference set, as well as the understanding that the total number

of enzymes among the unannotated proteins may not mirror the

Swiss-Prot distribution (where �47% of all proteins are annotated

enzymes including those with incomplete and multiple EC annota-

tions), we suspect that accurately estimating the HFSP cutoff at

which the FDR would fall below some threshold, e.g. 5% (currently

at HFSP � 28), is not possible. For example, given the current distri-

bution of scores, 29% of 1384 ‘unknowns’ and incorrect ‘knowns’

present at HFSP � 14 make up only 407 proteins. If we were anno-

tating tens of millions of proteins, however, this error rate can be

expected to produce hundreds of thousands of annotations. On the

other hand, given the limited size of our reference database, we can-

not necessarily expect that the true positive findings would grow

accordingly.

We further predicted EC annotation for all Swiss-Prot (555 594

proteins in October 2017, Fig. 7B). Importantly, the majority (91%)

of the non-enzymes (no EC annotations; 293 058 proteins) did not

generate any matches to our reference database. Of the remaining

non-enzymes, 21% (4987 proteins) scored at HFSP � 0, making up

3% of all predictions (false positives, 1% for all predictions at

HFSP � 14). Predictions could be made for 57% of the enzymes

with multiple or incomplete EC annotations (27 717 of 48 536 pro-

teins); 53% (14 668 proteins) of these scored at HFSP � 0 and 13%

above HFSP � 14 (3653 proteins). If these proteins were like our

‘unknowns’, we would expect at least twice as many with a match

at HFSP � 14. Thus, we suspect, that the enzymes in this set are not

especially novel and can likely be annotated using HFSP and our ref-

erence dataset. This further suggests that at least 73% (43% no hits

and 30% below HFSP ¼ 0) of proteins with incomplete or multiple

EC annotations could be proteins with no homologous sequence in

our reference database.

In light of our findings, we note that without further experimen-

tal work to elaborate on the functions of the yet-unannotated pro-

teins, even the best function prediction methods will soon reach

their limits. We suggest that using HFSP cutoffs can help in both

more accurately annotating protein function and, arguably even

more importantly, in identifying new frontiers of molecular function

exploration.

4 Conclusion

While experimental function annotation of proteins is more ac-

curate, computational methods are more readily available for the

vast amount of sequences currently in our databases. Here we

demonstrated that our newly developed HFSP is a fast an

accurate method applicable to this task. Applying HFSP to evalu-

ate existing annotations we also highlighted inconsistencies in

existing annotations of enzymatic activity reported in Swiss-Prot.

We thus suggest that HFSP provides both a way to (i) enrich func-

tional annotation analysis on a large scale, as well as to (ii) nar-

row down the space of proteins of interest for further

experimental analysis.
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Table 1: 3rd level EC categories with over 50 proteins, sorted according to the 
number of proteins. 

EC3 # Proteins 

2.7.11 332  

2.7.10 172  

1.1.1  136  

3.2.1  130  

2.7.1  113  

2.3.1  111  

2.1.1  110  

4.1.1  97  

2.5.1  97  

3.4.21 93  

2.4.1  91  

3.1.3  85  

4.2.1  81  

6.1.1  74  

2.7.7  66  

3.5.1  56  

3.1.4  56  

3.1.1  55  

3.4.22 55 
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Table 2: F1-scores for each optimization run of HFSP-training. 

split F1-score Exponent Factor 

1 0.75 0.33 770 

2 0.74 0.32 660 

3 0.74 0.32 660 

4 0.74 0.32 658 

5 0.74 0.34 823 

6 0.74 0.33 770 

7 0.74 0.33 770 

8 0.73 0.32 660 

9 0.74 0.33 770 

10 0.73 0.41 1646 
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Supplementary Figure 1 

 

Supplementary Fig. 1: HSSP scores derived from MMSeqs2 and PSI-BLAST alignments strongly 
correlate. HSSP scores derived from PSI-BLAST alignments (x-axis) vs. (A) HSSP scores and (B) HFSP 
scores derived from MMSeqs2 (y-axis). The histograms display the number of protein pairs in the respective 
ranges of HSSP scores. In both scenarios HSSP/HFSP scores derived from MMSeqs2 highly correlate with 
HSSP scores from PSI-BLAST (Pearson-correlation coefficient = 0.95 / 0.94).  
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Supplementary Figure 2 

 

Supplementary Fig. 2: Newly emerging enzyme functionality difficult to differentiate from incorrect 
function predictions. Proteins with no known homologs – approximated by experimentally annotated 
proteins, which have a unique EC number (orange) – show on average smaller highest scoring HFSP hits than 
proteins with homologs (green – correct predictions, blue – incorrect predictions). (A/B) Comparison of HFSP 
score distributions for highest scoring protein pair for Swiss-Prot 2017, (A) showing the distribution of raw 
counts and (B) the corresponding percentages of the respective datasets. (C/D): Panels of counts and 
percentages as in (A/B), data is the Comparison of HFSP distributions for different subsets of the non-reduced 
Swiss-Prot: (i) experimentally verified enzymes (reference - purple), (ii) not experimentally verified enzymes 
with EC annotation complete on all 4 levels (complete EC - teal), (iii) enzymes with incomplete or multiple EC 
annotations (incomplete & multiple EC – black) and (iv) proteins that are not annotated as enzymes (no EC). 
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3 Clustering massive protein functional
similarity networks: a scalable approach

3.1 Preface

In the previous chapter (HFSP: high speed homology-driven function annotation of pro-
teins) I established how functional similarity between any to proteins can be determined.
Ultimately the goal of fusion is to establish functional similarity between microbes. The
simplest comparison that can be made between two microbes would be which molecular
functionality they share between each other. If each microbe is represented by a set
that lists which function is present (absent functions are omitted), the solution to this
problem becomes trivial. Similarity simply can be represented by the intersection of
both sets S1 and S2 divided by the larger of the two functional profiles (see Equation
3.1).

sim(S1, S2) =
|S1 ∩ S2|

max(|S1|, |S2|)
(3.1)

The next step in generating the functional profiles for each microbe is to assign each of
the microbes proteins to a functional unit. This can be done by following a simple three
step process. (1) I establish functional similarities between all microbial proteins with
the aid of HFSP [1]. (2) I generate a functional similarity network using the previously
established protein similarities. (3) I cluster the network into functional units, where
each protein is assigned to only one of those units.

This chapter describes all of these three steps in more detail, mostly focussing on the
problems and challenges presented by step (3).

3.2 Introduction

The last five years has seen a rapid increase of completely sequenced and fully assem-
bled bacterial genomes, deposited in publicly available database. A complete assembly is
specified as a gapless assembly of all chromosomes. For bacteria this normally means one
circular ”primary” genome, with the addition of plasmids if existing in the bacterium.
Technological leaps in sequencing technology have lead to a large uptick in completely
assembled genomes, especially in the last 5 years. An increase in sequencing speed, as
well as reliability has lead to a continually decreasing costs for whole genome sequencing.
A dataset of microbes extracted approximately five years ago, used in a prove of con-
cept of fusion[2] consisted of 1,374 completely assembled bacterial genomes. In contrast,
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3 Clustering massive protein functional similarity networks

at the start of 2018 (Feb. 12th 2018), the date at which the dataset for this analysis
was extracted, close to 9,000 fully sequenced bacterial genomes were available in NCBI
GenBank[3]. Even more so, within one year from January 2018 to January 2019, an-
other ∼3,000 new complete assemblies of bacterial genomes where deposited in public
databases, totaling ∼12,000 completely assembled bacterial genomes.

Curiously enough the majority of novel completely assembled bacterial genomes are
not newly discovered or sequenced species but rather strains of species with known
reference genome. One explanation for is that de-novo assemblies from scratch are still
difficult to complete [4, 5]. Assembling reads into a genome by mapping them against a
reference sequence, is vastly easier than de-novo assembly. Another observation reflecting
the quick growth of available genomes, is that some recent sequencing project extend
far beyond sequencing only one species or strain. Examples are studies on strains of
Bordetella pertussis by Weigand MR et al.[6, 7, 8] or the NCTC 3000 project[9], a joint
venture between the Public Health England’s National Collection of Type Cultures, the
Welcome Trust Sanger Institute and Pacific Biosciences. The studies by Weigand et al.
are examples where strains of a specific species are targeted to get a better understanding
of pathogenesis. To this date Weigand et al. have deposited 345 completely assembled
strains of Bordetella pertussis. On the other hand NCTC 3000 is a ongoing project that
aims to fully assemble 3,000 novel bacterial reference genomes counting close to 650 to
this date. This includes both strains of previously sequenced as well as novel species.

Given the almost 10-fold increase of the completely assembled genomes within the last
5 years, (∼70% of that in the last two years alone), the problems I had to tackle are a
direct result of this huge size of the dataset. This is mainly due to the computational
requirements of the two key concepts of fusion: (a) Establishing functional similarities
between all proteins present in the set of microbial proteomes. (b) Clustering the proteins
into functional groups based on their shared functionality (see Figure 3.1)

In the proof of concept of fusion the functional similarities between proteins were es-
tablished by calculating HSSP (Homology-derived Secondary Structure of Proteins)[10]
scores for the protein pairs. In order to calculate the HSSP score a PSI-BLAST[11] align-
ment between the two proteins has to be generate first however. While the calculation
of the HSSP score by itself does not significantly contribute to the necessary compute
time, creating the alignments between all proteins with PSI-BLAST is a huge bottle
neck. For the ∼ 1, 400 organisms used during the proof of concept this step required
approximately three months. Even without an increase in dataset size, this is a step
in the protocol that needed urgent improvement. I achieved this by introducing HFSP
(Homology-derived Functional Similarity of Proteins)[1] (see Chapter 2) that utilizes
MMSeqs2[12] instead of PSI-BLAST for the alignment generation.

The second key concept (clustering the proteins into functional units based on their
shared functional similarity) unfortunately is far less straightforward to improve upon.
The problem is that the clustering algorithm that was used initially (Markov Clustering[13])
despite performing very well on the limited size of the initial dataset, rapidly increases
in its computational requirements with the number of proteins to cluster. Unfortunately
this is a problem that is not unique to MCL, but observable with a wide range of other
clustering algorithms. In the following sections I will briefly describe the dataset in more
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3.2 Introduction

Figure 3.1: Schematic workflow of fusion. fusion consist of two major parts: (1) generation
functional similarities between all bacterial proteins (top row) and (2) clustering
the nodes in the resulting similarity network into functional units (bottom row).
Once the functional units are established, functional similarities between organisms
can be established by comparing their functional profiles, which are a collection of
functional units associated with the individual microbes.
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3 Clustering massive protein functional similarity networks

detail. The I explore the problems during clustering using MCL as a example. Finally
I discuss how I plan to solve the clustering problem.

3.3 Data and Methods

3.3.1 Bacterial proteomes

The set was extracted from the GenBank[3] subdirectory (/genomes/genbank/bacteria[14])
of the NCBI ftp server on February 12th 2018. Two criteria have to be fulfilled for the
bacterium to be included into the dataset: (1) The assembly of the bacterial genome
has to be complete. As previously described a complete assembly is defined as a gapless
assembly, of all chromosomes, i.e. the primary cyclic bacterial DNA plus all plasmids
if present. (2) A proteome has to be predicted from the genomic sequence. Out of
a total of 130,209 bacterial assemblies present at the date of extraction 8,906 bacteria
fulfilled both criteria (9,329 only fulfilled criterion 1). Those 8,906 bacteria, account for
31,566,498 coding sequences.

Many bacteria contained in this set are strains of a common species. Strains of a
species tend to share a lot of genetic similarity, resulting in a large redundancy in the
dataset. Two redundancy reductions of this protein set were performed, one to 100%
sequence identity the other one to 71.6%. Both reductions were done with the use of
CD-HIT[15, 16]. By default, CD-HIT calculates the sequence identity over the length
of the shorter of the two aligned sequence. Due to the greedy nature of CD-HIT’s
algorithm it is therefore possible that very short sequence pieces get aligned to long
sequences with a reported high sequence identity. To make sure that I get to “true”
100% sequence identity redundancy reduction, i.e. a set of unique protein sequences,
I forced CD-Hit to only add proteins to a cluster if the longer of the two sequences
(the cluster representative) is covered completely by the alignment. This 100% sequence
identity clustering cut the number of proteins roughly in half (49.5%) from 31,566,498
protein to 15,629,432. This set of proteins is used to establish functional similarities
between all proteins (see subsection 3.3.2).

An additional second redundancy reduction to 71.6% sequence identity was performed
in order to reduce the number of potential nodes in a consecutive protein similarity net-
work clustering even further. 71.6% was specifically chosen to create an artificial upper
boundary mirroring the lower boundary of 29.4% sequence identity that is at minimum
required to create HFSP score of ≤ 0 if the alignment is longer than 450 residues long.
Analogous to the 100% sequence identity reduction with CD-Hit, parameters were cho-
sen in such a fashion to eliminate the chance that very short sequences are assigned
to clusters with long sequences. The clustering ultimately resulted in a reduction from
31,566,498 proteins to 5,792,278 representative proteins, i.e. a reduction to about 1/5th

(18.3%) of the original protein set.
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3.3 Data and Methods

converted reliability scores

-20 0.44 0.44 0.44 0.45 0.45 0.45 0.46 0.46 0.47 0.47 -11
-10 0.48 0.49 0.50 0.51 0.53 0.54 0.55 0.56 0.58 0.60 -1

0 0.62 0.63 0.65 0.68 0.70 0.72 0.75 0.77 0.79 0.80 9
10 0.81 0.83 0.83 0.84 0.85 0.85 0.87 0.87 0.89 0.90 19
20 0.91 0.91 0.91 0.91 0.92 0.92 0.93 0.94 0.94 0.94 29
30 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.96 39
40 0.97 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 49
50 0.99 0.99 0.99 0.98 0.98 0.98 1.0 1.0 1.0 1.0 59
60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 69

Table 3.1: HFSP to reliability score conversion table. Score conversion is based on pre-
dicted HFSP precision transferring EC annotations for prokaryotic enzymes. The
first and last column lists the HFSP score range for which each row lists the converted
reliability score.

3.3.2 Generating the functional similarities

I obtained functional similarities between proteins using HFSP (see Chapter 2). HFSP[1]
requires a pairwise alignment of two proteins. Using the ungapped alignment length
(number of positions in the alignment with aligned amino acids in both sequences), and
the sequence identity (percentage of aligned position with the same amino acid in both
sequences) an HFSP score can be calculated. I generated the alignments (as per HFSP
protocol) with MMSeqs2’s[12] search module. Parameters chosen for the searches were
-e 1e-3 (reporting e-value cut-off set to (1× 10−3), --e-profile 1e-10, (e-value cut-
off for sequence inclusion into PSSM generation set to (1×10−10), --num-iterations 3

(three iterations of homology search), --max-seqs 100000 (a maximum of 100k results
per query sequence are reported), -s 5.7 (default sensitivity cut-off for pre-filtering
step), --diff 1000 (at least 1000 sequences go into the generation of the PSSM while
redundancy is reduced to 90% sequence identity). Based on the resulting alignments
HFSP scores were generated for each available protein pair.

3.3.3 Generating the similarity network

I generated protein similarity networks, using the previously established functional simi-
larities. Nodes represent proteins, and directed edges between proteins are added, if the
two protein’s shared HFSP score exceeds a defined threshold. Each edge was assigned
a weight determined by the HFSP score. Using the predictive precision for prokaryotic
enzymes of HFSP, I established an HFSP to reliability score conversion (see Table 3.1).
The predictive precisions were obtained during the performance evaluation of HFSP (see
also Chapter 2).

The main network I created contains all ∼ 15.6 million representatives of the redun-
dancy reduced protein set as nodes. Edges were introduced if the HFSP score between
proteins is ≤ 0. This resulted in ∼ 50 billion edges in the network. Since nodes can
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be representatives of many proteins the converted edge weight was multiplied by the
number of proteins represented by the node.

Additionally to the main network I also generated an expanded network. The ex-
panded network reintroduced all proteins previously removed during the alignment stage.
This network results in ∼ 31 nodes connected by ∼ 150 billion edges. Edge weights here
are simple conversions from HFSP score to reliability score, without an further scaling.

The third and final network I generated is based on the set of representatives of the
71% sequence identity reduction. Each of the 5,792,278 representatives is added as node.
Edges weights were calculated by summing up all edge weights between cluster members
of the any two representatives. This network contains approximately 4.5 billion edges.

3.4 Results & Discussion

3.4.1 HFSP significantly speeds up generation of protein functional
similarities.

As described earlier improving fusion’s key concepts became a necessity due to the much
larger size of the data set in comparison to the proof of concept. To put the growth into
perspective: Using the initial dataset of ∼ 4.2 million proteins, results in approximately
18 trillion (∼ 17.6 × 1012) protein pairs that in theory have to be compared. PSI-
BLAST[11] required approximately 1.3 million CPU-hours to compute all alignments
(∼ 3 months on a compute cluster with 78 compute nodes with 8 CPUs each, 624 CPUs
in total). With the updated complete dataset of ∼ 31.6 million proteins this would
amount for ∼ 9.98 × 1014 pairs. Those close to 1 quadrillion pairs, represent a more
than 50-fold increase over the initial dataset. Even using the protein set reduced to
100% sequence identity we would still end up with ∼ 243 trillion possible protein pairs.
Assuming the same number of calculated alignments per CPU per hour (approximately
14 million), this would put us at a requirement of ∼ 17.4 million CPU-hours. This
translates to a runtime of slightly more than 3 years on the same system. Given that
the required run times for PSI-BLAST searches scale linearly with database growth we
have to expect an even longer compute time per protein alignment and therefore an
overall longer run time. Additionally, only within the year of 2018, the set of coding
sequences predicted from complete assemblies has increased by an additional 50% from
∼ 31.6 million to ∼ 45.1 million. While it can be expected that a large fraction of
those coding sequences is redundant at 100% sequence identity, the underlying problem
remains the same: Even with larger compute clusters being readily available, generating
the alignments with PSI-BLAST is clearly not sustainable.

Switching the alignment algorithm from PSI-BLAST to MMSeqs2[12] in HFSP sig-
nificantly reduced the runtime required. The total runtime of MMSeqs2 to calculate
alignments between all possible protein pairs required roughly four weeks. Note that I
switched to a more modern and powerful compute cluster (12 available nodes, equipped
with 28 cores and 128GB RAM each; 336 cores in total). On this infrastructure 4 weeks
of runtime equals roughly 226,000 CPU hours. During the development of HFSP I esti-
mated based on a much smaller dataset, that MMSeqs2 should give us at least a 40-fold
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speed increase in calculating the alignments over PSI-BLAST. As stated in Chapter 2
I was expecting the gain over PSI-BLAST to be even bigger for larger datasets, which
seems to observable here. Summarizing I can say that replacing PSI-BLAST with MM-
Seqs2 in the generation of functional similarities between proteins vastly improves the
computational needs of fusion’s first key concept.

Out of the roughly 243 trillion possible protein pairs (2.43 × 1014), approximately a
1000th (249,624,795,920) generated alignments that passed the defined e-value cut-off.
For those protein pairs, functional similarities were calculated as outlined in the section
”Generating the functional similarities”. Networks were created as described in section
”Generating the functional similarities”. This resulted in a network with ∼ 50 billion
directed edges between the 15.6 million nodes. Due to the way HFSP is designed it is
not guaranteed that the alignment from Protein PA to Protein PB results in the same
score as PB being aligned to PA. In fringe cases this can result in one alignment falling
above the decided HFSP threshold while the other does not. However, I did observe that
the distribution for in and out degree of nodes is nearly identical in this network. This
suggests if an edge from PA to PB exists the reverse is true as well for in the majority
of cases. In other words it suggests that differences between the HFSP scores are only
minimal, and those aforementioned fringe cases only occur very rarely.

3.4.2 Clustering very large networks still a challenge

During the conceptual phase of fusion MCL[13] (Markov Clustering) was used to group
proteins into functional units based on their previously established functional similar-
ity. It had previously shown that MCL generates biologically meaningful results when
clustering protein similarity networks [17].

Markov Clustering revolves around two basic steps: (1) inflation of a transition prob-
ability matrix A by squaring and multiplying all values with a constant, and (2) pruning
the columns of the resulting matrix. The inflation reinforces or lessens existing transition
probabilities. The degree of the inflation can be determined by adjusting the constant
the squared matrix is multiplied with. Imagine tightly connected nodes being pulled
closer together by increasing the weights of the edges connecting the nodes, while loose
connections are weakened. Iteratively repeating only step 1 should already lead to a net-
work that stabilizes, i.e. transition probabilities only marginally change after inflation.
To speed up this process (and aid in the decomposition of the network into clusters) the
matrix is pruned after each inflation step, by only retaining the strongest connections,
i.e. transition probabilities for each node.

While this approach of MCL’s original implementation works very well for networks
of up to a certain size the complexity quickly leads to exceeding computational resource
requirements. In my specific case I evaluated a high performance compute cluster im-
plementation of MCL called HipMCL[18] that already circumvents some of the short
coming of the original implementation. Yet I ran into problems detailed in the following
paragraphs.

The initial similarity network contains roughly 50 billion edges, i.e. transition proba-
bilities in the stochastic matrix. By default the transition probability matrix only gets
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pruned for the first time after the first iteration of inflation. We can assume a required 24
bytes per entry in the matrix: 8 bytes for the numerical value of the transition probabil-
ity and 16 bytes (8 bytes each) for the i, j index describing the location of the probability
in the matrix. Simply loading the matrix into system memory would therefore already
require a minimum of roughly 50× 109× 24bytes which equals to approximately 1.2TB.

Since (Hip)MCL needs to inflate and prune the matrix in each iteration, more than the
minimal memory required to store the matrix is needed. HipMCL’s minimal memory
requirement is estimated to be |V | × R × 4 × 24 bytes, where |V | is the number of
vertices in the network and R is the maximal number of recoverable edges. R is one of
the parameters, that determines how much the transition matrix is pruned after each
step of inflation. (Hip)MCL’s pruning is defined by three-parameters: (1) a transition
probability cut-off P , (2) a parameter defining the number of edges to be selected S,
(3) a parameter defining the number of edges to be recoverable R. By default, MCL /
Hip-MCL removes all transition probabilities below the cut-off P . If more edges than
defined by S remain after removal, the column is pruned further to contain less or equal
to S transition probabilities. If too many edges are discarded in this process, up to
R transition probabilities are recovered. This serves two purposes: (a) It enables the
considerably quick clustering heuristic of MCL and (b) it significantly reduces memory
requirements, since RAM requirements no longer scale with the number of non-zero
edges, but rather the number of nodes. By default the parameters are set to P =
1/10000;S = 1100;R = 1400. As previously described only |V | and R directly influence
the memory requirement. In me case this would lead an estimated requirement of 15×
106 × 1400× 96 bytes or approximately 2TB. Remember that this network already has
been reduced to contain only ∼ 15.6 million nodes from the initial ∼ 31 million nodes.
The full network would require about twice as much system memory.

While 4TB of shared system memory can easily be attained in modern compute clus-
ters using a message passing interface, the default parameters of HipMCL introduce
another problem. A R of 1400 restricts the pruning in a way that at most 1400 edges
per node can be retained. In very sparse networks with a wide distribution of edge
weights per node this might not immediately pose a problem. However under certain
network architectures this can lead to faulty clusterings. As soon as nodes exists in the
network with more than 1/P edges and more than R edges fulfill the pruning cut-off with
similar transition probabilities every edge pruned will lead to a loss of information. An
example for this would be a hub or a fully connected subgraph within the network where
each protein shares high similarity with each other. Given that my dataset is based on
∼ 9000 organisms a presence of house keeping genes existing in almost all organisms
is a guarantee. Those house keeping genes are coding for highly similar proteins, that
will result in the behavior described above. For hubs like this a finer granularity of the
clustering than desired will likely be the outcome. Ultimately it is likely that this will
lead to functional clusters showing differing degrees of granularity, depending on how
many proteins are represented by said cluster. Especially in my case where the aim is to
cluster proteins into functional units this is a highly unfavorable effect. Increasing the
number of edges retained after pruning might alleviate the problem. However, doing so
directly correlates with the memory requirements of MCL and leads to an increase.
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Figure 3.2: Substantial number of nodes with � 1000 outgoing edges in largest con-
nected component. Displayed is the out-degree distribution for nodes in the
larges strongly connected component, of the protein similarity network at 71.6%
sequence redundancy reduction. By far the larges fraction (∼ 3.1 million) of nodes
have < 1000 out going edges (not displayed in the distribution for better visualiza-
tion). Yet more > 700.000 than nodes which amounts for ∼ 20% > 1000 outgoing
edges.

The high memory requirements, in conjunction with potential miss clustering resulting
from the topology of the input network, present huge challenges to MCL. In an effort to
circumvent those issues, I decided further reduce the network. I used the representative
proteins of the 71% sequence identity reduction to generate the network. The resulting
network contained ∼ 6 million nodes and ∼ 4.5 billion edges. Despite this reduction of
size, I was still able to observe network topology as previously described. An investiga-
tion of the largest connected component in the network revealed that while the network
is very sparse overall, a substantial number of nodes with � 1000 outgoing edges still
exists (see Figure 3.2).

3.4.3 t-SNE able to overcome MCL’s shortcomings

t-distributed stochastic neighbor embedding[19] or t-SNE technically is a visualization
approach for high dimensional data. Part of t-SNE, akin to a principal component anal-
ysis PCA or multidimensional scaling MDS is to perform a dimensionality reduction of
the dataset, most often into two dimensions. The assumption is that similarity informa-
tion is retained in the dimensionality reduction, and individual nodes cluster together
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more visibly. The advantage of t-SNE is that once an initial embedding is generated,
this embedding can be used to re-embed new nodes, or nodes removed from the initial
embedding set. In theory I should be able to chose a representative subset of nodes from
the original network, to generate a initial ”training” embedding, and then re-embed the
remaining nodes into the previously generated embedding. While the initial embedding
step might still be computationally expensive, re-embedding of further nodes, can be
parallelized and is considerably less expensive. After embedding all nodes, the final
clustering can be extracted. This methodology would potentially also open up a way for
easy small scale updates to the clustering. Functional similarities for coding sequences
from newly sequenced organisms to existing proteins can be generated and used to di-
rectly incorporate them into the existing cluster. One caveat is that new nodes would
increase dimensionality if added into the original data set. It can be assumed that a
new t-SNE embedding would have to regenerated from scratch after a certain amount of
data that has been added in retroactively. The point at which this is the case still has
to be evaluated.

3.5 Conclusion

As described during this chapter, the significant increase in raw data resulting from
new microbial organisms presents an increasingly difficult problem to solve. Especially
with more wide spread availability and increasing accuracy of single cell sequencing
this amount in data can only be expected to grow fast than the already exponential
growth observed today. Additionally, availability of computational power is outpaced
by the amount of data made available today already. Generally speaking, we are at
a stage where we can observe a higher influx of novel strains of previously sequenced
species, as opposed to never seen before species. Assuming the strains them self are
mostly redundant in terms of their genetic makeup but the few coding sequences that
are differentiating them are what make them unique, the added data on a yearly or
monthly basis leading to potential fusionDB (see the next chapter: ”fusionDB: assessing
microbial diversity and environmental preferences via functional similarity networks”)
updates, should not change the functional clusters in a significant way.

In that light I think that t-SNE might be not only able to solve the problem of
dealing with the massive amounts of data in the first place, but might also enable me to
create smaller incremental updates, that incorporate a small number of novel genomes.
I can also envision a way how t-SNE could be incorporated into respectively replace
the algorithm that currently maps previously unseen proteomes to existing functional
units in fusionDB. Currently a simple homology search against all available proteins
in fusionDB is executed and the novel proteins are assigned the functional unit that
contains the best matching HSFP hit. One major drawback of this approach is however
that functional similarity for proteins within the novel proteome will not be considered
in case they don’t match anything that has previously been seen, i.e. functionality
encoded by one or more proteins that is unique to this specific proteome. t-SNE could
eventually aid in overcoming this drawback. Looking forward I also hope that t-SNE
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will be able to discover near optimal representatives of the functional units, that can
then be used to create a reference database of proteins, for applications like mi-faser[20].
Utilizing this capability would bring fusionDB and mi-faser closer together, enabling
researchers to annotate metagenomic reads, with fusionDB’s functional units. I see this
as a first step towards discovering functional pathways within a selection of organisms,
respectively metagenomic microbial community. With all those updates in mind, it still
will be difficult and in fact get increasingly difficult to deal with the amount of data that
is generated. There is an immense need for clustering algorithms that are capable to
deal with huge networks, preferably without segmenting and breaking them down into
smaller problems, as some information might potentially be lost in doing so.
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4 fusionDB: assessing microbial diversity
and environmental preferences via
functional similarity networks

4.1 Preface

fusionDB is a novel database that enables the investigation for functional similarity be-
tween microbes and relating their environmental preferences. The database consists of
the functional classification of 1,374 taxonomically distinct microbes derived generated
using the fusion protocol, with added annotation of available metadata. This meta-
data augmentation enables highlighting and potentially uncovering functional relations
of microbes sharing similar environmental niches. The investigation of functional niches
can be further enhanced by using the build in visualization tool of fusionDB. The vi-
sualization displays a clustering of organisms according to their functional profiles, in
conjunction with the functional niches that has be selected for visualization. I showed
that organisms sharing the same environmental preferences tend to be functionally more
similar to each other than microbes from different environmental niches. For exam-
ple anaerobic bacteria share ∼ 31% of their functional repertoire between each other,
whereas they only share ∼ 24% of their functional repertoire with aerobic microbes. I
also demonstrated that fusionDB can be used to predict the functional profile of organ-
isms not yet available in the database, and reliably place them into a neighborhood of
functionally highly similar microbial organisms.

The database, the backend, and the functional profile prediction algorithm was imple-
mented and evaluated by me. The web interface was implemented by me and Maximilian
Miller. The analyses were conducted by me and Chengsheng Zhu. The manuscript was
drafted by all authors.

4.2 Journal Article: Zhu, Mahlich, Miller, et al., Nuclear Acids
Research 2017
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ABSTRACT

Microbial functional diversification is driven by en-
vironmental factors, i.e. microorganisms inhabiting
the same environmental niche tend to be more func-
tionally similar than those from different environ-
ments. In some cases, even closely phylogenetically
related microbes differ more across environments
than across taxa. While microbial similarities are of-
ten reported in terms of taxonomic relationships,
no existing databases directly link microbial func-
tions to the environment. We previously developed
a method for comparing microbial functional similar-
ities on the basis of proteins translated from their
sequenced genomes. Here, we describe fusionDB,
a novel database that uses our functional data to
represent 1374 taxonomically distinct bacteria an-
notated with available metadata: habitat/niche, pre-
ferred temperature, and oxygen use. Each microbe
is encoded as a set of functions represented by
its proteome and individual microbes are connected
via common functions. Users can search fusionDB
via combinations of organism names and metadata.
Moreover, the web interface allows mapping new mi-
crobial genomes to the functional spectrum of ref-
erence bacteria, rendering interactive similarity net-
works that highlight shared functionality. fusionDB
provides a fast means of comparing microbes, iden-
tifying potential horizontal gene transfer events, and
highlighting key environment-specific functionality.

INTRODUCTION

Microorganisms are capable of carrying out much of molec-
ular functionality relevant to a range of human interests, in-
cluding health, industrial production, and bioremediation.
Experimental study of these microbes to optimize their uses
is expensive and time-consuming; e.g. as many as three hun-
dred biochemical/physiological tests only reflect 5–20% of
the bacterial functional potential (1). The recent drastic in-
crease in the number of sequenced microbial genomes has
facilitated access to microbial molecular functionality from
the gene/protein sequence side, via databases like Pfam (2),
COG (3), TIGRfam (4), RAST (5) and others. Note that the
relatively low number of available experimental functional
annotations limits the power of these databases in recogniz-
ing microbial proteins that provide novel functionality. Ad-
ditional information about microbial environmental prefer-
ences can be found, e.g. in GOLD (6). While it is well known
that environmental factors play an important role in micro-
bial functionality (7), none of the existing resources directly
link environmental data to microbial function.

We mapped bacterial proteins to molecular functions and
studied the functional relationships between bacteria in the
light of their chosen habitats. We previously developed fu-
sion (8), an organism functional similarity network, which
can be used to broadly summarize the environmental fac-
tors driving microbial functional diversification. Here, we
describe fusionDB – a database relating bacterial fusion
functional repertoires to the corresponding environmental
niches. fusionDB is explorable via a web-interface by query-
ing for combinations of organism names and environments.
Users can also map new organism proteomes to the func-
tional repertoires of the reference organisms in fusionDB;
including, notably, matching proteins of yet unannotated
function across organisms. The submitted organisms are vi-
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sualized, and can be further explored, interactively as fusion
networks in the context of selected reference genomes. Ad-
ditionally, the web interface generates fusion+ networks, i.e.
views that explicitly indicate shared microbial functions.

Our overall analyses of the fusionDB data for the first
time give quantitative support to the fact that environ-
mental factors drive microbial functional diversification. To
demonstrate fusionDB functionality for individual organ-
isms, we mapped a recently sequenced genome of a fresh-
water Synechococcus bacterium to fusionDB. In line with
our previous findings (8), we demonstrate that this mi-
croorganism is more functionally related to other fresh wa-
ter Cyanobacteria than to the marine Synechococcus. In a
case study on Bacillus microbes, we use fusionDB to track
organism-unique functions and illustrate the detection of
core-function repertoires that capture traces of environ-
mentally driven horizontal gene transfer (HGT). fusionDB
is a unique tool that provides an easy way of analysing
the, often unannotated, molecular function spectrum of a
given microbe. It further places this microbe into a con-
text of other reference organisms and relates the identified
microbial function to the preferred environmental condi-
tions. Our approach allows for detection of microbial func-
tional similarities, often mediated via horizontal gene trans-
fer, that are difficult to recover via phylogenetic analysis. We
note that, in the near future, fusionDB may also be useful
for the analysis of functional potentials encoded in micro-
biome metagenomes. We expect that fusionDB will facilitate
the study of environment-specific microbial molecular func-
tionalities, leading to improved understanding of microbial
lifestyles and to an increased number of applied bacterial
uses.

METHODS

Database setup

fusionDB is based on alignments of 4 284 540 proteins
from 1374 bacterial genomes (December 2011 NCBI Gen-
Bank (9). For each bacterium, we store its (a) NCBI tax-
onomic information (10) and, where available, (b) envi-
ronmental metadata (temperature, oxygen requirements,
and habitat; GOLD (6). The environments are generalized,
e.g. thermophiles include hyper-thermophiles. ‘No data’ is
used to indicate missing annotations (Supplementary On-
line Material, SOM Table S1, SOM Figure S1). The gen-
eral fusion (functional repertoire similarity-based organism
network) protocol is described in our previous work (8).
Briefly, all proteins in our database are aligned against each
other using three iterations of PSI-BLAST (11) and the
alignment length and sequence identity are used to com-
pute Homology-derived Secondary Structure of Proteins
(HSSP) distances (12). A network of protein similarities
is then clustered using the Markov Clustering Algorithm
(MCL) (13). For fusionDB the original fusion algorithm was
modified to use less stringent protein functional similarity
criteria (with HSSP distance cutoff = 10), which resulted
in 457 576 functions (protein clusters; Table 1). Each bac-
terium was thus mapped to a set of functions, its functional
repertoire (∼2400 functions on average, ranging from 118
to 6134 functions). Note that our functional repertoires in-
clude all the bacterial functions, regardless of annotation.

We are thus able to make function predictions for proteins
in new bacteria, even if these functions have not been anno-
tated before.

Mapping new organisms to fusion

User submitted microbial proteomes and the associated
functions are stored in a separate database (SOM Figure
S2). For each query protein of the new organism, the map-
ping pipeline (SOM Figure S3, SOM Methods) (a) runs
PSI-BLAST (reporting e-value 1e–10, inclusion e-value 1e–
3, three iterations) against reference proteins in fusionDB
and (b) maps the query to a fusion functional cluster, which
contains the reference with the highest hit HSSP score. Note
that novel proteins that cannot be assigned to existing func-
tional groups (do not match any reference at HSSP dis-
tance ≥10) are reported as functional singletons even if
they are similar among themselves. Additionally, protein
alignments that exceed 12 CPU hours of run-time are cur-
rently eliminated from further consideration. In testing, we
found that no >0.1% of the proteins fall into this category.
Although long run-times usually indicate that query pro-
teins likely align to many others in our database, they con-
tribute only a small fraction to the overall bacterial similar-
ity and are eliminated for the sake of a faster result turn-
around. Note that we also evaluated a number of other al-
gorithms for mapping organism functional repertoires, of
which the above-described algorithm performed best (SOM
Methods).

All functional cluster assignments of proteins in the
query proteome are then combined into a functional reper-
toire where each functional cluster is unique; i.e. if two
query proteins are assigned to the same functional cluster,
this cluster is listed only once in the final repertoire.

Evaluating fusionDB performance

We evaluated the accuracy of functional mapping of new
proteomes by iteratively mapping each of the fusionDB or-
ganisms back to the remaining 1373. We aligned each pro-
tein of the query organism to all proteins in other organ-
isms and selected the alignment with highest HSSP score.
We then assigned the query protein to the functional cluster
of its match as described above for mapping new organisms.

The performance of this approach was evaluated on a
per-function basis, i.e. for each function of each ‘newly
added’ organism we retrieved counts of true positives (TP,
proteins correctly assigned to this fusionDB function), false
positives (FP, proteins falsely assigned to this fusionDB
function), and false negatives (FN, proteins that are part
of this fusionDB function in the reference database, but
not correctly assigned). Note that reference singleton pro-
teins that were not assigned to any fusionDB function were
considered true positives. Averaged across all functions, the
mean per-function precision and recall of correctly assign-
ing proteins were 97.2% and 96.6%, respectively (3.1 × 10−8

mean per function false positive rate, FPR), while the over-
all precision of assigning any protein to a function was
98.2% (Eq. 1).

Individual organisms were assigned to their functional
repertoires with 99.5% precision and 98.9% recall (Eq. 1,
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Table 1. Annotation status of (HSSP-based) function groups

Function groups (>1 sequence) Function groups (1 sequence) Total

Known (Kn) 54 522 15 738 70 260
Hypothetical (Hy) 85 252 89 282 174 534
Unknown (Un) 22 802 189 980 212 782
Total 162 576 295 000 457 576

SOM Figures S4 and S5). For this estimate we evaluated to
overlap between reference and assigned repertoire; i.e. func-
tional clusters that appear in both the reference and mapped
functional repertoire are true positives. False positives are
functional clusters in the mapped functional repertoire but
not the reference repertoire, false negatives vice versa. The
reported precision and recall are the mean precision and re-
call values averaged over all organism submissions.

precision = T P
T P + F P

, recall = T P
T P + F N

, F PR = F P
F P + TN

(1)

Web interface

fusionDB web interface has two functions: explore and map
new organisms. The explore section contains access to all the
1374 bacteria and their metadata. Users can search these
with (combinations of) organism names and environmen-
tal preferences by using text box input or built in filters.
A user-selected organism set can be used to create a fusion
network, in which organism nodes are connected by func-
tional similarity edges. The fusion network can be viewed
in an interactive display, as well as downloaded as net-
work data files or static images. The user-defined color la-
bels of the organism nodes reflect microbial taxonomy or
environment. In the interactive display clicking an organ-
ism node reveals its taxonomic information and environ-
mental preferences, while clicking an edge between two or-
ganisms yields a list of their shared functions. A fusion+
network can further be generated from the same list of or-
ganisms. There are two types of vertices (nodes) in fusion+:
organism nodes and function nodes. Organism nodes are
connected to each other only through the function nodes
they share. The number of edges (degree) of an organism
node represents the total number of functions of the or-
ganism; the relative position of each organism node is de-
termined by the pull toward other organisms via common
functions and away from others via unique functions (8).
Like fusion, fusion+ can be interactively displayed, down-
loaded, and colored by the users’ choices. For both net-
work types, users can further retrieve the functions shared
by the selected organisms––the core-functional repertoire
of the set. Note that the primary function annotation of
each functional cluster is the myRAST (5) description most
commonly assigned to the cluster members. For each cluster
we also include the corresponding Pfam (2) families. This
feature is an efficient tool for investigating functions under-
lying organism diversification, particularly within different
environment conditions.

In the map section, users can submit their own new organ-
ism proteomes (in fasta format) to our server (SOM Fig-
ure S3). The server sends out emails to users when map-
ping is finished. The map result page contains two tables
containing (a) functional annotations, including the asso-
ciated fusionDB reference sequences and proteins of the

query organism that mapped to each functional cluster, as
well as (b) similarity (Eq. 2) to the reference organisms in
fusionDB, including functional repertoire size, functional
overlap with the query, and metadata. Tables can be eas-
ily sorted, searched and exported as comma-separated files.
The submitted proteome is further mapped to user-selected
reference organisms with fusion and/or fusion+ as described
above (Figure 1).

similarity = shared functions
the larger functional repertoire size

(2)

Analysis of environment-driven organism similarity

For each environmental condition in fusionDB, we sam-
pled organism pairs where organisms were from (a) the
same condition (SC, e.g. both mesophiles) and (b) differ-
ent conditions (DC, e.g. thermophile versus mesophile).
To alleviate the effects of data bias, the organisms in one
pair were always selected from different taxonomic groups
(different families). The smallest available set of pairs,
SC-psychrophile contained 33 organisms from 17 families
(SOM Table S1; 136 pairs––48 same phylum, 88 different
phyla; due to high functional diversity of Proteobacteria,
its classes were considered independent phyla). For all other
environmental factors we sampled (bootstrap with 100 re-
samples) 136 organism pairs for both SC and DC sets, cov-
ering this same minimum taxonomic diversity. We calcu-
lated the pairwise functional similarity (Eq. 2) distributions
and discarded organism pairs with <5% similarity.

RESULTS AND DISCUSSION

Mapping a new Synechococcus genome to fusionDB

We downloaded the full genome of Synechococcus sp. PCC
7502 (GCA 000317085.1) as translated protein sequence
fasta (.faa file) from the NCBI Genbank (9) and submit-
ted it to our web interface. This 3,318 protein fresh water
Cyanobacteria is isolated from a Sphagnum (peat moss) bog
(6). 86% (2,853) of the bacterial proteins mapped to 2208
fusionDB functions, while 462 (14%) were functional sin-
gletons; three proteins exceeded runtime and were excluded
(Methods). The whole process from submission to results
notification e-mail took under three and a half hours. The
mapping indicates that Synechococcus sp. PCC 7502 is most
functionally similar (56%) to Synechocystis PCC 6803, a
fresh water organism evolutionarily closely related to Syne-
chococcus. It also shares a high functional similarity with a
mud Synechococcus (S.sp. PCC 7002; 53%) and with other
fresh water Synechococcus (S. elongatus PCC 7942 and S.
elongatus PCC 6301; 52%). Notably, but not surprisingly,
Synechococcus sp. PCC 7502 shares much less functional
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Figure 1. Screenshot of the organism mapping result page. (A) The ‘Mapped Functions’ table lists the functions that the submitted organism is mapped to.
For each function, associated proteins from fusionDB and mapped query proteins can be displayed. (B) The ‘Organism Similarities’ table displays, all 1374
fusionDB organisms and their functional similarities to the query organism, including additional information such as environmental metadata; the view
can be toggled between all and user-selected organisms. fusion(+) networks of the query and user-selected organisms can be created for on-site visualization
(see Figure 2) or download.
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Figure 2. Screenshot of the fusion+ visualization of all Synechoccocus genomes. The submitted Synechococcus sp. PCC 7502 (query, black) clusters with
the fresh water Synechococcus organisms (magenta). Note that Synechococcus sp. PCC 7002 – clustered among fresh water organisms; colored dark blue
(marine) – is isolated from marine mud. It is salt tolerant but does not require salt for growth).

similarity (40–42%) with the marine Synechococcus bacte-
ria. This relationship is clearly demonstrated by the fusion+
networks (Figure 2). There are 874 functions shared by all
the twelve Synechococcus (SOM Data 1), the core-function
repertoire for this genus, and 1128 functions shared among
only the fresh water Synechococcus (SOM Data 2). These
differential 254 functions (SOM Data 3) are likely impor-
tant for living in fresh water, as opposed to marine, envi-
ronment, e.g. low salinity and low osmotic pressure.

Environment significantly affects microbial function

In our evaluation of the effects of environmental pres-
sures on microbial functionality we found that, in general,
same environmental condition (SC) organisms across all
environmental factors are more functionally similar than
DC organisms (from different environments; Figure 3; with
some exceptions mentioned below, Kolmogorov-Smirnov
test (14) P-value < 2.5e–6). This finding is intuitive and
many studies have demonstrated the presence of horizon-
tal gene transfer (HGT) within environment-specific mi-

crobiomes (15–17). Our results, however, for the first time,
quantify on a broad scale the environmental impact on mi-
croorganism function diversification.

SC-thermophile and SC-psychrophile pairs demonstrate
significantly higher similarities when compared to DC pairs
(Figure 3A). Notably, the higher functional similarity be-
tween thermophiles than between psychrophiles suggests
that protein functional adaptation to low temperature may
be less taxing than to high temperature – an interesting
finding in itself. When contrasted with the extremophiles,
mesophiles seem to have much larger functional diversity;
in fact, SC-mesophile similarities are comparable to those
of DC pairs (Figure 3A).

Different molecular pathways of aerobic-respiration and
anaerobic-respiration/fermentation may explain the high
level of dissimilarity between the aerobes and anaer-
obes (DC-anaerobe-aerobe; Figure 3B). Interestingly, the
SC-anaerobe similarities are higher than the SC-aerobe
similarities, likely because the more ancient anaerobic-
respiration/fermentation machinery tends to be simpler
(fewer reactions) (18) and more conserved.
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Figure 3. Organism pairwise similarity is higher among organisms living
in the same environmental conditions. The mean pairwise similarity for
same (SC) and different (DC) condition organisms according to (A) tem-
perature, (B) oxygen and (C) habitat preferences. For all points without
error bars, the standard errors are vanishingly small.

Different habitat (DC) samples show lower pairwise or-
ganism similarity than SC samples as well (Figure 3C). In-
terestingly fresh water and marine organism similarity (DC-
fresh water-marine) is fairly high, likely due to overlaps in
requirements of the aquatic conditions. Note however, that
the dissimilarity across fresh water and marine conditions
is still high enough to differentiate organisms of the same
taxa (e.g. strains of Synechococcus in Figure 2). SC-host has
the lowest mean organism similarity of the habitat SC sam-
ples; we speculate this to be a result of differential adap-
tations necessary to deal with diverse host defense mech-
anisms (19). The soil organisms also share low functional
similarity, which is likely due to soil heterogeneity at physi-
cal, chemical, and biological levels, from nano- to landscape
scale (20).

Case study of a temperature driven HGT event

Using the fusionDB explore functionality, we extracted ther-
mophilic, mesophilic, and psychrophilic species representa-
tives (one per species) of the Bacillus genus. We also added
two other thermophilic Clostridia, Desulfotomaculum car-
boxydivorans CO-1-SRB and Sulfobacillus acidophilus TPY,
to generate a fusion+ network (SOM Table S2; Figure
S4A). As expected, note here that overall thermophilic bac-
teria are further removed from psychrophiles than from
mesophiles. Moreover, the thermophilic Bacilli were more
closely related to the non-Bacillus thermophiles than to
other Bacilli. The three Bacilli thermophiles share 29 func-
tions (SOM Data 4) that are not found in other Bacilli
in this organism set, three of which also exist in the two
thermophilc Clostridia. One is a likely pyruvate phosphate
dikinase (PPDK) that, in extremophiles, works as a pri-
mary glycolysis enzyme (21). The thermophilic Bacilli’s
PPDK proteins are more similar to those in thermophilic
Clostridia (sequence identity = 0.65 ± 0.03), than to those in

Figure 4. fusionDB reveals an HGT event between thermophilic Bacilli
and thermophilic Clostridia. (A) fusion+ visualization of Bacillus and ther-
mophilc Clostridia. Large organism nodes are connected via small func-
tion nodes. The two thermophilic Clostridia are connected to the ther-
mophilic Bacilli via functions that are possibly horizontally transferred;
(B) phylogenetic analysis of pyruvate, phosphate dikinase (PPDK) gene
suggests HGT between thermophilic Bacilli and thermophilic Clostridia.
The PPDK genes in thermophilic Bacilli are evolutionarily more related to
those in thermophilic Clostridia than those in other Bacilli.

mesophilic/psychrophilic Bacilli (sequence identity = 0.17
± 0.05). Phylogenetic analysis of the genes with additional
thermophilic organisms (SOM Methods) suggests a likely
HGT event between the thermophilic organisms (Figure
4B). The other two shared functions are carried out by pro-
teins translated from mobile genetic elements (MGEs) that
mediate the movement of DNA within genomes or between
bacteria (22). Shared closely-related MGEs in distant or-
ganisms imply HGT (23). We thus suggest that fusionDB
offers a fast and easy way to trace likely functionally neces-
sary HGT events within niche-specific microbial communi-
ties.

In this work, we have highlighted the importance of en-
vironmental factors for microbial function, and demon-
strated the capability of fusionDB to not only annotate
functions, but also directly link function to environment.
Although it was developed for mapping new microbial
genomes, fusionDB also has the potential for microbiome
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annotations. By mapping metagenome assemblies to fu-
sionDB, both the functional and taxonomical annotations
can be obtained. Moreover, our recent work (Zhu et al.
2017, Functional sequencing read annotation for high pre-
cision microbiome analysis, submitted) suggests that accu-
rate functional annotations can also be obtained without
assembly. We thus also expect to make fusionDB useful in
this type of analyses in the near future.

CONCLUSIONS

fusionDB links microbial functional similarities and envi-
ronmental preferences. Our analysis reveals environmen-
tal factors driving microbial functional diversification. By
mapping new organisms to the reference functional space,
our database offers a novel, fast, and simple way to detect
core-function repertoires, unique functions, as well as traces
of HGT. With more microbial genome sequencing and fur-
ther manual curation of environmental metadata, we ex-
pect that fusionDB will become an integral part of microbial
functional analysis protocols in the near future.

AVAILABILITY

fusionDB is publicly available at http://services.
bromberglab.org/fusiondb/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Pipeline performance analysis. Historically, we used PSI-BLAST for 

pairwise sequence alignments as per requirements of HSSP computations 

(Rost, 2002). Here we evaluated using BLASTP instead of PSI-BLAST to 

speed-up the mapping process.  

The performance of both algorithms, in mapping any one of the 1,374 

organisms to fusion back to the remaining 1,373, was evaluated using the 

precomputed BLAST and PSI-BLAST results from the original fusion (Zhu, et 

al., 2015). For each protein of the query organism, we extracted the highest 

HSSP scoring hit that was not part of the query organism’s proteome. We 

then created the functional repertoires per organism as described above, 

including singletons as well.  

Using this approach, the PSI-BLAST-based pipeline attained a mean 

precision of 99.5% and recall of 98.9% in finding fusion-identified organism 

repertoires (SOM Figure 4), while BLASTP was lower (precision: 98.7%, 

recall: 98.2%). Additionally, the upper and lower quantiles for both precision 

and recall were tighter around the mean for PSI-BLAST than for BLASTP. 

Thus, we use PSI-BLAST pipeline for all further mapping of individual 

organisms to fusion. 

In order to avoid recomputing functional clusters with every new organism, we 

also tested three methods of assigning proteins to function clusters. (1) 

majority vote: we choose the functional cluster containing most (HSSP >= 10) 

matches to the query; (2) weighted HSSP: we computed the mean of all 

HSSP scores (≥ 10) of all query matches per functional cluster. The query 

protein is then assigned to the functional cluster with the highest mean; (3) 

highest hit: the query protein is assigned to the functional cluster containing 

the highest HSSP-score match. 

When comparing precision and recall of recognizing functional repertoires for 

these three methods (SOM Figure 5), both majority vote and highest HSSP 

perform better than weighted HSSP. Majority vote and highest HSSP perform 

almost equally well, with the highest HSSP method being slightly better. The 
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latter is also least computationally and complex, and was thus chosen for the 

final pipeline implementation. 

Phylogenetic analysis. Homologs of pyruvate, phosphate dikinase (PPDK) 

were extracted from the selected organism genomes via BLASTP (best hit at 

E value cut-off of 1e-3). We computed the multiple sequence alignment and 

reconstructed the neighbor-joining tree with the online version of Mafft (Punta, 

et al., 2012). The phylogenetic tree was visualized with FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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SOM Figures 

 

SOM Figure 1. Entity-relationship (ER)-model of fusionDB. For each 

organism, we store taxonomy information and additional organism metadata 

in fusionDB. Note that some metadata is generalized (e.g. hyper-thermophiles 

are considered thermophiles). Other information in fusionDB includes the 

proteins’ associations to functional clusters, their functional annotations, and 

the pairwise organism functional similarities  
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SOM Figure 2. ER-model of job database. User submitted microbes are 

stored in a separate database. Each organism proteome creates a job with a 

unique identifier. Related results and logs are also associated with this 

identifier. 
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SOM Figure 3. Pipeline of mapping new proteomes. A submitted proteome 

is validated (i.e. checked for correct formatting and content) and split into 

single sequences. PSI-BLAST runs against fusionDB are distributed across 

computing resources per sequence. Each individual sequence is either 

assigned to a functional cluster in fusionDB or counted as a singleton. In a 

final step, the functional repertoire (the union of assigned function clusters 

and novel singletons) is compared to other organisms in fusionDB before 

displaying in the web interface.
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SOM Figure 4. PSI-BLAST outperforms BLASTP in recovering functional 
repertoires. PSI-BLAST-based pipeline attains a mean precision of 99.5% 

and recall of 98.9%, while BLASTP is slightly lower (precision: 98.7%, recall: 

98.2%). Additionally, upper and lower quantiles are tighter around the mean 

precision and recall for PSI-BLAST. Precision and recall are calculated from 

the overlap between the mapped functional repertoire and the reference 

repertoire. 
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SOM Figure 5. Highest HSSP offers best performance in assigning 
functional repertoires to query organisms. “Highest HSSP” hit-based 

method of mapping proteins to functional clusters is best at recalling organism 

functional repertoires.  
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SOM Tables 

SOM Table 1. Taxonomic composition of environmentally distinct groups.  

	 	 #	phylum	 #	family	 #	organisms	

Te
m
pe
ra
tu
re
	 Mesophile	 23	 166	 1083	

Thermophile	 16	 42	 115	

Psychrophile	 3	 16	 33	

*No	Data	 14	 68	 143	

Ox
yg
en
	

re
qu
ir
em

en
t	 Facultative	 10	 51	 207	

Aerobe	 14	 115	 481	

Anaerobe	 20	 71	 245	

*No	Data	 15	 88	 232	

H
ab
ita
t*
	

Soil	 8	(11)	 43	(75)	 78	(279)	

Host	 11	(15)	 59	(94)	 329	(706)	

Marine	 10	(15)	 24	(49)	 61	(116)	

Fresh	water	 10	(18)	 37	(84)	 69	(271)	

*No	Data	 15	 88	 206	

*No	Data	indicates	missing	annotations.	
**	One	organism	can	be	annotated	with	multiple	habitats	(e.g.	both	soil	and	host).	
The	first	number	includes	only	organisms	with	one	annotation,	whereas	the	
number	in	parenthesis	includes	organisms	with	multiple	habitats.		
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SOM Table 2. Temperature preferences of organisms used in the case study.  
Id Temperature 
Bacillus amyloliquefaciens DSM 7 Mesophile 
Bacillus anthracis A0248 Mesophile 
Bacillus cereus ATCC 14579 Mesophile 
Bacillus coagulans 2 6 Thermophile 
Bacillus coagulans 36D1 Thermophile 
Bacillus licheniformis ATCC 14580 Mesophile 
Bacillus megaterium DSM319 Mesophile 
Bacillus subtilis 168 Mesophile 
Bacillus thuringiensis Al Hakam Mesophile 
*Bacillus tusciae DSM 2912 Thermophile 
Bacillus weihenstephanensis KBAB4 Psychrotolerant 
Desulfotomaculum carboxydivorans CO 1 SRB Thermophile 
Sulfobacillus acidophilus TPY Thermophile 
*Note	that	Bacillus	tusciae	is	reclassified	as	Kyrpidia	tusciae	(Klenk,	et	al.,	2011),	
another	genus	that	is	still	evolutionarily	more	related	to	the	Bacilli	organisms	
than	to	the	Clostridia	organisms.		
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5 Common sequence variants affect
molecular function more than rare
variants?

5.1 Preface

Genetic variants can have wide spread impact on organism. This can range from simple
functional changes of a protein, to less immediate changes like the microbial composition
of microbiomes at various host body sites.

There is plentitude of variation analysis tools available including SNAP2 the tool I
used here to exemplify approaches taken in variant analysis. Here I explore the functional
effect of amino acid variants within the human population as well as amino acid variation
between different species. The study serves as example to demonstrate the methodology
that can be applied to investigate the interaction of genetic variation of hosts with their
microbiome composition.

In this study I demonstrate that amino acid variants common within the human
population (≥ 5%) tend to be functionally more impactful on average, than functional
impacts caused by rare variations. I hypothesize this is due two factors: (1) most common
variants carry small functional effects. If they have a positive outcome for the organism,
they are fixed over time. If they are damaging to the organism they are selected against,
i.e. become rare variants over time. (2) rare variants on the other hand, have either
such a strong functional impact that disappear again very rapidly (the minority of rare
variants) or show no functional change all together, and are therefore not fixed over
time, i.e. stay rare.

Furthermore I observe that inter-species variants (variants fixed at speciation) are also
more neutral than variants in an evolving population.

Implementation, evaluation and execution of the work was done by me. Maximilian
Hecht is the author of SNAP2 and provided assistance during the interpretation of the
results. Jonas Reeb, provided the SNAP2 performance reevaluation. Maria Schelling
provided the localization prediction of proteins. The manuscript was drafted by all
authors.
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Common sequence variants affect 
molecular function more than rare 
variants?
Yannick Mahlich   1,2,3,4, Jonas Reeb1,3, Maximilian Hecht1, Maria Schelling1, Tjaart Andries 
Petrus De Beer   5, Yana Bromberg2,4 & Burkhard Rost   1,4,6

Any two unrelated individuals differ by about 10,000 single amino acid variants (SAVs). Do these impact 
molecular function? Experimental answers cannot answer comprehensively, while state-of-the-art 
prediction methods can. We predicted the functional impacts of SAVs within human and for variants 
between human and other species. Several surprising results stood out. Firstly, four methods (CADD, 
PolyPhen-2, SIFT, and SNAP2) agreed within 10 percentage points on the percentage of rare SAVs 
predicted with effect. However, they differed substantially for the common SAVs: SNAP2 predicted, on 
average, more effect for common than for rare SAVs. Given the large ExAC data sets sampling 60,706 
individuals, the differences were extremely significant (p-value < 2.2e-16). We provided evidence that 
SNAP2 might be closer to reality for common SAVs than the other methods, due to its different focus in 
development. Secondly, we predicted significantly higher fractions of SAVs with effect between healthy 
individuals than between species; the difference increased for more distantly related species. The same 
trends were maintained for subsets of only housekeeping proteins and when moving from exomes of 
1,000 to 60,000 individuals. SAVs frozen at speciation might maintain protein function, while many 
variants within a species might bring about crucial changes, for better or worse.

Single nucleotide variants (SNVs) constitute the most frequent form of human genetic variation1. Here, we focus 
on non-synonymous SNVs, i.e. genomic variants that result in single amino acid variants (SAVs) in protein 
sequences. Children differ by about two SAVs from their parents (de novo variation), while any two unrelated 
individuals can differ by as many as 10–20 K2. The vast majority (99%) of the known unique SAVs are rare, i.e. 
observed in less than 1% of the population1, 3. Only about 0.5% of the unique SAVs are common, i.e. observed in 
over 5% of the population1, 3. SAVs can impact protein function in many ways.

We might be inclined to classify SAVs according to what they affect or do not affect. Effects are commonly 
distinguished upon protein function and structure. This distinction has limited value because what changes struc-
ture often tends to affect function. Similarly, we might distinguish between the effect upon molecular function 
(e.g. binding stronger or not binding), upon the role of a protein in a process (native process hampered, blocked, 
or non-native role acquired), or upon the localization of a protein (e.g. protein makes it to the membrane or 
not). Again the problem of this distinction is that these aspects are coupled: for instance, effects upon molecular 
function and localization might affect the process or not. All of the above, we might classify as effects upon the 
protein. Unfortunately, from all experiments monitoring SAV effects in many model organisms, just a few tens 
of thousands effects are available in public databases. For a tiny subset of these, enough detail is available to con-
sider all effect types (structure vs. function, molecular vs. process vs. localization). We might consider the effect 
upon protein as molecular as opposed to the effect upon the organism, such as diseases. Toward this end, the 
distinction is often made between SAVs that cause severe monogenic diseases4 (referred to as OMIM-type SAVs) 
or contribute to complex diseases5 and low-effect SAVs, which are only cumulatively linked to our phenotypic 
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individuality6. This latter distinction is the only one for which ample data is available. Methods predicting the 
effect of SAVs differ in many ways, including in what experimental data they use and how they use it. Typically, 
the methods inherit the bias of the data with respect to the type of effect considered.

Almost any SAV will have some effect under some condition. However, some SAVs clearly have stronger 
effects. A set of SAVs with stronger effect is likely to affect more aspects of function (molecular, process, localiza-
tion) simultaneously. For example, OMIM-like SAVs are assumed to largely affect the biological process through 
strong effects upon structure and/or molecular function (or localization). Many of these SAVs also affect the 
organism as a whole manifesting as disease. Prediction methods add another level of complexity: some methods 
provide values reflecting the strength of a prediction that correlates with the reliability of the prediction (i.e. its 
accuracy) and the strength of the experimental effect. Assume we analyzed two subsets of effect predictions from 
a method: those with predictions stronger than threshold T1 and those stronger than T2, where T2 > T1. For 
methods for which the score is well-balanced, two statements are true: (1) setT2 is predicted at higher accuracy 
than setT1, and (2) setT2 has, on average, stronger effect than setT1. No matter what conditions or populations 
we analyze, results valid at T1 are also valid at T2, as long as the thresholds are chosen in a regime in which the 
prediction method works.

Analyzing the effect of all known variants experimentally remains unfeasible. Computational methods 
may incorrectly predict the effect for some SAVs, but they successfully capture trends for large sets of SAVs7–11. 
Furthermore, computational predictions are available for all variants and inherit only some of the bias from 
today’s experimental techniques. Both experimental and computational assays often fail to infer the impact of 
variation on the organism as a whole from individual SAV molecular effects.

The 1000 Genomes Project (1KG)12, 13 sequenced 1,092 individuals from 14 populations recording about 
268,115 SAVs. In August 2016, the MacArthur lab at the Broad expanded on this collection by reporting 7,599,572 
SAVs between 60,706 people3. How much of this variation impacts protein function? Only in silico tools can fully 
address this question. Here, we present a comprehensive and detailed analysis of the known human SAVs (1KG) 
and of SAVs that differentiate human proteins from their homologs in other species (hominids, primates, rodents, 
and fly).

Results
Many 60KE SAVs predicted with effect.  SNAP2 spreads its predictions into a wide interval of scores, 
in addition to predicting a reduced binary outcome (effect/neutral). The scale ranges from −100 (SAV strongly 
predicted as neutral) to +100 (SAV strongly predicted as effect–either deleterious or beneficial). For a binary pre-
diction, SNAP2 is optimized for the threshold = 0 (i.e. neutral: −100 ≤ SNAP2-score ≤0 and effect: 0 < SNAP2-
score ≤100). At this default threshold, 78% of the known neutral and 79% of the known effect SAVs are predicted 
correctly (Fig. 1 lower panel). Higher absolute values of scores imply more reliable predictions, as illustrated by 
the three example scores. For instance, zooming into more reliable neutral predictions at scores ≤−42 or into 
stronger effect predictions at scores ≥+50 raises the accuracy to 85%; going further to effect scores ≥+75 reaches 
88% accuracy (Fig. 1 lower panel). We use these three examples throughout the manuscript to highlight trends. 
Note that to avoid two possible misunderstandings we point out that: Firstly, there is no single threshold for 
“strong” predictions, the higher the value the stronger the effect (below) and the higher the probability for the 
prediction to be correct. Secondly, zooming into some higher threshold such as SNAP2-score ≥75 does not imply 
that all with SNAP2-scores <75 are predicted neutral. Instead, we simply focus on a subset of strongly predicted 
SAVs.

We used the raw SNAP2-score to summarize our central results for all data sets cumulatively, i.e. showing 
at each SNAP2-score which percentage of the data set was predicted at or above that score. For instance, of the 
7,599,572 60KE SAVs in healthy humans, for which predictions were available, 1,642,225 (about 21%) were pre-
dicted to have functional effects at a SNAP2-score ≥+50 (Fig. 1A, upper panel 60KE purple line with triangle 
markers intersecting the blue vertical dashed line of score = +50). This threshold corresponds to an estimated 
accuracy of 85% (red line in Fig. 1B). On the other hand, SNAP2 predicted 100 − 77 = 23% of the 60KE SAVs as 
clearly neutral (Fig. 1A leftmost blue vertical dashed line of score −42) at an expected accuracy of 85% (Fig. 1B).

Another extreme point was SNAP2-score >+75 (Fig. 1, rightmost blue vertical dashed line): if we considered 
only SAVs predicted above this effect level, we would capture half of the OMIM SAVs (Fig. 1A, orange line with 
circular markers; Fig. 1B, 88% accuracy). For the same threshold about 1/15th of all 60KE SAVs (496,854) were 
predicted to have an effect. Loosely put, one of every 15 SAVs in healthy individuals is predicted to have as strong 
an effect as the top 50% of known disease variants. Note that the OMIM SAVs were predicted by a version of 
SNAP2 that was not trained on any OMIM or HumVar SAVs (Methods). Another SNAP2 version, that did use 
such disease-related SAVs, predicted a much stronger effect (Supplementary Fig. S1).

SNAP2 has been evaluated in comprehensive cross-validation tests. However, the performance estimates pro-
vided here (Fig. 1B) depend crucially on what data is included in the assessment (they are higher when using 
OMIM-type SAVs and lower when using the small subset of experimental-only neutrals). The error estimates in 
performance curves for the 60KE data (Fig. 1A upward pointing triangles) were obtained by boot-strapping14, 
i.e. by testing how the results depend upon changes in the data set. Note that for all 60KE data these error esti-
mates were visually indistinguishable from the curves shown (at a 99.7% confidence interval, i.e. SNAP2-score 
±3 standard error of mean: denisovan: ±8.46, chimp: ±0.45, 60k all: ±0.06, 60KE common: ±0.80, 60KE rare: 
±0.06).

For our previous method SNAP1, we have shown6, 15 that the SNAP-score correlates with effect strength, e.g. 
SAVs predicted closer to +100 tend to have stronger impact on molecular function than SAVs predicted closer 
to +50. Here, we confirmed the same for SNAP2 (Fig. 2). SNAP2 was trained on PMD variants, but never with 
fine-grained classification by degree of effect; instead SNAP2 was trained to classify binary labels (effect/neutral). 
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Hence, the observed difference between mild, moderate, and severe could not have originated from SNAP2 train-
ing other than through the simple fact that stronger effects yield more consistent data and therefore effect strength 
is captured by the method. This correlation was exactly what we wanted to show.

Cross-species variants predicted with less effect than variation within human.  We analyzed all 
amino acid differences between human proteins and their homologs in other species (“cross-species variation”). 
For simplicity, we referred to those variants as to SAVs. There is an important caveat for the comparison between 
60KE and cross-species SAVs. With the 60KE set we compared a population using essentially the same gene pool 
(pairs of people differ by few SAVs spread across their ~20 K proteins). In contrast, the cross-species comparison 
had to be limited to subsets of corresponding proteins. The size of this subset is inversely proportional to the 

Figure 1.  60KE SAVs predicted to have more effect than cross-species variants. SNAP2 predicts the effect of 
single amino acid sequence variants (SAVs) upon protein function: the higher the score, the more reliable the 
prediction (horizontal x-axis, toward right); the more negative, the stronger the prediction that the variant is 
neutral (horizontal x-axis, toward left). The top panel (A) gives cumulative percentages, i.e. the percentage of 
SAVs in a data set predicted above a certain value, e.g. for SNAP2-score ≥+75, about 6% of all 60KE SAVs are 
predicted to have an effect; at the same threshold about half of all disease-causing SAVs are predicted to affect 
function. For 60KE, denisova and chimp, 99.7% confidence intervals (SNAP2-score ±3 standard error of mean) 
are indicated by dotted lines (indistinguishable for 60KE, barely distinguishable for chimp, clearly visible for 
denisova). Lower panel (B) gives cumulative accuracy (red: effect-SAVs correctly predicted to have effects, 
green: neutral-SAVs correctly predicted); here the values accumulate from the extremes to 0, i.e. left-to-right for 
neutral (green −100 to 0) and right-to-left for effect (red +100 to 0); estimates from cross-validation using only 
molecular function21. For instance, at SNAP2-scores ≥+75 about 88% of all effect-SAVs are correctly predicted. 
On the other hand, variations between homologs in human and other species (human-denisova, human-chimp, 
human-mouse, and human-fly) were predicted to be much more neutral (all curves shifted toward lower left 
corner of neutral variants).
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evolutionary distance; i.e. fewer proteins for more distantly related organisms. To simplify: 60KE compared few 
SAVs in all proteins, while cross-species compared many SAVs in a few proteins.

We began with the extinct hominid Denisova hominin. In all orthologs, we considered the effect of substituting 
a Denisova amino acid that was introduced into the corresponding human protein back to the human reference 
amino acid. When using all available orthologs, the SNAP2 predictions for the human-denisovan cross-species 
SAVs were moved toward “less effect”, i.e. a lower fraction of SAVs was predicted with effect for human-denisovan 
than for the 60KE-set (Fig. 1A, human-denisovan below 60KE). This implied that sequence variants that became 
fixed in the modern human population were more neutral, on average, than the SAVs within the living human 
population (60KE). The strength of this shift depended on the SNAP2-score: the numeric difference was highest 
thresholds of 0 and the relative difference was highest around thresholds of +50 (Fig. 1A). The shift between 
60KE and cross-species SAVs was increased with species divergence (Fig. 1A: curves shifted toward the lower 
left implying less effect for chimp, mouse, and fly). Note that any overlap with SNAP2 training data was excluded 
from this study (Supplementary Note).

Next we addressed the problem of different “gene pools” (sets of proteins) for the comparison within human 
and between human and other species. Toward this end, we restricted our analysis to subsets of identical pro-
teins, i.e. by restricting the SAVs to the subset of orthologs that were common to human, chimp, and mouse. The 
subset was restricted further by the constraint that 1KG SAVs be also observed in the same protein. The resulting 
curves were shifted toward “less effect” (curves higher in Fig. 1A than in Fig. 3); the standard errors of the mean 
increased only slightly (human: from 0.10 to 0.14; chimp: from 0.16 to 0.22; mouse: no change). However, the 

Figure 2.  Higher SNAP2-scores imply stronger effect upon molecular function. We classified SAVs from the 
Protein Mutant Database (PMD) according to their impact upon molecular protein function into three classes 
(mild, moderate, and severe). Here, we repeat this analysis applying SNAP2 to the subset of human SAVs in 
PMD. We show density distributions, instead of cumulative. Although the three curves overlap, the shift is 
significant and consistent (black curve with most effect highest shift to right, orange curve with weakest shift 
most to the left). Thus, the SNAP2-score correlated with the strength of the effect upon molecular function.
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major characteristics of the curve shifts were not altered by the constraint to the subsets (Fig. 3: 1KG curve high-
est, higher evolutionary distance corresponds to lower curves). For less restrictive sets of orthologs, we observed 
similar trends (Supplementary Fig. S3).

Common 60KE SAVs predicted with more effect than rare SAVs.  Rare SAVs (allele frequency 
[LDAF] < 1%) dominate the set of unique SAVs in the 60KE data (7,530,337, i.e. 99.1% of all SAVs) and therefore 
dominate the overall analysis. If our objective were to assess the per-person effect instead of the per-SAV effect, we 
could have removed this bias by counting each SAV exactly once, i.e. by letting SAVs observed in ten individuals 
count ten-times more than those observed only once.

Figure 3.  Subsets of “house-keeping” proteins confirmed findings for entire proteomes. We reduced the 
analysis to SAVs from subsets of orthologs between three organisms (human, chimp, mouse), and with SAVs 
observed in the 1KG data. For brevity, we referred to those as to “house-keeping” proteins. With respect to the 
observation for the entire data set (Fig. 1), the curves shifted less strongly, but the main trend remained: a higher 
fraction of the SAVs in cross-species comparison (human-chimp and human-mouse) was predicted as neutral 
than for the SAVs between healthy individuals (1KG). Furthermore, the shift between cross-species and 1KG 
was higher for larger evolutionary distances (more neutral for larger distance).

SAV set SNAP2* CADD PolyPhen-2 SIFT

effect/all

common 61% 19% 18% 19%

rare 50% 50% 42% 40%

all 51% 46% 39% 47%

neutral/all

common 39% 81% 82% 81%

rare 50% 50% 58% 60%

all 49% 54% 61% 63%

Table 1.  Similar ratios of neutral/effect predicted by four methods for 1KG SAVs*. *Data sets: Rare 
SAVs (LDAF < 0.01): all methods agreed within ten percentage points on the ratio; common SAVs 
(LDAF ≥ 0.05); the values for “all” also included uncommon SAVs (0.01 ≤ LDAF < 0.05). Methods: SNAP2* 
implies error-corrected estimates for SNAP2 (below). The four methods compared here have different 
aims and use different thresholds. Here, we applied defaults to simplify the comparison and interpreted 
predictions as binary (effect/neutral) according to those thresholds. In particular, we chose the following 
thresholds. Effect: SNAP2-score > 0, CADDv1.3 raw score > 3, PolyPhen-2 = probably or possibly damaging, 
SIFT = deleterious; neutral: SNAP2-score ≤ 0, CADDv1.3 raw score ≤ 3, PolyPhen-2 = benign, SIFT = tolerated. 
SNAP2* error correction: Values for SNAP2 were corrected for false positives and false negatives (e.g. 
Neff* = Neff(raw) − FPR(Neff(raw)) + FNR(Nneu(raw)). Error correction lowered the estimates for common 
effect and increased that for rare effect.
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We might expect rare SAVs to sample the space of all possible SAVs. We investigated this through two sets 
of random SAVs introduced in silico into human proteins. One random set contained SAVs replacing the native 
amino acid by one of the 19 non-native amino acids. The other set was restricted to SNV-possible SAVs, i.e. amino 
acid substitutions that can be reached by a single nucleotide change (SNV; the set SNV-possible constitutes a 
subset of 19-non-native). SNAP2 predicted the 19-non-native SAVs to have slightly but significantly (two-sample 
Kolmogorov-Smirnov, KS, test: D = 0.068; n,n’ = 268,115; p-value < 2.2e-16) higher effects than SNV-possible 
SAVs (Supplementary Fig. S2).

One important aspect in the shift from the analysis of rare SAVs for 1000 people (1KG) to that for 60,000 
people (60KE) was that the effect predicted for these variants by SNAP2 was very similar to the effect predicted 
for the random subset of SNV-possible SAVs (Fig. 4: solid blue line “60KE rare” much closer to gray random than 
dashed blue line “1KG rare”). The differences between the curves were small in absolute terms but statistically 
very significant (two-sample KS test, D = 0.033; nrare = 7,530,277, nrandom = 268,115; p-value < 2.2e-16).

SNAP2 predicted a similar fraction of rare SAVs (LDAF < 1%: 209,928 variants, i.e. 81% of all 1KG) to have 
an effect as did PolyPhen-216, CADD17, and SIFT18 (Table 1; range from 40–50%). This statement comes with 
the caveat that the binary classification requires the introduction of a threshold (effect/neutral) that may not 
be appropriate for a particular tool. For instance, for CADD, and to a large extent for SNAP2, the particular 

SNAP2 CADD PolyPhen-2 SIFT

SNAP2 0.36 ± 6.8*10−3 0.31 ± 6.9*10−3 0.41 ± 6.6*10−3

CADD 0.57 ± 1.8*10−3 0.70 ± 5.2*10−3 0.63 ± 5.7*10−3

PolyPhen-2 0.53 ± 1.9*10−3 0.77 ± 1.6*10−3 0.47 ± 6.4*10−3

SIFT 0.57 ± 1.8*10−3 0.65 ± 1.7*10−3 0.49 ± 1.9*10−3

Table 2.  Predictions more correlated for rare than for common 1KG SAVs*. *Pearson correlation coefficients 
above the diagonal show the agreement for common 1KG SAVs, those below the diagonal for rare 1KG SAVs. 
Correlation values were calculated using the predicted raw scores of SAVs for which predictions were available 
for each method. The correlation in predictions between the four methods was higher for all pairs below the 
diagonal, i.e. for rare SAVs. Standard error of r: SEr = sqrt((1 − r2)/(n − 2)); ncommon = 18,876; nrare = 209,928.

Figure 4.  Common SAVs predicted with more effect than rare SAVs. We grouped SAVs by their observed 
frequency in 1KG and 60KE exome data: rare (LDAF < 1%: dark blue triangles), uncommon (1% ≤ LDAF < 5%: 
not displayed), and common (LDAF ≥ 5%: black squares). The potential mutational background for human 
was estimated by randomly selecting a set of SNV-possible SAVs (gray circles). The curves for rare SAVs were 
similar to the results for all SAVs (Fig. 1, purple triangles for 60KE) since counting only unique SAVs the results 
were dominated by rare SAVs. Rare SAVs were predicted below randomly chosen SNV-possible SAVs, although 
the recent 60KE set came close to random. In contrast, the set of common SAVs remained substantially above 
the random curve for both common-1KG and common-60KE (Kolmogorv-Smirnov, estimated p-value < 2.2e-
16 in both cases).
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threshold used depends on the data set and the question being asked. Overall, the predictions for rare SAVs also 
correlated pairwise between SNAP2, PolyPhen-2, CADD, and SIFT (Table 2, Fig. 5: below diagonal: correlations 
from 0.49–0.77). However, the set of rare SAVs for which all four methods predicted an effect was around 28% 
(data not shown), i.e. the methods correlated on average, but differed in detail in the trends captured.

PolyPhen-2, CADD and SIFT also largely agreed in their classifications for the overall amount of effect/neu-
tral for common SAVs (LDAF ≥ 5%: 18,876 variants, i.e. 7% of all 1KG, Fig. 5: above diagonal, agreeing pre-
dictions in lower left and upper right quadrants). In contrast SNAP2 predicted larger fractions of the common 
than of the rare SAVs to have an effect, i.e. SNAP2, on average, predicted stronger effects for common than for 
rare SAVs (Fig. 4: common moved toward upper right, i.e. more effect). The shift could also be expressed by 

Figure 5.  Methods correlated more for rare than for common 1KG SAVs. Each plot shows the correlation 
of functional effect scores between one pair of prediction methods for two samples of 1,000 rare and 1,000 
common SAVs from 1KG. Results for common SAVs are shown above diagonal, those for rare SAVs are given 
below the diagonal. With the order of the plots being 1 = SNAP2, 2 = CADD, 3 = PolyPhen-2, and 4 = SIFT, 
this implied that the plot corresponding to matrix element Pmn compared common SAVs between methods 
m and n (above diagonal), and the element Pnm rare SAVs between those two (below diagonal). For instance, 
row = 1/column = 2 gave the correlation between SNAP2 and CADD for common SAVs, while the transposed 
element row = 2/column = 1 correlated rare SAVs for SNAP2 and CADD. Each point represents a pair of scores 
for a single SAV, e.g. from SNAP2 and CADD. The predicted score for SIFT has been inverted (1-SIFT) to ease 
the comparisons. The shape and color reflect the overall method agreement. We use the following code: black 
squares mark SAVs for which all four methods agree on the binary classification. Blue circles mark SAVs for 
which all methods but SNAP2 agree; orange triangles mark all other points. The Pearson Correlation Coefficient 
for all 1,000 SAVs was added above each plot, along with the corresponding value for the full set of all SAVs (in 
brackets, as in Table 2).
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calculating the “effect AUC” of the density distribution for SNAP2 scores, i.e. the Area-Under-the-Curve (AUC) 
from 0 ≤ SNAP2-score ≤ 100: AUC = 0.61 for common and AUC = 0.48 for rare SAVs (Supplementary Fig. S4). 
Another example highlighting the difference between common and rare SAVs: over 12% of the common, as 
opposed to fewer than 6% of the rare, SAVs were predicted to affect function as strongly (same SNAP2-score) as 
50% of the strongest OMIM SAVs (Fig. 1 OMIM).

SAVs with effects not distributed randomly.  We investigated whether or not SAVs predicted with 
strong effect (SNAP2-score >50) were randomly distributed through two analyses: simple statistical enrichment 
and the enrichment of sub-cellular localization.

Firstly, we investigated the distribution of common SAVs per protein. For about 18k proteins the 60KE data set 
annotated rare and common SAVs in the same protein. For 1,254 of those there was more than one common SAV 
and SNAP2 strongly predicted over 50% of the common SAVs to have effect (SNAP2-score >50). An analogous 
filter on the rare SAVs (≥2 rare SAVs in same protein + ≥50% of rare SAVs at SNAP2-score >50) led to only 304 
out of 18k proteins. Furthermore, nine proteins (ENSP00000363436, ENSP00000369568, ENSP00000408146, 
ENSP00000337397, ENSP00000363433, ENSP00000353078, ENSP00000415517, ENSP00000310338, 
ENSP00000413079) display ten or more common variants, and more than 50% have a SNAP2-score >50. All 
those nine proteins contain more rare variants with SNAP2-score ≤50 than with SNAP2-score >50.

Secondly, we predicted the sub-cellular localization for all proteins with LocTree319 (given the many anno-
tations available for human proteins, most predictions were based on homolog-inference). Of all the proteins 
with SAVs, ~28% were predicted to be nuclear and about ~23% as secreted or cell membrane. We compared 
these numbers to different ways of scanning for proteins enriched in effect predictions. For the subset of 
all proteins with at least 50% of their residue positions observed as a SAV, and 50% of those predicted with 
SNAP2-score >50, 17% were nuclear (reduction to 60% of expected) and 40% secreted or cell membrane (1.7 fold 
over-representation over expected. We found a similar over-representation of “secreted + cell membrane” in pro-
teins with many effect SAVs when looking at the subset of all proteins with at least 4 common SAVs for which at 
least 30% were predicted at SNAP2-score >50 (value of 30% guided by the average expected at that SNAP2-score, 
cf. Fig. 4-common). About 44% of those proteins were predicted as secreted or cell membrane, i.e. 1.9 times more 
than expected. Finally, only 29 proteins were so enriched in common SAVs that 10% of all residues had common 
SAV. LocTree3 predicted 21 to be secreted.

Discussion
Prediction distributions are different for sets of SAVs.  We analyzed sets of SAVs that were predicted 
to have effect or not. To estimate the number of expected mistakes, we have to provide extensive performance 
evaluations of our method. Instead, of these approximations we compared distributions of different sets of SAVs 
and their predicted effects. Even with relatively high rates of errors, methods can set such distributions reliably 
apart as long as their mistakes are not systematic with respect to the results. Below we argue that such systematic 
bias explains the differential results for prediction methods with respect to human SAVs that are common and 
rare. For instance, if we measured the height of women in Greece and Germany, we might find out that they differ 
by barely 2 cm, while the standard deviation for the measures are 5-times this difference. Despite the considerable 
standard deviation, we can easily distinguish between two countries of millions of individuals. The same is true 
for the differences between the distributions for the prediction of SAV effects.

Cross-species vs. 1KG and 60KE: changes from a point frozen in time.  The cross-species “SAVs” 
appear to be describing something very different from the SAVs in the contemporary human population 
(1KG/60KE sets). Our analysis, nevertheless, assessed the effects of sequence variation in the same way. Our first 
results (Fig. 1A) compared orthologous proteins between human and other species; i.e. each curve was based 
upon a different set of proteins–the subset of proteins orthologous between human and the other species. We 
chose these comparisons because using the subset of proteins common to all species is so small that is clearly not 
representative of all proteins, a set that we might refer to as the “house keeping” proteins. Any results obtained 
exclusively for these specially selected proteins might be biased. Surprisingly, the conclusions did not change 
between taking “all orthologs” and restricting the analysis to “house keeping” genes (Fig. 3 dashed vs. solid lines). 
In fact, by filtering the data differently, we could even confirm the major trends to a level as far diverged as 
human-fly (Supplementary Fig. S3).

How can SAVs between people affect function more than those between species? We compared SAVs within 
a dynamic, evolving population (human) with SAVs that describe a speciation event, i.e. were frozen in time. At 
speciation, SAV effects between descendants likely randomly sampled the 1KG data. Thereafter, each protein 
carrying a “speciation SAV” had two possible fates. Either, the protein has drifted away in sequence and function 
to an extent that it has not been considered in our comparison of evolutionarily related proteins (orthologs). Or, 
it has maintained function by constraining variation to neutral SAVs. Thus, inter-species SAVs might appear to 
be more neutral with increasing evolutionary distance due to the process of removing proteins with too many 
effect SAVs from the comparison. Indeed, the subset of “house-keeping” proteins differed substantially in their 
effect from all proteins (difference between dashed and solid lines in Fig. 3 and Supplementary Fig. S3). However, 
the reported effect that 1KG SAVs were predicted, on average, with more effect than cross-species SAVs was valid 
both for only “house keeping” and for “all proteins”. This signal could therefore neither be explained by data bias 
nor by data inconsistencies.

Will all possible SAVs be observed?  Not all possible SAVs have been observed in healthy people3: some 
may be lethal and prevent the carrier from being sequenced; others might prevent development in much earlier 
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stages, even long before birth. Will we observe all remaining ones? Our in silico mutagenesis experiment ran-
domly sampled impact predictions for every possible SAV (19-non-native Supplementary Fig. S2) and every 
SNV-possible SAV (SNV-possible in Supplementary Fig. S2). This enabled us to gauge the expected effect of 
random variation in comparison to those observed in 1KG. We noted small but significant differences between 
what has been observed between healthy people and a random subset (Supplementary Fig. S2). This implied that 
the SAVs observed in 1KG were NOT random subsets of all possible SAVs. This in turn enabled the estimation of 
what to expect from observing SAVs for a larger population.

When we analyzed the data for the 60KE set, we confirmed the above observation; namely that the score dis-
tributions for rare SAVs approached random (SNV-possible, Fig. 4). Although the difference between random 
and rare became smaller, it remained significant (p-value < 2.2e-16). There will always be a difference between 
what can be observed and what can be simulated: some SAVs will simply be “too fatal” to observe20. With the 
60KE curve for rare SAVs so close to random, did this imply that such an effect was relatively minor, i.e. that very 
few SAVs are that deadly? Answers remain speculative. One problem lies in the scale of the numbers: even if thou-
sands of SAVs were deadly, their effect could easily be overshadowed by >7 million SAV set size.

Common SAVs affect function more than rare SAVs?.  Many colleagues who we have confronted 
with our data had expected the predictions for rare SAVs (observed in <1% of population) to be moved toward 
“more effect” (moved toward right in Fig. 4) than those for common SAVs (observed in >5% of the popula-
tion). Predictions from CADD, PolyPhen-2, and SIFT confirmed this expectation (Supplementary Fig. S5), while 
SNAP2 predicted the opposite, i.e. predictions for common SAVs were shifted toward “more effect” than for rare 
SAVs (Fig. 5). We also established that SNAP2 on the one hand and CADD, PolyPhen-2, and SIFT on the other 
hand largely agreed on the fraction of effect/neutral predictions for rare SAVs (Tables 1 and 2). Although all four 
methods agreed for only about half of effect predictions for the rare SAVs, two-method correlations were fairly 
high for rare SAVs (Table 2, lower diagonal).

Could SNAP2 predictions be wrong more often when they disagree with three other methods that agree with 
each other? First off: CADD, Polyphen-2 and SIFT agreed with each other more for rare than for common SAVs 
(Table 2, values higher on lower than on upper diagonal). Thus, the view of “three over one” is not fully supported 
by the details.

The extreme hypothesis is that for the majority of common SAVs for which SNAP2 predicts more effect 
than the other methods, SNAP2 is wrong. We have published two findings that clearly refuted this hypothe-
sis for two of the methods (PolyPhen-2 and SIFT). Firstly, all three methods performed significantly worse for 
difficult-to-predict SAVs. Secondly, for a subset of human SAVs that had been used to train PolyPhen-2 and 
was biased by a predominance of effect, SNAP2 still predicted much better than SIFT (Q2-SNAP2 = 58% vs. 
Q2-SIFT = 44%) and on par with PolyPhen-2 although the latter had the advantage over SNAP2 of having been 
optimized on these data21. Although these results suggest that SNAP2 was right for most of the SAVs for which it’s 
prediction differed from the others, SNAP2 might still systematically mis-predict common SAVs.

Could details in methods development result in systematic mistakes for common SAVs? SNAP2 was devel-
oped predominantly on rare SAVs. More explicitly, of all the SAVs trained to have effect, about one quarter were 
OMIM-like, i.e. resembled rare SAVs. Thus, SNAP2 is likely biased towards predicting rare SAVs as having more 
effect than common. Correcting for this bias, we expect the “true” common curve to be moved even more to 
the right (towards more effect). In contrast, PolyPhen-2, CADD, and SIFT have been built using principles that 
might explain the bias toward “SAVs common to a population neutral”. PolyPhen-2 was optimized to differentiate 
between monogenic disease-causing SAVs (rare by definition) and variation between orthologs. This implies that 
the machine learning may have enforced a much more substantial and explicit bias toward “rare have effect” by 
teaching “100% of the effect is rare”, as opposed to “25%” for SNAP2. CADD implicitly shares some of this bias 
as it optimizes the separation between simulated variants and variants that differentiate orthologs. The simulated 
variants, by definition, are not observed, most likely because they cause disease or are even lethal, i.e. impact the 
whole organism. SIFT is built upon a similar idea, namely that SAVs conserved throughout evolution are likely 
to be neutral, suggesting that common effect are systematically unlikely to be captured by this method. While 
SNAP2 also uses conservation, many of the SAVs used for training SNAP2 effect were not conserved; conversely, 
many SAVs used to train neutral were conserved. Thus, the neural networks underlying SNAP2 might have put 
SNAP2 into the unique position of correctly spotting SAVs that are conserved, yet might affect function21.

The differences in bias in the training data between SNAP2/SNAP1 on the one side and between PolyPhen-2, 
CADD, and SIFT on the other side might explain why common SAVs were predicted so differently. A related 
explanation pertained to different objectives. SNAP aims at predicting the effect of SAVs upon protein function; 
most training data measures molecular function rather than biological process. In contrast, PolyPhen-2, CADD, 
and SIFT, have been optimized with a more focused view upon pathogenicity for an organism. SNAP2 might 
correctly identify trends in the changes of molecular function because it avoids labeling variants in the context of 
the pressure exerted upon the organism.

SNAP2 cannot distinguish between SAVs that help and those that hurt the organism15. Although common 
variants might affect molecular function significantly, as suggested by SNAP2, they are unlikely to cause severe 
diseases, as illustrated by the predictions of PolyPhen-2 and CADD, since such extreme functional disruptions 
are unlikely to spread in a population. Nevertheless, SNAP2, CADD, PolyPhen-2, and SIFT predicted similar 
ratios for neutral/effect for rare SAVs and are fairly correlated for those (Tables 1 and 2). The big disparity that 
flips the prediction from “common less effect” to “rare less effect” between SNAP2 and the others is based only 
on the common SAVs.

An alternative way to explain the difference between SNAP and the other three (CADD, PolyPhen-2 and 
SIFT) is the following hypothesis. (1) All methods might capture the effects of monogenic-disease causing SAVs 
of the OMIM-type equally well, and therefore agree in their predictions for rare SAVs. (2) Effects for common 
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SAVs are less likely to impact the organism although they might strongly affect molecular function, and SNAP2 
might be the best of the four methods in capturing such effects upon molecular function.

To prove this hypothesis, we have to show that many common SAVs have effects and have never been used 
by any of the methods for training. Unfortunately, there is no experimental data available to support or refute 
this point. However, recent deep-scanning experiments might at least show trends as to which method is best 
at capturing effects upon molecular function. In one case study, we compared the correlation between CADD 
and SNAP for one particular protein22 (BRCA1 in Supplementary Fig. S6). Hopf et al. have recently analyzed 
the performance of prediction methods for several deep-scanning experimental data sets23, 24. This analysis con-
firmed the trends that we observed: SNAP2 captured effects upon molecular function better than the other three 
methods. Incidentally, those analyses also suggested that the low-throughput experiments previously used to 
develop and assess prediction methods might over-estimate performance, at least if taking high-throughput 
deep-scanning experiments as a better proxy for reality. Thus, while many SNAP2 predictions might be wrong, 
all analyses converge upon the explanation that SNAP2 captures the effect of common SAVs upon molecular 
function better than CADD, PolyPhen-2, or SIFT. If so, the SNAP2 predictions discovered an unexpected reality, 
namely that common SAVs have, on average, more effect upon molecular function than rare SAVs. Common 
SAVs, in fact, might be relatively enriched through evolutionary selection as those that affect molecular function 
in a way that might help to drive the evolution of the species.

Conclusion
Our results are compatible with the distinction of two types of Single Amino acid Variants (SAVs). (1) Point 
punches, i.e. genetic alterations leading to large molecular changes that significantly diversify proteins and molec-
ular pathways of individuals. (2) Additive small effects, i.e. near-neutral variants in many genes whose cumula-
tive interplay is responsible for the impact upon pathway-wide molecular functionality. In this view, isolated 
strong-effect SAVs usually do not drive speciation. Within the individuals of one species, however, many of the 
common variants strongly impact protein function for better or worse (gain- vs. loss-of-function). Together, 
these findings might imply that common SAVs are unlikely to drive speciation. How much variation is benefi-
cial to the individual and how much is necessary for the survival of the species? To answer this conundrum, we 
need better experimental and computational tools that distinguish the directionality of change and bridge from 
the micro-molecular view of single sequence variants to the macro-systems view of phenotypic impact for the 
organism.

We also observed that although in silico methods often agree in the effects they predict for SAVs, their dif-
ferences are substantial enough to completely invert predicted trends as extreme as from “common SAVs have 
more effect” to “rare SAVs have more effect”. We argued that such crucial differences originated from the way the 
methods were trained, and that SNAP2 picked up a crucial aspect of molecular function that were missed by oth-
ers. While it remains unclear how the impact of SAVs upon molecular function translates to the impact upon the 
organism, the inference from the micro- to the macro-level will remain obfuscated. Specialized in silico methods 
combined with experimental deep scanning might bring about more clarity in the future. Until then, we remain 
with very surprising findings for the impact of sequence variation upon molecular function.

Methods
Data variants (SAVs).  Our work focused entirely on sequence variants that alter a single amino acid in the 
protein. We referred to those as SAV (single amino acid variant; abbreviations found in the literature for the same 
include: nsSNV, nsSNP, and SAAV). We analyzed the following subsets separately.

OMIM.  Set of disease-causing variants reported in OMIM4 as extracted from SNPdbe25. SNAP2 scores were 
calculated for 5,661 SAVs in 1,547 unique protein sequences. The scores reported for OMIM in all figures were 
calculated with a special version of SNAP2 trained without using OMIM and HumVar16 SAVs. Additionally, we 
generated a second set of SNAP2-scores for the above mentioned 5,611 OMIM SAVs through cross-validation. 
For this purpose, we retrained SNAP2 on the full training set (including OMIM and HumVar SVAs) holding out 
a small subset of OMIM SAVs as test-set in each iteration of the cross-validation (Supplementary Fig. S1).

60KE.  SAVs reported by the Exome Aggregation Consortium (ExAC) at the Broad Institute reporting SAVs 
for 60,706 exomes3. We extracted all SAVs from ExAC release 0.3.1 labeled as ‘missense_variant’ and ‘SNV’ in 
the ‘CSQ’ information field. The resulting total was 10,474,468 SAVs; for 7,599,572 of these SNAP2 could pre-
dict the impact on molecular function. 40,446 were classified as common (LDAF ≥ 0.05), 28,789 as uncommon 
(0.01 ≤ LDAF < 0.05), and 7,530,337 as rare (LDAF < 0.01).

1KG.  SAVs in human reported by the 1000 Genomes Project12, 13. In particular, we included SAVs labeled as 
NON_SYNONYMOUS retrieved from the CADDv1.3 dataset17. 1KG variation in CADDv1.3 is based on 1000 
Genomes Project Phase1 release v3.20101123. This set contained 292,848 variants, of which SNAP2 scores could 
be obtained for 268,115 SAVs (91.6%) in 19,696 sequence-unique proteins. Almost all missing SNAP2 predic-
tions originated from problems with the underlying SIFT runs. Less than 1% of the SAVs were not predicted due 
to the SNAP2 limitation to exclude proteins with over 6,000 residues. Out of the 268,115 variants 20,352 were 
classified as common (LDAF ≥ 0.05), 30,543 SAVs as uncommon (0.01 ≤ LDAF < 0.05), and 217,220 variants as 
rare (LDAF < 0.01).

Inter-species orthologs.  Orthologs were extracted from ENSEMBL Genes 73 entries (release Sep. 2013) using 
the Biomart26 interface. To determine homology, ENSEMBL uses EnsemblCompara GeneTrees27. Pairs of human 
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proteins (hg19) and other species’ orthologous proteins were aligned using the Needleman-Wunsch EMBOSS 
implementation28 with default parameters (BLOSUM 62, gap open = 10, gap extend = 0.5). All alignments with 
PIDE < 70% (excluding gaps) were discarded. For all remaining pairs of aligned proteins, every amino acid vari-
ant was considered a SAV. Each SAV was evaluated in the context of the non-human sequence such that the resi-
due position with a difference was mutated to the human amino acid. For multiple orthologs of the same protein 
(e.g. FoxP in Fly to FoxP1/2/3 and 4 in human) the highest ungapped sequence identity alignment was chosen to 
extract the SAVs. We avoided bias by excluding all variants that were used for SNAP2 training. The numbers of 
SAVs in resulting sets were as follows: chimp – 95,624 SAVs in 14,361 proteins; mouse – 379,795 SAVs in 12,616 
proteins; fly – 16,403 SAVs in 364 proteins.

“House-keeping”.  This was a subset of all proteins that were considered as orthologs in cross-species compari-
sons (human-X). For the main figure (Fig. 3), we compared predictions for human-chimp variants, human-mouse 
variants and 1KG SAVs to the subset of variants from orthologs common to all species. Additionally, we further 
restricted the comparison to proteins for which SAVs were available in all three orthologs of the protein in three 
species (e.g. excluding cases for which human-chimp had no SAVs between protein Xhuman and Xchimp, while 
human-mouse had SAVs between proteins Xhuman and Xmouse). Number of SAVs in resulting sets: human–133,500 
SAVs in 8,535 proteins; chimp 46,288 in 8,147 proteins; mouse 309,516 SAVs in 8,235 proteins.

Denisovan.  Amino acid differences between Homo sapiens and Denisova hominin were extracted from the data 
published by the groups of Svante Pääbo and Janet Kelso29. In our implementation, the denisovan amino acid 
(ancestor) was introduced into the corresponding position in the human protein and then mutated back to the 
human reference. For example, if the human sequence Xp contained amino acid L at position 42 and the corre-
sponding denisovan residue was V, we created a protein sequence Xp’, equivalent to Xp except for V at position 
42. For simplicity, we referred to these variants as SAVs because technically they originated from the same “edit 
procedure”, i.e. the change of a single amino acid. We then predicted the effect of the Xp’ SAV V42L. This set con-
tained 236 SAVs in 292 proteins.

Random.  We created two ‘random’ sets of human SAVs. Both sets are a random sample (n = 268,511) of two 
‘supersets’: (1) all 19-non-native SAVs; (2) all SNV-possible SAVs, i.e. SAVs that can be reached by mutating one 
single nucleotide, which is in turn a subset of (1). The size of the random sample was chosen to be 268,511 to be 
in line with the size of the 1KG SAV set.

Methods
Effect scores for SAVs in all sets were computed using SNAP221, an improved version of SNAP115. SNAP2 uses 
a protein sequence and a list of SAVs as input to predict the effect of each substitution on the protein molecular 
function. The prediction scores range from −100 for fully neutral to +100 for strong effect. In its original form, 
SNAP scores served only as reliability index, where the confidence that the assigned class (neutral/effect) for a 
specific mutation is higher for SNAP scores closer to the −100 and +100 maxima. However, the score also cor-
relates clearly with the severity of the effect15, i.e. scores slightly above 0 are not as severe as those closer to +100. 
Interestingly, for mis-predicted neutral SAVs (i.e. SAVs with known effect, incorrectly predicted as neutral), the 
scores closer to 0 indicate higher than for those scoring closer to −100. For all SAVs in all sets, SNAP2 scores 
were computed.

For a binary projection (effect/neutral), SNAP learned to optimize the experimental annotations such that 
SNAP2-score ≤0 implied neutral and SNAP2-score >0 implied effect. The experimental evidence for effect is 
much more reliable than evidence for neutral. Therefore, the point that optimally fits the known data might not 
describe reality best21. This discrepancy calls for introducing additional thresholds for the binary distinction 
effect/neutral. All of those are arbitrary, i.e. are meaningful only to highlight trends. The raw data is the full spec-
trum of the prediction (−100 to +100). Therefore, we showed this full spectrum in all figures.

To simplify the communication of trends, we defined three example thresholds for SNAP2 in addition to the 
default of 0: (1) SNAP2-score ≤−42 (below this point we expect 85% of all predictions to be correctly predicted 
as neutral, Fig. 1– lower panel), (2) SNAP2-score ≥+50 (above this point we expect 85% of all predictions to be 
correctly predicted as effect, Fig. 1– lower panel), (3) SNAP2-score ≥+75 (chosen because above this point 50% 
of all OMIM SAVs are correctly predicted; effect prediction accuracy of 88%). Accuracy values are based on the 
number of variants that are reported above (for effect) and below (for neutral) the respective thresholds, i.e. for 
the effect prediction accuracy at the threshold ≥+50 SAVs with predicted SNAP2-scores between +50 to +100 
were considered and are predicted correctly with an accuracy of 85%.

Other methods.  PolyPhen-216 measures the likelihood whether a SAV is pathogenic or benign based on 
family conservation and structural information. The method has been trained on disease-related SAVs from 
HumDiv and HumVar, and on SAVs between orthologs in human and mammal considered as neutral. SIFT18 
uses family conservation to measure the probability for a SAV to be deleterious or tolerated (as expected from 
alignment). CADD17 aims at distinguishing between “variants that survived natural selection” and simulated 
mutations. CADD has been trained on mutations between an inferred human-chimp common ancestor and the 
human reference genome (excluding common SAVs in 1KG; however, including those where the reference allele 
carries the ancestral variant and the derived 1KG allele occurs in more than 95% of the population). Simulated 
variants are created through a process of mutating nucleotides based on parameters extracted from the inferred 
human-chimp ancestor and sequence alignments between multiple primate species. Scores and classification for 

5 Common variants

78



www.nature.com/scientificreports/

1 2Scientific Reports | 7: 1608  | DOI:10.1038/s41598-017-01054-2

PolyPhen-2, CADD and SIFT were extracted from the CADDv1.3 data set. PolyPhen-2 effect scores were avail-
able for 260,039 SAVs (common: 19,272 - uncommon: 29,281 - rare: 211,486). CADD scores were available for 
all SAVs. SIFT scores were available for 264,565 SAVs (common: 19,704 - uncommon: 29,898 - rare: 214,963).

Estimated method performance.  SNAP215, 21 has been estimated to perform at a sustained positive accu-
racy (TP/(TP + FP)) 78% and a negative accuracy (TN/(TN + FN)) of 77% (at the default SNAP-score of 0, Fig. 1 
lower panel). Prediction accuracy rises with increasing thresholds (effect: toward SNAP-score +100 on the right 
in Fig. 1; neutral: toward SNAP-score −100 on the left). For the example thresholds SNAP2-score >+50 and 
SNAP2-score >+75 the accuracy of predicted functional effect increased to 85% and 88% respectively, whereas 
at SNAP2-score <−42 the expected accuracy for predicting neutral increased to 85%.

From molecular function to disease.  SNAP1 correctly predicted over 80% of the SAVs for which a monogenic 
disease (OMIM4) was known four years ago (1,105) at its default threshold25. For this work, we repeated this anal-
ysis with a fivefold larger set of monogenic disease-causing variants in OMIM (5,611) using a version of SNAP2 
that had not used OMIM-type of variants for training at all (Fig. 1 disease). In fact, for all versions of SNAP the 
OMIM SAVs that had not been used for method development were predicted at much higher average scores than 
variants in our training set21. The SNAP2-score primarily serves as a reliability index. However, we previously 
demonstrated6, 15 that effect strength also correlates well with the SNAP-score, e.g. more reliably predicted effect 
SAVs tend to have stronger effect.

Standard error estimates.  The standard errors of the mean were estimated by bootstrapping the 
SNAP2-scores of the respective datasets. The datasets were resampled with replacement a hundred times, calcu-
lating 100 means of the SNAP2-score distribution. Standard error was estimated as the standard deviation of the 
means.
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Material 
Fig. S1: 

 
 
Fig. S1: Training on disease-causing SAVs improves prediction for those. The 
curves refer to monogenic SAVs from OMIM directly implied in disease (c.f. Method 
section in main manuscript). Here, we compared two different SNAP2 versions: the first 
(dark red, circles) was trained using SAVs from OMIM and HumVar. Results were 
obtained through cross-validation, i.e. the SAVs shown here were not in proteins 
sequence-similar (HVAL>0 AND PSI-BLAST EVAL<10-3) to proteins used for training. In 
contrast, the SNAP2 version labeled “SNAP2 training w/o OMIM & HumVar” (orange, 
squares) never used any disease-impact SAV for training. The difference between the two 
versions of SNAP2 demonstrated how much training on disease-causing SAVs helps to 
predict (dark red much higher than orange). In turn this suggested that methods trained on 
features relevant to disease-causing SAVs capture different aspects than methods not 
using such SAVs. 
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Fig. S2: 

 
 
Fig. S2: 1KG SAVs differ from random SAVs. All curves show predictions from the 
standard SNAP2 version. We compared the predictions for all SAVs in the 1KG set of 
healthy people (blue curve, triangles) to random subsets of all possible SAVs that we 
could generate in silico. We have two options to realize “all possible”: replace all native 
amino acids at all residue positions by (1) all 19-non-native amino acids (“19-non-native”), 
and (2) all amino acid substitutions that can be reached by a single nucleotide variant 
(“SNV-possible”). We then selected a subset of these large data sets with the same 
number of SAVs as in the 1KG set. This gave the sets random-19-non-native (light gray, 
squares) and random-SNV-possible (dark gray, circles). Although the difference between 
all curves appeared to be minor, they were statistically significant. We tested the 
significance by the two-sample Kolmogorov-Smirnov (KS) test (1KG vs. SNV-possible, D = 
0.072; 1kg vs. 19-non-native, D = 0.141; 19-non-native vs. SNV-possible, D = 0.069; n,n’ = 
268115, estimated p-value < 2.2e-16 for all three KS-tests). Since the standard error of 
mean (SEM) for all three SNAP2 score distributions was < 0.5, error bars and confidence 
intervals were omitted. 
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Fig. S3: 

 
Fig. S3: Orthologs across four species same trend as entire proteomes. While Fig. 1 
in the main manuscript compares cross-species and 1KG SAVs for all proteins (and 
thereby compares different sets of proteins), and Fig. 2 compares a much smaller data set 
of orthologs shared between three organisms and 1KG, here we compiled results for SAVs 
that is less restrictive. The main restriction, that a protein used to extract SAVs has to have 
an ortholog in the other species still applies, however, we do not exclude proteins for 
which in one or more of the human-X inter-species comparisons do not yield SAVs. To 
give an example: The orthologous proteins Xhuman, Xchimp, Xmouse (and Xfly) are only 
considered for SAV extraction in Fig. 3 if all proteins contain SAVs. Here we include SAVs 
from those proteins into the analysis even if this does not hold up, e.g. Xchimp does not 
contain SAVs, when compared to Xhuman; on the other hand, Xmouse and Xfly do. This figure 
confirms the main trend: inter-species variants are shifted to the left (less effect) with 
respect to the 1KG SAVs between healthy people and the shift is higher the more 
divergent an organism from human (e.g. human-chimp shifted less to the right than 
human-fly).   
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Fig. S4: 

 
Fig. S4: SNAP2 predicts more common than rare SAVs to be effective. Displayed are 
the density curves of predicted SNAP2 scores for common (black) and rare (dark blue) 
1KG SAVs. Examining the area under the curve for effect scores (SNAP score >= 0, 
common shaded black vertical, rare shaded dark blue diagonally) of both curves it is 
clearly visible that SNAP predicts a larger fraction of common SAVs to be effective than 
rare SAVs (AUC 0.61 vs. 0.48). 
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Fig. S5: 

 
Fig. S5: CADD, PolyPhen-2 and SIFT predict a higher fraction of rare variants to be 
functionally effective than common variants. The cumulative percentages (read as Y% 
of SAVs are predicted to have higher score than X) for predicted SAVs across the range of 
scores for each method displayed a clear trend. CADD (A), PolyPhen-2 (B) and SIFT (C) 
predict rare variants (dark blue, triangles) to impact function of the protein more often than 
common variants (black, squares). This is in stark contrast to our predictions for common 
and rare SAVs by SNAP2 (D). 
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Fig. S6: 

 
 
Fig. S6: SNAP2 captured molecular function better than CADD for deep scanning 
BRCA1 dataset. The lower left panel showed the experimental score from an 
experimental deep scanning testing the impact of SAVs upon molecular function (xxbr: put 
in quote of experiment here). SNAP2 results marked by black disks; the SNAP2-scores on 
the left y-axis ranged from strongly predicted as neutral (-100, bottom of the y-axis) to 
strongly predicted as effect (+100, top of the y-axis). The yellow-brown triangles gave 
results for CADD; CADD-scores on the right y-axis of the left panel. Visually, it seems that 
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SNAP2 correlated much better with the experimental score than CADD. The lower right 
panel tried to simplify by projecting the raw experimental score upon a binary 
classification, i.e. effect (red x) vs. neutral (green +). Using any threshold for SNAP2 and 
CADD scores (defaults: effect: SNAP2-score>0 and CADD>3), SNAP2 captured the 
simplified experimental impact of sequence variation upon molecular function better than 
CADD. The upper panels explicitly compile the performance for SNAP2 (upper left panel; 
x-axis SNAP2-score) and CADD (upper right panel; x-axis CADD-score). The y-axis of the 
upper panels showed cumulative percentages (blue line: accuracy=correctly predicted as 
effect/all predicted as effect; red line: coverage=correctly predicted as effect/all observed 
as effect). For instance, while for about 20% of the most strongly predicted SAVs SNAP2 
reached over 80% accuracy (SNAP2-score>90: red curve ~20%, green curve ~80%), 
while CADD saturated at 20% accuracy for the same coverage (CADD-score>5: red curve 
~20%, green curve ~20%).  
 
Note that CADD never attempted to predict the impact of sequence variation upon 
molecular function. This figure gives one particular example proving that SNAP2 achieves 
the goal it was optimized for better than CADD the goal it was NOT optimized for. Although 
this was not much of a surprise, in light of the reverse of the predicted effect for rare and 
common SAVs, this confirmation constituted important evidence. The BRCA1 data was 
chosen for the only reason that it was the first large experimental deep scanning 
experiment that was made available to us. In a separate analysis, we have recently 
compiled additional data sets that confirm these findings for larger data sets (Theresa 
Wirth, TUM, in preparation); similar findings have been submitted by others (Thomas Hopf, 
Chris Sander & Debbie Marks, Harvard University)  
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Supplementary Note – SNAP2 training data 
SNAP2 was trained on a set of ~100k mutations. The majority of these (~52%) 
were obtained from experimental effect annotations recorded in the Protein Mutant 
Database (PMD 2). OMIM 3 and HumVar 4 effect variants accounted for another 
~22% of the data and a set ~26% putative neutral variants was derived from 
alignments of enzymes with identical EC (Enzyme Commission) numbers 5. Note 
that some of the latter might not be actually neutral due to compensating mutations 
(i.e. other sequence differences in same alignment), as well as due to differences 
in levels of ortholog activity between species. To avoid introducing a bias in this 
study towards predicting variants in orthologous sequences as neutral, we 
excluded all variants that were used for SNAP2 training from comparison.  
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6 Conclusion & Outlook

As laid out in this work, gaining a better understanding of “what makes microbes tick”
is a difficult, time and resource consuming task. Nevertheless it is important to answer
this question to further future applications in biomedical research. Modern assessment
methods just start to scratch the surface of what is possible. The fusion protocol and
fusionDB (described in Chapters 3 and 4) is a step towards answering exactly this
question. We can use this knowledge to improve our understanding of how species func-
tionally relate to each other. Additionally, one of fusionDB’s future applications can be
to serve as starting point to investigate microbial communities. By selecting represen-
tative proteins we would be able to generate a reference database for tools like mi-faser.
This could in turn be used to evaluate the functional properties of microbial commu-
nities. Furthermore we would be able to combine the functional property knowledge
of a community, with the individual functional profile information of fusionDB. This
combination of information could lead to discover symbiotic relations between microbial
species. An example for a specific pattern to look for would be complete metabolic
pathways present in the microbial community, but not in individual organisms. In other
words, different species ”coming together” to complete a otherwise incomplete pathway.

At the date of writing (April 2019) NCBI GenBank contains more than 12,000 com-
plete bacterial genomes. Incorporating those into fusionDB will lead to a much better
resolution of any analysis. However as also described in Chapter 3 updating fusionDB
to contain all those organisms is a difficult task.

The first hurdle to overcome was to find a way to cut down the necessary compute time
to establish functional similarities between any two proteins. To this end I developed
HFSP (see Chapter 2). HFSP uses MMSeqs2 to generate many versus many sequence
alignments in a much faster fashion, while fundamentally following the same principles
established by PSI-BLAST. HFSP is over 40-fold faster in comparison to traditional
methods, establishing functional similarities by examining protein homology. I evaluated
the functional annotations of multiple subsets of Uniprot during the development of
HFSP, and came to the conclusion that HFSP will be useful not only for the purposes
of fusion, but will also be able to uncover a large portion of potential function miss
annotation in public databases.

The second key concept of fusion was described in Chapter 3. Using the established
functional similarities between proteins to generate a protein similarity network results in
very large directed graphs. The network size very quickly reaches tens of millions of nodes
and tens to hundreds of billions of edges. Clustering algorithms for networks of this size
are not widely available. Algorithms that claim to work for networks of this size are often
highly specialized on individual types of networks. MCL (Markov Clustering) which was
used in the proof of concept for fusion scales poorly with increasing numbers of nodes
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in the network. HipMCL which is a high performance compute cluster implementation
of MCL is able to cope with much larger networks than MCL. However, HipMCL is still
prone to the same scaling issues present in MCL. (Hip)MCL therefore was no longer a
viable option as clustering algorithm.

In recent years multi dimensional scaling algorithms have become increasingly popular
as clustering algorithms. Originally devised as graph visualization method, t-SNE could
potentially solve my problem. The graph can be interpreted as multidimensional data.
Each outgoing edge of a node (similarity to another protein) serves as a distance in one
dimension. The result is as many dimensions as nodes present in the similarity graph.
The initial embedding of the graph can then be used to re-embed nodes initially omitted.
Looking forward, the ultimate goal would be to generate an easy-to-update scheme. t-
SNE could provide exactly this with the possibility of re-embedding. Novel proteins
not present in the clustering could be added, by establishing functional similarity to all
existing nodes, and using the re-embedding technique.

The massive influx of newly and fully sequenced bacterial organisms in the past 5
years, clearly demonstrates the need for incremental updates. This could also be espe-
cially interesting going forward for comparative studies of bacterial strains. Comparing
many strains of the same bacterium can for example give insight into variations of phe-
notypes. One field where this will be very important, is understanding the development
of resistances to antimicrobials or vaccines.

Additionally, as more microbial organisms are fully sequenced, we can also increase our
understanding of the contribution of individual organisms to a larger community. Using
the t-SNE embedding I will be able to identify representative proteins for the functional
units in fusionDB. As briefly touch upon earlier, I can use those representatives as a
reference database to identify functional properties of whole microbial communities. If
regarding the community of organisms as a “meta-organism” I will therefore also be
able to detect pathways of molecular function that only emerge if the community is
investigated as a whole.

As laid out during this work, the incredible speed at which new species and strains
are sequenced offers a treasure throve of available data. It should also be clear however,
that the race between data and tools to analyze the data will not be one that is over
soon. I offered solutions to process the current amount of data in a time and resource
sensitive manner. Yet I see this as being only a temporary solution. There clearly is a
strong need to continue the development of efficient algorithms, especially in the realm
of network analysis and clustering.
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