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Kurzfassung

Die vorliegende Dissertationsschrift untersucht die Wechselwirkung zwischen
Akustik und mager vorgemischten Flammen. Im Fokus stehen hierbei die ther-
moakustischen Eigenschaften von Brennerflammen, welche gemeinhin durch die
Flammen-Transfer-Funktion (FTF), also die lineare Antwort der globalen Wärme-
freisetzungsrate auf akustische Störungen, beschrieben werden. Ausgangspunkt
aller Untersuchungen ist die Feststellung, dass das in der Literatur vorherrschende
physikalische Verständnis des vorliegenden Problems von den etablierten Erkennt-
nissen zur Dynamik dünner Flammen abweicht. Während letztere hauptsächlich auf
flammenintrinsischen hydrodynamischen und thermodiffusiven Prozessen beruhen,
dreht sich die Theorie akustisch angeregter Flammen hauptsächlich um experimentell
beobachtete konvektiv transportierte Geschwindigkeitsstörungen, welche mit der
Flamme wechselwirken. Das Ziel der vorliegenden Arbeit ist es daher, beide Be-
trachtungesweisen zu vereinen und dabei die wichtigsten Mechanismen der Akustik-
Flammen-Interaktion herauszuarbeiten. Zu diesem Zweck wird eine neues Konzept
zur niedrigdimensionalen Modellierung entwickelt, mit dessen Hilfe bestimmte, klar
definierte Aspekte der zugrunde liegenden Dynamik getrennt untersucht werden
können. Detaillierte numerische Rechnungen dienen zu dessen Validierung und bi-
eten zudem aufschlussreiche Einblicke in die physikalischen Vorgänge. Die damit
durchgeführte Analysen beschränken sich auf Schachtflammen. Zwei Arten der
Akustik-Flammen-Strömungsinteraktion konnten identifiziert werden: (i) Primäre
Wechselwirkungen, welche ausschließlich unmittelbare Auswirkungen akustischer
Störungen einschließen, und (ii) sekundäre Wechselwirkungen, welche flammenin-
trinsische Prozesse umfassen, die im Wesentlichen auf einer Kopplung zwischen Hy-
drodynamik und Flammendynamik beruhen. Ein Ergebnis der durchgeführten Unter-
suchungen ist es, dass das rotationsfreie akustische Feld in erster Linie die Region
am Flammenfuß beeinflusst, während von der Akustik erzeugte abgelöste Wirbel
so gut wie nicht mit der Flamme interagieren. Die daraus resultierenden primären
Auslenkungen der stationären Flammenfront sind anschließend hydrodynamischen
Mechanismen ausgesetzt, welche aufgrund des verbrennungsinduzierten Dichte-
sprungs zu deren Anwachsen führen. Zusätzlich dazu bilden sich in der Umgebung
primärer Störungen weitere, sekundäre aus. Beide Phänomene zusammen führen
zu einer Amplitudenverstärkung der zugehörigen FTF, die Werte von Eins deutlich
übersteigen kann. In Übereinstimmung mit der Literatur, konnte das Auftreten der
genannten konvektiv transportierten Geschwindigkeitsstörungen auf eine Kopplung
zwischen Hydrodynamik und Flammendynamik zurückgeführt werden. Basierend
auf theoretischen Untersuchungen zur Auswirkung der Flammengeometrie auf die
lineare Flammenantwort, wird abschließend eine Methode vorgeschlagen, die es er-
möglicht, die für Schachtflammen gewonnenen Erkenntnisse auch auf andere Flam-
mengeometrien wie Bunsen- oder Keilflammen, zu übertragen.
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Abstract

This doctoral thesis analyses interactions between acoustics and lean premixed flames
from a thermoacoustic point of view. Special focus is put on the linear response of
the global heat release rate of burner-stabilized laminar flames to acoustic perturba-
tions, commonly expressed by the flame transfer function (FTF). The starting point
of all investigations is the inconsistency between (i) the prevailing notion of the un-
derlying physical mechanisms of the problem at hand and (ii) first principle-based
descriptions of the dynamics of thin flames. While the latter are essentially based on
hydrodynamic and thermal-diffusive modes of flame propagation, the former revolve
around the empirical concept of acoustically triggered convected velocity perturba-
tions interacting with the flame. This work strives to bring together both perceptions
and, in doing so, aims to identify the skeletal processes governing acoustics-flame
interactions. To this end, a first principle-based low order modeling framework is
developed, which allows to separately investigate well-defined aspects of the un-
derlying dynamics. High fidelity numerical simulations provide instructive valida-
tion data. Focusing on Slit flames, two types of acoustics-flame-flow interactions are
identified: (i) Primary interactions, which involve only immediate effects of acoustic
perturbations on the flame, and (ii) secondary interactions, which cover flame in-
trinsic processes essentially depending on a hydrodynamic flame-flow feedback. It
is found that the irrotational acoustic field predominantly interacts with the flame
base region, while vortex shedding has almost no impact. The acoustically triggered
primary flame displacements are subject to mechanisms of flame-flow feedback pro-
voked by the change in density across the flame sheets. These mechanisms lead to
their convective growth as well as to the formation of secondary displacements, which
altogether results in FTF peak gain values significantly exceeding unity. Furthermore,
in agreement with the literature, flame-flow feedback is found to be responsible for
the mentioned convected velocity perturbations. By analyzing consequences of flame
geometry for the acoustic response, a simple way is suggested how to transfer the
results found for Slit flames to the more widespread Bunsen and Wedge flame con-
figurations.
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Introduction

Simplicity is a great virtue but it requires hard work to achieve it and

education to appreciate it. And to make matters worse: complexity sells

better.

– Edsger Wybe Dijkstra

Turbulent combustion is complex and of high technical relevance and, as a conse-
quence, increasingly attracts the attention of scientific research. Laminar combustion,
on the other hand, is apparently simple and of less technical relevance; accordingly,
the number of fundamental studies published in this field is receding, particularly
in industry-funded research projects. Yet, most of the low-order modeling concepts
used to capture the dynamics of turbulent flames are derived from laminar theory.
This means, blind spots in laminar theory propagate to gaps of knowledge in turbu-
lent combustion and hence might hinder a more fundamental understanding as well
as the development of new modeling frameworks. Ultimately, the development of
highly relevant technical innovations might be delayed by just some missing insights
at the very foundations of knowledge. As will be shown in the course of this the-
sis, there are indeed significant blind spots concerning the specific topic of laminar
acoustic-flame interactions in a thermoacoustic context. Motivated by this realization,
this work is devoted to contribute to their illumination.

The Thermoacoustic Problem

Why are interactions between acoustics and lean premixed flames important at all?
This question will be answered in the following relying on three examples: (i) Lord
Rayleigh’s early and fundamental studies of a Rijke tube, (ii) the extravagant Saturn
V program and (iii) modern gas turbine combustors. A common feature of these three
examples is that they are all prone to instabilities driven by thermoacoustic effects,
which may lead to high amplitude oscillations. Due to the fact that these oscillations
manifest themselves as pressure fluctuations that may lead to severe sound emis-
sions or even to system failure, they are usually undesired. Consequently, this section
speaks of the thermoacoustic problem when referring to these kind of instabilities.

1
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(a) (b) (c)

Figure 1: (a): Sketch of a Rijke tube. (b): Rocketdyne F-1 engines of the Saturn V
rocket with Wernher von Braun standing in front of it (taken from [9],
Chap. 3.2). (c): Injector plate of the Rocketdyne F-1 engine (taken from
[10]).

A literal definition of the field of thermoacoustics would include all acoustic phenom-
ena in a gaseous medium that rely either on diffusive effects or entropy variations [3].
Following Rott [3], however, a more restrictive definition shall be adopted here that
emphasizes one essential thermoacoustic phenomenon, namely the maintenance of
aerial vibrations by heat, as put by Rayleigh [4]. This definition shall be clarified in
the following by use of one of the most famous thermoacoustic experimental setups,
the Rijke tube [5–7].

A sketch of such a device is provided in Fig. 1a. It consists of a vertical tube, where a
metallic wire mesh (or wire gauze) is mounted somewhere in its lower half. By plac-
ing a Bunsen burner right beneath its lower end, the wire mesh is heated. Removing
the burner, astonishingly, an enervating high-pitched sound appears, which slowly de-
cays over time. Lord Rayleigh was the first to provide an adequate explanation of this
phenomenon. According to him, the key ingredient responsible for the sound genera-
tion is the right phasing between pressure fluctuations and heat transfer from the wire
to the flow: Only if heat is added to the fluid at the moment of greatest condensation
or taken from it at the moment of greatest rarefaction, a self-sustained oscillation can
develop, which manifest itself as a clearly audible sound [8]. The phasing is essen-
tially defined by the acoustic properties of the tube and by the dynamics as well as
the location of the heat source.

One of the most illustrative examples of the drastic consequences and difficulties re-
lated to thermoacoustic phenomena is taken from the endeavor of the USA to bring a
man to the moon. Such a mission requires the possibility to cope with high payloads,
since a lot of equipment has to be brought into earth orbit. For that reason, the NASA
developed the Saturn V rocket. Its first stage was equipped with five Rocketdyne
F-1 engines, each providing a thrust of at least 6672 kN [11], whose impressive di-
mensions are illustrated in Fig. 1b. One important problem encountered during their

2
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development were combustion instabilities caused by thermoacoustic effects, which
caused three total engine losses and several emergency shutdowns during the testing
phase [12]. In order to solve this problem and to develop a dynamically stable system,
the Project First program was initiated in 1962 [11]. The desired performance spec-
ifications required certain combustion chamber and nozzle geometry designs and,
hence, those parameters could not be changed. The principal leverage of the engi-
neers to improve system stability was the design of the injector as well as the thereon
attached baffles, see Fig. 1c. During the course of this project, about 2000 full scale
test of 14 basic injector patterns and 15 baffle configurations were conducted [11].
Knowing that the two turbopumps used delivered nominal flow rates of 984 l/s of fuel
and 1577 l/s of oxidizer [11], one can imagine the costs and logistical requirements
of this series of tests. This emphasizes the severity of the (thermoacoustic) combus-
tion instabilities they had to cope with. Ultimately, an injector design was found that
enabled stable operation as well as safe 165 first seconds on the long journey to the
moon.

With the increasing significance of gas turbines for the generation of electrical power
or for the propulsion of airplanes during the second half of the previous century, a va-
riety of thermoacoustic combustion instabilities, which limit the operational ranges
of these devices or require advanced damping strategies, have been detected. Further-
more, thermoacoustic effects enhance acoustic emissions of gas turbine combustors,
commonly termed as combustion noise, whose reduction increasingly shifts into the
focus of current research [13–15]. Depending on the area of application, different
challenges have to be met. In the following, the focus is put on stationary gas tur-
bines.

Fig. 2a shows a modern low-emission stationary gas turbine as used for the genera-
tion of electrical power. In the design of such devices, engineers have to manage a
balancing act between thermodynamics, emission regulations and component loads.
Thermodynamics requires combustion at high temperatures in order to reach high
efficiencies, which is compulsory to minimize fuel consumption and CO2 emissions.
On the other hand, high temperatures promote the formation of harmful nitrogen ox-
ides, shortly NOx, and require advanced cooling concepts for all parts of the machine
that are in contact with the hot gases. It was found that these requirements are best
met relying on lean premixed combustion, which allows for a well controllable and
homogeneous combustion process at high power densities. Gas turbine manufactur-
ers, however, have to pay dearly for these beneficial properties since it turned out that
such devices are prone to thermoacoustic oscillations. Keeping them under control is
still one of the major challenges gas turbine industry has to face today.

In doing so, several strategies have been followed. On the one hand, damping devices
where developed, which, ideally, can calm already existing noisy combustors without
having to redesign big parts of them. One example for such a device is depicted in
Fig. 2b. Here, the back plate of an annular combustion chamber is shown, where the
big black holes represent the burners through which the fresh mixture is injected into
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(a)

(b)

Figure 2: (a): Modern gas turbine as used for the generation of electrical power
(taken from [16]). (b): Back plate of a annular combustion chamber with
burners (big black holes). The smaller black holes next to the burners are
Helmholtz dampers (taken from [17]).

the chamber. Additionally, smaller black holes are visible, which are the entrances
to connected cavities placed behind the plate. Each hole/cavity assembly forms a
damping device denoted as Helmholtz damper, which significantly reduce pulsation
amplitudes occurring during engine operation [18, 19]. On the other hand, instead of
improving existing designs, it is desirable to include thermoacoustic considerations
already in early stages of the design process of a new machine. To this end, a fun-
damental understanding of all processes involved has to be generated and, based on
the insights gained, tools need to be developed that allow for reliable low-order based
thermoacoustic stability analyses. In the best case, this helps to avoid expensive test
series as they were, for example, conducted for the F-1 engine.

The Role of the Flame in Thermoacoustic Stability Analysis

Many harmful combustion instabilities are low-frequency phenomena. For gas tur-
bines, the associated frequency range can roughly be specified to 100−500 Hz [19].
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Figure 3: Sketch of a gas turbine combustor (top) and its associated network model
(bottom). Marked in red is the intrinsic feedback loop.

At these frequencies, the acoustic field inside the combustor can in good approxima-
tion be assumed to be one-dimensional. Therefore, such systems exhibit essentially
longitudinal modes resulting from planar acoustic waves [20]. Note that annular com-
bustion chambers may also show azimuthal acoustic modes in this frequency range,
which shall not be discussed here. Low-order modeling concepts developed to ana-
lyze such longitudinal modes are referred to as network models and are usually struc-
tured as depicted in Fig. 3. In the top of this figure, a typical gas turbine combustor
is sketched: fresh mixture is supplied through a plenum, which feeds the premixed
gases through a swirler (crossed box) into the combustion chamber where they are
burned. The hot products are then emitted to the environment (or the turbine) through
a converging nozzle. The lower half of the figure shows a network model representing
the 1D-acoustics of the model combustor mentioned before. Each element represents
a specific part of the real device, such as a plain duct, a change in cross-sectional area,
a boundary condition or the flame. The dynamics of the flame are hereby described
by the flame transfer function (FTF) which connects acoustic velocity fluctuations
upstream of the flame to variations of the global heat release rate. This again is fed
into the network model as an acoustic source.

Following Fig. 3, a flame can be viewed as a PA system: It captures sound at a spe-
cific position, similar to what a microphone does, amplifies and phase changes the
recorded signals and emits them at a different location, just like a speaker1. What
becomes clear from this analogy is that the heat source establishes a feedback cycle,
which may become unstable and lead to a self-oscillatory state. One possible cycle,
the so-called intrinsic thermoacoustic feedback cycle [21–23], is marked in red in
Fig. 3. In the case of a PA system — or a Rijke tube as mentioned above — such
a state manifests itself as a loud screech. If that happens, usually either the position

1Note that premixed flames “listen” to velocity fluctuations while most microphones capture pres-
sure fluctuations. The analogy presented here should hence not be taken literally!
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of the microphone is changed or the gain of the amplifier is reduced in order to get
rid of this perturbing sound. In the case of a gas turbine combustor, consequences of
a developed self-oscillatory state are more severe and might — in the worst case —
even lead to system failure, similar to what has been shown above for the F-1 rocket
engine. The main leverage for counteracting such a state is the FTF, which can, for
example, be modified by changing the mass flux or the air-to-fuel ratio.

Since the flame is the driving force of a combustion instability, understanding its
dynamics is crucial. Having powerful low-order models at hand that allow adequate
predictions of the flame dynamics would significantly enhance stability predictions,
particularly in early stages of the design process of a full combustor or a damping
system. To this end, a profound understanding of interactions between acoustics and
a flame needs to be established. This is not an easy task, considering that even a
Rijke tube, where a heated mesh instead of a flame acts as a heat source, exhibits
non trivial behavior [24, 25]. Although there are many studies that have already dealt
with this topic, the flame response to acoustic perturbations is not yet adequately
understood - even for the simple case of a Bunsen flame and low forcing amplitudes
(linear regime). Thus, it seems to be a good idea to focus on these setups first before
advancing to even more complex, turbulent flames, as used in gas turbine combustors.

Objective and Outline of the Thesis

The ultimate goal of this work is to advance the understanding and modeling of the
response of burner-stabilized laminar flames to acoustic perturbations. The behav-
ior of the global heat release rate is of particular interest, since its fluctuations are
proportional to the sound generated by a flame, which is an important quantity in
thermoacoustic analysis. To this end, instructive low-order models shall be devel-
oped and extended, which allow to bring order into the analysis of acoustics-flame
interactions.

In the field of thermoacoustics, there is a lack of first principle-based, low-order mod-
eling concepts for the linear flame response expressed by the flame transfer function
(FTF), see Fig. 3. As will be detailed in the course of this work, the most wide-
spread models all rely on the assumption of convective velocity perturbations, which
is based on experimental observations instead of a rigorous derivation starting from
first principles. Although they allow for reasonable FTF predictions relying on em-
pirical parameters (they are useful . . . ), they are not suitable for the analysis of the
underlying physical mechanisms (. . . but not instructive).

Based on this realization, this thesis starts with a review of the literature on the dy-
namics of laminar flames. A lot has been achieved in this field, however, only a rather
small fraction of the gathered knowledge has made its way to the field of thermoa-
coustics. A similar statement can be made concerning the field of aero-acoustics,
which deals with the generation and attenuation of acoustic energy in flows without
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chemical reactions. Elaborate models for the transient acoustic field inside a con-
finement or the process of vortex shedding have been developed here, which would
qualify as candidates for low-order descriptions of the velocity field in the vicin-
ity of an acoustically perturbed anchored flame. Again, rather few concepts made it
to the field of thermoacoustics. This thesis tries to account for the inherently inter-
disciplinary nature of thermoacoustics and strives to bring together knowledge and
methods from the fields of laminar premixed combustion and aero-acoustics.

The work is split into three parts:

Part I provides a review of the literature on the dynamics of acoustically perturbed
laminar premixed flames. Chap. 1 deals with the fundamental mechanisms
governing the dynamics of thin flame sheets far away from any boundary.
Correspondingly, the wide-spread G-equation modeling concept is introduced.
Based on these results, Chap. 2 extents the scope and focuses on the dynamics
and low-order modeling strategies of acoustically perturbed burner-stabilized
flames.

Part II analyzes interactions between acoustic perturbations with burner-stabilized
flames relying on a new first principle-based low-order modeling concept. The
analysis is split into primary and secondary interactions, motivated by the char-
acteristics of the flame response to an impulsively acoustic forcing: At the very
moment the impulse hits the flame, its behavior is well described neglecting
flame-flow feedback (primary interactions). At later times, the flame dynamics
are no longer directly governed by acoustics but by the dynamics of the individ-
ual flame sheets, which particularly includes flame-flow feedback (secondary
interactions). These secondary mechanisms have severe consequences for the
FTF leading to gains significantly exceeding unity and are hence important.

Part III analyzes the implications the choice of a specific burner configuration has for
the linear acoustic flame response. While the literature mostly reports on Bun-
sen flames, Part II analyzed the dynamics of Slit flame configurations due to
their simpler analytical treatment. Hence, the questions arises how the results
obtained in Part II could be generalized. Chap. 6 seeks to provide an answer
by investigating consequences of flame geometry for the linear acoustic flame
response. In the course of this study, an extension to the convective velocity
model is proposed relying on Gaussian kernel functions, which particularly
improves response predictions of Slit flames.

The contents of the work are summarized in Fig. 4, which contains a collection of
the key ideas of each chapter. This overview is not meant to be self-explanatory, but
rather to assist the reading process of this thesis.
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Figure 4: Contents of the thesis in a nutshell.
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Part I

Literature Review on

Acoustics-Flame Interactions

This thesis seeks to analyze and model interactions between acoustics
and laminar lean premixed flames. A well-established method to effi-
ciently assess the dynamics of such flames avoiding the need to deal
with chemical reactions relies on a kinematic description: the usually
thin flame sheets are viewed as gasdynamic discontinuities that prop-
agate normal to themselves with a characteristic speed. Their dynam-
ics are hereby governed by consequences of density changes across the
flame sheets as well as by dependencies of the flame speed on various ge-
ometrical and mixture properties. This approach became state-of-the-art
and, thus, the literature review provided in this Part of the thesis revolves
around this key concept.

Chap. 1 introduces the fundamental dynamics of freely propagating
flame sheets. Four canonical mechanisms are identified and explicated
that govern flame propagation. Most low-order modeling concepts are
based on the so-called G-equation approach, which is subsequently dis-
cussed. Relying on these ideas, Chap. 2 then moves on to the more re-
alistic setups of burner-stabilized flames. Here, driven by the thermoa-
coustics focus of this work, their interactions with acoustic perturbations
are emphasized. The phenomenological convective velocity model is in-
troduced, which is, combined with the G-equation framework, the state-
of-the-art low-order model of such systems.
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1 Dynamics of Thin Flame Sheets

A literature review on the dynamics of thin flame sheets far away

from any boundary is provided, ranging from (i) a discussion on

the internal flame structure, over (ii) an outline of four important

canonical mechanisms of flame propagation to (iii) associated low-

order modeling concepts.

Premixed laminar flame fronts are often assumed to be thin with respect to a charac-
teristic length of the considered problem, such as the overall flame length or a per-
turbation wave length. This approximation allows for a purely kinematic treatment
of their spatio-temporal behavior avoiding detailed considerations of flame-internal
chemical and transport processes that govern the combustion process. A description
of the complete dynamics boils down to an expression for the flame propagation
velocity as well as jump conditions, connecting macroscopic properties of the fluid
up- and downstream of the flame. This simplified treatment enables analytical stud-
ies on the dynamics of planar flame sheets and allows to identify the physical key
mechanisms. Hence, it constitutes one of the central concepts when dealing with the
dynamics of premixed flame fronts.

Accordingly, this chapter introduces the relevant findings and observations required
to understand the key motivations and theoretical concepts associated to this idea.
For the sake of clearness, this chapter is limited to the study of freely propagating
thin flame sheets far away from any boundary. Burner-stabilized flames are only in-
troduced in the subsequent chapter as an extension to the theory introduced here.

Sec. 1.1 specifies the term “thin” in the context of a lean methane-air flame and pro-
vides a historical review of important experiments and theoretical achievements in
the field. Subsequently, the four main governing mechanisms for the dynamics of
lean methane-air flame sheets are summarized in Sec 1.2. Finally, Sec 1.3 introduces
the G-equation or level-set method as well as a 1D linearized advection-diffusion
equation, which are both widely used modeling approach in order to efficiently cap-
ture the dynamics of flame sheets.
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Dynamics of Thin Flame Sheets

1.1 Scope

The overview presented in the following clarifies when a flame front is considered
to be “thin” and how the analysis of such flames evolved, starting from the early
works of Darrieus [26] and Landau [27]. This section is not strictly limited to find-
ings directly related to the main topic of this thesis, but rather seeks to provide a
more comprehensive view. Readers who are only interested in the main mechanisms
governing the dynamics of flame sheets, may skip this section for now and directly
continue with Sec 1.2.

1.1.1 Definition of the Term “Thin Flame”

The overall combustion process of lean methane-oxygen mixtures to carbon dioxide
and water involves tens of chemical sub-reactions and the formation of hundreds
of intermediate species. Peters and Williams [28] systematically reduced these for
sufficiently high pressures and temperatures to only three global reactions that involve
six species:

CH4 +O2 → CO+H2 +H2O (1.1)

CO+H2O⇋CO2 +H2 (1.2)

O2 +2H2 → 2H2O. (1.3)

Fig. 1.1 illustrates the inner structure of such an adiabatic, lean methane-air flame of
equivalence ratio φ= 0.81. Three characteristic layers are identified [28, 31]: (i) An
inert convective-diffusive layer of thickness δD where the fresh mixture is preheated
and methane molecules are transported towards the reaction zone. (ii) A thin reaction
layer of extension δR where methane CH4 and oxygen O2 react to carbon monoxide
CO, hydrogen H2 and water H2O, as expressed by Reaction (1.1). (iii) A second
reaction layer of thickness δO where hydrogen and carbon monoxide are oxidized to
carbon dioxide and water, see Reactions (1.2) and (1.3).

The reaction zone can be visualized by the heat release rate q̇ , which is a conse-
quence of the transformation of chemically stored enthalpy of the products to sen-
sible enthalpy via the three global exothermic oxidation reactions. The heat release
rate is plotted in Fig. 1.1 and it is apparent that the reaction layer associated with the
global Reaction (1.1) has a much thinner spatial extension than the one of the sec-
ondary oxidation zone associated with the global Reactions (1.2) and (1.3). This is
reflected by different activation energies, which are significantly higher for the global
Reaction (1.1) than for the Reaction (1.2). The latter is also known as the moderately
exothermic water-gas shift reaction [32] and, compared to Reaction (1.1), only adds
a secondary contribution to the total heat release rate. It, however, leads to the for-
mation of hydrogen that is finally oxidized by Reaction (1.3). All in all, due to the

1Computed with Cantera [29] using the GRI-Mech 3.0 reaction mechanism [30]
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1.1 Scope

Figure 1.1: Internal structure of a lean methane-air flame of equivalence ratio φ =
0.8. All curves are normalized by their maximum value.

dominance of Reaction (1.1), the combustion of methane-air mixtures is essentially
a very localized process.

Based on the insight that this also holds for a variety of mixtures, where the combus-
tion process is confined to a layer that is thin compared to a global length scale —
such as the burner mouth diameter – flames are often approximated as gas dynamic
discontinuities, i. e. surfaces separating cold reactants from hot products [26, 27, 33–
35]. Far away from this discontinuity, fluid composition, temperature and density
are essentially constant. The dynamics of the flame sheet is governed by a local
consumption speed, which defines a propagation velocity of the flame normal to it-
self and relative to the fresh mixture, quantified by the flame speed. This speed is a
manifestation of chemical reactions and transport processes in the reaction and the
convective-diffusive layer, respectively [34–37].

Models that regard a flame as a discontinuity are specifically designed to capture the
spatio-temporal dynamics of a reacting flow, while the formation of pollutants or any
other chemical property of the combustion process are neglected. In order to retrieve
a closed formulation of such flow problems, a flame speed and jump conditions, con-
necting up- and downstream flow quantities, need to be specified at the surface repre-
senting the flame. They were derived from first principles by use of matched asymp-
totic expansion methods, which exploit the fact that flames exhibit length scales of
different order. Each scale has its own characteristic properties, which allows to drop
specific terms from the full set of governing equations. By asymptotically matching
the results of the individual length scales, a macroscopic description of the internal
processes could be derived, which essentially boils down to an expression for the
desired flame speed and the jump conditions, see e. g. [28, 34, 35, 37–41].
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Dynamics of Thin Flame Sheets

In order to apply these matched asymptotic expansion methods, characteristic length
scales associated with the available internal layers need to be found. Based on them,
non-dimensional parameters are defined that are used to derive the respective govern-
ing equation for each layer. In the case of premixed combustion, the relative thickness
of the convective-diffusive boundary layer δD , see Fig. 1.1, is quantified by a Péclet
number

Pe= L

δD
, (1.4)

which relates a typical length scale of the macroscopic (or outer) flow problem L, to
a length scale of the microscopic (or inner) advection-diffusion problem. Here, the
outer problem may be characterized by the burner diameter or the perturbation wave
length of interest and the inner problem by a diffusion length δD = D/sL , where sL

is the flame speed and D either the thermal diffusivity D th or the mass diffusivity of
the deficient species relative to the fresh mixture DY [37, 41, 42]. Both diffusivities
are related by the Lewis number

Le = D th

DY
, (1.5)

where the thermal diffusivity is defined by D th =λ/(ρcp ) with the thermal conduc-
tivity λ, the density ρ and the specific heat capacity for constant pressure cp , all
evaluated for the fresh mixture. If D th = DY and thus Le= 1 holds, the thermal and
the species boundary layer are identical. Otherwise, one of them outweighs the other.
Lean methane-air flames, as considered in this thesis, typically have Lewis numbers
very close unity, which is also reflected in the similar boundary layer thicknesses of
CH4 and temperature ahead of the reaction zone shown in Fig. 1.1. Hence, the Lewis
number quantifies the coupling of species transport and energy equation, similarly as
the Prandtl number does it for momentum and energy. For the Le≈ 1 case, typically
the thermal, instead of the mass, diffusion length scale δD = D th/sL is used in order
to quantify the extension of the preheat layer.

The thickness of the reaction layer δR is related to the Zeldovich number

Ze= Ea

Rg Tb

Tb −Tu

Tb
(1.6)

with the activation energy of the global chemical reaction Ea , the gas constant Rg and
the temperatures of the unburned and burned fluid Tu and Tb , respectively [43]. High
activation energies, and hence Ze≫ 1, lead to thin reaction layers [35].

Using these definitions, the spatial extension of the convective-diffusive layer
is of order δD =O

(
Pe−1

)
and the one of the two reaction zones of order

δR/O =O
(
Pe−1Ze−1

)
[35, 37]. For the flame configurations considered in this the-

sis (lean methane-air mixtures at φ ≈ 0.8 and burner inlet radii of Ri = 5 mm ), we
retrieve a Péclet number of the order O (100). Hence, all flames can safely be consid-
ered as thin flame sheets.
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1.1 Scope

Figure 1.2: Cellular structure of a flat flame for n-butane-air-nitrogen mixtures at
four different ambient pressures (photos taken from [44]).

1.1.2 Historical Background

Approximating thin flames as discontinuities separating two flow domains of con-
stant chemical composition and density made an efficient analysis of combustion
problems possible. Numerical investigations became affordable and, particularly, the
way to analytical studies was paved. Of specific interest was the analysis of freely
propagating planar flames in order to retrieve closed analytical expressions for the
flame propagation speed, which then allowed for a detailed analysis of flame front
dynamics and, particularly, their stability.

The works of Darrieus [26] and Landau [27] were among the first to analytically study
the stability of thin planar flame fronts. They regarded the flame as a discontinuity
propagating at a constant flame speed sL with respect to the fresh flow and imposed
continuous mass and momentum fluxes through the flame sheet leading to a set of
jump conditions

[
ρ

(
u⊥− ∂ξ

∂t

)]b

u

= 0,

[
p +ρ

(
u⊥− ∂ξ

∂t

)
u⊥

]b

u

= 0,
[
u∥

]b
u = 0 (1.7)

that connect quantities of the unburned (“u”) to those of the burned (“b”) side of the
flame, see also [33, 35]. The squared brackets denote the change of a quantity across
the flame front: [∗]b

u =∗b −∗u . The first equation results from the conservation of
mass, the second and third from the conservation of flame normal (index “⊥”) and
tangential (index “∥”) momentum, respectively. Velocities are denoted by the letter
u, the density by ρ and the pressure by p. The displacement of the flame from its
steady state is given by ξ= ξ(x, t ), where x denotes a direction parallel to the flame
front and t the time. For a given flame normal flow velocity u⊥ = u⊥(x, t ), the flame
front moves according to ∂ξ

∂t
= u⊥− sL .

Solving a system of linearized Euler equations up- and downstream the flame that
are coupled via the jump conditions (1.7), Landau [27] obtained a dispersion relation
stating that the growth rate of a flame perturbation increases linearly with wavenum-
ber. That means that flat flames were unconditionally unstable to perturbations of any
wave length caused by the density jump imposed at the flame front.

This result, however, is inconsistent with experimental observations reporting that it
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Dynamics of Thin Flame Sheets

is indeed possible to stabilize flat planar flames, see e. g. [44–47]. Further, it is in con-
flict with observations made by Markstein [44], who showed that a flat flame develops
cellular structures whose averaged cell size decreases with rising ambient pressure,
see Fig. 1.2. While the theory of Landau [27] predicts a linear increase of growth
rate with the wave number, the experimental results of Markstein [44] reported a
pressure dependent uniform cell size, which suggests the existence of a pressure de-
pendent maximum growth rate at a wave number approximately corresponding to the
observed cell sizes (approximately since the observed cellular structures are already
affected by non-linear processes, see [48]).

Noticing that the theory of Landau [27] was restricted to disturbances whose wave
length is large compared to the thickness of the flame and that the thickness of a flame
decreases with pressure (lower pressure → thicker flame → lager average size of the
cellular structures), Markstein [44] introduced the ad hoc hypotheses of a flame speed
that depends on the local flame front mean curvature κ f :

sL = s0
L(1− lMκ f ). (1.8)

Here, the Markstein length lM is computed from the characteristic length of the
convective-diffusive layer δD =λu/(sLρucp,u) and the Markstein number Ma , which
typically is of order unity: lM = δD Ma . Following the ideas of Karlovitz et al. [49]
and Eckhaus [50], Markstein [33] extended his phenomenological theory by includ-
ing flow strain as a second source of flame stretch κs = 1/A(dA/dt ) and related it to
the Markstein number, as well:

sL = s0
L

[
1−Ma

(
lcκ f +

1

sL
n f ·∇u ·n f

)]
, (1.9)

where n f is a vector normal to the flame front and ∇u the strain rate tensor of the
upstream flow.

According to Markstein [44], the lack of knowledge concerning combustion reac-
tions and the reaction-kinetic terms prevented a rigorous derivation of the flame
speed relations from first principles. Subsequent studies were able to close this gap
and could derive the phenomenological flame stretch terms from first principles, see
e. g. [34, 35, 37, 39–41, 51]. These studies are based on the aforementioned matched
asymptotic methods exploiting the fact that hydrodynamic length scales are much
larger than the length scales of the convective-diffusive boundary layer and the reac-
tion zone. This approach is briefly sketched in the following.

Studies relying on matched asymptotic expansions are based on the consideration of
two coupled flow domains of different length scales. The large scale outer hydrody-
namic model, on the one hand, consists of two incompressible fluid domains coupled
via jump conditions at a flow discontinuity representing the flame. The small scale
inner reaction model, on the other hand, is represented by a low Mach number flow
where density depends on temperature only and chemical reactions are usually dom-
inated by a single deficient component (1-step chemistry). Later studies such as the
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1.1 Scope

one by Matalon et al. [41] included a 2-step mechanism allowing for consideration
of mixtures whose composition varies from rich to lean conditions. The outer and
the inner models are matched by assuming that their solutions have to coincide far
away from the flame, which results in expressions for the flame speed and the jump
conditions. Flame speed relations, as well as the definition of the Markstein number,
generally depend on the exact location of the discontinuity with respect to the inner
flame structure [37, 41, 52–54]. By constraining the mass flux of the outer solution to
be continuous at the discontinuity, Class et al. [37] naturally fixed the position of the
flame and, thus, the expressions for the flame speed as well as the Markstein number.

All those studies derived jump conditions similar to the one shown in Eq. (1.7), but
they extended the analysis by considering higher order terms of the respective expan-
sion parameters. Furthermore, they also obtained expressions for the flame speed that
solely rely on macroscopic or combustion intrinsic/thermophysical parameters. For
example, Matalon et al. [41] specified

sL = s0
L

(
1− 1

Pe
Maκs

)
(1.10)

with a Markstein number

Ma = 1

1− ê

∫1/ê

1

λ∗(x)

x
dx +

Ze
(
Lee f f −1

)
ê

2(1− ê)

∫1/ê

1

λ∗(x)

x
ln

(
1− ê

ê (x −1)

)
dx , (1.11)

where ê = ρb/ρu denotes the burned to the unburned density ratio, λ∗ =λ/λu and
Lee f f the normalized thermal conductivity and the effective Lewis number of the
mixture, respectively. The flame speed is hence related to flame stretch κs , which is
composed of flame curvature and flow strain, via a Markstein number. Therefore, the
aforementioned ad hoc hypothesis of Markstein [44] that the flame speed depends on
flame curvature could indeed be confirmed by rigorous first-principle-based analyses
of the flame internal structure. Once the jump conditions and the flame speed relation
is known, a stability analysis of flame sheets can be performed, which results in a
dispersion relation. This topic is discussed in more detail in Sec. 1.2.

Various types of flame configurations have been investigated in the literature trying to
validate the theoretically retrieved flame speed relations, stability predictions and/or
determine flame parameters such as the Markstein length. Most theoretical studies
were performed for 2D planar or flat flames since the analysis simplifies for such
configurations. Experimental investigations of such flames, however, are not straight
forward since stabilization requires an active stabilization loop [47, 55] and/or elabo-
rate ignition methods [44]. Heat losses to nearby walls further complicate the analysis
of the results [42].

Hence, many experimental studies focused on different configurations such as spher-
ical bombs. Here, a mixture of fuel and oxidizer is ignited by a spark that causes a
radially expanding deflagration front. In order to ensure a negligible increases of the
pressure in the combustor during the combustion process, the volume of the com-
bustion chamber of the test rig has to be large compared to the one of the burned
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Dynamics of Thin Flame Sheets

Figure 1.3: Snapshots of spherically expanding stoichiometric propane/air flames
(spherical bombs) for three different ambient pressures at a Lewis num-
ber close to unity. The snapshots compare instants in time of the same
non-dimensional stretch rate, defined by the Karlovitz number Ka (snap-
shots are taken from [62]).

mixture. Advantages of such test rigs are the relatively simple adjustment of exper-
imental parameters such as pressure and temperature of the mixture, the absence of
initial turbulence in the unburned fluid and a well defined and uniformly distributed
flame stretch [56, 57]. In particular, the latter property qualifies these configurations
for measurements of Markstein numbers and laminar flame speeds [58–61], as well
as for the assessment of flame front instabilities.

Fig. 1.3, for example, shows experimental results of Kwon et al. [62]. They investi-
gated the development of spherically expanding stoichiometric propane/air flame at
three ambient pressures. By variation of pressure, they changed the flame thickness
(higher pressure → thinner flames), while all other parameters influencing flame sta-
bility were kept approximately constant. The higher the ambient pressure and, thus,
the thinner the flame, the less stable the expanding flame front becomes: Similarly
to the experimental results of Markstein [44] shown in Fig. 1.2, a lower pressure in-
creases stability and successively less “cracks” – indicating the formation of growing
cellular structures – are visible in Fig 1.3 comparing the 10 bar, 5 bar and the 2 bar
series of snapshots.

Finally, aerodynamically anchored flames such as Bunsen or Slit flames constitute
another important flame configuration of high technical relevance. Since for such
flames local displacements are convected downstream, flame instabilities cause spa-
tially growing displacements, as depicted in experiments carried out by Searby et al.

[63] and reproduced in Fig 1.4. Several studies have analyzed such configurations and
found that, besides the advection of flame front displacements and the existence of
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1.1 Scope

Figure 1.4: Snapshot of an aerodynamically anchored and inclined rich
propane/air/oxygen flame whose base is displaced by a vibrating
flame holder (taken from [63]).

a flame anchoring and tip, the dynamics of anchored and inclined flames essentially
corresponds to the one of the planar counterpart, i. e. the same instability mechanisms
are present [45, 64–66]. Such type of flames are investigated within the scope of this
thesis. Formally, they will only be introduced in the following chapter.

Having solved the linear stability problem of planar flames for many canonical con-
figurations, the next step was to assess the process of non-linear saturation. For this
purpose, on the one hand, Navier-Stokes based simulations treating the flame as a
gas dynamic discontinuity [67–70] have been performed. On the other, a low-order
weakly non-linear flame model, known as the Michelson-Sivashinsky (MS) equa-
tion, has been introduced [38, 48, 71]. It has been proven to be a valuable tool for
the prediction of the onset of hydrodynamic instabilities and their fully non-linear
development [67]. The dynamics of the MS equation on a finite domain of width L

is controlled by a reduced Markstein number αM = lM /(ρu/ρb −1)L. For sufficiently
small values of this parameter, short wave length flame front displacements perpet-
ually coalesce forming bigger and bigger structures until, eventually, a stable single
peak solution is reached [72]. This process is illustrated in Fig. 1.5 where a randomly
perturbed flame sheet (top line) develops into a stable cusp (bottom line), which con-
tinues to propagate at a constant speed [67].

Instabilities, such as the ones described above, are responsible for many crucial and
practically relevant flow phenomena and often result in characteristic large-scale co-
herent structures. There are, for example, the widely known Kelvin-Helmholtz in-
stability or the Tollmien–Schlichting waves. Both lead to the formation of flow fea-
tures that have several important consequences for technical applications, such as
pipe flows or the flow around airplane wings. Accordingly, stability considerations
have made their way to the analysis of flames in a thermoacoustic context, as well.
Here, technically relevant setups often rely on swirl-stabilized turbulent flames. One
important feature of these flames is a precessing vortex core that responds to acous-
tics and significantly interacts with the combustion process [73–75], another the oc-
currence of a so-called vortex breakdown [76–78]. Both mechanisms are related to
flow field instabilities and essentially determine the flame response to acoustic per-
turbations. Exploiting this principal finding, Oberleithner et al. [79] and Oberleithner
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Dynamics of Thin Flame Sheets

Figure 1.5: Temporal evolution of a randomly perturbed flame sheet according to the
MS equation for αM = 0.005. Several snapshots of the same flame front
at different times are shown, where time progresses from the top to the
bottom line (taken from [67]).

and Paschereit [80] developed a method that is capable to adequately predict the fre-
quency and amplitude dependent flame response based on a linear stability analysis
of the underlying mean flow. It can hence be concluded that the understanding and
consideration of the relevant instability mechanisms constitutes one important pre-
requisite in order to correctly interpret and model the complex flow behavior of both
laminar and turbulent flames.

The dynamics and stability of thin flame fronts has historically been classified ac-
cording to a variety of non-dimensional numbers. The Markstein number has already
been mentioned above and quantifies the effect of stretch (curvature and flow strain)
onto the flame speed. It usually is of order O (1), and large positive Markstein num-
bers indicate stable flames. Note that its definition depends on the assumed location of
the gas dynamic discontinuity representing the flame with respect to the inner flame
structure. Often it is assumed that it coincides with the reaction layer, see e. g. [52].
A second important number is the Lewis number Le, which relates the thermal to the
mass diffusivity of the deficient species relative to the mixture [81]. The experimental
data shown in Fig. 1.3 was obtained at unity Lewis number. The fact that thermal and
mass diffusion are approximately equal prevents the occurrence of thermo-diffusive
and pulsating instabilities. The former will be discussed in Sec. 1.2.2. Another impor-
tant non-dimensional number is the Karlovitz number, which quantifies flame stretch:

Ka =
2δ f

s0
L

R f

dR

d t
, (1.12)
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1.2 Mechanisms Governing Flame Propagation

where R f is the flame radius, t the time, δ f the flame thickness and s0
L the unstretched

flame speed. The snapshots of the spherical bombs shown in Fig. 1.3 are taken at dis-
tinct Karlovitz numbers for all three pressure levels. As mentioned above, stretched
flames are less prone to develop instabilities than unstretched ones. An expanding
spherical flame increases its radius and, hence, the flame front is exposed to suc-
cessively decreasing stretch. By comparing snapshots of constant Ka, the effect of
different pressure dependent stretch levels on stability can be eliminated.

Finally, flames usually propagate in the gravitational field of the earth. For flames
whose associated flow direction points upwards (heavy unburned mixture below
light burned products), gravity tends to stabilize perturbations of long wave lengths
[82, 83]. The impact of gravity relative to the flame speed is given by a Froude num-
ber Fr = s2

L/(gδ f ) with the gravitational acceleration g . As pointed out by Searby and
Clavin [82], for a given mixture there exists a critical value of the Froude number Frc

below which planar flames are unconditionally stable. The wave length of the pertur-
bations that become unstable at Frc is large compared to the flame thickness [82]. The
effect of gravity together with the effect of flame curvature explains why it is possi-
ble to experimentally implement stable planar flame fronts [44, 82]. Flames with a
flow streaming downwards (light burned products below heavy unburned mixture)
are destabilized by the Rayleigh-Taylor instability [84].

1.2 Mechanisms Governing Flame Propagation

In the previous section it was shown that the representation of a flame as a propa-
gating discontinuity connecting the unburned with the burned flow domain by means
of jump conditions provides an efficient tool for understanding and modeling the
dynamics of thin flame sheets. First principle-based expressions for the propagation
speed as well as jump conditions could be derived by means of matched asymp-
totic expansion techniques. While the latter ensure the conservation of mass, normal
and tangential momentum across the flame, the former emerges as a consequence
of chemical kinetics combined with the energy and species transport. One important
outcome of this kind of analysis is that the local flame speed depends on flame stretch,
i. e. flame curvature and flow strain.

Coupling two incompressible flow domains of different densities using aforemen-
tioned jump conditions and flame speed relations results in an powerful framework
for the analysis of the dynamics of thin flame sheets. Its main advantage consists
in the fact that the chemical details of the combustion process need no longer to be
considered and, thus, the focus is shifted to macroscopic quantities, such as the flame
speed or the flame shape. This method consequently brings order into the complex
field of flame propagation and allows to differentiate between well-defined intuitively
accessible governing mechanisms.

The within the scope of this thesis four most important mechanisms are discussed in
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the following. Each one is in a first step formally introduced and subsequently its im-
plications are illustrated by analyzing how it affects the dynamics of a perturbed flame
sheet. Section 1.2.1 deals with the most elementary mechanism of flame propagation,
namely the fact that flame sheets propagate normal to themselves. Section 1.2.2 an-
alyzes thermal-diffusive mechanisms that address implications of the flame speed
relation onto flame sheet propagation. This is followed by an analysis of hydrody-
namic mechanisms, which arise as soon as two flow domains of different densities
are coupled via jump conditions. Finally, Sec. 1.2.4 deals with flame sheets that are
inclined with respect to the mean flow field, e. g. by anchoring them. Here, in addi-
tion to the former mechanisms, the advection of flame front perturbations becomes
important.

1.2.1 Propagation Normal to Itself

1D simulations, as the one shown in Fig. 1.1, reveal that a (thin) reaction zone propa-
gates into the domain of the fresh mixture at a certain speed. The velocity of the mean
flow field far upstream of the flame that is required to maintain the flame front at a
fixed position is referred to as the flame speed sL in the following. Note that, theoret-
ically, also other definitions of sL are possible, such as the flow speed far downstream
of the reaction zone. Since the properties of the fresh mixture are the ones that are set
by an experimentalist or at a numerical simulation, it is convenient to define sL with
respect to them.

Knowing how a 1D flame propagates, we are now interested in the transient behavior
of a flame sheet, where each point on this sheet propagates at a constant speed sL .
Without loss of generality, we approach this problem by assuming a 2D sheet that
has at a time t0 the shape as depicted by the black line in Fig. 1.6a. Since a point of
that line propagates at a speed sL , its position at a time t0 +∆t has to be somewhere
on a circle of radius ∆t sL drawn around the current position. This has to hold for each
point on the black line and, therefore, the flame front position at t0 +∆t can only be
given by the upstream envelope of all circles, depicted by the red line in Fig. 1.6a.
From this consideration, which is also known as Huygens’s principle, it naturally
evolves that a flame propagates normal to itself.

One important consequence of this mechanism is the formation of cusps, which are
perturbations of the flame front of discontinuous slope. Following Huygens’s prin-
ciple, it can be shown that such non-smooth flame shapes develop from an initially
smooth flame front, which is concavely bent towards the fresh fuel mixture [85].
Since flame fronts propagate normal to themselves, the position of the flame sheet at
later times can be estimated by rays drawn normal to the current flame front position,
see Fig. 1.6a ( ). These rays will eventually intersect and, hence, one side of the
initially smooth flame wrinkle propagates into the opposing front, which leads to the
generation of cusps and to a propagation of the tip of the wrinkle in the direction
of the unburned gases with a speed faster than the flame speed [86]. This process is
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1.2 Mechanisms Governing Flame Propagation

(a) (b)

Figure 1.6: Illustration of Huygens’s Principle (1.6a), which explains the formation
of cusps from an initially smooth flame front (1.6b).

illustrated for four instants in time in Fig. 1.6b (blue arrow). On the contrary, convex
parts of a flame sheet will expand and heal themselves from eventual cusps [86].

It is interesting to note that the formation of cusps constitutes a non-linear mecha-
nism that leads to saturation of high amplitude perturbations, particularly for high
wave numbers. Further, it is not symmetric since convex displacements are smoothed
out, while concave ones form sharp edges. Hence, as pointed out by Sivashinsky
[38], Landau [27] eliminated a major stabilizing mechanism by linearizing all of the
equations. This argument partly resolves Landau’s paradoxical prediction of uncon-
ditionally unstable flame fronts. This becomes more clear when considering the fact
that Clanet and Searby [55] were the first to experimentally measure and visualize
the growth of planar flame front perturbations due to the Darrieus-Landau instability
as late as 1998. All previous studies on planar flames only measured cellular struc-
tures that were already non-linearly saturated and, hence, subjected to the mechanism
described above.

This thesis is devoted to the study of the linear response of acoustically perturbed
flames. The non-linear mechanism described above leads to the formation of very
characteristic flame shapes that exhibit sharp edges at concave and smooth fronts
at convex parts of a flame sheet. Hence, it provides a simple tool to estimate if the
response of a flame is still in the linear regime or if non-linear processes have already
started to become significant.
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1.2.2 Thermal-Diffusive

So far it was assumed that all points of a flame sheet propagate at a constant
speed. Theory, however, predicts that this speed depends on the local flame stretch
κs = 1/A(dA/dt ), i. e. the normalized rate of change of the local flame surface area.
Flame stretch has its origin in flame curvature and flow strain. Since the related pro-
cesses are governed by thermal as well as mass diffusion of a deficient species, their
consequences for the flame dynamics are attributed to the so-called thermal-diffusive
(or also thermodiffusive) mechanism.

The decisive parameter for this mechanism is the Lewis number, which relates the
thermal to the mass diffusivity of the deficient species1. It allows to distinguish be-
tween several distinct regimes of flame propagation: The first consists of mixtures
whose mass diffusivity of the deficient component with respect to the mixture is sig-
nificantly higher than the thermal one. Those flame fronts exhibit thermal-diffusive
instabilities that cause strongly corrugated flame surfaces. One example for such mix-
tures are lean hydrogen-air flames, e. g., Le≈ 0.4 for φ= 0.6 [87]. The second regime
is defined by mixtures with a Lewis number close to one, such as lean methane-air
flames (Le≈ 1 [88]), as considered in this work. Conditions with Le> 1 are usually
observed in lean mixtures of heavy fuels (e. g. propane/air [88]) or rich mixtures of
light fuels, as well as for combustion in porous media (blocked mass and enhanced
thermal diffusion) or for solid propellants [89]. These high Lewis number flames
show a third type of instability not considered in this work, the so-called pulsating
instability. It is expected to occur for Ze(Le−1)& 10 and is — since it results from a
thermal-diffusive mechanism — affected (enhanced) by flame stretch [48, 90–93].

In order to suppress hydrodynamic mechanisms, which will only be discussed in the
next section, it is assumed that the density of the flow does not change across the
flame. That way consequences of thermal-diffusive mechanisms can efficiently be
studied. In order to maintain chemical reactions inside a flame, on the one hand, heat
has to diffuse from the reaction zone into the fresh mixture and, in doing so, preheat
it to a temperature where the (fast) combustion processes can take place. On the other
hand, the deficient component is diffusively transported from the unburned mixture to
the reaction zone — i. e. methane molecules in the case of a lean methane-air flame.
Both diffusive processes together with the kinetics of the reaction define a laminar
unstretched flame speed, which depends on temperature, pressure and equivalence
ratio of the fresh gases, see e. g. [94].

If now the flame front is perturbed as illustrated in Fig. 1.7, from a geometrical point
of view, the heat released at regions that are convex towards the fresh mixture has to
heat up more cool reactants than in concave ones. Hence, more heat is carried away

1Later studies relying on a matched asymptotic expansion technique analyzed a two-step instead of
a one-step chemical scheme, see Matalon et al. [41]. They introduced an effective Lewis number, which
is a weighted sum of the Lewis numbers of the individual species. This extension of the theory shall not
be considered here.
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Figure 1.7: Illustration of the thermal-diffusive flame instability mechanism. Tem-
perature fluxes are marked in red, mass fluxes of the deficient species in
blue.

from the reaction zone in convex regions, which therefore cool down and propagate
at lower speeds than the unperturbed flame. On the contrary, heat accumulates in con-
cave regions, an effect that increases the local flame speed. Since the flow speed is
constant everywhere (we presently assume constant density across the flame front!),
perturbations of the flame sheet will be damped by this mechanism. At the same time,
however, mass diffusion of the deficient component is enhanced in convex and atten-
uated in concave regions for analogous reasons as explicated above for temperature.
This increases the flame speed in convex and decreases it in concave regions and,
therefore, has exactly the reverse effect of temperature diffusion: flame sheet pertur-
bations are further amplified. Depending on the Lewis number either one or the other
mechanism dominates. At a critical Lewis number Le0

c,TD
both effects cancel each

other and the flame sheet is marginally stable, that is (small) perturbations neither
grow (unstable) nor do they asymptotically decay (stable). An increase of mass —
or decrease in heat — diffusivity leads to Le<Le0

c,TD
and, therefore, to an unstable

flame sheet. Conversely, a reduction of mass — or increase in heat — diffusivity
causes Le>Le0

c,TD
and, thus, a stable flame sheet.

This phenomenon was analytically analyzed for flows of constant density by
Sivashinsky [90]. Assuming an inviscid flow up- and downstream the flame sheet,
a dispersion relation

σ = D th

[
Ze

2
(1−Le)−1

]
k2

︸ ︷︷ ︸
long−wave disturbances

− 4D thδ
2
D k4

︸ ︷︷ ︸
short−wave correction

(1.13)

was derived relating a growth rate σ to a wave vector k. Harmonic perturbations of the
flame sheet develop in time according to exp(σt + i kx1). Thus, positive growth rates
correspond to unstable, negative ones to asymptotically stable regimes. A growth rate
of zero corresponds to a marginally stable flame sheet. Neglecting the correction term
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(a) growth rate over wave number (b) growth rate over wave length

Figure 1.8: Dispersion relation of Eq. (1.13) for the thermal-diffusive instability
mechanism plotted over non-dimensional wave number (1.8a) and wave
length (1.8b) for several Lewis numbers Le ∈ [0.5,1]. The one for
Le0

c,TD
≈ 0.7 is highlighted in red ( ). Additionally, for the two shown

extreme Lewis numbers dispersion relations neglecting the short-wave
number correction term are plotted ( ).

in Eq. (1.13), one can compute a critical Lewis number Le0
c,TD

= 1−2Ze−1 for which
the growth rate is at maximum zero, i. e. σ ≤ 0,∀k. The short-wave correction in
Eq. (1.13) accounts for the fact that perturbations with a wave length that is of the
order of the preheat zone thickness δD are damped by diffusion since boundary layers
of two adjacent flame wrinkles overlap and merge.

Using Eq. (1.13), dispersion relations such as the one shown in Fig. 1.8 are retrieved.
Fig. 1.8a shows the growth rate over the non-dimensional wave number k∗ = kδD

and Fig. 1.8b the one over the non-dimensional wave length λ∗ =λ/δD . By using the
flame thickness δD as reference length, it is recognized that wave lengths of the order
O (δD ) are damped (i. e. the growth rate is negative) for all Lewis numbers shown. The
dispersion relation corresponding to the critical Lewis number Le0

c,TD
is highlighted

in red ( ). Dispersion relations of higher and lower Lewis number, respectively, are
shown by the gray lines (darker shades correspond to lower Le). The blue dashed line
( ) corresponds to the two extreme Le cases neglecting the short-wave correction
term.

The critical Lewis number evaluates to Le0
c,TD

. 0.8 for lean methane-air mixtures.
Since such flames have Lewis numbers of approximately unity, thermal-diffusive
mechanisms do not lead to a growth of flame front perturbations, but rather dampen
existing ones. Hence, they stabilize a flame front by damping existing disturbances,
which is especially important when considering that hydrodynamic mechanisms re-
sulting from a change of density across the flame always have a destabilizing effect.
They counteract each other, as will be shown in the following section.
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(a) (b)

Figure 1.9: (a): Since the flow across the flame front is accelerated in flame normal
direction, velocity vectors are bend towards the flame normal direction
downstream a flame. (b): Illustration of contracting (red) and expand-
ing (blue) flow tubes due to a displaced flame front, which explain the
occurrence of the Darrieus-Landau instability.

1.2.3 Hydrodynamic

As discussed in Sec. 1.1, according to the seminal work of Darrieus [26] and Landau
[27], a change in density across the flame sheet destabilizes planar flames for per-
turbation wave lengths that are much longer than the flame thickness. In honor of its
two discoverers, this instability is referred to as the Darrieus-Landau (DL) instabil-
ity in the literature. The intensity of this mechanism is proportional to the prevailing
density change across the flame sheet, which is quantified by the non-dimensional
increase of specific volume

E = ρu

ρb
−1. (1.14)

The first term in this expression is also referred to as the expansion ratio e = ρu/ρb .
Since all flames covered in this thesis produce a significant change in density of
E ≈ 5.7, it can be expected that the DL mechanism plays an important role for their
dynamics.

Before assessing the problem analytically, a qualitative description shall be provided.
A planar, perturbed flame front stabilized in a uniform flow, as shown in Fig. 1.9b
is assumed. Due to the density jump across the flame front, the upstream flow uu is
accelerated in flame normal direction, as illustrated in Fig. 1.9a. The tangential com-
ponent stays constant. This leads to a bending of the flow vector towards the local
flame normal direction. Consequently, in regions where the flame front is concave
towards the fresh mixture, the flow tubes are contracted, while they expand in con-

27



Dynamics of Thin Flame Sheets

vex ones. This is illustrated in Fig. 1.9b by red (contraction) and blue (expansion)
flow tubes. Assuming that the flame speed is not affected by stretch, in red regions,
the local flow speed will outweigh the flame speed and the flame front is transported
further downstream. This will lead to an increase in amplitude of the flame displace-
ment. In blue regions, the reduced flow speed will lead to an upstream propagation
of the flame front, which also increases the displacement amplitude. Hence, flames
sheets imposing a density jump are prone to a hydrodynamic kind of instability. This
mechanism will be assessed analytically in the following.

Assuming inviscid Eulerian flow equations up- and downstream of the flame

∂u j

∂x j
= 0 (1.15)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
, (1.16)

inserting harmonic perturbations of the form exp(σt + i kx1 ±kx 2) for all flow states
and coupling both domains by use of the jump conditions of Eq. (1.7), one retrieves
a dispersion relation

σ=Ω0sLk (1.17)

with the Darrieus-Landau parameter

Ω0 =
p

e3 +e2 −e −e

e +1
. (1.18)

This is the classical result obtained by Landau [27] and Darrieus [26] and predicts that
flame sheets are unconditionally unstable to perturbations of all wave lengths, since
Ω0 ≥ 0. In particular, the growth rate linearly increases with k and, thus, shorter wave
lengths are more amplified than longer ones. Based on this result, one would expect
that planar flames always develop high frequency oscillations that rapidly grow in
amplitude until non-linear effects lead to saturation [42].

It was already mentioned in Sec. 1.1.2 that such a behavior could not be observed
experimentally. Instead, planar flames form a cellular structure of a certain wave-
length, which suggests the existence of a maximum growth rate at this wave length
(or close to it, since the amplitude of the observed cellular flame structure is finite
and, therefore, non-linear effects have already lead to a saturation). Markstein sug-
gested a phenomenological correction by relating the flame speed to the local flame
sheet curvature multiplied by a factor lM , see Eq. (1.8). This factor is called the Mark-
stein length and is of the order of the thickness of the convective-diffusive layer of
a flame. It lumps the effects of various transport processes inside the flame as well
as those concerning the kinetics of the chemical reaction into one single parameter.
Physically, flame stretching effects result from interactions of the external hydrody-
namic field and the inner flame structure, which leads to convective fluxes along the
flame redistributing heat and species. This affects the local reaction rates and thus the
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flame speed [42]. According to Zeldovich et al. [42], introduction of a curvature de-
pendent flame speed is analogous to the introduction of a stabilizing surface tension
at the flame front.

The solution of Darrieus and Landau is asymptotically valid for Péclet number
Pe= L/δD approaching infinity. Hence, the Darrieus-Landau model is a proper ap-
proximation in the limit of very long wave lengths. Stated differently, expanding all
state variables using the small parameter 1/Pe, it is the zeroth order approximation of
the flow problem. The extension of Markstein is then a first order correction of that
model in the limiting case of high activation energies of the global reaction [42]. It is
interesting to note that this first order correction only affects the flame speed and not
the jump conditions of Eq. (1.7). This can be explained by the strong dependency of
the flame speed to temperature for high activation energy global reactions [42].

Later studies could derive expressions for the flame speed from first principles using
matched asymptotic expansion methods. They included also effects of terms that are
of first or higher order in 1/Pe and considered different Lewis and Zeldovich num-
bers. Since these theories capture effects of diffusive and convective fluxes along the
flame front and, hence, flame stretch related effects, those studies do not strictly sep-
arate thermal-diffusive and hydrodynamic mechanisms. Indeed, they capture the net
effect of both mechanisms. Particularly, Frankel and Sivashinsky [95] and Pelce and
Clavin [40] derived a dispersion relation accounting for hydrodynamic effects as well
as for heat conduction and mass diffusion:

σ=Ω0sLk −Ω1D thk2 (1.19)

with

Ω1 =
ê(1− ê)2 − ê ln(ê) (2Ω0 +1+ ê)− ê(1+Ω0)(ê +Ω0)Ze(1−Le)

∫E
0

ln(1+x̃)
x̃

dx̃

2(1− ê) [ê + (1+ ê)Ω0]
,

(1.20)
where ê = ρb/ρu denotes the inverse of the expansion ratio. Viscosity, responsible for
diffusion of momentum and quantified by the Prandtl number in the non-dimensional
framework, was found to have only a secondary effect on flame stability and, thus
does not show up here [48, 95]. This is surprising, since it usually is of the same
order of magnitude as thermal and mass diffusivity. And, indeed, the more recent
study of Matalon [83] showed that, if viscosity is allowed to vary across the flame
sheet, it has an effect on flame stability which is equal to the one imposed by other
diffusive processes. Its impact is proportional to the Prandtl number and always has
a stabilizing effect.

For Ω1 > 0 the flame is thermo-diffusively stable and vice versa for Ω1 < 0. Based
on this criterion, one can derive a critical Lewis number for which Ω1 = 0 holds. For
E = 0 this coincides with the critical Lewis number Le0

c,TD
derived in Sec. 1.2.2. It is

interesting to note that the critical Lewis number Lec,TD computed from Eq. (1.20) de-
creases for increasing E , see Fig. 1.10 (top). Hence, gas expansion effects extend the
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Figure 1.10: Darrieus-Landau parameter Ω0 and critical Lewis number for the on-
set of thermal-diffusive instability Lec,TD plotted over non-dimensional
increase of specific volume. All thermophysical parameters are taken
from a lean methane-air mixture.

(a) growth rate over wave number (b) growth rate over wave length

Figure 1.11: Growth rate according to Eq. (1.13) for the hydrodynamic instability
mechanism plotted over non-dimensional wave number (1.8a) and wave
length (1.8b) for several Lewis numbers and non-dimensional density
increases: red lines visualize effect of a varying Lewis number for E = 6

and green lines the respective effect of the density jump for Le=Lec

range of stability against thermal-diffusive driving mechanisms. Fig. 1.10 (bottom)
shows how Ω0 behaves for an increasingly strong density jump. A steep increase up
to E ≈ 2 can be observed, which is followed by a saturation and even a slight decrease
towards very high E . Hence, one must conclude that the Darrieus-Landau mechanism
is most dominant for a non-dimensional increase of specific volume of E ≈ 3.2 and is
even slightly reduced towards higher E .

Fig. 1.11a shows the growth rate over non-dimensional wave number as defined by
Eq. (1.19). Fig 1.11b shows the same result but this time plotted over wave length.
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The green lines visualize the impact of the strength of the density jump alone, since
for each E exactly the corresponding critical Lewis number Lec,TD is chosen. A higher
non-dimensional increase of specific volume hence leads to a steeper slope of the
dispersion relation plotted over k∗, which however saturates around E ≈ 3 and then
slightly decreases. The slope directly follows the trend of Ω0 shown in Fig. 1.10
(bottom). The red lines visualize how Lewis number affects the dispersion relation for
a fixed non-dimensional increase of specific volume of E = 6. Lewis numbers larger
than the critical one, lead to parabolic dispersion relations, which intersect the zero
growth rate line at a critical wave number. Further, they exhibit a certain wave number
of maximum growth. Decreasing the Lewis number below its critical value leads to
a superposition of thermal-diffusive and hydrodynamic instability mechanisms and,
therefore, to a dispersion relation of increasing slope for k∗ →∞.

Summarizing, all flame fronts are subject to a destabilizing hydrodynamic mecha-
nism since combustion is associated with exothermic reactions, which always lead to
an increase in specific volume. Depending on the Lewis number, thermal-diffusive
mechanisms may either stabilize a flame front (Le > Le0

c,TD
) or further destabilize

it (Le < Le0
c,TD

). The stabilizing effect of this mechanism increases with expansion
ratio.

1.2.4 Advection of Perturbations at Inclined Flames

So far only freely propagating flame sheets far away from any boundary were ana-
lyzed. Such flames are however of no relevance for thermoacoustically driven com-
bustion instabilities, since they allow not for continuous operation. Therefor, the
flame sheet has to be anchored such that it stays at a fixed position. One example
of such a device is a Bunsen burner, where the flame is anchored at the burner rim.
In this chapter, any additional effects of the anchoring shall be excluded from the
analysis and only the behavior of the flame sheet far away from this point shall be
of interest. It should be noted that the advection of perturbations along an inclined
flame sheet is ultimately only a consequence of the fact that flames propagate normal
to themselves and the imposed anchoring of the flame. Nevertheless, it constitutes
an important mechanisms, which is not obvious. Therefore, it is treated as a distinct
mechanism here.

Fig. 1.12 shows a sketch of such a flame sheet. The fresh gases stream along the
vertical x1 axis by a mean flow velocity u1 until they eventually reach the flame sheet
that burns at a constant speed s0

L . From geometrical considerations, the angle between
flame the sheet and the velocity u1 is computed as α∗ = sin(α) = s0

L/u1, with the
non-dimensional flame angle α∗. At α∗ = 1 the flame speed equals the flow velocity
and the flame propagates normal to the fresh flow. For 0 <α∗ < 1, the flame sheet
propagates slower than the flow field and hence it can only be stabilized at an angle
α< 90◦. One important consequence of such an inclination is that perturbations of the
flame front are advected downstream by a velocity u∥ = u1 cos(α), which is the to the
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Figure 1.12: Sketch of an anchored and perturbed flame sheet that is inclined by an
angle α with respect to the flow velocity of the fresh mixture.

mean flame sheet projected flow velocity u1 [45, 65]. In terms of the non-dimensional
flame angle it writes u∥ = u1

√
1− (α∗)2.

In summary, the main property of inclined flames is that perturbations of the flame
sheet are advected along the mean flame front at a velocity u∥. How does this interfere
with the three other mechanisms explicated in Secs. 1.2.1–1.2.3? Let us for now
assume that all of the so far mentioned mechanisms are simply superimposed. Then,
flame front displacements of growing amplitude — either driven by a hydrodynamic
or a thermal-diffusive mechanism — would be advected downstream along the mean
flame front by a velocity u∥. Consequently, the originally absolutely unstable flame
sheet is now convectively unstable and the growth of flame wrinkles becomes a spatial
— instead of a temporal — phenomenon [66, 96].

One might now wonder if the preceding assumption of a perturbation growth rate
that is invariant to changes in the flame angle α was too naive. In this regard, Petersen
and Emmons [45] experimentally showed that inclined flames indeed exhibit a spatial
growth of flame front perturbations that could be associated with the Darrieus-Landau
mechanism. They found that, depending on the equivalence ratio, stable or unstable
flame sheets could be established. The unstable cases are split into two groups: Those
that develop growing flame displacements at a natural frequency without any forcing
and those that are stable, but show growing disturbances when the anchoring position
is displaced harmonically at a certain frequency. Assuming that the observed natu-
ral frequency approximately corresponds to the wave number where the dispersion
relation predicts a maximum growth rate, it is possible to compute a correspond-
ing Markstein length, see Fig. 1.11a for a qualitative example of such a dispersion
relation. A second method to estimate the Markstein length relies on data gathered
from the setup with a forced flame anchoring. By assuming that the lowest forc-
ing frequency, where the flame sheet does not respond, corresponds to the critical
wave number (zero growth rate) of the dispersion relation, a Markstein length can be
computed. Both methods yielded similar results, which cross-validates the individual
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methods.

Therefore, the hydrodynamic and thermal-diffusive mechanism presented in
Sec. 1.2.3 are also relevant for anchored flames. This was further confirmed by subse-
quent studies [63, 64, 66]. Of particular interest is the work of Searby et al. [63], who
studied the dynamics of stable Bunsen-type flames (no natural oscillations) whose
flame anchoring is harmonically displaced by a movable wire. As already reported
by Petersen and Emmons [45], this leads to the occurrence of advected flame front
perturbations of growing amplitude. For such a situation, Searby et al. [63] compared
experimental results to predictions of a modified version of the so-called Michelson-
Sivashinsky (MS) equation [38, 71]. This kind of equation exhibits a dispersion rela-
tion as discussed in Sec. 1.2.3 and, additionally, includes non-linear terms accounting
for the mechanisms discussed in Sec. 1.2.1. Searby et al. [63] further extended this
equation by adding flame parallel advection as described in this section. This new
equation now covers all of the four modes of flame propagation introduced above.
Very good agreement between this model and the experimental data was found —
even for the non-linear saturation process. That means, everything learned by study-
ing downward propagating planar flames should indeed be important to understand
the dynamics of inclined flames.

1.3 Low-Order Models

So far an overview of the physical mechanisms governing the dynamics of planar
thin flames has been provided. In order to model the propagation of arbitrary flame
sheets, several methods were developed — the MS equation, as one example, has
already been mentioned.

Another one is the so called level-set or G-equation approach. It is one of the most
important and wide-spread methods applied in the field of flame front stability anal-
ysis and thermoacoustics. Besides this, it has also found application in many other
disciplines such as crystal growth [97], multi-phase flows [98] or reachable set com-
putations [99]. Other than the MS equation, the G-equation approach inherently ne-
glects the hydrodynamic mechanism described in Sec. 1.2.3 and, therefore, does not
take into account any flame-flow feedback. In its most basic form, it only fulfills the
kinematic relation explicated in Sec. 1.2.1 stating that flame fronts propagate normal
to themselves. Often it is supplement by introducing a curvature-dependent flame
speed, which then also respects the thermal-diffusive mechanisms for Le&Le0

c,TD

and no flow strain, as outlined in Sec. 1.2.2. By coupling the G-equation approach
additionally with an (incompressible) flow solver using jump conditions or a compa-
rable approach, also the hydrodynamic mechanisms can be captured [100–104].

The basic 2D G-equation approach of an inclined flame sheet can be mapped to a 1D
problem, which results — after linearization — in a simple advection-diffusion equa-
tion. This equation serves as a basis for most of the available analytically solvable
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low-order models of acoustically perturbed flame fronts. Just like the G-equation,
it only captures the basic kinematics of a flame sheet, including advection and a
curvature-dependent flame speed. It is important to note that it specifically excludes
any flame-flow feedback and, hence, the hydrodynamic mechanism of Sec. 1.2.3.

In the following, firstly the level-set or G-equation approach is introduced in
Sec. 1.3.1, before the aforementioned 1D advection-diffusion equation is derived
from it in Sec. 1.3.2.

1.3.1 Level-Set or G-Equation Approach

Based on the early works of Darrieus [26] and Landau [27], Markstein [33] was the
first to introduce a partial differential equation (PDE) in space and time to model
the dynamics of a scalar field whose zero iso-line is identified with the gas dynamic
discontinuity representing the flame front. The PDE he provided represents the flame
as a front that propagates normal to itself at a velocity sL with respect to a given un-
burned flow field just ahead of it. To the best knowledge of the author, Williams [105]
was the first to use the letter “G” as representation for said scalar field. Presumably
since then, the governing PDE is also known as the G-equation. It should be pointed
out that the G-field itself has no physical meaning and is just a tool to track the flame
front.

As already mentioned, the flame front is represented by the iso-line/-surface
G(xi , t ) = 0. Regions of G < 0 represent the unburned mixture and those of G > 0

burned products. The flame normal direction, pointing towards the hot products, is
computed from

n f ,i =
∂G

∂xi
/

√
∂G

∂x j

∂G

∂x j
(1.21)

using the Einstein summation convention. The total derivative of the G-field has to
satisfy

dG

d t
= ∂G

∂t
+ ∂G

∂xi

d xi

d t
= 0. (1.22)

in order to ensure that G stays zero everywhere at the flame front. Following
Sec. 1.2.1, flames propagate normal to themselves and, hence, each point on the flame
sheet moves relatively to the cold flow field uu,i ahead of it according to

d xi

d t
= uu,i −n f ,i sL . (1.23)

Combining Eqs. (1.21)–(1.23) one obtains the final version of the G-equation

∂G

∂t
+uu,i

∂G

∂xi
= sL

√
∂G

∂x j

∂G

∂x j
. (1.24)
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The non-linearity in this equation results from the fact that the front propagates nor-
mal to itself and that there exist only two distinct states, burned (G > 0) and unburned
(G < 0), see Sec. 1.2.1 for more details.

As discussed in Sec. 1.2.2, the flame speed of thin flames depends on the local cur-
vature of the flame sheet κ f , which is computed from the G-field by taking the diver-
gence of the normalized gradient (i. e. the flame normal vector)

κ f =− ∂

∂xi

∂G
∂xi√
∂G
∂x j

∂G
∂x j

, (1.25)

see e. g. Smereka [106]. Using the curvature dependent definition of the flame speed
of Eq. (1.8) together with Eq. (1.25) and inserting both to the G-equation (1.24) one
obtains

∂G

∂t
+ui

∂G

∂xi
= s0

L

(
1− lMκ f

)
√

∂G

∂x j

∂G

∂x j
. (1.26)

Here, flow strain was neglected and, thus, curvature is assumed to be the only source
of flame stretch. It becomes apparent that consideration of a curvature dependent
flame speed adds a diffusion term (Laplacian) with diffusion coefficient s0

l
lM to the

governing equation of a flame sheet. Hence, flame curvature effectively reduces steep
gradients of the G-field and, for example, ensures the round tip of a Bunsen flame by
increasing the flame speed at this strongly curved flame region.

Concerning the simulation of anchored flames, problems arise at points where flames
are aerodynamically anchored and significant heat losses are present, e. g. at Bunsen
flames. Those quenching effects change the inner structure of the flame and, on a
hydrodynamical scale, the flame speed. This is especially important when a realistic
flow solver is coupled with a G-equation approach. Due to friction, flow velocity
decreases to zero right at the boundary. If the flame speed is not adjusted in this
region, i. e. by considering quenching and/or curvature effects, the flame would flash
back in the boundary layer of the flow and, hence, cannot be stabilized. While some
studies implemented these quenching effects using empirical correlations [107, 108],
others artificially fixed the G-field at the burner mouth using a Dirichlet boundary
condition [100–102, 109].

1.3.2 1D Linearized Flame Dynamics

As already mentioned above, practical combustion systems often rely on aerodynam-
ically stabilized flames whose fronts are inclined by an angle α with respect to the
bulk flow velocity of the fresh mixture far away from the flame. The dynamics of such
flames can be assessed best by mapping the G-equation to a 1D coordinate system by
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Figure 1.13: Sketch of a perturbed flame front ( ) around its mean ( ). Two
coordinate systems are shown: the laboratory (xL

1 , xL
2 ) and the flame

aligned (xF
1 , xF

2 ) one. In the first, the deflected flame front is described
by η+η′, in the latter by ξ (taken from [2]).

application of one of these transformations [65, 110, 111]:

Laboratory coordinates: G = xL
1 −η(xL

2 , t ) (1.27)

Flame coordinates: G = xF
2 −ξ(xF

1 , t ) . (1.28)

A crucial assumption of this approach is that the 2D flame front is indeed a function
of xF

1 (or xL
2 ), i. e. there exists a unique value of ξ (or η) for each possible value of

xF
1 (or xL

2 ). This requirement may be violated at high amplitudes. In this case, the
two transformations of Eqs. (1.27) and (1.28) cannot be applied any more. Two new
coordinate systems are introduced here, on the one hand, the so called laboratory co-
ordinate system, indicated by a superscript “L” (xL

1/2
), and, on the other, flame aligned

coordinates, indicated by a superscript “F” (xF
1/2

). The position of the flame front is
described by a quantity η in the former, and by ξ in the latter. Both are sketched for
a perturbed flame in Fig. 1.13. Fluctuations of the inlet velocity u1 = u1 +u′

1 lead –
as indicated in Fig. 1.13 – to displacements η′ and ξ in laboratory and flame coordi-
nates, respectively. Throughout the thesis, mean quantities are denoted by an overbar
(.), while a primed quantity (.)′ indicates a fluctuation around this mean with an am-
plitude of order O (ǫ) with ǫ≪ 1.

Inserting Eq. (1.28) into Eq. (1.26) results in a 1D description of the dynamics of an
inclined flame sheet in flame coordinates

∂ξ

∂t
+u∥

∂ξ

∂xF
1

= u⊥− s0
L

(
1− lMκ f

)
√√√√1+

(
dξ

dxF
1

)2

(1.29)

with a flame geometry dependent curvature term κ f . Assuming a 2D slit geometry of
rectangular cross sectional area of the flame (index “slit”), the mean curvature term
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writes

κ f ,slit =

∂2ξ

∂xF
1

2

√
1+

(
dξ

dxF
1

)2
−

(
∂ξ

∂xF
1

)2 ∂2ξ

∂xF
1

2

(
1+

(
dξ

dxF
1

)2
)3/2

, (1.30)

[112, 113]. It should be noted that the second term of this equation only adds a O
(
ǫ3

)

contribution to Eq. (1.29) and may hence be dropped for small flame front displace-
ments. Similarly, for such conditions, the square root term in the denominator would
asymptote to 1+O (ǫ) and may be approximated as unity. For conical flames of cir-
cular cross sectional flame area, additionally, an azimuthal curvature contribution
depending on the local flame radius r f has to be considered. Neglecting the second
as well as the square root term of Eq. (1.30), it writes

κ f ,con = 1

2

(
1

r f
+ ∂2ξ

∂xF
1

2

)
, (1.31)

where the index “con” denotes a conical flame [114]. In the following the differences
between Slit and Conical flames are neglected and only the curvature relation for Slit
flames is considered. Assuming fluctuations of the state variables u1 and ξ of order
O (ǫ) and neglecting all second order terms in ǫ, a linear PDE

∂ξ

∂t
+u∥

∂ξ

∂xF
1

= u′
⊥+ lM s0

L

∂2ξ

∂xF
1

2
(1.32)

is retrieved. A relation sL = u⊥ was applied, taking into account the fact that, in steady
state, the flame normal flow velocity is exactly balanced by the laminar flame speed.
Due to its simplicity, this advection-diffusion equation is well suited for analytical
treatment [65, 111, 115]. Neglecting flame curvature effects (lM ≡ 0), the resulting
non-homogeneous advection equation is solved by integration of the flame-normal
velocity perturbations

ξ(xF
1 , t ) = 1

u∥

∫xF
1

0
u′
⊥

(
x̃F

1 , t −
xF

1 − x̃F
1

u∥

)
dx̃F

1 +ξ

(
0, t −

xF
1

u∥

)
. (1.33)

The second term on the right-hand side of this equation considers perturbations at
the flame anchoring (xF

1 = 0). Hence, perturbations of the flame base would reach the
flame tip at a time τr = L f /u∥, where L f denotes the steady state flame length, see
Fig. 1.13. This quantity is known as the characteristic time of restoration [116].

Expressing Eq. (1.32) in laboratory coordinates by use of Eq. (1.27) again assuming
lM ≡ 0, one obtains

∂η′

∂t
−cos(α)sin(α)u1

∂η′

∂xL
2

= 1

sin(α)

[
sin(α)u′

1 +cos(α)u′
2

]
−

s′L
sin(α)

. (1.34)

Inserting the relations η′ = ξ/sin(α) and d xL
2 = −sin(α)d xF

1 (Wedge flames: “+”)
into this equation, transforms the equation in flame aligned coordinates, as shown in
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Eq. (1.32). Since, for small perturbations, both descriptions are equivalent, it is fa-
vorable to use flame aligned coordinates for modeling the flame front dynamics since
here the equation becomes more compact. As will be shown in Sec. 6.2, however, the
use of a coordinate system other than the flame aligned one can be advantageous for
evaluating flame surface integrals, due to a simpler treatment at the boundaries.

Eq. (1.32) holds for slit and conical configurations. It has, however, to be noted that,
just like in the aforementioned G-equation approach, flow strain as well as flame-
flow-flame feedback resulting from exothermic effects were neglected. Both would
act quantitatively different for the two flame geometries. Another consequence of
flame geometry concerns flame curvature: Due to their azimuthal curvature, coni-
cal flames are generally exposed to higher flame stretch than slit flames, compare
Eq. (1.30) for Slit and Eq. (1.31) for conical flames. The maximum stretch due to
azimuthal curvature is imposed at the flame tip for Bunsen flames and at the flame
anchoring for Wedge flames, since there the respective local flame radius r f reaches
a minimum. It follows that advected flame front perturbations are exposed to increas-
ingly stronger stretch rates for Bunsen flames, which should lead to smoother flame
shapes towards the tip compared to Slit flames. This mollifying effect impacts also
the generation of flame pockets at the flame tip (pinch off) [104]. For Wedge configu-
rations it is the other way round: flame stretch decreases while a flame perturbation is
advected along the flame front, which make it more prone to the formation of cusps.

1.4 Summary

In this chapter, the available literature on the dynamics of thin flame sheets far away
from any boundary was reviewed. The general idea concerning the analysis of such
flames is based on the fact that these flames can be viewed as propagating discon-
tinuities separating two coupled flow domains of different densities, namely the do-
main of the fresh mixture and the domain of the burned products. Based on matched
asymptotic expansion techniques, a propagation speed of the discontinuity (flame
speed) and jump conditions connecting the two flow domains could be derived from
first principles. This specific way of describing thin flame sheets shifts the focus
away from details of the combustion process to macroscopic properties such as flame
speed, flame shape and acceleration/deceleration of the underlying flow field.

Four mechanisms governing the dynamics of thin flame sheets could be identified: (i)
the propagation of a flame sheet normal to itself, (ii) thermal-diffusive mechanisms
interacting with the propagation speed of a flame front, (iii) hydrodynamic features
mainly affecting the surrounding flow field and (iv) the downstream advection of
flame perturbations along the flame sheet for inclined flames (neglecting the dynam-
ics close to the anchoring point). Finally, the wide-spread G-equation approach was
introduced in its 2D non-linear as well as in its 1D linearized form. It was pointed out
that it only captures the kinematics of a flame front, but inherently neglects flame-
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flow feedback, i. e. hydrodynamic mechanisms. This is a substantial shortcoming of
this method, as will be shown in the course of this thesis.
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2 Acoustic Response of

Burner-Stabilized Flames

A literature review on interactions between acoustics and burner-

stabilized premixed flames is provided, which builds upon the con-

cepts outlined in the previous section. Additionally, the notion of

convected velocity perturbations is introduced, around which most

theoretical predictions of the acoustic flame response evolve.

Chapter. 1 discussed the dynamics of flame sheets far away from any boundary. Four
different governing mechanisms were identified, which allowed to break down the
overall flame dynamics into their canonical components. This realization lays the
foundations for the analyses of acoustically perturbed burner-stabilized flames, which
will be conducted in this chapter. Such configurations introduce essentially two new
features, that is (i) a burner where the flame is anchored/stabilized and enclosed and
(ii) acoustic perturbations interacting with the flame. Furthermore, not only the flame
shape but also the change of the global heat release rate will now be an output quan-
tity of interest. Due to these features and requirements, the low-order modeling con-
cepts introduced in the previous chapter need to be extended in order to cope with
thermoacoustically relevant setups.

Burner-stabilized flames consist of multiple flame sheets of finite extension that are
usually anchored by a separation-induced low-speed region close to a wall. Addi-
tionally, they might be confined by a casing and exposed to nonconstant upstream
flow profiles. It becomes clear that the rather idealized flame dynamics described in
Chap. 1 might be enriched by additional phenomena such as flame-wall or flame-
flame interactions. Furthermore, the mean state of a flame is no longer trivial and
might significantly impact the dynamics of the overall system. Finally, the exis-
tence of acoustic perturbations introduces further complications. The individual flame
sheets of the overall flame are now externally forced, which introduces completely
new dynamic features. Therefore, the acoustic field inside the respective burner con-
figuration needs to be studied and acoustic-flame sheet interactions have to be con-
sidered.

Knowing how a flame reacts to acoustic fluctuations is only half the story when deal-
ing with thermoacoustic interactions. The other half concerns the generation of acous-
tic perturbations by the flame itself. It can be shown that acoustically compact flames
act as a monopole-like source of sound whose strength is proportional to fluctua-
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(a) Bunsen (conical Λ) (b) Slit (c) Wedge (conical V)

Figure 2.1: Investigated flame geometries (taken from [2]).

tions of their global heat release rate. Consequently, the dynamics of the overall heat
release rate is an important feature that has to be discussed in this section, as well.

This chapter is structured as follows: Sec. 2.1 provides a definition of the class of
problems that are tackled by this thesis, i. e. the analyzed burner configurations and
fuel-oxidizer mixtures are defined. Secs. 2.2 and 2.3 then provide a literature review
on the dynamics and low-order modeling concepts of acoustically perturbed flames,
respectively.

2.1 Problem Definition

In this thesis laminar lean methane-air flames of different equivalence ratios are ana-
lyzed that are operated far away from the region of lean extinction. They all exhibit
Lewis numbers close to unity and are hence thermal-diffusively stable. Furthermore,
they can in good approximation be assumed to be thin for all analyzed setups, as
pointed out in Sec. 1.1.1. The initial temperature of the fresh mixture is always kept
constant (300 K).

The geometrical details of all investigated burners shall resemble a backward fac-
ing step configuration, which allows for an efficient anchoring of the flame in the
low-speed region induced by the separating flow field. Depending on the specific ge-
ometrical details of the burner, the boundary and initial conditions, flames of several
different geometrical shapes can be stabilized. Three of the most important ones are
shown in Fig. 2.1: The Bunsen, the Slit and the Wedge flame. The three illustrations
immediately point out that flame sheets of realistic burner setups are not necessarily
planar and may also intersect. Furthermore, interactions with combustor walls, e. g.
at the anchoring position, imposes new dynamics via quenching, viscous effects and
flow separation. Due to advection, any flame front perturbation will eventually reach
the flame tip, where it might lead to a pinch-off of burning bubbles of fresh mixture.
All of these effects complicate the analysis by adding new dynamic features. Their
respective significance for the process of interest, however, might not necessarily be
high. Figuring out what is important and what not is one major goal of this work. In
order to reduce complexity, this work mainly focuses on Slit configurations.

The combustion region of all of the considered flame configurations shall be limited
by lateral constraints. This respects the fact that in technical applications flames are
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Figure 2.2: Unconfined (left) vs. confined (right) flame.

usually confined in order to use the sensible enthalpy of the hot products or to shield
the combustion process from the environment. Fig. 2.2 compares the jet of hot gases
of an open flame to the one of a confined flame. It becomes clear that a sufficiently
narrow confinement might alter the mean flow field by accelerating the burned gases
and, in doing so, also the acoustic flame response.

Finally, all configurations are exposed to acoustic perturbations whose minimum
wave length shall be much longer than the height of the respective flame. This limita-
tion demands that all flames are acoustically compact, i. e. they are exposed to acous-
tic pressure or velocity perturbations that are in-phase everywhere along the flame
sheets. Furthermore, under such conditions perturbed flames can be approximated as
monopole-like sources of sound.

2.2 Acoustics-Flame Interactions

The analysis of the dynamics of acoustically perturbed flame configurations, as de-
scribed in Sec. 2.1, requires some extensions of the theory of freely propagating flame
sheets presented in Chap. 1. A literature review on what has been achieved so far is
provided in the proceeding section.

Sec. 2.2.1 provides fundamental insights into how flame sheets, as introduced in
Chap. 1, respond to acoustic perturbations. These fundamental studies are followed
by a review of the literature concerning acoustically perturbed Bunsen flames in
Sec. 2.2.2. Here, the focus is put on the shape and the dynamics of acoustically trig-
gered flame front displacements. Section 2.2.3 then provides an overview on how
these displacements are connected to variations of the global heat release rate. Crucial
thermoacoustic concepts, such as the flame transfer function and its representations
in the frequency and time domain are introduced.

2.2.1 Freely Propagating Flame Sheet

In a first step, the interaction of acoustic perturbations with an freely propagating
planar flame sheet is analyzed, which should provide guidance on how to deal with
the more complex problem of a burner stabilized flame. For all cases studied here,
the flame thickness is much smaller than the wave length of any relevant acoustic
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perturbation (≤ O
(
103

)
Hz). Therefore, we can rely on the flame sheet assumptions

introduced in Chap. 1 when assessing acoustics-flame interactions [117]. According
to theoretical studies, for the frequency range that is relevant when considering com-
bustion instabilities, the flame speed is supposed to depend on the acoustic forcing
[118, 119], i. e. sL is thought to be a function of the acoustic field. This fact, however,
requires further rigorous experimental validation [117] and is, for the sake of simplic-
ity, usually neglected in thermoacoustic studies. The validity of this simplification for
many setups of practical relevance is supported by experimental and numerical stud-
ies, such as the one of Baillot et al. [120] or Michaels and Ghoniem [121], which
leads to the conclusion that the impact of acoustics on the flame speed is indeed
rather weak.

It is also commonly assumed that premixed flames predominantly respond to ve-
locity perturbations and almost completely ignore changes in pressure [117]. Thus,
the flame speed is basically not affected by acoustics. Based on these realizations, it
can be concluded that acoustic velocity fluctuations essentially displace a flame front
and, in doing so, alter its shape. This may trigger dynamical processes governed by
the four mechanisms identified in Chap. 1.

A fundamental study analysing details of acoustic-flame interactions has been per-
formed by Lieuwen [122] for the case of a planar downward propagating flame of
infinite extension that is hit by a planar acoustic wave at an angle of incidence θ: De-
pending on the angle θ, acoustic waves are transmitted and reflected at different ratios
at the flame front. As known from optics, when a disturbance travels from a medium
of lower to one of higher propagation speed, there exists a “cut-off” angle depending
on the density ratio across the flame, where the incident wave is fully reflected at the
flame front. This only happens for upstream and never for downstream acoustic ex-
citation. Furthermore, baroclinic production of vorticity at the flame front acts as an
acoustic damping mechanism. These results indicate that flame front displacements
caused by acoustic perturbations affect the surrounding flow field, for example, by
introducing vortical structures. And, indeed, such features are also observed in the
vicinity of burner-stabilized flames, as will be shown in the course of this thesis.

2.2.2 Burner-Stabilized Flame

Acoustics-flame interactions are significantly more complex for burner stabilized
flames than for freely propagating flame sheets. Although acoustic velocity fluctu-
ations mainly displace a flame, see the previous section, their spatial shape, flame-
wall and flame-flame interactions add some important burner-configuration depen-
dent peculiarities. In the following a brief overview of the most important findings is
provided. In the first part, the various modes of interactions of acoustic perturbations
with flames are covered. Knowing how flame displacements are generated, the review
focuses in a second part on the response of a flame to these perturbations. Interest-
ingly, the literature revolves around the notion of convected velocity perturbations
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instead of the four canonical mechanisms introduced in Sec. 1.2, which motivates the
analysis conducted in this thesis.

Acoustic Interactions with Burner-Stabilized Flames

Based on the fact that flames are usually stabilized in the vicinity of sharp edges
where acoustics triggers the shedding of vortices [123–126], it is natural to struc-
ture a review on acoustic interactions with burner-stabilized flames according to a
decomposition of acoustic perturbations into a potential (irrotational) and a vortical
(solenoidal) contribution. This decomposition accounts for the respective nature of
the individual flow modes [127] and allows for their separate analysis.

Investigations of the vortical part of the acoustic perturbation field, on the one hand,
have not drawn too much attention in the literature. One reason for this might be that
perturbed flame sheets generate a reasonable amount of vorticity by themselves [128–
130], which makes it hard to isolate effects of acoustically triggered vortex shedding.
Schlimpert et al. [104] tried to overcome this problem by neglecting flame-induced
gas expansion in their numerical model, which suppresses the generation of distract-
ing flame generated vorticity. In doing so, however, they at the same time removed
dilatation effects, which significantly dampen the vortical flow component and bend
the mean flow shear layer away from the flame. Hence, interactions of separating vor-
tices with the flame were overestimated compared to realistic conditions. According
to their analysis, at proper levels of gas expansion and far away from the region of
lean extinction, only interactions between the flame base region and shed vorticity
remain.

On the other hand, the potential acoustic velocity field in a backward-facing step
combustor, as depicted in Fig. 2.2 (right), was closer analyzed in a series of numerical
investigations by Lieuwen [131] as well as Lee and Lieuwen [132]. They found that
the acoustic velocity field interacting with the flame front is essentially 2-dimensional
with a maximum close to the flame anchoring position, even for acoustically compact
flames. Since evaluation of the flame response using such a model did — unexpect-
edly — not yield significant improvements compared to a 1-dimensional description
of the velocity field, this study has not drawn too much attention. Their principal
finding was later experimentally confirmed by Kornilov et al. [133] who did, how-
ever, not explicitly mention the connection to the previous study of Lee and Lieuwen
[132]. Kornilov et al. [133] forced a Bunsen flame, one time by moving the anchoring
transversally in and out and, one time by imposing acoustic velocity perturbations.
Both kinds of excitation resulted in very similar velocity fields, which are visualized
in Fig. 2.3. The authors further evaluated the transfer functions from the forcing to
the globally integrated heat release rate for both sets of experiments and found that
they also agreed reasonably well. Hence, they indirectly confirmed the findings of
Lee and Lieuwen [132] that acoustics interacts predominantly with the flame base
region.
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Figure 2.3: TiO2 smoke trace flow field visualization of two Bunsen flame forced at
200 Hz, one time by transversal movements of the flame holder at which
the flame is anchored (left) and one time by acoustic excitation (right)
(images are taken from Kornilov et al. [133], Figs. 5 and 6).

In summary, (i) the impact of acoustically triggered vorticity on a flame is still unclear
and (ii) the potential part of the acoustic velocity field predominantly interacts with
the flame base region. It has to be emphasized that, although this review follows said
flow decomposition approach, many of the studies mentioned remained side notes in
the body of literature on acoustics-flame interactions or they did not explicitly follow
such a decomposition-based mindset. Due to the fact, however, that this work is going
to revisit such a mindset, the concept of flow decomposition was granted a prominent
position in this review.

Flame Response to Acoustically Generated Displacements

As explicated in Sec. 1.2.4, one essential dynamical feature of burner-stabilized in-
clined flames is the advection of flame front perturbations. In this regard, Cuquel
[134] published an instructive experimental investigation of acoustically forced
flames. Fig. 2.4 shows four snapshots that were taken at equidistant phases at a fre-
quency of 80 Hz. In accordance with the studies reviewed above, acoustic interactions
displace the flame close to the burner mouth. This creates flame wrinkles, which are
convected along the flame front until they reach the flame tip. In Fig. 2.4, two of
these wrinkles are marked by a red and a green line, respectively. In each successive
snapshot, they move by an approximately constant distance and are hence advected
downstream by a fixed velocity.

At this point it should be emphasized that the flame is anchored at the burner, i. e. any
sudden displacement of the anchoring exerted by acoustic perturbations will eventu-
ally be counteracted such that after some time the flame has returned to its original
steady state position. The information of the restored flame anchoring will — just like
any flame front displacement — be advected along the front and will reach the flame
tip after a time τr . Accordingly, Blumenthal et al. [116] named this period of time the
characteristic time of restoration. It should, however, be noted that this time scales is
characteristic for the advection of any flame front feature, not just the restoration. In
that sense it should rather be called the characteristic time of advection.
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Figure 2.4: Snapshots of an acoustically excited Bunsen flame at 80 Hz, taken at four
equidistant phases. Clearly, two distinct wrinkles can be observed that are
advected from the flame base towards the tip at a constant speed, marked
by a red and green line (images taken from Cuquel [134], Fig. 6.10, left;
the red and green lines/arrows were added by the author).

Having a closer look at the snapshots of Fig. 2.4, one notices that the wrinkles grow
in amplitude while they are advected downstream. Furthermore, they develop a cusp
like structure exhibiting a sharp edge at concave and very smooth contours at convex
displacements. This is a consequence of the four governing mechanisms introduced
in Sec. 1.2 and corresponds to the non-linear process illustrated in Fig. 1.5. Since the
formation of cusps is a non-linear mechanism, it is not analyzed in detail any further
here. It should be noted, though, that whenever such cusp-like structures are visible,
non-linear mechanisms are at play and, consequently, the dynamics of the respective
flame is not purely linear anymore. In this regard, cusps are a good indicator that the
linear regime has been left. The transition from the linear to the non-linear regime of
acoustically forced Bunsen flames has, for example, been analyzed more closely by
Karimi et al. [135].

Concerning the dynamics of perturbed burner-stabilized flames, there are essentially
two types of studies: those which impose an acoustic forcing and those which me-
chanically displace the anchoring [45, 63], see the right and left hand side of Fig. 2.3,
respectively. The findings of Lieuwen [131] and Kornilov et al. [133], stating that
acoustics displaces mainly the flame base regions, provides a clear connection be-
tween both setups. Consequently, it seems natural that also the observed respective
dynamics are very similar and knowledge gathered from one configuration could be
transferred to the other.

This potential, however, has not been fully exploit so far. The dynamics of mechani-
cally forced flame sheets has been attributed to the net effect of the destabilizing hy-
drodynamic mechanism described in Sec. 1.2.3 and the stabilizing thermal-diffusive
mechanism described in Sec. 1.2.2 superimpose by advection [45, 63]. Interestingly,
this idea has hardly been explicitly formulated in the literature on acoustically forced
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Figure 2.5: Snapshots of a G-equation-based simulation of an acoustically excited
Bunsen flame at 120 Hz relying on the convective incompressible veloc-
ity model introduced by Baillot et al. [120], taken at three equidistant
phases. Colors denote the imposed axial velocity fluctuations u′

1 and the
green and red horizontal lines tag two maxima of the underlying velocity
field visualizing their axial convection (note: other than in Fig. 2.4, here
the lines tag axially transported velocity fluctuations not flame wrinkles).

flames. Instead, here the analysis has taken a very different way, centered around
purely kinematic observations of the flow field. Baillot et al. [120] experimentally
detected axially convected velocity perturbations just upstream of an acoustically per-
turbed flame inside the volume enclosed by the flame sheets and the burner mouth.
They explained these observations by both hydrodynamic interactions of the wrin-
kled flame front with the upstream flow field and the effect of gas expansion across
the flame. In principle, this hypothesis was later confirmed by studies of Birbaud
et al. [136] and Blanchard et al. [129].

The important point, however, of the study of Baillot et al. [120] is that it could
retrieve a good match between experimentally measured perturbed flame sheets and
those obtained from a G-equation-based model only if axially convected velocity per-
turbations upstream of the flame were introduced, resembling the ones that have been
measured. Fig. 2.5 depicts three successive snapshots of such a G-equation-based
simulation, which illustrates the model of axially convected velocity perturbations
and the resulting flame shapes.

Such a convective velocity model results in a linearly decreasing phase of the
associated FTF (see next section), which was confirmed by subsequent studies
[111, 137, 138]. Hence, Candel wrote in his 2013 review paper “This behavior [the
linearly decreasing phase] is the signature of perturbations convected by the flow of-

ten revealing the presence of large structures conveyed by the flow and impinging the

flame” (Candel et al. [139], p. 98). In this specific case he was referring to a burner-
stabilized Wedge flame that is clearly subjected to vortical structures shed from the
burner rim. The notion of this statement, however, was generalized for all types of
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flames and it became state-of-the-art that acoustically excited premixed (Bunsen)
flames are subject to convected velocity perturbations [140]. The contradictory point
here is that Birbaud et al. [136] and Blanchard et al. [129] as well as even Baillot
et al. [120] found that these perturbations are a consequence rather than a source of
flame front wrinkles. Therefore, the assumption of convected velocity perturbations
seems to violate causality (they cannot be source and consequence at the same time)
[1, 2]. This point has not explicitly been adressed so far and will be clarified in the
course of this work.

In summary, the most important mechanisms governing the linear response of in-
clined flame fronts to acoustic perturbations have been discussed:

1. Acoustics displaces predominantly the flame base region

2. Flame displacements are advected downstream by a constant speed resulting
in a characteristic time of restoration τr

3. Flame intrinsic instability mechanisms act on flame displacements, which
might lead to their growth in amplitude

4. Acoustically perturbed flames exhibit axially convected velocity perturbations
upstream of the flame sheets

What is missing in this overview are features concerning the flame tip (pinch-off)
and the anchoring (quenching, vortex shedding). They are, however, either essen-
tially non-linear in nature, of secondary importance or beyond the scope of this work.
Furthermore, there is a strong dependency of the flame response on the respective
burner configuration. One important point here concerns the confinement of the com-
bustion region [141–144], another the boundary conditions of walls adjacent to the
flame sheet [121, 145–149]. Also the burner size is important [150] as well as its
geometry [151–153].

2.2.3 Global Heat Release Rate Dynamics

This thesis is devoted to the study of flames in the context of thermoacoustic systems,
where the flame constitutes one specific sub-system. Therefore, the input/output re-
lation of interest of the flame module needs to quantify the sound that is produced by
an acoustically perturbed flame. In the regime of acoustically compactness, temporal
fluctuations of the global heat release act like an acoustic monopole whose dynamics
is directly proportional to the normalized fluctuation of the global heat release rate
of the flame [22, 154]. In the linear regime, the mentioned input/output relation is
established by the flame transfer function (FTF)

Q̇ ′

Q̇
= F (ω)

u′
ref

uref
. (2.1)
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It relates velocity fluctuations at a reference position u′
ref

to variations of the global
heat release rate. For perfectly premixed flames, a relation

Q̇ ′

Q̇
=

A′
f

A f

+
∫

s′LdA f
∫

sLdA f

(2.2)

holds, which connects fluctuations of the global heat release rate Q̇ ′ to fluctuations of
the flame surface area A′

f
and the mean surface integrated flame speed s′L [117, 155].

For perfectly premixed flames, as discussed here, the latter term is usually neglected
and essentially becomes important at higher frequencies [112, 113].

The thermoacoustic response of premixed flames is the consequence of a great va-
riety of physical mechanisms including everything that has so far been mentioned
in this and the previous chapter: hydrodynamic mechanisms leading to the growth of
flame front perturbations, thermal-diffusive processes stabilizing the front, non-linear
mechanisms leading to the formation of cusps, quenching effects at walls and flame-
flame interactions at the flame tip. This section now deals with the final step, which
— following Eq. (2.2) — essentially comprises the computation of the flame sur-
face area for a given displaced flame front. While this may sound trivial, it has some
non-straightforward consequences, especially concerning flame geometry. This will
be examined in greater detail in Chap. 6. For the remainder of this section, some
technical details concerning the representation of the linear flame response will be
discussed.

A frequency domain representation of the linear response of a laminar Bunsen type
flame is depicted in Fig. 2.6. The left half of that figure (a+b) depicts the frequency
response in terms of gain and phase, while the right half (c+d) shows the rather un-
typical representations in terms of a polar plot and a plot of the real and the imaginary
part of the FTF over frequency. Note that the gain has a logarithmic scale in Fig. 2.6
(a) and (c). These — sometimes also double logarithmic scales — are adopted from
the field of control theory, where this particular choice of scaling allows a simple
identification of the corner frequencies, i. e. frequencies above which a signal is at-
tenuated instead of being passed through by the system (in the case of a low pass
filter). These frequencies are also known as cut-off frequencies.

Another illustration of the linear flame response is the impulse response (IR), which
is shown in Fig. 2.7 (left half). It can be considered as the time domain equivalent
to the frequency response (FR) (Fig. 2.7; right half) and relates the heat release rate
to fluctuations of a reference velocity via temporal convolution (denoted by the ”∗“-
operator):

Q̇ ′

Q̇
= h(t )∗

u′
ref

uref
. (2.3)

The axes of Fig. 2.7 have a linear scaling improving the presentation of the low fre-
quency behavior compared to the previously shown logarithmic scale, which usually
has a gain and a Strouhal number of order O (1). The behavior of the gain for values

50



2.2 Acoustics-Flame Interactions

Figure 2.6: Representation of a typical linear flame response of a Bunsen flame in the
frequency domain (frequency response) in terms of (a) gain, (b) phase,
(c) polar plot with phase determining the angle and gain the radius and
(d) real and imaginary part plotted over frequency (taken from Kornilov
[156], Fig. 3.1).

lower than O (1) is of little practical interest. Similarly, from a thermoacoustical point
of view, predominantly the flame dynamics at Strouhal numbers of order O (1) is im-
portant. Therefore, in this thesis all frequency response plots exhibit linearly scaled
axes.

Characteristic features of the FTF of perfectly premixed laminar flames are (i) a low
frequency limit ( f → 0) of unity [157], (ii) an essentially linear decay of phase and
(iii) a low-pass behavior featuring reoccurring minima followed by local maxima.
The IR of such flames shows a more or less constant positive response that is fol-
lowed by some strongly damped oscillations. It should however be noted that this
characteristic strongly depends on the considered flame geometry, as will be shown
in Chap. 6. Keeping the geometry fixed, the responses of several flames are rather
similar. Introducing a non-dimensional frequency, a so-called Strouhal number, us-
ing the characteristic time of restoration f ∗ = f τr , Ducruix et al. [158] found that
plotting the responses of the global heat release rate of harmonically forced Bunsen
flames of different inclination angles over such a Strouhal number causes the individ-
ual curves to collapse on each other. Hence, in this work most representations of flame
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Figure 2.7: Representation of a typical linear flame response of a Bunsen flame in
the time domain as impulse response (left) and in the frequency domain
as frequency response (right).

responses are either plotted over such a Strouhal number or over a non-dimensional
time t∗ = t/τr .

2.3 Low-Order Models

The dynamics of acoustically perturbed burner-stabilized flames is more complex
than the one of freely propagating flame sheets, see the discussion above. Therefore,
a less rigorous analysis of the respective dynamics has been conducted for such con-
figurations — mostly due to complexities introduced by the flame anchoring and tip
as well as by the acoustic forcing. Probably due to these difficulties, mostly phe-
nomenological models were developed that enabled decent low-order predictions of
the global heat release dynamics of acoustically perturbed flames, however, obscured
the analysis of the underlying physical processes, since they are not rigorously de-
rived from first principles.

Early studies on the global flame response to acoustic perturbations boiled the com-
plete flame dynamics down to a time lag τ and an interaction index n [159]. This
rather simplistic model became to be known in the literature as the n-τ model. It
correctly captures the experimentally observed linear decrease of the FTF phase,
however, predicts a frequency independent gain of value n. This is a severe over-
simplification of the observed low-pass filtering behavior of flames, which was later
taken into account by a semi-empirical model developed by Merk [160]. He described
the flame front by use of a first order low-pass filter that provided an improved gain
prediction at the cost of a poorer phase behavior, which now saturates at −π/2. Sugi-
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moto and Matsui [64] developed a model based on growing convected perturbations,
which suffers from the same problem.

Later studies focused on capturing the actual flame front kinematics by use of a G-
equation based approach that inherently neglects flame-flow feedback, see Sec. 1.3.
One of the first to capture the dynamics of inclined flames using such a (1D lin-
earized) approach were Boyer and Quinard [65]. They imposed an uniform in-phase
velocity forcing

u′
1 = Â exp(iωt ) , u′

2 = 0 (2.4)

of amplitude Â and angular forcing frequency ω, which harmonically displaces the
whole flame sheet and found advected flame displacements that propagate inside sta-
tionary envelops. A laboratory coordinate system, as illustrated in Fig. 1.13, is used
in this representation. This model will be referred to as the uniform velocity model
in the following. By adding an additional growth term σξ to the 1D G-equation, they
artificially included otherwise neglected consequences of flame-flow feedback. The
growth rate σ that matched their experiments best, however, was significantly smaller
than the one computed from dispersion relations of planar freely propagating flames.
They attributed this discrepancy to a confinement related stretching of the flame in
combination with a strong sensitivity of the underlying dispersion relation to stretch
effects.

Baillot et al. [120] assessed the dynamics of acoustically excited Bunsen flames
experimentally and analytically. They also relied on the 1D linearized G-equation
framework used by Boyer and Quinard [65], however, they dismissed the growth
term. As already pointed out in Sec. 2.2.2, they measured velocity fluctuations of
the fresh mixture inside the region just downstream of the edge where the flame
is anchored, one time without flame (“cold case”) and one time with flame (“hot
case”). They observed axially propagating velocity perturbations inside this zone
with a speed close to the mean flow velocity for both cases, which they attributed
to vortex shedding for the cold and to the upstream influence of the perturbed flame
front for the hot case. Motivated by this observation, they imposed axially convected
velocity perturbations

u′
1 = Â exp

(
i kxL

1

)
, u′

2 =−i k
xL

2

2
Â exp

(
i kxL

1

)
(2.5)

fulfilling continuity for an axisymmetric frame of reference to their 1D linearized
G-equation framework. Here, k =ω/u1 denotes the wave vector of the forcing. Very
good agreement between experimentally measured and the modeled transient flame
shapes was found. This velocity model is – in accordance with the literature [161] –
called the “incompressible convective” model. Results of a G-equation based simu-
lation relying on such a velocity model (with u′

2 ≡ 0) are shown in Fig. 2.5.

The first to derive an analytical expression for the FTF using the G-equation frame-
work were Fleifil et al. [115]. Based on the observation that acoustic wave lengths
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in the frequency range of interest are long compared to the flame height, they as-
sumed an uniform in-phase forcing of the flame sheet by the velocity field, as already
applied by Boyer and Quinard [65]. Neglecting variations in flame speed along the
flame sheet, they exploit the fact that for perfectly premixed flames the heat release
rate is proportional to the instantaneous flame surface area, see Eq. (2.2). Based on
this assumption, they could derive an equation for the linearized heat release rate
fluctuations by evaluation of the instantaneous flame surface area from a displaced
flame front. The resulting FTF showed the desired low-pass behavior, however, the
phase saturated at −π/2 — just as in the model by Merk [160]. Particularly for low
frequencies it provided some useful predictions, though. Ducruix et al. [158] then
generalized the model of Fleifil et al. [115] for arbitrary flame angles by introduction
of a reduced frequency or Strouhal number ω∗.

Schuller et al. [137] revisited the convective velocity model proposed by Baillot et al.

[120], extended it by imposing an axial decay of the convected waves and combined
it with the approach of Fleifil et al. [115]. This led to an improved description of the
FTF phase, which now resembles that of a system of constant time delay and, hence,
does not saturate at −π/2. Schuller et al. [137], however, could only numerically
evaluate the model and were not able to provide analytical expressions. In a succeed-
ing publication, Schuller et al. [111] simplified this velocity model by neglecting the
axial decay and the lateral velocity component satisfying continuity, which led to an
analytically solvable problem. Later, Preetham et al. [138] and Cuquel et al. [161]
seized on the original idea of Baillot et al. [120] of the incompressible convective
velocity model and were able to provide analytical solutions using again the frame-
work of Fleifil et al. [115]. They, however, discarded the axial decay of the velocity
perturbation imposed by Schuller et al. [137]. Their model overpredicts the gain at
high frequencies, but provides good estimates of the phase.

The incompressible convective model, became the predominant low-order model for
acoustically induced flow-flame interactions. Since Schuller et al. [137] introduced
it to the field of thermoacoustics, it has been used (with slight modifications) for a
great variety of studies. For example, it was used to study non-linear thermoacoustic
oscillations [162, 163], the dynamics of bluff-body stabilized flames subjected to
longitudinal acoustic forcing [138, 164, 165], the non-linear behavior of the flame
response for high amplitude forcing [109, 166, 167] or to study the impact of stretch
and exothermicity on the flame response [104, 112, 113, 142]. This model hence
became state of the art, however, as already indicated in Sec. 2.2.2, a discussion
on the physical justification of the imposed axially convected velocity perturbation
arose.

Finally, it should be mentioned that linear models can equally be evaluated in fre-
quency and time domain. In the formulations mentioned above, harmonic velocity
forcing was assumed, which leads to a description of the response behavior in fre-
quency domain when combined with the 1D linearized G-equation framework, see
Schuller et al. [111] or Preetham et al. [138]. Blumenthal et al. [116] assumed a unit
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impulse forcing of the flame following a Dirac distribution δ(t ). For such a forcing,
the incompressible convective velocity model of Eq. (2.5) transforms to

u′
1 = δ

(
t −

xL
1

u1

)
, u′

2 =
xL

2

2u1
δ′

(
t −

xL
1

u1

)
(2.6)

for the two velocity components. Combined with the G-equation formalism, such a
forcing leads to a time domain representation of the linear response behavior, which
can be transformed to frequency domain. Similarly, any frequency domain represen-
tation can be mapped to the time domain. One significant advantage of the time do-
main perspective regards the improved identification of causalities, see Appendix A.3
for more details. A second related advantage concerns the clear separation and char-
acterization of physical processes: Following Blumenthal et al. [116], an impulsive
forcing results in two clearly separated processes, an axially moving source of flame
front displacement and a process that restores the original flame front. Each of these
processes can be associated with a characteristic time scale, which allows for a nat-
ural definition of a Strouhal number, for example. Conversely, in frequency domain,
one has to deal with the fact that the observable flame front displacement at a certain
location is the superposition of past displacements provoked anywhere upstream of
that point, which complicates the analysis.

2.4 Summary

In this chapter the body of literature concerning the dynamics of acoustically per-
turbed burner-stabilized flames was reviewed from an thermoacoustic point of view.
In a first step, the problem under consideration was specified by imposing constraints
on the burner geometry and the mixture properties. The literature on acoustics-flame
interactions was analyzed, starting with freely propagating flame sheets and then
moving on to burner-stabilized flames. Subsequently, available low-order modeling
concepts were reviewed, which are mostly based on a 1D linearized G-equation ap-
proach that is excited by convected velocity perturbations.

One important outcome of this chapter is that not only low-order modeling strategies
but also a significant part of the notion of the dynamics of acoustically perturbed
flames relies on the concept of convected velocity perturbations. This concept, how-
ever is paradoxical: On the one hand, it is assumed that the flame front is locally
displaced by axially convected velocity perturbations, on the other, it is stated that
these perturbations are a consequence of flame front wrinkling. Obviously, one of
these contradictory findings needs to be wrong. Interestingly, studies on flames whose
anchoring is displaced mechanically exhibit a very similar dynamics as acoustically
perturbed flames, since both ways of forcing essentially act at the flame base region.
Nevertheless, the analysis of the mechanically forced configurations does not rely
on convected velocity perturbations, but rather on the fundamentals introduced in
Chap. 1. This should provide some hints how to resolve the paradox described above.
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Part II

Analysis of Acoustics-Flame

Interactions of Slit Flames

So far, a review of the fundamental principles and modeling strategies
regarding the acoustic response of premixed laminar flames has been
provided. A variety of phenomena have been identified that need to be
organized in a clear way. For that reason, Chaps. 1 and 2 presented the
analysis of acoustically burner-stabilized flames as a continuation and
extension of the studies on freely propagating flame sheets. This allows
for a clear separation of the relevant canonical governing mechanisms,
similar to how it has already been done for the case of flames whose
anchoring is displaced mechanically [45, 63].

Contrary to the underlying idea of the structure of Part I, in the field
of thermoacoustics, the understanding and modeling of acoustically per-
turbed burner-stabilized flames is essentially based on the notion of con-
vected velocity perturbations. In order to provide a new perspective on
the topic and to resolve the paradox consequences of the assumption of
such convected perturbations, this Part of the thesis focuses rather on the
dynamics of the acoustic field and the flame sheet than on the kinemat-
ics of the flow field upstream of the combustion zone. Therefore, Chap. 3
presents a new first principle-based low-order modeling approach. Based
on it, Chap. 4 analyzes the interactions of acoustic perturbations with the
flame sheet neglecting flame-flow feedback. Finally, Chap. 5 investigates
the consequences of such a feedback from the flame onto the flow.

Parts of Chaps. 3 and 4 have already been published, see Steinbacher et al.

[1]. Compared to this publication, significant changes have been applied:
Essentially, the underlying modeling concept is introduced in more detail,
now having a wider scope, and a Kutta condition is applied. Consequently,
also the discussion and analysis of the results is updated. Nevertheless,
the general statements and results of the original publication remain un-
changed.

57





3 Flow-Decomposition Based Modeling

Framework

A new low-order modeling framework for the interaction of acous-

tics with premixed flames is introduced. It relies on a Helmholtz

decomposition combined with a flow-field representation based on

flow-field singularities and a conformal mapping technique. The vis-

cous mechanism of vortex shedding is included by use of a Kutta

condition.

Low-order modeling approaches naturally require a simplification strategy that is
often based on a decomposition of the overall problem into several simpler ones
according to a predefined criterion. In this work, a Helmholtz-Decomposition based
approach is chosen, which splits the flow into two contributions: an irrotational part
that obeys to a flow potential, and a solenoidal or vortical part that identically satisfies
continuity. The former is again split into a constant density and a flow expansion part
that takes the combustion related density changes and the therewith accompanied
acceleration of the flow into account. In doing so, it is easy to switch-off feedback of
the flame onto the flow, as will be done in Chap. 4 to analyze primary acoustic-flame
interactions. On the other hand, it also allows for a rather straight forward analysis of
consequences of flame-flow feedback, which will be discussed in Chap. 5.

Decomposing the flow field into irrotational and solenoidal parts simplifies the flow
problem by imposing some structure. For the purpose of allowing for a low-order
treatment, however, some more simplifications are required. Hence, a slightly com-
pressible 2D (slit) flow of an ideal fluid is assumed. In doing so, the overall flow-field
can be constructed from a number of flow-field singularities, i. e. point sources and
vortices. Applying a conformal mapping technique accounting for the boundary con-
ditions, the rather complex dynamics of the overall system boils down to a number
of less complex canonical problems. Special focus is put on the implementation of
a Kutta condition, which accounts for viscous effects in the vicinity of sharp edges.
A Slit flame configuration is choosen since it allows for a significantly simpler ana-
lytical treatment than conical ones. It will be explained in Chap. 6 how to relate the
obtained results to other flame geometries.

Sec. 3.1 introduces the general idea of the chosen modeling approach that is based
on the well-known Helmholtz-Decomposition. Based on this idea, acoustics-flame-
flow interactions are analyzed and three perturbation flow modes are identified. In
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Sec. 3.2, the considered problem is explicated in detail and the associated govern-
ing equations are derived. Sec. 3.3 introduces a low-order method for solving the
posed problem relying on a finite number of flow field singularities combined with a
conformal mapping technique and a Kutta condition adopted from aero-acoustics.

3.1 Helmholtz Decomposition

Any vector field u can be decomposed into an irrotational ui and a vortical uω part.
While the former is defined as the gradient of a potential φ

ui =∇φ , (3.1)

the latter is computed from the curl of a vector potential ψ

uω =∇×ψ , (3.2)

where ∇= ∂/∂xi denotes the nabla operator and “×” the cross-product. In doing so,
the divergence of the overall field u = ui +uω solely depends on ui , since ∇·u =∇2φ,
and the curl of it solely on uω, since ∇×u =−∇2ψ. Here, “ ·” indicates a scalar
product and ∇2 = ∂2/(∂xi∂xi ) the Laplace operator. This approach is known as the
Helmholtz Theorem or Helmholtz Decomposition [168, 169].

Why is this theorem useful for the analysis of acoustically perturbed flames? The
main reason for this is based on the fact that irrotational and vortical flow components
exhibit very different characteristics and properties, which help to bring some order
into the complex field of acoustics-flame-flow interactions. The flow field of irrota-
tional disturbances depends at every instant in time solely on the prevailing boundary
conditions, such as the pressure at the in- and outlet, while the one of vortical pertur-
bations is capable of showing transient phenomena not instantaneously governed by
the boundaries. Lord Kelvin reflected this fact in his definition of a vortex as “... a

portion of fluid having any motion that it could not acquire by fluid pressure transmit-

ted through itself from its boundary” (Thomson [170], p. 225(§20)). It should be kept
in mind that here the term vortex is used in order to describe the angular velocity of
a point in continuous space, which would nowadays be rather referred to as vorticity.
It is defined as the curl of the velocity field, i. e. ω=∇×u.

Another important property was found by Chu and Kovasznay [127] who showed
that three modes of fluid motion can be identified: sound, vorticity and entropy. Far
away from any boundary, they hardly interact with each other, such that any given
vorticity or entropy perturbation is convected as a frozen pattern. This agrees with
the findings of Helmholtz [168] stating that simple vortical structures are rather stable
and stay well separated in space while they are transported by the local flow velocity.
In this chapter, only the sound and vorticity flow mode shall be considered since our
analysis is limited to perfectly premixed flames that should, particularly in the limit of
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3.1 Helmholtz Decomposition

Figure 3.1: Overview of acoustics-flame-flow interactions. For evaluation of the
(thermo-) acoustic flame response, sound perturbations serve as an input
and fluctuations of the global heat release or the local flame displacement
as an output of the considered system.

low Mach numbers and complete combustion, not exhibit any entropic perturbations
[171, 172].

To summarize the discussion so far, the irrotational component of a velocity field
depends solely on the instantaneous values of pressure and velocity at the boundaries,
while the vortical one features convected, well separated structures (note that the
analysis is limited to laminar flows!). In order to exploit this knowledge for the sake
of bringing some order into the problem at hand, Fig. 3.1 shows an overview of
acoustics-flame-flow interactions. Here, additionally to the aforementioned two flow
modes, a flame mode is introduced, where flame displacements are transported along
the steady state flame by a velocity u∥, see Sec. 1.2.4. It is usually accompanied
by both vortical and irrotational flow perturbations proportional to the local flame
displacement — details will be provided in Chap. 5. Since we are interested in the
(thermo-) acoustic response of a flame, the sound flow mode constitutes the input of
the analyzed system and changes of the global heat release rate, which result in a
monopole-like source of sound, the output. Any immediate response to an impulsive
input forcing of the system can predominately be assigned to direct interactions of the
sound field with the flame, while any delayed output has to be attributed to memory-
like effects of the vorticity and the flame mode.

We now have a closer look at the irrotational sound flow mode, which inherently
neglects flow separation. The perturbation velocity field is thus computed as the gra-
dient of an acoustic potential φ, which obeys a non-dimensional wave equation

He2 ∂
2φ∗

∂t∗2
−∇2φ∗ = 0 (3.3)

with the Helmholtz number He. The speed of sound is assumed to be constant and
Mach numbers are low. Assuming that the characteristic length required for comput-
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ing He is the length of the flame, we can express the Helmholtz number as a product
of the Mach number Ma and the Strouhal number, i. e. He = Ma f ∗. Strouhal num-
bers of interest for FTFs are at maximum of the order O (10), see Chap. 4, and Mach
numbers of order O

(
10−2

)
. Hence, He can be considered to be of maximum order

O
(
10−1

)
, which allows to safely drop the time dependent term in Eq. (3.3) for fur-

ther analysis. The domain of interest is hence acoustically compact, which simplifies
Eq. (3.3) to the now dimensional equation

∇2φ= 0. (3.4)

Consequently, the acoustic flow mode is governed by a Laplace equation and in the
following we refer to the low Helmholtz number regime as the regime of compact
acoustics.

Having discussed the properties of a Helmholtz decomposition and having introduced
an overview of the relevant interactions governing the flame response in Fig. 3.1, the
field is set to explicate the modeling approach pursued In this chapter as well as to
introduce the investigated test case setups, which will be provided in the next two
sections.

3.2 Problem Formulation and Governing Equations

A symmetric configuration as depicted in Fig. 3.2 shall be considered, where a
Slit type flame is stabilized above a jet of perfectly premixed lean air-fuel mix-
ture and excited by upstream velocity perturbations whose bulk value is given by
u′

1,blk
(t ) = 1/Ri

∫Ri

0 u′
1(x2, t )dx2. Assuming a high activation energy of the global

chemical reaction and a Lewis number of about unity, the overall flow problem is split
into a large-scale hydrodynamic and a thin, quasi-1D combustion zone, see Chap. 1.

A low Mach number macroscopic flow is assumed, which is regarded to be slightly

compressible in the sense that density is only affected by the combustion process
[100, 173]. Furthermore, the analysis shall be restricted to a 2D ideal fluid (zero vis-
cosity, thermal and mass diffusivity) without any volume or body forces. Viscous
effects will be incorporated by use of a Kutta conditions. This results in a flow prob-
lem that is governed by

∇·u =− 1

ρ

Dρ

Dt
(3.5)

Du

Dt
=− 1

ρ
∇p , (3.6)

where D(.)/Dt = ∂(.)/∂t +u ·∇(.) is the material derivative and u, ρ and p denote
flow velocity, density and pressure, respectively.

The density-gradient dependent source term on the right-hand side of continuity
Eq. (3.5) vanishes everywhere but in the immediate vicinity of the flame front. Here
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3.2 Problem Formulation and Governing Equations

Figure 3.2: A Slit type flame is stabilized above a stream of unburned mixture (“u”)
with a bulk flow velocity u1,blk and subjected to upstream bulk veloc-
ity perturbations u′

1,blk
. The flame propagates normal to itself by a flame

front curvature κ dependent speed sL and acts as a volume source of
strength m. Two coordinate systems are used, namely laboratory coor-
dinates (x1, x2) and flame aligned coordinates (x∥, x⊥) where x⊥ points
along the local flame normal direction towards the burned gas (“b”).

it acts as a source of volume, which leads to a volume production per unit length of
the flame of m = E sL [173, 174], where E = ρu/ρb −1 denotes the non-dimensional
density increase and the indices “u” and “b” indicate a quantity of the unburned and
burned flow, respectively. Introducing a kernel D(x⊥) capturing the spatial distribu-
tion of the volume production along the flame normal direction x⊥, see Fig. 3.2,
Eq. (3.5) can be rewritten as

∇·u = mD
(
d

(
x, x f

))
(3.7)

with
∫∞
−∞ D(x)dx = 1 and d

(
x, x f

)
denoting the distance from a point x to the flame

front x f .

Taking the curl of the momentum Equation (3.6) leads to a transport equation for
vorticity ω

Dω

Dt
= 1

ρ2

(
∇ρ×∇p

)
. (3.8)

Here, the dilatation term −ω (∇·u) was neglected since it only is non-zero right at
the flame front and the unburned flow field is assumed to be free of vorticity. Further-
more, Matalon et al. [41] argued that contributions of this term are negligible across
the flame sheet. Thus, for 2D inviscid flows, the dominant source term of the vortic-
ity transport equation is the baroclinic tourque, which arises from a misalignment of
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Figure 3.3: Illustration of a parcel of fluid exhibiting a horizontal gradient in density
ρ (∝ shade of gray) that is exposed to a vertical gradient in pressure p

leading to a force F accelerating the parcel. Due to the density gradient,
the center of gravity of the fluid parcel (red line) is shifted away from the
geometrical center (black line) and, hence, the parcel of fluid would start
to rotate in counter-clockwise direction.

the pressure and density gradients, see Fig. 3.3. For a detailed and rather complete
description of how vorticity interacts with a flame sheet, it is referred to the works of
Hayes [175] and Berndt [176]. We eliminate the pressure term in Eq. (3.8) by use of
Eq. (3.6) and obtain

Dω

Dt
= 1

ρ

(
Du

Dt
× ∇ρ

ρ

)
(3.9)

[177]. From the left-hand side of this equation it becomes clear that, in the absence of
any density gradient ∇ρ, vorticity is transported like a massless particle. The move-
ment of any hypothetical point vortex whose spatial position may be defined by xω is
governed by

d xω

d t
= u (xω) (3.10)

with u (xω) being the flow velocity right at the vortex position.

Using Eqs. (3.7) and (3.9), the flow problem depicted in Fig. 3.2 is solved by de-
composing the flow field u into two irrotational parts uc and ue , where the former
is caused by a pressure difference between in- and outlet of the domain initiating
the volume flux through the combustor. The latter captures effects of the volume ex-
pansion across the flame. Further, a vortical part uω is introduced that represents the
rotational parts of the flow field. In summary, the decomposition is written as

u = uc +ue +uω , (3.11)

see [100, 128, 173, 178]. While the irrotational components each have a potential
uc/e =∇φc/e , the vortical component depends on a stream function via uω =∇×ψω.
Application of these relations, together with continuity Equation (3.7) and the de-
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3.2 Problem Formulation and Governing Equations

composition of Eq. (3.11) results in the three Poisson equations

∇2φc = 2
V̇ (t )

Ri
δ(x1 −x1,EF) (3.12)

∇2φe = mD
(
d

(
x, x f

))
(3.13)

∇2ψω =−ω (3.14)

with the Laplace operator ∇2 = ∂2/(∂xi∂xi ). Note that uc is subject to a line source at

x1,EF =−∞, which generates a volume flux V̇ (t ) =
[

u1,blk +u′
1,blk

]
Ri∆x3 through the

combustor that is driven by a potential (or pressure) gradient between x1 =−∞ and
x1 =+∞. All boundaries shall be impermeable and the axial velocity gradients shall
vanish far up- and downstream the flame: ∂u/∂x1|±∞ = 0. Note that Eq. (3.12) con-
stitutes the non-homogeneous equivalent to the Laplace Eq. (3.4), which was derived
from the acoustic wave equation.

The dynamics of the flame sheet is captured by the G-equation approach, as expli-
cated in Sec. 1.3. The G-field, so far, has no other physical meaning than the fact that
its zero iso-line represents the instantaneous position of the flame front. Therefore,
we are in principle free to define it to any spatial function as long as the position of
the zero iso-line remains untouched (excluding numerical issues). For the problem
at hand, it is beneficial to define G to be a signed distance function, i. e. its value at
a position G(x) represents the distance from this point to the flame front located at
G(x f ) = 0. This property allows for a straight forward evaluation of the argument of
the function D(x) in Eq. (3.13) as d

(
x, x f

)
≡G(x). The G-equation writes

DG

Dt
= s0

L

(
1+ lM∇· ∇G

||∇G||

)
||∇G|| . (3.15)

and, consequently, its dynamics depends on the underlying flow field as well as on
the local, stretch dependent flame speed. Here, only flame stretch related to flame
curvature is considered, whose importance is quantified by the Markstein length lM ,
which is a length of the order of the flame thickness. Inserting G = x⊥−ξ(x∥, t ) into
Eq. (3.15) and linearizing the resulting expression with respect to ξ leads to a 1D
description of the flame front in flame aligned coordinates

∂ξ

∂t
+u∥

∂ξ

∂x∥
= u′

⊥+ lM s0
L

∂2ξ

∂x2
∥

(3.16)

where u∥ denotes the mean flow velocity in flame-parallel direction.

Eq. (3.9) together with Eqs. (3.12)-(3.14) and (3.15) define the flow problem. Ad-
ditionally, in the case of E > 0, a volume production kernel D has to be defined.
One major difficulty in solving this problem constitutes the impermeability boundary
conditions together with the non-trivial considered geometry (backward facing step
combustor), another the trailing edge where the flow separates. In this work, we ad-
dress the former issue by use of a Schwarz-Christoffel mapping technique and the
latter by application of a Kutta condition at the trailing edge. Both are introduced in
the following.
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(a) Physical domain (b) Image domain

Figure 3.4: Illustration of the Schwarz-Christoffel mapping (not to scale). Mean
flame position ( ) and straight lines radiating from the origin of the
image domain ( ), each in the physical and the image domain. Fur-
ther, a point vortex, as well as its mirror vortex in the image domain, are
drawn at the shear layer.

3.3 Conformal Mapping Technique

The problem formulated in Sec. 3.2 has already — in similar form — been solved
numerically by several studies, see for example the works of Pindera and Talbot [173]
and Rhee et al. [100]. In this thesis, however, a low-order formulation is desired.
Therefore, the chosen solution approach is essentially based on three points: (1) The
impermeability boundary conditions are satisfied by use of a Schwarz-Christoffel
mapping technique, (2) the flow field is decomposed into a finite set of flow field
singularities, i. e. point sources and point vortices, and the flame front dynamics is
captured by a 1D linearized G-equation approach as shown in Eq. (3.16) and (3) in
order to avoid infinitely high velocities at the anchoring point, a Kutta condition is
employed. These approaches are one by one explicated in the following.

3.3.1 Schwarz-Christoffel Mapping

The Poisson Eqs. (3.12)–(3.14) are solved on the geometry of interest by use of a
Schwarz-Christoffel mapping technique. The inner of the physical flow domain is
mapped to the imaginary positive half of a complex image domain. By doing so, the
flow problem is split into a mapping problem simplifying and unifying the boundary
conditions and a canonical flow problem in the image domain. Schwarz-Christoffel
mappings are conformal mappings, i. e. they locally preserve angles and orienta-
tions [179]. These kind of transformations are complex valued functions of the form
ξ= f (x) that rotate and scale line elements in the approximate vicinity of a point x0 by
an angle arg

[
d f (x0)/dx

]
and a factor

∣∣d f (x0)/dx
∣∣, respectively. From this property it

follows that solutions of Laplace’s equation in the image domain are also solutions of
Laplace’s equation in the physical domain, see Howe [180] (Sec. 3.5). Consequently,
such a mapping can be applied to solve the given set of Eqs. (3.12)-(3.14).
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3.3 Conformal Mapping Technique

The coordinate system used to describe the combustor shown in Fig. 3.2 is illustrated
in Fig. 3.4. Due to symmetry, we limit ourselves to only one half of the domain.
Complex variables are used to describe the 2D problem: Coordinates in the physical
domain are represented by x = x1 + i x2 where x1 denotes the axial and x2 the spatial
direction, perpendicular to the first. Accordingly, velocities are expressed by u =
u1 + i u2. In the image domain, the complex variable ξ= ξ1 + i ξ2 is used to specify
location.

All corners of the flow domain are named by capital letters (A to E) and are mapped
to points on the real axis of the image domain. At edge A, the feed channel opens into
the combustion chamber. This edge is mapped to ξ= 1. Points E and F are located at
x1 =−∞ in the physical domain and are mapped to ξ = 0 in the image domain. The
mapping is defined by

x(ξ) = Ra

π

[
cosh−1

(
2C 2

r ξ−1−C 2
r

1−C 2
r

)
−Cr cosh−1

(
(1+C 2

r )ξ−2

(1−C 2
r )ξ

)]
(3.17)

with the confinement ratio Cr = Ri /Ra [179]. This mapping can only be inverted nu-
merically, therefore, evaluation of ξ(x) requires the application of a numerical root
finding algorithm.

The complex conjugate, denoted by (̃.), of the velocity in the physical domain is
computed by application of the chain rule

ũ(x) = dφ (ξ(x))

dξ

dξ(x)

d x
. (3.18)

The first term in this equation is the derivative of the flow potential φ with respect to
the image domain coordinate ξ, the second the first derivative of the mapping with
respect to the physical coordinate x. The latter writes for the combustor geometry

dξ(x)

d x
=π

ξ(x)

Ra

[
ξ(x)−C−2

r

ξ(x)−1

] 1
2

. (3.19)

Using these relations, we are able to compute the velocity field in the physical domain
due to any potential φ(ξ) given in the image domain. Knowing that any point source
or vortex maps to its counterpart in the image domain by conserving its strength —
i. e. volume production and circulation, respectively — and vice versa, we are able to
define a potential field as the superposition of several point sources and vortices. By
mapping these points to the image domain, Eq. (3.18) can be used in order to compute
the associated physical velocity field that complies with the boundary conditions.
This process is explicated in more detail in the following section.

3.3.2 Flow-Field Singularities

The solution of a Poisson equation ∇2φ= c together with a set of boundary condi-
tions and a Dirac Delta function as non-homogeneous part c = δ(x − x ′) is known as

67



Flow-Decomposition Based Modeling Framework

the Green’s function G
(
x, x ′) of this problem. Here, the Dirac Delta function con-

stitutes a point source whose 2D-spatial position is given by x ′ = (x ′
1, x ′

2). Knowing
the respective Green’s function, the solution of the Poisson equation for an arbitrary
non-homogeneous part c(x) is computed as the spatial convolution of the Green’s
function with a given c(x). Simplifying the problem by assuming free-space bound-
ary conditions, i. e. the potential φ asymptots to zero at infinity, a so-called free-space
Green’s function

G
(
x, x ′)= 1

2π
ln

[√(
x1 −x ′

1

)2 +
(
x2 −x ′

2

)2
]

(3.20)

emerges. By mapping the non-homogeneous part of a Poisson equation to the image
domain, a solution that is conform with the impermeability boundary conditions at
the walls is easily constructed by solely relying on free-space Green’s functions. This
simplifies the analysis and will be explicated in the following.

First of all, we need to constitute that there are two types of non-homogeneous
functions, which are volume sources and vortices, see Eqs. (3.12)–(3.14). Applying
Green’s Function (3.20) in the image domain (complex coordinate ξ), the complex
conjugate of the irrotational velocity component due to a point source of strength S

at position ξ′ becomes

ũc/e (ξ, t ) = S

2π

1

ξ−ξ′
. (3.21)

Similarly, we get for the solenoidal (vortical) velocity due to a point vortex of strength
Γ at the same position

ũω(ξ, t ) =−i
Γ

2π

1

ξ−ξ′
. (3.22)

In the image domain, all walls are mapped to the real axis. Therefore, in order to fulfill
the impermeability boundary conditions at all walls, mirror sources of equal strength
S are placed in the lower half of the complex plane by mirroring the source locations
at the real axis. This simply corresponds to computing the complex conjugate of
the original source position ξ̃′. Equivalently, mirror vortices of opposite strength are
introduced. In doing so, velocity components normal to the real axis vanish and the
volume flux through all walls is zero. This is illustrated in Fig. 3.5 for a single vortex.

In the proposed model, the vortical part of the overall perturbation velocity field is
approximated by a finite number of N point vortices of strengths ∆Γ

′
n , which results

in an expression for the velocity in the image domain of

ũω(ξ, t ) =− i

2π

N∑

n=1

∆Γ
′
n

ξ′n − ξ̃′n
(ξ−ξ′n)(ξ− ξ̃′n)

, (3.23)

where mirror vortices of opposite circulation have been placed at the complex conju-
gate coordinates ξ̃′n of all vortices.

The potential part of the perturbation velocity field that drives the volume flux
through the combustor can be computed by placing a source of strength

S(t ) = 2u′
1(t )Ri (3.24)
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(a) Physical domain (b) Image domain

Figure 3.5: Illustration of how impermeability boundary conditions are met by use
of a mirror vortex (not to scale): the wall normal velocity component
of the original vortex of strength ∆Γ

′ (green) is canceled by its mirror
counterpart (pink) such that the resulting velocity (red) is parallel to the
walls in the image (3.5b) as well as in the physical domain (3.5a). Here,
the shear layer and the flame front are shown as blue dashed and red
dotted lines, respectively.

at ξEF = 0 since all points of x1 →−∞ are mapped to a single point in the image
domain (EF). Following Eq. (3.21), the complex conjugate of the associated velocity
field is computed in the image domain as

ũc (ξ, t ) = S(t )

2πξ
. (3.25)

Resulting stream lines are shown in green in Fig. 3.4, one time in the image and one
time in the physical domain.

3.3.3 Kutta Condition

Following Eqs. (3.18) and (3.19), the flow field of the combustor geometry exhibits
a O

(
(ξ−1)−1/2

)
singularity at edge A, which results from the fact that, in reality, a

viscous flow cannot follow the abrupt 90◦ turn of the wall contour, since this would
require an infinitely high pressure gradient. The lack of such high gradients leads to
the separation of the flow and vorticity, originally bound in the wall boundary layer,
is shed into the inner region of the flow domain. In the modeling framework adopted
here, this singularity is removed by employing a Kutta condition. Its application re-
covers a finite-valued velocity at the edge, which can only be ensured by demanding

dφ

dξ

∣∣∣∣
ξ=1

!= 0, (3.26)
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see Eq. (3.18). In order to meet this condition, vorticity is introduced in the vicinity
of edge A, which implies the formation of a thin shear layer. It should be pointed
out that in the case of an anchored flame, getting rid of the singularity is compulsory
since otherwise the infinitely high velocity at the anchoring would lead to unbound
displacement amplitudes at this point.

Concerning the validity of a Kutta condition, at least some qualitative statements can
be found in the literature. Crighton [181] published an extensive review article on the
Kutta condition in unsteady flows stating that “within restricted parameter ranges,

only those ‘outer’ potential flows that satisfy a Kutta condition are, in general, com-

patible (in the matched asymptotic expansion sense) with an acceptable multilay-

ered ‘inner’ viscous structure” (Crighton [181], p.412). Williams [182] made a more
cautious statement in a review article on aeroacoustics: “There is no proof that the

solution obtained through the matched-expansion scheme is, in fact, a solution of

the real problem — but it usually is [. . . ]” (Williams [182], p.449). Generally, in
the field of aero-acoustics, application of a Kutta condition is considered to be an
acceptable principle for modeling flows around sharp edges [183, 184]. The results
computed in this chapter compare well with the CFD/SI data and hence confirm the
aforementioned assertions, as will be shown below. Nevertheless, it should be kept in
mind that a Kutta condition does not naturally appear when simplifying the govern-
ing equations of a viscid flow but rather has to be viewed as an ad hoc hypothesis that
allows to incorporate viscous effects into an inherently inviscid flow description.

In the literature, several methods have been proposed in order to implement a Kutta
condition. A method relying on a single vortex ensuring a finite valued velocity at a
sharp edge of a acoustically excited flow of zero mean flow was first developed by
Brown and Michael [185, 186]. It was adopted by several later studies, e. g., [187,
188]. The idea of this approach is that during both the positive and negative part of
a forcing cycle, shed vorticity accumulates in a single vortex, which represents the
rolled up shear layer.

A more advanced method is the single panel method [124, 189–191], which intro-
duces a vortex sheet (the panel) of length Hx and constant strength γx that is attached
to the trailing edge. The strength and length of this sheet depend on the instantaneous
flow field and are set such that the edge singularity is removed. At each time step,
the circulation confined to the sheet is condensed into one point vortex and advected
by the local flow velocity. The work presented in this chapter relies on such a single
panel method.

The shape of the vortex panel is defined by two geometrical parameters: Its length Hξ

and its angle with respect to the real axis βξ, both measured in the image domain as
illustrated in Fig. 3.6. Ideally, the strength of the vortex sheet in the physical domain

γx (x) = dΓ(x)

d x
(3.27)

is constant, where Γ=
∫

A ωdS is the circulation, defined as the integral of vorticity ω
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Figure 3.6: Flow field according to source at ξ= 0 and a Kutta panel (green), shown
for the whole combustor (top). Additionall, a close up view of the Kutta
panel is shown in the physical (bottom left) and the image domain (bot-
tom right), with Cr = 0.4, Hξ = 2.1 and βξ =π/3.

over an area A. We, therefore, need to define the panel strength in the image domain
γξ(ξ) such that it maps back to a constant distribution in the physical domain γx (x).
Following the chain rule, we get

γx = γξ
dξ

d x
(3.28)

and, hence, we would have to impose a distribution of γξ ∝ dx/dξ in the image do-
main in order to get a constant value in the physical domain. We call this the ideal
distribution of vorticity in the following. The flow field corresponding to such a dis-
tribution, however, could not be solved analytically (by the author of this thesis).
Therefore, a simplified distribution

γξ(ξ′) = c1

√
ξ′−1

ξ′
(3.29)

is used, where ξ′ parametrizes the vortex sheet and c1 its strength. Fig.3.7 compares

the ideal vorticity distribution of dx/dξ, i. e. γξ = c1

[
sξ/(ξ−C−2

r )
]1/2

/ξ ( ) with
the approximation according to Eq. (3.29) ( and ). Here, sξ and sx denote the
panel aligned coordinates in the image and the physical domain, respectively. It be-
comes clear that the approximation is a good model in the limit of short panel lengths
and low confinement ratios. Note that the Cr = 0.4 and Hx /Ri = 0.4 case corresponds
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Figure 3.7: Normalized vorticity plotted over panel coordinates in the image (top)
and the physical (bottom) domain for two panel lengths Hx /Ri =
0.04 (left) and Hx /Ri = 0.4 (right), where Ri is kept constant.
Shown are two vorticity distributions, γξ = c1s1/2

ξ
/ξ ( , ) and

γξ = c1

[
sξ/(ξ−C−2

r )
]1/2

/ξ ( ). For the former, two confinement ra-
tios Cr = 0.4 ( ) and Cr = 0.66 ( ) are depicted, whereas for the
latter both coincide two the same line. As reference vorticity γref,x/ξ, the
mean vorticity along the panel was chosen.

to a situation as shown in Fig. 3.6, which should provide a rough feeling of what
these numbers mean. It should be kept in mind that, for a given length Hξ, a lower
confinement ratio corresponds to a longer panel in the physical domain. Hence, judg-
ing from the results of Fig. 3.7, the lengths of such Kutta panels should be of the
order of Hξ ≤O

(
101

)
in order to have a constant distribution of vorticity in the physi-

cal domain. Explicitly evaluating the vorticity distribution associated with Eq. (3.29)
we get in the physical domain

γx (x) = c1
π

Ra

√
ξ(x)−C−2

r , (3.30)

which states that γx (x) stays constant along a circle around edge B (ξB =C−2
r ). Thus,

the quotient of the distance of the Kutta panel to point B over the panel length Hx

needs to be large in order to have an approximately constant vorticity distribution.

The angle of the panel in the image domain βξ is determined such that the flow
follows the wall contour of the feed duct, see Fig. 3.6. Hence, the angle between the
separating shear layer and the back plate of the combustion chamber should be 90◦

right at the edge. Knowing that the angle between the feed duct wall and the back
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3.3 Conformal Mapping Technique

Figure 3.8: Sketch of the Kutta panel (upper) and its mirror counterpart (lower) in
the image domain. The starting point of the Kutta panel is named ξA and
its ending ξB .

plate is 270◦, which corresponds to an angle of 180◦ in the image domain, the desired
90◦ angle corresponds to βξ = 60◦ or, in radians, βξ =π/3. It will be shown below
that this angle is indeed a special one, since imposing such an angle, the velocity
right beneath the point where the panel is attached vanishes.

We now evaluate, for a given velocity field, the respective panel strength c1 that satis-
fies the Kutta condition. This requires the evaluation of the velocity field imposed by
the Kutta panel. In doing so, we firstly need to evaluate the gradient of the potential
φp associated with the panel in the image domain. Assuming a vorticity distribution
according to Eq. (3.29) we need to evaluate an integral

dφp

dξ
=− i

2π

ξB∫

ξA

c1

p
ξ′−1

ξ′

ξ−ξ′
dξ′ , (3.31)

where all relevant quantities are sketched in Fig. 3.8. Solving this integral, we get

dφp,up

dξ
= i

π

c1

(ξ−1)exp(−iβξ)+1

[
arctan

(√
Hξ

)

−
√

(1−ξ)exp(−iβξ)arctan

(√
Hξ

(1−ξ)exp(−iβξ)

)]
exp(−iβξ) . (3.32)

Here, the index “up” signifies that only the potential of the original Kutta panel
is respected, which is found in the upper half of the image domain as depicted in
Fig. 3.8. The solution for the associated mirror panel, placed in the lower half of the
complex plane (index “low”), is the same as the one given by Eq. (3.32), but with a
negative sign and a negative angle βξ. Accordingly, it writes

dφp,low

dξ
= − i

π

c1

(ξ−1)exp(iβξ)+1

[
arctan

(√
Hξ

)

−
√

(1−ξ)exp(iβξ)arctan

(√
Hξ

(1−ξ)exp(iβξ)

)]
exp(iβξ) . (3.33)
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The superposition of both results in the overall expression for the panel, namely
dφp /dξ.

Equations (3.32) and (3.33) can now be used in order to compute the strength of the
vortex sheet c1 (including the mirror panel!). From Condition (3.26) we know that
the gradient of the overall potential needs to vanish at edge A (ξ= 1). Assuming the
potential resulting from a superposition of all flow field singularities (vortices and
sources) except the Kutta panel may be denoted as φΣ, this condition translates to

dφp

dξ

∣∣∣∣
ξ→1

=− dφΣ

dξ

∣∣∣∣
ξ=1

. (3.34)

Combining Eqs. (3.32)–(3.34) and solving for c1 leads to

c1 =− dφΣ

dξ

∣∣∣∣
ξ=1

π

2arctan
(√

Hξ

)
sin(βξ)

. (3.35)

Using these relations and following Eq. (3.18), we can compute the complex conju-
gate of the resulting flow velocity in the physical domain as

ũ(x) = dξ

d x

[
dφΣ

dξ
+

dφp

dξ

]

= dξ

d x

[
dφΣ

dξ
+

dφp,up

dξ
+

dφp,low

dξ

]
. (3.36)

This expression respects the Kutta panel as well as its mirror counterpart plus the
impact of all other flow field singularities. We now evaluate the right-hand and left-
hand limits (with respect to the real part of ξ) of the velocity fields at the separation
point A and get

ũ+ = lim
ξ→1+

ũ (x(ξ)) =
π

Ra

√
1−C−2

r

dφΣ

dξ

∣∣∣∣
ξ=1

πcos
(

3
2
βξ

)

2arctan
(√

Hξ

)
sin(βξ)

(3.37)

and

ũ− = lim
ξ→1−

ũ (x(ξ)) =− π

Ra

√
1−C−2

r

dφΣ

dξ

∣∣∣∣
ξ=1

iπsin
(

3
2
βξ

)

2arctan
(√

Hξ

)
sin(βξ)

, (3.38)

respectively. If we insert βξ =π/3, the right-hand limit of Eq. (3.37) simplifies to
ũ+ = 0 and the left-hand one of Eq. (3.38) to

ũ− =− π

Ra

√
1−C−2

r

dφΣ

dξ

∣∣∣∣
ξ=1

iπ

2arctan
(√

Hξ

)
sin

(
π
3

) . (3.39)

This reflects the fact that the left-hand limit constitutes the jet velocity at the sepa-
rating edge, while the right-hand limit evaluates the flow velocity at the side of the
recirculation bubble, see Fig. 3.6. From Eq. (3.39) it becomes clear that, at edge A,
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3.3 Conformal Mapping Technique

Figure 3.9: Summary of all computations that need to be performed during one time
step when considering a Kutta condition.

multiplication of the local velocity dφΣ/dξ
∣∣
ξ=1 with the complex unit i bends the

flow by 90◦, which leads to the desired separation.

For the sake of completeness, it should be mentioned that one of the major difficulties
encountered during the derivation of the Kutta condition concerns branch cuts, which
are curves across which the resulting flow field is discontinuous. In this regard a
Kutta panel is such a branch cut. Hence it has to be ensured that the branch cuts
associated with the Kutta panels used do not exceed their desired lengths and, in
doing so, impose spurious discontinuities. In the implementation presented here, this
property has been verified.

Finally, it is explicated how the methods described above are used in order to numer-
ically simulate the process of vortex shedding. An overview of all required compu-
tations is provided in Fig. 3.9. First of all, in each time step the length of the vortex
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Flow-Decomposition Based Modeling Framework

sheets Hξ needs to be computed, which is done by assuming a transport velocity
of the vorticity bound in the separating shear layer of Uedge = (ũ++ ũ−)/2. Multi-
plication of this velocity with the time step length ∆t results in the panel length in
the physical domain Hx . Note that in the proposed acoustic LOM, an approximation
Uedge = ublk/2 is used, which avoids the evaluation of a mean flow state. This ap-
proach implicitly assumes a block flow profile in the feed channel and zero velocity
in the recirculation zone. Subsequently, Hξ is numerically evaluated as the root of

Hξ∫

0

∣∣∣∣
d x

(
sξ(t )

)

dξ

∣∣∣∣dt −Hx = 0, (3.40)

where a parametrization sξ(t ) = 1+exp(iβξ)t of the curve representing the Kutta
panel is used (note that, here, t denotes the parametrization parameter not the
time). Based on this length, the Kutta condition can be applied according to
Eqs. (3.35),(3.32), (3.33) and (3.36). The total circulation of the resulting panel is
then provided by

Γ
′
p =

∫Hξ

0
c1

p
t∣∣1+exp(iβξ)t

∣∣dt . (3.41)

After each time step, this integral is numerically evaluated employing the trapezoidal
rule and its respective value of Γ′

p propagated to a new point vortex, which is placed
at end of the vortex panel from which it resulted.

3.4 Summary

In this chapter, a low-order modeling approach for the dynamics of acoustically per-
turbed burner-stabilized 2D flames was derived. It is essentially based on first prin-
ciples and relies on the assumption of an inviscid, slightly compressible flow whose
density is solely affected by the combustion process. Imposing a Helmholtz decom-
position, three velocity components need to be modeled: (i) an irrotational field re-
lated to the pressure difference between in- and outlet of the domain, (ii) a second
irrotational field associated to the volume flux generated by the flame and (iii) a
solenoidal velocity field containing all vortical contributions. It is assumed that vor-
ticity is only generated by the flame sheet as well as by a Kutta condition capturing
the shedding of vorticity at sharp edges.

Relying on a conformal mapping technique and a finite number of flow field singular-
ities, the overall problem could be split into several canonical problems. This clarifies
the solution process and allows to simply switch certain physical mechanisms on and
off in order to evaluate their individual contributions. This approach will be applied
to the case of a 2D Slit flame in the following.
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4 Primary Interactions

Based on a rigorous analysis neglecting flame-flow feedback and

relying on methods presented in Chap. 3, it is found that predomi-

nantly irrotational velocity perturbations interact with a flame hav-

ing maximum impact at the base region, while the impact of shed

vorticity is negligible. A significant discrepancy between the mod-

eled response and high fidelity CFD data is observed, which is at-

tributed to flame-flow feedback — a mechanism neglected in this

chapter.

The basic idea of this chapter is to take a first step towards the identification and mod-
eling of the skeletal processes governing acoustics-flame interactions. To this end,
flame-flow feedback as well as thermal-diffusive mechanisms shall be neglected and
only the remaining interactions of acoustics with the flame shall be analyzed. More
specifically, the modeling approach introduced in the previous chapter shall be ex-
ploited in order to resolve the paradoxical finding concerning the convective velocity
model explained in Chap. 2. This model assumes that acoustically excited premixed
(Bunsen) flames are subject to convected velocity perturbations, which are responsi-
ble for the observed wrinkling of the flame front. Several studies, however, demon-
strated that these convected perturbations are rather a consequence than a source of
flame front wrinkles, caused by a feedback of the flame on the flow. Therefore, the as-
sumption of convected velocity perturbations seems to violate causality (they cannot
be source and consequence at the same time). In this chapter, it shall be investigated
if vortex shedding imposes significant levels of convected velocity perturbations onto
the flame front. If that is the case, causality may at least partly be respected by con-
vective velocity models.

From an analytical point of view, it has to be noted that acoustic perturbations propa-
gate at the speed of sound and, consequently, a convective flow perturbation cannot be
assigned to the acoustic flow mode. Thus, an acoustic-to-hydrodynamic mode conver-
sion is required in order to generate perturbations that are transported with the local
flow velocity. Following Fig. 3.1, one possible candidate for such a mode conversion
mechanism is the process of flow separation, which can happen at sharp corners, e. g.
at a backward-facing step or bluff body flame holder. At the separation point, vor-
ticity, originally confined to the wall boundary layers, is shed into the interior of the
flow domain. Transient (acoustic) forcing of a separating flow leads to unsteady gen-
eration and shedding of vorticity[124, 190, 192]. Vortical structures that are advected
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downstream by the flow represent an acoustic damping mechanism [123] and may —
more important in the context of this study — interact with the flame front. Using a
2D compressible flow solver, which allowed to artificially modify the gas expansion,
Schlimpert et al. [104] showed for an unconfined flame that vortical structures sig-
nificantly affect the flame front in the case of negligible gas expansion. With realistic
gas expansion, however, the influence of shed vorticity is substantial only right at the
flame base.

In this Chapter the issue of flow-flame interactions is revisited by decomposing the
acoustic velocity disturbance into an irrotational potential and a solenoidal vortical
field and analyzing how both interact with the flame. For this purpose, the modeling
framework introduced in Chap. 3 is adopted and applied to the analysis of acoustic-
flow-flame interactions at a duct singularity. Of particular interest is an assessment of
the impact of shed vorticity on the flame front and if and how it contributes to the con-
vective nature of the FTF. In order to suppress the occurrence of vortical structures
due to flame-flow feedback, we neglect exothermicity/gas expansion in the pertur-
bations. This assumption is in line with the assumptions of the convective velocity
model. The mean flow field, required to compute vortex advection, is nevertheless
retrieved from exothermic numerical simulations.

In this chapter, the effect of gas expansion is explicitly excluded from the analysis,
i. e. E = 0. Thus, due to m = 0, Eq. (3.13) drops from the analysis and the baroclinic
tourque source term vanishes, which eliminates the right-hand side of Eq. (3.9). In
the remaining problem, the only source of vorticity is vortex shedding. To simplify
the analysis, curvature (stretch) effects are neglected and hence lM ≡ 0.

Sec. 4.1 introduces the specific test case setups as well as the high-fidelity CFD re-
sults, which serve as validation cases of the developed model. The resulting low-order
model is then analyzed and compared to high fidelity CFD data in terms of flame
sheet and global heat release dynamics in Sec. 4.2.

4.1 Test Case Setups

The modeling framework derived in this chapter is applied to a backward facing
step combustor, as shown in Fig. 4.1. Configurations of two different confinement
ratios Cr = Ri /Ra of Cr = 0.4 (upper half) and Cr = 0.66 (bottom half) are analyzed,
with Ri denoting the feed channel and Ra the combustion chamber half width. The
coloring represents the steady state velocity field resulting from a 2D incompressible
CFD simulation with a reduced chemical kinetic 2-step mechanism (2S-CM2) as
described in Appendix. A. The area of maximum heat release is shown in green color
in Fig. 4.1 ( ). An estimate of the shear layer position ( ) as well as the steady
state flame front of length L f , as predicted by the 1D linearized G-equation approach
introduced in Sec. 1.3.2 (lM ≡ 0), ( ) are indicated. Note, that other than for conical
configurations [144], the confinement ratio does not impact the flame height of 2D
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4.2 Irrotational and Vortical Response Analysis

Figure 4.1: CFD steady state snapshots of absolute velocity for a confinement ratio
of Cr = 0.4 (upper half) and Cr = 0.66 (bottom half). For both config-
urations, the location of maximum heat release ( ), the analytically
predicted mean flame front ( ) and the approximated location of the
shear layer ( ) are shown.

Slit flames [142].

The mean inlet velocity of the lean methane-air mixture of equivalence ratio 0.8 is set
to 1 m/s. The feed channel half-width is Ri = 5 mm for both setups and all bound-
aries are adiabatic, except the back-plate of the combustion chamber, which is set
to a temperature of TBP = 373 K. All walls are no-slip walls. The Reynolds number,
computed with the mean inlet velocity, the inlet diameter and the kinematic viscosity
of the combustion products is Re ≈ 620 and the expansion ratio, which is the ratio of
the unburned to the burned fluid density, is e ≈ 6.7. For transient simulations, a veloc-
ity forcing with an amplitude û1 of 0.02u1 is imposed at the inlet. The characteristic
time of restoration is estimated to τr = 19.41 ms and τr = 12.08 ms for the Cr = 0.4

and the Cr = 0.66 configuration, respectively. For more details it is again referred to
Appendix. A.

4.2 Irrotational and Vortical Response Analysis

The low-order modeling approach proposed in this chapter assumes — in accordance
with other approaches, such as the ones proposed by Fleifil et al. [115] or Schuller
et al. [111] — a steady mean flow on which a transient velocity perturbation is super-
posed. The spatio-temporal structure of the latter is computed employing the model-
ing approach introduced in Chap. 3 neglecting flame-flow feedback. An overview of
this approach is provided in Fig. 3.9. The flame dynamics are captured by a linearized
1D G-equation based model that is perturbed by an acoustically compact flow follow-
ing Eq. (3.12). In order to avoid occurrence of a flow field singularity in the vicinity
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of the flame anchoring point and for the sake of capturing the effect of vortex shed-
ding, a Kutta condition is applied. The mean flow is characterized by a constant axial
velocity ublk and a constant flame speed sL , which in combination lead to the forma-
tion of an inclined steady state flame front. The position of the mean flow shear layer
is taken from the high-fidelity CFD simulations described in Sec. 4.1. The transport
velocity for vorticity along this line is set to the fixed value of ublk/2 [126].

The spatial shape of the velocity perturbation associated with the regime of compact
acoustics depends on the confinement ratio Cr . This can be seen from the definition
of the resulting velocity field provided in Eq. (3.18) and the herein occurring mapping
provided by Eq. (3.17). Hence, in this section, the responses of two flame configu-
rations of different confinement ratios are analyzed and the results are compared to
CFD/SI data, see Appendix. A.

For this purpose, the two test cases introduced in Sec. 4.1 are simulated. In a first
step, simulations under harmonic velocity forcing are conducted and analyzed in
Sec. 4.2.1. Realizing that vortex shedding is negligible, the impulse response is com-
puted in Sec. 4.2.2 relying solely on the irrotational velocity component. This re-
quires some non-trivial considerations caused by the Kutta condition. In a final step,
in Sec. 4.2.3, analyzes the gathered response data and compares it to CFD/SI results.

4.2.1 Harmonic Forcing

Harmonic forcing of the bulk flow velocity provokes irrotational flow field perturba-
tions and, at edge A, the shedding of vorticity. A Kutta panel attached to this edge
ensures that the flow field remains finite and leaves the trailing edge tangentially to
the wall contour. In each time step, the vorticity bound by this panel is condensed into
a point vortex that is placed right at the panel end. This vortex then becomes part of
the vortical flow field and is advected along the mean flow shear layer by a velocity
ublk/2, whose coordinates are estimated from the CFD data, see Fig. 4.1 ( ).

Forcing the Cr = 0.4 configuration harmonically at a frequency of 80 Hz and an am-
plitude of 2% ublk results in a response as depicted in Fig. 4.2. Here, four snapshots
at different phases of the forcing signal are shown. The upper half of each snapshot
visualizes the resulting vortical and the lower half the corresponding irrotational per-
turbation velocity field. The flame front displacements provoked by the latter ( )
are significantly larger than the vortical ones. Hence, it seems that shed vorticity
hardly contributes to the response of the flame and could safely be neglected. The
spatial shape of the irrotational perturbation can be deduced from the green arrows
shown in Fig. 4.2, which illustrate the flame normal velocity perturbations. Accord-
ing to them, acoustic perturbations mainly displace the flame base region, while the
flame tip is hardly affected.

In the literature, a common approach to approximate the amount of vorticity shed
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4.2 Irrotational and Vortical Response Analysis

Figure 4.2: LOM predictions of a harmonically forced flame configuration (at 80 Hz
and an amplitude of 2% ublk) for a confinement ratio of Cr = 0.4. Shown
are four consecutive snapshots taken at phases from 0◦ to 270◦ with re-
spect of the forcing signal. The upper half of each snapshot shows the
vortical flow component, where the color along the shear layer corre-
sponds to the strength of the vorticity fluctuations. The lower half shows
the respective irrotational flow component. The flame normal velocity,
scaled by a factor of 4, is illustrated by green arrows (upper+lower half).
The shown flame front displacements are scaled by a factor of 7 ( ).

during a time interval ∆t is to evaluate the linearized relation

∆Γ
′(t ) = ublk

∫t+∆t

t
u′

1( t̂ )d t̂ , (4.1)

which provides an estimate of the created total circulation of the separating vortex
sheet [126, 193]. This formula has been used by Steinbacher et al. [1] in order to
quantify the effects of the free shear layer onto the flame front. Fig. 4.3 compares
the resulting strength of the vortex sheet of this approach ( ) to the one caused by
the aforementioned Kutta condition ( ). For Cr = 0.4, the amplitude of vorticity
fluctuations caused by the Kutta condition is more than twice as large as the one
computed by Eq. (4.1). Nevertheless, both studies — the one of Steinbacher et al. [1]
and the one presented here — agree that vortex shedding has only a negligible impact
on the flame response. Having a look at the Cr = 0.66 configuration, both ways of
computing the shed vorticity almost coincide. Therefore, it seems that predictions of
Eq. (4.1) agree better with results of the Kutta condition in cases where the flow is
less two-dimensional, which is the case if the confinement is getting more narrow
(Cr → 1).

4.2.2 Impulse Forcing

The finding that vorticity shed from the burner mouth has only a negligible impact
on the flame response shall now be exploited: It allows to evaluate the impulse re-
sponse (IR) solely based on the irrotational part of the perturbation velocity field.
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Figure 4.3: Comparison of vorticity distribution resulting from vortex shedding due
to a Kutta condition ( ) and the linear approximation of Eq. (4.1)
( ) for three forcing cycles at 80 Hz and two confinement ratios.

To this end, an impulsive forcing u′
blk

= ǫδ(t ) of amplitude ǫ is applied to the com-
bustor and the resulting instantaneous flame displacement is computed from the
respective irrotational velocity perturbation by evaluation of the temporal integral
ξ(x∥) =

∫∞
0 u′

⊥(x∥)dt . Application of a Kutta panel, however, leads to a situations
where u′

⊥(x∥) depends on the panel length, which is computed from the local trans-
port velocity (ũ++ ũ−)/2 multiplied by the temporal width of the impulse forcing ∆t .
Assuming a harmonic forcing signal, vorticity is continuously shed from the burner
mouth. That means, the panel length Hx is well defined in each time step and con-
tinuously varies over time. In the case of an impulsive signal, however, the resulting
panel length Hx depends on both the amplitude of the forcing and the width of the
impulse signal. This is a problem since in the linear limit, the impulse response maps
to a certain frequency response and vice versa. Having a significant dependency of
the response to the forcing amplitude ǫ, this property is no longer ensured as will be
shown in the following.

Fig. 4.4 analyzes for two confinement ratios how the flame normal velocity perturba-
tion depends on the length of the vortex panel. For this purpose, an impulsive velocity
forcing is applied and the resulting flame normal velocity is measured for different
panel lengths right at the moment when the impulse hits the flame. A rather strong
impact of the panel length on the resulting velocity can be observed: the shorter the
panel gets, the higher and more localized the peak velocity becomes. Thus, an impul-
sive forcing using a very narrow impulse perturbation or a very low amplitude would
both lead to a short Kutta panel and, therefore, to a flame displacement that is very
localized at the flame holder. The opposite holds for a wide impulse perturbation or
a high velocity amplitude. In consequence, this means that the IR is rather sensitive
to the specific kind of forcing signal, which is an unfavorable property.

In order to compute an estimate of the IR that robustly captures the linear dynamics
of the system in the inviscid limit, an empirical approach is chosen: the panel length
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Figure 4.4: Top: Flame normal velocity resulting from a constant mean flow and a
Kutta condition evaluated for four panel lengths, Hξ ( ), Hξ/2 ( ),
Hξ/4 ( ) and Hξ/8 ( ) plotted over normalized flame coordinate.
In accordance with Fig. 3.7, Hξ is set to 2.1 for Cr = 0.4 and to 1.8 for
Cr = 0.66. Lower: Visualization of the associated panel shapes, where
the end of each panel is marked by a vertical line. Additionally, the flame
front is shown ( ).

is set to a value such that the frequency response computed from the resulting IR cor-
responds best to predictions using harmonic forcing. The associated panels fulfilling
this requirement best are plotted in Fig. 4.4 for the two investigated confinement ra-
tios ( ). Panels of these lengths have already been studied in Sec. 3.3.3. Using the
associated flame normal velocity perturbations resulting from such panel lengths, the
flame displacement right at the moment when the impulse hits the flame (t∗ = 0) is
computed and plotted in Fig. 4.5. The shown curves are normalized by the displace-
ment amplitude ξ̂ =

∫t
0 u′

1d t . Indeed, good agreement between the LOM ( ) and
the CFD/SI data ( ) is found for t∗ = 0 for both confinement ratios. Details on the
processing of the CFD results are provided in Appendix. A.4.

Due to the fact that the resulting flame front has the shape of a triangle at t∗ = 0, a
so-called flame base displacement (FBD) model is introduced:

ξ(x∥, t ) = 2sin(α)ǫ

fb

[
Θ

(
x∥− tu∥

)
−θ

(
x∥− tu∥− fbL f

)][
1−

x∥− tu∥
L f fb

]
(4.2)

where fb measures the length of the triangle relative to the flame length L f and u∥ the
flame-parallel component of the mean flow velocity ublk. The height of the triangle
results from conservation of the global volume flux of the perturbation. All the vol-
ume provided by the velocity forcing at the inlet is pushed through the mean flame
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Figure 4.5: Four snapshots taken at equidistant instances in time of the normalized
flame displacement resulting from an impulsive velocity forcing at t∗ = 0

according to CFD/SI results ( ), the acoustic LOM ( ) and the FBD
model ( ) at two confinement ratios: Cr = 0.4 (top) and Cr = 0.66 (bot-
tom).

front and, hence, creates flame displacements, in analogy to the situation depicted in
Fig. 6.6. This fixes the height of the triangle to 2sin(α)ǫ/ fb . For both confinement
ratios, a value of fb = 0.6 matches the CFD/SI and LOM data best. This model intro-
duces a simple analytical approximation of the flame response for the limiting case
of neglected flame-flow feedback employing one empirical parameter fb .

4.2.3 Discussion

If we compare the results of all three flame response models illustrated in Fig. 4.5 for
t∗ > 0, we notice that the initial flame front displacements are advected towards the
flame tip. While the specific shapes of the acoustic LOM and the FBD model remain
unchanged during this process, the CFD/SI data exhibits a spatial growth of the initial
displacement amplitude. Furthermore, a secondary negative and a tertiary positive
displacement develop. This behavior has most likely to be attributed to flame-flow
feedback, which is neglected by the acoustic LOM. The observed growth in ampli-
tude is reminiscent of the Darrieus-Landau mechanism known from planar flames
that propagate perpendicular to the unburned flow. In contrast to these setups, the
inclined flame geometries investigated here exhibit a characteristic, triangle shaped
initial perturbation of significant amplitude as well as (fixed) boundaries. Therefore,
the situation at hand is similar, but still different (in terms of initial and boundary
conditions) to the one known from classical studies on the Darrieus-Landau insta-
bility. It has to be checked carefully how these classical results can be applied for
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Figure 4.6: IR and FR in terms of gain and phase for Cr = 0.4 (left) and Cr = 0.66

(right). Shown are results from CFD ( ), the FBD model for fb = 0.6

( ) and the acoustic LOM ( ). Additionally, results from harmonic
forcing of the acoustic LOM are included, split into irrotational ( ) and
a vortical ( ) contributions.

Bunsen-type flames, which will be analyzed in more detail in Chap. 5.

Comparing the transient behavior of the Cr = 0.4 to the Cr = 0.66 setup, a weaker
growth of the initially caused flame displacements can be observed for the latter.
It seems that the presence of a confinement delimits the possible displacement am-
plitudes. Based on the analysis presented in this chapter, which neglects flame-flow
feedback, the detailed mechanisms responsible for this behavior cannot be analyzed,
though. In Fig. 4.5 it can be seen that the resulting non-dimensional initial displace-
ments as well as the velocity of convection match the CFD data very well.

Based on the results shown in Fig. 4.6, flame-flow feedback is supposed to have a ma-
jor impact onto the response of the global heat release rate. One of the most prominent
discrepancies constitutes the damped oscillatory behavior of the IR predicted by the
CFD/SI data ( ), especially for the wide confinement case (Cr = 0.4). Here, the
acoustic LOM only captures the first peak of this curve, significantly underestimat-
ing the amplitude. The subsequent positive and negative peaks are not captured at
all. In the frequency domain, the damped oscillatory behavior manifests itself as a
very high peak gain value at a Strouhal number approximately corresponding to the
oscillation frequency. The acoustic LOM, on the other hand, results in a frequency
response resembling the gain behavior of a first-order low-pass filter. The almost lin-
early decaying phase is captured well by all models.
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The agreement between the acoustic LOM and the CFD/SI data is better for the nar-
row confinement configuration (Cr = 0.66). Here, the first peak of the IR is captured
reasonably well. In contrast to the Cr = 0.4 case, the IR exhibits a relatively high level
around t∗ = 0, which cannot be observed in the CFD/SI data. Hence, the initial dis-
placement at the flame tip is overpredicted, which is also seen in Fig. 4.5. The IR of
the Cr = 0.66 setup shows less pronounced peaks and, thus, the associated FR shows
a reduced peak gain value compared to the Cr = 0.4 case.

Fig. 4.6 decomposes the frequency response of the acoustic LOM into its irrotational
( ) and vortical ( ) contributions. The individual frequency response data is gained
from harmonic simulations, as depicted in Fig. 4.2. The fact that the former matches
the results gained from the impulsively forced configuration ( ), very well cross-
validates both approaches. The weak response of the vortical contribution confirms
the finding that vortex shedding can be safely neglected.

Finally, an analytical prediction of the response of the FBD model introduced in
Eq. (4.2) is provided. Its impulse response writes

h∗
FBD(t ) = t∗−1+ fb

2 f 2
b

[
Θ(t∗−1+ fb)−Θ(t∗−1)

]
(4.3)

with the Heaviside Theta function Θ(t ). The associated FR can be mapped to fre-
quency domain by use of Tab. C.2. Following Fig. 4.6, this model captures the over-
all trend of the acoustic LOM model well. Due to the fact that flame-flow feedback
has such an important influence onto the flame response, it can only be used to esti-
mate the cut-off frequency or the phase behavior, but not the gain around a Strouhal
number of approximately unity. In this regard it is much simpler to evaluate than the
presented acoustic LOM, while it still captures the essential effects.

4.3 Summary and Conclusions

The response of laminar premixed flames stabilized at a backward-facing step to ve-
locity perturbations was scrutinized. One goal was to test the hypothesis that shed
vorticity contributes to the so-called convective velocity perturbations, which are
an important, widely-used element of low-order flame response models. Analytical
methods from aero-acoustics were combined with a flow decomposition approach to
quantify the respective contributions of the irrotational and the vortical parts of the
disturbance velocity field to the overall flame transfer function (FTF). The complete
set of equations derived in Chap. 3 capturing the flow field dynamics of acoustically
perturbed flames was used, however, exothermic effects, in particular the effect of
flame displacement and wrinkling on the upstream velocity, were neglected in this
study.

For the cases considered — a Slit flame geometry with a Péclet number of Pe= 223,
an expansion ratio of e ≈ 6.7 and confinement ratios Cr = 0.4 and 0.66 — the ir-
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rotational part was shown to dominate the flame displacement, which is most pro-
nounced at and near the flame anchoring point. Correspondingly, a flame base dis-
placement (FBD) model was proposed, which captures the early part of the impulse
response well, particularly for high confinement ratios. Discrepancies for later times
and for low confinement ratios were attributed to exothermic flame-flow-flame feed-
back mechanisms not taken into account by the low-order modeling approach. For
the configurations investigated, vortex shedding is found to only have a negligible
impact on the flame response.

The main findings of the present analysis are:

1. Vortex shedding due to an oscillatory flow in the vicinity of a sharp corner is
found to have only negligible impact on the flame response.

2. Hence, the shedding of vorticity was ruled out as a possible candidate to phys-
ically justify the assumption of convected velocity perturbations as a source of
flame wrinkling. Consequently, one must conclude that models based on this
assumption do not faithfully represent acoustics-flame-flow interactions.

3. The irrotational part of an acoustic perturbation essentially interacts with the
flame base region, which is captured by an analytical model proposed in this
study, namely, the FBD model.

Flame-flow feedback is supposed to have a substantial impact on the flame response,
particularly, at Strouhal numbers of order O (1). It might lead to rather high and dis-
tinct peaks in the gain of an FTF, particularly, for high confinement ratios. This will
be analyzed in more detail in the next chapter.
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5 Secondary Interactions

The previously introduced low-order modeling framework is ex-

tended such that it can cope with two important types of flame-flow

feedback: (i) vortical flame-flow feedback resulting from flame gen-

erated vorticity and (ii) irrotational flame-flow feedback resulting

from a flame normal acceleration of the flow across a flame sheet.

Both contribute to the convective growth of flame sheet disturbances

and account for the appearance of FTF gain values exceeding unity

as well as convected velocity perturbations upstream a perturbed

flame.

In the previous chapter, interactions of acoustic perturbations and burner-stabilized
Slit flames were analyzed in the limit of negligible flame-flow feedback (no gas ex-
pansion) and flame stretch (constant flame speed). While the latter is expected to
dampen flame front displacements (Le>Lec,TD), flame-flow feedback leads to con-
vective growth of flame perturbations (e > 1). Consequently, the observed significant
discrepancy between the low-order model developed in the previous chapter and high
fidelity CFD data was attributed to flame-flow feedback. This hypothesis shall be an-
alyzed in more detail in the following.

In order to clarify the discussion, we want to agree upon the terminology first. The
term “secondary interactions” has already been specified before and refers to phe-
nomena/flame displacements, which are not directly caused by acoustic perturba-
tions, but by incompressible flame intrinsic processes. It can be distinguished most
easily between primary and secondary interactions for the case of impulsively forced
flames, since any change in flame shape occurring after an acoustic impulse has hit
the flame (t > 0) is subsumed as a secondary interaction (except advection). In prin-
ciple, all phenomena discussed in Chap. 1 governing the dynamics of a flame sheet
are potentially important here. It was observed in the previous chapter by inspecting
high fidelity CFD data that the primary displacement, caused by acoustics, grows in
amplitude and, additionally, secondary displacements develop. Such a growth is the
signature of a hydrodynamic mechanism, described in Sec. 1.2.3, which is sometimes
also referred to as the Darrieus-Landau mechanism. It arises due to interactions of
the flow field with the flame sheet, captured by a set of jump conditions. It is driven
by the change in specific volume across the flame, i. e. it is a consequence of gas
expansion. Hence, this phenomenon relies on flame-flow feedback.
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The role of flame-flow feedback for the (linear) response has already been pointed
out by some previous studies. Already Baillot et al. [120] attributed the occurrence
of convected flow perturbations upstream a wrinkled flame front to the “retroactive

hydrodynamic effects of the flame on the flow of the unburned gases” (Baillot et al.

[120], p. 164). This was later confirmed by Birbaud et al. [136], who conducted a
series of demonstrative experiments. Blanchard et al. [129] numerically showed that
a perturbed flame sheet acts as a vortex sheet whose upstream influence contributes
to the formation of axially convected velocity perturbations. They related this phe-
nomenon to the Darrieus-Landau mechanisms. The relevance of this hydrodynamic
mechanism for the flame response of perturbed burner-stabilized flames was further
confirmed by the studies of Hemchandra [103] and Schlimpert et al. [104]. Both re-
ported a strong impact of hydrodynamic mechanisms leading to the spatial growth of
flame front perturbations. Hemchandra [103] conjectured that this mechanism may
be responsible for the occurrence of high FTF gains exceeding unity.

Flow instabilities often trigger the development of large coherent structures. In conse-
quence, characteristic flow features develop, which have important consequences for
technical applications. Oberleithner et al. [79] as well as Oberleithner and Paschereit
[80] found for swirl-stabilized flames that the gain of the flame response scales
with stability properties of the respective shear layers. According to these studies, a
Kelvin–Helmholtz-type hydrodynamic instability triggered by acoustic perturbations
leads to the formation of large scale coherent structures that interact with the flame
and, thus, provoke fluctuations of the global heat release rate. Similar to flames, shear
layers (or vortex sheets) can be idealized as discontinuities. While flame related dis-
continuities exhibit jumps in normal and tangential velocity, shear layers only show
changes in tangential velocity. In their most idealized versions, both entities are un-
conditionally (convectively) unstable [180, 194] and may hence both contribute to
the formation of coherent structures that may impact the flame response. Hence, the
Darrieus-Landau mechanisms or instability should be analyzed in more detail and
clearly demarcated from shear layer instabilities. As a first step, flame-flow feedback
related mechanism will be analyzed for laminar flames in this chapter.

Although thermal-diffusive mechanisms might have a crucial impact on secondary
acoustics-flame interactions, as well, the following discussion focuses on the hy-
drodynamic ones. They are the drivers for all observable secondary phenomena,
while thermal-diffusive mechanisms only exert a damping influence (assuming lean
methane-air flames). It can already be anticipated that a consideration of driving
mechanisms will create a need for damping and, therefore, displacement amplitudes
are likely to be overestimated if damping mechanisms are neglected. It will be shown
in the course of this chapter that this expectation is true indeed, however, this point is
beyond the scope of this work and shall be left for succeeding studies. This chapter
strives to take one step forward towards a comprehensive understanding of the flame
dynamics by assessing mechanisms that provoke the convective growth of flame front
perturbations. These mechanisms are expected to be associated with flame-flow feed-
back.
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5.1 Flame Response Revisited in the Light of Flame-Flow Feedback

In a first step, Sec. 5.1 revisits flame response predictions from high fidelity CFD
simulations as well as from low-order models relying on convected velocity pertur-
bations in the light of flame-flow feedback. Section 5.2 then shows how flame-flow
feedback is integrated into the modeling framework introduced in Chap. 3. Finally,
Sec. 5.3 discusses and analyzes flame response predictions computed with this new
framework and compares them to high fidelity CFD simulations.

5.1 Flame Response Revisited in the Light of Flame-Flow

Feedback

As already discussed in Chap. 2, the understanding and modeling of interactions be-
tween acoustics and burner stabilized flames often relies on the notion of convected
velocity perturbations. Conversely, in the case of flames whose anchoring is mechan-
ically displaced, it essentially follows the concepts of flame-sheet dynamics outlined
in Chap. 1. Based on this point of view, flame-flow feedback — namely the hydro-
dynamic mechanism explicated in Sec. 1.2.3 — is not explicitly considered in the
analysis of acoustically perturbed flames. Nevertheless, it is implicitly contained in
the models since, according to the literature [120, 129, 136], the observed convected
perturbations are supposed to be induced by the upstream influence of a wrinkled
flame. In the following, the response of acoustically perturbed flames is revisited fo-
cusing on consequences of flame-flow feedback. The goal is to provide links between
the notion of convected velocity perturbations and the dynamics of flames driven by
gas expansion.

To this end, high fidelity CFD data is evaluated in Sec. 5.1.1. Special focus is put
on how the impulse response is linked to the flame sheet dynamics and how strong
the expected effects of flame-flow feedback are. This provides further evidence for
the conjecture made in Chap. 4, which states that the oscillatory nature of the IR
and the high gain values are caused by gas expansion driven flame-flow feedback.
Subsequently, the convective velocity model is revisited in Sec. 5.1.2 and analyzed in
the light of these findings.

5.1.1 High Fidelity CFD/SI Data

The snapshots shown in Fig. 4.5 ( ), which are taken from high fidelity CFD data,
clearly indicate convectively growing flame displacements amplitudes. Furthermore,
three distinct positive and negative peaks emerge in the final snapshot, although —
following the analysis of Chap. 4 — acoustics caused only one of them directly (the
one at t∗ = 0). Consequently, the other peaks have to be caused by flame sheet in-
trinsic mechanisms. Flame-flow feedback due to exothermic gas expansion is one
promising candidate for such a mechanism, since it was explicitly neglected in the
low-order modeling approach analyzed in the previous chapter, see Fig. 4.5 ( ).
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Figure 5.1: Top: Impulse responses for the Cr = 0.4 ( ) configuration depicted
in Fig. 4.1 (but with TBP = 700 K). Instants in time corresponding to
one of the snapshots shown in the bottom blot are marked by vertical
lines. Bottom: Consecutive snapshots of the normalized flame-normal
flame front displacement caused by an impulsive acoustic forcing of a
flame setup with Cr = 0.4 ( ). Depicted are five instants in time, where
t1 matches the time the acoustic impulse hits the flame. Primary and
secondary peaks in flame shape are marked by colored dots.

It is shown in Appendix. A.3 that the global heat release signal of a flame subjected
to an impulsive forcing (Fig. 4.5; ) coincides well with the IR identified from
broad band data for all analyzed setups (Fig. 4.6; ). Consequently, the analysis
of the flow field and flame dynamics resulting from an impulsive forcing provides
valuable physical insights into the linear flame dynamics. In order to relate the flame
displacement data with the respective IR, it is necessary to know how the global heat
release rate is linked to flame sheet displacements. As will be detailed in Chap. 6, in
the limit of stiffly anchored Slit flames, the linear dynamics of the global heat release
rate depends only on the displacement of the flame tip. That means, the heat release
rate stays constant as long as the flame tip is not perturbed.

Exploiting this relation, Fig. 5.1 compares the IR of the Slit flame configuration to
the associated flame front displacements1. At the very moment the acoustic impulse
hits the flame (t = 0), the flame front is displaced in the previously described triangle-
like manner and a primary displacement peak is formed. At this time, the IR of the
global heat release rate h∗ shows no signal since the flame tip was not displaced.

1The data shown corresponds to the same setup as discussed in Chap. 4, only the temperature of
the anchoring wall is changed to TBP = 700 K. As discussed in App. B, this hardly affects the overall
characteristics of the flame response, which allows to directly compare both setups.
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Figure 5.2: Normalized flame displacements shown for three confinement ratios cor-
responding to the cases shown in Fig. 5.1. Additionally, a case with
Cr = 0.17 is added. The thick black line signifies the displacement im-
mediately caused by an impulsive velocity forcing of the flame and the
gray lines its subsequent spatio-temporal development. The primary pos-
itive displacement peak is tracked and marked in each time step ( ).
Similarly, the positive and negative secondary peaks are tracked ( ).
An exponential function is fitted to the spatial trace of the primary peak
( ) and from it a temporal growth rate σ is computed.

Only around t3 (Cr = 0.4; ) the heat release rate starts to increases, which corre-
sponds to the time the initially created primary displacement reaches xF

1 /L f = 1. Ac-
cordingly, the subsequent negative secondary displacements causes the heat release
to decrease to negative values at t4. We note that (i) the convective growth of flame
front displacements directly leads to higher peak values of the associated IR and (ii)
the presence of the numerous positive and negative displacement peaks of decreasing
amplitude is responsible for the damped oscillatory IR behavior. Those two observa-
tions are supposed to be caused by flame-flow feedback and shall be quantified in the
following.

To this end, the spatial growth of the convected displacement peaks is evaluated.
Fig. 5.2 combines several snapshots of the displaced flame front at different instants
in time in one single plot (thick black line for t∗ = 0 and gray lines for t∗ > 0). Ad-
ditionally, for each snapshot, the maximum of the primary displacement — caused
by acoustics at t∗ = 0 — is marked by a green circle ( ). The subsequently devel-
oping first two positive and negative secondary peaks are marked by orange circles
( ). Due to the fact that all of these maxima are convected downstream towards
the flame tip at xF

1 /L f = 1, their traces form lines of growing amplitude. Assuming
this growth is governed by linear dynamics (no sharp edges in concave regions!) and
the initial shape approximately resembles a sine (see particularly the shapes at t ≥ t2

in Fig. 5.1), the growth should be exponential. Fitting an exponential function to the
distribution of the primary peaks, a spatial growth rate σx is computed. In order to
avoid to capture anchoring and tip related effects, points close to one of these two
exceptional points are excluded from the respective data sets. By use of the advection
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velocity u∥, these spatial growth rates can be converted to temporal ones via σ=σx u∥
[63, 66].

Before the results of this kind of analysis are discussed, it should be emphasized that
impulsively forced data is used here. Such kind of analysis, however, is usually per-
formed based on harmonically forced data, see for example Truffaut and Searby [66].
Assuming that harmonic forcing also results in harmonic flame sheet perturbations
of a single wave number, growth rates can be evaluated for each wave number sep-
arately. Repeating this for several frequencies, samples of the underlying dispersion
relation are computed. Imposing an impulsive acoustic forcing excites perturbations
of several wave numbers at the same time, see the triangle-shaped initial displace-
ment shown in Fig. 5.1. Subsequently, each excited wave number perturbation will
independently grow in amplitude at a rate given by the underlying dispersion relation
(we assume we are still in the linear regime). This means that the flame displace-
ments shown in Fig. 5.1 are a superposition of all of these individual perturbations.
Therefore, the computed overall growth rate can not directly be related to frequency-
specific growth rates of the associated dispersion relation. Nevertheless, the displace-
ments resembles a sine-like shape already in the second snapshot (t2). Therefore, it
is possible to get, at least, a rough idea of the order of magnitude of the maximally
expected growth rates from impulsively forced data. In the scope of this section, this
shall be sufficient.

Evaluating the temporal growth rates σ for three confinement ratios in Fig. 5.1, it is
found that they strongly depend on confinement ratio. While the growth of displace-
ments is suppressed at the narrowest confinement, it reaches a value of about 120 1/s

for Cr = 0.17. In order to put this number into perspective, it is non-dimensionalized
by the flame transition time τt = δD /sL to στt = 0.038. Truffaut and Searby [66] ex-
perimentally determined non-dimensional growth rates between approximately 0.03

and 0.09 for rich propane-air flames stabilized at a harmonically displaced rod, see
Fig. 1.4. The order of magnitude of their results is hence the same as the ones ob-
tained here. Further, Truffaut and Searby [66] attributed the observed growth to the
Darrieus-Landau mechanism, which is denoted as the hydrodynamic mechanism in
Chap. 1. This provides evidence that similar, flame-flow feedback related processes
are at work for the configurations studied in this thesis. For future studies it should
be kept in mind that displacement amplitude growth rates may significantly be influ-
enced by lateral constraints of the flow, such as a confinement.

5.1.2 Convective Velocity Model

If flame-flow feedback really has the decisive impact on the flame dynamics as as-
serted above, why is it possible that G-equation based approaches relying on convec-
tive velocity models, which do not explicitly account for flame-flow feedback, are
capable of correctly reproducing essential aspects of the dynamics of acoustically
perturbed flames? The answer is that they implicitly do, which is analyzed in the
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Figure 5.3: Normalized flame front displacements as predicted by the uniform (top)
and the incompressible convective (middle and bottom) velocity model
for a harmonic velocity forcing at a Strouhal number of ω∗ = 5 (top and
middle) and one of ω∗ = 20 (bottom).

following.

Having a closer look at the convective velocity model of Eq. (2.5), one recognizes
that this model indeed leads to a spatial growth of flame front displacements. This is
illustrated in Fig. 5.3, which shows the response of a flame front exposed to harmonic
velocity forcing at a fixed frequency according to the 1D linearized G-equation ap-
proach introduced in Sec. 1.3.2. Three response predictions are shown for two veloc-
ity models and two Strouhal numbers. While, for a Strouhal number of 5, the uniform
velocity model of Eq. (2.4) (Fig. 5.3, top) shows a constant amplitude of the wrin-
kled flame surface, the incompressible convective velocity model (Fig. 5.3, middle)
exhibits a clear spatial growth of the respective flame front displacements. Hence,
the convected velocity perturbation mimics the effects of flame-flow feedback, which
explains their agreement with experimental data.

At a Strouhal number of 20, however, the spatial distribution of displacement am-
plitudes grows only up to xF

1 /L f & 0.5 and subsequently decreases again. Overall,
a low frequency modulation on top of a high frequency oscillation becomes visible
(Fig. 5.3, bottom), which is also known as a beat. This might explain the decreas-
ing predictive capabilities of such models at high frequencies, which was reported
by Cuquel et al. [161]. But even at sufficiently low frequencies, the model deviates
from a realistic behavior. Theoretically, it is possible to evaluate spatial growth rates
relying on a convective velocity model by post-processing displacement predictions
as the one shown in Fig. 5.3, middle. Doing this for several forcing frequencies, this
will eventually result in a dispersion relation that, ideally, coincides at low frequen-
cies with the realistic flame sheet behavior. If that is true, we can expect that the con-
vective velocity predicts the actual acoustic flame response very well. The study of
Kashinath et al. [167], however, suggests that convective velocity models do not cap-
ture the real physical behavior. In this work, the authors fitted the convection speed
of the velocity perturbations to high fidelity CFD data and found a significant de-
pendency of this speed to frequency. Knowing that this speed influences the resulting
growth rates, their study indicates that the dispersion relation naturally resulting from
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a convective model does not agree with the one of the underlying physical process,
but requires a non straight forward fitting procedure.

It can be concluded that models relying on convected velocity perturbation mimic
the flame-flow feedback related spatial growth of displacement amplitudes, however,
only up to a certain frequency. Furthermore, the associated (theoretical) dispersion
relation of these kind of models does in general not reproduce the real physical be-
havior.

5.2 Modeling of Flame-Flow Feedback

The previous section pointed out the importance of flame-flow feedback by analyzing
high fidelity CFD data. Furthermore, hints of such a feedback were found in the
convective velocity model, which is commonly applied in G-equation based modeling
approaches. Motivated by these findings, the goal of this section is to integrate flame-
flow feedback into the modeling framework introduced in Chap. 3 such that it can be
used to analyze its impact on the linear flame response.

According to the concepts outlined in Chap. 1, flame-flow feedback is a hydrody-
namic mechanism related to density changes across the flame sheet. It necessarily
results in the unconditional growth of flame front displacements, if it is not stabilized
by thermal-diffusive mechanisms [44]. Following the analysis of Darrieus and Lan-
dau, in the framework of gasdynamic discontinuities, this growth emerges from the
jump conditions of mass and momentum across the flame. Hence, it can be expected
that analyzing these conditions in more detail contributes to the understanding of the
basic mechanisms at play.

Having done this, it should be possible to integrate gas expansion into the existing
modeling framework of Chap. 3. It explicitly appears at two positions, (i) as volume
source in the gas expansion related flow component ue of Eq. (3.13) and (ii) in form of
a density gradient in the baroclinic source term of the vorticity transport equation, i. e.
Eq. (3.9). The modeling concept proposed in this section concerning point (i) relies
on the specification of a volume production kernel. This kernel function distributes
the volume produced by the flame in space and serves as a source to the gas expansion
related flow field component ue . Based on a study conducted by Zimmermann [195],
a Gaussian kernel function will be introduced. Concerning the modeling concept for
the baroclinic source term, see point (ii), it will be shown that a candidate for such a
concept can be derived from the analysis of the jump conditions.

Following these ideas, Sec. 5.2.1 derives and analyzes a set of jump conditions,
including and excluding flame stretch effects, respectively. Based on these results,
Sec. 5.2.2 introduces a concept for how flame generated (baroclinic) vorticity can be
included into the modeling framework. Finally, a kinematic modeling approach of
gas expansion is introduced in Sec. 5.2.3.
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5.2.1 Jump Conditions Across a Flame Sheet

In the subsequent analysis it is assumed that the fluxes of mass and momentum
through the flame front are constant, i. e. the fluxes of mass, normal and tangential
momentum are conserved across the flame sheet

[m]b
u = 0, [p +mui ni ]b

u = 0, [mui ti ]b
u = 0, (5.1)

where ui , ni and ti denote the i -th component of the flow velocity, the local flame
normal and flame tangential vectors, respectively. Further, the Einstein summation
convention is employed and m = ui ni −∂ξ∂t denotes the local mass flux across the
flame sheet. This essentially follows the original ideas of Landau [27] and Markstein
[44], who derived the set of jump conditions shown in Eq. (1.7). All of the relations
shown below are derived from the formulation of the fluxes as they are stated in
Eq. (5.1). They are evaluated right at the mean flame position, which is, per definition,
fixed in space and time. This simplification imposes an error that scales with the
displacement amplitude and the inverse of the perturbations wave length.

A flame aligned coordinate system [x1, x2] as depicted in Fig. 1.9b is assumed. The
mean flow field in which a freely propagating flame sheet is stabilized points towards
the positive x2-direction. Application of the jump conditions Eq. (5.1) requires the
computation of the velocity components tangential and normal to the flame front.
The linear analysis presented in the following shall be limited to perturbation wave
lengths λ that are long compared to the convective-diffusive length scale δD in order
to avoid the occurrence of significant levels of flame stretch and to not trigger sig-
nificant 2D effects. Mathematically, this fact is reflected by limiting the analysis to
large Péclet numbers Pe= δD /λ. Furthermore, flame displacement amplitudes shall
be small, that is ξ≪λ. We assume ξ=O (ǫ), where ǫ may be a small quantity, such
that all terms O

(
ǫ2

)
are negligible. Accordingly, they are dropped in the following

analysis. Developing all quantities in powers of Pe−1 shifts perturbations that exhibit
a short wave length compared to the flame thickness to higher order terms in the ex-
pansion parameter. Based on this expansion, only zeroth order terms are considered
in the following. Using this method, the flame normal and tangential vectors resulting
from the perturbed flame are given by

n f =
[
n f ,1,n f ,2

]
=

[
− ∂ξ

∂x1
,1

]
+O

(
Pe−1

)
and t f =

[
t f ,1, t f ,2

]
=

[
1,

∂ξ

∂x1

]
+O

(
Pe−1

)
,

(5.2)
respectively.

A perturbed flame sheet goes along with perturbations of all other flow vari-
ables, that is velocity and pressure. Assuming a flow field of the fresh mixture
uu = [u′

u,1,uu,2 +u′
u,2]+O

(
Pe−1

)
, the flame normal and tangential velocity compo-

nents just upstream of the flame sheet can be computed from n f ,i uu,i and t f ,i uu,i ,
which results in

uu,⊥ = uu,2 +u′
u,2 +O

(
Pe−1

)
and uu,∥ = uu,2

∂ξ

∂x1
+u′

u,1 +O
(
Pe−1

)
, (5.3)
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respectively. Using these equations together with Eq. (5.1), we get for the mean quan-
tities

[
u2

]b
u = s0

LE (5.4)
[
p

]b
u = −(s0

L)2ρuE (5.5)
[
u1

]b
u = 0, (5.6)

where the assumption of a stationary flame front of the unperturbed flow requires
uu,2 = s0

L and E = ρu/ρb −1 denotes the non-dimensional increase of specific volume.
Hence, across the flame front the flow is accelerated by a factor e = (E +1) in x2-
direction and the static pressure decreases by a term (s0

L)2ρuE . Application of the
jump conditions for the perturbed flow field results in

[
u′

2

]b
u = E

(
u′

u,2 −
∂ξ

∂t

)
+O

(
Pe−1

)
(5.7)

[
p ′]b

u = −2ρu s0
L

[
u′

2

]b
u +O

(
Pe−1

)
(5.8)

[
u′

1

]b
u = −s0

LE
∂ξ

∂x1
+O

(
Pe−1

)
, (5.9)

while the equation governing the kinematics of the flame sheet sL = uu,⊥−∂ξ/∂t

leads to

u′
u,2 −

∂ξ

∂t
= sL −uu,2 +O

(
Pe−1

)
. (5.10)

Neglecting Flame Stretch

When Landau [27] assessed the stability of planar flames, he assumed a constant
flame speed sL = s0

L +O
(
Pe−1

)
and, thus, neglected stretch effects. Note that this as-

sumption is perfectly in line with the neglect of terms that are of higher than zeroth
order in 1/Pe. Inserting the constant flame speed assumption into Eqs. (5.7)–(5.9),
the jump conditions write

[
u′

2

]b
u =O

(
Pe−1

)
,

[
p ′]b

u =O
(
Pe−1

)
and

[
u′

1

]b
u =−s0

LE
∂ξ

∂x1
+O

(
Pe−1

)
.

(5.11)
From Eq. (5.10) it follows that the flame front moves in response to upstream velocity
perturbations according to ∂ξ/∂t = u′

u,2 +O
(
Pe−1

)
. While pressure and flame-normal

velocity fluctuations are continuous across the flame, flame-tangential velocity per-
turbations change, as stated by Eq. (5.11).

Considering Flame Stretch

Now consequences of flame stretch shall be investigated by including terms up to
O

(
Pe−1

)
to the analysis. As already mentioned in Sec. 1.2.3, in the limiting case of
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high activation energies of the global reaction, this shall only add a new stretch de-
pendent term to the flame speed relation, while the jump conditions Eqs. (5.7)–(5.9)
remain the same. This approximation is in line with the phenomenological stretch-
related correction of Markstein [44] and justified by the strong dependency of the
flame speed to temperature in the case of a high activation energy of the global reac-
tion [42].

Assuming that the Markstein number for flow strain and flame curvature is the same,
the equation for the flame speed writes

sL = s0
L (1− lMκs) (5.12)

with the Markstein length lM and the flame stretch κs . Using this relation together
with Eq. (5.10) we get

u′
u,2 −

∂ξ

∂t
=−lMκs . (5.13)

This extended relation of the flame sheet kinematics is now inserted to the jump
conditions Eqs. (5.7)–(5.9) and we obtain

[
u′

2

]b
u = −E lMκs (5.14)

[
p ′]b

u = −2ρu s0
L

[
u′

2

]b
u (5.15)

[
u′

1

]b
u = −s0

LE
∂ξ

∂x1
. (5.16)

While the jump conditions (5.16) for the tangential velocity u′
1 remain unchanged

compared to the case without flame stretch, the other two now contain flame stretch
related quantities. These new terms reflect the fact that changes in the flame speed
affect the local volume production per unit length m = E sL of the flame sheet, see
Eq. (3.7). Hence, concave parts of the flame now produce more volume since the
flame propagation speed is increased here, and vice versa for convex parts.

A stretch dependent flame speed, as expressed in Eq.(5.13), is one of the most impor-
tant mechanisms that dampens flame front displacements by imposing flame speed
variation in convex/concave regions. Following the analysis conducted in Sec. 1.3.2,
it has a diffusion-like effect on the flame dynamics. Consequently, sharp displace-
ments are smeared in space.

5.2.2 Modeling of Flame Generated Vorticity

Based on the jump conditions derived in the previous section, a model for the pro-
duction of vorticity by a perturbed flame sheet shall now be deduced. To this end, the
jump in the tangential velocity component of Eqs. (5.9) or (5.16) is revisited, since
it quantifies the amount of vorticity generated across the flame sheet. This can be
shown by computing the circulation around a closed surface as depicted in Fig. 5.4.
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Figure 5.4: Illustration of the line integral of Eq. (5.17) along a path ∂S enclosing a
surface S.

The lower side of this rectangular surface is assumed to be just inside the domain of
the unburned fluid, whereas all other sides are inside the burned region. We obtain
for the circulation of an infinitesimally small surface

dΓ=
∮

∂S
ui dxi

=−u′
b,1dx1 −u′

b,2(x1)dx2 +u′
u,1dx1 +u′

b,2(x1 +dx1)dx2

=
∂u′

b,2

∂x1
dx1dx2 −

[
u′

1

]b
u dx1 , (5.17)

where it is assumed that the streamwise component of the flow just upstream of the
flame does not vary along the flame sheet, i. e. ∂u′

u,2/∂x1 ≡ 0. Furthermore, also the
flame tangential velocity is assumed to be constant along the sheet. This results in
an expression for the circulation, which is related to vorticity by a surface integral
dΓ=

∫
S ωdA. Hence, a perturbed flame acts as a vortex sheet of strength

∂Γ

∂x1
=

∂u′
b,2

∂x1
dx2 −

[
u′

1

]b
u . (5.18)

As shown in Sec. 5.2.1, variations of flame-normal velocity of combustion products
u′

b,2
along the flame sheet result only from flame stretch effects, i. e. consequences

of flame curvature and flow strain. Combining Eq. (5.18) with the jump condition
of Eq. (5.14) and (5.16) assuming ∂u′

u,2/∂x1 ≡ 0, the stretch dependency of the first
term in Eqs. (5.18) becomes clear:

∂Γ

∂x1
=−E lM

∂κs

∂x1
dx2 + s0

LE
∂ξ

∂x1
. (5.19)

Assuming the flame front displacement may be of order O (ǫ) and dx2 of order of the
flame thickness, the first term in Eq. (5.19) is of the order O

(
ǫl 2

M

)
. The second term

in Eq. (5.19) is of order O (ǫ). Knowing that the Markstein length lM is a quantity of
similar length as the flame thickness, it becomes clear that the first term in Eq. (5.19)
is much smaller than the second one. Therefore, in the scope of this thesis, only the
second term in Eq. (5.19) shall be of interest and, thus, flame stretch related effects on
flame generated vorticity are neglected. This is in line with the analysis conducted by
Matalon et al. [41]. They reported that significant jumps in vorticity result only from
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Figure 5.5: Sketch of a harmonically perturbed flame sheet including an illustrations
of the consequences of flame-generated vorticity, indicated by green cir-
cular arrows. Together with the mechanism of geometrical focusing, see
Sec. 5.2.3, this leads to the formation of in- and decreased flow speeds
at the flame front, illustrated by the red and blue colored areas as well as
the orange stream tubes. Flame stretch related variations of flame speed
are indicated by downward pointing small arrows of various lengths.

baroclinic production assuming the flow field upstream of the flame is vortical-free
(irrotational). For a more complete analysis of the generation of vorticity by gasdy-
namic discontinuities see the work of Hayes [175]. More detailed considerations of
flame generated vorticity due to flame stretch are, for example, found in the works of
[100, 173, 174, 196].

From Eq. (5.19) it follows that flame generated vorticity is maximum at inflection
points of the flame displacement. In Fig. 5.5 the effect of this vorticity is indicated
by green circular arrows placed at points of ξ= 0. They lead to an acceleration and
deceleration of the contracting (red) and expanding (blue) flow tubes, respectively,
and thus destabilize the perturbed flame sheet. Since the work of Darrieus and Landau
was based on the jump conditions shown in Sec. 5.2.1 neglecting flame stretch, it
can be concluded that flame-generated vorticity is the driving mechanisms of the
Darrieus-Landau instability. The modeling concept pursued in this work follows this
result: Vorticity, in form of point vortices, is distributed along the mean flame sheet
satisfying Eq. (5.19). These vortices would subsequently be advected by the mean
flow field following Eq. (3.10). This advection process, however, shall be neglected.

The suggested modeling concept distributes vorticity along the mean flame position
in form of point vortices. Such vortices, however, exhibit a flow field singularity at
their center, which would lead to unbounded velocity magnitudes close to it. Since
these vortices are placed very close to the flame sheet, this could lead to undesired
distortions of the resulting flame front. Hence, viscous vortices will be used, where
the vorticity is not concentrated in one singular point, but spatially distributed accord-
ing to a Gaussian-like function. Such a vortex is known as the Lamb-Oseen vortex
[197]. Its vorticity distribution is obtained as an exact solution of the Navier-Stokes
equations for an initially singular point vortex. The complex conjugate of the vortical
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velocity field of a Lamb-Oseen vortex is written as

ũω(ξ) =−i
Γ

2π

1

ξ−ξ′

[
1−exp

(
−

∣∣ξ−ξ′
∣∣2

r 2
0,ω

)]
, (5.20)

where the velocity drops to zero at the vortex center (ξ→ ξ′). The vortex radius r0,ω

specifies the radius where the induced circumferential velocity is maximum. For radii
greater than r0,ω, the velocity distribution asymptotically approaches the one of a
singular vortex, see Eq. (3.22). The vortex sheet assumed by this modeling approach
has a thickness of the order of the flame displaced O (ǫ). Hence, the vortex radius is
always set to the prevailing displacement amplitude. The Markstein length lM , which
quantifies the thickness of a flame sheet, is hereby used as a lower threshold for the
vortex radius, i. e. r0,ω > lM . It is finally emphasized that such an approach mimics the
Darrieus-Landau mechanism, which also relies solely on flame-generated vorticity.

5.2.3 Modeling of Geometrical Focusing

In the case of acoustically excited burner-stabilized flames, flame front displacements
may be imposed whose amplitudes are not small compared to a characteristic length
scale of the perturbation. As shown in Eq. (4.2), acoustics interacts predominantly
with the flame base region exhibiting a characteristic length scale of about 0.6L f .
Knowing that the Darrieus-Landau mechanism will lead to a convective growth of the
primary displacements, after some time a situation may occur where the displacement
amplitude ǫ is no longer negligible compared to the characteristic perturbation length
scale. Then the theory based on two flow domains of constant spatial extension, which
are coupled via the jump conditions introduced in Sec. 5.2.1 does not hold any more.
In addition to the Darrieus-Landau mechanism, new phenomena may occur. One of
them is geometrical focusing, which will be introduced in this section.

The proposed extended modeling approach is based on a method that captures con-
sequences of gas expansion across a perturbed flame sheet. It essentially relies on
existing modeling strategies, which represent a flame sheet as a localized source of
volume [100, 173, 174, 198, 199]. Most studies realize such a volume production
relying on discontinuous source panels, which are placed along the instantaneous
flame front position. The herein proposed method seizes this idea and extends it by
using spatially distributed (Gaussian) volume sources instead of panels, which allow
to resolve the inner structure of the flame sheet and avoid unbounded velocity magni-
tudes. More specifically, a Gaussian volume production kernel D(x) is proposed and
included into the modeling framework introduced in Chap. 3. Based on this general
idea, a modeling concept is derived in the following, which has already successfully
been implemented and tested by Zimmermann [195] in the scope of his Bachelor’s
thesis. To the best knowledge of the author, no prior efforts have been made to analyze
acoustics-flame interactions based on such an approach.
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Figure 5.6: Each of the three figures shows the amount of volume produced accord-
ing to a number of Gaussian sources with kernel radius r0 distributed
along a vertical line, where blue denotes zero and yellow maximum vol-
ume production. The center of each Gaussian source is marked by a red
dot ( ). The number of sources per length increases from left to right,
while the sum of all source strengths is kept constant (taken from Zim-
mermann [195], Fig. 5.8).

The most elementary kernel, which could be used to represent the volume production
kernel D(x), is a Dirac Delta distribution δ(x). Here, volume is produced only at one
singular point. By continuously placing such point sources along a line, a line source
emerges. Approximating the flame front by a finite number of such lines results in
a kinematic description of an infinitely thin flame sheet, since the flow velocity im-
mediately increases at the flame by a fixed value that depends on the respective line
source strength. This approach has, for example been applied by Pindera and Talbot
[173]. Here, another method is pursued, which is inspired by the Lamb-Oseen vortex
introduced in the previous section. In analogy to this kind of vortex, a Gaussian-like
volume source distribution is assumed. Computing the flow field associated to such a
source in free space, results in an irrotational velocity field

ũe =
S

2π

1

ξ−ξ′

[
1−exp

(
−

∣∣ξ−ξ′
∣∣2

r 2
0,e

)]
, (5.21)

where S denotes the strength of the Gaussian source, just as in the case of a point
source, see Eq. (3.21). Again, the flow field is finite-valued everywhere. Placing sev-
eral such sources right next to each other results in a discretized version of a line
source, but now with a smooth increase of velocity across it. This is illustrated in
Fig. 5.6, where three different source distributions of increasing density, i. e. sources
per length, are shown. While the individual sources are clearly distinguishable in the
left figure, in the figure to the very right the given source distribution already re-
sembles a line source very well — although only six sources are used. Generally,
modeling approaches relying on Gaussian sources have to ensure that the distance
between the individual sources is sufficiently smaller than r0,e .

A distribution of volume sources along a line leads to an increase of the velocity com-
ponent normal to that line. Fig. 5.7 visualizes this for a steady state flame front along
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Figure 5.7: Left: Magnitude of flow velocity evaluated along three stream lines (see
right plot) plotted over the axial coordinate x1. The theoretical veloci-
ties far up- and downstream of the flame are marked by horizontal black
dashed lines. Right: Steady state flow field for Cr = 0.4. The flame front
(green) is represented by a number of Gaussian sources of kernel ra-
dius r0. The three stream lines (gray lines) referenced in the left plot are
marked by corresponding line styles.

Figure 5.8: Left: Axial velocity of a channel flow including a vertical flame sheet
(methane-air, φ= 0.8) represented by Gaussian sources with kernel ra-
dius r0 ( ). Right: Flame normal velocity evaluated along the pink line
shown in the left plot (pink line) compared to results of a 1D simulation
employing detailed chemical mechanism (red dashed line). The Gaussian
sources are placed at x1 = 0 and have a kernel radius of r0,e = 0.53 mm
(taken from Zimmermann [195], Fig. 5.6).

which Gaussian volume source of strength S and radius r0,e are distributed. Plotting
the absolute velocity along three selected stream lines illustrates the acceleration of
the flow across the flame sheet. Therefore, r0,e has to be chosen such that the flame
normal velocity induced by the Gaussian sources optimally resembles the behavior
imposed by a realistic combustion zone. In order to archive this, 1D simulations of
a steady flame are conducted employing a detailed chemical reaction scheme. Re-
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sults are compared to the fields relying on Gaussian sources in Fig. 5.81. The left plot
of this figure shows a straight flame stabilized inside a duct, along which Gaussian
sources are uniformly distributed. The plot on the right hand side of Fig. 5.8 shows
the flame normal velocity inside the duct evaluated along the pink horizontal line
shown in the left plot (pink line). Additionally, results of the detailed 1D simulations
are shown (red dashed line). Both curves coincide very well and only deviate on the
downstream side of the flame sheet, where the secondary reaction layer is placed, see
Sec. 1.1.1. All in all, for the given value of r0,e , very good agreement between both
combustion models is found.

The velocity fields depicted in Figs. 5.7 and 5.8 are retrieved by placing a num-
ber of Gaussian sources of kernel radius r0,e = 0.53 mm along a given steady state
flame front and placing a source of strength S = 2u1,blkRi at x1 =−∞ (corresponds
to ξ = 0 in the image domain). A Kutta condition is employed at the trailing edge
for the setup shown in Fig. 5.7. Besides this, the only difference in the computations
involved to create both figures is the choice of the respective Schwarz-Christoffel
mapping (see Zimmermann [195] for details). Considering the fact that the Gaussian
sources should impact the flow velocity down- and upstream of the flame, it may be
surprising that the velocity far upstream of the flame asymptotes to u1,blk while it ap-
proaches Cr Eu1,blk on the downstream side. This point can be clarified as follows: As
shown in Fig. 3.4, the Gaussian sources are placed in the image domain along an arc
starting from ξ= 1 and extending to negative values of ξ1. Impermeability boundary
conditions demand an second arc of sources mirrored at the real axis. These two arcs
enclose the flow domain upstream of the flame, where the flow field contributions
of the individual Gaussian sources mostly annihilate each other. Considering a duct
flame, the superimposed contributions of all sources even perfectly vanish on the up-
stream side of the flame. This is a consequence of the fact that here the flame front
maps to a sphere around the origin in the image domain, which is symmetric with
respect to the imaginary and the real axes. For the burner-stabilized flame of Fig. 5.7,
the arc shown in Fig. 3.4 is only symmetric with respect to the real axis. In conse-
quence, a slightly negative flow upstream of the flame is induced by the Gaussian
sources, which however is negligible as illustrated in Fig. 5.7 (the absolute velocities
almost approach 1 for x1 →−∞).

Representing a flame front by a number of Gaussian sources, leads to an uncondi-
tional growth of flame front displacements, as will be shown in the next section.
Hence, together with the destabilizing effect of flame-generated baroclinc vorticity,
discussed in Sec. 5.2.2, two hydrodynamic mechanisms of flame-flow feedback are
found — a vortical and an irrotational one. The former has already been covered in
the discussion above. The latter can be understood by considering a perturbed flame
sheet, as depicted in Fig. 5.9. The combustion process imposes a volume production
onto the flow, which is an irrotational effect, and which can be captured by distribut-
ing sources along the flame sheet. This imposes, on the one hand, a discontinuity in

1Computed with Cantera [29] using the GRI-Mech 3.0 reaction mechanism [30]
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Figure 5.9: Illustration of the perturbed flow field imposed by a displaced flame
sheet, which is represented by a number of Gaussian volume sources.
The overall effect of these sources leads to a geometrical focusing of the
flow, i. e. an acceleration of the flow in the vicinity of concave and a de-
celeration in the vicinity of convex parts of the flame, amplifying already
existent flame perturbations.

flame normal velocity across the flame. On the other hand, additionally the flow field
in the vicinity of the flame is modified. This is illustrated in Fig. 5.9: Three sources
placed at the inflection points of the perturbed flame sheet are exemplarily highlighted
(gray). Each imposes a velocity field that points away from the center of the respec-
tive source. Overall, this results in an increase of flow velocity in the vicinity of the
maxima of the displaced flame sheet and, vice versa, a decrease at the minima. Alto-
gether, this results in an accelerated flow at concave and a decelerated flow at convex
parts of the flow field. Due to this dependency on flame shape, this process is referred
to as geometrical focusing in the following. Just like the Darrieus-Landau mechanism
relying on flame-generated vorticity, geometrical focusing amplifies flame perturba-
tions and constitutes a hydrodynamic flame-flow feedback mechanism. It essentially
relies on movements of the mean flame shape and is, hence, not accounted for if two
coupled flow domains of constant boundaries are assessed, as it is assumed in the
scope of Darrieus-Landau’s problem discussed in Sec. 1.2.3.

For the sake of completeness, it should be mentioned that geometrical focusing also
leads to the occurrence of spatially varying tangential velocity perturbations, associ-
ated with flow strain. Their consideration, however, is explicitly neglected here.

5.3 Analysis of the Impact of Flame-Flow Feedback

The modeling framework introduced in Chap. 3 supplemented with the approaches
outlined in this chapter shall now be applied to the flame configurations analyzed
in Chap. 4 (primary interactions). Since vortex shedding was found to only have a
negligible impact on the flame response, it is excluded from the analysis presented in
the following.
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Parameter Value
Expansion ratio e 6.68
Flame speed s0

L 0.2686 m/s

Flame thickness δD 83.95 µm
Markstein number Ma 4
Gaussian source kernel radius r0,e 0.53 mm

Table 5.1: Flame parameters used for the computations of this chapter.

An overview of the flame parameters used for the computations of this chapter is
provided in Tab. 5.1. The values for e, sL and δD are retrieved from 1D simulations
of lean methane-air flames at φ= 0.8 relying on the software Cantera [29] employing
the GRI-Mech 3.0 reaction mechanism [30]. The flame thickness is estimated by a
diffusion length δD = D th/sL , where D th denotes the thermal diffusivity. Following
Eq. (5.12), the definition of the stretched flame speed depends on the Markstein length
lM , which is computed from δD and the Markstein number Ma via lM = δD Ma .

Following Matalon et al. [41], methane-air mixtures exhibit Markstein numbers
roughly between 3 and 4. As mentioned in the introduction of this chapter, we should
expect an overprediction of displacement amplitudes when including flame-flow
feedback into the modeling approach, since only driving and no damping mechanisms
are considered. Damping mechanisms are usually associated with flame stretch. In the
modeling approach proposed here, only consequences of curvature-related stretch for
the flame speed are considered. Flow strain as well as stretch generated vorticity are
neglected, which might significantly underestimate the damping, as indicated by the
study of Pindera and Talbot [174]. Hence, in the scope of this thesis only a qualita-
tive analysis of flame-flow feedback mechanisms is possible and therefore, in a first
approximation, a Markstein number of 4 is assumed. Following Fig. 5.8, the kernel
radius of all Gaussian sources is fixed to r0,e = 0.53 mm.

Based on these assumptions, the model relying on the 1D linear representation of the
flame dynamics of Eq. (3.16), a Schwarz-Christoffel mapping, a representation of the
flow field by a finite number of flow field singularities and a Kutta condition is ready
to be solved. Exactly the same setup as discussed in Chap. 4 is analyzed, but this
time flame-flow feedback is included. Concerning the numerical details, Eq. (3.16)
is integrated in time relying on an explicit Euler method together with a first-order
upwind discretization scheme for the advection and a second-order central scheme
for the diffusion term. The flame sheet is discretized using 100 sample points and
the time step width is set such that a mesh Fourier number of lM s0

L∆t/∆x2 ≈ 0.05

is achieved [200]. In each time step, Lamb-Oseen vortices are distributed along the
mean flame position (one vortex per sampling point), with their respective strength
being computed from Eq. (5.16). Furthermore, Gaussian sources of kernel radius
r0,ω are placed along the instantaneous flame front, with a density of 10 sources per
millimeter. Their strengths depend on the local flame speed, on the expansion ratio
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Figure 5.10: LOM predictions including flame-generated vorticity of a harmonically
forced flame configuration (at 120 Hz and an amplitude of 10% ublk)
for a confinement ratio of Cr = 0.4. The minimum vortex kernel radius
is set to r0,ω,min = 4.25 lM . Shown are four consecutive snapshots taken
at phases from 0◦ to 270◦ relative to the forcing signal. Each shows
the current axial velocity perturbations u′

1 (color), the mean flame front
position ( ), the perturbed flame ( ) and, attached to the trailing
edge, the Kutta panel.

e as well as on the number of sources per millimeter. The global heat release is
evaluated using the linearized relations introduced in Chap. 6. The Kutta condition
is applied as described in Sec. 4.2.2. The run times of the simulations shown in this
chapter are of the order of one minute, if solely flame generated vorticity is considered
(Sec. 5.3.1), and of 10 minutes if gas expansion via Gaussian sources is taken into
account (Secs. 5.3.2).

The analysis is split into two parts: in the first one, consequences of flame generated
vorticity are assessed in Sec. 5.3.1, which is analog to the Darrieus-Landau mech-
anism. In the second part, Sec. 5.3.2 focuses on irrotational feedback mechanisms,
namely geometrical focusing, by representing the flame sheet by a number of Gaus-
sian sources, which impose a jump in flame normal velocity across the flame sheet.
All simulations are put into perspective by comparing them to the results of Chap. 4,
where flame-flow feedback was neglected.

5.3.1 Flame Generated Vorticity

In a first step, the role of flame generated vorticity is investigated and the flame nor-
mal acceleration across the flame sheet, captured by Gaussian sources, is not taken
into consideration. Lamb-Oseen vortices are placed along the mean flame front. Ac-
cording to Eq. (5.16), their strength is proportional to the local flame displacement
gradient ∂ξ/∂xF

1 , the non-dimensional increase of specific volume E and the un-
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Figure 5.11: Results of a simulation as described in Fig. 5.10, but for a confinement
ratio of Cr = 0.66.

stretched flame speed s0
L . Since vorticity is generated all along the perturbed flame

sheet with maxima at the inflection points of ξ, its spatial distribution is modeled by
Lamb-Oseen vortices whose kernel radii are set to the current maximum displacement
amplitude. Furthermore, a minimum radius of r0,ω,min = 4.25 lM is assumed in order
to avoid an overprediction of the imposed vortical velocity perturbations at the flame
sheet. Applying such a definition for r0,ω,min ensures that the order of magnitude
of the kernel radius cannot become smaller than the flame thickness. Nevertheless,
r0,ω,min has to be regarded as an empirical parameter whose value is not rigorously de-
rived from first principles. Unfortunately, it significantly affects the computed flame
response, as will be shown below.

Figs. 5.10 and 5.11 show four snapshots of harmonically forced simulations of this
model at Cr = 0.4 and Cr = 0.66, respectively. It is evident that consideration of flame
generated vorticity leads indeed to a convective growth of flame front perturbations:
right at the anchoring, hardly any flame displacement is visible, whereas the flame
tip oscillates with significant amplitude. Comparing the results of both confinement
ratios, we observe that the wave length and maximum displacement amplitude of
the resulting flame front perturbations varies: A more narrow confinement seems to
promote perturbations of longer wave lengths and lower displacement amplitudes.
Furthermore, a considerable impact of the flame sheet on the flow of premixture is
observable for both setups. Positive and negative axial velocity perturbations prop-
agate from the flame base region to its tip, similar as reported by Blanchard et al.

[129]. It has, however, to be noted that, other than claimed by Blanchard et al. [129],
the vortical component of flame-flow feedback does most probably not fully explain
the observed convected velocity perturbations, since the irrotational component has a
significant impact, as well, which will be shown in Sec. 5.3.2.

Imposing an impulsive forcing, results in a response as depicted in 5.12. As expected,
the response with and without flame-flow feedback agree at t∗ = 0 and then increas-
ingly deviate from each other. Similar to the CFD data, negative and positive sec-
ondary peaks develop and subsequently grow in amplitude while they are advected
towards the flame tip. The most apparent deviation between the LOM ( ) and
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Figure 5.12: Four snapshots taken at equidistant instances in time of the normal-
ized flame displacement resulting from an impulsive velocity forcing
at t∗ = 0 taken from CFD/SI results ( ), the acoustic LOM exclud-
ing flame-flow feedback ( ) and the acoustic LOM including flame-
generated vorticity with r0,ω,min = 4.25 lM ( ) at two confinement
ratios: Cr = 0.4 (top) and Cr = 0.66 (bottom).

the CFD data ( ) is the position where the negative and positive peaks develop,
which is slightly too far downstream in the low-order representation. Furthermore,
the responses predicted by the LOM is stronger than the respective CFD counterpart.
Overall, the Cr = 0.4 low-order predictions match the respective CFD results better
than the Cr = 0.66 ones. The damping behavior, presumably imposed by the presence
of a rather narrow confinement, seems to be underpredicted for the Cr = 0.66 setup.
Nevertheless, a — compared to the acoustic LOM — improved agreement can be
observed for both configurations.

This improved agreement is also reflected by the corresponding impulse and fre-
quency response data of the global heat release rate, which is shown in Fig. 5.13.
At Cr = 0.4, CFD/SI ( ) and LOM ( ) predictions agree well, only small de-
viations in phase/gain and the impulse response are observable. At Cr = 0.66, the
acoustic LOM correctly captures the oscillatory behavior of the IR, however, the re-
sponse deviates significantly from the CFD/SI data around t∗ = 0, see Fig. 5.13b.
Accordingly, the corresponding FTF gain curves are qualitatively different. The dras-
tic reduction of the peak gain value of the Cr = 0.66 setup (compared to Cr = 0.4),
can also be found in the acoustic LOM data ( ). All in all, the suggested low order
modeling strategy results in reasonable response predictions, even at Cr = 0.66.

Interpreting the results of the acoustic LOM including flame generated vorticity, it
should be kept in mind that they are based on an empirical parameter r0,ω,min. Eval-
uating the flame responses for 10% lower and larger values of r0,ω,min results in the
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Figure 5.13: IR and FR in terms of gain and phase at Cr = 0.4 and Cr = 0.66 as
predicted by CFD/SI ( ) as well as by the acoustic LOM with
( ) and without ( ) consideration of flame-generated vorticity
(r0,ω,min = 4.25lM ).

responses visualized in Figs. 5.14a and 5.14b, respectively. A reduction of the min-
imum kernel radius leads to higher velocity amplitudes and, thus, to an increase of
the FTF gain. Exactly the opposite behavior can be observed when the radius is in-
creased. We have to recognize that the low-order predictions are rather sensitive to
variations in r0,ω,min. That means that the quantitatively good agreement with the ref-
erence CFD/SI data is the result of a parameter tuning, i. e. finding an optimal value
for r0,ω,min. Nevertheless, the fact that the model shows reasonable results for both
confinement ratios and, additionally, leads to qualitatively correct response predic-
tions indicates that flame generated vorticity may indeed be one important driving
mechanism resulting from flame flow feedback.

The rather simplistic treatment of flame generated vorticity proposed in this section
resulted in valuable insights in consequences of flame-flow feedback. Its impact on
the FTF could be shown to lead to gains exceeding unity. Furthermore, the findings
of Blanchard et al. [129] could be corroborated stating that a perturbed flame sheet
acts as a vortex sheet whose upstream influence is responsible for the observed con-
vected velocity perturbations. The present analysis contains the empirical parameter
r0,ω,min and it was shown that response predictions are quite sensitive to its exact
value. Therefore, all results presented in this section are qualitative in nature. Quanti-
tatively good agreement between LOM and CFD/SI data could be achieved by tuning
r0,ω,min. Future studies could refine the analysis of flame-generated vorticity by im-
plementation of more detailed vorticity source terms, for example, relying on the
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Figure 5.14: IR and FR in terms of gain and phase at Cr = 0.4 as predicted by CFD/SI
( ) as well as by the acoustic LOM with ( ) and without ( )
consideration of flame-generated vorticity. Shown are results for two
minimum vortex kernel radii r0,ω,min.

work of Hayes [175]. This might possibly enable a quantitative assessment of the
vortical component of flame-flow feedback.

5.3.2 Irrotational Flame-Flow Feedback

A flame usually imposes a significant change in density on a flow, which is caused
by exothermic reactions releasing reasonable amounts of sensible enthalpy. Such a
density change is accompanied by an expansion and, thus, an acceleration of the
flow across the flame zone. This process is captured by means of Gaussian sources,
which are placed along the perturbed flame sheet and, hence, provoke a jump in
flame normal velocity. Their kernel radii r0,e are adjusted in order to optimally match
a realistic velocity profile through the flame front, see Fig. 5.8.

Applying this technique, the problem arises that the steady state position of the flame
is a priori unknown, since the presence of a confinement together with an combustion-
induced expanding flow alters the steady state flow field and, hence, also the corre-
sponding flame shape [142, 144]. This circumstance would require the computation
of the steady state in a first step, before the displacement dynamics could be eval-
uated in a second. Employing a 2D non-linear G-equation solver combined with a
representation of the flame by Gaussian sources, the steady state solution was com-
puted by Zimmermann [195]. Since this requires the availability of another solver as
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Figure 5.15: LOM predictions including irrotational flame-flow feedback of a har-
monically forced flame configuration (at 120 Hz and an amplitude of
10% ublk) for a confinement ratio of Cr = 0.4. Shown are four consecu-
tive snapshots taken at phases from 0◦ to 270◦ with respect of the forcing
signal. Each shows the current axial velocity perturbations u′

1 (color),
the mean flame front position ( ), the perturbed flame ( ) and,
attached to the trailing edge, the Kutta panel.

Figure 5.16: Results of a simulation as described in Fig. 5.15, but for a confinement
ratio of Cr = 0.66.

well as its seamless compatibility with the present framework, another approach is
pursued here: The flame normal flow velocity resulting from the distributed sources
is evaluated at all flame points based on the initially specified steady state flame front
position before the simulation starts. The resulting values are then subtracted from
the respective values at all later times. This ensures that the initially specified flame
position becomes a steady state of the posed problem and it is possible to apply the
method introduced above without any further adjustments. The employed steady state
of the Cr = 0.4 configuration is illustrated in Fig. 5.7.

Figs. 5.15 and 5.16 show results for a harmonically forced flame. These configura-
tions exactly corresponds to the setups shown in Figs. 5.10 and 5.11, but this time
Gaussian sources are used to represent the generation of volume across a flame. As
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Figure 5.17: (a): Illustration of the dipole-like flow structure in the vicinity of a per-
turbed duct flame, which results from an acceleration of flame-normal
velocity across a flame sheet (geometrical focusing). (b): Fluctuation of
the global heat release rate for a harmonic velocity forcing at 120 Hz
at an amplitude of 10%u1,blk( ) for Cr = 0.4, resulting from simu-
lations respecting flame-generated vorticity ( ), see Fig. 5.10, and
irrotational gas expansion ( ), see Fig. 5.15.

in the vortical case, the displacement amplitude convectively increases towards the
flame tip. Due to the now significantly larger wave lengths of the imposed flame sheet
perturbations, this fact is harder to recognize. The Cr = 0.66 case shows hardly any
spatial variations of the local displacement phase and only a rather small convective
growth in perturbation amplitude. When interpreting the u′

1 field, it should be con-
sidered that the deep red and deep blue parts right at the flame front are caused by the
fact that the flame sheet moves: if the flame propagates into the fresh mixture, the ve-
locity at points placed inside the originally unburned flow will be strongly increased
compared to the steady state and, vice versa, if the flame is pushed into burned parts.
Hence, consequences of the sources for the flow field become only apparent further
away from the flame sheet.

Respecting this fact, it is interesting to note that also the irrotational part of the
flame-flow feedback imposes distinct convected velocity perturbations upstream of
the flame, at least for Cr = 0.4. Dipole-like irrotational perturbations are imposed
onto the surrounding flow field, which is shown for the case of a perturbed duct flame
in Fig. 5.17a2: regions where the displacement shows local maxima (concave parts)
behave as sources on the burned and as sinks on the unburned side of the flame sheet.
For regions at local minima (convex parts), it is the other way round. In consequence,
the overall perturbation flow field might appear vortical, while it is irrotational in re-
ality. This complicates a visual analysis of the flow field in the vicinity of perturbed
flames. Based on these findings, it has to be concluded that the description of Blan-

2The computation of this figure employs exactly the same framework as the ones of Figs. 5.15 and
5.16, however, a different Schwarz-Christoffel mapping was applied in order to cope with the depicted
duct geometry, see Zimmermann [195] for details.
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Figure 5.18: Four snapshots taken at equidistant instances in time of the normal-
ized flame displacement resulting from an impulsive velocity forcing at
t∗ = 0 taken from CFD/SI results ( ), the acoustic LOM excluding
flame-flow feedback ( ) and the acoustic LOM including irrotational
gas expansion ( ) at a confinement ratio of Cr = 0.4.

chard et al. [129] is incomplete: a perturbed flame sheet is more than just a vortex
sheet of varying strength.

One important difference between the setup respecting flame-generated vorticity and
the setup respecting irrotational gas expansion is that at Cr = 0.4 the latter exhibits a
clearly non-linear output behavior of the global heat release, even for small ampli-
tudes of the input velocity. The time series data of the global heat release rate asso-
ciated with the simulations shown in Fig. 5.10 and 5.15 are depicted in Fig. 5.17b.
While the vortical output data ( ) is sinusoidal, the irrotational output ( ) shows
a drop of the global heat release signal every time a maximum is reached. Such a be-
havior is non-linear in nature and can be associated with the dynamics of the flame
tip. Once a positive flame front perturbation reaches the flame tip, this will eventually
lead to a pinch-off of a bubble of unburned fluid. When this bubble is burned, a rapid
change in the global heat release rate is provoked. This process is not faithfully cap-
tured by the model at hand, nevertheless, qualitatively something similar happens:
A positive flame displacement is usually followed by a negative one. In flame coor-
dinates, this might lead to the occurrence of negative displacements exceeding the
symmetry line at x2 = 0. This, of course, is not possible and the numerical algorithm
disregards portions of the flame sheet that are outside the flow domain, i. e. x2 < 0.
That means, the heat release drops overproportionally fast, which manifests itself as
the observed rapid drop of the global heat release rate. Regarding the simulations that
respect only flame generated vorticity, vortices are distributed along the mean flame

position and not the displaced one, and hence also displacements with x2 < 0 where
allowed. This results in the good-natured output of this model. At Cr = 0.66 all forced
simulations exhibited an essentially harmonic output signal at the forcing frequency
(not shown), which shows that the presence of a confinement significantly dampens
the impact of flame-flow feedback, particularly its irrotational component.

The observed convective growth of displacement amplitudes resulting from an im-
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pulsive velocity forcing is significantly stronger for the irrotational gas expansion
model than for the model that respects only flame-generated vorticity. The result-
ing flame displacements of the former model are depicted in Fig. 5.18. Already at
the second snapshot (t∗ = 0.2) very high displacement amplitudes have formed. They
subsequently grow even further in amplitude and, additionally, a variety of secondary
displacements develop. This emphasizes the point made in the introduction of this
chapter: capturing mainly mechanisms that are responsible for a growth of flame front
perturbations will most probably result in an overprediction of displacement ampli-
tudes. This could possible be fixed by including damping mechanisms. In the study
shown here, consequences of flame curvature were respected, however, the results
clearly suggest that this is not sufficient. An appropriate consideration of damping
mechanisms is out of the scope of this work and should be analyzed in future studies.

Finally, it should be pointed out that a joint analysis of both flame-flow feedback
mechanisms, i. e. the irrotational and the vortical one, results in even higher dis-
placement amplitudes than the ones shown here (not shown). Therefore, such a com-
bined study is only instructive once damping mechanisms are adequately included
into the modeling framework. This situation is very similar to what happened to the
works of Darrieus [26] and Landau [27]: since their model included only driving
mechanisms leading to the unconditional growth of flame front perturbations, it was
later complemented by Markstein [44] introducing the empirical assumption of a
curvature-dependent flame speed. Concerning the present modeling approach, sim-
ilarly, it turned out that there is a significant lack of damping mechanism in order
to achieve quantitative agreement with CFD/SI data. Therefore, in addition to the
curvature dependency of the flame speed, other mechanisms need to be assessed.

5.4 Summary and Conclusions

In this chapter, consequences of flame-flow feedback for the acoustic flame response
were modeled and analyzed. A vortical and an irrotational mechanism resulting from
gas expansion were found to be the driving forces that govern secondary acoustics-
flame interactions. While the former is known as the Darrieus-Landau mechanism
relying on flame-generated vorticity, the latter results from a geometrical focusing
of accelerating effects of a perturbed flame sheet and has, so far, not been analyzed
in the context of acoustics-flame interactions. Based on these two mechanisms, per-
turbed flames act as vortex sheets of varying strength (flame-generated vorticity) as
well as sheets of advected dipoles (irrotational gas expansion), which explains the
occurrence of convected velocity perturbations upstream of the flame. Furthermore,
both mechanisms lead to the formation of secondary convectively growing displace-
ments causing FTF peak gain values that significantly exceed unity — just like it was
predicted by the CFD/SI results. The presence of a narrow confinement significantly
impacts the consequence of flame-flow feedback, leading to flame front displace-
ments of longer wave lengths and lower amplitudes. Accordingly, the maximum FTF
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peak gain values are reduced.

Qualitatively, mechanisms that could explain the discrepancies observed in Chap. 4
were found and promising modeling strategies were proposed. Contrary to the MS
equation, as used by Searby et al. [63], the modeling framework proposed here al-
lows to capture confinement induced consequence for the flame response. Relying on
this new modeling approach, it was found that the previously neglected irrotational
consequences of gas expansion led to an unphysically fast growth of flame front dis-
placements, such that the response dynamics left the linear regime. It is conjectured
that this growth is in reality limited by some damping mechanisms, which were not
included in the present study. Their investigation should be subject of future research,
which then might also allows for quantitative assessments of the flame dynamics.
Furthermore, relying on the works of Oberleithner et al. [79] and Oberleithner and
Paschereit [80], it would be interesting to analyze the role of flame-flow feedback
driven instability mechanisms for technically relevant configurations, in analogy to
shear layer instabilities.

The main findings of the present analysis are:

1. Compact acoustics imposes irrotational flow perturbations, which predomi-
nantly displace the flame base region.

2. These primary flame front displacements are advected downstream by the
mean flow and are exposed to mechanisms of flame-flow feedback along their
way to the flame tip.

3. This feedback leads to the convective growth of displacement amplitudes and,
additionally, creates new secondary flame front perturbations.

4. These secondary perturbations lead to an oscillatory behavior of the impulse
response (IR) of the global heat release rate. This, in turn, creates a pronounced
peak in the gain of the associated frequency response at a frequency close to
the oscillation frequency of the IR.

5. For the flame configuration at hand, two mechanisms of flame-flow feedback
were identified: (i) the Darrieus-Landau mechanism relying on flame generated
vorticity and (ii) geometrical focusing resulting from a flame-normal accelera-
tion of the flow across a perturbed flame sheet.

6. Both mechanisms lead to the convective growth of flame front perturbations
and impose convected velocity perturbations upstream of the flame front.
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Part III

Generalization to Other Burner

Configurations

The analysis conducted so far analyzed Slit flame setups. Most exper-
imental and theoretical studies, however, report on Bunsen flames. In
order to provide a connection of both configurations, the impact of flame
geometry onto the acoustic flame response shall be investigated in the
following. For the sake of completeness, also Wedge flames are consid-
ered. The results should provide guidance how to generalize the findings
made for Slit flame configurations as well as how to interpret data ob-
tained using arbitrary flame configurations.

Major parts of Chap. 6 have already been published, see Steinbacher et al.

[2]. Compared to this publication, Sec. 6.3 is newly added and some minor
changes have been applied (wording, grammar).
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6 Consequences of Flame Geometry

Flame geometry (Slit, Wedge or Bunsen) determines how flame

front displacements translate to global heat release rate fluctu-

ations, which defines geometry-specific response characteristics.

Low-order models relying on a Gaussian kernel function are able

to adequately capture the FTFs of all three geometries.

Various types of laminar flame configurations are used in academia and technical ap-
plications, which often exhibit very different response characteristics [146, 153, 201].
Three of the most prominent geometries are depicted in Fig. 2.1: Bunsen, Wedge (or
V-) and Slit flames. Most theoretical studies on analytical FTF models are concerned
with Bunsen and Wedge flames [31, 113, 138, 202], while only very few deal with Slit
flames [112, 142, 203]. One reason for this might be that the latter are technically less
relevant. Particularly for academic studies, however, Slit flames are very interesting
due to the simpler analytical treatment of the governing equations [112, 132, 148],
see also the works presented in Part II of this thesis.

To date, no study has strictly and comprehensively analyzed the differences in the
linear flame response that result from flame geometry. Schuller et al. [111] and Blu-
menthal et al. [116] compared analytical response predictions of Wedge and Bunsen
flames, but did not include Slit flames. Schuller et al. [111] provided validation data
from experiments solely for the Bunsen configuration. Durox et al. [152] compared
experimental response results of Bunsen, Wedge and M-flames, where the last one is
a hybrid of the first two types of flames. They focused on the nonlinear behavior of
the frequency response for increasing forcing amplitude levels and did not compare
measurements to analytical predictions. Other studies assessing the consequences of
flame geometry examined the production of combustion noise of turbulent Slit and
Bunsen flames. Kotake and Takamoto [151] experimentally investigated the impact
of the nozzle shape (or burner mouth shape) on the acoustic power of the associated
combustion noise for constant cross-sectional areas. They found that for lean con-
ditions, rectangular nozzles (“slits”) produce significantly higher levels of acoustic
power than square and circular (Bunsen) shapes. A similar conclusion was drawn
from numerical results by Pausch et al. [153], who additionally found that Slit burn-
ers exhibit a lower peak frequency than Bunsen type ones. Further, they located the
position of maximum heat-release of the rectangular flame at its tip, while it is a
bit further upstream for the Bunsen flame. Neither study analyzed the corresponding
FTFs. Due to this lack of comprehensive studies on consequences of flame geometry
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for the respective FTFs, a literature review for each of the three investigated configu-
rations is provided in the following.

For Bunsen type flames, results for both experimentally determined and theoretically
modeled FTFs are readily available, see e. g. [111, 115, 133, 144, 145, 158, 204–206].
Low-order models based on the so-called convective or incompressible-convective
velocity model agree reasonably well with experimental data, see Sec. 2.2.1 (Low-
Order Models) for details.

To the best knowledge of the author, there is a lack of literature regarding FTF anal-
ysis and models for laminar Slit flames that are validated against experimental or
high fidelity numerical data. On the one hand, several theoretical studies develop and
investigate analytical models for the FTF of Slit flames [112, 138, 142, 207], how-
ever, none of them compares results to experimental/high fidelity numerical data. On
the other hand, experimental and/or numerical investigations reporting on measured
FTFs of Slit flames [147–149, 208–210] do not compare their measurements to ana-
lytical predictions. Only Duchaine et al. [146] presented an empirical model for the
phase of Slit and Bunsen FTFs and compared it to experimental data, finding that the
effective time lag of a Bunsen flame is about half the value of a Slit configuration.
Further, Kornilov et al. [209] visually compare measured gain and phase values of
a Bunsen and Slit setup, which shows a significantly higher gain — even exceeding
unity — of the Slit flame. But again no model was developed and validated against
this data.

Finally, there is a group of studies that compared analytically predicted instantaneous
flame front positions of harmonically perturbed Slit flames to experimental or high
fidelity numerical data, however, they did not evaluate transfer functions of the global
heat-release rate [104, 164, 165, 211, 212]. All of them rely on a G-equation based
approach where the speed of a convective velocity perturbation was fitted in order to
achieve good agreement of the resulting perturbed flame front with the comparison
data. From the good match in terms of flame front position, a very similar behavior of
the corresponding global heat-release dynamics at the considered forcing frequency
can be inferred. However, since the responses were only computed at a few forcing
frequencies, it is not possible to deduce an FTF from those studies.

There are several experimental studies reporting measured FTFs of Wedge flames,
e. g., [152, 201, 213], but they are all lacking a comparison to theoretical predictions.
The studies performed by Schuller et al. [111] and Blumenthal et al. [116] develop
analytical FTF models for Bunsen and Wedge flames, but compare only the response
of the Bunsen type setup to experimental data. Finally, Schuller [214] developed a
modeling approach, which was validated against experimental data. At the same time,
however, he mentions the difficulties in deriving an analytical model for such burner
stabilized Wedge flames, which essentially arises from a strong interaction of the
flame with vortical structures shed from the burner mouth [202]. Other Wedge type
flames found in the literature are swirl stabilized flames, which depend on variations
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of the turbulent burning velocity, axially convected velocity disturbances, as well as
on convected swirl waves [79, 215–217]. Modeling of the FTF requires an adequate
description of all those effects. This complicates the analysis and shifts the focus
away from geometrical consequences.

The study presented in the following aims to generate a more profound understanding
of the consequences of flame geometry by comparing analytical FTF predictions of
Slit, Wedge and Bunsen type flames to each other and analyzing the origin of the dis-
crepancies found. For the first time, Slit and Wedge flame FTF predictions resulting
from high fidelity computational fluid dynamics (CFD) simulations are compared to
analytical model predictions. The unique feature of the Wedge flame setup consid-
ered in our study is that it is not dominated by vortex-flame interaction, as it is the
case for a burner stabilized flame [202], since no burner mouth is involved. Therefore,
a clean validation basis for analytical models is provided for all three geometries. It
is found that the widespread G-equation framework, combined with a convective ve-
locity model, is not able to adequately predict the flame response of Slit flames. In
order to overcome this limitation, an extension of the well-known velocity models is
introduced, which relies on a Gaussian kernel function in order to add some temporal
dispersion to the transfer function model.

The analysis is structured as follows: In Sec. 6.1 the three test case setups are intro-
duced, which are used to validate the theoretical models. For each flame configura-
tion steady-state and transient numerical simulations are performed and the respec-
tive flame transfer function are identified from broad-band input/output data using
means of system identification (SI). The overall heat-release rate, evaluated as the
integral over the flame surface, plays a crucial role in the analysis of flame geometry-
related response differences. Peculiarities of the various flame configurations on the
one hand, and of the coordinate system on the other hand are detailed in Sec. 6.2.
The here gained mathematical expressions are elucidated by descriptive physical rea-
soning based on a model that solely relies on displacements of the flame anchoring
in Sec. 6.3. In Sec. 6.4, incompressible-convective velocity models with Dirac and
Gaussian kernel functions are introduced, respectively for all flame configurations
considered. Properties of the Dirac kernel based models are discussed in Sec. 6.5
and, in particular, the flame geometry-related differences in the flame response are
explicated. Finally, in Sec. 6.6 FTF predictions of the various velocity models are
validated against CFD data, as well as against experimental data taken from the liter-
ature.

6.1 Test Case Setups

Transient and steady state numerical simulations employing well-established means
of computational fluid dynamics of three flame configurations are performed and
serve as a validation basis, see Appendix A.2.1 for details. Using input-output time
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(a) Bunsen (conical Λ)

(b) Wedge (conical V)

(c) Slit

Figure 6.1: CFD steady state snapshots of absolute velocity for the three investigated
flame test cases of different flame geometries. For all configurations, the
location of maximum heat release (green) and the analytically predicted
mean flame front ( ) are shown (taken from [2]).

series data resulting from broad-band forced simulations, FTFs are identified by
means of system identification (SI) employing a finite impulse response (FIR) model
as described in Appendix A.2.2.

Three setups are considered and the respective steady state solutions are depicted
in Fig. 6.1. All setups are chosen to be as simple as possible in order to serve as
a clean reference that exhibits any geometry-related characteristics in a clear man-
ner. Further, the mechanisms governing the flame response to acoustic perturbations
should be similar for all cases, i. e. similar Reynolds numbers and negligible interac-
tion with vortical structures shed from the burner mouth for the Wedge configuration
[1, 104, 201]. This shedding process is suppressed by adding a straight lateral wall
constraining the flame, see Fig. 6.1b. Note that all configurations exhibit a small
recirculation zone since the flow cannot follow the sharp edge at the inlet to the
combustion chamber. Following Chap. 4, however, acoustically triggered shedding
of vorticity from this edge has only a negligible impact on the linear flame response.

For the Slit and Bunsen setups, a feed duct and combustion chamber with a half-
diameter of Ri = 5 mm and Ra = 12.5 mm are used, respectively (Fig. 6.1). The
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Wedge flame setup has the same feed duct height of 5 mm as the other two cases
and a rod radius of Rr = 3.5 mm, which results in a combustion chamber radius of
Ra = 8.5 mm. At the inlet, a uniform flow profile of axial velocity u1 = 1 m/s with a
temperature of 300 K is imposed for all setups. Further, zero pressure gradients at the
inlet and a fixed pressure are assumed, as well as a zero axial velocity gradient at the
outlet. No swirl of the flow is imposed. All walls are set to be adiabatic, except from
the feed duct wall, which is set to a fixed temperature of 300 K, and the combustion
chamber back plate, which is set to TBP = 700 K. This configuration correspond to a
Reynolds number of Re = 620, which is computed with the mean inlet velocity, the
feed duct diameter and the kinematic viscosity of the fresh mixture.

6.2 Integral Heat-Release

For all three geometrical configurations considered, the integral heat-release rate is
proportional to the respective flame surface area A f (t ) =

∫
A dS. Hence, evaluation of

surface area fluctuations A′
f

(t ) = A f (t )− A f of a perturbed flame up to contributions
of order O (ǫ) allows to retain the flame geometry specific heat-release dynamics. This
leads to qualitatively very different results for the three flame geometries, as shown
in the following.

One assumption made in this analysis is that the flame is stiffly anchored at its base,
i. e. this point is not allowed to move. This assumption is justified by the fact that the
impulse response for Slit flames shows no signal around t = 0, see Sec. 6.6. If the
flame base would move, a displacement would directly lead to a fluctuation of the
heat-release rate1. A second assumption is that all flames considered are symmetric,
i. e. it is sufficient to analyze only one half of the flame front, see Fig. 1.13. A point
on the flame front at the symmetry axis consequently fluctuates in axial direction,
which is best captured using laboratory coordinates and the flame front displacement
η′. These two assumptions are important, since they define the possible directions
of movement of the flame boundaries (tip and anchoring), which is crucial for the
evaluation of the linearized surface area, as will be shown below.

For the computation of the FTF a variety of coordinate systems have already been
adopted in the literature, see e. g. [111, 112, 115]. However, to date no study has
comprehensively scrutinized the derivations of the flame surface area with respect to
the coordinate systems used, nor have the geometry dependent peculiarities ever been
pointed out explicitly. Indeed, a technical note by Humphrey et al. [218] provides ev-
idence that this issue deserves more attention: They reported that the expression for

1Purely flame normal displacements of the flame-anchoring would also not cause any O (ǫ) fluctu-
ations of the flame surface area, see discussion on Fig. 6.3 below. Hence, strictly speaking, it is not
possible to infer from a zero response at t = 0 of the Slit IR that the flame base is actually stiffly an-
chored — it could also be displaced normally. In the 1D linearized G-equation framework, however, the
implications for the modeling are the same in both cases and, hence, it is decided to proclaim the more
straight forward assumption of a stiffly anchored flame.
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Consequences of Flame Geometry

Figure 6.2: Illustration of the dependency of the change of the flame line segment
length dS′ = dS −dS on the displacements dη′

i
and dη′

i+1
up to O (ǫ)

contributions. For conical flames, also the radii r and r of the geometrical
centers of the line segments are important. The region of the unburned
fluid is filled in gray.

the linearized flame surface area of a Slit flame seems to depend on the coordinate
system used. To resolve this counterintuitive finding, Humphrey et al. [218] proposed
to use frequency dependent integration limits, which result in coordinate system spe-
cific correction terms. In this section, this issue is revisited and it is sought to provide
a more intuitive understanding by not limiting our analysis to the frequency domain.
Further, a more global context is provided by considering three technically relevant
flame geometries.

The geometrical analysis starts by focusing on a single 1D line segment dS of a flame
front, see Fig. 6.2. The notation used in the following is illustrated in Fig. 1.13, where
η′ denotes the axial displacement of the flame front using laboratory coordinates. It
is displaced by η′

i
at node i and η′

i+1
at node i +1 with reference to the corresponding

steady-state line segment dS. Hence, we write the length of the displaced segment,
using the Pythagorean theorem, up to the leading order in the axial displacement as

dS =
√(

d xL
2

)2 +
(
ηi+1 +η′

i+1
−ηi −η′

i

)2

=

√√√√1+
(

dη

d xL
2

)2

d xL
2

︸ ︷︷ ︸
dS

+
dη

d xL
2

dη′

√
1+

(
dη

d xL
2

)2
+O

(
(dη′)2

)

︸ ︷︷ ︸
dS′

(6.1)

with the difference of the steady-state axial distances dη= ηi+1 −ηi and the transient
distances dη′ = η′

i+1
−η′

i
, as well as the lateral distance d xL

2 . The second line results
from a Taylor series development of the term in the first line around dη′ = 0. The first
term in Eq. (6.1) denotes the length of the steady-state line segment and the second

126



6.2 Integral Heat-Release

Figure 6.3: Displaced flame segment in flame aligned (blue) and laboratory (red)
coordinates.

its change due to η′
i /i+1

. By applying the trigonometric relation cot(α) = dη/d xL
2 , the

linearized variation of the line segment length is transformed to

dS′ = d s′i +d s′i+1 = cos(α)
(
η′i+1 −η′i

)
. (6.2)

From this expression it can directly be deduced that up to the first order in dη′ the
change of the line segment depends on the flame parallel (xF

1 -) component of the
displacements ds′

i /i+1
, see Fig. 6.2. The elongation d s′

i+1
counts positive, while d s′

i

contributes with a negative sign.

As pointed out in Sec. 1.3.2, for small displacements, the perturbed flame front can
equivalently be described in flame aligned and laboratory coordinates. In order to
analyze the consequences of a change of the coordinate system for the computation of
the linearized surface area fluctuations, again a single displaced flame segment shall
be analyzed (Fig. 6.3, red). Node i may be fixed and node i +1 be axially displaced
by η′

i+1
. Following Eq. (6.2), this would result in a linearized change of the segment

length of dS′ = cos(α)η′
i+1

. Transforming this situation to flame aligned coordinates
by application of a relation ξi+1 = η′

i+1
sin(α) results in the segment shown in blue.

However, the linearized change of the resulting segment length

dSF =
√(

dxF
1

)2 +dξ2

= dxF
1︸︷︷︸

dS
F

+O
(
dξ2

)
︸ ︷︷ ︸

dS′F

(6.3)

vanishes to leading order since the displacement ξi+1 has no component parallel to
the mean flame front. Hence, paradoxically, a displacement η′

i+1
only imposes a

change of the linearized line segment length in laboratory coordinates, and not in
flame aligned coordinates.

This can be resolved by realizing that the aforementioned transformation from η′ to
ξ is incomplete: In order to equivalently describe the axially displaced flame front
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Consequences of Flame Geometry

(Fig. 6.3, red) using flame aligned coordinates, the displacement ξ̂i+1 = η′
i

sin(α)

should not be applied at node i +1, but at a position shifted by a distance ds′
i+1

further to the right (Fig. 6.3, orange). Vice versa, in order to describe a normally dis-
placed flame front (Fig. 6.3, blue) using laboratory coordinates, the respective node
i +1 for η′

i+1
would have to be shifted to the left by ds′

i+1
. In doing so, the first order

change of the segment length stays the same in both coordinate systems.

Therefore, it is concluded that — other than for the flame dynamics described by
Eq. (1.32) — a transformation of the coordinate system has non-trivial implications
regarding the evaluation of the linearized change of the flame length and, thus, also
the respective flame surface area. Depending on the given behavior of the flame,
possible elongations or shortenings of the flame length not covered by the chosen
coordinate system have to be accounted for correctly. Adding contributions of flame
movement not parallel to one of the employed coordinates is equivalent to imposing
varying integration limits when evaluating the flame surface integral. Other than pro-
posed by Humphrey et al. [218], terms resulting from such varying limits should not
be regarded as correction terms since they are a mathematical necessity for solving
a well defined problem. This will be explicated in the following for the individual
flame geometries.

Slit Flames

The flame surface area of Slit flames (index “slit”) is given by an integral

A f ,slit(t ) =∆x3

∫l f (t )

0
ds , (6.4)

where l f (t ) is the length of the displaced flame surface profile line and ∆x3 the ex-
tension of the flame in xL

3 direction. Using laboratory coordinates, the arc length ds

(Fig. 6.4) is expressed as ds =
√

1+
(
dη/dxL

2

)2
dxL

2 , see Eq. (6.1). Linearization re-
sults in a surface area fluctuation

A′
f ,slit(t ) =−cos(α)∆x3

∫Ri

0

∂η′

∂xL
2

dxL
2

=∆x3 cos(α)η′ (0, t ) , (6.5)

where the anchoring boundary condition η′
∣∣

xL
2=Ri

= 0 has been applied and Ri is the
base half-diameter of the flame. This leads to the result that surface area fluctuations
of stiffly anchored Slit flames, to leading order, only result from movements of the
flame tip.

As stated above, in flame aligned coordinates a varying upper integration limit has to
be considered for evaluation of the flame surface integral. Inserting the corresponding
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6.2 Integral Heat-Release

Figure 6.4: Geometric measures required for the computation of the flame surface
area of Bunsen flames.

arc length, see Eq (6.3), and integration limits, the respective surface integral becomes

A f ,slit(t ) =∆x3

∫L f +∆L f (t )

0

√√√√1+
(
∂ξ

∂xF
1

)2

︸ ︷︷ ︸
=1+O(ǫ2)

dxF
1

=∆x3

[∫L f

0
d xF

1 +
∫L f +∆L f (t )

L f

dxF
1 +O

(
ǫ2

)]
, (6.6)

with the elongation/shortening of the flame length ∆L f (t ) (Fig. 6.4). The first term in
Eq.(6.6) denotes the mean flame surface area, the second one the contribution due to
the elongation of the flame. As illustrated in Fig. 6.3, the flame tip contribution is of
the same order as ξ and has, thus, to be considered for the linear analysis.

The variation of the flame length ∆L f (t ) has to be determined from the flame
normal displacement ξ in order to close the flame aligned modeling approach.
From Fig. 6.3 we recall the relation between ξ and η′ at the flame tip:
ξ(L f , t ) = η′(0, t )sin(α). Using this relation, we compute the variation of the flame
length, which corresponds to an elongation d s′

i+1
= cos(α)η′

i+1
in Fig. 6.3. Hence,

we get ∆L f (t ) = ξ
(
L f , t

)
cos(α)/sin(α), which, with use of Eq. (6.6), results in an

expression for the surface area fluctuation

A′
f ,slit(t ) = ∆x3

tan(α)
ξ
(
L f , t

)
(6.7)

that is equivalent to Eq. (6.5). The only coordinate system that does not require a
varying upper integration limit is the laboratory one, which is therefore considered
to be the most natural one for the flame surface area integral for the configuration
considered (symmetric, stiffly anchored Slit flame).
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Bunsen Flames

For conical flames in general (index “con”) we have to consider the radius r of the
geometrical center of a line segment. Using the steady-state flame segment radius r ,
we retrieve A′

con = 2πr dS′ for the change in flame surface area of one single flame
element, see Fig. 6.2. The flame surface integral is written as

A f ,con(t ) = 2π

∫l f (t )

0
r f (s, t )ds (6.8)

where s is the parametrization of the flame front profile, l f (t ) its transient length
and r f (s, t ) its local radius, see Fig. 6.4. For Bunsen flames (index “Λ”), using flame
aligned coordinates, with a decomposition into mean and fluctuating quantities, this
results in an expression

A f ,Λ(t ) = 2π

∫L f +∆L f (t )

0

[
Ri −xF

1 sin(α)+ξcos(α)
]

dxF
1 . (6.9)

Here, L f is the mean flame length, ∆L f (t ) its transient variation in flame coordinates
and Ri the flame base radius. As in the Slit flame case, the upper integration limit is
time dependent: Wrinkles reaching the flame tip impose a change in flame height H f

and, hence, also in the upper integration limit, which is required to capture this effect,
see Fig. 6.4. For Bunsen flames, this additional transient contribution to the flame
surface area, however, does not contribute to the linear approximation of the flame
surface area fluctuation. An increase of the flame height by ∆H f (t ) =∆L f (t )/cos(α)

would add the surface of a cone with both base radius and height of order O (ǫ). There-
fore, the lateral surface area of this cone is of the order O

(
ǫ2

)
and is thus neglected

in linear considerations for anchored flames:

A′
f ,Λ(t ) = 2πcos(α)

∫L f

0
ξdxF

1 . (6.10)

Hence, the global linearized flame surface fluctuation is computed from the integral
of the displacements.

Wedge Flames

Wedge flames (index “V”) are conical flames, as well. Hence, the surface integral
of Eq.(6.8) also holds for them and, using a flame aligned coordinate system and
a corresponding parametrization of the local flame radius r f (s, t ), we retrieve the
linearized flame surface area

A f ,V (t ) = 2π

∫L f +∆L f (t )

0

[
Rr +xF

1 sin(α)−ξcos(α)
]

dxF
1

= A f ,V +2π

[
Ra∆L f (t )−cos(α)

∫L f

0
ξd xF

1

]
, (6.11)
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6.2 Integral Heat-Release

Figure 6.5: Geometric measures required for the computation of the flame surface
area of Wedge flames.

which results with ∆L f (t ) = ξ(L f , t )/tan(α) in a surface area fluctuation

A′
f ,V (t ) = 2πcos(α)

[
Ra

sin(α)
ξ
(
L f , t

)
−

∫L f

0
ξdxF

1

]
. (6.12)

Similar to the Slit case, fluctuations in the flame height add or subtract the surface
of a cone with a base radius of the order of the maximum flame radius Ra and a
height of the order O (ǫ), see Fig. 6.5. In total, the flame tip movement ∆H f (t ) would
add a O (ǫRa) contribution to the flame surface area fluctuations, which is significant.
As a result, the linearized surface fluctuations of stiffly anchored Wedge flames is
expressed as the (negative) integral of the deflection from the mean, plus the flame
tip movement.
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6.3 Physics Based Illustration of the Heat Release Dynamics

Figure 6.6: Illustration of a thought experiment: A Bunsen-type flame shall be sup-
plied with an extra amount of fresh fluid Ve (green) by means of an im-
pulsive velocity forcing u′

1, which shall lead to a displacement of the
flame base region.

It is concluded that the computation of the linearized flame surface area fluctuation
requires a consideration of the possible flame movements at the boundaries for all ge-
ometrical configurations. A coordinate system should be chosen that allows a proper
description of this movement, otherwise, the elongation/shortening of the flame ne-
cessitates varying integration limits. This procedure is in particular important for Slit
and Wedge flames, where the flame tip adds a leading order contribution to the lin-
earized fluctuation of the flame surface area. All formulas concerning the flame front
and the integral heat-release are summarized in Tab. 6.1 for the three geometries and
the two coordinate systems considered. Also expressions for the convection speed,
required for the convective velocity models, are provided in this table. They will be
explained in detail in Sec. 6.4.

6.3 Physics Based Illustration of the Heat Release Dynam-

ics

So far, formulas for flame surface area fluctuations up to contributions of order O (ǫ)

have been derived mathematically for three flame geometries. In this section, these
formulas shall be elucidated by physical reasoning based on a model that solely relies
on displacements of the flame anchoring. Instead of assessing variations in the flame
surface area, changes of the volume of unburned fluid upstream of the flame shall be
considered [219, 220]. This concept allows for a descriptive and simple way to grasp
the mathematical results of the previous section.

Let us set up a thought experiment: a stationary Bunsen-type flame shall be supplied
with an extra amount of fresh mixture of the volume Ve by impulsively increasing the
inflow velocity for a short amount of time. Since this process shall happen very fast,
the flame cannot immediately consume this extra volume of premixture and, thus,
it shall solely lead to a very narrow displacement of the flame front at its anchoring
position, as illustrated in Fig. 6.6. Effects of non-linear flame propagation (Huygens’s
Principle; see Fig. 1.6) and flame stretch shall be neglected, which means that this
newly created flame pocket is advected downstream without changing its shape, as
predicted by Eq. (1.32) for lM ≡ 0. Note, that this does not faithfully represent what
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Consequences of Flame Geometry

(a) Slit (b) Bunsen (c) Wedge

Figure 6.7: Sketch of an advected flame pocket, which is generated by an impulsive
deflection of the flame base, shown for three flame configurations (see
Fig. 6.6). Assuming a Dirac impulse forcing, the flame is displaced only
at one point (indicated in blue), while a Gaussian impulse would impose
a smooth flame displacement as visualized here.

would happen in reality, but let us disregard this fact for a moment in order to create
a simple model that helps to understand geometry related differences of the flame
response.

The flame shapes resulting from such a forcing are plotted for all three flame geome-
tries in Fig. 6.7. For all cases, a small pocket of unburned fluid is formed (position
I), which is advected along the flame front with the velocity u∥ such that it reaches
positions II and III at subsequent times. The extra fluid, trapped in the pocket, will
lead to an increase of the global heat release rate of the flame at the very moment it
is burned. Since all of the initially supplied extra volume Ve is conserved, the global
heat release rate does not change with respect to the steady state at t = 0. We will
see in the following that the process of how the pocket is burned depends strongly on
flame geometry.

Firstly a Slit type flame, as depicted in Fig. 6.7a, is analyzed. Here, the volume of
unburned fluid inside the pocket remains constant during the advection process. The
rate at which fuel is burned by the flame is the same as in the steady state case and is
not affected by the presence of the described pocket. Hence, the integral heat release
rate remains constant for all pocket positions I, II and III. Once the pocket reaches the
flame tip, however, the volume of fluid trapped inside the pocket is consumed since it
cannot be advected any further. In real flames this might lead to pinch-off effects or
an elongation of the flame front. In any case, the pocket is burned and the integral heat
release rate of the flame is increased at the moment when the displacement reaches
the flame tip. This agrees with the mathematical result of Sec. 6.2, which states that
Q̇ ′ is proportional to movements of the flame tip.

The situation is different for Bunsen flames, see Fig. 6.7b. While the pocket is ad-
vected, its radial position r is reduced and, hence, the trapped volume of fluid is
constantly depleted along the way from position I to III. Thus, volume Ve is con-
tinuously reduced, which leads to an increase of the heat release rate compared to
the steady state. Once the pocket reaches the flame tip (at r → 0), all of the fluid has
been consumed and the heat release rate returns to the steady state value. This cor-
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6.3 Physics Based Illustration of the Heat Release Dynamics

responds to the finding made in Sec. 6.2 that Q̇ ′ is proportional to the integral of the
instantaneous flame front displacements.

If we, finally, assume a Wedge flame, we have a situation as illustrated in Fig. 6.7c.
Position I now is at a small and III at a large radius. The initially created pocket,
therefore, gathers more and more unburned fluid while it is advected downstream.
Due to mass conservation, this has to lead to a reduction of the global heat release
rate compared to the steady state, since the flame stores more and more premixture
instead of burning it. This is exactly the inverse behavior of a Bunsen flame and
explains the negative sign of the integral in Eq. (6.12), which is positive for Bunsen
flames. When the growing pocket ultimately reaches the flame tip, all of the gathered
fluid is burned all of a sudden, similarly to Slit flames.

The described behavior is now assessed analytically. Therefore, an unit impulse ve-
locity forcing at the flame base u′

⊥ = aδ(xF
1 )δ(t ) is assumed, which leads to an in-

finitely thin pocket of unburned gas (see blue line/dot in Fig. 6.7) which is advected
along the mean flame front according to

ξ
(
xF

1 , t
)
= a

u∥
δ

(
t −

xF
1

u∥

)
(6.13)

with the Dirac delta function δ(t ) and the geometry dependent amplitude a. All
the volume of the impulsively supplied unburned fluid Ve is now condensed to one
point. The amplitude a is chosen such, that all of the extra volume flux provided at
the inlet of the domain (Index “i”) is displacing the flame and hence is conserved:∫

A f
aδ(xF

1 )dS =
∫

Ai
u′

1dS. Therefore, we get a = Ri for Slit flames, a = Ri /2 for Bun-

sen Flame and a = Rr /2(1/r̃ 2 −1) for Wedge flames, with the non-dimensional rod
radius r̃ = Rr /Ra . By integrating Eq. (1.32) (lM = 0) and applying a flame base move-
ment as described above as a boundary condition, a transfer function connecting the
normalized upstream velocity perturbation u′

1 and the normalized flame surface area
fluctuation is evaluated:

Fδ(ω) = A′(ω)/A

u′
1(ω)/u1

(6.14)

The impulse responses resulting from this approach are provided in Appendix C.2
for all three geometries.

Fδ(ω) can be viewed as an FTF where the velocity perturbation is imposed only at
the flame base. Therefore, it shares some basic properties with conventional FTFs,
for example, that it has a low-frequency limit of unity [157]. The resulting response
functions are plotted for all three flames in Fig. 6.8, on the left hand side in time
domain (impulse response hδ) and on the right in frequency domain in terms of gain
and phase. All quantities are non-dimensionalized by the characteristic flame time:
h∗
δ
= hδτr , t∗ = t/τr and f ∗ = f τr . For Wedge flames, a non-dimensional rod ra-

dius of r̃ = 0.5 is assumed. It should be noted that the IRs of the Slit and the Wedge
configuration both contain a Dirac delta function. The strength of such a δ-function
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Figure 6.8: Transfer function in terms of impulse response hδ and frequency re-
sponse Fδ from flame base velocity perturbations to heat release shown
for three flame configurations: Slit ( , impulses as ), Bunsen ( )
and Wedge flames ( , impulses as ). The phase curves correspond-
ing to a fixed time delay of τr ( ) and the one corresponding to τr /2

( ) are added to the phase plots. For Wedge flames a non-dimensional
rod radius of r̃ = 0.5 is assumed.

is characterized by its integral and it is hence decided to plot this integral value in
all IR visualizations. That means, for example, that the yellow square in Fig. 6.8 ( )
represents a 2δ(t∗−1) contribution.

The impulse response (IR) of the Slit flame ( , impulses as ) only consists of a
Dirac impulse at t∗ = 1, which is exactly the time it takes for a flame front perturba-
tion to be advected from the base to the tip. Since a very localized response in time
domain leads to a very spread out response in frequency domain (and vice versa), the
gain of Slit flames is unity for all frequencies, see also Tab. C.2 in Appendix C.1. The
phase linearly decays, as it is expected for systems with a single, constant time delay
τr .

A Bunsen flame ( ) spreads the response in time, as it continuously burns the sup-
plied pocket of fluid. This leads to a constant positive value of the IR until t∗ = 1,
where the pocket has reached the flame tip. Consequently, the gain of the associated
frequency response (FR) drops to zero at that frequency whose period fits the charac-
teristic flame time, which is f = 1/τr . Up to a Strouhal number of f ∗ = 1, the phase
decays with a constant slope which corresponds to that of a system with a fixed time
delay τr /2. This delay is defined by the geometrical center of the IR. At multiples of
f ∗ = 1 the phase jumps by π since the gain drops to zero. The smearing of the heat
release fluctuation in time leads to a, compared to Slit flames, reduced cut-off fre-
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6.4 Incompressible-Convective FTF Models

quency of the corresponding transfer function. Mathematically, this can be explained
by the low-pass filter behavior of an integrator (∝ 1/ω).

Finally, a Wedge flame ( , impulses as ) increases the initially supplied pocket
of fresh fluid and, hence, shows a negative response in the time domain up to t∗ = 1.
At the time the pocket reaches the tip, all of the accumulated and excitation supplied
premixture is burned at once and leads to a strong impulse at t∗ = 1. The magnitude of
this impulse is higher than the one of the Slit flame, since the fluid pocket grew in size
along its way to the flame tip. Hence, Wedge flames have two intrinsic time scales,
τr from the impulse and τr /2 from the integration. Through interference effects this
leads to recurring peaks in the gain [116]. In particular at high frequencies, the phase
is dominated by the characteristic flame time τr .

Using the example of a (infinitely narrow) pocket of fluid, which is advected from the
flame base to the tip, it was possible to intuitively confirm the analytical results from
Sec. 6.2. Further, some fundamental consequences of different flame geometries on
the flame response in frequency and time domain could be illustrated. One example
are the different time lags of Bunsen and Slit flames (τr /2 vs. τr ), which lead to dif-
ferent slopes in the transfer function phase. This is in accordance with the findings
by Duchaine et al. [146], which leads to the conclusion that even such a simple flame
response model as the one described here correctly predicts some features of realistic
FTFs. In the next section we derive analytical predictions for the FTF for all configu-
rations, using the most widespread velocity models from the literature, and compare
the results to CFD/SI data, see Sec. 6.1, as well as to measurement data from the liter-
ature. It will be shown that the respective results, although being more complex, will
qualitatively be very similar to those retained by the aforementioned simple model.

6.4 Incompressible-Convective FTF Models

Integration of Eq. (1.32) (lM = 0) requires a model for the flame normal velocity
perturbation u′

⊥. State of the art models, which allow the analytical evaluation of the
FTF, are based on axially advected flow perturbations emanating from the flame base,
see Sec. 2.2.1 (Low-Order Models). The two most common ones are the “convective
velocity model” [111, 116] and the “incompressible-convective velocity model” [138,
161]. The flow field of the former consists of axial flow perturbations, which are
transported with mean flow velocity u1 and lead to the generation of wrinkles at
the momentary location of the perturbation along the flame. The flow field of the
latter introduces a matching lateral flow perturbation to fulfill continuity equation.
Using the Einstein summation convention, the incompressibility condition reads for
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symmetric configurations:

Slit: Conical:

∂u′
i

∂xi
= 0

∂u′
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+
u′

2
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2

= 0

→ u′
2 =−xL

2

∂u′
1

∂xL
1

→ u′
2 =−

xL
2

2

∂u′
1

∂xL
1

.

A Cartesian and a cylindrical coordinate system is applied here for Slit and conical
flames, respectively. A general formulation that combines slit and conical cases reads

u′
2 =−xL

2 fg

∂u′
1

∂xL
1

, (6.15)

where the geometrical factor fg is set to fg = 1 for slit and to fg = 1/2 for conical
flames. By setting fg = 0, the plain convective velocity model is recovered. As stated
in Sec. 2.2.3, in order to derive an analytical expression for the FTF, either a harmonic
[111] or an unit impulse signal [116] has to be imposed on the reference velocity po-
sition. In the following the latter method is applied, the impulse response is evaluated
and the frequency response is derived from that.

In the time domain (unit impulse excitation), convective velocity models exhibit an
advected Dirac velocity perturbation u′

1 = δ
(
t −xL

1 /u1

)
, which locally perturbs the

flame front, see Eq. (2.6). It is shown below that such a velocity model leads to the
occurrence of Dirac impulses in the corresponding IRs of Slit and Wedge flames.
This, in turn, results in frequency responses lacking a cut-off frequency, i. e. the as-
sociated FTF does not feature the characteristic low-pass behavior. In order to rem-
edy this unrealistic shortcoming, we assume a general velocity kernel function g (τ),
which determines a characteristic spatial shape of the convected velocity fluctua-
tions u′

1 = g (τ). In the convective model described above, this kernel is a Dirac delta
function: gδ(τ) = δ(τ), with τ= t −xL

1 /u1. A natural extension to this model is the
assumption of a Gaussian kernel

gσ(τ) = 1
p

2πσ2
exp

(
− τ2

2σ2

)
(6.16)

with the standard deviation σ. Applying such a kernel is effectively a low-pass filter-
ing of the results computed from a Dirac kernel and, therefore, leads to the desired
low-pass behavior of the FTFs. Furthermore, it allows for more realistic predictions
of acoustically induced flame front displacements as will be shown in Sec. 6.6.

Employing the general kernel and applying Eq. (6.15), the two advected components
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Figure 6.9: Qualitative illustration of the velocity field resulting from unit impulse
forcing and a Gaussian velocity kernel function g (τ) at position xL

1,ref
.

Shown are xL
1 ( ) and xL

2 ( ) components for a standard deviation
of σ1, as well as xL

1 ( ) and xL
2 ( ) components for σ2 = 2σ1.

of the velocity perturbation of Eq. (2.6) are written as

u′
1 = g

(
t −

xL
1

K u1

)
(6.17)

u′
2 = fg

xL
2

K u1
g ′

(
t −

xL
1

K u1

)
, (6.18)

with g ′(τ) denoting the first derivative of the kernel function with respect to τ. Here,
a parameter K is introduced, which defines the axial advection speed of the ve-
locity perturbation as a multiple of the mean flow velocity (inverse definition as
in [138, 163, 167]). For K = 1 the standard convective velocity model is retrieved.
Fig. 6.9 qualitatively shows the spatial shape of the xL

1 and xL
2 velocity components

of the convected perturbation for a Gaussian velocity kernel function of two different
standard deviations σ. For σ→ 0, the velocity perturbation becomes more and more
localized as it approaches a Dirac impulse.

From Fig. 6.9 it is deduced that the integral of u′
2 over xL

1 is zero. Indeed, the as-
sociated velocity field has a solenoidal character and thus corresponds to a vortical
velocity field. Fig. 6.10 exemplarily illustrates the qualitative two-dimensional (2D)
velocity (u′

1,u′
2) and vorticity (ω′

3) field associated with the convective Gaussian dis-
turbance for a Bunsen flame. The axial velocity component u′

1 provides fresh fluid,
which generates a positive displacement of the flame front, while the u′

2 component
leads to positive as well as negative displacements of equal magnitude. From the ar-
rows in Fig. 6.10 it becomes clear that the u′

2 component redistributes flame front
deflections. When interpreting the shown velocity field, it has to be kept in mind that
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Consequences of Flame Geometry

Figure 6.10: Snapshot of the velocity and vorticity field resulting from unit impulse
response forcing and a Gaussian velocity kernel for a Bunsen flame.
Shown are the two velocity components u′

1 (top left), u′
2 (top right)

and the correspond xL
3 vorticity component ω′

3 (bottom), all of them
normalized by their maximum absolute value.

only the velocity right at the mean flame front interacts with the flame. The spatio-
temporal structure far away from the flame is not important and should, hence, not be
misinterpreted as a strange kind of shear layer vortex.

In order to derive analytical expressions for the IRs of all three configurations, we
firstly evaluate the flame normal velocity perturbation associated with Eqs. (6.17)
and (6.18), which is

u′
⊥,Λ/slit =g

[
t −

xF
1

L f
τc

]
sin(α)+

fg τc

Ri −xF
1 sin(α)

L f
g ′

[
t −

xF
1

L f
τc

]
(6.19)

140



6.5 Geometry-Dependent Analysis of the Incompressible-Convective Model

for Slit and Bunsen flames and

u′
⊥,V =g

[
t −

xF
1

L f
τc

]
sin(α)+

fg τc

R0 +xF
1 sin(α)

L f
g ′

[
t −

xF
1

L f
τc

]
(6.20)

for Wedge flames. A second characteristic time τc is introduced here, which denotes
the time it takes for an axially advected velocity perturbation to be transported from
the flame base to its tip. This introduces the velocity of the convective disturbance in
flame coordinates uc , which is provided for both coordinate systems in Tab. 6.1. The
characteristic flame times τr and τc are related to flame speed, the flame angle and
the feed duct half-diameter by

τr =
Ri

sL cos(α)
, (6.21)

τc =
cos2(α)

K
τr , (6.22)

where the relation cos2(α) = 1− s2
L/u2

1 could be applied to estimate the flame angle.
For Wedge flames, a length Ri = Ra −Rr has to be used in Eq. (6.21). Using the de-
scribed perturbation velocity field, analytical expressions for the IRs of all three flame
geometries are derived by solving Eq. (1.32) (lM = 0) and, subsequently, Eq. (2.3)
for the unit impulse response h(t ) using the flame surface integrals summarized in
Tab. 6.1. Results are provided in Appendix C.1 and are functions of τr and τc only
(ignoring fg and possible kernel parameters). The FTF of Wedge flames has the non-
dimensional rod radius r̃ = Rr /Ra as a third parameter. All FTFs are derived in terms
of a general kernel g and are hence ready to be used with arbitrary functions.

We introduce the abbreviation DIC for the Dirac kernel based incompressible-
convective velocity model and GIC for the Gaussian kernel based counterpart. The
GIC model relies on the two additional empirical parameters K and σ, which need
to be fitted to experimental observations. As will be shown later, K is primarily used
to modify the frequency of maximum gain and σ to set the cut-off frequency of the
FTF.

6.5 Geometry-Dependent Analysis of the Incompressible-

Convective Model

Above, the incompressible-convective velocity models for three flame configurations
were introduced. We now want to analyze the DIC model for all geometries in order
to gain some insights into the respective flame responses. To date, expressions of
the DIC model have solely been evaluated for Bunsen flames. While Cuquel [134]
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Figure 6.11: FTF predictions of the DIC model for α=π/4 and K = 1 in terms of
impulse response h(t ) (left) and frequency response F (ω) (right) shown
for three flame configurations: Slit ( , impulses as ), Bunsen ( )
and Wedge flames ( , impulses as ). The phase decay correspond-
ing to a fixed time delay of τr ( ) and the one corresponding to
τr /2 ( ) are added to the phase plots. For Wedge flames a non-
dimensional rod radius of r̃ = 0.5 is assumed.

analyzed them in time and frequency domain, Preetham et al. [138] and Orchini
and Juniper [163] focused only on frequency domain representations. The following
discussion seeks to close this gap in the literature.

FTF predictions of the DIC model for α=π/4 and K = 1 are shown in Fig. 6.11
for all three flame geometries. For Wedge flames, a non-dimensional rod radius of
r̃ = 0.5 is assumed. The IRs are shown on the left-hand side of this figure and the
associated FRs, in terms of magnitude and phase, on the right. All quantities are
non-dimensionalized by the characteristic flame time: h∗ = hτr , t∗ = t/τr and f ∗ =
f τr . The IRs of the Slit and the Wedge flame contain Dirac delta functions. This
kind of function (strictly speaking distribution) is characterized by its integral and
it is hence decided to indicate this integral value in all IR visualizations whenever a
Dirac Impulse is present. That means, for example, that the blue circle in Fig. 6.11
represents a −δ(t∗−1) contribution. Since the integral of this expression is −1, the
circle indicates this value in the graphical representation of the IR at t∗ = 1.

The respective behavior of the FTF for the various geometries becomes more clear
when analyzing the transient flame front deflection ξ(xF

1 , t ) caused by an impulse
forcing. An illustration of a snapshot is shown in Fig. 6.12a for Slit and Bunsen and in
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(a) Bunsen and Slit flames (b) Wedge flames

Figure 6.12: Illustration of the displaced flame front deflection ξ
(
xF

1 , t
)

of the DIC
model for an impulse velocity perturbation. Shown are two flanks,
which propagate with the velocity ur (restoration) and uc (convective
flow disturbance), and two impulses I and II both propagating with the
velocity of the respective flank.

Fig. 6.12b for Wedge flames. As expound by Blumenthal et al. [116] for the plain con-
vective velocity model, two flanks are formed (see Fig. 6.12), which delimit a pocket
of unburned gas. This pocket grows in extent, since the downstream flank propagates
with a higher velocity than the upstream one (uc > ur ). In case of the incompressible-
convective velocity model, additionally, two flame front displacements of the shape
of a Dirac impulse are formed (see Fig. 6.12), which are not present in the plain con-
vective velocity model and also propagate along the flame front. They result from the
lateral, solenoidal velocity component of the convected perturbation. In agreement
with Fig. 6.12 we refer to those impulses as Impulse I and Impulse II. Their propa-
gation speed equals the speed of the adjacent flank, i. e. uc for impulse II and ur for
impulse I.

First let us consider a Bunsen flame. Here, Impulse I forms a negative flame front
displacement and its amplitude stays constant while it is advected downstream with
ur , see Fig. 6.12a. Impulse II constitutes a positive displacement and its amplitude
decreases when advected downstream by the velocity uc , until it reaches zero right at
the flame tip. According to Sec. 6.2, the linearized flame surface area fluctuation of
a Bunsen flame depends on the integral of the instantaneous flame front deflections.
Hence, advected Dirac impulses are transformed to Heaviside Step functions in time
when evaluating the IR, see Appendix C.1. Consequently, the IR of a Bunsen flames
does not show any Dirac Impulses as depicted in Fig. 6.13a. Impulse I adds a constant
negative contribution to the overall IR ( ), while Impulse II adds an decreasing,
positive value to the overall IR, which disappears at t∗ = 0.5, i. e. in dimensional
time at t = τc ( ). The specific nature of the Bunsen flame heat-release dynamics
(integral of ξ) leads to a dispersion of the flame response in time. This, in turn, goes
along with a relatively low cut-off frequency of the associated FTF, see Fig. 6.11
( ). This can be explained by the fact that integration imposes a 1/ω behavior in
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Figure 6.13: Impulse responses of the three different flame configurations. Shown
are the overall IR ( , impulses as ), as well as the contributions of
the flanks ( ), Impulse I ( , impulses as ) and Impulse II ( ,
impulses as ) of ξ

(
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)

to the overall IR. Parameters are the same as
those described in Fig. 6.11.

frequency domain, see Tab. C.2 in Appendix C.1: The integral of a Dirac impulse is
the Heaviside step function and, consequently, the amplitude of the one-sided Fourier
transform of the latter shows an 1/ω behavior while it is unity for the former.

The situation is very different when a Slit flame is considered. The instantaneous
flame front displacement according to the DIC model is qualitatively the same as for
a Bunsen flame, see Fig. 6.12a. However, since the flame surface area fluctuation of
Slit flames depends to leading order only on the flame tip movement, see Sec. 6.2,
Dirac impulses in ξ lead to the appearance of Dirac impulses in the IR. More specif-
ically, as shown in Fig. 6.13b, Impulse I adds a negative Dirac impulse at t∗ = 1 (in
dimensional time at t = τr ). Impulse II has no impact as it vanishes at the flame tip.
The negative impulse at t∗ = 1 leads to an FR gain tending to unity instead of zero
for f →∞, see Fig. 6.11 ( ). All in all, the response of a Slit flame constitutes
a time delayed, direct effect of flame front perturbations. No spatial integration of
flame displacements, as in the Bunsen case, is present, which leads to an FR lacking
a low-pass filtering behavior.

The global heat-release rate of Bunsen flames responds to the integral of a flame
front perturbation, while Slit flames react to flame front deflections directly once
they reach the flame tip. Bunsen flames are, in consequence, a more sedate source of
sound than Slit flames for a given flame front perturbation. This fact might, besides
other effect such as flame curvature or burner-plenum acoustics, contribute to the
lower sound pressure levels of combustion noise produced by turbulent Bunsen type
flames compared to Slit ones, as reported by Kotake and Takamoto [151] and Pausch
et al. [153].
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In terms of response characteristics, Wedge flames are in some aspects similar to Slit
flames and in others more close to Bunsen flames. A snapshot of the resulting flame
front deflection due to an impulse velocity forcing is shown in Fig. 6.12b. Again,
two flanks appear, which are advected downstream. Impulse I depends on the non-
dimensional rod radius r̃ and has a constant, non-zero value for r̃ > 0. Contrary to
Bunsen and Slit flames, Impulse II now increases in amplitude while it is advected
downstream. Consequently, both impulses lead to the occurrence of Dirac impulses
in the IR of Wedge flames, see Fig. 6.13c. Thus, the gain of the corresponding FR
never reaches zero and shows several recurring peaks of high magnitude, similar to a
Slit configuration, see Fig. 6.11 ( ). While the phase of a Slit flame decays with a
constant slope, which corresponds to the one of a system with a fixed time delay τr ,
the phase of a Bunsen flames decays with a slope corresponding to a time delay τr /2.
The phase of a Wedge flame with α=π/4 behaves similar to the one of a Bunsen
flame, as depicted in Fig. 6.11. For longer flames (α ↓) the phase of a Wedge flame
would approach the one of a Slit flame (not shown).

The response of Wedge flames integrates flame front perturbations and also directly
responds to them once they reach the flame tip. In that sense they are a hybrid of
Slit and Bunsen flames. Since, however, their flame front deflection according to the
DIC model is different to that of Bunsen and Slit flames, see Fig. 6.12, they are not
a pure hybrid and additionally bring some individual response characteristics, such
as the presence of pronounced positive and negative contributions in their IR. As
explicated by Blumenthal et al. [116], this is a necessary condition for the occurrence
of peak gain values exceeding unity. Indeed, the gain shown in Fig. 6.11 affirms this
statement.

In this section it is illustrated that each of the three considered flame configurations
has its own peculiar response characteristics. As will be shown in the following, the
incompressible-convective velocity model is able to predict frequency and impulse
responses, which qualitatively and also quantitatively agree with CFD and experi-
mental data, if a Gaussian instead of a Dirac kernel is used. In doing so, the Dirac
impulses, appearing in the IRs of Slit and Wedge flames, are transformed to Gaussian
impulses. This corresponds to a dispersion in time and, hence, to a decreased cut-off
frequency, which brings the desired low-pass behavior of the predicted FTFs.

6.6 Validation of Flame Response Models

Figs. 6.14, 6.15 and 6.16 visualize FTFs identified from the CFD simulations in-
troduced in Sec. 6.1 for all three flame configurations ( ). Additionally, predic-
tions from the convective and the incompressible-convective velocity model (DIC
and GIC) are shown. The free parameters τr , τc and r̃ are computed according to
Eqs. (6.21) and (6.22) using the physical and geometrical quantities introduced in
Sec. 6.1 and a laminar flame speed of sL = 0.278 m/s. Due to confinement effects
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Figure 6.14: Comparison of FTF predictions for Slit flames visualized in time (left)
and frequency domain (right) from CFD/SI data ( ), as well as from
the plain convective ( ) and the incompressible-convective velocity
model using a Dirac ( , impulses as ) and a Gaussian kernel with
σ= 1.2 ms and K = 1.3 ( ) for τr = 18.7 ms.

(see e. g. [144]), we have to adjust τr for the Slit and the Wedge setup compared to
the results provided by Eq. (6.21) in order to match the CFD/SI data. This correction
is applied by fitting the reduced order models to the CFD/SI IR data such that the po-
sition of the first negative part of the IRs coincide. Confinement effects are negligible
for the Bunsen flame setup. The respectively values of τr are provided in the figure
captions of the FTF data.

Concerning the empirical parameters of the GIC model, for the Bunsen and the Slit
results presented here, we chose σ = 1.2 ms and K = 1.3 in order to match the CFD
data. For the Wedge case, K = 1.3 could be applied as well, however, we use an in-
creased standard deviation of σ= 1.9 ms. This results in a non-dimensionalized stan-
dard deviation σ∗ =σ/τr of σ∗ ≈ 0.064 for the Slit and Bunsen setup and σ∗ ≈ 0.142

for Wedge case. Hence, at least for the three cases discussed here, some universality
of these parameter values can be assumed.

By evaluating the FTF for both a Dirac and a Gaussian kernel, the importance of
the dispersion in time, which was mentioned in Sec. 6.4, becomes apparent. Wedge
and Slit flames have Dirac impulses in their DIC model based predictions, see ( ,
impulses as ) in Figs. 6.14 and 6.16. The corresponding FR gain curves oscillate
without decaying to zero, which does not reflect the observed low-pass filtering be-
havior of flames. Introducing a Gaussian kernel, the Dirac impulses of the DIC based
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Figure 6.15: Comparison of FTF predictions for Bunsen flames visualized in time
(left) and frequency domain (right) from CFD/SI data ( ), as well
as from the plain convective ( ) and the incompressible-convective
velocity model using a Dirac ( ) and a Gaussian kernel with σ =
1.2 ms and K = 1.3 ( ) for τr = 18.6 ms.

IR become Gaussian impulses such that the gain of the associated FR shows a similar
cut-off behavior as the CFD/SI data.

Generally, very good agreement between the GIC model and the CFD/SI data is found
for the three investigated configurations. It shall now be analyzed if the respective
flame front displacements also resemble the CFD data and how they are connected
to specific features of the IR. For that purpose, it was decided to representatively
analyze the Slit configuration since the relation between the global heat-release rate
and flame displacements is very straight forward here. The respective data for the
Bunsen and the Wedge flame are briefly discussed afterwards. Fig. 6.17 compares the
IR of a Slit flame to its associated normalized flame front displacements ξ/ξ̂, one time
for the CFD data ( ) and one time for the IC velocity model employing a Dirac
( , impulses as ) and a Gaussian ( ) kernel. Here, the reference displacement
is defined as ξ̂=

∫t
0 u′

1dt . The displacements of the CFD data are evaluated from a
simulation that is excited by an impulse forcing of 10%u1 amplitude. It was verified
that the resulting global heat-release rate of this impulsively forced setup corresponds
to the IR estimated from the broad-band data (not shown). Snapshots at four instants
in time t1 to t4 of the displaced flame front are plotted in Fig. 6.17 (lower half). The
corresponding temporal positions are marked in the plot of the IR (upper half) by
horizontal dashed lines.
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Figure 6.16: Comparison of FTF predictions for Wedge flames visualized in time
(left) and frequency domain (right) from CFD/SI data ( ), as well
as from the plain convective ( ) and the incompressible-convective
velocity model using a Dirac ( , impulses as ) and a Gaussian ker-
nel with σ= 1.9 ms and K = 1.3 ( ) for τr = 13.3 ms.
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Figure 6.17: Comparison of IR (top) and the corresponding normalized flame front
displacement ξ/ξ̂ of the Slit configuration resulting from an impulse
forcing at four instants in time, shown for the CFD/SI data ( ) as well
as for the incompressible-convective velocity model employing a Dirac
( , impulses as ) and a Gaussian ( ) kernel, see also Fig. 6.14.
Compare to Fig. 6.12a for clarification.

At time t1 = 0 the impulsive velocity forcing hits the flame and both the CFD data
and the GIC model show displacements in the approximate vicinity of the flame base
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Figure 6.18: Comparison of IR (top) and the corresponding normalized flame front
displacement ξ/ξ̂ of the Bunsen configuration resulting from an impulse
forcing at four instants in time, shown for the CFD/SI data ( ) as well
as for the incompressible-convective velocity model employing a Dirac
( , impulses as ) and a Gaussian ( ) kernel, see also Fig. 6.15.
Compare to Fig. 6.12a for clarification.

region. This is in accordance with the findings of Chap. 4 relating this to the impact of
the potential part of the acoustic perturbation. The flame tip stays unaffected and thus
the corresponding IR exhibits no response at t1. The CFD data now shows that while
this initial displacement is convected downstream it grows in amplitude and smaller,
secondary negative and positive displacements develop. Each time a displacement
reaches the flame tip, a response of the global heat-release is provoked, see t3 and t4.
Having a look at the corresponding GIC and DIC data, it is apparent that displace-
ment amplitudes are overpredicted until they reach the flame tip, where they match
the CFD results reasonably well. Knowing that the global heat-release rate of Slit
flames depends solely on flame tip movements, it becomes clear that the matching of
amplitudes at the tip region is the crucial property that determines the quality of the
associated IR prediction.

Figs. 6.18 and 6.19 show the corresponding results for a Bunsen and Wedge config-
uration, respectively. Again it can bee seen that although flame displacements pre-
dicted by CFD and the GIC model do not perfectly match, the IRs of the global
heat-release agree well. The GIC model is able to qualitatively capture the dynam-
ics of an impulsively perturbed flame front. For harmonic forcing Baillot et al. [120]
reported good agreement between experiment and the DIC model in terms of flame
shapes. Since the GIC model improves response predictions compared to the DIC
model, it can be conjectured that the GIC model should further improve that already
good match.

It is interesting to note that while Slit and Bunsen configurations exhibit flame front
displacements that grow in amplitude, the ones for Wedge flames show a decaying
behavior (Fig. 6.19, ). The reason for this is unclear. Further, the initial displace-
ments at t = 0 are very similar for all three configurations, which means that, qual-
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Figure 6.19: Comparison of IR (top) and the corresponding normalized flame front
displacement ξ/ξ̂ of the Wedge configuration resulting from an impulse
forcing at four instants in time, shown for the CFD/SI data ( ) as well
as for the incompressible-convective velocity model employing a Dirac
( , impulses as ) and a Gaussian ( ) kernel, see also Fig. 6.16.
Compare to Fig. 6.12b for clarification.

itatively, the results presented in Chap. 4 seem not to be limited to Slit flames but
are rather universal. Finally, the deviation of displacements of the DIC from the GIC
model for Slit and Wedge configurations illustrates the importance of the Gaussian
impulses for the overall response characteristics.

Comparing predictions of the flame front displacements shown in Fig. 6.17 from the
DIC ( , impulses as ) and the GIC ( ) model, one realizes that the Gaussian
kernel disperses unphysical, very localized Dirac displacements of the DIC model
in space. Such a dispersion might be related to effects of flame stretch, particularly
curvature, as well as to the finite width of the initial flame displacements of the CFD
data at t1, which is an essentially inviscid effect [1].

As a consequence of the oscillatory displaced flame front, Slit flames show a decay-
ing oscillatory IR with alternating positive and negative contributions of decreasing
amplitude, see Figs. 6.14 and 6.17. The GIC model captures the first period of this
signal and then immediately decays to zero. The negative part of the predicted IR is
caused by the u′

2 component of the velocity model, see Eq. (6.18), which corresponds
to a vortical velocity field, as described in Sec. 6.4. It is hence deduced that, In the
proposed models, the first negative minimum (the second for Wedge flames) of all
IRs is caused by vortical structures.

Slit flames show a very high peak gain value, which is not at all predicted by the
plain convective velocity model, see Fig. 6.14 ( ). For the other two geometries,
this model agrees reasonably well with the CFD/SI data. It correctly predicts the cut-
off behavior of Bunsen flames and only misses to capture the reoccurring maxima in
the gain for f ∗ > 1.5, as depicted in Fig. 6.15. For Wedge flames, Fig. 6.16 shows that
the gain exceeding unity at f ∗ ≈ 1.3 is qualitatively captured, however, the maximum
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gain value is underestimated. The most important feature added by the DIC model,
compared to the convective one, is the occurrence of impulses in the IR ( ). Slit
flames show one negative impulse at t∗ = 1, right at the position of the first minimum
of the IR. Wedge flames have two of them, a negative one at t∗ = 1 and a positive one
at t∗ = τc /τr , both at positions of local extreme values of the IR.

Having a closer look at the IRs, it is found that the time scale defined by τr −τc plays
an important role. As already pointed out by Blumenthal et al. [116], the difference
between the restorative and the convective time defines the frequency of maximum
gain for (sharp) Wedge flames. The IRs of all three flame configurations show oscil-
lations of decaying amplitude. They are most prominent for the Slit and the Wedge
configuration, see Figs. 6.14 and 6.16. The width of half a period of these oscillations
very well agrees with the time τr −τc . The corresponding oscillation frequency is
approximated by a Strouhal number

f ∗
O = τr

2(τr −τc )
= 1

2
(
1− cos2(α)

K

) , (6.23)

which is f ∗
O ≈ 1.7 for all shown cases. Around this frequency the Slit and the Bunsen

flame show a local maximum in the gain of their FR. The peak value of the Wedge
flame is shifted to a lower Strouhal number of about 1.1.

As stated by Eq. (6.23), the frequency of maximum gain depends on K and, hence,
provides a physically motivated criterion to estimate this parameter. It is therefore
presumed that the width of the Gaussian kernel function, set by the standard devi-
ation σ, determines the cut-off frequency of the FTF and the parameter K fixes the
frequency of maximum gain. Physically, the value of the first might be connected to
diffusive processes and the one of the latter to (baroclinic) generation of vorticity.

This finding is exploited in order to compare the proposed models to data from the
literature. Since Wedge setups comparable to the ones described here could not be
found (i. e. no swirl and no influence of vortex shedding), only Bunsen and Slit con-
figurations are used. Information about the experimental data is provided in Tab. 6.2.
Fig. 6.20 shows the adopted frequency responses (FR), as well as the fitted FTF pre-
dictions of the GIC models. For each data set, a frequency is identified where the
gain has a local maximum and Eq. (6.23) is used to compute an associated value for
K . The values of cos2(α), which is according to Eq. (6.22) required to compute τc ,
and τr are estimated from the cited references. The standard deviation σ is then ad-
justed until the cut-off frequency of the GIC model agrees sufficiently well with the
experimental data. All fit parameters are provided in Tab. 6.2.

Since all Bunsen setups show a very similar trend, only one single model ( f ∗
O ≈ 1.85)

was fitted. On the contrary, the FR of Slit flames has a high variance and is strongly
affected by τr : the maximum gain value and the cut-off frequency rise with increas-
ing τr . Accordingly, the non-dimensional frequency f ∗

O shifts from 0.9 over 2.4 to
4.4. Since the GIC model consistently overpredicts the gain for low frequencies, it is
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Table 6.2: Summary of experimental data adopted from the literature, see Fig. 6.20.
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Figure 6.20: Experimental frequency response data of selected conical (a) and a slit
flames (b) adopted from the literature (see Tab. 6.2). Additionally, pre-
dictions of the GIC model are shown (black lines). The phase corre-
sponding to a fixed time delay of τr ( ) and τr /2 ( ) is indicated
in the phase plots.

concluded that it is lacking some damping mechanisms, which are present in exper-
iments. Besides this, it is able to capture both gain and phase sufficiently well. This
is remarkable considering the fact that in particular for Slit flames, the convective as
well as the DIC model lead to very inaccurate FTF predictions, see also Fig. 6.14.

Finally, it should be pointed out that the phase of all Bunsen FTFs coincides with the
one of a system with a constant time delay τr /2, while Slit flames resemble a system
of time delay τr , see Fig. 6.20. This result corresponds to the findings of Duchaine
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et al. [146] and is captured correctly by both of the convective velocity models (DIC
and GIC), see Sec. 6.5.

6.7 Summary and Conclusions

This chapter analyzed the consequences of flame geometry for the linear flame re-
sponse, namely the flame transfer function (FTF). This was done by following a well
established, G-equation based modeling approach and analyzing it with respect to
geometry-related differences of Slit, Bunsen and Wedge type flame configurations.
The process of how a wrinkled flame front leads to fluctuations in the global heat-
release was identified as the key mechanism, which distinguishes the response of
each flame. Therefore, the flame surface integral was analyzed in detail and analyt-
ical expressions for stiffly anchored, symmetric flames were derived. By extending
the well-known incompressible-convective velocity model with a Gaussian Kernel,
analytical FTF expressions were derived, which very well coincide with FTF predic-
tions from numerical simulations for all three considered flame configurations. The
derived models rely on two empirical parameters, namely the standard deviation of
the Gaussian kernel and the advection velocity of the convective flow perturbation
relative to the mean flow velocity. By relating the latter parameter to the frequency
of maximum gain and the first to the cut-off frequency of the FTF, it was possible to
provide good predictions of gain and phase of experimentally determined FTFs taken
from the literature.

The main finding of the present analysis are:

1. The integral heat-release of Bunsen flames is proportional to the integral of the
flame front displacement, the flame tip movement is negligible. Consequently,
heat-release rate fluctuations induced by a displaced flame front are dispersed
in time, which leads to a relatively low cut-off frequency, such that the FTFs of
Bunsen flames look always quite similar when plotted over Strouhal number.
The phase of the FTF is dominated by half the time of restoration τr /2.

2. The integral heat-release of Slit flames is proportional to the flame tip move-
ment. Therefore, flame front displacements directly affect the heat-release rate
once they reach the tip. Compared to Bunsen flames, this leads to an increased
cut-off frequency and, hence, to a higher response variance of Slit flame setups.
Slit frequency responses show a high maximum gain value, which increases
with the time of restoration τr . The heat-release of Slit flames responds time
delayed to flame front perturbations, which leads to an FTF phase dominated
by the characteristic flame time of restoration τr .

3. The integral heat-release of Wedge flames is proportional to the flame tip
movement and the integral of the flame front displacement. Their impulse re-
sponse shows significant positive and negative parts, which lead to gain values
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exceeding unity. The phase behaves similar to the phase of a Bunsen flame and
approaches the behavior of a Slit flame for long flames.

4. The impulse responses of all flame configurations, identified from CFD data,
show a strongly damped oscillatory behavior, which leads to a local maximum
in the FTF gain close to the oscillation frequency. In the proposed modeling
framework, this frequency could be related to the difference in the time of
restoration and the one of distortion, τr −τc . This dependency can be exploited
in order to compute the two empirical parameters of the proposed Gaussian
incompressible-convective (GIC) velocity model.

5. For surface integration, it is important to choose a coordinate system that ac-
counts for the possible flame movements at the boundaries. Otherwise, variable
integration limits are required.

Based on these results, the findings of Part II, which are based on Slit flames, can be
transferred to Bunsen and Wedge geometries. Since the flame sheet dynamics essen-
tially remains the same for all discussed configurations, differences emerge mainly
from how flame shape translates to heat release. These integrals could simply be im-
plemented into the low-order modeling framework suggested in Part II, which would
allow for an approximation of the respective response characteristics.
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This doctoral thesis analyzed the linear acoustic response of laminar premixed
Bunsen-type flames primarily relying on first-principle-based, low-order modeling
approaches. A literature review on the dynamics of laminar flames and interactions
between acoustics and burner-stabilized flames laid the foundation for all subse-
quently performed investigations and provided guidance for the identification of rele-
vant physical mechanisms determining the response characteristics. While, in the lit-
erature, the understanding of the dynamics of burner-stabilized flames whose anchor-
ing is mechanically displaced, is based on the concepts of the Darrieus-Landau insta-
bility and thermal-diffusive mechanisms, the interpretation evolves around the notion
of convected velocity perturbations in the case of acoustically perturbed flames. This
is particularly surprising knowing that their dynamics should in fact be very similar,
since acoustics predominately displaces the flame base region in both cases.

Motivated by this realization, a first principles-based incompressible low-order mod-
eling framework was introduced, relying on methods adopted from aero-acoustics:
the flow field is represented by a number of flow-field singularities combined with
a conformal mapping technique and a Kutta condition. In a first step, flame-flow
feedback was neglected and primary acoustics-flame interactions were assessed. It
was found that consequences of shed vorticity for the flame response are negligible
and that the irrotational part of the acoustic perturbations displaces essentially the
flame base region. Hence, convective sources of flame displacement, as assumed by
state-of-the-art low-order modeling approaches in the limit of negligible flame-flow
feedback, could not be identified. Comparing low-order predictions to high fidelity
CFD data, it could be shown that the resulting flame front displacements match only
well right at the moment when the acoustic impulse hits the flame.

At later times, secondary mechanisms come into play, causing secondary displace-
ments as well as the convective growth of displacement amplitudes. These effects
could be associated with flame-flow feedback which essentially has two contribu-
tions: (i) a vortical one relying on flame-generated vorticity and (ii) an irrotational
one relying on a flame-normal acceleration of the flow across a flame sheet together
with a flame displacement-induced geometrical focusing. While the former mecha-
nism causes a perturbed flame sheet to behave like a vortex sheet of varying strength,
the far field of the latter resembles the one of advected dipoles. The upstream in-
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fluence of each of these two mechanisms onto the unburned flow induces convected
velocity perturbations. This explains observations reported by previous experimental
studies. Concerning the linear response of the global heat release, it could be shown
that both mechanisms of flame-flow feedback lead to the occurrence of peak FTF
gain values significantly exceeding unity.

All those investigations were performed for Slit flame configurations; the literature,
however, mostly reports on Bunsen flames. Therefore, in the final part of this thesis,
consequences of flame geometry — namely of Slit, Bunsen and Wedge configurations
— for the acoustic response were analyzed. It was found that the process of how a
wrinkled flame front leads to fluctuations in the global heat-release constitutes the
key mechanism that distinguishes the responses of different flame geometries. By
extending the well-known incompressible-convective velocity model with a Gaussian
Kernel, analytical FTF expressions were derived, which coincide very well with FTF
predictions from numerical simulations for all three considered flame geometries.

The main achievements of this work can be summarized to:

• The linear thermoacoustic response (FTF) of a laminar premixed flame is
essentially governed by hydrodynamic mechanisms that lead to (i) primary
acoustically induced perturbations acting predominantly at the flame base and
(ii) flame-flow feedback interacting with these primary flame front displace-
ments while they are convected downstream.

• Flame-flow feedback has vortical and irrotational contributions and is respon-
sible for FTF peak gain values significantly exceeding unity. Further it explains
the observations of convected velocity perturbations upstream a wrinkled flame
sheet.

• G-equation-based low-order models are usually based on the ad hoc assump-
tion of convected velocity perturbations. They only implicitly include con-
sequences of flame-flow feedback and, thus, do not faithfully represent the
causality of the underlying flow physics.

• Flame geometry significantly impacts the dynamics of the global heat release
rate, while the respective flame sheet dynamics remains essentially unchanged.
Each geometry has its own unique response characteristics.

Based on the analysis performed in this thesis, some questions still remain open and,
additionally, some new issues have been raised. One important point that requires
further investigations concerns the quantitative analysis of flame-flow feedback: It
is still unclear whether the irrotational or the vortical component is more important,
although the computed data suggests the former. Furthermore, the prevailing mech-
anisms that impose a damping of flame front perturbations and their respective con-
sequences for the flame response still need to be assessed. Based on these results,
the introduced low-order modeling framework could then possibly be extended such
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that it allows for quantitative FTF predictions. Another point of interest concerns the
observed oscillatory behavior of the impulse response of the global heat release rate.
It would be of high value to explain the underlying mechanism in detail and pro-
vide an estimate of the oscillation frequency. This is of particular interest knowing
that this frequency is closely related to the frequency where the FTF gain exhibits its
maximum. A detailed analysis of the flame anchoring dynamics might assist these
efforts.

From a global point of view, the main outcome of this thesis is that modeling of the
flame response in a thermoacoustic context should be driven by first-principle based
analyses in future studies. It was shown in this work that one of the currently most
wide-spread low-order models, the so-called convective velocity model, relies at its
core on an ad hoc hypothesis that does not faithfully respect causality. While this
may be acceptable for preliminary and academic studies on the global thermoacous-
tic behavior of a system, it prevents detailed analyses of acoustic-flame interactions.
Particularly the flame-flow feedback driven high gains of the flame transfer function
found for Slit flames provide strong hints that a more rigorous analysis would also be
of high technical relevance. Furthermore, knowing that the flame is the main source
of non-linearity in thermoacoustic systems, improved flame models would allow to
compute amplitudes of non-linear self-sustained oscillations and thereby would en-
able more detailed stability predictions of combustors. The theoretical fundamentals
required to this end have already been laid in other fields of research. A first step was
conducted in this work to bring this knowledge into the field of thermoacoustics.
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A Numerical Response Analysis

Throughout this work numerical data is used for validation purposes or to provide
guidance on identification of the essential underlying physical mechanisms regard-
ing acoustics-flame interactions. This high-fidelity data is computed using numerical
simulations employing a 2-step chemical reaction scheme combined with means of
system identification. In order to efficiently extract information from this numerical
simulations, various forcing signals and post-processing methods are applied. Details
on all of these points are provided in the following.

First of all, Sec. A.1 introduces the setups of the analyzed flame configurations. Then,
Sec. A.2 outlines the applied CFD/SI method using illustrative and representative ex-
amples. An excursion on the various different ways of representing and analyzing the
linear flame response, with special focus on causality, will be provided in Sec. A.3.
Finally, it is described in Sec. A.4 how flame front displacements are computed from
CFD field data, which is specifically important for post-processing simulations of
impulsively perturbed flames.

A.1 Test Case Setups

In this thesis, premixed laminar premixed flames, as sketched in Fig. 2.1, are investi-
gated. In order to reduce complexity, only lean methane-air flames of an equivalence
ratio of φ= 0.8 are considered, which all have Lewis numbers of approximately unity
and an expansion ratio of e ≈ 6.7. All assessed flame configurations are anchored by
a separation induced low-speed region. Considering confined flames, all setups can
— based on their cross-sectional view — be idealized as backward-facing step com-
bustors, see Fig. A.1. A length Ri defines the half-width of the inlet or feed duct and a
length Ra the half-width of the combustion chamber. For axisymmetric (conical) con-
figurations, these two lengths define the respective radii. For Wedge configurations,
additionally, a central rod of radius Rr is added. A stream of fresh premixed reac-
tants enters the domain at a bulk flow velocity u1, temperature Ti n = 300 K, ambient
pressure and equivalence ratio φ.

Depending on the temperature boundary as well as the initial condition, either a
Wedge or a Bunsen flame establishes. In order to reduce complexity, all walls are
assumed to be adiabatic. There are two exceptions: (1) the walls of the feed duct,
which are set to a temperature of TF = 300 K in order to avoid a flushing back of the
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Figure A.1: Cross-sectional view of the considered idealized combustor geometry.

flame and (2) the back-plate of the combustion chamber (rod face plate for wedge
flames), which is set to a temperature TBP that allows to established different anchor-
ing conditions. Details on the numerical setup as well as the identification process are
specified in the following.

A.2 CFD/SI Method

CFD simulations of laminar flames of different configurations are performed and
their respective linear response behavior in terms of their FTF is identified. So-called
finite impulse response (FIR) models are trained from broad band input/output CFD
data, which are shown to capture the dynamics very well. The applied procedure
combines means of system identification (SI) with CFD simulation and is thus known
in the literature as the CFD/SI approach, see e. g. Polifke [221]. It will be explained
in the following.

Sec. A.2.1 introduces the numerical setup and settings used for all CFD simulations.
Details on the identification process relying on transient numerical data can be found
in Sec. A.2.2. Finally, Sec. A.2.3 provides an overview on methods that allow to
assess the goodness of the identified models. Representative example cases are used
in order to illustrate the outlined proceeding.

A.2.1 Incompressible Numerical Simulations

Numerical simulations employing well established means of computational fluid dy-
namics (CFD) of all flame configurations, are performed. In each case, a perfectly
premixed laminar methane-air flame of fixed equivalence ratio is stabilized at a sud-
den expansion of a duct, which connects the feed duct to the combustion chamber.
All setups are chosen to be as simple as possible, in order to serve as a clean refer-
ence. Further, the mechanisms governing the flame response to acoustic perturbations
should be similar for all cases, i. e. negligible interaction with vortical structures shed
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from the burner mouth for the Wedge configuration [1, 104, 201]. Here, this shed-
ding process is suppressed by adding a straight lateral wall constraining the flame,
see Fig. 6.1b.

All setups can be considered to be acoustically compact up to the respective cut-off
frequency of the FTF. Since such flames hardly respond to acoustic pressure fluctu-
ations, their acoustic response can numerically be evaluated by imposing (upstream)
velocity perturbations applying an incompressible (low-Mach number) method, see
e. g. [222]. In doing so, possible thermoacoustic instabilities are avoided and bound-
ary conditions are simplified. The open source software OpenFOAM [223] is em-
ployed. Chemical reactions are respected by adopting the reduced chemical kinetic
2-step mechanism (2S-CM2) proposed by Bibrzycki et al. [224]. Schmidt numbers
for all six considered species are set according to Duchaine et al. [146]. This solver
setup has been used successfully in previous studies for transient and steady state sim-
ulations [1, 2, 172, 225]. A 2D uniform structured rectangular grid with a cell density
of 40cells/mm2 and a slight increase of the axial cell width towards the boundaries
after the flame region is adopted for all cases.

Steady state solutions for three exemplary setups are shown in Fig. 6.1. The color
denotes absolute velocity and the region of maximum heat release is plotted in green.
Additionally, the analytically predicted mean flame front (see Sec. 2.2.1) is included
( ). For all setups, the steady state solutions show an accelerating flow with a
separating shear layer. Flow velocities of the burned gases are highest for the Wedge
and lowest for the Bunsen case. Also, the shear layer is least pronounced for the
Wedge case compared to the two other setups.

A.2.2 System Identification

In the following it is explained how a flame response model is fitted to transient
CFD input/output data such that it represents the underlying linear dynamics. For
this purpose, a black-box approach is chosen. The resulting model is then used to
evaluate and analyze the respective impulse and frequency responses of the simulated
flames. All means of system identification described below are explicated in much
more detail in the books by Ljung [226], Keesman [227] or Tangirala [228].

In a first step, a model structure has to be chosen that adequately represents the sys-
tem of interest. Hence, the investigated flame system needs to be characterized. In
doing so, it can be constituted that the structure and parameters of all considered
combustors usually do not vary over time and are, therefore, time invariant. Further-
more, since the desired flame model is used in a network model in order to assess
linear stability, it has to be inherently linear. Conceptually, the input and output of
a the flame response is constructed such that its transfer behavior reflects causal-

ity, i. e. that all outputs only depend on past and present inputs. The idea of a flame
transfer function (FTF) representing a flame in an acoustic network model usually as-
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Figure A.2: Assumed model structure of the flame system: An input signal u is
mapped to an output y by the system F . The measured output ym is
additionally influenced by white noise e.

sumes bounded-input bounded-output (BIBO) stability of the flame element, see e. g.
Subramanian et al. [229]. Finally, the response of an impulsively perturbed flame is
assumed to decay quickly, which is equivalent to the assumption of a high damping
rate. For these reasons, a causal and BIBO stable linear time invariant (LTI) model
structure is required.

As depicted in Fig. A.2, such systems – in the following denoted as F – are assumed
to transform an input signal u to an output signal y . The measured signal ym that
constitutes the available output time series data is then the superposition of the de-
terministic system output y and an erratic signal e, which is in a first approximation
assumed to exhibit white noise characteristics. The ratio of the power of the signals
y and e is called the signal-to-noise ratio (SNR) and determines the available infor-
mation in the output data: A signal ym,1 whose SNR is higher than that of a signal
ym,2 contains more information1 for a given signal length, which allows for identifi-
cation of less ambiguous input-output models [230]. It should be mentioned that the
detailed characteristics of the erratic signal e (white or colored noise) is not impor-
tant for the flame setups considered here due to the obtained very high SNR for all
conducted simulations, which is a consequence of the prevailing laminar conditions.
That means, e can be neglected and, to good approximation, a relation ym ≈ y holds.

All system properties of F described above are met by a so-called finite impulse
response (FIR) model. It is discrete in time and relates the in- and output signals by
convolution of the input u with an impulse response h

y[n] = h0u[n]+h1u[n −1]+·· ·+hN u[n −N ]

=
N∑

i=0

hi u[n − i ] . (A.1)

Here, y[n] denotes the input signal at a time step n ∈N and hi the i -th impulse re-
sponse coefficient. Such a model consists of N +1 finite valued coefficients hi and is,
consequently, inherently BIBO stable since

∑∞
k=0

|hk | <∞ holds [231]. Causality is
reflected by the fact that hi ≡ 0,∀i < 0, which explains why the sum in Eq. (A.1) only
starts at i = 0. FIR models are a subset of LTI models, since their output is computed
by the convolution of an impulse response with an input signal, which is a linear op-
eration. The frequency response associated with a given FIR model is computed from

1White noise, as one limiting case, does not contain any information
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Figure A.3: Illustration of the CFD/SI approach applied to identify a FIR model us-
ing broad band input/output CFD data. The “∗”-operator denotes tem-
poral convolution.

the z-transform of the impulse response

F (ω) =
N∑

i=0

hi exp(−iωi∆t ) (A.2)

with the imaginary unit i (not to confuse with the summation index i ), the sampling
time of the FIR coefficients ∆t and the real valued angular frequency ω.

One known general disadvantage of FIR models is the high number of coefficients,
which have to be identified, particularly for weakly damped systems having a pole
close to the unit circle [232]. However, as stated above, all flames show sufficient
damping such that the available time series data allows for good estimates of all
required FIR coefficients. FIR models are fairly robust against noise e, more specif-
ically, Gaussian white noise of zero mean [232]. For systems with a rather low SNR
that are exposed to non Gaussian white noise or for systems that are less damped,
other model structures, such as ARX or Box-Jenkins type models, have to be applied,
see for example [233, 234]. All in all, FIR models fulfill all demanded requirements
of an appropriate model structure and are, thus, an appropriate choice for the type of
systems encountered in this thesis.

Determining the FIR coefficients hi based on available data is referred to as the actual
process of system identification. The associated process is illustrated in Fig. A.3:
In a first step, transient CFD simulations are performed, where the inlet velocity is
excited around its mean, i. e. u1(t ) = u1 +u′

1(t ). The amplitude of these fluctuations
is set to 2−5% of the mean velocity in order to not trigger non-linear effects but,
at the same time, to achieve an adequate SNR. The input signal u ( ) used for
identification is the normalized velocity fluctuation at the domain inlet u′

1(t )/u1 and

the output signal ym the normalized heat release rate fluctuation Q̇ ′/Q̇ integrated
over the whole domain ( ). Feeding the FIR model with the same input data as
the CFD simulation results in a model output ỹ ( ) according to Eq. (A.1). Now,
those values of the FIR coefficients hi are searched, which minimize the quadratic
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error between the CFD output time series ym ( ) and the model output ỹ ( ),
formally written as

θ̂ = argmin
θ

1

M

M∑

j=1

(
ym

[
j
]
− ỹ

[
j |θ

])2
, (A.3)

where θ̂ = hi denotes the solution vector containing all FIR coefficients. Hence, com-
putation of the optimal parameters θ̂ requires the solution of a linear least squares
problem and, therefore, it has to be ensured that the number of sampling instants
M is significantly higher than the number of FIR coefficients N +1. For such linear
models, the predicted model output can be written in terms of a multiplication of an
input matrix Φ and the solution vector ỹ =Φθ̂. Using this definition, the linear least
squares problem formulated above leads to a set of linear equations whose solution
is the desired optimal parameter vector θ̂:

Φ
T
Φθ̂ =Φ

T ym . (A.4)

Essentially, four free parameters exist that determine the quality of the resulting fit:
(1) The type of input signal u, (2) the length of the input/output time series, (3) the
number of FIR coefficients N +1 and (4) the sampling interval of the IR ∆t . These
points are discussed one after another in the following.

In order to ensure identifiability, the system input needs to excite all frequencies of
interest. Otherwise, the information available in the input/output data is not sufficient
for identifying a response model. For example, if the input time series data resem-
bles a sine of only one distinct frequency, no information about the response to other
frequencies is available in the input/output data set [230]. In order to obtain infor-
mation on as many frequencies as possible at reasonable computational costs, it has
been shown to be advantageous to use a broad band input signal that excites several
frequencies at once [221, 235, 236]. The lower bound of the frequency content of
such a signal is limited by the length of the signal and the upper bound by the sam-
pling time (Nyquist frequency). Practically, the upper bound has to be set well beyond
the expected cut-off frequency of the FTF. Decreasing the lower bound is expensive,
since longer time series data requires longer simulations. One way of improving the
low-frequency accuracy at ω→ 0 is to use a step input signal: The new steady state
that develops after the input velocity has been rapidly increased (step forcing) defines
the zero frequency response at very high accuracy (neglecting noise). In the case of
perfectly premixed flames its value is unity [157]. All models shown in this thesis are
identified by use of a broad band input signal as proposed by Föller and Polifke [235]
and correctly capture this low frequency behavior.

Determining the optimal number of FIR coefficients N + 1 and sampling time ∆t

for a given setup, is an iterative and rather intuitive process. The goal is to use as
few coefficients as possible by, at the same time, retaining a good representation
of the system behavior. This avoids overfitting and reduces the required time series
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length, since only a minimal number of parameters need to be estimated. A heuristic
approach to finding these two parameters starts with a small number of coefficients
and a sampling time that is related to a characteristic time of the flame, which could
be the time of restoration τr . A reasonable initial guess would be to use N +1 = 15

coefficients that are separated by a sampling time of ∆t = 2τr /N , since the expected
IR is known to have a length of the order of τr . For this specific choice of parameters,
the goodness of the resulting fit has to be evaluated and based on that, N and ∆t

have to be adjusted. This has to be repeated until a satisfactory model is retained.
Although, in principle, it might be possible to develop an algorithm that manages
this iterative process, two points should be kept in mind: (1) Similar flames require
similar parameters and (2) finding an adequate model is a rather fast process since
estimation of the fit parameters is computationally relatively cheap and only two free
parameters are available. Hence, due to efficiency, the author decided to rather rely
on his intuition than to develop an algorithm.

Efficiently adjusting the two FIR parameters requires some basic understanding of the
physics as well as the identification process. Tools that allow to judge the goodness
of a specific fit are discussed in the following.

A.2.3 Goodness of the Identified Model

While – as shown above – the process of determining the optimal set of FIR parame-
ters N and ∆t is a rather intuitive and iterative process, assessment of the goodness of
the results follows well-defined processes. Several established methods exist, which
are introduced in the following. Representative examples from the flame response
data presented in this chapter are provided for the sake of illustration.

Generally, a good fit captures all of the deterministic part of ym that depends (here:
linearly) on the input u and filters out the noise e. Given a specific data set, it shall
provide the corresponding parameter vector θ̂ that represents most likely the real sys-
tem behavior. At the same time, overfitting the given data set, i. e. capturing features
by the deterministic model that rely on probabilistic processes, shall be avoided 1. In
this thesis, three points are checked:

1. Check of plausibility

2. Quantification of the uncertainties of the parameter vector θ̂

3. Quantification of how well the deterministic linear process is captured by the
fitted model

4. Demonstration that the model does not suffer from overfitting

1In a low-noise environment overfitting is not a severe problem, nevertheless, it should be kept in
mind.
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Figure A.4: Visualization of two representative FIR models, one for a Slit flame
A.4a and one for a Bunsen flame A.4b configuration (φ= 0.8, Re= 650,
TBP = 700, see Fig. 6.1). Shown are the identified FIR coefficient ( ) that
are connected by lines ( ) and the associated 3σ confidence intervals
(gray area, framed by ).

All of them are discussed in the following.

Plausibility

First of all, prior knowledge of the expected response model should be exploited.
That is, the resulting transfer function can, e. g., be compared to available low-order
models in terms of cut-off frequency, low frequency limit (should be unity), excess
of gain or phase decay. Furthermore, characteristics of the IR, such as the time delay
or the overall shape (decay to zero, rather smooth), can be checked.

Fig. A.4 shows the FIR coefficients resulting from identification of a Slit and a Bun-
sen flame configuration. Both are smooth functions of time t∗ and their character-
istics compare well to reduced order model predictions (see Chap. 6). Evaluation of
the associated frequency response would result in a low-frequency limit of unity (not
shown) and the IR decays to zero after a time that is of the order of τr . Hence, the
result shown can be considered to plausibly represent the system dynamics.

Uncertainty Quantification

Confidence intervals of the parameter vector θ̂ can be constructed that allow to quan-
tify the uncertainties of the fit with respect to the length and the SNR of the underly-
ing time series data. The shorter the available time series and the higher the SNR, the
less information is contained in a given data set, which will result in a more uncertain
identification of the parameter vector θ̂. While experimental data suffers essentially
from rather low SNRs, the critical issue for CFD is the length of the available time
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series data, since transient CFD simulations usually require a significant amount of
computational resources. For all performed simulations of laminar flames, the SNR is
very high and time series of a length of about 10τr have been proven to be sufficient.

In order to quantify uncertainties resulting from noisy finite length time series data,
the covariance matrix of the identified model parameters is employed:

Cov
(
θ̂
)
=




σ2
00 σ2

01 · · · σ2
0N

σ2
10 σ2

11

...
...

. . .

σ2
N 0 · · · σ2

N N




(A.5)

where σ2
i j
= E

[(
θ̂i −θi

)(
θ̂ j −θ j

)]
denotes the covariance of two parameters θ̂i and

θ̂ j with the estimated parameter vector θ̂ and the expected (or “true”) value of that
parameter vector θ. Bias errors (i. e. limM→∞ E

[
θ̂
]
6= θ) shall be excluded here. The

diagonal elements of the matrix contain the variances of each parameter and the off-
diagonal elements the covariances of each pair of parameters. Assuming the covari-
ance matrix is known and the estimated parameters follow a normal distribution,
confidence intervals can be constructed:

E
[
θ̂i

]
∈

[
θ̂i −3σi i , θ̂i +3σi i

]
(with 99.73% confidence) . (A.6)

Here a 3σ confidence interval is assumed, which states that, based on the provided
data, there is only a 0.27% chance that θ̂i is outside of that interval.

Usually, the covariance matrix is a priori unknown and, hence, needs to be estimated
from the data provided, as well. It can be shown that it is given by

ˆCov
(
θ̂
)
= λ̂0

[
Φ

T
Φ

]−1
(A.7)

where λ̂0 denotes the (estimated) variance of the residuals ǫ= ym − ỹ
[

j |θ̂
]

and Φ
T
Φ

the matrix of the linear regressor defined in Eq. (A.4) [237]. The former needs to be
estimated from the data by

λ̂0 =
1

M − (N +1)

M∑

j=1

(
ym

[
j
]
− ỹ

[
j |θ̂

])2
. (A.8)

Knowing that the SNR of a signal is computed by the quotient of the variance of
the signal over the variance of the noise, it now becomes clear that the confidence
intervals scale with the SNR.

Fig. A.4 depicts the 3σ confidence intervals resulting from identification of the shown
FIR coefficients. They are very small in both cases and, thus, the shown coefficients
θ̂i = hi very likely represent the actual underlying dynamics of the system. All other
setups discussed in this thesis exhibit similarly small confidence intervals. Therefore,
visualizations of confidence intervals are omitted for all IR and FR plots. In order to
further clarify the presentation by leaving out unnecessary information, throughout
the thesis, impulse responses are shown as line plots ( ) and leave out a visualiza-
tion of the FIR coefficients ( ).
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Residual Analysis

A set of very useful tests on how well the resulting model is able to capture the de-
terministic part in the output signal ym considers the residuals ǫ= ym −Φθ̂, i. e. the
differences between model predictions ỹ =Φθ̂ and the actually measured output time
series data ym . Assuming that the model structure shown in Fig. A.2 describes reality
and the length of the available time series data approaches infinity, the respectively
estimated model parameters would asymptotically converge to those of the “real sys-
tem” — assuming zero bias and a sufficient number of FIR coefficients. The model
obtained would then filter out all of the deterministic content y from the measured
signal ym and, thus, the resulting residual time series data would be perfectly erratic.
Based on this fact, it is possible to assess the quality of an estimated model and how
reasonable the chosen model structure is. The ability of a model to capture the deter-
ministic part of the input/output relation can be evaluated by statistically analyzing
the resulting residual time series data ǫ: the more erratic and less correlated to the
input signal it is, the better the estimated model performs. Consequently, the model
requiring the smallest number of parameters while fulfilling the aforementioned two
criteria should be chosen. This avoids overfitting, i. e. capturing erratic contents of
the output signal by the deterministic model, and ensures that the underlying system
dynamics is properly grasped.

Two correlations need to be evaluated: (1) The (sample) cross-correlation of the resid-
uals with the input signal

γ̂ue [n] =

M∑
i=1

ǫ[i ]u[i +n]

√
M∑

i=1
ǫ[i ]ǫ[i ]

√
M∑

i=1
u[i ]u[i ]

(A.9)

and (2) the (sample) auto-correlation of the residuals

γ̂ee [n] =

M∑
i=1

ǫ[i ]ǫ[i +n]

M∑
i=1

ǫ[i ]ǫ[i ]

(A.10)

where the lag τ= n∆t is an integer multiple of the sampling time ∆t . Both are again
estimates of the “true” correlations based on the provided data, assuming zero mean
of ǫ and u.

The auto-correlation of ǫ is defined as the covariance of the time series ǫ with an
instance of itself shifted by a lag τ and normalized by its variance. Plotting γ̂ee (τ)

over the time lag τ provides an estimates of inherent correlations of the residuals
ǫ. Assuming ǫ was purely erratic (white noise), this plot would be zero everywhere
but for lag zero, where it is unity. Of course, since γ̂ee (τ) is only an estimate of the
residual auto-correlation, its values at different lags are uncertain. In order to test a
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Figure A.5: Auto- and cross-correlation data of residuals γ̂ee and γ̂ue , respectively,
resulting from the identified models shown in Fig. A.4, plotted over a
non-dimensionalized lag τ∗ = τ/τr . 3σ confidence regions are added
(gray area, framed by ).

signal for whiteness, intervals can be provided within which γ̂ee is not significant, i. e.
although it might be different from zero it can to good degree be assumed to be zero.
For sufficiently high M , this interval can be computed as ±3/

p
M , which corresponds

to a 99.73% region of confidence.

Similarly, the cross-correlation is defined as the covariance of u and ǫ at different
lags τ normalized by the standard deviations of u and ǫ at zero lag. Hence, any value
of |γ̂ee | > 3/

p
M would suggest a linear relation of u and ǫ at the corresponding lag

τ (with a confidence of 99.73%).

Fig. A.5 shows the auto- and cross-correlations of the residuals that correspond to
the identified models depicted in Fig. A.4 plotted over a non-dimensionalized lag
τ∗ = τ/τr . All cross-correlation coefficients are within the above defined region of
confidence and, hence, are not significant. Therefore, no significant hint of linear
deterministic input/output relations not captured by the models can be found in the
data. It can be concluded, that (1) the assumed structure of the system (see Fig. A.2)
captures the real behavior very well and that (2) the identified FIR model represents
the transfer behavior to a very good degree.

A similar conclusion can be draw from the auto-correlations. However, the plot of
the Slit flames shows some significant coefficients at lags |τ∗| < 1. Since the cross-
correlation shows no hint of input/output relations not captured by the model, they
have to be a consequence of the chosen model structure. The damped oscillatory be-
havior of the Slit flame IR shown in Fig. A.4a requiring 44 FIR coefficients indicates
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an autoregressive behavior of the system, i. e. the present output of the system does
not only depend on past and present inputs but also on past outputs. Using a system
structure that allows for such autoregressive interactions, such as an ARX model,
could reduce the required number of model parameters. At the same time, also the
erratic part e would be subjected to the autoregressive system behavior and, hence,
its contribution to ym would be colored instead of white. It has been shown by So-
vardi [238] (Sec. 4.2.5) that for such situations, application of an ARX model would
indeed lead to a reduction of the residual auto-correlation. It was checked by the au-
thor of this thesis that this also holds for the Slit flame case discussed here. However,
although the auto-correlation of ǫ exhibits strong hints that the underlying signal is
not white, its relevance for the time series data is very minor due to the fact that the
amplitude of ǫ is several orders of magnitude smaller than that of ym . This will be
illustrated in the following section where the model output is compared with the CFD
data output using a test data set. For that reason, it can be concluded that the chosen
FIR model performs very well for both types of flames.

Comparison with Test Data Set

It is a common practice in regression analysis to split the available time series data
into a training and a test data set. The first is used in order to identify the model
parameters θ̂, the second to evaluate the predictive quality of the model on a statisti-
cally independent data set. Usually the distance between the model predictions ( ;
Fig. A.3) and the CFD output ( ; Fig. A.3) is measured in terms of a norm, also
known as the fit value:

FIT = 100




1−

√
M∑

i=1

(
ym[i ]− ỹ[i ]

)2

√
M∑

i=1

(
ym[i ]− ym,mean

)2




% (A.11)

where ỹ denotes the model output, ym the CFD time series and ym,mean its mean
value [239, 240].

Computing the model output for a test data set of the two identified models shown
in Fig. A.4 ( ) results in the time series shown in Fig. A.6. Very good agreement
with the CFD data output ym ( ) is found and results in fit values of 93.87% and
95.8% for the slit and the Bunsen type configuration, respectively. Since the test data
set is independent from the trainings data set, it can be concluded that both models
are not overfitted to the trainings data.
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Figure A.6: Model ( ) and CFD ( ) output time series for the identified models
shown in Fig. A.4 for a test data set, plotted over non-dimensionalized
time t∗ = τ/τr . Fit values are 93.87% and 95.8% for the slit and the Bun-
sen type configuration, respectively.

A.3 Time vs. Frequency Domain Based Response Analysis

Besides CFD/SI methods relying on broad band data, there are also other methods to
estimate the IR of a flame configuration. A simple direct approach relies on an impul-
sively excited flame using a input signal u resembling a Dirac impulse. For example,
a Gaussian impulse of small variance and sufficiently low amplitude (to not trigger
non-linear effects) can be used as input signal. The normalized associated response of
the global heat release then provides an estimate of the IR. Such a procedure has one
significant advantage: It allows for a direct and rather simple analysis of the transient
CFD field data and, thus, the physical processes that determine the system behav-
ior. Without use of further computationally expensive statistical evaluations, such a
post-processing of the data is not possible for broad band excitation.

The reason behind this property is that an impulsive forcing constitutes the optimal
input signal for analyzing causalities. Analyzing transient CFD data subjected to har-
monic forcing, for example, might lead to identification of coherent (flow) structures
that have a strong impact on the respective flame response. However, it is not easy to
reveal causal relations, since in a fully established oscillatory state, as it is inherently
assumed in frequency domain representations, one cannot distinguish between cause
and effect. This can be improved by using broad band forcing, however, as stated
above, elaborate and computational expensive computations are required in order to
reveal spatially resolved causal relations. Application of an impulsive forcing allows
to identify causalities by just naively inspecting the transient CFD field data: any
change in a certain snapshot has to be directly related to information present in the
preceding snapshots.

This advantage is payed for by, compared to broad band based methods, less robust
response predictions that are caused by the reduced amount of data and, hence, in-
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Figure A.7: Comparison of IR predictions resulting from impulsive forcing ( )
as well as from the CFD/SI approach ( ) for three representative se-
tups (one for each flame geometry). All simulations were performed at
a maximum perturbation velocity amplitude of 2%u1. For the slit case
additionally a simulation at 10% amplitude was performed ( ).

formation: the total length of usable time series data equals exactly one times the
IR length. Furthermore, confidence intervals as well as quality measures quantifying
the resulting model (residual analysis) cannot be specified without further consider-
ations. Hence, in order to get both good estimates of the (linear) response behavior
and the possibility to analyze physical causalities, one has to jointly analyze broad
band and impulsively forced systems. It should be noted that the evaluation of the
latter is usually only informative for systems exhibiting very low noise levels, such
as laminar flames. Processing LES simulations of turbulent flames, the turbulent fluc-
tuations will contaminate the output time series data of a step or impulse forcing and
cannot be correlated out (using a single simulation).

Applying such a joint analysis, it has to be ensured that the impulsively forced sys-
tems exhibits the same linear response as the model identified from broad band data.
If that is the case, non-linearities or noise related effects most probably can be ruled
out to contaminate the CFD data. Fig. A.7 compares IR predictions resulting from
an impulsive forcing ( ) to the ones from the CFD/SI approach ( ) for three
representative setups. All setups were forced by a narrow Gaussian impulse with an
amplitude of 2% of the bulk flow velocity u1, see Appendix A.4 for more details.
For the Slit setup additionally a forcing with 10% forcing amplitude is shown ( ),
which still exhibits the same transfer behavior as the two other cases.

Overall, very good agreement can be found for all three configurations. Only the
Bunsen case in Fig. A.7b shows a minor discrepancy at t∗ ≈ 1.3 but also here the
overall IR is captured very well. This result allows to safely analyze impulsively
forced CFD data and draw conclusion regarding the physics that governs the linear
response. This fact is exploited in Parts II and III by analyzing the transient behavior
of flame normal displacements.
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Figure A.8: IR predictions resulting from impulsive forcing of a Slit flame shown
for four amplitudes: 10% ( ), 20% ( ), 40% ( ) and 60% ( )
with respect to u1.

Fig. A.8 analyses the amplitude dependence of a Slit flame in more detail. It shows
that the linear behavior is to a good degree preserved up to amplitudes of 20%. Only
at 40% amplitude non-linear effects significantly kick in and effect the response. As
shown in Chap. 6, Slit flames exhibited the strongest response of all three investigated
flames. Therefore, it can be expected that Bunsen and Wedge flames should stay in
the linear regime for even higher forcing amplitudes.

A.4 Computation of Flame Normal Displacements
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Figure A.9: (a): Signal of normalized amplitude used for impulsive forcings con-
ducted in this thesis. (b): Flame shape computed from an CH4-isoline of
a CFD data snapshot including its normals.

The transient behavior of flame normal displacements of impulsively excited flames
is discussed in several sections of this thesis, see for example Fig. 5.1 (middle). De-
tails on the computation and post-processing of theses results are provided in the
following. Background information on the motivation for such a kind of analysis is
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provided in Sec. A.3.

The forcing signal employed for all impulsively forced simulations is illustrated in
Fig. A.9a. It exhibits a normalized amplitude, which has yet to be scaled by the level
of forcing, e. g. by ǫ= 2%u1. Its shape is described by

f (t ) = exp

(
− (t − t0)2

σ

)
, (A.12)

where t0 denotes the time at which the impulse forcing has to be applied and
σ= 5e −7 the width of the Gaussian-like distribution. The temporal integral defines
a reference displacement ξ̂=

∫∞
0 ǫ f (t )dt .

Having performed the impulsively forced transient numerical simulations, snapshots
at several instants in time are taken and CH4-isolines extracted. The respective CH4

values are chosen such that the resulting isoline adequately captures the spatial distri-
bution of the heat release. The first snapshot corresponds to a time before the forcing
is applied (t < t0) and is defined to represent the unperturbed steady state solution.
For this snapshot, flame normals are evaluated. An exemplary result is sketched in
Fig. A.9b. Having done this, flame normal deviations from the steady state are eval-
uated for all subsequent snapshots. Finally, the resulting flame normal displacements
from the steady state flame are normalized by the aforementioned reference displace-
ment ξ̂ in order to ensure comparability with other simulations or with LOM predic-
tions.
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Temperature

Some of the shown CFD/SI results shown in this work were conducted at different
temperatures of the wall above which the flame is anchored, denoted as TBP. The
literature provides evidence that this temperature has a crucial impact on the associ-
ated acoustic flame response [121, 148, 149, 241, 242]. Therefore, its consequences
for the FTF of the investigated flame configurations are assessed in the following.
In order to specify wall temperatures, a non-dimensional quantity T ∗

BP
= TBP/Tad is

introduced relating the temperature of a wall TBP to the adiabatic flame temperature
Tad. Adiabatic walls hence have a non-dimensional temperature of unity.

Figs. B.1 and B.2 show steady state and acoustic response data of three Slit and Bun-
sen flames, respectively, anchored above a back-plate exhibiting different temperature
boundary conditions: (1) adiabatic walls, (2) TBP = 700 K and (3) TBP = 373 K. These
boundaries were chosen as limiting cases of the range of possible (uncooled) wall
temperatures. The study of Kornilov et al. [209] specified the prevailing wall tem-
perature of a Slit flame setup to 373−423 K. This serves as an estimate of the lower
threshold of possible temperatures and, hence, TBP = 373 K defines a first sampling
point. According to Mejia et al. [149], the temperature of their cylindrical bluff body
could reach temperatures up to 700 K. Since around temperatures of 750−800 K the
backplate would start to radiate light in the visible wavelengths (“incandescence”),
which is not reported from experimental studies, a temperature of TBP = 700 K was
chosen to define the upper limit of temperatures of interest. The adiabatic chase was
added primarily because of academic interests. Such configurations define the limit-
ing cases where the flame is anchored directly at the trailing edge.

All shown frequency and impulse response data are non-dimensionalized by use of
the characteristic time of restoration τr . It is determined here by demanding that all
IRs have to coincide at t∗ = 1. This exploits the fact that all IRs are qualitatively
very similar and that the main difference can be related to a scaling of the frequency
and time scales of the FR and IR representations, respectively. In order to effectively
visualize the behavior of the characteristic time of restoration, relative changes of the
time of restoration

∆τ∗r =
τr −τr,ref

τr,ref
(B.1)

are plotted in Figs. B.1 and B.2. Hereby, the characteristic time of the configurations
exhibiting the minimal τr serves as the reference time τr,ref.
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Figure B.1: Effect of temperature of the back-plate TBP on on the FTF (left) and the
mean flow field (right) for Slit flame configurations at Re= 650, φ= 0.8

and Cr = 0.4. Close-up views of the steady state flame anchoring are
provided for each setup (middle and lower row, right half).

Figure B.2: Effect of temperature of the back-plate TBP on on the FTF (left) and
the mean flow field (right) for Bunsen flame configurations at Re= 650,
φ= 0.8 and Cr = 0.4. Close-up views of the steady state flame anchoring
are provided for each setup (middle and lower row, right half).

From the data shown it becomes clear that variations of the wall temperature mainly
lead to variations of τr , while the qualitative behavior of the IR/FR representations
are essentially maintained. This directly translates to a significant change of the FTF
phase of the three setups, when plotted over dimensional frequency. It is hence con-
cluded that variations of the wall temperature right at the flame anchoring predomi-
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nantly lead to significant changes in the phase of the corresponding FTF and only to
rather weak changes of the gain. While all analyzed data provides evidence that τr

increases with rising TBP, the gain does not behave as regularly and can show both
higher and lower amplitudes. On the detailed mechanisms that are responsible for
this behavior can only be speculated. From the data provided, it seems that cooled
walls lead to a low speed region upstream of the flame base, which might lead to an
increase of τr . All in all, comparing FR/IR representations of different TBP in non-
dimensionalized form, it can in a first approximation be assumed that their overall
shape remain unchanged and predominantly the respective τr varies.
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C Flame Transfer Functions

In the following, analytical FTF expressions for two different models are provided,
which were both introduced in Chap. 6.

C.1 Convective Incompressible FTFs with Gaussian Kernel

By solving Eq. (1.32) (assuming lM = 0) using the velocity perturbations specified
by Eqs. (6.19) and (6.20), we get for the flame front displacement of Slit and Bunsen
flames

ξΛ(xF
1 , t ) = sin(α)

τr

τr −τc

{

(
1+ fg

τc
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) [
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+ fg τc

[
1−

xF
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L f

]
g

(
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1

L f
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− fg τc g
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1

L f
τr

)}
, (C.1)

and for the one for Wedge flames

ξV (xF
1 , t ) = sin(α)

τr

τr −τc

{
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1− fg
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xF
1

L f
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)}
. (C.2)

Here, G(y) is defined as the antiderivative of g (y): G(y) =
∫

g (y)dy . Similarly, a
quantity Γ(y) =

∫
G(y)dy is defined. Tab. C.1 summarizes all those expressions for a

Dirac and a Gaussian kernel function. For a Dirac kernel function, the first antideriva-
tive becomes the Heaviside step function G(y) = θ(y) and the second one the ramp
function Γ(y) = yθ(y).
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Function Dirac Kernel Gaussian Kernel

g (y) δ(y) 1p
2πσ2

exp

(
− y2

2σ2

)

G(y) θ(y) 1
2 erf

(
yp
2σ2

)

Γ(y) y θ(y)
y
2 erf

(
yp
2σ2

)
+ σp

2π
exp

(
− y2

2σ2

)

Table C.1: Overview of the two Dirac and the Gaussian kernel functions and their
antiderivatives.

These displacements are used to evaluate the integral flame surface area fluctuation
A′, according to the formulas provided in Sec. 6.2. From that, the impulse response
is computed as

h(t ) = A′

A
u1 , (C.3)

which yields for slit flames

hslit =
1
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{(
1+ fg

τc
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) [
G (t −τc )−G (t −τr )
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− fg τc g (t −τr )

}
. (C.4)

For Bunsen flames we retrieve

hcon,Λ = 2
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(C.5)
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C.2 Flame Base Velocity Forcing

Name Time Domain Frequency Domain

Delayed unit impulse δ(t −τ) exp(−τ i ω)

Delayed unit step θ(t −τ) 1
i ω exp(−τ i ω)

Delayed ramp (t −τ)θ(t −τ) 1
(i ω)2 exp(−τ i ω)

Table C.2: Fourier transform overview.

and for Wedge flames
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. (C.6)

For a Dirac velocity kernel g (y) = δ(y) all impulse responses are transformed to fre-
quency domain by use of Tab. C.2. For a Gaussian kernel function, the frequency
response is computed by numerically z-transforming the respective IR function.

C.2 Flame Base Velocity Forcing

For a flame base bounded velocity perturbation, as it is given by Eq. (6.13), evaluation
of the expression hδ(t ) = A′/Au1 for an impulse forcing, yields an impulse response
for each of the three considered configurations. We retrieve for Slit flames

hδ,slit(t ) = δ (t −τr ) , (C.7)

for Bunsen flames

hδ,con,Λ(t ) = 1

τr
[Θ(t )−Θ(t −τr )] (C.8)

and

hδ,con,V (t ) = 1

r̃

[
δ (t −τr )−

1− r̃

τr
Θ(t −τr )

]
(C.9)
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for Wedge flames. The corresponding frequency responses Fδ are computed by use
of Tab. C.2 provided in Appendix C.1.
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