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1 Introduction

In view of the absence of direct signals of new physics (NP) from the LHC, indirect searches

for it in the last years gained in importance. This is in particular the case of flavour physics

in B meson and K meson systems where several deviations from Standard Model (SM)

expectations have been identified during the last years. While the so-called B physics

anomalies played since 2013 the leading role in the indirect search for NP, also the direct

CP-violation in K → ππ decays, represented by the ratio ε′/ε, begins to play again a very

important role in the tests of the Standard Model (SM) and more recently in the tests of

its possible extensions. For recent reviews, see [1, 2]. In fact there are strong hints for

sizable new physics contributions to ε′/ε from Dual QCD approach (DQCD) [3, 4] that are

supported to some extent by RBC-UKQCD lattice collaboration [5, 6]. Recent SM analyses

at the NLO level can be found in [7, 8] and a NNLO analysis is expected to appear soon [9].

Most importantly, an improved result on ε′/ε from RBC-UKQCD lattice collaboration is

expected this summer.

This emerging ε′/ε anomaly motivated several authors to look for various extensions of

the SM which could bring the theory to agree with data as reviewed in [10]. In most of the
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models the rescue comes from the modification of the Wilson coefficient of the dominant

electroweak LR penguin operator Q8, but also solutions through a modified contribution

of the dominant QCD LR penguin operator Q6 could be considered [11].

Here we want to address the issue of the role of chromomagnetic penguin operators in

ε′/ε that attracted attention of several groups already two decades ago [12–14] and more

recently in [15]. But the poor knowledge of their K → ππ matrix elements prevented until

recently a firm statement about their relevance. This changed through the first numerical

lattice QCD value [16] of the related K − π matrix element which appears to be rather

different from the one found in the past in the chiral quark model [12].

The main goal of the present paper is to study these matrix elements in the frame-

work of Dual QCD approach [3, 4, 17–21]. While not as precise as ultimate lattice QCD

calculations, this successful approximation to low-energy QCD offered over many years an

insight in the lattice results and often, like was the case of the ∆I = 1/2 rule [19] and

the parameter B̂K [20], provided results almost three decades before this was possible with

Lattice QCD. The agreement between results from DQCD and Lattice QCD is remarkable,

in particular considering the simplicity of the former analytical approach with respect to

the very sophisticated and computationally demanding numerical lattice QCD one. The

most recent examples of this agreement are an explanation within DQCD of the pattern of

values obtained by lattice QCD for the SM parameters B
(1/2)
6 and B

(3/2)
8 entering ε′/ε [3, 4]

and for the NP parameters Bi entering εK [22].

Our paper is organized as follows. The first two sections could be considered as a

pedagogical introduction into DQCD which, we hope, will make our discussion on chromo-

magnetic penguin operators clearer. In section 2 we recall few lessons gained from DQCD

on the ∆I = 1/2 rule and in section 3 analogous lessons on QCD penguins. In section 4 we

present general formulae in DQCD from which hadronic matrix elements of chromomag-

netic penguins for K → ππ and K − π but also K −K and π − π can be calculated. This

we do in section 5 and compare our results with those obtained in the Chiral Quark Model

and in lattice QCD. We summarize our results in section 6. Phenomenological applications

of our results are left for the future.

2 A brief lesson from the ∆I = 1/2 rule

In the one-loop approximation, the first known impact of an asymptotically free theory for

strong interactions on the K → ππ weak decays, namely an octet enhancement [23, 24], can

easily be generalized to all electroweak processes in the large N limit, N being the number

of colours. At the quark-gluon level, the effective operators run in the following way

(JL)ab(JL)cd(µSD) = (JL)ab(JL)cd(µ)−
[(

3
αs
4π

)
ln

(
µ2

SD

µ2

)]
(JL)ad(JL)cb(µ) (2.1)

with

(JL)ab = q̄bLγ
µqaL, (a, b = u, d, s) (2.2)

being any left-handed current with qR,L = (1 ± γ5)/2. In (2.1) the µSD and µ scales are

assumed to be in the range of, say, 1 GeV < µ ≤ µSD < 10µ in order to safely apply
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perturbative QCD on the one hand, and elude standard leading-log resummation beyond

the scope of our paper on the other hand. Further non-perturbative evolution below one

GeV, down to the factorization scale denoted here by 0, is thus required to consistently

estimate hadronic decay amplitudes. Such a one-loop evolution, involving the low-lying

nonet of mesons only, turns out to already provide a rather consistent pattern [19]. At the

hadronic level, we have indeed

(JL)ab(JL)cd(M) = (JL)ab(JL)cd(0)− 4

(
M

4πf

)2

(JL)ad(JL)cb(0) (2.3)

with

(JL)ab(0) = i
f2

8

[
∂UU † − U∂U †

]ab
, U = exp

(
i
√

2
π

f

)
(2.4)

the left-handed pseudo-Goldstone currents in the chiral limit and f ≈ fπ = 130.2 MeV.

So, with our conventions (2.2) and (2.4) for the quark and meson currents, the pseudo-

Goldstone field and the associated left-handed electroweak currents transform as

U → gL U g
†
R, JL → gL JL g

†
L (2.5)

under the U(3)L × U(3)R acting separately on qL and qR, respectively. This seemingly

innocuous remark will turn out to be quite useful when fixing the chiral structure and

relative signs of hadronic operators.

From the generic mixing pattern (2.3), one immediately concludes that the naive vac-

uum saturation approximation (VSA), namely

(JL)ab(JL)cd(µ) = (JL)ab(JL)cd(0) +
1

N
(JL)ad(JL)cb(0), (VSA) (2.6)

does not make sense. It is a scale-independent (stepwise) evolution down to zero momentum

that completely misrepresents next-to-leading effects in a 1/N expansion based on the

following dual counting:
αs
4π
∝ 1

N
∝ p2

(4πf)2
. (2.7)

As a matter of fact, strong interaction impact on electroweak processes do not suddenly

die out around one GeV and the wrong-sign Fierz term in (2.6) is only a part of the

full (continuous) one-loop meson evolution (2.3). Thus, as already emphasized long time

ago [17, 25], the VSA gives theoretically consistent results only in the strict large N limit.

Such is clearly the case for the ∆S = 2 Fierz self-conjugate operator JdsL J
ds
L , as reviewed

in [21]. The predicted 1/N flip of sign between (2.6) and (2.3), discussed at length in [26]

for the ∆S = 1 Fierz conjugate operators JusL JduL and JdsL J
uu
L , has been recently confirmed

by Lattice QCD numerical simulations [27].

Our analytical Dual QCD approach provides a rather simple picture of the ∆I = 1/2

rule far beyond its initial pulse (2.1). The inclusion of the next-to-leading corrections

to hadronic matrix elements can be viewed as the evolution of the operators from zero

momentum to M. This fast meson evolution in (2.3) is continued above M as a slower

quark-gluon evolution in (2.1), the latter being improved by the usual QCD renormalization
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group equations applied on µ to reach the far-off Fermi scale (µSD ≈ MW � 10 GeV) in

terms of Wilson coefficients. The link between M and µ scales around one GeV is therefore

subject to theoretical uncertainties. It has been demonstrated in [21] that the inclusion

of heavier mesons helps turning the quadratic evolution in (2.3) into the logarithmic one

in (2.1). However, in our paper, we are not concerned with this question since we only

focus on mixing patterns to identify penguin-like operators deliberately overlooked in (2.1)

and (2.3) until now for the sake of the forthcoming developments.

3 Strong penguin operators

3.1 Short-distance mixing pattern

The existence of so-called penguin operators [28] in the short-distance (SD) evolution of

the ∆S = 1 weak operators below the charm mass scale can also be generalized in the large

N limit [18]. As a consequence, we have the following substitution for the Fierz operator

emerging from JabL J
cd
L in (2.1)

JadL JcbL ⇒ JadL JcbL +
1

9
Qad,cbP , (3.1)

where

Qad,cbP = δad
(
JcqL J

qb
L − 2Dcq

L D
qb
R

)
+ (ad↔ cb) , (3.2)

with a summation over repeated flavour indices q understood hereafter, and

Dab
R,L = q̄bL,Rq

a
R,L (3.3)

any chiral quark density operator.

For (ad, cb) = (uu, ds), the result in (3.1) can be directly obtained from the relevant

entries in the anomalous dimension matrix describing the mixing of the current-current

operator Q2 with the QCD penguin operators Q4,6 and the mixing of Q2 with the second

current-current operator Q1 in [29]

γ
(0)
24

γ
(0)
21

=
γ

(0)
26

γ
(0)
21

=
1

9
. (3.4)

3.2 Long-distance mixing pattern

We find it quite remarkable that the existence of these penguin operators could have been

anticipated from a simple long-distance (LD) evolution, well before the advent of SU(N)-

QCD. Indeed, working again with the low-lying pseudoscalars, we also generate additional

nonet operators in the one-loop meson evolution down to the factorization scale. As demon-

strated in [30] such an evolution amounts to the following substitution for the Fierz operator

emerging from JabL J
cd
L in (2.3):

JadL JcbL ⇒ JadL JcbL −
1

2

[
δad(JLJL)cb + (ad↔ cb)

]
. (3.5)
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Moreover, the addition of the light vector mesons in the loop transmutes partially the

quadratic dependence on M into a logarithmic one as expected from a full dual picture of

QCD, namely with an infinite number of mesons, but does not modify this mixing pattern

in the chiral limit [21]. The reason why such is the case is rather simple to understand in

our dual QCD approach: the operators JabL Tr(JL) have no LD evolution. Indeed, for these

operators, non-factorizable meson exchanges between the two currents are forbidden since

the trace of the left-handed current (2.4) is just proportional to the derivative of a single

flavour-singlet state, i.e., Tr(JL) = −
√

3/2∂η0.

3.3 Matching SD and LD patterns around one GeV

The inferred pattern for the LD meson evolution most easily derived with the help of a

background field method developed in [30] allows thus a consistent matching of the meson

and quark-gluon evolutions if

Qad,cbP = −9

2

[
δad(JLJL)cb + (ad↔ cb)

]
, (3.6)

as obtained by equating (3.1) and (3.5). Having (3.6) and (3.2) at our disposal, we can even

disentangle the density-density component of QP in (3.2) from its current-current one, i.e.,

Dcq
L D

qb
R ≈ +

11

4
JcqL J

qb
L (3.7)

around the optimal matching scale to be consistently estimated here below. This disentan-

glement is obviously impossible to achieve by means of a pure Chiral Perturbation Theory

in which any short-distance information from perturbative QCD is fully encoded in low

energy parameters to be determined through physical observables. The same comment will

evidently apply to what follows.

4 Chromomagnetic penguin operators in and beyond the Standard

Model

Contrary to the current-current or density-density operators considered until now, the

two-quark chromomagnetic operators cannot be factorized and a parametrization of their

hadronic matrix elements with respect to a naive VSA is thus impossible. Yet, they can

be identified in the large N limit through their mixing with the former ones. So, for

that purpose we proceed with the same methodology as in the anatomy of the penguin

operators (3.2).

4.1 Short-distance mixing pattern

The mass-dependent dimension-six chromomagnetic operators defined by

Qad,cbG ≡ gs
16π2

{
δad
[
mc(q̄

b
Lσ

µνGµνq
c
R) +mb(q̄

b
Rσ

µνGµνq
c
L)
]

+ (ad↔ cb)
}
, (4.1)

with Gµν = taGaµν , are induced from the current-currents ones by considering one-loop

Feynman diagrams calculated with massless quarks except on external lines where a single
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R−L chirality flip is required [29, 31].1 In the large N limit, the substitution (3.1) for the

Fierz operator in (2.1) becomes then

JadL JcbL ⇒ JadL JcbL +
1

9
Qad,cbP +

11

54
N Qad,cbG . (4.2)

For (ad, cb) = (uu, ds), this can again be obtained by looking up the anomalous dimension

entry γ
(0)
28 in [29, 31] and comparing it to γ

(0)
21 . To this end, the non-leading in N term

should be dropped.

4.2 Long-distance mixing pattern

To guarantee the same chirality flip at the meson level, we have to introduce a linear de-

pendence on the light quark mass matrix m = diag.(mu,md,ms) for the corresponding

hadronic currents. In the large N limit, such dependence turns out to be uniquely de-

fined [19]. The transformation laws (2.5) supplemented with m → gLmg
†
R determine the

chiral structure of these improved currents:

JabL = i
f2

8

[
(∂U)U † − U(∂U †) +

r

Λ2
χ

[
(∂U)m† −m(∂U †)

]]ab
, (4.3)

with Λχ and r, two scales to be extracted from the SU(3) splitting among the weak decay

constants and the (running) quark masses. In particular, for the charged kaon and pion

we have

fK = f

(
1 +

m2
K

Λ2
χ

)
, fπ = f

(
1 +

m2
π

Λ2
χ

)
(4.4)

and

m2
K =

r

2
(ms +md), m2

π =
r

2
(mu +md) (4.5)

implying

Λχ ≈ 1.09 GeV, r(1 GeV) ≈ 3.75 GeV (4.6)

from fK/fπ = (1.193± 0.003) and (ms +md)(1 GeV) = 132 MeV, respectively [32]. Com-

pared to large N Chiral Perturbation Theory, there is one-to-one correspondence with the

low energy parameters introduced in [33, 34]

Λ2
χ =

f2

8L5
, r = 2B0 . (4.7)

Let us underline that the transformation laws (2.5) together with the inputs (4.6) fix

once for all the (positive) sign of the chiral correction to the left-handed current in (4.3)

as well as the (negative) sign of the chiral correction to the left-handed and right-handed

densities:

Dab
L(R) = −f

2

8
r

[
U (†) − 1

Λ2
χ

∂2U (†)
]ab

. (4.8)

1These diagrams are most familiar from the studies of b→ s gluon transition, but here of course mc and

mb stand for appropriate light quark masses only.
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Consequently, at the meson level the density-density component of the strong penguin

operators (3.2) reads

Dcq
L D

qb
R = +

r2

2Λ2
χ

JcqL J
qb
L +O

(
1

Λ4
χ

)
(4.9)

and allows us to estimate now the optimal matching scale µM between the SD and LD

evolutions on the basis of (3.7). The relation

r(µM ) =

√
11

2
Λχ ≈ 2.55 GeV, (4.10)

comforts us in the idea that the Dual QCD approach is quite consistent around 0.7 GeV.

Using once more the background field method for the meson evolution [30], at O(1/Λ2
χ)

we also get an additional operator such that the substitution (3.5) for the Fierz operator

in (2.3) becomes

JadL JcbL ⇒ JadL JcbL −
1

2
[∆ad,cb + ∆cb,ad] (4.11)

with

∆ad,cb = δad
[
(JLJL) +

r

Λ2
χ

(mU †JLJL + JLJLUm
†)

]cb
. (4.12)

An induced tadpole

T ad,cbG ∝ [(mU † + Um†)adδcb + (ad↔ cb)] (4.13)

has been ignored in (4.11) since the 〈ππ|TG|K0〉 matrix element for the on-shell K0 → ππ

decay amplitude is exactly cancelled by a pole contribution involving the strong K0→ππK̄0

vertex followed by the K̄0 annihilation in the vacuum through the non-zero 〈K̄0|TG|0〉 weak

matrix element [35]. Were we considering unphysical (off-shell) hadronic matrix elements,

such would not be allowed, in principle.

4.3 Matching SD and LD patterns around one GeV

Here, there is no ambiguity in identifying the single dimension-six chromomagnetic op-

erator QG at low momenta. By comparing the last term in (4.2) with N = 3 to (4.11),

we obtain

Qad,cbG = − 9

11

r

Λ2
χ

[
δad(mU †JLJL + JLJLUm

†)cb + (ad↔ cb)
]

(4.14)

which appears to be similar to QP in (3.6), both in the chiral structure and sign.

Mass-independent dimension-five chromomagnetic operators

Qad,cbg (±) ≡ gs
16π2

{
δad
[
(q̄bLσ

µνGµνq
c
R)± (q̄bRσ

µνGµνq
c
L)
]

+ (ad↔ cb)
}

(4.15)

transforming like (U † ± U) under chiral symmetry may arise beyond the Standard Model,

and in particular in SUSY extensions [13, 14]. From (4.14), we directly infer that in the

large N limit such an SU(3) chiral operator would hadronize in the following way:

Qad,cbg (±) = − 9

11

r

Λ2
χ

[
δad(U †JLJL ± JLJLU)cb + (ad↔ cb)

]
(4.16)

around the matching scale µM . This is consistent with the fact that for (ad, cb) = (uu, ds)

the entry γ
(0)
28 in [29, 31] will not be modified by replacing QG by Qg so that the numerical

factor 9/11 will remain unchanged.
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5 The case of ∆S = 1 matrix elements

5.1 Dual QCD

Driven by the ∆S = 1 operator JusL JduL , only the first term proportional to the δuu Wick

contraction in (4.14) survives and

Quu,dsG = − 9

176

(
f4
πr

Λ2
χ

)[
mU †∂U∂U † + ∂U∂U †Um†

]ds
, (5.1)

meaning that the unwanted internal up quark mass contribution is automatically removed

as it should. As we will prove in section 5.3, such is not the case for ∆S = 0 operators

for which a second Wick contraction is possible, a crucial feature for our interpretation of

the SU(3) chiral limit on lattice QCD. The hadronic matrix elements of this dimension-six

chromomagnetic operator for the parity-violating K0 → ππ processes (ππ = π+π−, π0π0):

〈ππ|Quu,dsG |K0〉 = −i
[

9

22

]
m2
π

Λ2
χ

fπ(m2
K −m2

π) (5.2)

are suppressed by almost two orders of magnitude and of opposite sign with respect to the

Standard Model current-current one:

〈π+π−|JusL JduL |K0〉 = 〈ππ|(JLJL)ds|K0〉 = +i
fπ
4

(m2
K −m2

π) . (5.3)

With its opposite sign Wilson coefficient compared to the JLJL one, as already sensed

from (3.6) and (4.2), the chromomagnetic operator QG cannot help much for the ∆I = 1/2

rule and ε′/ε.

Similarly, for the dimension-five chromomagnetic operators beyond the Standard Model

Quu,dsg (±) = − 9

176

(
f4
πr

Λ2
χ

)[
U †∂U∂U † ± ∂U∂U †U

]ds
, (5.4)

we obtain the following matrix elements

〈ππ|Quu,dsg (−)|K0〉 = +i

[
9

22

]
m2
π

Λ2
χ

fπr(µ) (5.5)

〈π+|Quu,dsg (+)|K+〉 = −
[

9

22

]
pK · pπ

Λ2
χ

f2
πr(µ) (5.6)

with Wilson coefficients C±g that depend on the UV completion of the theory.

Recalling the parametrization of K0 → π+π− and K0 → π0π0 in terms of isospin

amplitudes A0,2 that enter the evaluation of ε′/ε and the ∆I = 1/2 rule

A(K0 → π+π−) =

[
A0e

iδ0 +

√
1

2
A2e

iδ2

]
, (5.7)

A(K0 → π0π0) =
[
A0e

iδ0 −
√

2A2e
iδ2
]
, (5.8)

– 8 –
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we find the chromomagnetic penguin contributions to A0,2 as follows

(∆A0)CMO = C−g (µ)

[
9

11

]
m2
π

Λ2
χ

fπ
m2
K

ms(µ) +md(µ)
, A2 = 0 , (DQCD). (5.9)

Consequently

(∆A0)CMO = 4.1C−g (µ)

[
100 MeV

ms(µ) +md(µ)

]
10−3 GeV2, (DQCD). (5.10)

Note that dimension of C−g (µ) is GeV−1.

These first direct calculations to date of chromomagnetic contributions to physical de-

cay amplitudes in the context of a successful approximation to low-energy QCD constitute

the main results of our paper. In what follows we will compare our results with the ones

obtained in Chiral Quark Model long time ago [12] and in lattice QCD quite recently [16],

where in both cases K − π transitions have been considered.

5.2 Chiral Quark Model

As a matter of fact, the m2
π kinematical suppression displayed in (5.2) for the hadronic

matrix element of the dimension-six chromomagnetic operator has been first highlighted

within a specific Chiral Quark Model (CQM) [12]. In this paper, the so-called magnetic

dipole operator (Q11) is twice our chromomagnetic one (QG) defined in (4.1). Consequently,

after bosonization and normalization with respect to the parity-even off-shell (K+ − π+)

hadronic matrix element (with the tadpole contribution simply neglected), the authors

of [12] eventually obtain the following expression

Quu,dsG = +
11

32

[
f4
πr

(4πfπ)2

] [
m†U∂U †∂U + ∂U †∂UU †m

]ds
(CQM) (5.11)

if, on the basis of (4.8), we consistently substitute our r(µ) for their (q̄q) quark condensate.

At first sight, (5.11) and (5.1) seem to disagree both in the chiral structure and sign.

However, in (5.11), the pseudo-Goldstone fied U transforms into gRUg
†
L under the chiral

U(3)L×U(3)R symmetry, i.e. as our U † according to (2.5), to match with the definition (4.1)

for the chromomagnetic operator at the quark-gluon level. The way U (or U †) initially

transforms under the chiral symmetry is of course just a matter of convention. It is only

once parity-violating transitions such as K+(π+) → µ+νµ or K → ππ are also considered

that this freedom is definitely lost. Indeed, U(π) turns into U †(π) = U(−π) under parity.

As a consequence the sign of all the parity-odd or, equivalently, of all the parity-even

hadronic matrix elements derived from (5.1) has to be flipped before any comparison with

the ones derived on the basis of (5.11) can be made. For completeness, we should also

mention that in [15] the factor (11/32) in (5.11) has been corrected to (1/4). However,

when comparing with lattice results below we do not introduce this change in order to

agree with the definition of the forthcoming parameter BCMO used in [16].

– 9 –
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5.3 Lattice QCD

Obviously inspired by the CQM pathfinder result (5.11), the authors of [16] choose to

normalize the ∆S = 1 dimension-five chromomagnetic operator (CMO) within the same

chiral convention:

Quu,dsg (±)≡+
11

256π2

[
f2
πm

2
K

ms+md

]
BCMO

[
U∂U †∂U±∂U †∂UU †

]ds
(Lattice QCD) , (5.12)

where we have used (4.5) to express r in terms of mK and ms,d as done in [16]. These

authors also focus first on the parity-even 〈π+|Quu,dsg (+)|K+〉 hadronic matrix element

(with the tadpole contribution quite carefully substracted in the renormalized operator on a

lattice) to obtain a value smaller than the CQM one for the corresponding B-parameter, i.e.,

BKπ
CMO = 0.273(69) (Lattice QCD) (5.13)

at the physical pion and kaon point. In Dual QCD, the hadronic matrix elements given

in (5.5) and (5.6) translate, after the conventional flip of sign for the second one, into a

single B-parameter comparable in size to the Lattice QCD one:

BCMO =

(
18

121

)
3

N

[
4πfπ
Λχ

]2

≈ 0.33 (Dual QCD). (5.14)

Here, the colour factor N present in (4.2) is re-introduced to exhibit the agreement with

the 1/N expansion rules (2.7).

On the one hand, a direct confrontation of (5.13) and (5.14) suggests relatively small

chiral corrections despite the unexpected m2
π kinematical suppression observed in (5.5) for

the physical K0 → ππ transition. On the other hand, new lattice results on unphysical

K −K and π − π hadronic matrix elements in the SU(3) chiral limit give [16]

B
(∆S=1)
CMO = 0.076 (23) , (Lattice QCD). (5.15)

According to the authors of [16], their numerical results in (5.13) and (5.15) imply a

strong enhancement factor equal to 4 possibly via O[(mK −mπ)2/(4πfπ)2] corrections in

contradiction to our expectations from the comparison of (5.13) and (5.14).

Here we would like to present our own interpretation of the numerical studies in [16] as

seen from the point of view of SU(3) chiral symmetry. To this end it should be emphasized

that the result in (5.15) has been obtained by considering the matrix elements

〈K|ÔCM |K〉 ≡ [〈K|ÔCM |π〉]md=ms , 〈π|ÔCM |π〉 ≡ [〈K|ÔCM |π〉]ms=md=mud
(5.16)

with unphysical K(π) in the initial (final) state respectively since ÔCM is still the ∆S = 1

renormalized gss̄σ
µνGµνd operator on a lattice.

However, interpreting the ETM’s results (5.13) and (5.15) in terms of a single param-

eter BCMO defined in (5.12) requires to consider the physical K and π (pseudo-Goldstone)

states inserted by definition in the U field in (2.4) and, consequently, ∆S = 0 rather than

∆S = 1 operators. In such an SU(3) chiral extrapolation the second term in (4.16) which

– 10 –
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is, as stressed at the beginning of section 5, absent in ∆S = 1 transitions contributes a

factor of two already at the operator level to ∆S = 0 transitions. Indeed this factor comes

from the fact that contrary to what happens for the (K+ − π+) transition, the external

up quark mass also contributes in the strange or down quark one-loop Feynman diagrams

responsible for the (K+ −K+) or (π+ − π+) one, namely

[s− (uu)− d] , for (∆S = +1), (5.17)

and

[s− (uu)− s] + [u− (ss)−u] or [d− (uu)− d] + [u− (dd)−u] for (∆S = 0) . (5.18)

In other words, only the δad Wick contraction survives in (4.14) and consequently

in (4.16) for the Quu,dsg operator while both δad and δcb Wick contractions contribute for

the SU(3)-related Quu,ssg and Quu,ddg operators.

But this is not the whole story. When calculating loop induced CMO hadronic matrix

elements, one also has to take into account that the primary Hamiltonian is hermitian. In

our DQCD approach, we have

JusL JduL + JsuL JudL for (∆S = ±1) (5.19)

and

JusL JsuL + JsuL JusL , or JudL JduL + JduL JudL , for (∆S = 0) . (5.20)

Therefore, in the SU(3) chiral limit another factor of two distinguishes the emerging ∆S = 0

CMO quantum transitions from the ∆S = +1 (or ∆S = −1) one for physical K+ and π+

states.

In DQCD, the unphysical md = ms limit would imply mπ+ = mK+ and Quu,dsg =

Quu,ssg = Quu,ddg . On the basis of the Wick’s theorem and unitarity in S-matrix expansion,

we have thus argued that the result in (5.15) should also be multiplied by 4 and turned

into

BCMO = 0.304 (92) (5.21)

before any quantitative comparison with the rather consistent results displayed in (5.13)

and (5.14) is made. An explicit lattice QCD calculation of the K −K and π − π matrix

elements with physical initial and final states would of course be useful to confirm our

claim.

In view of the results (5.13), (5.14) and (5.21) it is justified to expect only small chiral

corrections to DQCD results for the contribution of chromomagnetic penguin operator to

the K → ππ isospin amplitude in (5.10). This is an important finding as the presence of

very large chiral corrections to the only existing on-shell calculation of K → ππ hadronic

matrix element presented here would have diminished its importance in the phenomeno-

logical studies of ε′/ε and ∆I = 1/2 rule.

All these results can be consistently derived from the full SU(3) chiral operator

Qad,cbg (±) =
11

256π2

[
f2
πm

2
K

ms+md

]
BCMO

[
(U∂U †∂U±∂U †∂UU †)cbδad+(ad↔ cb)

]
(5.22)

which generalizes (5.12) and is valid for both ∆S = ±1 and ∆S = 0 transitions involving

physical K and π states.
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6 Summary and conclusion

We have considered the successful Dual QCD approach developed in the 1980s to estimate

the impact of chromomagnetic operators (CMO) acting either in the Standard Model or

beyond. We would like to emphasize that this is the first direct calculation of the physical

K → ππ hadronic matrix elements of these operators to date as until now only matrix

elements for the transition K − π have been calculated.

Our main results are as follows

• In the Standard Model, the ∆S = 1 hadronic matrix element of the dimension-six

operator QG proportional to (ms − md)[s̄σ
µνGµνγ

5d] is found to be kinematically

suppressed by almost two orders of magnitude and of opposite sign with respect to

the current-current one at the origin of the ∆I = 1/2 rule:

〈ππ|QG|K0〉
〈ππ|JLJL|K0〉

= −18

11

(
fK
fπ
− 1

)
m2
π

m2
K −m2

π

≈ −0.03 . (6.1)

• Beyond the Standard Model, possible dimension-five Qg(±) operators proportional

to [s̄σµνGµν(1, γ5)d] are normalized with respect to a previous Chiral Quark Model

calculation such that

BCMO =

(
288π2

121

)(
fK
fπ
− 1

)
f2
π

m2
K −m2

π

≈ 0.33 . (6.2)

As a consequence of our interpretation of recent lattice QCD results on K − π,

K − K, π − π transitions in terms of the full SU(3) chiral operator (5.22), we do

not expect sizeable chiral corrections for the B-parameter (6.2) associated with the

on-shell K0 → ππ transition. Phenomenological analyses with BCMO ≈ 1–4 are

therefore definitely ruled out.

In summary the main result of our paper, to be used in phenomenological analyses of

the ∆I = 1/2 rule and of the ratio ε′/ε, is the chromomagnetic penguin contribution to

the isospin amplitude A0 which reads

(∆A0)CMO ≈ 4C−g (2 GeV) 10−3 GeV2 . (6.3)

In the past, our Dual QCD approach has proved to be a powerful analytical tool to

either anticipate lattice QCD results on Standard Model hadronic matrix elements (e.g.,

with BK = 3/4 in [25]) or shed new light on them (e.g., with B
(1/2)
6 < B

(3/2)
8 < 1 in [3]).

Recently also an insight in the values of NP Bi parameters entering εK and obtained by

lattice QCD could be gained in this manner [22].

In this paper, we predict BCMO ≈ 1/3 for the on-shell K0 → ππ transitions induced by

chromomagnetic operators that are likely to arise in physics beyond the Standard Model.

While the recent calculation of off-shell K−π matrix elements of chromomagnetic penguin

operators (CMO) in [16] should be considered as an important progress, we are looking

forward to a direct calculation of the on-shell K → ππ hadronic matrix elements of these

operators by the QCD lattice community or another analytical method that provides con-

sistent matching between LD and SD QCD dynamics.
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