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Abstract

Highly e�ective solutions for computer vision and image processing applications require mod-

els that characterize well the important aspects of the involved image data. Two paradigms

for creating image models have emerged in the literature. One relies on expert knowledge

that captures analytical properties of the involved data in handcrafted feature models and re-

quires no annotated data. Data-driven modeling, on the other hand, leverages large amounts

of annotated training data to infer descriptive features automatically in fully learned repre-

sentations. In this thesis, methods are explored that combine advantageous aspects of both

paradigms, with the goal of reducing training complexity in comparison to fully learned and

improving accuracy over handcrafted models. To that end, analytic knowledge of the im-

age formation in speci�c applications is formalized into optimality criteria for unsupervised

learning tasks, which parameterize low-level representation models from unlabeled training

data. This is achieved by extending the well-established sparsity principle with knowledge

from several classical image processing problems.

First, the problem of reconstructing partial and corrupted photometric images is considered.

Under the assumption that such image data is formed under variations in brightness and

contrast, a new co-sparse analysis model and a suitable numerical method are described

which allow learning �lters that extract local image structure invariantly of changes in illu-

mination. The proposed algorithm exploits the geometric properties of the learning problem

by minimizing the associated cost function with a conjugate gradient method on a product

of spheres manifold, to �nd numerical solutions e�ciently. Evaluated in a practical task of

image reconstruction from partial information, the proposed approach is shown to improve

results over existing methods in terms of quality as well as size of the required training set.

In the second part, the study of the reconstruction problem is extended to multi-modal im-

ages. There, image data of an environment is acquired simultaneously by di�erent imaging

techniques and the task is to reconstruct a high-quality version of one image by leveraging

the others. To this end, a new model is introduced, that captures the essential structure

of photometric image data in the optical range and its interdependency with near-infrared

and depth camera data. Further, it is assumed that an environment induces dependent

patterns in di�erent image modalities recorded by a bimodal camera setup. A pair of two

�lter sets is learned, such that aligned and co-occurring patterns are modeled through cou-

pled representations. The derived learning function augments the co-sparsity objective to
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select representations that are simultaneously sparse and whose patterns are correlated. To

derive optimal �lter sets from a small number of training samples, the unimodal numerical

algorithm is extended for this multi-modal setup. Subsequently, the parameterized model is

employed in a novel image reconstruction algorithm, where a high-quality photometric im-

age is used to reconstruct an aligned depth map from few noisy measurements and achieves

state-of-the-art results. Furthermore, image registration is studied as another application for

this image model. Utilizing that the introduced bimodal co-sparse analysis model captures

interdependent local structures of aligned images, a new image registration algorithm is

introduced, which estimates the parameters of a rigid transformation between unaligned im-

ages from di�erent modalities. The task is cast as an optimization problem over Lie groups,

and its data term relies on the features extracted by the learned bimodal analysis operators.

Its results compare favorably with prior methods on di�erent pairs of image modalities.

In the third part, unsupervised texture segmentation is investigated. There, an image needs

to be partitioned into non-overlapping sections based on di�erently textured image areas.

Features that capture well the textural patterns of a certain class of images are crucial

for the performance of texture segmentation methods. The manual selection of features

is a tedious task, while automatically �nding such requires a large set of training images

and ground truth segmentation labels. Here, a framework is proposed to determine such

features when no labeled training data is available. The cost function for the optimization

procedure augments the co-sparsity objective of the analysis operator learning to match the

commonly used piecewise constant Mumford-Shah segmentation model. This means that

the representations are learned such that they provide an approximately piecewise constant

feature image with a sparse jump set. The corresponding numerical procedure can learn

these representations from a small set of images, from a single image, or even from image

patches. Finally, a segmentation algorithm is presented that leverages the learned features

to produce label maps of texture segments of an image. The results achieved by this model

and its segmentation algorithm on well-established benchmark datasets outperform almost

all prior methods.
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Chapter 1

Introduction

Humans are visual creatures that often rely primarily on their visual perception in decision-

making and visual stimuli are known to sometimes even alter the judgment of input from

other senses [27, 116]. It is therefore unsurprising that technical solutions that mimic the

human visual system have a long history. It extends from early analog photography over

digital imaging to computer vision and arti�cial image understanding. Devices that record

still and motion pictures have long been a commodity and have helped to analyze problems,

communicate visually with peers, observe the environment or to simply memorize impor-

tant life events. The trend of digitizing more and more visual information has grown at

an unprecedented rate and the amount of available digital image data has become truly

overwhelming. Making sense of this data in automated and scalable ways has the potential

to help developing a better understanding of nature and to unlock numerous new appli-

cations across all industries. The cognitive processes that allow humans to make sense of

information contained in visual data involve steps to map the physical sensation in visual

receptors to previously established models of the world. Technical systems are designed

to mimic this behavior and transform raw input data to representations that capture the

relevant information for decision making and action. Along this transition, the information

is transformed through multiple steps, where robust representations of low-level visual ob-

jects are required initially to enable subsequent processing steps on more complex objects

of higher-level abstraction [157].

This thesis concerns itself with several low-level processing steps of an arti�cial visual cogni-

tion system. First, it addresses the need to obtain a robust representation of image structure
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Chapter 1 Introduction

Figure 1.1: Sample bimodal image reconstruction result. Data from a bimodal image sensor that captures
optical light and scene depth is enhanced by modeling representation of bimodal image structure on the
super-pixel level. Bottom left: Microsoft Kinect sensor [41]. Top left: scene captured by the color camera.
Middle: 3D rendering of the original corrupted sensor data. Right: data reconstructed by the proposed
method from Chapter 4.

on pixel and super-pixel level. Methods are developed, which allow a technical system to

establish robust low-level visual representations with the goal of reconstructing erroneous

and incomplete sensor data caused by deteriorating e�ects in the digital image acquisition

process. This is crucial for any subsequent higher-level cognitive processing.

Second, the goal of improving low-level visual representations is further pursued by com-

bining data from multi-modal image sensors. Multi-modality of the data refers to disparate

physical properties of the environment that are captured by di�erent imaging sensor types

simultaneously. To that end, an approach for multi-modal representations is proposed which

allows to integrate several image sources bene�cially, such that errors produced in one sensor

can be mitigated by the information captured by another. Figure 1.1 shows an example re-

sult of bimodal image reconstruction achieved with the method proposed in Chapter 4: scene

depth image data is enhanced with additional scene color images captured by sensor tech-

nologies with vastly di�erent noise and resolution characteristics. Furthermore, it is shown

that these multi-modal representations also help with spatially misaligned measurements

from these sensors.

Third, a technique to establish representations of di�erent image textures is described that

allows to partition the image plane into segments of di�erent visual objects, known as image

segmentation. This is useful for the purpose of highlighting areas of interest to a human

2



Figure 1.2: Sample unsupervised texture segmentation result. A histology image is automatically divided
into partitions representing di�erent tissue segments. Stained tissue image captured by a microscope from
the BACH Dataset [13] (left), excerpt of the boundary between two tissue segments (middle) and automatic
segmentation achieved by the proposed texture segmentation method (right) in Chapter 5.

observer or to focus subsequent processing steps on a subset of pixels in the input image.

Figure 1.2 depicts one sample application, where automatic segmentation of histology images

may assist medical diagnostics.

Image reconstruction, alignment and segmentation as inverse

problems

Inverse problems refer to problems whose formulation require the result of another problem,

often called the forward or direct problem that is typically oriented along a cause-e�ect

sequence or a loss of information [88, 18]. Three direct problems frequently occur when

dealing with digital image processing and are covered in this thesis. The digital image

acquisition as the transformation of physical properties through the measurement device

and the digitization process forms the �rst direct problem. It describes erroneous processing

steps that introduce a loss of information which is desired to be undone in a corresponding

reconstruction, constituting the inverse problem. Sensor recordings from multiple imaging

devices that map measurements of the same points in the three-dimensional environment

to di�erent points in the two-dimensional data, describe the second forward problem. Here,

the information of correspondence in the image planes is lost. Spatial alignment of these

measurements forms the respective inverse problem. The third forward problem is described

3



Chapter 1 Introduction

by the imaging of three-dimensional objects in a two-dimensional plane. Given that these are

non-transparent, pixels that relate to measurements of these objects form non-overlapping

contiguous segments. Segmentation of the image to recover object boundaries establishes

the third inverse problem.

Formalizing the forward and inverse problems, an example from the case of image acquisition

and reconstruction is considered as follows. Let x be some signal from a class X ⊆ Rn that

passes a linear measurement device with system matrix A ∈ Rm×n. The direct problem of

measuring the signal x under additive noise n then reads as

y = Ax+ n. (1.1)

Unfortunately it is in general not trivial to recover the original signal x from the measure-

ments y. First, this is due to the stochasticity of noise. Even if A is the identity and the

measurements y obtained from signal x ∈ Rn under additive Gaussian noise are considered,

i.e.

y = x+ n, n ∼ N (0, σ2I), (1.2)

correctly determining the original signal from the measurement is impossible despite having

a full statistical description of the noise. Second, even in the absence of noise but with a

system matrix A that is di�erent from the identity, the inverse problem may be ill-posed.

This means that it doesn't satisfy uniqueness, existence and continuity [18]. For linear

operators A ∈ Rm×n, the problem becomes under- or over-determined depending on the

rank of A, leading to no or in�nite solutions respectively. In order to solve an ill-posed

inverse problem, one typically resorts to �nding an approximate solution instead that needs

to satisfy additional constraints [18]. To that end, �rst a function is de�ned

f : Rm → R+ (1.3)

that measures the deviation of an approximate solution from the observed data. Respectively,

a solution to the inverse problem formally needs to satisfy

f(y,Ax) ≤ ε, (1.4)

with ε representing the maximum allowed deviation of the estimate from the observed data.
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Since such a solution is not unique in general, one may end up with a result that does

not resemble the original signal. To improve on this issue, prior information about the

original signal and hence the expected solution is required to constrain the solution space

in a meaningful way. Naturally, these constraints should restrict the solution space to those

parts, where its elements fall into the expected signal class X and the characteristics that

de�ne these parts are often referred to as a signal model of X, here in short MX. In addition

to establishing a model, a measure of model error

gM : Rn → R+ (1.5)

is required, which indicates if an approximate x? ∈ Rn shares its characterization with the

model of X. The model error can then be used to constrain the inverse problem Eq. (1.4).

The objective of �nding a solution to the inverse of the direct problem in Eq. (1.1) then

amounts to �nding a candidate that satis�es model �tness while at the same time being

consistent with observations, or more formally

x? ∈ argmin gM(x) subject to f(y,Ax) ≤ ε. (1.6)

From Eq. (1.6) it is clear that the success of �nding a high quality solution depends on

a good model M of X. It helps to di�erentiate whether any estimate that is close to its

observation resembles an element of X and is therefore a viable solution. As a consequence,

a major part of this thesis is dedicated to developing new data models for image data to

solve the inverse problems of reconstruction, alignment and segmentation for speci�c classes

of images.

1.1 Image models and representations

A useful model M captures the key features of a signal class X ⊆ Rn in a structure that

allows to determine whether any given image is a member of that class or not [34]. As intro-

duced in the previous section, the measure gM is required to quantify the model �tness. The

accuracy and e�ciency of determining this �tness are not only in�uenced by the complexity

of features, but also by the representation that is chosen for the image data. In this context,
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an array of scalars for gray-scale or of vectors for multi-channel images is the most common

representation of the spatially discretized version of the continuous two-dimensional function

of light intensity. Each cell of the array refers to a pixel in the image and the value represents

illumination intensity in the respective (color) channel. The pixel-array of a single-channel

image is referred to as x = (xi) with pixel index i. Figure 1.3 illustrates several example

images from di�erent classes that arise in popular applications. Each of the images has n

pixels and is therefore an element of Rn.

Figure 1.3: Digital image data acquired in di�erent applications. Left: Color (top) and LiDaR image
(bottom) from [169]. Middle: Gray-scale grass texture image from the Brodatz texture database. Right:
Optical (top) and near infrared (bottom) photometric image from [25].

One can easily make the observation that the images that belong to a certain application do

not occupy the entire space of all possible images but are rather scarce in their surrounding

signal space Rn. As a result, a common interpretation of data models is their description

of signal space partitions that only contain the interesting image signals with respect to a

certain application. Although the pixel intensity tensor closely resembles the structure of a

discretized physical image, it is not the most e�cient representation from an information-

theoretic point of view [34]. In other words, it is di�cult to �nd a simple description of the

interesting signal space partitions in this pixel intensity domain. To address this, methods

exist that transform the image data from this domain to another where the formulation

of model �tness is more e�cient. To that end, one can de�ne a transform T on the class

X of images which converts any image x ∈ X to the transform space Z, yielding a new
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representation z. In short, this reads as

T : X→ Z, x 7→ z = Tx. (1.7)

Furthermore, if any x can be restored without error from its representation z, then the

transform T is called lossless and there exists another transform R : Z → X such that

x = R (Tx) , ∀x ∈ X.

The two transforms T and R are in the literature often referred to as analysis and synthesis

transforms respectively [34]. The former owes its name to the fact that T transfers the signal

x to a space where the analysis of its key features is straight-forward and the latter is to

indicate that R composes an image in the pixel-intensity domain from its representation z.

At �rst glance it seems intuitive that a model should make use of a lossless transform. As

it turns out, however, many popular data models in the literature are lossy. Taking a closer

look, a good model needs to focus on the key features of X by ignoring unimportant informa-

tion and thus it is inevitably lossy [34, 173]. Central to establishing lossy models is the idea

that the partitions of the signal space where images of interest reside, form subspaces of much

lower dimension than the surrounding signal space. Approaches that follow this principle to

model image data are abundant in the image processing literature of the past decades [55].

The most popular ones among them include the Fourier, cosine and wavelet transforms [108,

110], Principal Component Analysis (PCA) and most recently sparsity-based transforms [12,

150] as well as di�erent types of arti�cial neural networks [78, 173]. All of these methods

have had tremendous success in signal and image processing applications. However, there

is an important aspect that divides these methods into two groups: Fourier, cosine and

wavelet transforms rely on analytical rules to reduce the dimensionality of the data, which

are agnostic of the class of images they are applied to. They drive well-known image com-

pression standards such as JPEG and JPEG2000 [112]. PCA, sparsity-based transforms and

neural networks are adaptable. This means that their transforms are not �xed analytically

but instead can be adjusted to the data they encode by tuning their parameters to training

samples that are obtained from the image class of interest. Although this tuning can be

resource demanding, the adaptability of such methods makes them particularly interesting
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for modeling speci�c image classes and for many applications this has proven to reduce the

overall model error [55].

Learning model parameters from examples

Models that allow their data structure describing rules to be adjusted to training data have

sparked tremendous interest in recent years and the methods built on them have consis-

tently been leading the score boards of many image processing solutions. The methods

follow two conceptually di�erent optimality paradigms to adjust their model parameters to

training data: Supervised learning methods derive the optimality of their representations

by explicitly comparing pairs of input and labeled output. Typically, the labeling of data

is speci�c to a certain application and it is often costly to create large training sets that

are required to learn the parameters of these models well. Unsupervised learning methods,

on the other hand, solely rely on unlabeled examples to adjust the model to �t the input

distribution. Without requiring labeled data, models tuned by such methods represent the

input data to di�erentiate them by their inner structure and optimize their representation

by application-independent optimality criteria. Classical examples of such methods are the

k-means clustering algorithm [103] or PCA [140]. A recent and very successful unsupervised

learning approach is that of sparsity based models. The key idea underlying these models is

that informative image signals not only occupy a small volume of the signal space but also

approximately reside in a union of low-dimensional subspaces. As a result, they admit a

sparse representation, which means that they can be denoted by very few parameters with

the help of an appropriate transformation [131]. This notion is related to well-known con-

cepts in information theory such as the Minimum Description Length [16] or Kolmogorov

complexity [95] and can even be traced back to the Middle Age principle of Occam's razor.

The key to these representations, is to learn an optimal transform under the sparsity princi-

ple for a given set of training data from the class of interest. In accordance with the analysis

and synthesis transforms introduced earlier, two di�erent approaches on constructing such

sparsity promoting transforms have emerged in the literature.
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Sparsity-based models for image data

The most popular sparse signal model in the literature is the sparse synthesis model. It

is a generative model and assumes that a signal x ∈ Rn can be constructed from a linear

combination of a small number s of elements di from a collection of prototype signals {di}li=1.

The prototype images are collected as columns of a matrix D ∈ Rn×l which is referred to

as the dictionary. The coe�cient vector containing the weights for the linear combination

is denoted as z = [z1, . . . , zl]
>. An image can then be generated under this model by the

matrix vector multiplication

x =

l∑
i=1

zidi = Dz. (1.8)

For regularizing inverse problems, one is interested in determining whether a given signal

is represented by the model through a measure of model �tness. From Eq. (1.8) it can be

observed thatD generates samples of the class X as elements of the linear subspace spanned

by some of its columns. These columns are indexed by the support of z which is assumed to

contain only few elements. The support of a vector is de�ned as the set of its indices whose

coe�cients are di�erent from zero.

supp(z) := { i | zi 6= 0 }. (1.9)

To verify if an image x ∈ Rn was generated by D and therefore belongs to X, one needs

to con�rm that it lies in a subspace of Rn that is spanned by few of the columns of D.

For this purpose, its representation z needs to be found and subsequently con�rmed that

the cardinality of its support |supp(z)| is small. In the case where D is a basis of Rn, the
representation is uniquely de�ned as z = D−1x. To measure the model �tness, the support

cardinality of the representation z is evaluated, denoted by the `0-pseudo-norm

‖z‖0 := |supp(z)|. (1.10)

However, if the number of atoms in the dictionary is raised above l to increase the de-

scriptiveness of the model, recovering optimally sparse representations becomes challenging

[50]. Known as the sparse coding problem, the more general goal of �nding the sparsest
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representation of a signal over a given dictionary is formalized as

min ‖z‖0 subject to x = Dz. (1.11)

To use this model as a regularizer in inverse problems, Eq. (1.11) needs to be solved. Despite

the dictionary being a linear transform, �nding an exact solution is NP-complete [45] due to

the `0-term. Solving this problem approximately has however been studied extensively [54].

More recently, the analysis transform perspective to sparse representations has sparked much

research interest. Often coined as the sparse synthesis model's fraternal twin, it is aimed

at addressing the transformation of a signal to a sparse representation more directly and

has been popularized under the term co-sparse analysis model [53, 123]. In this model,

an analysis operator Ω ∈ Rl×n is de�ned such that the representation vector z = Ωx is

sparse, i.e. ‖Ωx‖0 is small. In sparsity-based models, one usually deals with overcomplete

transforms, which implies l > n and in this case, a direct connection between the synthesis

and the analysis model through the inverse Ω = D−1 does not hold [53, 123]. Geomet-

rically interpreted, the signal encoded by the analysis model resides in the intersection of

hyperplanes de�ned by the normals that are the rows of the analysis operator Ω and whose

corresponding entries in z are equal to zero. This is in contrast to the synthesis model, where

the non-zero coe�cients of the representation determine the columns of D that span the

signal space. To emphasize this di�erence, the number of entries that are equal to zero in

the co-sparse analysis model is referred to as the co-sparsity p of the model.

So far, it was assumed that the transform operators are given and static. In fact, several

methods that occur ubiquitously in signal and image processing solutions can be interpreted

as such transforms. Prominent examples are Gabor �lters, wavelets or the discrete version

of Total Variation (TV) prior [151]. What makes these models even more interesting is that

the coe�cients of Ω can be tuned automatically to maximize co-sparsity over a given set of

training images and therefore adapt the transform to best represent a speci�c image class

[149]. The parameter learning is a challenging problem in itself, which is discussed in detail

in Chapter 2.

Considering again the inverse problem in Eq. (1.6), a measure of �tness under the analysis

model needs to be de�ned. Given that images of the class X are described well ifΩx contains
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many entries close to zero, an obvious choice for measuring model �tness is to measure the

sparsity of Ωx? for a candidate x?. Accordingly, the reconstruction problem in Eq. (1.6)

becomes

x? ∈ argmin ‖Ωx‖0 subject to f (y,Ax) ≤ ε. (1.12)

Solving this problem again has combinatorial complexity, but as it will turn out in the next

chapter, good approximate solvers exist.

Model-based learning of co-sparse image representations

In all previous considerations, the system generating the image signals that make up the class

of interest has been treated as a black box and the modeling of this data is purely based on the

distributions of its observations. However, in many image processing and computer vision

applications well-justi�ed analytic information of respective data generators is available.

This work is motivated by the idea of constructing models of image data that are based on

the distribution of observations and are consistent with application-speci�c knowledge. To

that end, co-sparse analysis models are combined with analytic insights of multiple prominent

image processing applications and novel methods are developed for analysis operator learning

that still rely on unlabeled training data but incorporate application-speci�c terms in their

learning objectives. This is referred to as model-based learning of co-sparse representations.

1.2 Research goals

With the ever-increasing volume of recorded digital image data and the raising demand to

automatically analyze and interpret it, the quest to �nd better models for various types of

image data remains an active research frontier. Over the past few years, much e�ort has been

invested in developing e�cient methods to learn sparse data models from data samples. The

co-sparse analysis model has been of particular interest recently, both for investigation of its

theoretical properties as well as its usefulness in applications. In this thesis, it is investigated

how the learning of co-sparse image representations can be improved with model assumptions

of particular image processing applications. Its goal is to improve the optimization objective

11



Chapter 1 Introduction

to achieve better representations that generate more accurate application results and require

fewer training samples to learn model parameters reliably. Speci�cally, the following aspects

are addressed:

Centered analysis operator learning

Undeniably, pre-processing of raw data is an important step for any data investigation. It

often incorporates speci�c knowledge with the goal of normalizing the data while preserving

relevant information for further analysis. Normalizing the mean and variance of input data

are arguably among the most common methods in that regard and well justi�ed from the

perspective of photometric image formation with bias and gain. Although being a common

practice for learning parameters of co-sparse analysis models, its impact on the geometry of

the data and therefore the learning outcome is mostly overlooked in the literature. It moti-

vates to investigate the illumination normalization model within analysis operator learning

and to �nd a way to exploit its geometric property within an e�cient optimization frame-

work.

Co-sparse analysis model for multi-modal image data

Despite the advent of multi-image-sensor devices and setups in many engineering �elds,

existing sparsity models focus mostly on unimodal image data. The di�erent properties

that are encoded in multi-modal sensor data collected from the same environment often

lead to related patterns in the data due to common underlying physical phenomena. It

suggests that a suitable signal representation of multi-modal image data should re�ect such

interdependencies and make them easily accessible. So far, pioneering work on multi-modal

image models based on joint sparsity has only considered the synthesis perspective. It

motivates to explore image models based on jointly co-sparse representations and to develop

appropriate algorithms which allow learning model parameters automatically from training

data and demonstrate their e�ectiveness in real applications that rely on bimodal image

data.

Furthermore, the integration of image data from multiple sensors is challenging in practice
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due to di�ering resolution and noise characteristics of the sensors as well as misalignment

of the data. It is desirable to develop methods that address these di�culties by leverag-

ing the exposed interdependent patterns captured in a suitable multi-modal signal model.

Speci�cally, a jointly co-sparse analysis model of bimodal image data should be investigated

for usage as a regularizer in solving inverse problems such as super-resolution, denoising,

in-painting and image registration.

Co-sparse representations with spatial regularity

In image segmentation tasks, data term and segment priors are decisive factors for the quality

of the image partitioning. Comparing the structural similarity of local neighborhoods in the

data term has proven more robust than comparing pixel-values. Designing representations

that exhibit the relevant structural properties well, however, is time-consuming and data-

dependent. Recent attempts at learning such representations from example images have

shown to be a promising direction and motivate to investigate the learning of co-sparse

representations based on a segmentation model. Narrowing the scope to the application of

unsupervised texture segmentation, it shall be studied how a learned analysis operator can

be employed as structural feature extractor. Guided by the fact, that texture segments are

piece-wise constant in the image plane, it motivates to incorporate the property of spatial

regularity into the signal model to learn better representations of the segments in a single

textured image and use them in an existing segmentation framework to improve unsupervised

texture segmentation.

1.3 Contributions

In the course of this work, several novel models and algorithms based on the co-sparse

analysis framework were developed and are presented for the purpose of obtaining better

representations of structure in image data and improved results in image processing appli-

cations.

In the �rst part, the co-sparse analysis model with centered operators is proposed for
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brightness-normalized image data. Based on the observation that zero-mean training data

introduces trivial solutions in existing analysis operator learning approaches, a method is

developed to learn analysis operators that considers the geometric structure imposed by the

pre-processing of the data and which avoids the trivial solutions. This is achieved by re-

stricting solutions of the analysis operator learning task to an appropriately chosen manifold

structure. Instead of learning analysis operators as an element of the oblique manifold, it is

proposed to optimize over the intersection of a product of unit spheres and the zero-mean

plane which forms a smooth manifold. By appropriately adapting an existing geometric

conjugate gradients algorithm, it is shown how analysis operators for this model can be

learned from real data e�ciently. Subsequent experiments on a practical image reconstruc-

tion problem show that representations obtained through this model lead to better quality

and require fewer training samples than the previous approach.

In the second part, a bimodal co-sparse analysis model is introduced that is able to capture

the interdependence of local structure in two image modalities. It is based on the assumption

that if a scene is captured by di�erent sensor devices, e.g. intensity and depth cameras, the

inherent structures in the acquired signals are related. This structural relation is modeled

by a pair of analysis operators which yield representations of the images with a large overlap

in their co-supports. An algorithm is proposed to learn such analysis operator pairs from

noiseless and spatially aligned training data. Furthermore, it is demonstrated how this

model can be applied to regularize inverse problems and provide empiric results on di�erent

data sets demonstrating its e�ectiveness in image-guided depth map reconstruction. In

addition, a method is developed that employs the joint bimodal co-sparse model as a prior

for rigid image registration. A new algorithm is provided which allows to spatially register

intensity-depth and intensity-NIR image pairs, that are misaligned under di�erent types of

rigid transformations.

In the third part, a novel method for unsupervised segmentation of color texture mosaics

is proposed. Its main contributions are a model for learning representations from non-

annotated texture images that capture the inner structure of local textures and a practical

algorithm that automatically segments a texture image based on the learned representa-

tions. The model is based on the observation that in existing segmentation methods, image

descriptors are often designed such that the feature image is approximately constant on a
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texture segment. The basic idea of the proposed model is to learn an analysis operator

that yields approximately piecewise constant supports of local neighborhoods on the pixel

grid. Besides the constraints used in the �rst part for learning co-sparse representations,

the learning objective is to minimize the cost function of the popular piecewise constant

Mumford-Shah segmentation model, i.e. the total length of the discontinuity set of the cor-

responding feature image. Furthermore, a segmentation algorithm is developed based on the

existing Lagrange formulation of the piecewise constant Mumford-Shah model. As the data

term, a Mahalanobis distance de�ned on the covariances of the support elements obtained by

the learned analysis operator is considered. It is demonstrated empirically that the method

achieves state-of-the-art results in evaluations on standard datasets for unsupervised tex-

ture segmentation and that it has great potential in being e�ective in segmenting histology

images.

1.4 Thesis outline

Having set the key points that motivate model-based learning of co-sparse image represen-

tations in this initial chapter, the remainder of this thesis is organized as follows:

Chapter 2 provides a more thorough introduction of the co-sparse analysis model and sum-

marizes related prior art on analysis operator learning algorithms. The subsequent chapters

discuss the main contributions of this thesis in detail and are based on the peer-reviewed

publications indicated in the opening paragraph of each respective chapter. In Chapter 3,

the centered co-sparse analysis model is presented, along with numerical procedure for learn-

ing its parameters from training data. It further contains a short introduction to geometric

gradient methods on matrix manifolds which are used in all presented numerical algorithms.

The joint co-sparse analysis model for bimodal image data is presented in Chapter 4. It

contains the description of the learning algorithm and introduces how inverse problems for

bimodal image reconstruction tasks can be e�ectively regularized by this new model. Empir-

ical studies on di�erent datasets demonstrate its e�ectiveness on image-guided depth-map

reconstruction. In addition, it describes how the model is further useful as a prior in bimodal

image alignment, which is experimentally validated and compared with classic approaches.

Learning representations for unsupervised texture segmentation is the focus of Chapter 5.
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It presents a model of local image structure with spatial regularity within the framework of

geometric analysis operator learning. It also contains an empirical study of the proposed

segmentation algorithm including a comparison with several state-of-the-art texture segmen-

tation algorithms and extensive parameter sensitivity analyses. Finally, Chapter 6 describes

the software implementation and its architecture which was designed to conduct all numeri-

cal experiments throughout this thesis, before closing this work with concluding remarks in

Chapter 7.
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Chapter 2

Prior art on learning co-sparse image

representations

The methods developed in this work for modeling image data for the applications described

in subsequent chapters are based on the co-sparse analysis model [53]. In this chapter, the

foundations of this model and in particular the problem of learning its parameters from data

are discussed in detail along with a review of the most relevant prior work from the recent

literature.

2.1 Co-sparse analysis model for noisy data

Recollect from the introduction in the previous chapter that the analysis model relies on

a linear operator Ω ∈ Rl×n that is typically over-complete, i.e. l > n. When applied to a

signal x ∈ Rn, it yields a representation z = Ωx that is sparse. The operator Ω is known as

the analysis operator and the number of vanishing coe�cients in the representation z ∈ Rl

is referred to as co-sparsity [148]. It emphasizes the fact that the zero-components in the

representation determine the subspace in which the signal is located and it is de�ned as

p = l − ‖z‖0. (2.1)

Concretely, a signal x that is p-cosparse, i.e. p coe�cients in z = Ωx are zero, is orthogonal
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to p rows of Ω and resides in the orthogonal complement of the space spanned by these

rows. From a geometrical perspective, the class X ⊆ Rn of signals that are modeled by Ω

is contained in a union of subspaces [101] and one such x ∈ X lies in the intersection of all

hyperplanes whose normal vectors are given by the rows of Ω that are indexed by the zero

entries of Ωx. This index set is called the co-support of x and is denoted by

cosupp(Ωx) := {j | (Ωx)j = 0} , (2.2)

where (Ωx)j is the j-th entry of the analyzed vector z.

In contrast to the synthesis model where the number of non-zero components of z in Eq. (1.8)

can become arbitrarily small, the analysis model leads to milder sparsity ‖Ωx‖0 ≥ l − n,
since otherwise n or more rows of Ω would need to be orthogonal to the signal. Assuming

the operator is in general position, however, this is not possible if neither x nor rows of Ω

become zero and consequently, 0 ≤ p ≤ n [133, 150].

2.1.1 Analysis pursuit

One convenience of the analysis model is that the representation of an arbitrary signal x

can be obtained readily by its multiplication with Ω and one easily determines model �tness

by measuring its co-support cardinality. In reality however, samples that are obtained in

real applications will likely not be available directly, but only through some noisy linear

measurements y = Ax+n, where n is some bounded noise andA ∈ Rm×n is a measurement

operator [29]. As a result, the analyzed version of the noisy observation is only approximately

co-sparse and the recovery of a p-cosparse signal x from y is challenging, even if A is the

identity. Consequently, before discussing the task of adapting analysis operators to data, this

problem, referred to as analysis sparse coding or analysis pursuit, needs to be considered.

Regarding the sparsity of the analyzed signal as the measure of model �tness and assuming

Gaussian noise, we can rewrite the inverse problem from Eq. (1.6) as one of the two forms

x? = argmin
x
‖Ωx‖0 subject to ‖Ay − x‖22 ≤ ε (2.3)

x? = argmin
x
‖Ay − x‖22 subject to ‖Ωx‖0 = l − p, (2.4)
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and they are equivalent if a correct correspondence between ε and p is be established [148].

The analysis pursuit problem is combinatorial in nature and therefore computationally in-

tractable in practice [148]. However, a number of methods have been developed to �nd

good approximate solutions and they can be grouped in three categories depending on their

approximation strategies: relaxation of the `0-term in Eq. (2.3) or Eq. (2.4) by its convex

`1-surrogate, greedy heuristics to �nd a locally optimal choice of representation coe�cients

and hybrid greedy methods.

Analysis `1-minimization

The earliest and best-known way to deal with the computationally intractable `0-term in

the Eq. (2.3) is to replace the pseudo-norm with a convex surrogate function. Using the

`1-norm instead has proven very e�ective in making the problem numerically accessible and

still promoting sparsity of the solution. In fact under certain conditions on Ω, analysis

`1-minimization leads to the same solution as the original NP-hard problem [50, 30]. The

resulting `1-analysis minimization problem accordingly reads as:

x? = argmin
x
‖Ωx‖1 subject to ‖y −Ax‖22 ≤ ε. (2.5)

Since Eq. (2.5) is convex, very e�cient solvers exist [22, 23] to compute a solution numerically

along with recovery and convergence guarantees, see e.g. [53, 156, 26, 123, 29, 172].

Greedy methods

Inspired by methods that make use of the structure of the sparse coding problem in the

synthesis model, greedy algorithms that iteratively �nd locally optimal solutions to the

analysis pursuit problem were developed.

Greedy Analysis Pursuit (GAP), proposed by Nam et al. in [123, 121], is an adaptation of

the Orthogonal Matching Pursuit (OMP) [109, 139] for the analysis model. Let Λ denote the

sought co-support with a target of p entries and let ΩΛ correspond to the analysis operator
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with only the rows that are indexed by the co-support Λ. Starting from a full co-support

Λ̂0 = {1, . . . , l}, GAP then aims to reduce the index set to size p. The initial estimate of

the recovered signal x̂0 is set to

x̂k = argmin
x
‖ΩΛ̂k

x‖22 subject to y = Ax, (2.6)

with k = 0. The linear operator A is used in the original work [123] but for simplicity, here

it is assumed that it is the identity A = I. At each iteration k of GAP, the current estimate

x̂k−1 is multiplied with Ω. The index of the analyzed vector z = Ωx̂k−1 whose coe�cient is

the largest, gets removed from the co-support, i.e. Λ̂k = Λ̂k−1 \
{

argmaxi∈Λ̂k−1
|zi|
}
. Finally

the estimate of the recovered signal x̂k is updated using Eq. (2.6). The algorithm stops

either after a �xed number of iterations determined by l− p or if the di�erence between two

successive estimates is small, which constitute standard stopping criteria for such iterative

optimization procedures. Note that this description of GAP deviates slightly from the orig-

inal version with respect to the chosen measurement operator. In the original work, a more

general linear operator A is admitted and the recovery can still succeed under certain con-

ditions which are discussed in [123] and [121]. Formally, the only di�erence is that instead

of Eq. (2.6), the signal estimate is updated using

x̂k = argmin
x
‖y −Ax‖22 subject to ‖ΩΛ̂k

x‖22 = 0. (2.7)

It is typically solved for high-dimensional data in its unconstrained form

x̂k = argmin
x
‖y −Ax‖22 + λ‖ΩΛ̂k

x‖22, (2.8)

with a small weight λ. To summarize, GAP iteratively seeks the non-zero coe�cients of the

representation by sequentially selecting the indexes of operator rows that are least correlated

with the measurements and removing them from the co-support.

The opposite view, �nding the zero-components of the representation, is taken in the ap-

proach of Rubinstein et al. which culminates in the Backward Greedy (BG) algorithm de-

scribed in [148, 150]. Here, the initial estimate of the recovered signal is set to x̂0 = y and

the co-support starts empty Λ̂0 = ∅. Identically with GAP, in each iteration k of BG the

analyzed version of the previous signal estimate z = Ωx̂k−1 is considered. However, instead
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2.1 Co-sparse analysis model for noisy data

of discarding the index of the most correlated row in Λ̂k, BG adds the index of the row that

is least correlated with x̂k−1 to the co-support, i.e. Λ̂k = Λ̂k−1 ∪
{

argmini 6∈Λ̂k−1
|zi|
}
. One

iteration of BG is �nalized by updating the signal estimate x̂k by projecting the measure-

ments on the orthogonal complement of the rows of Ω indexed by the current co-support

estimate. Denoting the pseudo-inverse with †, this reads formally as

x̂k =
[
I −Ω†

Λ̂k
ΩΛ̂k

]
y. (2.9)

To solve the last step in each iteration e�ciently, an orthogonalization scheme is proposed

which circumvents the costly computation of the pseudo-inverse Ω†
Λ̂k

in Eq. (2.9). The algo-

rithm terminates after p steps or if the di�erence between signal estimate and measurements

‖x̂k − y‖2 exceeds a threshold.

Rubinstein et al. also proposed an extension called Optimized Backward Greedy (OBG)

algorithm. Instead of adding in each iteration the index of the analysis operator row to

the co-support that yields the smallest correlation with the signal estimate, all possible

Λ̂tempk = Λ̂k−1∪
{
i 6∈ Λ̂k−1

}
are generated with their respective updates of the signal estimate

x̂tempk . Finally, the co-support is extended by the index that leads to the smallest di�erence

between the previous and the current estimate ‖x̂tempk − x̂k−1‖2.

Greedy-like methods

Another class of algorithms that �nd approximate solutions to the analysis pursuit prob-

lem in Eq. (2.3) and Eq. (2.4) are referred to as greedy-like algorithms. They include

Analysis Iterative Hard Thresholding (AIHT), Analysis Hard Thresholding Pursuit (AHTP),

Analysis CoSaMP (ACoSaMP) and Analysis Subspace Pursuit (ASP) and were adapted to

the analysis setting by Giryes et al. in [64, 63, 65] from respective methods for the synthesis

sparse model Iterative Hard Thresholding (IHT) [20], Hard Thresholding Pursuit (HTP)

[58], Compressive Sampling Matching Pursuit (CoSaMP) [125] and Subspace Pursuit (SP)

[43]. All four of these algorithms iteratively estimate a p-cosparse version of linear measure-

ments y = Ax. Analogously to the descriptions of GAP and BG above, the presentation

here restricts itself to A = I.
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Chapter 2 Prior art on learning co-sparse image representations

In AIHT and AHTP, the estimate is initialized with x̂0 = 0 and then in each iteration k,

�rst x̂tempk is updated temporarily with a gradient step of the data �delity term to minimize

‖y −Ax̂k−1‖22 with a �xed or adaptive step size. Since this new estimate is not guaranteed

to be p-cosparse, next, a projection of x̂tempk onto a p-cosparse subspace is performed and

the respective co-support Λ̂k is recovered by �nding a solution to

Λ̂k = Sp(x̂
temp
k ) := argmin

Λ:|Λ|=p
‖ΩΛx̂

temp
k ‖22. (2.10)

Several di�erent strategies to implement the function Sp are proposed that �nd the zero-

entries either based on thresholding of the smallest entries or by more sophisticated proce-

dures that are tailored to speci�c analysis operators. The last step in each iteration of AIHT

and AHTP is an update of the signal estimate based on the new co-support. In AIHT, this

is simply achieved by orthogonally projecting the previous estimate onto the nullspace of

the truncated analysis operator ΩΛ, i.e.

x̂k =
[
I −Ω†

Λ̂k
ΩΛ̂k

]
x̂tempk . (2.11)

In AHTP on the other hand, the estimate is updated in the last step of each iteration by

�nding a p-cosparse approximation with the best data �delity, solving

x̂k = argmin
x
‖y −Ax‖22 subject to ΩΛ̂k

x = 0. (2.12)

The algorithms are terminated if residual size or relative iteration change cross a predeter-

mined threshold.

ACoSaMP and ASP take a di�erent approach. They both initialize a residual yr0 = y and

the co-support estimate Λ̂0 = {1, . . . , l}. In each iteration k, the �rst step consists of �nding

new co-support elements Λ∆ by selecting the a · p smallest coe�cients of ΩA−1yrk−1 [63]

or by other strategies Sap [65] and then updating a temporary co-support estimate with

Λ̂tempk = Λ̂k−1 ∩ Λ∆. Here, ACoSaMP and ASP di�er in the number of new elements

they select for the co-support with a = 1 (ASP) and a = 2p−l
p (ACoSaMP). The second

step of each iteration involves computing a new temporary estimate of the recovered signal

based on the updated co-support. Analogously to the last step of AIHT/AHTP, one seeks

x̂tempk = argminx ‖y − Ax‖22 subject to ΩΛ̂temp

k
x = 0. Subsequently, the co-support is
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2.1 Co-sparse analysis model for noisy data

updated by �nding Λ̂k = Sp(x̂
temp
k ). In the next step, the signal estimate x̂k is updated.

Equivalently to AIHT/AHTP, this step di�ers slightly for ACoSaMP and ASP. ACoSaMP

updates the signal estimate by the orthogonal projection given in Eq. (2.11) while ASP

updates with the most data consistent solution given in Eq. (2.12). Finally, the residual is

updated yrk = y−Ax̂k. In practice, the equality constraints in the update steps are relaxed

to unconstrained minimization problems.

Having introduced the most important methods to recover co-sparse representations from

arbitrary signals, the discussion of related work turns now to the actual learning of analysis

operators from example image signals.

2.1.2 Analysis operator learning

In the discussion of the analysis pursuit problem in the previous section, it was assumed that

the analysis operator Ω is known and �xed. Indeed, many well known discrete transforms

in image processing can be considered as analysis operators in the sense of the introduced

framework. For example Gabor or Haar wavelets [111], curvelets [28], wave atoms [46], the

fused Lasso [163] or �nite di�erences operators can be considered as analytically crafted

operators that yield sparse representations of image data [121]. To ease the task of hand-

crafting an analysis operator that is most suitable for a speci�c class of image signals, analysis

operator learning aims to automatically �nd an operator that best suits given example data.

To �t the co-sparse analysis model to a speci�c class of image signals at hand, one needs to

tune the rows of Ω such that the desired co-sparsity is achieved for samples that fall into the

class of interest. To address this, let Y = [y1,y2, . . . ,yM ] ∈ Rn×M be a collection of M sig-

nals yi ∈ Rn, which are considered to be noisy observations of signals X = [x1,x2, . . . ,xM ]

from a class X, e.g. yi = xi + n, n ∼ N (0, σ2I). The task of learning an analysis operator

for X is then to �nd a suitableΩ which provides the most co-sparse approximationX for the

data matrix Y [183]. In other words, the representation matrix Z = ΩX should contain as

many small coe�cients as possible. Formally, the learning objective to be minimized during
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Chapter 2 Prior art on learning co-sparse image representations

the learning of the operator from noisy samples can be written as

(Ω?,X?) = argmin
Ω,X

‖ΩX‖0 subject to ‖X − Y ‖F ≤ σ. (2.13)

The parameter σ represents an estimate of the expected noise power. Note that the notation

is slightly abused in the sense that the `0-pseudo-norm of the matrix represents the sum of

the norms of its columns, i.e. for some matrix U = [u1, . . . ,ur] it denotes

‖U‖0 =
r∑
i=1

‖ui‖0. (2.14)

The problem in Eq. (2.13) is highly non-convex and approximation techniques are required

to �nd good local minimizers [150]. Although analysis operator learning has only been

investigated recently, several successful methods have emerged and are brie�y reviewed in

the following.

Sequential Minimal Eigenvalues

One of the earliest works addressing the problem of analysis operator learning was published

in [133]. There, Ophir et al. propose to learn the rows of Ω sequentially. Starting from a

randomly generated row ω̂, its inner products with the training set ω̂>yj are computed.

Then, �rst a threshold θ is set, such that cpM
l of the inner products are below this threshold

(c ≤ 1). Second, the index of samples whose inner product is smaller than the threshold

θ are recorded in the set J = {1 ≤ i ≤ M | ω̂>yj < θ}. Finally, the row ω is set to

the eigenvector which is associated with the smallest eigenvalue of YJY
>
J . These steps are

repeated until the threshold θ is smaller than a predetermined value. To obtain all rows

of Ω, this procedure is performed l times. In order to prevent duplicate rows, a di�erent

training set is randomly chosen from Y for every row. In addition, a newly obtained row is

compared to existing ones and only added to Ω if it is su�ciently di�erent and otherwise

another row is generated. One drawback of this algorithm is that the likelihood of �nding a

row that is similar to ones that are already in Ω increases as the procedure progresses. This

leads to many rejections of new rows and slows the procedure signi�cantly. Also it becomes

less e�cient with growing signal dimension n [148].
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2.1 Co-sparse analysis model for noisy data

Analysis K-SVD

The method proposed by Rubinstein et al. in [148] and [150] draws its spirit from the K-SVD

algorithm [12] that solves the related dictionary learning problem in the synthesis model.

The idea of Analysis K-SVD is to �nd a solution to Eq. (2.13) by alternatingly optimizing

for the two target variables. In the �rst phase, a p-cosparse approximation of the signals in

Y is optimized while keeping the analysis operator constant. In the second phase, the signal

approximates are kept �xed and the analysis operator estimate is updated. The two phases

are repeated until some stopping criterion is reached. It is assumed that all of the noiseless

signals xi are orthogonal to p rows of the �nal operator Ω ∈ Rl×n. The learning problem in

Eq. (2.13) is slightly reformulated as

(Ω?,X?) = argmin
Ω,X

‖X − Y ‖2F (2.15)

subject to ‖Ωxi‖0 ≤ l − p, ∀i | 1 ≤ i ≤M

‖ωj‖2 = 1, ∀j | 1 ≤ j ≤ l

The normalization constraint, which forces the rows ωj of the operator (written as a column

vector) to have unit norm, is introduced to prevent estimates to degenerate by scaling.

During the �rst phase of Analysis K-SVD, �nding the co-sparse approximations of each yi is

the analysis pursuit problem from Eq. (2.4) and solved using the BG algorithm or its variant

OBG. Once the intermediate result X̂ is computed, the rows ωj are updated sequentially.

Since the BG algorithm returns an estimate of the co-support Λ̂i for each of the samples yi,

one can easily determine the samples that are (approximately) orthogonal to ωj and collect

their indexes in the set J = {1 ≤ i ≤ M | j ∈ Λ̂i}. Denoting this sample subset as the

sub-matrix YJ of Y , the update step of ωj reads as

ω̂j = argmin
ωj

‖ω>YJ‖22 subject to ‖ωj‖2 = 1. (2.16)

The solution can be obtained e�ciently by computing the Singular Value Decomposition

(SVD) of YJ and selecting the left singular vector that corresponds to the smallest singular

value. A mechanism is used to resolve deadlock situations in iterations by discarding and

randomly regenerating rows based on heuristics involving the number of associated samples
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Chapter 2 Prior art on learning co-sparse image representations

in YJ and the maximal inner product between ωj and other rows, often referred to as mutual

coherence. The authors see one advantage of their method in the decomposition of the sample

matrix, which makes the update of individual rows independent from each other and hence

they can be computed in parallel.

Constrained Analysis Operator Learning

A di�erent approach on over-complete anlysis operator learning from noisy data is pro-

posed by Yaghoobi et al. in [183, 184, 185], coined Constrained Analysis Operator Learn-

ing (CAOL). They replace the `0-term in Eq. (2.13) with its `1-surrogate and observe that

the learning problem naturally includes trivial and useless solutions, that need to be avoided

by enforcing additional constraints C on estimates of Ω. Analogously to Eq. (2.14), ‖U‖1 is
used short for

∑r
i ‖ui‖1. The problem is then formulated as

(Ω?,X?) = argmin
Ω,X

‖ΩX‖1 (2.17)

subject to ‖X − Y ‖F ≤ σ,

Ω ∈ CCAOL.

The authors develop the constraint set CCAOL from the following observations. First, the

minimizer Ω = 0 of the cost function in Eq. (2.17) is obviously undesirable, as it contains

no information, and a common way to avoid estimates to shrink to zero is to �x their norm.

Evidently, this can be achieved by �xing the row norm, e.g. ‖ωj‖2 = 1 for the j-th row of

Ω, which is also employed by Analysis K-SVD in Eq. (2.16). However, it was found that

row norm constraints are insu�cient, since a single row which minimizes ‖ω>Y ‖1 could

be repeated l − 1 times to construct the minimizer Ω of Eq. (2.17). Since the rank of

such a solution would equal one, the norm constraint alone will not help to �nd a suitable

analysis operator. Further, the authors �nd that full-rank, i.e. rank(Ω = n), and tight-frame

(Ω>Ω = I) constraints avoid rank de�ciency and ill-conditioning respectively, but are not

su�cient for over-complete operators with Ω ∈ Rl×n, l > n. As a solution, Yaghoobi et al.

propose to combine the row norm with the tight frame constraint, resulting in a Uniform
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Normalized Tight Frame (UNTF) de�ned by

CCAOL =
{
Ω ∈ Rl×n : Ω>Ω = I, ∀1 ≤ j ≤ l ‖ωj‖2 = 1

}
. (2.18)

In addition, the sparsity and data �delity terms in learning problem Eq. (2.17) are refor-

mulated as an unconstrained optimization problem using a Lagrangian multiplier λ, which

leads to the CAOL learning problem

(Ω?,X?) = argmin
Ω,X

‖ΩX‖1 +
λ

2
‖X − Y ‖2F (2.19)

subject to Ω ∈ CCAOL

The UNTF constraint is not convex but Yaghoobi et al. propose a variational technique to

�nd local optima. More precisely, in their Analysis Operator Learning Algorithm (AOLA)

[185], the two target variables Ω and X are updated in an alternating fashion by keeping

one �xed while updating the other, minimizing Eq. (2.19). In each iteration k, step 1

updates the analysis operator according to Ω̂k = argminΩ∈C ‖ΩX̂k‖1. This non-convex

sub-problem is solved by taking a negative step along its gradient ∇Ω in the ambient space

of the constraint set and subsequently projecting onto the UNTF. A subgradient is chosen

randomly at the origin, where ‖ · ‖1 is not di�erentiable, and the step size η is determined

by a backtracking line-search along the gradient direction. The projection of the estimate

after the gradient step is carried out again in two steps, respectively projecting onto the

uniform normalized (UN) and the tight frame (TF) constraint sets. The projection PUN is

accomplished by scaling each row of Ω to unit length or generating a random unit norm row

if ‖ω‖2 = 0. The projection PTF of a full-rank matrix onto the tight frame is carried out

using the singular value decomposition Ω = UΣV > and replacing the diagonal matrix Σ

with the identity matrix I, resulting in PTF (Ω) = UIV >. Finally, the analysis operator

update in iteration k is obtained by Ω̂k = PUN (PTF (Ω̂k−1−η∇Ω)). Although theoretically,

alternating the projections PUN and PTF does not guarantee to converge to a UNTF, the

authors report that even a single pair of projections are su�cient in practice. Step 2 of

an AOLA iteration considers the update of the co-sparse approximations X̂ of the data

matrix. It consists of solving Eq. (2.19) for X using the newly updated Ω̂k and is equal

to analysis `1-minimization as discussed in the previous section. The Alternating Direction

Method of Multipliers (ADMM) [52] is used to compute a solution to the convex program.
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Steps 1 and 2 are alternated until a standard stopping criterion (see above) is reached and

the algorithm returns the �nal estimates as the sought solution (Ω?,X?). Initially, CAOL

was proposed for the noiseless case [183], i.e. Y = X, and extended to the noisy case in

[184]. The Lagrangian multiplier λ in Eq. (2.19) determines how much noise is allowed in

the model, becoming the noiseless case in the limit λ→∞. Empirically though, it is shown

that modeling the noise leads to much higher co-sparsity in the learned representations [185].

Geometric Analysis Operator Learning

The method of Hawe et al., called GeOmetric Analysis operator Learning (GOAL), also

addresses the noisy analysis model. Unlike Analysis K-SVD and CAOL, which require the

target co-sparsity p as a parameter to their algorithms to �nd approximations that are

exactly p-cosparse, the idea of GOAL is to minimize empirical mean and variance of the

sparsity in ΩY directly. Although Analysis K-SVD and CAOL are designed for the same

objective, GOAL allows some signals to deviate in the co-sparsity of their representations

and does not explicitly approximate a co-sparse data matrix X. The authors argue that

for signal classes as diverse as natural images, this is a more realistic setup than requiring

all signals to lie on the same dimensional subspace. Furthermore, they use the non-convex

`p-surrogate function for `0 with 0 < p ≤ 1, which has been shown to perform well for sparse

recovery in the synthesis model [35]. It is commonly de�ned as

‖u‖pp =
∑
i

|ui|p. (2.20)

The objective of minimizing the sum of the empirical variance and the squared empirical

mean of the sample sparsity in combination with this non-convex sparsity measure, renders

the GOAL problem as

Ω? = argmin
Ω

1
2M

M∑
i=1

(
1
p‖Ωyi‖

p
p

)2
(2.21)

subject to Ω ∈ CGOAL

It is important to note that the data �delity term ‖X − Y ‖F is omitted completely which
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relates to the CAOL problem for λ → 0. This means that the weak supervision by the

denoising task is removed, and instead useless minimizers of the cost function need to be

prevented by appropriate constraints CGOAL. To that end, Hawe et al. follow a similar path

as [185] in that they aim to prevent solutions that are scale-degenerate, rank-de�cient or

contain duplicate rows.

Analogously to Analysis K-SVD and CAOL, GOAL restricts operator rows ωj to unit Eu-

clidean norm. Furthermore, the authors recognize that the norm constraint imposes a ge-

ometric structure on the problem, which is known in its transposed form as the product

manifold of unit spheres or oblique manifold. It is de�ned in [11, 10] as

OB(n, l) := {W ∈ Rn×l : (W>W )ii = 1, 1 ≤ i ≤ l}. (2.22)

In other words, the sought analysis operator is restricted to Ω> ∈ OB(n, l).

In contrast to CAOL, rank-de�ciency and conditioning of Ω are not controlled by restricting

iterates to a tight frame. Instead, two log-barrier functions are introduced to the learning

objective that serve as soft-constraints on mutual coherence and the condition of Ω. Since

the Gramian matrixΩ>Ω of a full rank analysis operator (rank(Ω) = n for l ≥ n) is positive
de�nite, its determinant is strictly positive, i.e. det(Ω>Ω) > 0. Consequently, Hawe et al.

propose to prevent rank-de�ciency of Ω by penalizing iterates whose Gramian determinant

approaches zero. The logarithmic penalty function to achieve this, is de�ned as

cr(Ω) := − 1
n lnn ln det(1lΩ

>Ω). (2.23)

The normalization factors with respect to n and l mediate the magnitude of the function

value for di�erently sized Ω.

Furthermore, the coherence of rows of Ω is controlled by preventing the square of their inner

products (ω>i ωj)
2, i 6= j from approaching 1 through a second log-barrier function, de�ned

as

cc(Ω) := − 2
l(l−1)

∑
1≤i<j≤l

ln(1− (ω>i ωj)
2). (2.24)

The scaling of the function is again a normalization with respect to the numbers of rows.
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Geometrically interpreted, this repulses each row from all others, preventing them from

becoming trivially linear dependent. Although a UNTF minimizes cr and cc, this formulation

is less strict.

Finally, the combination of these penalty functions with the sparsity objective and the

oblique manifold constraint, constitutes the GOAL problem

Ω? = argmin
Ω>∈OB(n,l)

1
2M

M∑
i=1

(
1
p‖Ωyi‖

p
p

)2
+ γr cr +γc cc . (2.25)

The weight parameters γr and γc are used to trade the sparsity of the solution with the

strictness of the constraints and therefore control mutual coherence and conditioning of

Ω. In [74], they are set heuristically. By smoothing the `p-term at the origin, the non-

convex learning objective Eq. (2.25) becomes di�erentiable and is optimized with an iterative

Conjugate Gradient (CG) method [77]. To force iterates Ω̂ to adhere to the oblique manifold,

a geometric adaptation of the CG method [10] is used. Instead of updating Ω̂ along the

gradient of Eq. (2.25) in the ambient space Rn×l, the geometric gradient descent moves along

geodesics of the manifold. A more detailed explanation of the geometric adaptation of the

CG method to the product manifold of spheres is found in Appendix A.

Experiments on operator recovery conducted in [75] show that GOAL is able to reliably

recover analysis operators for approximately co-sparse signals and even outperforms Analysis

K-SVD and CAOL.

Sparsifying transform learning

Finally, Ravishankar and Bresler consider a mildly di�erent formulation of the noisy signal

analysis model in [145], coined the transform model. There, error in modeling a co-sparse

approximation of noisy signals is formulated in the representation domain instead of the

signal domain. In contrast to the previous considerations, where it was assumed that y =

x+n with co-sparse Ωx, the transform model de�nes Ωy = q+ξ, where q is co-sparse and

ξ denotes the model error in the representation domain. In this way, the representation q is

not required to lie exactly in the range space of Ω. In that sense, the transform model can
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be considered less restrictive than the noisy signal analysis model. As a consequence, the

learning problem for the sparsifying transform, as the authors call the operator Ω, deviates

from the previous analysis operator learning problem. One shortcoming of this method is

its restriction to only learn square operators Ω ∈ Rn×n, which simpli�es several steps in its

learning procedure. The sparsifying transform learning problem is formulated as

(Ω?,X?) = argmin
Ω,X

‖ΩY −X‖2F − γr log detΩ + γs‖Ω‖2F (2.26)

subject to ‖X‖0 ≤ s.

Analogously to GOAL, the full-rank constraint is modeled using a similar log-barrier on

the operators determinant. Since the operator is restricted to be square, this constraint

is imposed directly on the operator. The authors show that for square and full-rank Ω,

the function ‖ΩY −X‖2F − γr log detΩ is lower-bounded and therefore it is not required to

prevent the trivial solutionΩ = 0 as in the noisy signal analysis operator learning. However,

to prevent excessive scaling of individual rows, a penalty on the overall operator Frobenius

norm is imposed, which leads exactly to the problem in Eq. (2.26). The weight parameters

γr and γs for the penalty functions are set heuristically.

In parallel to Analysis K-SVD and CAOL, this problem is solved by alternating optimization

on X and Ω. In the �rst step of each iteration k, Ω is kept �xed and the co-sparse approxi-

mation estimate X̂k is updated by solving minX ‖Ω̂k−1Y −X‖2F subject to ‖xi‖0 ≤ s, ∀i.
The solution is computed either exactly by hard thresholding or by minimizing the soft

thresholding surrogate minX ‖Ω̂Y −X‖2F + γt
∑M

i=1 ‖xi‖1 [49]. The update of the operator
Ω̂k in the second step is achieved while keeping X̂k �xed and solving the unconstrained,

smooth and non-convex function minΩ∈Rn×n ‖ΩY −X‖2F − γr log detΩ + γs‖Ω‖2F . It is

solved numerically by a CG method with �xed or adaptive step size with backtracking line

search. After initialization of Ω with a random matrix with positive determinant, the two

steps are iterated until a standard stopping criterion is met. One advantage of this method

is its reduced complexity, which is achieved also due to the restriction to square operators.

In a recent extension by Wen et al. [177], the sparsifying transform method was extended to

learn over-complete Ω as a collection of multiple square operators.
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2.2 Patterns in sparse representations

In the discussion of co-sparse representations so far, only overall sparsity as the co-support

cardinality of the representation was considered. However, it is reasonable to assume that

the distribution of zero and non-zero coe�cients is not arbitrary across di�erent samples.

Rather, since the analysis model is assumed to encode signal subspaces in its representation,

it seems imperative that the patterns in the representation coe�cients are indeed structured.

Further, since the order of rows of Ω can be permuted in any random way without changing

the sparsity assumptions of the model, imposing patterns in the coe�cients during signal

recovery and analysis operator learning is known as structured sparsity.

Let Z = [z1, . . . ,zM ] ∈ Rl×M again be a sparse representation matrix for a collection of M

signals and let G be a partitioning of disjoint groups G = {g1, g2, . . . , gm} of the coe�cient

indexes in Z. Structured sparsity then implies, that coe�cients of z that belong to the

same group g are simultaneously zero zg = 0 or non-zero zg 6= 0 within a single z or even

across multiple columns in Z. Consider the example in Figure 2.1c. There, g1 = {1, 3, 4}
and g2 = {2, 5, 6}, such that zg1i 6= 0 and zg2i = 0.

Various patterns in the partitioning G are imaginable and have been proposed in the litera-

ture. See Figure 2.1 for an illustration of the most common types. They are mainly motivated

in two ways: �rst, there may exist some dependency within the sparsifying transformation,

that causes several elements of the representation to jointly become zero or non-zero. One

Figure 2.1: Illustration of di�erent sparsity patterns. The columns depict samples of sparse representations
and their coe�cients. The shaded squares indicate non-zero and the white squares zero coe�cients.

(a) unstructured
sparsity

(b) group sparsity (c) joint sparsity
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2.2 Patterns in sparse representations

such early example arose in wavelet analysis where neighborhood relationships were estab-

lished among wavelets that share spatial support either in the same scale or across scales

[72]. Second, the data samples are obtained in a way that additional dependencies among

disparate sections of the signals are imposed. One example is that di�erent data views of

the same underlying phenomenon are contained within one sample signal as a concatena-

tion. Consequently, the representation coe�cients expose similar patterns associated with

the di�erent concatenated sections in the signal domain. Real world instances of such data

are found in sound source localization [122], sensor networks [152] or sensor fusion [165],

where the same physical phenomenon is measured in di�erent locations, at di�erent times

or in di�erent modalities, leading to a distinct pattern.

Certainly, the design of groups in the partitioning G arise from knowledge about a certain

a-priori dependence in the data, whereas there may be additional structure in the represen-

tation of a single group that arises from hidden or unknown patterns in the signal itself. It

has been shown in several works that if a-priori information suggests that a problem solution

can be explained by certain groups of variables, then including a regularization function that

automatically selects the relevant groups has proven to yield superior results with respect

to predictive performance and interpretability [168, 190, 129, 81, 177].

The methods developed in the context of this thesis rely on patterns in the representation

coe�cients as well. While other types of patterns are equally important in developing well-

suited sparsity methods, the focus here lies on joint co-sparsity.

Jointly co-sparse representations

Joint co-sparsity is a speci�c sparsity pattern [107]. More precisely, two vectors z1, z2 ∈ Rl

are called jointly co-sparse, if not only many of their coe�cients are zero but at the same

time, the indexes of their zero-coe�cients coincide. In other words, their co-supports are

identical cosupp(z1) = cosupp(z2). If Z = [z1, z2], one requires a sparsity measure that

is sensitive to the pattern in Z. Practical realizations of such measures typically involve

mixed norms. The idea of mixed norms is to �rst compute a norm over the coe�cients of

each group de�ned by the partition G resulting in a scalar value for each group. For joint

sparsity, the partition groups are formed by the rows of Z. One such row is denoted by
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Chapter 2 Prior art on learning co-sparse image representations

z̃j , j ∈ {1, . . . , l}. As a result, one can de�ne the joint sparsity measure as a (q, 0)-mixed

norm for Z as

ψq,0(Z) :=

∥∥∥∥[‖z̃j‖q]lj=1

∥∥∥∥
0

. (2.27)

The key here is that if the magnitude of all coe�cients within a row are zero, the "inner"

`q-norm over them will be zero as well. At the same time, the "outer" `0-pseudo norm

measures sparsity over all row norms. Plainly put, ψq,0(Z) is only small if entire rows of Z

are zero and therefore provides an e�ective measure for the aligned co-supports of columns

of Z. Typical choices for the "inner" norm are q = 2 or q =∞ [66, 107, 168].

Equipped with this joint sparsity measure, one can tackle analysis pursuit and analysis

operator learning for jointly co-sparse representations. Interestingly, while joint sparsity for

the synthesis model has received considerable attention in the recent literature [168, 51, 42,

167, 166, 118, 82, 165], only few works exist in the co-sparse analysis direction.

The `0-term spells the same computational trouble to the recovery of jointly co-sparse rep-

resentations as in the unstructured analysis pursuit setting (see Section 2.1.1) and perhaps

unsurprisingly, existing works take similar approaches in their approximation strategies. Re-

placing the `0-norm with an `p-norm with 0 < p ≤ 1 and choosing q = 2 is proposed in [84,

132, 90]. Recollect from above that A ∈ Rm×n is a measurement operator and Y ∈ Rn×M

the observable noisy measurements of noiseless signals X and Z = ΩX. Then, the jointly

co-sparse analysis pursuit problem in its unconstrained form is rendered as

X? = argmin
X

ψ2,p(ΩX) + λ
2‖Y −AX‖

2
2, (2.28)

with a Lagrangian weight parameter λ. This problem is solved in the convex case p = 1 with

a level set algorithm [84] or an ADMM variant in [90]. The non-convex setting (0 < p < 1)

is considered in [132], where it is solved using adapted split Bregman iterations similar to

the method developed for the unstructured analysis pursuit [36].

Also the analysis pursuit methods GAP, AIHT and AHTP (see Section 2.1.1) are available

in modi�ed versions for the structured setting with only slight adjustments in the co-support

update and signal estimation steps [122, 91].

All of these methods make use of �xed and analytically designed analysis operators. Since it
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2.2 Patterns in sparse representations

is known that learning analysis operators from data is bene�cial in the unstructured sparsity

case (see Subsection 2.1.2), it is imperative to explore methods for learning structured co-

sparse representations. For the synthesis model, some methods in this direction have been

published recently [165, 85, 175, 106]. However, to the best of the author's knowledge, this

remains unexplored for the analysis model and one such method is proposed in Chapter 4.
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Chapter 3

Centered co-sparse analysis model

This chapter is based on the peer-reviewed publication:

M. Kiechle et al. �A Bimodal Co-sparse Analysis Model for Image Processing�. In:

International Journal of Computer Vision 114.2 (2015), pp. 233�247

The discussion in the previous chapters revealed that the co-sparsity assumption is a powerful

criterion to create models of image data and that they have huge potential in applications.

The existing methods mostly consider the data as generic image signals. However, when

dealing with data in image processing applications, typically a chain of operations is in

place to manipulate the information from its physical representation to digital acquisition

and preprocessing. As a result, the sub-space in which the image data of interest resides,

is shaped not only by the physical phenomenon whose properties one aims to model but

also by the processing chain that is speci�c to a certain application or to the involved

data. Knowledge of the acquisition and preprocessing operations is often available and

well-understood. Utilizing a-priori information about properties of the signal space that

are caused by these operations, therefore has potential to further improve the modeling of

co-sparsity methods and to make them even more useful in practice.

This chapter as well as the subsequent two present approaches where a model of a-priori

knowledge of well-known image processing applications is incorporated into an analysis op-

erator learning approach. Therein, the potential to improve modeling accuracy and with
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Chapter 3 Centered co-sparse analysis model

Figure 3.1: Example of di�erent a�ne variations in illumination on the same local image structure from
a gray-scale photo (TUM clock tower1). The two columns on the right show excerpts with increasing o�set
(brightness) and scale (contrast) from top to bottom respectively.

it enhance application performance are explored. As the prevalent type of image data,

photometric data and its processing is considered in this chapter. Based on the analysis

of widely-used methods that address normalization of image illumination and contrast, an

extension to the co-sparse analysis model is proposed, which makes the learning scheme

invariant under a�ne variations in illumination of the image data. In particular, the GOAL

method from [74] is modi�ed to incorporate this extension.

3.1 Brightness and contrast variations in image data

To an observer, brightness and contrast of a photo are obvious features and a well-versed

photographer knows how to manipulate these illumination properties. Although they have

an impact on the overall impression of an image, they are mostly ignored for the analysis

of local image structures in the literature and typically normalized explicitly (see e.g. [74]).

Figure 3.1 illustrates a photo under di�erent brightness and contrast settings.

1Photograph by Andreas Heddergott, TUM Corporate Communications Center. Permission to use granted
on 20.12.2018.
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3.1 Brightness and contrast variations in image data

To formulate a co-sparse analysis model that is invariant to brightness and contrast, their

description is formalized �rst. To that end, the well-established bias-and-gain illumination

model for images [162] is considered. It expresses variance in brightness and contrast by

an a�ne transformation of the pixel intensities. Let u ∈ Rn denote a vectorized gray-scale

image of size h×w by arranging its pixels in lexicographical order, hence n = hw. Let α, β

further be two scalar quantities, then any image signal of pixel intensities u can be written

as

u = αū+ β. (3.1)

The vector ū denotes an image whose pixel intensity mean equals zero, i.e.
∑n

i=1 ūi = 0,

and will be referred to as the centered or brightness normalized image. By varying the

parameters α and β, one can now adjust brightness and contrast of the image. Conversely,

if one is interested in the intrinsic image structure independently of illumination variations,

it is desirable to remove the e�ect of α and β, particularly so, if the structure of a collection

of images is supposed to be modeled independently of brightness or contrast. Denoting the

identity matrix of size n × n by In and the same-sized matrix whose coe�cients all equal

one by Jn, the removal of bias and gain from the image vector u can be formulated as two

operations. First, centering the signal by removing its coe�cient mean

uα = (In − 1
nJn)u, (3.2)

followed by a normalization of the scale

ū =

 uα
‖uα‖2 , ‖uα‖2 6= 0

0, ‖uα‖2 = 0
(3.3)

This pre-processing is widely used in various image processing applications [144]. One can

observe that this transformation of the pixel intensities reduces the dimensionality of the

data. The reduction is caused once by projecting the vector onto the hyperplane whose

normal is constant and a second time when projecting the resulting vector onto the sphere

by scaling with its norm. Figure 3.2 depicts this for three-dimensional data points. Low-

level image models capture the structure of image patches which collectively comprise an

image. Since the normalizations are performed on the image patches, many of such atomic

structures are highly redundant in a single image and even more so on a larger set of images.
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Chapter 3 Centered co-sparse analysis model

Figure 3.2: E�ect of illumination normalization from Eq. (3.2) and (3.3) on the geometry of vectorized
image patches with positive pixel intensities. The original patch vectors (a) are projected into a lower-
dimensional subspace, illustrated by (b) and (c) respectively. The hyperplane of centered patches is shaded
in red with its normal vector (1n); the subspace of centered and unit-norm patches is indicated by the dotted
line.

(a) vectorized image patches
of three pixels

(b) patch vectors with cen-
tered pixel values

(c) centered and unit-norm
patch vectors

As a result, the normalization leads to higher redundancy in the data. One explanation

why all of the related methods discussed in Chapter 2 perform such normalizations on the

training data is that the models learned in this way generalize better due to the illumination

invariant training.

Since one is interested in the inherent structure of the image independent of contrast and

brightness, using zero-mean patches with unit scale for learning image structure is the most

natural choice. Another consequence of this pre-processing is that the dimensionality-

reduced data introduces new trivial solutions in the analysis operator learning problem.

Although often performed in practical experiments, the e�ect of data normalization on the

training data has not been addressed in previous learning frameworks for the co-sparse anal-

ysis model. The following model for learning co-sparse representations aims to rectify these

issues.

3.2 Co-sparse analysis model with centered rows

Recollect from the �rst chapters, that the co-sparse analysis model assumes that for a given

class of signals X ⊂ Rn, there exists an analysis operator Ω ∈ Rl×n such that the analyzed
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3.2 Co-sparse analysis model with centered rows

vector Ωx is sparse for all x ∈ X. Geometrically, X is contained in a union of subspaces

and x ∈ X lies in the intersection of all hyperplanes whose normal vectors are given by the

rows of Ω that are indexed by the zero entries of Ωx, called the co-support.

If the a�ne transformation of the bias-and-gain model from Eq. (3.1) is now considered for

an image signal, scale and o�set in�uence its analyzed vector

z := Ωx = Ω(αx̄+ β1n) = αΩx̄+ βΩ1n. (3.4)

Here, 1n denotes a vector of size n whose coe�cients all equal one. It is apparent from

Eq. (3.4), that if the signal o�set β is not zero, a coe�cient of the analyzed vector (Ωx)j is

determined by the inner product of the corresponding analysis operator row and the centered

signal ω>j x̄ and the sum of the operator row ω>j 1n =
∑

i ωj,i, scaled by β. The gain α of

x is dealt with naturally, since the model-induced sparsity is oblivious to the scale of the

analyzed vector coe�cients, i.e. ‖z‖0 = ‖αz‖0. The o�set β, on the other hand, tampers

with the sparsity and clearly, to encode the structure of x invariantly of its bias, each row

of the analysis operator individually needs to sum up to zero.

n∑
i=1

ωj,i = 0 1 ≤ j ≤ l. (3.5)

Certainly, if an analytic operator is employed, this requirement is of little use, since its

coe�cients are �xed and removing the mean of each row may even decrease its ability to

produce sparse representations. If the analysis operator is learned, however, this constraint

should be included in the corresponding optimization task.

Geometric analysis operator learning with centered rows

Ad-hoc models are inferior to models that are adapted to the speci�c class X of interest,

cf. [150, 185, 74, 145] and analysis operator learning aims to �nd the most suitable analysis

operator for a given class X of signals. Here and in the remainder of this thesis, the focus

lies on the �avor of geometric analysis operator learning as proposed in [74]. Recollecting

from Chapter 2, the learning is achieved by optimizing overall sparsity over a representative
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Chapter 3 Centered co-sparse analysis model

set of training samples {xi}Mi=1 ⊂ X, solving

Ω? ∈ arg min
Ω

M∑
i

‖Ωxi‖0. (3.6)

This problem requires a useful set of constraints in order to prevent the following undesirable

solutions:

1. Ω = 0 is a minimizer of Eq. (3.6) but does not encode any structure of the signal.

2. Ω can become rank de�cient and therefore discard information contained in analyzed

signals.

3. even when Ω has full rank, it may contain duplicate or trivially linear dependent rows,

i.e. ωi = ±ωj , i 6= j, that encode the same information about an analyzed signal.

As detailed in Section 2.1.2, GOAL prevents these trivial solutions by a norm constraint on

the rows ω as well as log-barrier penalties on the determinant of the Gramian Ω>Ω and

the pairwise inner products of rows. To learn analysis operators from data whose rows are

centered, the GOAL constraint set needs to be revisited.

Row norm constraint

In a �rst step, the constraint that rows of Ω need to have unit Euclidean norm is considered,

i.e. the restriction of the transpose of possible solutions, the so-called oblique manifold

Ω> ∈ OB(n, l) := S×ln−1, (3.7)

where Sn−1 denotes the unit sphere in Rn.

In the previous section it was shown that the subtraction of the signal mean in Eq. (3.2) is

equal to projecting the signal onto the orthogonal complement of 1n which is denoted by

1
⊥
n . This operation, however, introduces another trivial solution ω = 1√

n
1n for the rows of

the operator Ω and which does not encode any useful information. Therefore, the previous
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3.2 Co-sparse analysis model with centered rows

approach is extended by further restricting the rows of possible solutions to the orthogonal

complement of 1n. A similar idea was remarked in [185]. As a result, the transposed of

admissible solutions Ω is contained in the intersection of the two sets formed by the oblique

manifold and the orthogonal space of 1n, i.e.

R :=
(
Sn−1 ∩ 1

⊥
n

)×l
. (3.8)

It will be shown in Section 3.3 that R is in fact a smooth Riemannian manifold which

allows us to elegantly prevent any trivial solution by using an appropriate geometric gradient

algorithm.

Full-rank and coherence constraints

In addition to avoiding trivial solutions, it has been well investigated, e.g. in [73, 185], that

coherence and rank are important properties to control for �nding analysis operators that

well represent a signal class. In the setting here, where permissible analysis operators are

learned on a subspace, the necessary constraints for restricting rank and coherence properties

need to be revisited.

The approach by Hawe et al. is adopted, where the rank of Ω is regularized with the penalty

function in Eq. (2.23)

− 1
n lnn ln det(1lΩ

>Ω).

SinceΩ is now constrained to a lower-dimensional subspace, this penalty can not be satis�ed

anymore. To that end, the argument of the log-barrier is extended by an orthonormal

projection of Ω as follows

h(Ω) := − 1
(n−1) log(n−1) log det(1lW

>Ω>ΩW ), (3.9)

in which the columns of W ∈ Rn×(n−1) form an arbitrary orthonormal basis of 1⊥n . This

adjustment to the original penalty accounts for the rank de�ciency of Ω imposed by the new

manifold setting from Eq. (3.8).

The constraint on row coherence from Eq. (2.24) which is formed by a log-barrier function
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on the scalar product of all rows of the operator, and which enforces distinct rows, i.e.

r(Ω) := −
∑

1≤m<n≤l
log(1− (ω>mωn)2), (3.10)

does not require any adjustment, since its semantics are invariant to the changed space.

However, since the same number of rows is now contained in a smaller space, the value of

this penalty function is expected to be larger in magnitude.

Relaxation of strict co-sparsity

An important aspect of sparsity methods is the computational tractability of the sparsity

measure and all of the prevailing strategies from the literature are discussed in Chapter 2.

Clearly, the model in Eq. (3.6) is idealized, since in practice the entries of the analyzed vectors

are not exactly equal to zero but small in magnitude. Here, the strategy of a non-convex

relaxation of the `0-pseudo-norm is chosen and the smooth log-square function

g : Rl → R+ : z 7→ 1

log(1 + ν)

l∑
j=1

log(1 + νz2j ), (3.11)

is used in its place. Here, zj denotes the j-th entry of z. Similar to the log-sum sparsity

measure proposed in [31], the log-square function in Eq. (3.11) is � up to a constant factor

� a good approximation of `0-sparsity for large values of ν. Indeed, using l'Hôpital's rule, it

is veri�ed that

lim
ν→∞

1

log(1 + ν)
log(1 + νx2) =

1 x 6= 0

0 x = 0
(3.12)

Using the log-square sparsity measure leads to the relaxed co-sparse analysis operator learn-

ing formulation

Ω? ∈ arg min
Ω

∑
i

g(Ωxi). (3.13)

Despite being non-convex, the log-square term has favorable properties such as smoothness

and close resemblance to `0-sparsity, as shown in Figure 3.4.
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3.2 Co-sparse analysis model with centered rows

Figure 3.4: Plot of the `0, `1 and log-square sparsity functions.

For learning the analysis operator from data, the training samples are expected to be equally

important. If Eq. (3.13) is minimized, however, it is possible and even likely that the found

solution will encode the training set unevenly, yielding some analyzed vectors with very large

co-sparsity while others are only mildly sparse. To avoid an arti�cial bias during training,

one may instead minimize variance and mean of the sparsity over the entire training set [74].

Let ḡ2 denote the squared mean of the sparsity measure

ḡ2 =

(
1

M

∑
i

g(Ωxi)

)2

(3.14)

and σ2g its empirical variance

σ2g =
1

M

∑
i

(g(Ωxi)− ḡ)2 , (3.15)
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then the sum of both writes as [75]

ḡ2 + σ2g = ḡ2 +
1

M

∑
i

(g(Ωxi)− ḡ)2 (3.16)

= ḡ2 +
1

M

∑
i

(
g(Ωxi)

2 − 2g(Ωxi)ḡ + ḡ2
)

= ḡ2 +
1

M

∑
i

g(Ωxi)
2 − 2

M

∑
i

g(Ωxi)ḡ +
1

M

∑
i

ḡ2

= 2ḡ2 +
1

M

∑
i

g(Ωxi)
2 − 2

M

∑
i

g(Ωxi)ḡ

= 2ḡ2 +
1

M

∑
i

g(Ωxi)
2 − 2ḡ2

=
1

M

∑
i

g(Ωxi)
2

and is used instead of g to model an analysis operator that yields co-sparse representations

that are balanced across all M samples.

Learning objective for analysis operators with centered rows

The �nal learning function for analysis operators with centered rows is constructed by com-

bining the smoothed sparsity objective from Eq. (3.13) with the constraint set, which is

formed by the manifold in Eq. (3.8) and the penalty functions from Eq. (3.9) and Eq. (3.10).

Let κ, µ ∈ R+ denote positive weights that determine the strictness of rank and coherence

constraints over the sparsity of the analyzed training samples. Then, the optimization

problem for learning analysis operators with centered rows from data samples reads as

Ω? ∈ arg min
Ω>∈R

L(Ω), L(Ω) :=
1

M

M∑
i=1

g(Ωxi)
2 + κh(Ω) + µr(Ω). (3.17)

The problem is non-convex due to the involved sparsity measure and the non-convex ad-

missible set de�ned by the manifold R. However, the objective function is smooth and

46



3.3 Learning model parameters from data

continuous and allows us to design an iterative gradient-based solver. Furthermore, the geo-

metric structure of the problem imposed by the manifold constraint can be exploited by the

solver to compute solutions to Eq. (3.17) e�ciently.

3.3 Learning model parameters from data

In order to learn useful parameters Ω for the problem in Eq. (3.17) from training data, an

optimization method suitable for the smooth but non-convex learning function is required,

while being able to cope with the geometric constraint that is imposed by the manifold

geometry. The geometric conjugate gradient method, as explained in Appendix A, is an

excellent candidate and has also been used in similar optimization problems, e.g. [74, 76,

178, 127]. However, the conjugate gradient solver used in [74] can not readily be applied to

the manifold structure in Eq. (3.8) and needs to be appropriately adjusted.

Adapted geometric CG on the sphere

For learning the model parameters of Eq. (3.17), a geometric conjugate gradient method

adapted to the manifold structureR is proposed and will be further referred to as GeOmetric

Analysis operator Learning with Centered rows (C-GOAL). First, one has to ensure that R
as given in Eq. (3.8) is indeed a manifold.

Lemma. The setR =
(
Sn−1 ∩ 1

⊥
n

)×l
is a Riemannian sub-manifold of Rn×l and the tangent

space at O = [o1, . . . ,ol] ∈ R is given by

TOR = To1(Sn−1 ∩ 1⊥n )× · · · × Tol(Sn−1 ∩ 1
⊥
n ), (3.18)

with

To(Sn−1 ∩ 1⊥n ) =
{
h ∈ Rn | h>[o,1n] = 0

}
. (3.19)

Proof. By using the product manifold structure, it is su�cient to show that Sn−1 ∩ 1
⊥
n is
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Chapter 3 Centered co-sparse analysis model

a sub-manifold of Rn with its tangent space as given in Eq. (3.19). Consider the function

F : Rn → R2, o 7→

[
‖o‖2 − 1

o>1n

]
. (3.20)

Then Sn−1 ∩ 1⊥n = F−1(0) and the derivative of F is given by

DF (o)h =

[
2o>

1
>
n

]
h, (3.21)

which is surjective for all o ∈ Sn−1 ∩ 1⊥n . The regular value theorem now implies that

Sn−1 ∩ 1⊥n is a sub-manifold of Rn and that To(Sn−1 ∩ 1⊥n ) is given by the null space of

DF (o), yielding Eq. (3.19). �

With respect to the standard inner product, the orthogonal projection onto To(Sn−1 ∩ 1⊥n )

is given by the projection matrix

Po =
(
In −QoQ>o

)
, (3.22)

where

Qo =
[
o, 1√

n
1n

]
(3.23)

has orthonormal columns and In is the identity matrix. Using the product manifold struc-

ture, one �nds the orthogonal projection of an element Y ∈ Rn×l onto TOR as

ΠO [y1, . . . ,yl] = [Po1y1, . . . ,Polyl] . (3.24)

In order to compute the Riemannian gradient of the learning function in Eq. (3.17), its

Euclidean gradient with respect to the standard inner product needs to be available. The

learning function L is smooth and the gradient is obtained from the derivatives with respect

to analysis operator, given by

∇L(Ω) = ∇f(Ω) + κ∇h(Ω) + µ∇r(Ω). (3.25)
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3.3 Learning model parameters from data

The �rst summand of the learning function is the sparsity term. For convenience, let Z =

ΩX again be the co-sparse codes of the M training samples X = [xi]
M
i=1 and let zji be its

coe�cient in the j-th row of the i-th column, then the sparsity term is de�ned as

f(Ω) :=
1

M

M∑
i=1

g(Ωxi)
2

=
1

M

M∑
i=1

 1

log(1 + ν)

l∑
j=1

log(1 + νz2ji)

2

=
1

M

1

log(1 + ν)2

M∑
i=1

 l∑
j=1

log(1 + νz2ji)

2

. (3.26)

The gradient of the sparsity term f(Ω) is written as

∇f(Ω) =
2

M

1

log(1 + ν)2

 M,l∑
i=1,j=1

2νzji

(∑l
j=1 log(1 + νz2ji)

)2
1 + νz2ji

Jji

X>. (3.27)

The matrix Jji ∈ Rl×M is used for notation clarity. All of its elements are zero except for

the j-th element in the i-th row, which equals one.

To derive the gradient of the rank penalty function h(Ω) in Eq. (3.9), it is helpful [75] to

rewrite its formulation as

h(Ω) = − 1
(n−1) log(n−1) log det(1lW

>Ω>ΩW )

= − 1
(n−1) log(n−1) log(

∏
j=1

1
l λj)

= − 1
(n−1) log(n−1) log( 1

l(n−1)

∏
j=1

λj)

= log(l)
log(n−1) −

1
(n−1) log(n−1) log det(W>Ω>ΩW ), (3.28)

with the n− 1 eigenvalues of W>Ω>ΩW denoted as λj .
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Deriving the gradient of h(Ω) now results in

∇h(Ω) = − 2

(n− 1) log(n− 1)
ΩW

(
W>Ω>ΩW

)−1
W>. (3.29)

Finally, the gradient of the coherence penalty function r(Ω) in Eq. (3.10) is needed. Since the

pairwise inner products of analysis operator rows are not a�ected by the changed manifold

structure compared to the oblique manifold, the gradient de�ned in [74] can be reused

directly, i.e.

∇r(Ω) =
2

l(l − 1)

 ∑
1≤i<j≤l

2ω>mωn
1− (ω>mωn)2

(Jmn + Jnm)

Ω. (3.30)

The matrices Jmn,Jnm ∈ Rl×l are used for notation ease as before in Eq. (3.27).

Having derived the Euclidean gradient of the smooth learning function, the Riemannian

gradient can �nally be obtained using Eq. (3.24) on the transposed Euclidean gradient (since

Ω> ∈ R), and is thus

G(Ω>) = ΠΩ∇L(Ω)>. (3.31)

The last two missing ingredients to iteratively update estimations to minimize the learning

function are the geodesics along which an iterate is updated on R in Eq. (A.5), and the

parallel transport for combining elements of di�erent tangent spaces in Eq. (A.6). Since R
is a sub-manifold of the oblique manifold OB(n, l) and is thereby also a sub-manifold of the

product of l unit spheres Sn−1 [74], the equations for the geodesics and parallel transport for

R are the same as for Sn−1. Their de�nitions were derived in [10] as follows. The geodesic

through a point o on a sphere Sn−1 that is parallel to the tangent vector h ∈ ToSn−1 in o

is a great circle given by

Γ(o,h, t) =

o ‖o‖2 = 0

o cos(‖o‖2t) + 1
‖h‖2h sin(‖h‖2t) otherwise

(3.32)

Based on this de�nition, the vector transport Ψ which translates an element of the tangent

space ξ ∈ ToR along the geodesic emanating from o ∈ R in the direction of h ∈ ToR, reads
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as

Ψ(ξ,o,h, t) := ξ − 1

‖h‖22

[
ξ>h (h+ ‖h‖2 sin(‖h‖2t)o)− ξ>o‖h‖2 cos(‖h‖2t)h

]
. (3.33)

Following the general conjugate gradient scheme outlined in Appendix A, it is now straight-

forward to implement the learning algorithm.

3.4 Image reconstruction from partial data

A direct comparison of co-sparse analysis operator learning methods is di�cult for the pro-

posed approach. Since the dimensionality of the considered data di�ers depending on the

applied pre-processing, comparing the values of the objective function during training or

the co-sparsity of the data can not tell, which model is more useful in real applications. A

common practice is to use a proxy experiment instead where the learned models are em-

ployed to reconstruct images and are compared based on the quality of the reconstruction

result. In this section, one such proxy experiment, image reconstruction from partial data

is explained and conducted with real image data. To that end, single-channel photometric

images are reconstructed from a small number of their pixels by removing all other pixels.

The ensued highly ill-posed inverse problem to recover the full image requires a regularizer

which is supplied by the learned analysis operators.

Applying the patch-based operators to images

The described learning processes of analysis operators are all fueled by image patches of small

extent. Yet, when used as an image regularizer, the operator needs to be applied to images

of much larger dimensions. Therefore, a global formulation of the local operators to process

images is required �rst. Consider an image U ∈ Rh×w of height h and width w, as well

as its vectorized form u ∈ Rhw. According to [73], a global analysis operator ΩF ∈ RK×N

can be constructed for application to an image of size N = hw from a patch-based operator

Ω ∈ Rl×n as follows. Denote the operator that extracts a (
√
n ×
√
n)-dimensional patch

located at position (r, c) in the large image as Prc ∈ Rn×N . The global formulation of the
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Chapter 3 Centered co-sparse analysis model

analysis operator is then given as

ΩF :=


ΩP11
ΩP21

...

ΩPhw

 ∈ RK×N , (3.34)

with K = lN , i.e. all patch positions are considered. The re�ective boundary condition is

used to deal with areas along image borders.

Formulation of the reconstruction problem

Consider again image U ∈ Rh×w as well as its vectorized form u ∈ Rhw, of which only a

small subset of pixel measurements are available. The masking operator A models this as

an extraction of m pixel values from the original image vector to obtain the measurements

y ∈ Rm

y = Au. (3.35)

Here, the number of measurements is signi�cantly smaller than in the original image, i.e.

m << hw, which makes the problem of recovering the original image highly ill-posed. To

regularize the reconstruction problem, the learned analysis operators are incorporated into

the formulation of the recovery task, requiring that a solution of the reconstructed image

x? be consistent with the few measurements y but at the same time be co-sparse under the

learned analysis operator. Accordingly, the optimization task can be written as

x? ∈ arg min
x∈RN

1
2‖y −Ax‖

2
2 + λg(ΩFx). (3.36)

Here again, the relaxed smooth sparsity measure of the log-square function, de�ned in

Eq. (3.11), is used for g. The parameter λ balances the co-sparsity of the solution with

its �delity to the measurements. This recovery function is smooth but non-convex and is

solved with a standard conjugate gradient solver that operates in the Euclidean space RN .
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3.5 Experiments

To validate the assumption of the proposed model empirically, a set of analysis operators is

trained on training images and subsequently used as regularizers in an image reconstruction

task, cast as an inverse problem. This experiment is set to compare how pre-processing of

the photometric training data in�uences the training process of the original GOAL and the

proposed model with centered rows as well as tests the obtained operators' performance in

a practical reconstruction task.

Analysis operator learning from training images

First, a set of operators is learned from data by minimizing Eq. (3.17) using the algorithm

described in Section 3.3. In addition, the method from [74] is used to solve the related GOAL

learning problem. Following the methodology in previous works, a set of M = 35000 image

patches of square size is collected from the set of training images, depicted in Figure 3.5. The

patches of width
√
n = 8 are extracted uniformly from pixel locations in the training images,

their pixels are vectorized in lexicographical order and scaled to unit length using Eq. (3.3)

to comprise the training data X̃ ∈ Rn×M . In addition, the normalized dataX is constructed

by applying the centering step from Eq. (3.2). Using GOAL from [74] as well as the proposed

method, the parameters of four analysis operators are trained from this data. The �rst two

operators Ω̂GOAL and ΩGOAL are trained using the GOAL algorithm, while the other two

Ω and Ωrr (rr short for 'reduced rows') are trained using the proposed algorithm. The

learning of Ω̂GOAL is based on the raw training data X̃, while the other three operators are

trained from the normalized data X. The �rst three operators are trained with double over-

completeness l = 2n, implyingΩ ∈ R128×64 due to the chosen patch size. GOAL requires one

row to represent signal mean. To make sure that any improvement of the proposed model is

Figure 3.5: Training images used for learning di�erent analysis operators.
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not only due to the fact that it does not need to spend one row for signal mean, the additional

Ωrr is trained with a correspondingly reduced row set, i.e. Ωrr ∈ R127×64. The operators'

coe�cients are initialized with random values for all methods. The smoothing parameter in

the log-square sparsity measure is set to ν = 1000 and the optimal values of κ and µ that

balance the sparsity of the solution with the penalty values of the regularizing functions

in Eq. (3.17) are determined by a grid search, evaluated on the operators' performance in

the reconstruction task described in the subsequent section. All other hyper-parameters of

the optimization procedure are chosen heuristically and are set to the same constant values

across all experiments. The procedure is stopped when reaching a maximum number of 2000

iterations or when either the norm of the gradient is smaller than 1e−5 or the total change of

analysis operator coe�cients is smaller than 1e−4. The operator learning is executed on an

Intel Core i7-3930K CPU with 3.2 GHz and 4GB of memory and completes in approximately

four minutes.

Image reconstruction from partial data

The achievable reconstruction quality by the di�erently learned analysis operators is evalu-

ated on the commonly used test images 'boat', 'house' and 'man'. For each of them, 95% of

the pixels in the original image are eliminated to create the measurement vector y by creat-

ing the masking operator A which selects the pixels from the images in an independent and

identically distributed fashion. Then, all images are reconstructed from the few measure-

ments y by solving the single-channel image recovery problem in Eq. (3.36). As the solver,

the conjugate gradient method from [73] is used to minimize the function numerically. The

parameter that balances sparsity and data �delity is set in all runs empirically to λ = 100

and is shrunk to λ = 1 subsequently across the iterations. The reconstruction is initialized

by a simple linear interpolation of the input pixels in y on the pixel grid. The solver is run

for 150 iterations, where λ is decreased after every 50 iterations. Figure 3.6 visualizes input

and result of the image reconstruction process.

The �nal estimate x? of each test image is compared to its original version u based on

the 8-bit resolution of their gray-scale values, using three common metrics for assessing

image quality. The standard metrics for comparing signal quality Root-Mean-Squared Error

54



3.5 Experiments

Figure 3.6: Original version (left), 5% of its pixels (middle) that are used as the input to the algorithm
and the reconstructed version (right) of the test image 'man'.

(RMSE) and Peak Signal-to-Noise Ratio (PSNR), de�ned as

RMSE =

√∑N
i=1(x

?
i − ui)2
N

, (3.37)

and

PSNR = 10 log

(
2552∑N

i=1(x
?
i − ui)2

)
, (3.38)

are used. Further, the Structural SIMilarity (SSIM) index from [176] with proposed default

parameters is employed to quantify structural similarity of the reconstruction, which better

re�ects perceptual quality of the images. The results of this quantitative comparison are

summarized in Table 3.1.

metric / method GOAL [74] GOAL (normalized) proposed proposed (reduced rows)

↑ PSNR 23.490 25.382 23.491 25.342 23.485 25.428 23.497 25.377
24.462 24.445 24.399 24.410 24.473 24.462 24.447 24.440

↑ SSIM 0.759 0.776 0.763 0.776 0.762 0.776 0.760 0.778

0.765 0.767 0.765 0.768 0.768 0.769 0.766 0.768

↓ RMSE
17.062 13.723 17.061 13.787 17.072 13.650 17.049 13.731
15.255 15.347 15.368 15.405 15.237 15.319 15.282 15.354

Table 3.1: Summary of the quantitative comparison of the di�erent learned analysis operators in recon-
structing three test images from 5% of their original pixels. Each cell contains the results achieved by the
corresponding method on the images in the following order: Top left 'boat', top right 'house', bottom left
'man', and bottom right average over all of them. PSNR is measured in decibels (dB). The best results are
printed in bold.
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Chapter 3 Centered co-sparse analysis model

Figure 3.7: Contour plots showing the average SSIM over all test images with respect to the hyper-
parameters µ and κ which balance the sparsity objective with the rank and coherence penalties during
analysis operator training. Dark red areas represent high (better) and dark blue areas low (worse) average
SSIM values.

Besides comparing the image reconstruction quality that can be achieved with each of the

trained analysis operators, it is also of interest, how stable the learning methods are when

varying the key parameters. For the analysis operator learning, three parameters are most

crucial. The �rst two are the balancing parameters µ and κ in Eq. (3.17), that trade the

sparsity of the objective function with the rank and coherence penalties during training.

It is desirable to achieve good learning results over a range of parameterization values in

order to reliably run the learning algorithm when other aspects of the experiment vary. The

sensitivity of the discussed methods with respect to these parameters is analyzed by learning

a large number of analysis operators, each time setting a di�erent con�guration of µ and κ,

while keeping all other parameters of the learning process �xed. Subsequently, the di�erent

operators are utilized in the same image reconstruction tasks over the test image set and

their reconstruction quality is compared. Figure 3.7 shows contour plots of the achievable

reconstruction quality measured by SSIM for varying values of the key parameters µ and κ

for the proposed and reference learning methods. As it can be seen, both variants of the

proposed method achieve high SSIM scores over a wide range of parameter con�gurations
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Figure 3.8: Average PSNR of the reconstruction from partial data achieved over all test images with analysis
operators trained with di�erent methods and varying size of the training set. The proposed method (red
squares) requires fewer training samples to reach a stable output compared to the reference method.

of µ and κ. The results are remarkably more stable in that regard than the ones produced

by the reference method.

The third parameter that is of particular interest is the training sizeM which determines the

number of samples that are collected from the training images and are fed to the learning

algorithm. It is always desirable for a learning algorithm to require as few training data

sample as possible to reliably determine model parameters. For supervised methods, on

the one hand, this means less e�ort in labeling data. For unsupervised methods, such as

the presented analysis operator learning, on the other hand, a small number of required

training samples leads to a smaller computational e�ort of the learning procedure which can

in consequence be completed in a shorter amount of time. To study the e�ect of the training

size on the learned operators and their ability to regularize well the image reconstruction

problem, each of the discussed methods is restarted several times with varying values of the

training sizeM and the resulting learned operators are used in the same image reconstruction

problem. Figure 3.8 shows how the training size in�uences the reconstruction quality for

the di�erent methods respectively. It is clear from the line plot that the proposed method
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requires fewer training samples to reach stable and high-quality reconstruction results than

the reference method.

3.6 Discussion

In this chapter, a model for learning analysis operators for local image structures in pho-

tometric data was proposed, which is invariant to variations in brightness and contrast.

Further, it was shown that for analysis operators to be illumination invariant, their rows

need to be zero-mean. Interestingly, the assumption that structure encoding linear �lters

are zero-mean is coherent with �ndings in work of adjacent �elds [80, 37]. The proposed

model addresses brightness normalized training data by accounts for its particular geomet-

ric structure imposed by the normalization procedure. A practical learning algorithm was

derived from an existing method by adapting the algorithm in [74] to a manifold structure

suitable for brightness normalized data. In an image reconstruction task, where the learned

analysis operators are employed as regularizers, it was shown empirically that the proposed

model can achieve a higher quality image reconstruction than its reference method. Further,

its sensitivity with respect to key parameters of the learning procedure improved signi�-

cantly. Finally, the proposed model requires less training data to achieve training results

reliably. In summary, it could be shown that brightness-invariant learning of local image

structures is bene�cial when dealing with photometric data and that the resulting reduced

data complexity of the learning problem can be exploited with a practical learning algorithm

that generates high-quality analysis operators for image reconstruction tasks.
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Chapter 4

Co-sparse analysis model for bimodal image

data

This chapter is based on the peer-reviewed publications:

M. Kiechle et al. �A Joint Intensity and Depth Co-Sparse Analysis Model for Depth

Map Super-Resolution�. In: Proc. International Conference on Computer Vision.

2013, pp. 1545�1552

M. Kiechle et al. �A Bimodal Co-sparse Analysis Model for Image Processing�. In:

International Journal of Computer Vision 114.2 (2015), pp. 233�247

Processing image data that is captured by a single type of sensor has ubiquitous applica-

tions. However, an important trend in designing technical systems lies in the possibility to

combine di�erent imaging technologies that record heterogeneous physical properties and

consequently sense more information about the environment. Robotics, autonomous driving

or remote sensing are popular examples, where the combination of multiple imaging sensor

types has advanced the respective �elds. Many computer vision tasks can bene�t from an

ability to exploit interdependency between di�erent image modalities. Fusing information

extracted from the di�erent image data modalities can be achieved on several levels, and

one promising approach is the integration at a low level.

In this chapter, interdependencies in image data of photometric intensity, scene depth and
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near infrared are explored. Building on the centered co-sparse analysis model of the previous

chapter, a bimodal co-sparse analysis model that is able to capture the interdependency of

two image modalities is proposed. It is based on the assumption that a pair of analysis

operators exists, so that the co-supports of the corresponding bimodal image structures

have a large overlap. An algorithm is proposed that is able to learn such a coupled pair of

operators from registered and noise-free training data. Furthermore, it is demonstrated how

this model can be applied to solve linear inverse problems in image processing and how it

can be used as a prior in bimodal image registration tasks.

4.1 Multi-modal image data

In the past, the majority of methods tackling problems in computer vision were focused on

working on a single image modality, typically a color or grayscale image captured with a dig-

ital camera. Due to the progress in sensor technologies, sensors that capture di�erent types

of image modalities beyond intensity have become a�ordable and popular. Well-known

examples of multi-modal image sensors combine classical photometric cameras with ther-

mal, multi-spectral and depth cameras. These image signals often carry information about

one another and exploiting this interdependency is bene�cial for solving various problems

in computer vision, such as image reconstruction, registration, segmentation, detection, or

recognition, in a more robust way. Inspired by biological systems, which perceive their envi-

ronment through many di�erent signal modalities at once, fusing sensory information from

di�erent modalities has emerged as an important research topic. Existing fusion schemes

can be grouped according to their level of fusion. Methods of decision-level fusion work inde-

pendently on the di�erent modalities to make separate task-dependent decisions, which are

then fused according to a certain rule or con�dence measure. Feature-level fusion methods

integrate modality-speci�c features to derive a decision, for instance the well-known bag-of-

words method in object classi�cation. The method presented here, belongs to the group of

low-level fusion, where the multi-modal information is integrated on the pixel level.

Typically, low-level integration is formulated as �nding a mapping from the raw pixel mea-

surement domain of one modality to another, such that the transformed values are correlated.

In successful approaches, this mapping is learned from sets of aligned local image patches
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to make corresponding algorithms computationally tractable [60, 15, 79, 97]. More recent

approaches aim at capturing the low-level integration across modalities via sparse coding,

where the interdependencies of the signals are re�ected in interdependencies of their sparse

codes. This concept is used in several methods to �nd a mapping between di�erent resolu-

tion levels or across image modalities. In [186, 191], such a scheme is applied to single image

Super-Resolution (SR). Two dictionaries are learned for corresponding Low-Resolution (LR)

and High-Resolution (HR) image patches and the two domains are fused through a com-

mon sparse representation. In [96], Li et al. propose a SR approach across the two di�erent

modalities intensity and depth. Therein, three domains are fused through di�erent dictio-

naries for LR and HR depth-, as well as HR intensity-patches. The dictionaries are learned

under the constraint that the corresponding sparse representation have a common support.

The coupling of di�erent image modalities through the assumption of a common sparse code

has turned out to be too strict in practice. In [106], a relaxed joint sparse model is proposed

in which a dictionary is learned for the source image domain together with a transformation

matrix, which transforms the sparse representations of the source domain to signals in the

target domain. Wang et al. [175] use linear regression between the sparse representations

over di�erent dictionaries for the image domains. A similar idea is followed by Jia et al. [85],

who re�ne the linear mapping of sparse codes by a local parameter regression for di�erent

subsets of sparse representations. While all of these fusion methods rely on the sparse

synthesis model, the related co-sparse analysis model [53] has not been considered yet in

such a multi-modal setting. This is particularly surprising given its excellent performance

in unimodal image processing tasks [121, 73, 185, 37].

In this chapter, a bimodal data model based on co-sparsity for two image modalities is

proposed. It allows �nding signal representations that have a correlated co-sparse repre-

sentation across the two di�erent image domains. One advantage of choosing the analysis

over the synthesis model is that in the analysis model, the sparse code of a query signal

can be obtained extremely fast without the need to solve the sparse coding problem. This

enables the use of co-sparsity as a prior in problems such as image registration, which might

otherwise be di�cult to achieve using synthesis sparsity.

To demonstrate both, the descriptive power and cross-modal coupling of this model, it is

�rst employed as a prior for solving inverse problems, which is validated in an image guided
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depth-map reconstruction task. As a second application scenario, the model is used within a

novel algorithm for bimodal image registration, which, to the best of the author's knowledge,

is the �rst sparsity-based approach to tackle this problem. Concretely, the proposed joint

bimodal co-sparsity model is combined with an optimization on Lie groups which achieves

favorable results in comparison to other bimodal image registration methods.

4.2 Bimodal co-sparse analysis model

In this section, the concept of learning co-sparse representations from training signals is

combined with the idea of joint sparsity of two di�erent signal domains. Before detailing the

approach to this joint co-sparsity model, some important aspects this method is built upon

need to be reviewed.

Joint analysis co-sparsity

In this approach, two signal classes XU and XV of di�erent modalities are considered that

emanate from the same physical object. Consider for example an intensity image and a

depth map captured from the same scene as depicted in Figure 4.1. More precisely, let

(xU ,xV ) ∈ XU ×XV . It may be assumed that these signal pairs (xU ,xV ) allow a co-sparse

representation with an appropriate pair of analysis operators (ΩU ,ΩV ) ∈ Rl×nU × Rl×nV .

Based on the knowledge that the structure of a signal is encoded in its co-support, it may

be further assumed that a pair of analysis operators exists such that the intersection of the

co-supports of ΩUxU and ΩV xV is large. Thus, let

[
ΩUxU ,ΩV xV

]
=:


a>1
...

a>l

 = A ∈ Rl×2,

the concatenated sparse codes, then the proposed bimodal co-sparse analysis model is based

on the idea that A will be row-wise sparse. This is typically achieved by minimizing a mixed
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(a) photometric intensity image (RGB) (b) structured light depth image

Figure 4.1: Exemplary pair of spatially registered color intensity and scene depth map from the NYU Depth
Dataset [124].

`2-`0-norm [167, 118, 82], formally denoted by

‖A‖2,0 =

∥∥∥∥∥∥∥∥

‖a1‖2

...

‖al‖2


∥∥∥∥∥∥∥∥
0

. (4.1)

Geometrically interpreted, the goal is to partition the signal space for each of the two modal-

ities in such a way, that the partitions not only represent subsets of unimodal signals but

simultaneously relate to a partition of the other modality.

Speci�cally, the objective is to learn the coupled pair of bimodal analysis operators

(ΩU ,ΩV ) ∈ Rl×nU × Rl×nV for two signal modalities. Therefore, a set of M aligned and

corresponding training pairs

{(x(i)
U ,x

(i)
V )}Mi=1 ⊂ RnU × RnV (4.2)

is used. For simplicity, the training signals and their analysis operators of both modalities

are assumed to be of the same size throughout this chapter, i.e. nU=nV =n, although it is

easily veri�ed that this is conceptually not required.

As a consequence, this means that the sought solution (ΩU ,ΩV ) minimizes the sum or
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empirical mean of ‖A‖2,0 over all sample pairs within the training set. Analogously to

previous chapters, it is paramount to relax the non-smooth `0-sparsity term. Here, the log-

square sparsity measure from Eq. (3.11) is applied to the joint representation A of xU and

xV , which reads as

g : Rl×2 → R : A 7→ g(A) :=
1

log(1 + ν)

l∑
j=1

log
(
1 + ν‖aj‖2

)
=

1

log(1 + ν)

l∑
j=1

log

(
1 + ν

(
(ΩUxU )2j + (ΩV xV )2j

))

=
1

log(1 + ν)

l∑
j=1

log

(
1 + ν

(
z2U,j + z2V,j

))
. (4.3)

This sparsity function is used throughout this chapter to measure and control joint co-

sparsity of a pair of bimodal analysis operators and local image patches.

Since the ideal pair of bimodal operators represents all samples in the training set, the sum

of empirical variance σ2g and squared mean of the sparsity measure ḡ2 from Eq. (4.3) is

minimized over all training signal pairs

f(ΩU ,ΩV ) := ḡ2 + σ2g

=
1

M

M∑
i=1

g(ΩUx
(i)
U ,ΩV x

(i)
V )2. (4.4)

The derivation is a straight-forward adaptation from Eq. (3.16).

Regularization of rank and coherence

As with all existing co-sparse analysis operator learning approaches (see Chapter 2), control-

ling rank and coherence of the operator rows is important for the bimodal operator pair as

well. Unlike the sparsity objective, which couples the representation learning across the two

signal modalities, the regularizers need to be applied to the two operators individually, since

neither of the transformations should yield trivial information about its signal domain. Ac-
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cordingly, the rank and coherence constraints are modeled through their respective penalty

functions h(Ω) from Eq. (3.9) and r(Ω) from Eq. (3.10) applied to both analysis operators

individually

p(Ω) := κh(Ω) + µr(Ω). (4.5)

Like before, κ and µ determine the impact of the corresponding regularization on one oper-

ator. Combining the ingredients of joint co-sparsity and operator regularization, the smooth

learning function is written as

L (ΩU ,ΩV ) := f(ΩU ,ΩV ) + p(ΩU ) + p(ΩV ). (4.6)

Choice of the manifold

Before the bimodal analysis operator pair can be learned from data by minimizing the

learning objective in Eq. (4.6), the scale-orthogonality ambiguity of the sparsity problem

needs to be addressed. As in the previous chapter, this is solved here by applying the norm

constraint from Eq. (3.7), which �xes the scale of operator rows to a constant. Accordingly,

the minimization of L (ΩU ,ΩV ) is carried out on an appropriate manifold. The choices

are the oblique manifold as in [74] or the manifold of unit norm and zero mean signals R
from the de�nition in Eq. (3.8), which makes the training invariant to the mean of training

signals. Depending on the type of image data, one or the other may be more appropriate.

Section 4.4.4 contains an empirical study with both settings. For notation brevity, R will

be used to refer to both of them subsequently.

Finally, the learning function for jointly co-sparse analysis operators is obtained by combining

the individual operator regularizers with the joint co-sparsity objective and is stated as

(Ω?
U ,Ω

?
V ) ∈ arg min

Ω>U ,Ω
>
V ∈R

L(ΩU ,ΩV ). (4.7)
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4.3 Joint bimodal analysis operator learning algorithm

In order to obtain an optimal solution to Eq. (4.7), the conjugate gradient method on matrix

manifolds, outlined in Appendix A, is employed. In comparison to the learning with only a

single modality, in each iteration of the optimization procedure both analysis operators ΩU

and ΩV need to be updated. The geometric CG framework supports this setting without

modi�cations if the formulation considers the two operators in combination as a product

structure where the objective function acts on elements of it. In this setting, the gradient

formulation needs adjustment. Concretely

∇L(ΩU ,ΩV ) = [∇UL(ΩU ,ΩV ),∇V L(ΩU ,ΩV )], (4.8)

where ∇U and ∇V denote the gradient of L with respect to its �rst and second input. The

derivatives with respect to U and V are decoupled for penalty terms, resulting in

∇UL(ΩU ,ΩV ) = ∇Uf(ΩU ,ΩV ) +∇Up(ΩU )

∇V L(ΩU ,ΩV ) = ∇V f(ΩU ,ΩV ) +∇V p(ΩV ). (4.9)

The derivatives for p(Ω) are given in Eq. (3.29) and Eq. (3.30). Finally, the derivatives of

the joint co-sparsity measure are required. Using the notation of the last line of Eq. (4.3),

they read as

∇Uf(ΩU ,ΩV ) =

2

M

1

log(1 + ν)2

 M,l∑
i=1,j=1

2νzU,ji

(∑l
j=1 log(1 + ν(z2U,ji + z2V,ji))

)2
1 + ν(z2U,ji + z2V,ji)

Jji

X> (4.10)

and

∇V f(ΩU ,ΩV ) =

2

M

1

log(1 + ν)2

 M,l∑
i=1,j=1

2νzV,ji

(∑l
j=1 log(1 + ν(z2U,ji + z2V,ji))

)2
1 + ν(z2U,ji + z2V,ji)

Jji

X>. (4.11)
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4.3 Joint bimodal analysis operator learning algorithm

Figure 4.2: Example pair of input training images (left) and learned rows of bimodal operator pairs (right)
visualized as square patches for intensity (top) and depth (bottom). Each square patch corresponds to a
row of the learned operators ΩU and ΩV (top left patch corresponds to �rst operator row respectively).

Equipped with the Euclidean gradient ∇L ∈ Rl×(nU+nV ) of the learning objective, the

geometric CG can then be executed on the manifold R×R.

One important assumption in this model is that the training signals of each pair are spatially

registered such that corresponding pixel locations in the two images refer to observations

of the same point in the environment. Concerning the choice of training samples, M pairs

of square patches are randomly sampled from aligned, noise-free images and each patch

is vectorized to form the i-th training vector pair (x
(i)
U ,x

(i)
V ) and the analysis operators

are initialized with random values before starting the optimization procedure. Learning

such pairs of operators from several thousand samples on a standard desktop PC can be

accomplished within the order of a few minutes. For the experiments in Section 4.4 and

Section 4.5, two operators are trained from M = 15000 patch pairs with a size of
√
n = 5.

The algorithm completes this task on an Intel Core i7 3.2 GHz CPU with 4GB of memory

and unoptimized Matlab code in about 140s. Figure 4.2 illustrates rows of learned operator

pairs as square patches for the two bimodal image setups intensity and depth.
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4.4 Bimodal image reconstruction

To evaluate the usefulness of the proposed bimodal image model, it is employed as a prior in a

highly ill-posed image reconstruction task formulated as an inverse problem. Speci�cally, the

task involves reconstructing an image to high quality from a low-resolution input image with

noise and missing values by providing a high-resolution second image that is spatially aligned

but only available in a di�erent image modality. This setup has real world applications in

many sensor fusion settings. RGB-D cameras are a popular example that combine a high-

resolution digital camera with an additional low-resolution scene depth sensor. Using the

proposed method, a bimodal analysis operator is learned on clean training data and then

applied as a prior to regularize the reconstruction problem.

4.4.1 Formulation of the bimodal image reconstruction problem

The general goal of the bimodal image reconstruction task is to recover an aligned pair of

bimodal images xU ,xV ∈ RN from a set of measurements yU ∈ RmU ,yV ∈ RmV . Here,

xU ,xV are vectorized versions of the original images from each of the two modalities, ob-

tained by ordering their entries lexicographically. Without loss of generality, it is assumed

that the images xU ,xV are of the same size and number of pixels N .

In the reconstruction approach, the problem of bimodal image reconstruction is posed as a

linear inverse problem. Formally, the relation between xU ,xV and yU ,yV is given by

yU = AUxU + nU , yV = AV xV + nV . (4.12)

AU ∈ RmU×N ,AV ∈ RmV ×N model the sampling process of the measurements and nU ∈
RmU ,nV ∈ RmV model noise and potential sampling errors. For typical reconstruction tasks,

the dimensions mU ,mV of the measurement vectors may be signi�cantly smaller than the

dimension N . Consequently, reconstructing xU ,xV in Eq. (4.12) is highly ill-posed.

To resolve this, the bimodal data model is employed as a co-sparsity prior to regularize the

image reconstruction. To apply the co-sparsity prior learned from image patches to the full

extent of the image, the global version of the analysis operator ΩF , as de�ned in Section 3.4,
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is used. Accordingly, one aims to solve

(x?U ,x
?
V ) ∈ arg min

xU ,xV ∈RN
dE ((AUxU ,AV xV ) , (yU ,yV )) + λg(ΩF

UxU ,Ω
F
V xV ). (4.13)

dE denotes an appropriate data error measure and the weighting factor λ is used to balance

the solution between data �delity and joint co-sparsity prior. Due to the joint co-sparsity

term, the analyzed versions of both modalities are enforced to have a correlated co-support

and as a result, the two signals are coupled.

The reconstruction task formulation in Eq. (4.13) is general and various application con�gu-

rations are possible. First, depending on the choice of the measurement operators AU ,AV ,

di�erent reconstruction types such as denoising, inpainting, or upsampling can be performed.

Second, the reconstruction can be accomplished jointly on both signals simultaneously or

only on one single modality, while the other serves as a guiding reference to the co-sparsity

and data priors. In the following section it is demonstrated, how image guided depth map

super-resolution can be accomplished using this setup.

4.4.2 Image-guided depth map reconstruction

In this experiment, the proposed reconstruction approach is applied to the image modalities

intensity and depth. Due to the availability of a�ordable sensors, this has become a common

bimodal image setup. The focus lies now on recovering the HR depth image xD from LR

depth measurements yD, given a �xed, high quality intensity image xI . In this case, AI is

the identity operator, implying yI = xI and the analyzed intensity image is constant, i.e.

ΩF
I xI = c = const. (4.14)

This simpli�es Eq. (4.13) for recovering the HR depth map to

x?D ∈ arg min
xD∈RN

dE(ADxD,yD) + λg(c,ΩF
DxD). (4.15)

The choice of the data �delity term dE depends on the error model of the depth data and

can be adjusted to a speci�c setup. For instance, this may be a measure tailored to a sensor
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(a) original (b) proposed method (c) NN interp. (d) bicubic interp.

Figure 4.3: A detail of the depth image 'Cones' (a) from [154] after it was downsampled by a factor of 8
in vertical and horizontal direction and subsequently upscaled using the proposed method (b) and standard
interpolation methods (c, d).

speci�c error model. Subsection 4.4.5 includes an example with a speci�c noise model for the

Microsoft Kinect sensor. The �xed HR intensity image implicitly guides the reconstruction

of the depth image due to its coupling in the co-sparsity prior. Thusly, information about

the scene gained from the intensity image and its co-support regarding the bimodal analysis

operators helps to regularize the HR depth signal.

4.4.3 Prior art on depth map reconstruction

Increasing the resolution of depth images obtained from range sensors has become an im-

portant research topic, and diverse approaches treating this problem have been proposed

throughout the past years. Many of these methods originate from the closely related prob-

lem of intensity image super-resolution. However, these mostly aim at producing pleasantly

looking results, which is di�erent from the goal of achieving geometrically sound depth maps.

Straightforward upsampling methods like nearest-neighbor, bilinear, or bicubic interpolation

produce undesirable staircasing or blurring artifacts, as can be seen in Figure 4.3. In the

following, many well-established methods for depth map SR that aim at reducing these

artifacts are reviewed brie�y.

Initially, methods were proposed that use smoothing priors from edge statistics [57] or local

self-similarities [59]. These methods only require a single image, but either have di�culties

in textured areas, or only work well for small upscaling factors. A di�erent approach, which

also solely requires depth information is based on fusing multiple displaced LR depth maps

into a single HR depth map. Schuon et al. [155] develop a global energy optimization
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framework employing data �delity and geometry priors. This idea is extended for better

edge-preservation by Bhavsar et al. in [19].

A number of recently introduced methods aim at exploiting co-aligned discontinuities in in-

tensity and depth images of the same scene. They fuse the HR and LR data utilizing Markov

Random Fields (MRF). In the work of Diebel and Thrun [47], color image information is

used to guide depth reconstruction by computing the smoothness term in Markov-Random-

Field formulation according to texture derivatives, which is extended in [100] by a data term

better adapted to depth images, and combined with depth from passive stereo in [192]. In

order to better preserve local structures and to remove outliers, Park et al. [138] add a non-

local means term to their MRF formulation. Mac Aodha et al. [102] treat depth SR as a

MRF labeling problem of matching LR depth map patches to HR patches from a prede�ned

database.

Inspired by successful stereo matching algorithms, Kopf et al. [93] and Yang et al. [187]

apply bilateral �ltering to depth cost volumes in order to iteratively re�ne an estimate using

an additional color image. Chan et al. [33] elaborate on this approach with a fast and

noise-aware joint bilateral �lter. Xiang et al. [181] include sub-pixel accuracy, and Dolson

et al. [48] address temporal coherence across a depth data stream from Light Detection and

Ranging (LiDaR) scanners by combining a bilateral �lter with a Gaussian framework.

Finally, methods exist that exploit the dependency between sparse representations of inten-

sity and depth signals over appropriate dictionaries. In [67], the complex wavelet transform is

used as the dictionary. Both the HR intensity image and the LR depth map are transformed

into this domain and the resulting coe�cients are fused using a dual tree to obtain the HR

depth map. Instead of using prede�ned bases, approaches employing learned dictionaries

are known to lead to state-of-the-art performance in diverse classical image reconstruction

tasks, cf. [55, 105]. Surprisingly, applying those techniques for depth map enhancement has

only been explored very recently. Mahmoudi and Sapiro [104] �rst learn a depth dictionary

from noisy samples, then re�ne and denoise these samples and �nally learn an additional

dictionary from the denoised samples to inpaint, denoise, and super-resolve projected depth

maps from 3D models. Closest to the proposed approach are the recent e�orts of [96] and

[165]. They independently learn dictionaries of depth and intensity samples, and model a

coupling of the two signal types during the reconstruction phase. In [96], three dictionar-
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ies are composed from LR depth, HR depth, and HR color samples to learn a respective

mapping function based on edge features. In contrast, only two dictionaries for intensity

and depth are learned in [165], where the similarity of the support of corresponding sparse

representations is used to model the coupling.

4.4.4 Evaluation on stereo data

To compare the results of the proposed approach to state-of-the-art methods, the algorithm

is quantitatively evaluated on the four standard test images 'Tsukuba', 'Venus', 'Teddy',

and 'Cones' from the Middlebury stereo dataset [154]. The required LR input depth maps

are created arti�cially by downscaling the ground truth depth maps by a factor of d in both

vertical and horizontal dimension. Before downsampling, the available HR image is blurred

with a Gaussian kernel of size (2d− 1)× (2d− 1) and standard deviation σ = d/3. The LR

depth map and the corresponding HR intensity image are provided as input to the proposed

algorithm.

In this reconstruction from LR measurements, the measurement error is assumed to be

independent and identically distributed. An appropriate data �delity measure for such error

distribution is the squared Euclidean distance

dE(ADxD,yD) = ‖ADxD − yD‖22. (4.16)

Plugging this term into Eq. (4.15) yields the formulation for image guided super-resolution

of the HR depth image

x?D ∈ arg min
xD∈RN

‖ADxD − yD‖22 + λg(c,ΩF
DxD). (4.17)

This problem is solved using a standard conjugate gradient method and an Armijo step

size selection. To achieve the best results within few iterations, the parameter λ is set

to a large value initially and the conjugate gradient optimization procedure is restarted

several times, while consecutively shrinking the multiplier to a �nal value of λ = 1. The

problem in Eq. (4.17) is not convex and convergence to a global minimum can not be

72



4.4 Bimodal image reconstruction

Figure 4.4: The �ve training images from [154] used for learning the bimodal intensity-depth analysis
operator. The intensity images (top) and corresponding depth maps (bottom) are spatially registered prior
to sampling patch pairs for training.

guaranteed. In practice, however, accurate depth maps are always obtained from di�erent

random initializations of xD.

For this evaluation, an operator pair is trained once o�ine and used in all following intensity

and depth experiments. To that end, a total ofM = 15000 pairs of square sample patches of

size
√
n = 5 are gathered from the �ve registered intensity and depth image pairs 'Baby1',

'Bowling1', 'Moebius', 'Reindeer' and 'Sawtooth', taken from the Middlebury stereo set

[154]. The image pairs are depicted in Figure 4.4 for reference. Furthermore, the operators

are learned with twofold redundancy, i.e. l = 2n, resulting in the operator pair (ΩI ,ΩD) ∈
R50×25 × R50×25. The remaining learning parameters are set empirically to ν = 400, κI =

5, κD = 22, µI = 102 and µD = 2.5 · 104. The learning is conducted with two di�erent

manifold settings, OB indicating learning on the oblique manifold and R on the set of rows

that are unit norm and zero mean.

Following the methodology described in the work of other depth map SR approaches, the

Middlebury stereo matching online evaluation tool1 is used to quantitatively assess the ac-

curacy of produced results with respect to the ground truth data. The percentage of bad

pixels over all pixels in the depth map with an error threshold of δ = 1 is reported along

with the RMSE based on 8-bit pixel value resolution. The results are compared to several

1http://vision.middlebury.edu/stereo/eval/
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d method Tsukuba Venus Teddy Cones

2x

nearest-neighbor 1.24 0.37 4.97 2.51
Yang et al. [187] 1.16 0.25 2.43 2.39*
Diebel and Thrun [47] 2.51 0.57 2.78 3.55
Hawe et al. [73] 1.03 0.22 2.95 3.56
proposed (OB) 0.47 0.09 1.41 1.81
proposed (R) 0.83* 0.12* 1.96* 2.69

4x

nearest-neighbor 3.53 0.81 6.71 5.44
Yang et al. 2.56 0.42 5.95 4.76*
Diebel and Thrun 5.12 1.24 8.33 7.52
Hawe et al. 2.95 0.65 4.80 6.54
proposed (OB) 1.73* 0.25* 3.54 5.16
proposed (R) 1.48 0.23 3.99* 4.69

8x

nearest-neighbor 3.56 1.90 10.9 10.4
Yang et al. 6.95 1.19 11.50 11.00
Diebel and Thrun 9.68 2.69 14.5 14.4
Lu et al. [100] 5.09 1.00 9.87 11.30
Hawe et al. 5.59 1.24 11.40 12.30
proposed (OB) 3.53* 0.33 6.49 9.22*
proposed (R) 3.30 0.34* 8.11* 8.57

Table 4.1: Numerical comparison of the proposed method to other depth map SR approaches for di�erent
upscaling factors d. The �gures represent the percentage of bad pixels with respect to all pixels of the ground
truth data and an error threshold of δ = 1. The best and second best results are highlighted in bold and
with an asterisk respectively. OB and R indicate learning of the analysis operators with the two di�erent
manifold settings.

state-of-the-art methods for image guided depth map SR [47, 187, 33, 100, 74] and the

metrics are listed in Table 4.1 and Table 4.2.

The proposed method improves depth map SR considerably over simple interpolation ap-

proaches as depicted in Figure 4.3. Neither staircasing nor substantial blurring artifacts

occur, particularly in areas with discontinuities. Also, there is no noticeable texture cross-

talk in areas of smooth depth and cluttered intensity. Edges can be preserved with great

detail due to the additional knowledge provided by the intensity image, even if SR is con-

ducted using large upscaling factors. The quantitative comparison with other depth map

SR methods demonstrates the excellent performance of the presented approach.
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d method Tsukuba Venus Teddy Cones

2x

nearest-neighbor 0.612 0.288 1.543 1.531
Chan et al. [33] 0.216 1.023 1.353
Mac Aodha et al. [102] 0.601 0.296 0.977 1.227
Hawe et al. [74] 0.278 0.105 0.996 0.939
proposed (OB) 0.255 0.075 0.702 0.680
proposed (R) 0.256* 0.077* 0.803* 0.821*

4x

nearest-neighbor 1.189 0.408 1.943 2.470
Chan et al. 0.273 1.125 1.450
Mac Aodha et al. 0.833 0.395 1.184* 1.779
Hawe et al. 0.450* 0.179 1.389 1.398
proposed (OB) 0.487 0.129* 1.347 1.383*
proposed (R) 0.374 0.108 1.256 1.287

8x

nearest-neighbor 1.135 0.546 2.614 3.260
Chan et al. 0.369 1.410 1.635
Hawe et al. 0.713* 0.249 1.743 1.883
proposed (OB) 0.753 0.156* 1.662 1.871*
proposed (R) 0.660 0.155 1.729* 1.931

Table 4.2: Numerical comparison of the proposed method to other depth map SR approaches. The �gures
represent the RMSE in comparison with the ground truth depth map. The best and second best results are
highlighted in bold and with an asterisk respectively. OB and R indicate learning of the analysis operators
with the two di�erent manifold settings.

4.4.5 Validation on Kinect data

In order to demonstrate the applicability of the proposed algorithm to real data, another

experiment is conducted, where color images of size 1280x960 and corresponding depth maps

of size 640x480 are captured using the Microsoft Kinect sensor. The depth maps are then

upscaled by a factor of d = 2 to match their size to the color images.

Since the approximate error statistics for this application and this sensor were studied pre-

viously in [89], one can use this information to further re�ne the data model. According

to [89], the standard deviation of Kinect depth data is proportional to the square of the

depth value σi ∝ (y
(i)
D )2. This may be utilized in the error model by employing the squared

Mahalanobis distance for dE in Eq. (4.15), which yields

x?D ∈ arg min
xD∈RN

(ADxD − yD)>Σ−1 (ADxD − yD) + λg(c,ΩF
DxD) (4.18)
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(a) Kinect color image (b) Kinect depth image

(c) without re�nement (d) after re�nement

Figure 4.5: Color image (a) and corresponding registered depth map (b) recorded by the Kinect sensor as
well as 3D renderings of the tiger head detail visualizing the di�erence between the original sensor data (c)
and the re�ned version using the proposed method (d).

where Σ ∈ Rm2×m2 is a diagonal matrix with main diagonal elements (y
(i)
D )2.

As the Kinect sensor uses structured light to measure depth, the signal is corrupted by

missing pixels due to occlusions arising from the displacement of the infrared light source

and the sensor. To �ll these gaps in the data, the measurement matrix is modeled in

such a way that it excludes these gaps from the sampling process of the LR depth image, i.e.

removing the rows ofA that correspond to zero entries in yD. As a result, the reconstruction

algorithm performs inpainting of missing depth values without any additional processing,
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Figure 4.6: Depth maps (top row), 3D rendering of Kinect color and depth data depicting the entire scene
(middle row) and a detail of the fruit bowl (bottom row). Left column: original Kinect data like in the top
row of Figure 4.5 with downsampled color information, center column: bicubic interpolation (1280x960),
right column: proposed method (1280x960). Note that object shadows are due to the single view occlusions.

while simultaneously increasing the depth map resolution. In this way, two of the main

issues of Kinect data are handled in a single step.

To the author's knowledge, there is no data set publicly available that allows to numerically

evaluate Kinect depth map enhancing methods by providing ground truth data. Therefore,

the quality of the super-resolved Kinect depth maps is assessed qualitatively. Since small

di�erences in the depth map represented as a gray-scale image are almost invisible to the

naked eye, the results are illustrated in Figure 4.6 using ball pivoting surface reconstruction

[17] on a point cloud that was created from the depth map computed by the proposed

algorithm. As it can be seen, the method does not only increase the details in the 3D scene

signi�cantly, but also treats the missing pixels with great success. This is especially obvious
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in the details of the tiger head in Figure 4.5 and the fruit bowl in Figure 4.6. The 3D

rendering illustrates the impact of the bimodal support during reconstruction particularly

around depth discontinuities, but it also leads to smoother surfaces of table and wall due to

the smooth texture of the corresponding intensity signal. It needs to be emphasized that for

this experiment, the same analysis operators are used as in in the Middlebury stereo data

experiment in Section 4.4.2. The prior seems to work well on Kinect data, even though the

training data to learn the analysis operators was captured using a di�erent sensor technology

than the Kinect. This underpins that the learned prior model is general enough to be used

for high quality reconstruction of both synthetic and real world data.

4.5 Bimodal image registration

During the training of bimodal analysis operators, one important assumption made in Sec-

tion 4.3, is the fact that training data is spatially aligned. The learned analysis operator pair

therefore models local image structure in corresponding image modalities, given that they

are spatially aligned. In the bimodal image reconstruction task, spatial alignment of the

two images was guaranteed, while the model was used to reconstruct local image structure.

This section describes an approach to solve the opposite problem: given two images from

di�erent modalities whose internal structure is uncorrupted, can the spatial alignment be

restored with the help of the learned data model?

4.5.1 Prior art on bimodal rigid image alignment

Image registration is the process of geometrically aligning two images that were taken by e.g.

di�erent sensors, at di�erent points in time or from di�erent viewpoints. Automatic image

registration can be categorized into feature-based and area-based algorithms. The �rst group

of algorithms searches for salient features in both images (e.g. edges, corners, contours) and

tries to �nd the matching pairs of features. The geometric transformation that minimizes the

distance between matching features is then used to transform one of the images. Area-based

algorithms do not consider speci�c features but use the whole overlapping region between

both images to evaluate the registration. In both cases a distance metric is needed to either
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match the features or to measure the similarity between image regions. In the unimodal

registration case simple metrics like the sum of squared di�erences or correlation can be

used. Multimodal registration is more challenging because the intensities of two di�erent

sensors can di�er substantially when imaging the same physical object. This phenomenon

is often called contrast reversal, as bright objects in one modality can be very dark in the

other and vice versa. In general, no straight-forward functional relationship between the

intensities of the sensors exists. Nevertheless, the approach of Orchard [134] tries to �nd a

piecewise linear mapping between the intensities of di�erent modalities. The most popular

metric for multimodal image registration is Mutual Information, originally introduced by

Viola and Wells [174] and Collignon et al. [40]. A normalized version was later proposed

by Studholme et al. [161] that is better suited to changing sizes of the overlapping region.

Mutual Information is used for a variety of di�erent applications and sensors as in medical

registration [142], remote sensing [39, 56] and surveillance [94]. More information and an

extensive review of further image registration approaches covering several decades of research

in this area is covered in [24] and [193].

4.5.2 Bimodal image registration algorithm

In the following, an area-based approach that employs the formerly learned bimodal co-

sparse analysis model for registration of two image modalities is presented. Two images

IU and IV of a 3D scene are considered that are sensed through two modalities U and V .

Further, it is assumed that these images can be aligned with a transformation τ that belongs

to one of the following Lie groups G.

• The special orthogonal group SO(2);

• the special Euclidean group SE(2);

• the special a�ne group SA(2);

• or, the a�ne group A(2).
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This means that, if p denotes the homogeneous pixel coordinates for one modality, say IU ,

there exists some τ ∈ G such that the two images are perfectly aligned

IV (τp) ∼ IU (p) for all pixel coordinates p. (4.19)

Here, the standard representation of the above groups in the set of (3× 3) real matrices was

chosen, and the standard group action τp on the homogeneous coordinates is simply given by

a matrix-vector multiplication. Note, that the inclusions SO(2) ⊂ SE(2) ⊂ SA(2) ⊂ A(2)

hold. The shorthand notation τ ◦ I will be used for the transformed image, i.e.

(τ ◦ I) := I(τp) for all pixel coordinates p (4.20)

and cubic interpolation is applied to calculate the pixel values. The goal of this section is

to �nd τ by using the bimodal pair of analysis operators (ΩU ,ΩV ). The idea behind this

approach is, that for an optimal transformation, the coupled sparsity measure should be

minimized. Thus, one is searching for τ? ∈ G such that

τ? ∈ arg min
τ∈G

g
(
ΩF
U IU ,Ω

F
V (τ ◦ IV )

)
. (4.21)

In order to tackle the above optimization problem, an approach that is similar to what has

been proposed in [141] is followed. It is based on iteratively updating the estimate of τ with

group elements near the identity. Locally, the matrix exponential yields a di�eomorphism

between a neighborhood of the identity in G and a neighborhood around 0 in the correspond-

ing Lie algebra g of G. For the considered Lie groups at hand, each Lie algebra is contained

in

g :=

{[
A b

0 0

]
| A ∈ R2×2, b ∈ R2

}
, (4.22)

which is the Lie algebra of A(2). Further restrictions on the parameters then lead to the

corresponding Lie algebras for the respective sub groups: A> = −A and b = 0 for SO(2),

A> = −A for SE(2) , and trA = 0 for SA(2).

Thus, for a transformation δ which is near the identity, we have δ = eH for some matrix

H ∈ g in a neighborhood of 0. In order to tackle the optimization problem of Eq. (4.21),
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the following procedure is followed. For legibility, denote

F (τ) := g
(
ΩF
U IU ,Ω

F
V (τ ◦ IV )

)
. (4.23)

The geometric gradient descent method outlined in Appendix A is applied on the Lie group

G for minimizing F (τ) that updates τ in each step. To that end, the set of (3 × 3) real

matrices is endowed with the inner product

〈H1,H2〉P := tr
(

(H1 � P )H>2

)
, (4.24)

with P having positive entries and � denoting the Hadamard product. The choice of P

allows balancing the translational versus the rotational part of the chosen group, or the

shearing part, respectively. This is commonly done to account for di�erent magnitudes of the

transformation parameters [92]. The algorithm below outlines the optimization procedure.

Here, the Armijo rule is chosen to determine the step size.

Choose the Lie group G of admissible transformations and set τ0 := id (identity) as an

initialization. Then iterate the following steps until convergence.

1. Compute the Riemannian gradient of F (δ ◦ τ) at δ = id, which is an element of the

Lie algebra

G := gradδF (δ ◦ τ)
∣∣
δ=id
∈ g. (4.25)

2. Use the Armijo rule to choose t?

t? ≈ arg minF (etG ◦ τ). (4.26)

3. Update τ ← et
?Gτ .

The derivation of the Riemannian gradient of F (δ ◦τ) is provided in the Appendix B.1. As a

stopping criterion, a threshold for the norm of the Riemannian gradient is chosen empirically.
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4.5.3 Evaluation

The proposed image registration method is compared to two multimodal registration met-

rics, namely Mutial Information (MI) and Normalized Mutial Information (NMI) [114]. The

elastix image registration toolbox [92] provides the reference implementations of these met-

rics together with a gradient descent algorithm to �nd the transformation parameters. For

all methods, the default parameters of the elastix toolbox are used. In these experiments, the

intensity and depth images from the Middlebury stereo set and images from the RGB-NIR

Scene Dataset [25] are used for evaluation. The RGB-NIR dataset consists of RGB images

and Near-Infrared (NIR) images that were captured with commercial Digital Single Lens

Re�ex (DSLR) cameras using �lters for the visible and infrared spectrum. The spectra do

not overlap (the cuto� wavelength is about 750 nm) and the NIR images give statistically

di�erent information from the R, G and B channel. Both datasets are very well aligned and

this registration is used as the ground truth for learning the operators on aligned training

images.

One �xed operator pair is trained for each of the registration scenarios intensity+depth

and intensity+NIR. For the intensity and depth setup, the same operator is used as in the

reconstruction experiments in Section 4.4.2. For the intensity and NIR setup, the same

learning procedure is followed, randomly collecting M = 15000 pairs of square sample

patches of size
√
n = 5 from a total of 9 images in the training set, one from each cate-

gory which is subsequently excluded from testing. The learning parameters are empirically

set to ν = 200, κI = 250, κN = 1000, µI = 250 and µN = 1000. All other parameters are the

same as for intensity and depth.

In order to evaluate the result of the registration of one image pair, a synthetic deregistration

is applied to one of the images. This deregistration consists of a translation and a rotation

and subsequently the registration algorithm searches for a transformation that belongs to

the special Euclidian group. Both the elastix toolbox and the proposed algorithm work on

a Gaussian image pyramid of four levels.

Table 4.3 shows the remaining registration error after running the di�erent registration

algorithms. The proposed method achieves comparable or better results than MI or NMI for

all the modalities. The MI and NMI algorithms fail to register the intensity and depth image
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deregistration (x,y,θ) method intensity-depth (art) intensity-NIR (old building) intensity-NIR (mountain)

0, 0, 10
MI 14.70, 50.14, -2.01 6.14, 1.56, -3.01 0.16, -0.85, -3.52

NMI 9.42, 18.66, -7.83 2.49, 4.26, -9.17 -1.43, -1.05, -3.85
proposed -1.11, -1.41, 0.11 0.35, 0.22, 0.01 -0.34, -2.95, -8.31

-5, -5, 0
MI -1.06, 1.13, 0.02 -0.21, -0.14, 0.05 0.10, -0.06, 0.05

NMI 7.02, 4.96, 0.01 0.03, 0.10, 0.02 0.05, 0.01, 0.06
proposed -1.00, -1.13, 0.03 -1.03, 2.34, 2.72 2.56, 0.41, 0.06

10, 0, 5
MI 8.60, 18.71, -2.49 -8.59, 2.26, -1.32 2.64, 0.08, -1.76

NMI 3.44, 9.79, -3.27 -8.22, 2.27, -1.35 2.58, 0.05, -1.71
proposed -0.90, -0.81, 0.19 0.02, 0.23, 0.06 0.61, 0.37, -0.02

-5, -5, 5
MI 1.38, 11.12, -2.65 -7.53, 1.79, -1.43 1.57, -0.23, -1.77

NMI 3.04, 8.87, -3.01 -8.83, 1.86, -1.36 1.58, -0.27, -1.73
proposed -0.22, -1.40, 0.28 0.22, -0.13, 0.14 0.82, -0.01, -0.28

Table 4.3: Registration residual for di�erent synthetic translations and rotations. Values for the translation
in x and y direction are given in pixels, the angle θ is given in degrees. The best results are printed bold.

pair in most of the cases. This can be explained by the fact that intensity and depth are

much less alike than intensity and near-infrared (see Figure 4.7) and the proposed algorithm

can bene�t from the learned operator pair that is adapted to the respective scenarios. The

MI and NMI algorithms do not require this learning stage and are therefore better suited to

tasks where the modalities are very similar.

Figure 4.8 shows the registration error for various initial deregistrations of the intensity and

depth image pair. Here, the remaining combined registration error is de�ned as

ε =
√
ε2x + ε2y + ε2θ, (4.27)

with εx and εy denoting the remaining translation error in x- and y-direction (in pixels)

and εθ denoting the remaining rotation error (in degrees). Dark blue areas in Figure 4.8

correspond to small registration errors (ε < 1) and red areas show large errors (ε > 50), i.e.

con�gurations where the registration failed. It can be seen that MI is susceptible to large

translations and fails to align the images correctly. The direct comparison of the proposed

method and NMI shows that both algorithms can handle the initial deregistration better

than MI but the proposed method achieves smaller remaining errors over a wider range of

deregistration values.
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(a) Art (intensity) (b) Art (depth)

(c) Old building (intensity) (d) Old building (NIR)

(e) Mountain (intensity) (f) Mountain (NIR)

Figure 4.7: Example images used in the registration experiments. The intensity and depth image pair di�er
signi�cantly, which is challenging for multimodal registration algorithms. The NIR images are more similar
to the intensity images and di�er mainly in areas with vegetation and sky.
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proposed method

translation x

rotation
θ
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Figure 4.8: Remaining combined registration error for di�erent initial deregistrations which consist of a
translation in x-direction and a rotation θ. Dark blue and red areas correspond to small and large errors,
respectively. MI fails to register the images for large translations. The proposed method achieves the smallest
remaining error and can handle large translations and rotations.

Figure 4.9 shows how the proposed method performs for registration of an intensity and

depth image pair using an a�ne transformation.

(a) misaligned intensity-depth image pair (b) after alignment

Figure 4.9: Example of an intensity and depth image pair before (a) and after (b) the proposed registration
process using an a�ne transformation.
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4.6 Discussion

In this chapter, modeling the interdependencies of two image modalities by applying the

analysis model in a joint co-sparsity setup was proposed. The coupled analysis operators

were learned by minimizing a joint co-sparsity function via a conjugate gradient method on

an appropriate manifold.

The descriptive power of the learned model was evaluated in two di�erent application scenar-

ios. First, it was used as a regularizer for the inverse problem of bimodal image reconstruction

and numerical experiments for image-guided depth map super-resolution were provided. As

a second application scenario, the problem of bimodal image registration was considered. An

algorithm on Lie groups was proposed that uses an afore learned pair of bimodal analysis

operators to register intensity and depth images as well as intensity and NIR images.

The experiments in both applications show that the proposed model is indeed a very useful

tool in bimodal image modeling. Nevertheless, some observations regarding applicability and

limitations of the approach need a discussion. The model is based on the assumption that a

pair of analysis operators exists such that analyzed bimodal image patches have co-supports

with signi�cant overlap. In practice, one interesting case is the occurrence of constant

patches in one image modality. Since constant patches always yield maximal co-support,

they trivially �t the model. This has two notable consequences.

First, when learning the model parameters, constant patches do not in�uence the value of

the cost function due to the pre-processing (constant patches are set to zero) and thus the

learning of the operators. Considering a toy-example where one modality is always constant,

this would lead to learning a unimodal analysis operator only for the other modality.

The second consequence concerns image analysis in terms of using the joint sparsity measure

as a prior. Here, a patch pair �ts the model best, if it achieves the largest joint co-sparsity.

In this regard, given a patch in one modality, a constant patch in the other modality will

always be most suitable. This results in an advantage and a drawback. On one hand, forcing

joint co-sparsity if one patch is constant is equivalent to forcing sparsity only in the other

modality, which leads to the unimodal co-sparsity model. Considering that constant patches

are often caused by a phenomenon that is simply not observable in both image modalities at
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once (photometric texture on a smooth surface for instance), this is clearly an advantage. On

the other hand, forcing joint co-sparsity if one patch is not constant will lead to a constant

patch in the other modality without any further constraints. This is the reason why task-

speci�c constraints, e.g. data �tting, are important. This limitation, however, is not speci�c

to this bimodal model per se, but also valid for the unimodal co-sparse analysis model.
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Chapter 5

Co-sparse analysis model for unsupervised

texture segmentation

This chapter is based on the peer-reviewed publication:

M. Kiechle et al. �Model-Based Learning of Local Image Features for Unsupervised

Texture Segmentation�. In: IEEE Transactions on Image Processing 27.4 (Apr. 2018),

pp. 1994�2007

So far, co-sparse analysis operator learning has been discussed as an approach to learn robust

low-level image models from training data and the previous chapters have shown how they

can be applied in image reconstruction tasks with great success. In this chapter, the local

image features that are learned by the analysis operator are explored in their application to

another well-known problem in image processing and computer vision: image segmentation.

Here, the goal is to partition the 2D image plane into sections that represent distinct objects

in the 3D environment. Since co-sparse analysis features excel in describing local image

structures, it is tempting to test their usefulness in image segmentation. Based on the

assumption that the label map of a useful image segmentation is typically piecewise constant

in the image plane, the question is whether a subset of analysis features can be selected

automatically, such that their descriptors of local structure are approximately piecewise

constant and are therefore good candidates for image segmentation features.
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5.1 Texture segmentation

Texture segmentation is a frequently occurring and challenging problem in image processing

and computer vision. For textured images � such as many natural images [113, 119], his-

tological images [115], or crystal structures [117] � the segmentation is typically performed

in two stages. In the �rst stage, a (vector-valued) feature image is derived from the im-

age. The corresponding features are designed to capture the local statistical properties or

oscillatory patterns of a texture. Many classical features are based on linear �lters [143],

for example Gabor �lters [83], wavelet frames [170], windowed Fourier transform [14], fol-

lowed by a pointwise non-linearity [171]. Other popular features are based on local spectral

histograms [98], morphological �lters [180], local statistical descriptors [164] or local binary

patterns [130]. In the second stage, the feature image is segmented. Popular choices include

k-means clustering [83, 170] or mean shift algorithms [135]. More sophisticated (variational)

segmentation models additionally enforce spatial regularity of the segment boundaries: here,

a prominent example is the piecewise constant Mumford-Shah model (or Potts model) [62,

120], which has been used for texture segmentation, for instance in [147, 87, 160, 117].

Prior work on unsupervised texture segmentation

Besides the aforementioned works, there is a series of more recent contributions to unsu-

pervised texture segmentation: Todorovic and Ahuja create a tessellation of texture super-

pixels (texels) and cluster them by a multiscale segmentation and a meanshift algorithm

[164]. Galun et al. [61] utilize a multiscale aggregation of �lter responses and shape ele-

ments. Haindl and Mike² employ a Gaussian Markov Random Field (GMRF) texture model

[71] or a 3D auto regressive model [68], and they perform segmentation based on a Gaussian

mixture model. Scarpa et al. [153] use features based on Markov chains, and then segment

by recursively merging them according to their mutual interaction. Yuan et al. [189] use

local spectral histograms as feature vectors and formulate the segmentation problem as a

multivariate linear regression. In a follow-up work [188], non-negative matrix factorization

is used for segmentation. Storath et al. [160] utilize monogenic curvelets as features and

perform segmentation based on the piecewise constant Mumford-Shah model. In contrast to

this work, the features in [160] are computed from a �xed system of handcrafted �lters which
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are not learned. The method of Panagiotakis et al. [136, 137] is based on voting of blocks,

Bayesian �ooding and region merging. Mevenkamp and Berkels [117] use local Fourier fea-

tures, which are tailored to images with crystal structures, and segment using a convex

relaxation of the piecewise constant Mumford-Shah model. McCann et al. [115] utilize fea-

tures derived from local histograms, and segment using non-negative matrix factorization

and image deconvolution.

It is a fundamental issue that the performance of the features depends strongly on the class

of images or even on the single image. For instance, good features for a natural image may

perform poorly on a histological image. Even more, good features for one natural image may

not perform as well on another natural image. Thus, the design of the features is a critical

task and there are several approaches to this. A straightforward idea is to simply increase

the number of features hoping that at least some features are well suited for the texture pat-

terns of the processed image. Unfortunately, the computational e�ort for segmenting large

feature spaces is very high in practice, in particular for segmentation methods which enforce

regularity of the boundaries. To circumvent these problems, a commonly used strategy is

to manually select a subset from the aforementioned larger set of features, see for example

[87, 188]. However, the manual selection requires human supervision which typically results

in an expensive, time-consuming task. In principle, for each new class of images one should

reevaluate this selection. To avoid manual design of features for each image or each class

of images, it seems natural to learn them from data. In a supervised learning setup, where

a su�ciently large training set of images with similar characteristics and a ground truth

segmentation is available, one can use generic methods, for example the super-pixelation

based method of [146] or more recent methods based on convolutional neural networks [99].

In the present unsupervised setup, such a training set is not available. As a consequence,

the challenge is to �nd a suitable objective function for the learning task and a practical

numerical procedure to optimize the features accordingly.

In this chapter a method for unsupervised texture segmentation is developed where the

features are learned from non-annotated data, i.e. from images without ground truth seg-

mentation. The main contributions of this work are (i) a model for feature learning of

image features for texture segmentation in the absence of annotated training data, and (ii)

a practical algorithm for unsupervised texture segmentation based on that model.

91



Chapter 5 Co-sparse analysis model for unsupervised texture segmentation

Regarding the basic model (i), the starting point is the observation that features are often

designed such that the feature image is approximately constant on a texture segment. This

allows utilizing segmentation algorithms based on a local homogeneity assumption. The basic

idea of this model is to utilize analysis operators to model local image structure of textures

in a way that they produce approximately piecewise constant feature images. In other

words, analysis operator rows are learned such that the codes they produce for neighboring

pixels are roughly equal. As formalized in Section 3.4, the inner products of an analysis

operator row with all patches centered around each pixel of an image is equivalent to a two-

dimensional convolution. Therefore, the resulting codes will be referred to as convolutional

features in this chapter. Besides reasonable constraints on the �lters, such as their norm and

mutual coherence, the objective is to minimize the cost function of the popular piecewise

constant Mumford-Shah segmentation model, i.e. the total length of the discontinuity set of

the corresponding feature image.

Regarding (ii), learning �lters based on the proposed model turns out to be a challenging

optimization problem because it involves a non-smooth and non-convex cost function on the

(non-convex) unit sphere. To make it computationally tractable, this model is decomposed

and relaxed, resulting in two stages of �lter learning and of segmentation. For the relaxed

learning stage, a smooth (yet non-convex) approximation of the cost function is employed.

To minimize this cost function, the geometric conjugate gradient descent method described

in Appendix A is adapted such that it �ts with the proposed model. For the segmentation

stage, the Lagrange formulation of the piecewise constant Mumford-Shah model is employed.

In particular, implied by the model, a data term based on the Mahalanobis distance is

considered. To solve the corresponding problem, the approach proposed in [159, 158] is

extended in order to be able to deal with the Mahalanobis distance. Finally, a post-processing

as in [188] merges small spurious regions to large ones.

The proposed method is evaluated on di�erent types of textured images. A standard bench-

mark for texture-based segmentation is the Prague texture segmentation benchmark [70].

Here, the proposed method achieves a top rank. In particular, the proposed method gives

signi�cantly better results than many earlier methods [164, 61, 71, 68, 153, 189], and slightly

better results than the more recent methods proposed in [188, 117]. Further, the proposed

method is competitive with the currently leading method Priority Multi Class Flooding
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Algorithm (PMCFA) [136, 137]. Besides, the proposed approach provides satisfactory seg-

mentation results on the data set of histological images of [115]. It is emphasized that,

although this is a quite di�erent image class, only minor adjustments to the algorithm pa-

rameterization are necessary. This shows in particular the �exibility of the proposed method,

and the potential for segmenting quite di�erent classes of textured images.

5.2 A model for unsupervised �lter learning for texture

segmentation

As mentioned in the beginning of this chapter, the goal here is to learn suitable features for

texture segmentation when no training data with ground truth is available. The focus lies

again on learning convolutional features inspired by the analysis operators of the previous

chapters. Convolutional �lters are a natural choice because they describe the class of linear

translation-invariant �lters. A feature image is created by applying linear �ltering followed

by a (pointwise) nonlinear transform. More precisely, given an image U ∈ Rh×w, K di�erent

convolution �lters Φ1, . . . ,ΦK are considered and the resulting �ltered images, given in

Matlab-type notation by

F:,:,1 = Φ1U , . . . , F:,:,K = ΦKU . (5.1)

In short-hand notation, they read as F = ΦU . Then, to each �lter response, the same

nonlinear transformation σ is applied pixel wise. In general, σ is chosen to be symmetric,

i.e. σ(x) = σ(−x). Further, it is required that it has fast decaying slope for large x in order to

be robust towards outliers in the �lter responses. The nonlinear transform has proven to be

bene�cial for texture segmentation: according to [171], its purpose is to translate di�erences

in dispersion characteristics into di�erences in mean value. For further details on choosing

σ, see [171]. Here, a logarithmic non-linearity of the form σ(x) := log(1 +µx2) with the free

parameter µ > 0 is proposed. The nonlinear transform is considered to be �xed, and one

is interested in �nding suitable linear convolution operators Φ1, . . . ,ΦK , which de�ne the

features

V = σ(ΦU). (5.2)
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Here, V and ΦU are three dimensional arrays in Rh×w×K , and σ has to be understood as

componentwise application of its scalar version.

Since the unsupervised setup is considered, no labeled training data (i.e. no ground truth

segmentation) for learning the Φ1, . . . ,ΦK is available. In particular, there is no straight-

forward way to devise a loss function for the learning process. It is proposed to utilize a

loss function based on the segmentation model, which in this case is the piecewise constant

Mumford-Shah or Potts model: ideally, the features V are approximately constant on the

texture, and the segment boundaries are su�ciently regular. The idea is to learn suitable

�lters Φ in a way such that their responses (after applying the non-linearity) on the seg-

ments are approximately constant. Minimizing the cost function de�ned by the length of

the discontinuity set of V, denoted by ‖∇V‖0 is proposed. More precisely, as a model for

choosing the convolution kernels Φ1, . . . ,ΦK ,

min
V,Φ
‖∇V‖0 subject to d(V, σ(ΦU)) ≤ ε, (5.3)

is suggested with ε > 0. Here, the minimum is taken with respect to both Φ,V, where the
Φk have unit length, zero mean, and ful�ll an incoherence and a certain center condition.

(Section 5.3.4 elaborates on these constraints). The symbol d denotes a metric, in this

case the Mahalanobis distance as explained in Section 5.4. It is noted, that an optimal pair

Φ∗,V∗ of Eq. (5.3) already consists of an optimal �lter bank Φ∗ together with a corresponding

optimal segmentation V∗.

The model in Eq. (5.3) is computationally hard to access. In particular, the simultaneous

optimization w.r.t. both Φ and V is extremely demanding. As an approximative strategy,

a two stage approach is designed as follows. As a �rst step, the �lters Φ are optimized

using a relaxation of Eq. (5.3) as described in Section 5.3. For the second step, it is noticed,

that for �xed Φ, the Lagrange form of Eq. (5.3) is the piecewise constant Mumford-Shah

model. Therefore, performing a piecewise constant Mumford-Shah segmentation w.r.t. the

Mahalanobis distance (described in Section 5.4) for the obtained feature image is most

suitable. It should be pointed out that even this second step of solving the piecewise constant

Mumford-Shah problem is known to be an Non-deterministic polynomial-time (NP)-hard

problem on its own.
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Figure 5.1: Conceptual schematic of the proposed method with its learning and segmentation stages.

Figure 5.1 illustrates the conceptual �ow of the proposed method with its �lter learning and

segmentation stages. For notational brevity, the derivation of the method is described on

the basis of gray-valued images U ∈ Rh×w. The derivation for multi-channel images follows

the same basic steps. The relevant modi�cations regarding the operators Φ and the jump

penalty are described in Section 5.3.6.

5.3 Learning stage

In this section, it is discussed how to learn the �lters Φ from a given image. As a �rst step, a

near anisotropic discretization of the jump penalty in Eq. (5.3) is presented in Section 5.3.1.

Then, the model in Eq. (5.3) is relaxed to obtain a computationally better accessible sur-

rogate problem to perform the learning task in Section 5.3.2. Further, learning from patch

samples is incorporated in Section 5.3.3, and it is explained how to deal with the constraints

imposed on the �lters in Section 5.3.4, respectively. Next, the simpli�ed learning problem is

summarized and its numerics are discussed in Section 5.3.5. Finally, an explanation how to

generalize the approach for multi-channel images is provided in Section 5.3.6.

As mentioned, the focus in this work lies on sets of linear �lters. Further, it is assumed that

each �lter has a �xed number of n coe�cients Φk ∈ Rn.
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5.3.1 Near isotropic discretization

First, one has to deal with a near isotropic discretization of the jump penalty ‖∇V‖0. As in
[158], a �nite di�erence discretization of the form

‖∇V‖0 =

S∑
s=1

ωs‖∇asV‖0 (5.4)

is used. The vectors as ∈ Z2 \ {0} belong to a �nite di�erence system N with S ≥ 2

elements. For a ∈ Z2, let

‖∇aV‖0 = |{i = (i1, i2) : ‖Vi,: − Vi+a,:‖2 6= 0}|, (5.5)

where the notation Vi,: = (Vi,1, ...,Vi,K) ∈ RK is used to denote the data located in the pixel

with coordinates i ∈ Z2. Here, an eight-connected neighborhood is used and represented by

the �nite di�erence system

N = {(1, 0), (0, 1), (1, 1), (1,−1)} (5.6)

with the weights ω1/2 =
√

2− 1 and ω3/4 = 1−
√
2
2 . For details, see [32, 158].

5.3.2 Relaxation

Since solving Eq. (5.3) is computationally extremely hard, the following simpli�cations are

imposed to make it tractable: For the feature learning part, it is proposed to replace the

strict `0-term in Eq. (5.5) by the smooth non-convex sparsity promoting surrogate function

‖∇aV‖0,ν =
∑
i

log(1 + ν‖Vi,: − Vi+a,:‖22), (5.7)

which is a good approximation of the jump penalty with equality in the limit of its parameter

ν, as was shown in Chapter 3.2. Further, let ε = 0 in Eq. (5.3) which leads to minimizing
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the (preliminary) cost function

f(Φ) =
S∑
s=1

ωs‖∇asσ(ΦU)‖0,ν (5.8)

for learning the �lters. It is noted, that the latter assumption removes the necessity to

perform segmentation during learning and thus allows to proceed sequentially instead of in

an alternating way.

The non-linear transformation σ of the �lter responses in Eq. (5.8) is realized via σ(x) :=

log(1 + µx2) with parameter µ > 0. Note, that σ is smooth and symmetric, and that it

allows to attenuate outliers in the �lter responses.

5.3.3 Learning from patch samples

The training samples are chosen as a subset of image locations (and not all patches given by

the image). This can be motivated as follows: �rst, when learning convolutional �lters by

minimizing Eq. (5.8), the inner products of each �lter kernel Φk with the pixel neighborhood

at all image locations (i, j) are evaluated and summed up w.r.t. i, j. Due to overlap, calcu-

lating the whole sum results in redundant computations. Secondly, since the data of interest

consists of texture segments, repeating patterns are expected which make the full patch set

even more redundant. Based on this intuition, a randomly sampled subset of patches should

su�ce to learn the features from a texture image. Hence, only a �xed number M << h · w
of randomly sampled patches are considered as training set.

Formally, the data in the objective function in Eq. (5.8) is modi�ed from the jump set over

features of the entire image to the empirical mean of a set of randomly sampled super-patches

Ui and as a result, one obtains

f(Φ) =
1

M

M∑
i

S∑
s=1

ωas‖∇asσ(ΦUi)‖0,ν . (5.9)

Here, the super-patches' support templates are extensions of the
√
n×
√
n support template

of the �lters which additionally take the considered �nite di�erence stencil into account,
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Figure 5.2: Illustration of an extracted super patch Ui and its neighboring patches Uas
i with respect to

the utilized �nite di�erence system N .

as visualized in Figure 5.2. For �rst order �nite di�erences, a corresponding one pixel

neighborhood of the considered
√
n×
√
n template is su�cient. Di�erent crops are generated

from these super-patches according to the direction of the �nite di�erence discretization and

evaluate the inner products w.r.t. these crops (and apply σ). Finally, the respective �nite

di�erence operator is applied to the obtained result.

5.3.4 Constraints

In order to avoid trivial solutions such as the zero kernel and redundancies, several constraints

are imposed on the �lters.

Norm and coherence constraints

Analogous to Chapters 3 and 4, norm and coherence constraints are employed. To prevent

the �lter coe�cients from shrinking to zero, the Euclidean norm of each �lter is required to

equal one, i.e.

‖Φk‖2 =

√√√√ n∑
i=1

(Φk)
2
i = 1, k = 1, . . . ,K. (5.10)

Here, n is the number of coe�cients in a single �lter. For brevity, only 2D �lters of quadratic

support with size
√
n×
√
n are considered. The extension to �lters supported on a rectangle

is obvious. Geometrically, the norm constraint implies that each �lter is an element of the

(n − 1)-dimensional sphere Sn−1 in Rn, and that the �lter set constitutes a product of K

such spheres. This structure is commonly referred to as oblique manifold, i.e. matrices in
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Rn×K with normalized columns, denoted by

Φ> ∈ S×Kn−1. (5.11)

In addition, the coherence penalty from Eq. (3.10) is used,

r(Φ) = −
∑

1≤i≤j≤K
log(1− 〈Φi,Φj〉2) (5.12)

to well separate these vectors on the sphere. In particular, this soft constraint avoids pairwise

collinear �lters. It is pointed out that a minimum of that function is clearly achieved if the

�lters are orthogonal to each other, i.e. if the �lter set lies in the corresponding Stiefel

manifold. However, in the context of sparse coding, imposing such orthogonality directly as

a hard constraint has turned out to be too restrictive (see Chapter 2).

Zero-mean constraint

The mean over the patch is a distinguished feature with special discriminative power. It

is considered as a seeded �lter in the �lter bank and the other �lters are learned in its

orthogonal complement. This means that �lters with vanishing �rst order moments are

learned, i.e. �lters whose coe�cients sum up to zero,

n∑
i=1

Φk,i = 0. (5.13)

It should be noted that these �lters are oblivious to the patch mean which might vary, for

instance due to small di�erences in lighting or contrast. Geometrically, the �lters that satisfy

Eq. (5.13) are contained in the hyperplane which contains the origin and which is orthogonal

to 1n = (1, . . . , 1). Hence, the set of feasible solutions forms the same Riemannian manifold

as in Eq. (3.8), recollecting its de�nition

R =
(
Sn−1 ∩ 1⊥n

)×K
. (5.14)

The Riemannian structure is important for the optimization procedure used later on.
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(a) (b)

Figure 5.3: E�ect of the proposed central moment constraint. Two sets of �lters learned from the same gray-
scale cartoon image. (Dark and light pixels represent negative and positive �lter coe�cients respectively,
while neutral grey indicates coe�cients equal or close to zero.) The �lters in (a) were learned with the
coherence constraint from Eq. (5.12) but without the centroid constraint in Eq. (5.16). In contrast, the
�lters in (b) were learned using both the coherence constraint Eq. (5.12) and the central moment constraint
Eq. (5.16). It is clearly visible that the e�ective support sizes of many �lters in (a) are in fact much smaller
than 9 × 9, and that some shifted versions of the same �lter can be identi�ed among all �lters. These
undesirable e�ects are signi�cantly reduced in (b).

Central moment constraint

It might happen that there are two minimizers of Eq. (5.8), which adhere to norm and

coherence constraints, and which are shifted versions of each other, see Figure 5.3a. There, it

can be seen that the e�ective support size of many �lters is much smaller than the prescribed

maximum 9× 9 �lter size.

To avoid learning shifted versions of the same �lter, a constraint on the centroid of the

squared �lter coe�cients is proposed. Intuitively, by penalizing o�-centered centroids of

the pointwise squared (real-valued) �lters, learning of �lters that are shifted versions of their

centered twin is avoided. To be more precise, considering the �lter Φk, it can be noticed that

by the employed normalization one obtains Φ̂>k Φ̂k =
∑

i

∑
j(Φk)

2
ij = 1 where Φ̂k denotes

the vectorized 2D �lter Φk. Thus, the pointwise square Ψk de�ned by (Ψk)ij = (Φk)
2
ij can

be viewed as a discrete 2D probability distribution. Hence, the components of the center of

mass of this distribution may be computed by

c̄k,x = Φ̂>k PxΦ̂k, c̄k,y = Φ̂>k PyΦ̂k. (5.15)
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Here Px is a diagonal matrix realizing the �rst moment with respect to the x-direction∑
ij i(Ψk)ij , and Py is given analogously.

Further, the normalization ck,x = (c̄k,x −
√
n+1
2 )/

√
n−1
2 ) is employed and the analogous nor-

malization for ck,y to obtain quantities ck,x, ck,y centered at 0 with range between −1 and

1. For a �lter centered around the origin, one requires ck,x, ck,y to be close to zero. To this

end, here the (convex) penalty

h(Φ) =
K∑
k=1

− log[(1− c2k,x)(1− c2k,y)] +
1

2
(ck,x − ck,y)2. (5.16)

is introduced. The e�ects of the central moment conditions are illustrated in Figure 5.3 and

in Figure 5.4.

(a) (b)

Figure 5.4: The coe�cients (Φ1)ij of the �rst �lter Φ1 from the learned set Φ depicted in Figure 5.3a without
the centroid constraint (a) and its mass distribution (b). The red circle denotes the centroid (c1,x, c1,y).

5.3.5 Simpli�ed learning problem and numerical optimization

Summing up the considerations of this section, the relaxed objective in Eq. (5.9) is proposed

with the soft coherence constraint from Eq. (5.12) and the soft shift constraint from Eq. (5.16)

which reads as

E(Φ) = f(Φ) + λr(Φ) + κh(Φ). (5.17)
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Here, λ and κ are positive parameters. The soft coherence constraint r makes the �lters

disentangled. The soft shift constraint h pulls the center of mass of the �lters towards

the origin. The learning objective in Eq. (5.17) is a smooth non-convex function. The

hard constraints (norm constraints, vanishing �rst moments) are encoded in the manifold R
de�ned by Eq. (5.14). Equipped with this notation, the learning task reads as

Φ? ∈ argmin
Φ>∈R

E(Φ). (5.18)

In order to solve Eq. (5.18) numerically, e�cient schemes that exploit the geometric structure

of the manifold R are required. The similarity of the geometric structure of the problem

allows to use the same geometric optimization framework as in previous chapters, which is

summarized in Appendix A. The solver requires the gradient of Eq. (5.18) with respect to

the �lters Φ. The derivation of this gradient is provided in Appendix B.2. The procedure

is started with a random initialization in R and iterated until the Frobenius norm of the

Riemannian gradient falls below the threshold of 10−5. For illustration purposes, Figure 5.5

depicts the learned �lter sets for di�erent images.

(a) cartoon image (b) Brodatz 4 (c) Brodatz 12

Figure 5.5: Filter sets (bottom) learned from di�erent textured images (top).
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5.3.6 Extension to vector-valued images

So far, only gray-scale texture images were considered whereas textured images often have

multiple channels, for instance RGB color images. The proposed method is subsequently

extended for the case when the image U is vector-valued with L channels, that is, if Uij ∈
RL. Let Uas

i,l the i-th patch cropped according to direction as in channel l ∈ 1, . . . , L.

Intuitively, di�erent channels of an image should require di�erent �lter sets such that spatial

homogeneity of �lter responses can be achieved. To that end, �rst the formulation of the

patch-based �lter operation is extended

ΦkU
as
i =


Φk,1 0 0

0
. . . 0

0 0 Φk,L



Uas
i,1
...

Uas
i,L

 . (5.19)

In this work, RGB images are considered as examples of multi-channel images. Since the red,

the green and the blue channels are in general highly correlated, it can be safely assumed that

the patch structure within each channel will be similar and set Φk,R = Φk,G = Φk,B = Φk.

Thus, the learned �lters act on the di�erent channels in the same way. It is noted that this

does not hinder jumps in a single channel to be detected.

5.4 Segmentation stage

Having explained the relaxation of the model from Eq. (5.3) to determine suitable �lters Φ,

the segmentation given a set of �lters is discussed next. To segment the vector-valued feature

image σ(F), consider the (formal) Lagrangian version of the discretization of Eq. (5.3) for

�xed Φ to obtain the problem

argmin
V

γ

S∑
s=1

ωs‖∇asV‖0 + d(V, σ(F)). (5.20)

Here, γ > 0 is a parameter for tuning the trade-o� between data �tting and regularity, and

F = ΦU are again the �lter responses with respect to the image U .
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5.4.1 Filter weighting based on the Mahalanobis distance

Recall that all �lters were constrained to have unit norm in the learning stage. As a result,

all �lter outputs are weighted equally regardless of their discriminative power. To account

for this, a data �delity term based on the Mahalanobis distance d is utilized. The covariance

matrix of all feature vectors (after applying the non-linearity) is used. With slight abuse of

notation, let

Σ = cov(G) (5.21)

represent the K × K covariance matrix of all feature vectors in G = σ(F). To de�ne the

corresponding Mahalanobis distance, one writes ΣG for the action of a K ×K matrix Σ on

the third index of the feature image G, i.e. (ΣG)ijk = (ΣGij)k. Then, the Mahalanobis data

�delity reads as

d(V,G) =
∑
ij

‖Σ−1/2(Vij − Gij)‖22

= ‖Σ−1/2(V − G)‖22.
(5.22)

It was observed that the results slightly improve when normalizing Σ−1/2 by

maxij (Σ−1/2)ij .

5.4.2 Variational partitioning of the feature images

By the previous considerations in Section 5.4.1, the minimization problem from Eq. (5.20)

with the Mahalanobis data term needs to be solved. Plugging V = Σ1/2U into Eq. (5.20)

yields the problem

argmin
U

γ

S∑
s=1

ωs‖∇asΣ1/2U‖0 + ‖U −Σ−1/2G‖22. (5.23)

An important observation is that the `0-prior is invariant to invertible matrices acting in the

third dimension, i.e. ‖∇asΣ1/2U‖0 = ‖∇asU‖0. Therefore, the problem from Eq. (5.23) is
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equivalent to

U∗ = argmin
U

γ
S∑
s=1

ωs‖∇asU‖0 + ‖U −Σ−1/2G‖22. (5.24)

As it turns out, this constitutes a classical (vector-valued) piecewise constant Mumford-Shah

problem for data Σ−1/2G with an `2-norm data term. This is a challenging optimization

problem in its own, but there are well-working approximate strategies available. Here, the

ADMM-based method developed in [159, 158] is used. Although computationally more

demanding than other recent approaches [182, 38, 126], this method currently gives the best

quality in practice, as was shown in the comparison [126].

5.4.3 Obtaining the label map

The result obtained from treating the problem in Eq. (5.22) is a vector-valued piecewise

constant function. To obtain the �nal label map (scalar �eld), the vector sum in a pixel is

simply used as (real-valued) index for a segment, i.e. the coe�cients along the feature vector

are summed up at every pixel location. It can be observed that segment boundaries often

lead to high �lter responses which result in small spurious segments at the boundaries. To

remove these, the simple post-processing step from [188] is used, where small regions are

merged with neighbors based on their boundary ratios. It must be noted that this merging

Figure 5.6: In a postprocessing step, small spurious segments are merged into their neighboring segments.
Left: Raw segmentation. Right: �nal segmentation after region merging.
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is not a hierarchical approach. Figure 5.6 depicts the �nal segmentation before and after the

boundary re�nement step.

5.5 Experimental results

The proposed learning and segmentation method is implemented in Matlab. For the seg-

mentation step described in Section 5.4.2, the toolbox Pottslab1 was used. In addition, the

region merging implementation from [188] was applied as post-processing. The experiments

were conducted on a desktop computer with an Intel i7-3930K processor with 3.2 GHz.

The segmentation results produced by the proposed method are compared with existing

algorithms on two di�erent datasets. For a quantitative comparison, the well-known Prague

texture segmentation dataset is used which comprises mosaics of color and grayscale textures.

In addition, the same method is shown qualitatively to be also e�ective in segmenting the

histology images from [115].

5.5.1 Prague texture dataset

The Prague texture segmentation dataset [69] consists of 80 texture mosaics which are syn-

thetically generated from random compositions of 114 di�erent textures from 10 thematic

categories. Color (RGB) and grayscale versions of this dataset are available along with the

respective ground truth segment map and each texture mosaic is of size 512×512 pixels and

the number of segments varies between 3 and 12. For a quantitative comparison, segmenta-

tions of the large color texture dataset � used in the ICPR 2014 contest � are produced and

evaluated against their ground truth using (i) region-based metrics: Correct Segmentation

(CS), Over-Segmentation (OS), Under-Segmentation (US), Missed Error (ME), Noise Error

(NE); (ii) pixel-based metrics: Omission error (O), Commission error (C), Class Accuracy

(CA), recall (CO), precision (CC), type I error (I.), type II error (II.), mean class Accuracy

Estimate (EA), Mapping Score (MS), Root Mean square proportion estimation error (RM),

Comparison Index (CI); (iii) consistency-based metrics: Global Consistency Error (GCE)

1Available at http://pottslab.de.
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and Local Consistency Error (LCE). If available, the Mirkin metric (dM), Van Dongen met-

ric (dD) as well as the Variation of Information (dVI) are reported. For computing these

metrics, the benchmark provided by the authors of the Prague dataset is used. Please see

[70], where a detailed de�nition of above metrics can be found.

For each of the 80 texture mosaics in the benchmark, a separate set of �lters Φ is learned and

the segmentation based on these �lter outputs is computed subsequently. The parameters

for learning the features and performing the Potts segmentation are set empirically and

remain �xed for all instances in the dataset. The learned �lter sets contain K = 41 �lters

of size 9× 9 each and are learned from M = 50 000 patches that are drawn from the mosaic

(uniform random sampling). By setting the parameter M to a large value, e�ectively all

patches of the image are considered for learning. However, it was observed that results did

not improve beyond M = 50K. In principle, the objective function in Eq. (5.3) does not

require the �lters Φ1, . . . ,ΦK to be of equal size. For simplicity, �lters of identical size were

used, and it is noted that �lters of smaller size are included in the utilized �lter set by zero-

padding. As is common practice in patch-based methods (for example [127]), all pixels in the

patch are weighted by a Gaussian mask to give more weight to the central pixel which leads

to slightly better localized segment boundaries. In the learning problem of Eq. (5.18) the

parameters of the non-linearities are set to µ = ν = 2000 and the weights of the coherence

and moment-centering penalties to λ = 10 and κ = 10. In the Potts segmentation that

follows, a weight is required that trades data �delity against spatial homogeneity of the

solution and therefore e�ectively in�uences the degree of over-segmentation. Empirically,

γ = 0.03 is found to provide a good trade-o� between over- and under-segmentation over all

benchmark images. The texture mosaic needed in average 35 min for the learning stage and

9 min for the segmentation stage.

To assess the performance of the proposed approach, the obtained results are compared to

several state-of-the-art algorithms that were used for segmentation on the Prague texture mo-

saics such as the Texel-based Segmentation (TS) [164], Segmentation by Weighted Aggrega-

tion (SWA) [61], Gaussian MRF Model (GMRF) with Expactation Maximization (EM) [71],

3-D Auto Regressive Model with EM (AR3D) [68], Texture Fragmentation and Reconstruc-

tion (TFR) and (TFR+) [153], Regression-based Segmentation (RS) [189], Factorization-

Based Texture Segmentation (FSEG) [188], Priority Multi-Class Flooding Algorithm (PM-
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Method TS SWA GMRF AR3D TFR TFR+ RS FSEG PMCFA PCA-MS Proposed

↑ CS 59.13 27.06 31.93 37.24 46.13 51.25 46.02 69.02 75.32* 72.27 77.73
↓ OS 10.89 50.21 53.27 59.53 2.37 5.84* 13.96 17.30 11.95 18.33 15.92
↓ US 18.79 4.53 11.24 8.86 23.99 7.16 30.01 11.85 9.65 9.41 6.31*
↓ ME 10.45 25.76 14.97 12.54 26.70 31.64 12.01 6.28 4.57 4.19* 3.93
↓ NE 9.93 27.50 16.91 13.14 25.23 31.38 11.77 5.66 4.63 3.92 3.92
↓ O 33.01 36.49 35.19 27.00 23.60 35.11 10.79 4.51 7.25* 7.68
↓ C 85.19 12.18 11.85 26.47 22.42 29.91 13.75 8.87* 6.44 24.24
↑ CA 54.84 57.91 59.46 61.32 67.45 58.75 77.50 83.50 81.13 82.80*
↑ CO 60.67 63.51 64.81 73.00 76.40 68.89 84.11 88.16 85.96 86.89*
↑ CC 88.17 89.26 91.79* 68.91 81.12 69.30 86.89 90.73 91.24 93.65
↓ I. 39.33 36.49 35.19 27.00 23.60 31.11 15.89 11.84 14.04 13.11*
↓ II. 2.11 3.14 3.39 8.56 4.09 8.63 2.60 1.47 1.59 1.50*
↑ EA 66.94 68.41 69.60 68.62 75.80 65.87 83.99 88.10 87.08 88.03*
↑ MS 53.71 57.42 58.89 59.76 65.19 55.52 78.25 83.98 81.84 83.98
↓ RM 6.11 4.56 4.66 7.57 6.87 10.96 4.51 3.76* 4.45 3.27
↑ CI 70.32 71.80 73.15 69.73 77.21 67.35 84.71 88.74* 87.81 89.03
↓ GCE 17.27 16.03 12.13 15.52 20.35 11.23 10.82 6.51 8.33 7.40*
↓ LCE 11.49 7.31 6.69 12.03 14.36 7.70 7.51 3.92 5.61* 5.62
↓ dD 18.52 10.13 9.06* 8.57
↓ dM 23.67 6.41 5.88* 5.30
↓ dVI 13.31 15.80 14.54* 14.88

Table 5.1: Results on the Prague Color Texture Dataset (ICPR2014 Contest). Each row corresponds to a
segmentation quality metric, and the arrow indicates if high ↑ or low values ↓ are better. The �rst rank is
marked by boldface, the second rank is marked by an asterisk.

CFA) [136, 137] and Variational Multi-Phase Segmentation (PCA-MS) [117]. Table 5.1 pro-

vides the segmentation accuracy benchmark results as reported on the benchmark website

[70] and in [188] as well as in [117]. In addition, Figure 5.7 depicts some of the segmentations

produced by the four top-performing methods including the results of the proposed method

for visual comparison.

5.5.2 Parameter sensitivity

In the following, the sensitivity of the proposed method with respect to the most in�uential

parameters is explored. To that end, an evaluation of the method is conducted with varying

parameters on a representative subset of images from the Prague benchmark dataset drawn

from the di�erent categories all, bark, �owers, glass, nature, stone and textile. The parame-

ters �lter size, the number of learned �lters K, the weight of the �lter coherence penalty λ,
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Figure 5.7: Exemplary segmentation results on the Prague texture segmentation dataset. From top to
bottom: input image, ground truth, FSEG [188], PMCFA [136, 137], PCA-MS [117] and the proposed
method.
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and the parameters µ and ν of the employed non-linearities are examined. Each of them is

varied while keeping the others �xed at the values described in Subsection 5.5.1.

The evaluation begins with the parameter λ which controls the maximum coherence between

all �lter pairs and which is given in Eq. (5.18). Table 5.2 shows that if λ is close to zero

which e�ectively disables this constraint, segmentation results deteriorate signi�cantly. For

λ larger than 1, only negligible changes in segmentation results across all quality metrics are

observed. These results underline the importance of the constraint in the proposed learning

objective but also reveal that the choice of its exact value is not critical as long as it is large

enough.

λ 0.1 1 5 10 15 20 50 100

↑ CS 57.38 72.58 70.97 71.59 72.54 65.85 68.56 75.70
↓ OS 9.67 18.64 18.69 18.73 18.63 18.71 18.67 14.81
↓ US 34.65 7.98 3.66 7.78 3.67 14.58 11.72 7.98
↓ ME 2.97 5.19 10.04 9.26 10.04 5.19 5.19 5.19
↓ NE 0.42 5.97 10.42 10.13 10.41 6.14 6.23 5.96
↓ O 26.14 9.44 12.12 12.97 10.04 11.57 11.36 9.34
↓ C 26.22 31.05 31.07 31.19 31.03 31.84 33.88 31.12
↑ CA 68.49 79.52 78.90 79.59 79.75 75.48 77.23 81.27
↑ CO 78.31 83.99 83.13 84.34 84.14 81.47 82.55 85.80
↑ CC 74.22 90.96 91.19 90.45 90.77 86.06 88.20 90.96
↓ I. 21.69 16.01 16.87 15.66 15.86 18.53 17.45 14.20
↓ II. 5.00 1.49 1.38 1.54 1.52 1.99 1.88 1.52
↑ EA 74.10 85.14 84.67 85.41 85.37 81.54 83.22 86.58
↑ MS 69.46 79.69 79.14 79.79 79.78 75.78 77.27 81.47
↓ RM 7.32 3.85 3.83 3.79 3.73 4.71 4.09 3.59
↑ CI 75.11 86.22 85.81 86.33 86.33 82.58 84.23 87.42
↓ GCE 6.34 8.87 8.69 9.86 8.80 9.58 9.78 8.77
↓ LCE 5.31 5.90 5.99 6.83 6.12 5.95 6.05 5.78
↓ dD 12.76 9.99 10.40 10.21 9.93 11.19 10.71 9.06
↓ dM 11.19 5.39 5.48 5.47 5.31 6.10 5.87 4.96
↓ dVI 14.02 15.37 15.50 15.27 15.33 15.15 15.28 15.17

Table 5.2: Sensitivity w.r.t. the �lter coherence penalty λ

Next, the in�uence of the number of �lters K on the results is investigated. From Table 5.3

it can be concluded that the segmentation quality increases for up to 41 �lters and dete-

riorates for larger numbers. The initial improvement might be explained by the increased

discriminatory power obtained from a larger number of di�erent �lters. The deterioration of
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K 11 21 31 41 61 81 122 162

↑ CS 32.37 52.23 70.25 72.59 59.13 43.36 17.43 0.47
↓ OS 6.93 13.94 15.13 18.73 14.74 16.10 21.06 0.00
↓ US 66.81 28.78 13.65 7.78 8.49 3.65 30.43 46.97
↓ ME 0.15 14.43 11.91 5.19 16.14 35.38 29.49 51.15
↓ NE 0.00 14.29 12.53 6.18 15.99 35.68 27.38 47.06
↓ O 51.79 42.58 14.76 10.17 17.22 27.10 52.82 76.49
↓ C 36.68 31.94 22.52 31.26 31.78 46.46 76.02 64.75
↑ CA 44.39 61.58 75.33 80.02 71.65 63.04 38.22 21.89
↑ CO 59.30 71.38 82.67 84.27 77.58 70.48 49.76 38.53
↑ CC 46.42 68.23 81.84 91.25 88.68 84.58 68.67 42.50
↓ I. 40.70 28.62 17.33 15.73 22.42 29.52 50.24 61.47
↓ II. 14.82 6.25 2.83 1.38 2.16 3.69 9.53 15.08
↑ EA 49.77 67.15 80.61 85.61 78.86 71.84 49.06 31.98
↑ MS 39.39 58.60 75.53 80.28 72.36 62.84 32.61 11.44
↓ RM 17.04 10.77 5.81 3.82 5.27 6.13 14.13 18.71
↑ CI 51.20 68.39 81.38 86.62 80.79 74.35 53.51 35.65
↓ GCE 3.21 7.71 7.75 8.65 12.27 17.57 19.34 25.64
↓ LCE 2.27 5.35 6.46 5.88 7.88 12.06 14.01 17.93
↓ dD 21.09 16.48 11.23 9.80 14.39 19.70 30.97 37.73
↓ dM 38.36 18.27 7.81 5.28 7.77 11.91 31.97 43.74
↓ dVI 11.81 13.52 14.41 15.34 15.85 16.05 15.42 13.46

Table 5.3: Sensitivity w.r.t. the number of �lters K

the quality for a larger number of �lters might be explained by an over-segmentation caused

by irrelevant features.

The study is continued with the in�uence of the �lter size. The choice of the �lter size should

relate to the scale of the texture. Although the Prague texture mosaics expose a relatively

large variety of texture scales, �lter sizes of 7 and 9 pixels were found to achieve the best

results in average (see Table 5.4), which con�rms the choice of other works, e.g. [117, 188].

For small �lter sizes, within-texture variations are similar to variations at texture boundaries

which leads to under-segmentation in the segmentation stage. For the proposed method, it

can also be observed that large �lters lead to a decreased localization of texture boundaries,

and to larger spurious segments at texture boundaries as depicted in Figure 5.6.

Next, the non-linearity parameter ν is considered which is used for relaxation of the `0-jump

penalty for �lter learning in Eq. (5.7). Recalling that for large ν the surrogate function

approximates the original sparsifying function well [5, 127]. Table 5.5 lists segmentation

results over a large range of ν. The segmentation fails for small values of ν and improves
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�lter size 5 7 9 11 13

↑ CS 55.23 69.74 71.59 59.68 54.99
↓ OS 9.22 14.05 18.73 13.06 8.56
↓ US 39.69 14.28 7.78 16.11 9.31
↓ ME 6.63 8.39 9.26 17.14 25.10
↓ NE 5.93 7.22 10.13 17.95 25.22
↓ O 38.39 6.18 12.97 12.81 21.91
↓ C 21.64 16.97 31.19 33.25 32.46
↑ CA 62.27 78.59 79.59 71.45 66.58
↑ CO 73.21 84.33 84.34 78.28 74.54
↑ CC 64.40 87.46 90.45 86.10 81.01
↓ I. 26.79 15.67 15.66 21.72 25.46
↓ II. 8.39 1.66 1.54 2.30 3.55
↑ EA 66.87 83.50 85.41 78.82 74.44
↑ MS 60.30 78.59 79.79 72.27 66.01
↓ RM 10.50 5.42 3.79 5.64 6.31
↑ CI 67.78 84.57 86.33 80.37 76.00
↓ GCE 4.07 7.60 9.86 12.27 15.64
↓ LCE 3.59 4.80 6.83 8.01 11.30
↓ dD 14.56 9.97 10.21 14.00 17.09
↓ dM 21.38 5.96 5.47 7.75 10.35
↓ dVI 12.90 14.79 15.27 15.58 15.51

Table 5.4: Sensitivity w.r.t. the �lter size

when increasing it. Due to the decreasing slope of the surrogate function for large values of

ν, the learning algorithm converges more slowly. The choice in these experiments re�ects a

trade-o� between convergence speed and approximation accuracy.

Finally, the sensitivity of the corresponding parameter µ in the non-linearity σ of Eq. (5.8)

is investigated in the results of Table 5.6. The overall segmentation results are found to be

robust over a large range of choices of µ and segmentation quality only starts su�ering for

very large values of µ where the shape of σ degenerates.

5.5.3 Histology dataset

In addition to the texture segmentation benchmark, the proposed method is applied to the

histology dataset used in [115]. The dataset contains 36 color images of size 128 × 128

pixels of stained tissue along with segmentations by an expert. Instead of the adaptive color

quantization used in [115], the images are simply converted to gray-scale prior to processing
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ν 100 500 1000 2000 3000

↑ CS 0.00 29.57 49.31 71.56 69.02
↓ OS 0.00 0.00 6.83 18.71 23.61
↓ US 99.93 69.31 47.39 7.69 7.99
↓ ME 0.00 0.00 0.00 10.04 3.10
↓ NE 0.00 0.00 0.00 10.42 3.86
↓ O 100.00 58.36 44.93 10.50 13.68
↓ C 71.63 40.48 46.06 31.09 32.54
↑ CA 8.43 38.42 53.34 78.44 77.09
↑ CO 28.05 54.02 64.42 83.80 81.35
↑ CC 8.44 39.29 57.00 87.97 91.25
↓ I. 71.95 45.98 35.58 16.20 18.65
↓ II. 24.62 16.39 13.10 2.65 1.40
↑ EA 12.80 43.06 57.62 84.16 83.57
↑ MS −7.92 31.03 47.78 78.78 77.82
↓ RM 30.45 19.14 15.15 4.40 4.36
↑ CI 15.25 44.71 59.04 84.97 84.86
↓ GCE 0.14 2.16 3.13 8.58 9.00
↓ LCE 0.14 1.78 2.55 6.04 6.20
↓ dD 36.01 23.55 18.61 10.04 11.23
↓ dM 75.36 43.91 35.86 7.01 5.93
↓ dVI 9.14 11.20 12.43 15.02 15.74

Table 5.5: Sensitivity w.r.t. the non-linearity parameter ν

for this experiment. It must be pointed out that this renders the problem more challenging

due to the loss of color information. Since the images are considerably smaller than the

Prague texture mosaics, the size of the learned �lters is reduced to 5 × 5, only 13 �lters

are learned and the trade-o� parameter in the segmentation stage is adjusted to a �xed

γ = 0.8. Otherwise, the same setup as in the Prague texture experiment is used. It has

to be emphasized that switching to this quite di�erent class of images only required the

adjustment of these few parameters. The learning stage requires approximately 2 minutes

and the segmentation stage around 3 seconds. Some of the results are given in Figure 5.8.

5.5.4 Discussion

From Table 5.1 it can be observed that the proposed method signi�cantly improves upon

most existing approaches in the Prague texture segmentation benchmark. Moreover, the

segmentations obtained by the proposed method are competitive with the previously best

performing method PMCFA. PMCFA and the proposed method yield a comparable num-
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µ 10 100 2000 5000 10000

↑ CS 74.69 71.79 72.59 65.99 24.30
↓ OS 18.44 22.18 18.73 15.33 6.80
↓ US 7.97 7.89 7.78 6.89 36.01
↓ ME 0.00 0.00 5.19 16.82 29.83
↓ NE 0.66 0.75 6.18 16.76 29.64
↓ O 13.33 13.96 10.17 15.18 59.31
↓ C 31.08 31.16 31.26 30.92 51.44
↑ CA 79.50 79.04 80.02 72.85 41.24
↑ CO 83.65 82.92 84.27 79.35 53.97
↑ CC 91.40 91.46 91.25 84.99 60.72
↓ I. 16.35 17.08 15.73 20.65 46.03
↓ II. 1.43 1.39 1.38 2.73 10.29
↑ EA 84.96 84.83 85.61 78.93 49.49
↑ MS 80.21 79.55 80.28 72.51 36.61
↓ RM 2.95 3.79 3.82 5.22 14.07
↑ CI 86.12 85.93 86.62 80.42 52.84
↓ GCE 8.22 8.12 8.65 13.34 15.58
↓ LCE 5.60 5.83 5.88 8.56 12.02
↓ dD 9.85 10.19 9.80 13.50 27.86
↓ dM 5.31 5.41 5.28 8.21 29.43
↓ dVI 15.59 15.57 15.34 15.26 14.53

Table 5.6: Sensitivity w.r.t. non-linearity parameter µ

ber of �rst and second ranks. The segmentation examples in Figure 5.7 indicate that the

proposed method gives very satisfactory results for segments with clear repeated texture pat-

terns, as for instance in the �rst three examples. Erroneous segmentations appear mostly

when quite di�erent patterns such as the red blossoms on green background in the �fth im-

age are present in a segment. A possible cause for this is that the blossoms are interpreted

as a texture on its own on a smaller scale. Qualitatively, one observed that the proposed

method tends to a slight over-segmentation when large color contrasts are present. This is

not the case for PMCFA. Compared to PMCFA, the proposed method produces smoother

boundaries.

In addition to the Prague texture segmentation benchmark, the algorithm produces useful

segmentations of the tissue images of [115]. It is mostly very close to the expert annotations.

The fact that it was only necessary to adapt the maximum number of �lters K, their maxi-

mum size and the segmentation hyperparameter γ to obtain the presented results, underlines

the usefulness of this learning based method and validates the original idea. It also indicates

the potential of the proposed method for segmenting di�erent classes of texture images.
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Figure 5.8: Segmentation results on the histology dataset from [115]. From top to bottom: input image,
ground truth, ORTSEG [115], and the proposed method.

The main trade-o� of the proposed method is currently a relatively long processing time

per image. In contrast to most other methods where a �xed set of features is used for

segmentation, executing the learning stage prior to segmentation is needed here, which

increases the overall running time. The computational complexity of the learning stage is

primarily determined by size and number of the �lters as well as the number of patches

and their channels that are used for learning. A speed-up could be achieved by reducing the

number of training samples. It was observed that reducing the number of samples for training

from 50K to 10K only slightly decreased the segmentation quality. Also, �lter learning is so

far started with a random initialization for every image. In practical applications, the �lter

set can be initialized with prelearned �lters which could bring down the required number of

iterations during learning and therefore signi�cantly decrease the overall running time. A

further speed-up might be obtained by an optimized implementation.
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To summarize the results of this chapter, a method for unsupervised texture segmentation

where the features are learned from images without ground truth segmentation was devel-

oped. The �rst main contribution is the design of a model for local image features based on

the co-sparse analysis framework, which is extended with local homogeneity assumptions.

The convolutional features are learned in a way that they produce approximately piecewise

constant feature images and are combined with the piecewise constant Mumford-Shah model.

The second main contribution is the development of a practical algorithm for unsupervised

texture segmentation based on that model. To make the problem computationally tractable,

it was relaxed and decomposed into a �lter learning stage and a segmentation stage. In the

�lter learning stage, the geometric conjugate gradient descent method known from previ-

ous chapters was reused with respective adjustments. In the segmentation stage, on the

other hand, the Lagrange formulation of the piecewise constant Mumford-Shah model was

augmented with a Mahalanobis distance as data term. The proposed algorithm yields com-

petitive results on the standard benchmark dataset for unsupervised texture segmentation.

Furthermore, switching to the quite di�erent class of histological images only required the

adjustment of a few parameters. The improved segmentation quality underpins the idea of

learning features adapted to the image under consideration. The proposed approach may be

especially valuable in situations where creating large training sets of accurate ground truth

segmentations or hand-crafting features is expensive.

Topics of future research include speeding-up the proposed method as explained in the

discussion section as well as approaching the proposed non-smooth model more directly,

that is, employing fewer relaxation steps.
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Software implementation

In previous chapters, the explanations of the developed approaches have focused to a large

extent on the respective conceptual details as well as mathematical and numerical chal-

lenges, while software implementation details have only been touched upon in utter brevity.

To achieve the presented results and apply the methods to real data, however, signi�cant

engineering e�ort is required. In this penultimate chapter, the concept of the software frame-

work is presented, which was developed in the course of this thesis and which transfers the

proposed models into operational computer programs.

The design of the software that implements the presented experiments is driven by the

following principles. (i) All proposed methods are formalized data-related questions, for-

mulated as mathematical problems, which are subsequently solved numerically. To enable

fast prototyping and drive short iterations of experimentation, extensibility and reusability

of the software components are central. The fewer changes have to be made in order to

support a new cost function or setup a new experiment, the shorter the time required for

debugging and the bigger the opportunity to optimize reusable parts. (ii) When dealing

with numerical algorithms applied to large datasets, computational e�ciency is an impor-

tant aspect for implementation. In practice, a di�erence in milliseconds of execution time

of an algorithm iteration can be decisive whether or not a suitable parameterization can

be found and an idea works. Clearly, by keeping an implementation �exible for extensions,

optimization of its computational e�ciency becomes more challenging. The goal is to �nd a

good trade-o� between highly optimized but problem-speci�c and better generalizable but

less e�cient implementations. (iii) Collecting, logging and analyzing measurements from
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all parts of the processing pipeline is paramount to translating research ideas into code ef-

fectively. A good software framework provides convenient interfaces for attaching sensors,

visualizing and analyzing measurements and compiling data reports. In addition to these

guiding principles, some other aspects are important. Portability of the implementation to

di�erent platforms is desirable to enable reproducibility of the achieved results for other

researchers in the community. Con�gurability avoids change of code to parameterize the

processing and algorithms for di�erent experiments, which ensures consistency across exper-

iment runs. Finally, support for distribution of the software package to multiple computing

resources and automated collection of sub-results makes it possible to run more experiments

in parallel and explore larger hyper-parameter spaces.

6.1 System overview

The technical realization of the presented methods involves several abstraction layers to im-

plement the necessary computations on hardware. They can be roughly grouped into the

three main layers: Operating System, Compute Engine and Application. (i) The Operating

System (OS) layer implements low-level methods to manage and access hardware resources

such as the processing units (CPU/GPU), the �le system, main memory and network inter-

faces. It typically makes use of high-performance computing libraries that are tailored to

the hardware underneath. Important for the presented algorithms are in particular linear

algebra computing libraries, such as OpenBLAS 1, ATLAS 2, Math Kernel Library (MKL)
3 or CUDA 4. The OS-layer abstracts the low-level algorithms and provides interfaces to

upstream software components. (ii) The Compute Engine is responsible to translate mathe-

matical operations in algorithms de�ned by the Application layer into e�cient routines that

process them numerically. Typically, libraries of the compute engine o�er e�cient imple-

mentations of common algorithms and interface with the low-level system libraries in the

OS-layer. (iii) The top most abstraction layer is the Application layer which implements

larger programs that orchestrate mathematical operations and data manipulations to com-

1https://www.openblas.net
2http://math-atlas.sourceforge.net
3https://software.intel.com/mkl
4https://developer.nvidia.com/cuda-zone
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Application
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Figure 6.1: Overview of the system and its abstraction levels that compose the software implementation.

prise a full-�edged software package for experiments. Figure 6.1 sketches the overall system

layout with its di�erent layers of software abstraction.

To address the implementation considerations discussed in the previous section, the following

design choices were made. For the lower layers, existing and proven implementations were

chosen. Notably, all experiments were conducted on 64bit Windows or Linux operating

systems equipped with MKL and CUDA libraries for e�cient linear algebra operations on

CPU and GPU. MATLAB by MathWorks Inc. was chosen as the computing engine, due

to its extensive implementation library of signal and image processing algorithms, cross-

platform support and good adoption in the research community. The entirety of software

implementations that were created in the course of this thesis, target the application layer.

The developed software package was implemented using the MATLAB scripting language

and is called Multi-Modal Multi-Channel Joint Analysis Operator Learning (M3C-JAOL).

In the following, its architecture is explained in more detail, since it determines the overall

structure of the software programs.

6.2 Software architecture

The application layer de�nes data structures, implements data �ow control and orchestrates

the various processing tasks. All experiments in this thesis share a common pattern of

task types which are executed in a processing chain. In all presented cases, the goal is to
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analysis / visualization

Figure 6.2: Architecture of the software implementation. Depicted is the separation of responsibilities
among the main components and their interactions in the processing pipeline.

learn model parameters from training data or to apply a pre-trained model to reconstruct

or segment images. A common structure can be observed, which involves the following task

groups that interact with each other as depicted in Figure 6.2.

Data loading and pre-processing

All experiment runs start from loading test or training data. The data is stored in di�erent

formats and requires di�erent types of pre-processing before it can be used in experiments.

With the goal of providing correct input data for optimization and evaluation, this com-

ponent is responsible for three task groups. First, it implements di�erent methods to load

experiment data from di�erent locations, such as single �les, nested directory structures,

archives or databases. Second, it handles di�erent �le formats that represent the experi-

ment data. In the presented experiments, single and multi-channel images, depth sensor

data or MATLAB data is used and each of these formats needs to be handled di�erently in

order to be represented on a uniform interface to other components. The third task group

is the pre-processing of data for use in experiments. Typical sub-tasks of pre-processing

include scale and o�set normalizations of the data, recombination, tiling of the data into

smaller parts (e.g. extraction of patches) or more complex operations such as projection of

pixels from one image into the other (for instance required for multi-camera setups). This
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component is designed such that it can be con�gured to run multiple processing steps se-

quentially and implements the necessary interfaces such that one step can be chained with

another.

Objective composer

Among all presented methods, each comprises an objective function which is subsequently

solved numerically. The corresponding optimization problems for learning, reconstruction

or segmentation are constructed as weighted superpositions of multiple functions. To �nd

solutions to these problems numerically, the solvers require an implementation for computing

the objective value, given an estimate of the target variables, and directional derivatives of

these functions with respect to the target variables (only �rst-order solvers are employed

in this work and hence, no higher-order derivatives are required). The responsibility of

the objective composer is to provide an implementation library of (sub-)functions and their

directional derivatives, which are used to create compound objective functions. Based on a

given con�guration, it assembles the objective function and its gradient from parameterized

library components and keeps track of the sub-results they yield during optimization.

Arguably one of the most di�cult parts in engineering gradient based optimization algo-

rithms, is the correct implementation of e�cient directional derivatives, typically obtained by

symbolic di�erentiation and vectorization. Transferring the derivatives to high-performance

code is error-prone. To prevent �aws in this crucial step, an assisting method is built into the

objective composer, commonly referred to as gradient check. It evaluates the implemented

directional derivative ∂f(X)
∂X of a function f at a random point X of the problem domain

and compares it to a numerical di�erentiation at that point, technically asserting

∂f(X)

∂X
= lim
H→0

f(X +H)− f(X)

H
. (6.1)

By testing equality at multiple di�erent random points X and over varying small values of

H, the correctness of the symbolic di�erentiation and its implementation are veri�ed empir-

ically (assuming su�cient smoothness of the function). The implementation of the gradient

check in the objective composer can be run on single functions as well as weighted linear

combinations of multiple functions and has proven to be a valuable tool for catching cod-
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ing errors during development. The objective composer encapsulates parameters, function

and gradient method handles of the optimization problem, and provides them in a uni�ed

interface for implementations in the numerical solver component.

Numerical solvers

Given the formalized optimization objective, the responsibility of this component is to pro-

vide methods for numerically �nding its minimizers. It interfaces with the uni�ed description

of the objective function, provided by the objective composer and keeps track of optimization

progress in each iteration. At the time of writing, it implemented the conjugate gradient

and geometric conjugate gradient solvers (Chapters 3-5) as well as the ADMM solver of the

Pottslab toolbox (Chapter 5).

Evaluation

In a subset of presented experiments, the objective function value provides all the necessary

information to evaluate the success of the processing task. However, in the experiments

where a trained model is used to solve a reconstruction or segmentation task, the objective

function value alone is not su�cient to assess performance. In fact, other metrics are needed

to judge the quality of the processing results. In the presented experiments, these metrics are

all based on a comparison of the ground truth image or segmentation map with the output

of the numerical solver. This type of evaluation is independent of the optimization problem

and requires its own set of algorithm implementations to quantify success. In addition to

consuming the result of the numerical solver, it makes use of data from the data loading

and pre-processing component and is therefore designed as an independent component in

the architecture. As all other components, it collects its own logging data of the evaluations

for reporting.
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Processing pipeline

The processing pipeline implements the software interfaces and component management

facilities to instantiate and execute the di�erent processing steps in the correct order and to

control the data �ow between the di�erent components.

Con�guration management

Experiments that quantitatively evaluate the e�ectiveness of a method typically need to

execute the processing pipeline many times with varying input parameters. To avoid side-

e�ects of varying implementations on results across di�erent runs of an experiment, it is

important to keep the code �xed and only change the con�guration for di�erent runs. Since

the number of settings involved in arranging all components correctly for an experiment can

quickly grow to hundreds of parameters, a component for managing con�guration is imple-

mented. It allows to de�ne structured con�guration objects, which segregate parameters for

di�erent parts of the application and which are then distributed to each of the components

at startup. It supports versioning of con�gurations in structured �les for later reference in

experiment evaluations.

Logging framework

With each run of an experiment, the involved components perform crucial steps in the

transformation of data to obtain a result. During development as well as during experiment

execution, collecting detailed measurements of all steps is crucial for �nding and addressing

issues, selecting hyper-parameters and optimizing execution speed of the experiment. These

measurement logs not only contain the data of a certain state in the processing chain but also

information about execution times and iterations, which increases the dimensionality of this

data further. As displaying all collected data delays execution and overloads the researcher,

collection, analysis and presentation of these measurements need to be separated and visu-

alization of this data at runtime needs to be con�gurable by the researcher. To address this

holistically, a logging framework is implemented that de�nes a uniform data structure and
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Figure 6.3: Visualization of logging data of the numerical solver component that reveals important metric
progression across iterations of the optimization algorithm. This log dashboard shows the trend of objec-
tive function values and its sub-functions as well as statistics of the solver execution, including linesearch
iterations, step sizes and gradient norm.

interfaces for all components to attach their logging data at runtime. Additional support

for storing, analyzing and visualizing the logging data is also available. See Figure 6.3 for

an example of how the logging component presents logging data of the numerical solver in

a dashboard.

Pipeline distribution

Many algorithms require a suitable selection of hyper-parameters and the algorithms pre-

sented in this thesis are no exception. The exact interactions between the hyper-parameters

and the data or the sought result are not always clear. Typically, suitable hyper-parameters

are found empirically, demanding recurrent execution of the experiment with di�erent set-

tings to �nd the most suitable set of parameters. This is achieved by a grid search strategy

that sweeps over a range of values of the parameters and this search can be time-consuming.

However, since di�erent runs of an experiment are independent of each other, they can be

executed in parallel. The pipeline distribution component automates the splitting of con-

�guration sets with di�erent parameters, the execution of multiple pipelines in parallel and

the collection of the respective results. In this way, the same version of the application
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Figure 6.4: Schematic of pipeline distribution. Experiment parameterization are split into individual con-
�gurations and distributed across di�erent compute nodes for parallel execution.

can be distributed to several computing resources and then parameterized by the pipeline

distribution component. Figure 6.4 illustrates this process.

6.3 Discussion

In this chapter, the software implementation that allows the experimental evaluation of the

methods presented in previous chapters was described. The engineering e�ort addresses the

key requirements of quantitative algorithm evaluation and has been paramount in the work

for this thesis and its related publications. This framework was revised several times during

the work for this thesis, subsequently adopting best practices from the �eld and drawing

heavily inspiration from several other scienti�c software packages, in particular from Ca�e

[86], Manopt [21] and TensorFlow [9].

In recent years, research communities in the data sciences have bene�ted to a great ex-

tend from the availability of better software frameworks for data modeling and numerical

optimization. Several research institutes as well as large industry players have made their

frameworks available to the public. Signi�cant engineering e�orts have helped to reduce the
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time required by researches to transfer their models to software and make their execution

e�cient. In particular, parallel execution, distributed and GPU computing have become

critical technologies to design larger models and parameterize them optimally from training

data.

With this recent development, it should certainly be questioned if the e�ort required to build

a custom framework is justi�ed. However, many of the popular frameworks are designed for

experimentation with model architectures and are less suited to implementation of custom

solvers for unsupervised settings. One may therefore argue that in this case building a

small and well tailored framework is valid. A shortcoming of the presented framework is

certainly its lack of extensive support for GPU and distributed computing technologies.

Future versions of this framework therefore need to extend these capabilities or build on top

of the corresponding features of existing frameworks.
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Conclusion

In this thesis, model-based learning of low-level image features without supervision and their

applications in image reconstruction, alignment, and segmentation were investigated. Several

novel signal models were proposed that combine co-sparsity of the representations with

knowledge of the image formation in these applications, along with algorithms to determine

model parameters from training data. E�cient software implementations of these algorithms

were developed to �nd numerical results for each of the proposed methods. In experimental

evaluations with real data and standard benchmarks, these implementations were utilized

to validate the ideas of each approach and to quantify their usefulness in practical image

processing and computer vision challenges. State-of-the-art results were achieved in each of

them, and in some cases prior art was even outperformed. Concretely, three new co-sparse

analysis models for image data were proposed.

First, a co-sparse analysis model with centered rows was introduced. It addresses a shortcom-

ing of previous methods for modeling photometric image data, which is typically brightness

and contrast normalized for learning. These normalizations induce trivial solutions in the

formulations of prior analysis operator learning approaches and it was shown how these are

e�ectively avoided by learning centered analysis operators. A practical algorithm C-GOAL

was designed and implemented that allows to learn centered analysis operators from real

data on a sub-manifold of the oblique manifold. Experimental results suggested that this

method required fewer training samples for learning and led to better analysis operators for

use in reconstruction tasks than in previous approaches where the additional information of

the illumination normalization was not considered.
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Second, a co-sparse analysis model for bimodal image data was proposed. It is aimed at

representing local image structures of spatially aligned images obtained by di�erent imag-

ing technologies through jointly sparse representations. With the assumption that an ob-

ject which is captured by di�erent imaging devices, such as photometric, infrared or depth

cameras causes interdependent patterns in the respective recordings, the described Joint

Bimodal Analysis Operator (JBAO) algorithm �nds correlated sparse representations of

spatially aligned bimodal image structures from real datasets. Subsequently, the learned

model was exploited in bimodal sensor fusion applications. An algorithm was designed

which makes use of a pre-trained bimodal analysis operator to regularize a highly ill-posed

bimodal image reconstruction task. The algorithm was used to reconstruct a corrupted,

noisy and low-resolution image by using a second high-quality image of a di�erent modality

to simultaneously denoise, inpaint and super-resolve the �rst. Experiments on photometric

and depth datasets yielded state-of-the-art results. In addition, rigid image registration was

tackled. There, pairs of images from di�erent cameras which were misaligned through rigid

transformations were automatically spatially registered by a new algorithm, which utilizes

the dense analysis features from the pre-trained model in an optimization scheme on Lie

groups. Experiments on intensity and depth as well as intensity and near infrared data

yielded results that were competitive with the state-of-the-art.

The third model proposed in this thesis, targets the application of unsupervised texture

segmentation. To this end, a spatial regularity condition was introduced into the analysis

operator learning framework, which encourages the selection of image features that are

approximately spatially piecewise constant. The designed algorithm was shown to learn

useful texture features from unlabeled training data. To validate this model, a practical

texture image segmentation algorithm based on the piecewise constant Mumford-Shah model

was derived. Its experimental evaluation on standard unsupervised texture segmentation

benchmarks generated state-of-the-art results, even outperforming most prior methods. In

addition, the method's �exibility to e�ectively model entirely di�erent types of texture data

was evaluated positively through a segmentation experiment with histological images.

The discussed learning problems gave rise to mathematical functions which are very di�-

cult to optimize numerically. To solve these problems, two important measures were re-

quired. First, non-smooth constraints were addressed with suitable relaxations, leading to
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non-convex but smooth objective functions. Second, minimizers of these functions were

found e�ciently by designing geometric conjugate gradient solvers that act on Riemannian

manifolds and exploit the intrinsic geometric structure of the problems. Conducted experi-

ments support that both of these measures were e�ectively used to favorably trade accuracy

with computability.

To conclude, the presented results provide further evidence that unsupervised learning of

shallow representations with sparsity is widely applicable and useful for modeling image

features. Furthermore, it is demonstrated that if additional knowledge about the image

formation in an application is available, incorporating it into the learning task helps to

improve model accuracy and to reduce the required number of training samples.
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Appendix A: Optimization on matrix

manifolds

The learning rule for obtaining analysis operators from data samples, posed in Eq. (3.17), is

a constrained optimization problem. Constrained optimization is a well established research

area and powerful techniques exist to address general problems in this area [179, 22]. In

the optimization tasks presented in this thesis, a speci�c class of constraints is of particular

interest. These constraints express that the solution of the problem is located on a manifold.

Therefore, they are called geometric constraints and the methods designed for tackling prob-

lems with such constraints are called geometric optimization methods [10]. In comparison

to classical optimization methods which operate in an embedding space that can be of much

higher dimension than the manifold, geometric optimization works on the manifold directly,

often leading to lower complexity and better numerical properties [10].

The problems discussed in this thesis are solved using unconstrained optimization in a con-

strained search space that resembles a high-dimensional sphere or a product of spheres caused

by the requirement that iterates must be of �xed norm. What follows is a brief review of the

�rst-order line-search method called geometric conjugate gradients. For a thorough intro-

duction to the topic and detailed discussions of di�erent geometric optimization algorithms

and their convergence analyses, the reader is referred to the text book [10].

Line search methods on matrix manifolds

Let M be a smooth Riemannian sub-manifold of a �nite dimensional real vector space V
with a scalar product 〈·, ·〉 and consider the problem of minimizing a smooth real valued
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function

f : M→ R. (A.1)

The general idea of line search methods like conjugate gradient or gradient descent algorithms

on manifolds is that, starting from some point O ∈ M, the minimizer of Eq. (A.1) is

searched along a curve on the manifold. In this setting, the descent direction is an element

of the tangent space TOM at O, and the updated iterate is searched along geodesics of the

manifold. In the case where f is de�ned in the embedding space V, its gradient ∇f(O) with

respect to 〈·, ·〉 is uniquely determined by

d
dt

∣∣
t=0

f(O + tH) = 〈∇f(O),H〉 for all H ∈ V. (A.2)

The Riemannian gradient G(O), which serves as the (negative) search direction for a gra-

dient descent method on manifolds, is simply the orthogonal projection of ∇f(O) onto the

tangent space TOM, i.e.

G(O) = ΠTOM
(
∇f(O)

)
, (A.3)

with ΠTOM denoting the orthogonal projection with respect to 〈·, ·〉. Now let t 7→ Γ(O,H, t)

denote the geodesic emanating from O ∈M in direction H ∈ TOM, that is

Γ(O,H, 0) = O and d
dt

∣∣
t=0

Γ(O,H, t) = H. (A.4)

Schematically, line search methods on manifolds update the i-th estimate Oi by a step along

the curve

Oi+1 = Γ(Oi,H i, ti), (A.5)

where H i ∈ TOiM is the descent direction and ti ∈ R is a suitable step-size.

In practice, faster convergence can often be achieved by adapting conjugate gradient methods

to the manifold setting. In this case, the search direction H i+1 ∈ TOi+1M is a linear

combination of the Riemannian gradient Gi+1 := G(Oi+1) ∈ TOi+1M and the previous

search direction H i. Since linear combinations of elements from di�erent tangent spaces

are not de�ned, parallel transport along geodesics is used to associate the di�erent tangent
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spaces. Let this parallel transport be denoted by

Ψi+1
i : TOiM→ TOi+1M, (A.6)

the conjugate gradient method on manifold updates the search direction via

H i+1 := −Gi+1 + βi Ψi+1
i (H i), (A.7)

where initially, H0 := −G0. For the implementation used in this thesis, the update pa-

rameter βi is chosen according to a manifold adaption of the Fletcher-Reeves and Dai-Yuan

formula. More precisely, a hybridization of the Hestenes-Stiefel and the Dai-Yuan formula

is employed

βihyb = max
(
0,min(βiDY, β

i
HS)
)
, (A.8)

which was suggested in [44], where

βiHS =
〈Gi+1,Gi+1 −Ψi+1

i (Gi)〉
〈Ψi+1

i (H i),Gi+1 −Ψi+1
i (Gi)〉

, (A.9)

βiDY =
〈Gi+1,Gi+1〉

〈Ψi+1
i (H i),Gi+1 −Ψi+1

i (Gi)〉
. (A.10)

Using this new search direction, the new iterate Oi+1 is obtained through Eq. (A.5) by

moving along the geodesic emanating from Oi in the search direction with a step size ti.

Generally, the ideal step size is found by solving

t̂i := arg min
ti>0

f(Γ(Oi,H i, ti)). (A.11)

To avoid having to solve this sub-problem in every iteration, one can perform an Armijo line-

search instead. This involves setting a large initial step size ti0 and incrementally decreasing

it by a constant factor 0 < c1 < 1 until the Armijo condition

f(Γ(Oi,H i, ti)) ≤ f(Oi) + c2t
i〈Gi,H i〉 (A.12)
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is met [128], typically with very small 0 < c2 < 1.
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Appendix B: Derivation of gradients

B.1 Derivation of the Riemannian gradient in Section 4.5

In this section, the Riemannian gradient of Eq. (4.25) that is required for the bimodal

alignment algorithm is derived. Let 〈·, ·〉P be the Riemannian metric on the Lie group G
inherited from Eq. (4.24) and let F (·) be a smooth real valued function on G. Then the

Riemannian gradient of F at δ ∈ G is the unique vector G ∈ TδG, with TδG as the tangent

space at δ, such that

d

dt

∣∣∣
t=0

F (etHδ) = 〈H,G〉P (B.1)

holds for all tangent elements H ∈ TδG.

For the purpose at hand, the gradient is computed at δ = id. Now let B be the image region

in which the modalities IU and IV should be aligned. One assumes that B is rectangular

and

I(x)x∈B (B.2)

denotes the vectorized version of I over the domain B. Using Eq. (4.23) and the fact that

c := ΩF
U IU is a constant vector,

d
dt

∣∣∣
t=0

F (etHτ) = d
dt

∣∣∣
t=0

g
(
c,ΩF

V

[
(etHτ) ◦ IV

])
= ∇g

(
c,ΩF

V IV (τx)x∈B
)>
ΩF
V

[
d
dt

∣∣∣
t=0

IV (etHτx)x∈B

]
(B.3)

holds by applying the chain rule. The last bracket is a vector where each of its entries is
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computed as

d
dt

∣∣∣
t=0

IV (etHτx) = ∇IV (τx)>Hτx

= vec(τx⊗∇IV (τx))>vec(H), (B.4)

where, vec(·) denotes the linear operator that stacks the columns of a matrix among each

other and ⊗ is the Kronecker product. Note that since the representation with homogeneous

coordinates is used, ∇IV (x) ∈ R3 is the common image gradient of IV with an additional 0

in the third component.

Thus, with

r> : =∇g
(
c,ΩF

V IV (τx)x∈B
)>
ΩF
V

(
vec(τx⊗∇IV (τx))>

)
x∈B

, (B.5)

one obtains

d

dt

∣∣∣
t=0

F (etHδ) = r>vec(H)

= tr(vec−1(r)H>)

= 〈vec−1(r)� P̂ ,H〉P , (B.6)

where the entries of P̂ are the inverse of the entries of P .

Using Eq. (B.1), the Riemannian gradient is the orthogonal projection of vec−1(r)� P̂ with

respect to 〈·, ·〉P onto the tangent space of δ = id, which is the Lie algebra g, i.e.

gradδF (δ ◦ τ) = Πg

(
vec−1(r)� P̂

)
. (B.7)

If for the entries pij of P it is further assumed that

p11 = p22 and p12 = p21, (B.8)
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B.2 Derivation of the Euclidean gradient in Section 5.3

then, for the considered Lie groups, these projections are explicitly given by

ΠSO(X) =

[
1
2(X11 −X>11) 0

0 0

]
(B.9)

ΠSE(X) =

[
1
2(X11 −X>11) x12

0 0

]
(B.10)

ΠSA(X) =

[
(X11 − 1

2 tr(X11)I2) x12

0 0

]
(B.11)

ΠA(X) =

[
X11 x12

0 0

]
, (B.12)

where X ∈ R3×3 is partitioned as

X =

[
X11 x12

x>21 x22

]
. (B.13)

B.2 Derivation of the Euclidean gradient in Section 5.3

The Euclidean gradient required in the numerical optimization of the �lter learning problem

described in (5.17) is derived as follows. The cost function to minimize in the learning stage

consists of three terms, one each for the approximated cost of the jump set f(Φ), the centroid

penalty r(Φ) and the coherence penalty h(Φ).

Sparsity objective: First, the derivative of the approximated cost of the jump set is

provided. Explicitly, let Φk ∈ Rn represent a vectorized 2D �lter of size
√
n ×
√
n that is

applied to a set of M vectorized 2D image patches U ∈ Rn×M by taking their standard

inner product Φ>k U ∈ R1×M . For a set of �lters, one obtains ΦU ∈ RK×M accordingly. By

denoting Das = ∇asσ(ΦU) shorthand for the di�erence of features along as and using �
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for the Hadamard product, one obtains

∂

∂Φ
f(Φ) = 4νµ

∑
s=1

ωas

[(
Das

1 + ν‖Das‖2
� ΦUas

1 + µ(ΦUas)
2

)
U>as

−
(

Das

1 + ν‖Das‖2
� ΦU0

1 + µ(ΦU0)2

)
U>0

]
(B.14)

for the derivative of f . Here, Uas is the n ×M data matrix containing vectorized patches

Uas
i cropped from the M sampled super-patches in direction as according to Figure 5.2.

Centroid penalty: Second, the derivative of the centroid constraint in Eq. (5.16) is re-

quired. This constraint acts on each �lter independently. For the individual �lter, one

gets

∂

∂Φk
h(Φ) =

4

w−

[
ck,xPx

1− c2k,x
+

ck,yPy

1− c2k,y
+

1

2
(ck,x − ck,y)(Px − Py)

]
Φk (B.15)

by using w− =
√
n−1
2 as a shorthand notation for the half width of the �lter. By stacking

the individual derivatives, the derivative of h with respect to the entire �lter set can then

be written as
∂

∂Φ
h(Φ) =

[
∂

∂Φ1
h(Φ), . . . ,

∂

∂ΦK
h(Φ)

]>
. (B.16)

Coherence penalty: Last, the gradient of the coherence penalty in Eq. (5.12) is provided

in [74] as

∂

∂Φ
r(Φ) =

 ∑
1≤i<j≤k

2Φ>i Φj

1−
(
Φ>i Φj

)2 (Eij + Eji)

Φ. (B.17)

Here Eij is a matrix with a one in component ij and zero elsewhere.

Finally, the gradient of the cost function in Eq. (5.17) is obtained by combining Eq. (B.14),

Eq. (B.16) and Eq. (B.17), yielding

∇E(Φ) =
∂

∂Φ
f(Φ) + λ

∂

∂Φ
r(Φ) + κ

∂

∂Φ
h(Φ). (B.18)
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