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Abstract 10 

Bicyclists are extremely flexible road users who employ various tactical behaviours to optimise 11 

comfort, directness and time efficiency while crossing a signalised intersection. Tactical choices 12 

faced by bicyclists at signalised intersections include whether to use the bicycle lane, roadway or 13 

sidewalk, to stop at or violate a red traffic signal, to ride with or against the mandatory direction of 14 

travel and the method of executing a left turn. The outcome of these choices has a direct impact 15 

on traffic safety and efficiency at intersections. In this paper, revealed choice data from 4710 16 

bicyclists at four intersections in Munich, Germany are used to estimate binomial and multinomial 17 

logistic regression models to predict tactical choice outcomes. Optimal predictor sets are selected 18 

from the main and two-way interaction effects of 43 independent variables describing the situation, 19 

strategic behaviour and prior tactical choices of bicyclists using recursive feature elimination. A 20 

simplified model is estimated using the statistically significant variables of the optimal predictor set. 21 

The prediction power of the resulting regression model is assessed using k-fold cross validation. 22 

The models to predict response to a red signal and the type of left-hand turn exhibit high predictive 23 

power while the prediction of infrastructure selection and the direction of travel proves to be difficult. 24 
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1. Introduction 27 

Bicycling is an inexpensive, non-polluting transportation mode that is often the fastest alternative 28 

for trips under 5 km in cities and towns (Dekoster et al., 2000). Benefits can be realised on both the 29 

personal and societal level by capitalising on the economic, health and mobility advantages of 30 

bicycling. However, persisting concerns with bicyclist safety and the challenge of maintaining traffic 31 

efficiency for all modes while encouraging bicycling have underlined the need for quantitative 32 

research in the field of bicycle transport. Knowledge concerning the tactical behaviour of bicyclists, 33 

factors motivating this behaviour and the relationship between bicyclist behaviour and overall traffic 34 

safety and efficiency is necessary to support future transport planning and engineering endeavours. 35 

Furthermore, the development of driver assistance systems and Intelligent Transport Systems that 36 

aim to protect bicyclists requires detailed knowledge about the behaviour of bicyclists. Models for 37 

predicting the behaviour of bicyclists based on previous movements and the current situation are 38 

imperative inputs for such systems.  39 

 According to the framework defined by Michon (1985), tactical behaviour of road users 40 

comprises conscious decisions made on a time horizon of seconds to minutes, such as path 41 

selection and response to a red signal. Tactical behaviour is guided by strategic choices, such as 42 

route choice, and is constrained by feedback from the operational level, including current speed 43 

and necessary evasive actions. Tactical decisions are also influenced by situational factors, such 44 

as the geometry of the intersection and the traffic signal control. The sociodemographic 45 

characteristics and preferences of the bicyclist influence the interpretation of the situation and 46 

determine the response. 47 

 To address the lack of definitive knowledge concerning the factors motivating tactical 48 

behaviour, four choices faced by bicyclists at signalised intersections are investigated in this paper; 49 

the choice between riding on the bicycle lane, roadway or sidewalk (infrastructure selection), the 50 

reaction to a red signal, the decision to ride with or against the mandatory direction (direction of 51 

travel) and the path selection when executing a left turn manoeuvre. Logistic regression models 52 

are estimated to predict the outcome of these choices using strategic choices, prior tactical 53 

https://doi.org/https:/doi.org/10.1016/j.trf.2018.10.002


PREPRINT 
Please cite: Twaddle, Heather, & Busch, F. (2019). Binomial and multinomial regression models for 
predicting the tactical choices of bicyclists at signalised intersections. Transportation Research Part F: 
Traffic Psychology and Behaviour, 60, 47–57. https://doi.org/https://doi.org/10.1016/j.trf.2018.10.002 

 

Twaddle and Busch  3 

 

behaviour and situational variables as predictors. The aim of this research is to identify relationships 54 

between the environment and the tactical behaviour of bicyclists in order to design infrastructure 55 

and traffic signal control that encourages overall rule-conform and safe behaviour. As such, the 56 

personal attributes of the bicyclist, including gender, age and bicycling experience, are not included 57 

in the literature review or model development. 58 

2. Literature Review 59 

There is a large body of research that has examined the link between various tactical behaviours 60 

of bicyclists and the occurrence of a collision. For example, riding against the mandatory direction 61 

of travel has been found in many studies to increase the risk to bicyclists (Alrutz and Meewes, 62 

1980; Gerstenberger, 2015; Herslund and Jørgensen, 2003; Ortlepp, 2009; Räsänen and 63 

Summala, 1998; Summala et al., 1996). In addition, a number of studies have investigated the type 64 

of infrastructure available for bicyclists and the risk of injury (Aultman-Hall and Hall, 1998; Lusk et 65 

al., 2011; Moritz, 1998; Reynolds et al., 2009; Rivara et al., 1997; Rodgers, 1995; Teschke et al., 66 

2012). The tactical use of different parts of the road infrastructure is very likely also associated with 67 

risk, although no studies were found that directly examine this link. Other tactical behaviours, 68 

including violating red traffic signals and riding on the sidewalk, have been found by researchers 69 

to pose significant risk to bicyclists and other road users (Lusk et al., 2011; Moritz, 1998; Reynolds 70 

et al., 2009; Rivara et al., 1997; Rodgers, 1995; Schramm et al., 2008; Teschke et al., 2012). 71 

 Although the relationship between bicyclists’ actions and resulting safety risk is relatively 72 

well understood, few studies have investigated the motivating factors of these behaviours. The 73 

findings of the few studies identified in the course of this review are summarised below. 74 

 Infrastructure Selection: The choice between using a bicycle lane, the roadway or the 75 

sidewalk is motivated by the type and width of an available bicycle lane (Alrutz et al., 2009; 76 

Guo et al., 2013) as well as the quality and possible obstruction of the facility (Kuller et al., 77 

1986). Researchers have investigated the role of bicycle, pedestrian and motor vehicle traffic 78 

volumes in infrastructure selection, but have come to contradictory conclusions (Alrutz et al., 79 
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2009; Guo et al., 2013; Kuller et al., 1986). Non-observable motivating factors, such the desire 80 

to ride two abreast, preparation for upcoming manoeuvres and a feeling of safety were given 81 

by bicyclists who decided not to use an available bicycle lane (Kuller et al., 1986). 82 

 Response to red signal: In their review of 16 studies pertaining to red light violations of 83 

bicyclists, Richardson & Caulfield (2015) found percentages of red light violation (or violators 84 

for self-reported surveys) to range between 6.9% and 87.5%. The infrastructure used by a 85 

bicyclist is linked to the likelihood of a red light violation (Allen et al., 2005; Johnson et al., 2011; 86 

Richardson and Caulfield, 2015). In addition, the traffic flow on the current approach as well as 87 

on the crossing road of the intersection plays an important role in red light compliance (Johnson 88 

et al., 2013, 2011; Pai and Jou, 2014). The desired manoeuvre of the bicyclist (straight, right 89 

or left turn) has been found to be related to red light violation (Johnson et al., 2013, 2011), as 90 

is the length of the signal phase (Pai & Jou, 2014). 91 

 Direction of travel: Two main reasons for riding against the given direction of travel were 92 

identified by Kuller et al. (1986). First, bicyclists are more likely to violate traffic rules upon 93 

approaching their final destination or an intermediate goal and consequently ride the last few 94 

meters of the trip against the mandatory direction of travel. The second reason given for riding 95 

against the mandatory direction of travel is route simplification. No other literature was found 96 

that investigates this behaviour. 97 

 Left turn manoeuvre: In comparison to motor vehicles, which are constrained to one method 98 

of carrying out a left turn, bicyclists have a number of rule conform and non-conform options 99 

for implementing this manoeuvre (depicted in Figure 1): 100 

1. Direct left turn – turn with the motor vehicle traffic in one signal phase (l in Figure 1)  101 

2. Indirect left turn – turn over two phases using a pedestrian style turn (m in Figure 1) 102 

3. Indirect left turn (wrong way) – similar to the indirect left turn but moving against the 103 

mandatory direction of travel during both of the turning phases (n in Figure 1)  104 

The selection of one of these paths appears to be influenced by the state of the traffic signal 105 

and the infrastructure used upon arrival (Amini et al., 2016).  106 
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3. Methodology 107 

Revealed choice data from bicyclists at four research intersections in Munich, Germany are used 108 

to develop logistic regression models. Intersections were selected with differing types of bicycle 109 

infrastructure (on-road bicycle lane, separated bicycle path and no specific bicycle infrastructure), 110 

volumes of bicycle and motor vehicle traffic and road geometry. A two-hour segment of video data 111 

recorded during the morning peak hour at each intersection was selected for a detailed behavioural 112 

analysis. Detailed data describing the tactical behaviour of the bicyclists and the situation at the 113 

intersection were extracted. Finally, timing information from the traffic actuated signals was 114 

supplied by the City of Munich and was linked to the observed data using a corrected time stamp.  115 

 A total of 37 independent variables describing the strategic and prior tactical choices of the 116 

bicyclist as well as the situational factors are used as predictors in the logistic regression models. 117 

A visual representation of selected independent variables and dependent variables (tactical 118 

choices) is shown in Figure 1. 119 

 120 

Figure 1 Graphical representation of selected tactical choice options and situational factors  121 
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Adequate variation in the independent variables is assured through the selection of research 122 

intersections with approaches differing from one another in terms of traffic flow and geometry. 123 

Variables describing the presence of other road users as well as the state of the signal control at 124 

the moment a bicyclist arrives provide further variation between cases. A list of the categorical 125 

independent variables with observed frequencies is shown in Table 1. The continuous independent 126 

variables with descriptive statistics are given in Table 2.  127 

Independent variable Category 1 Category 2 Category 3 

Strategic / prior tactical choice 

Manoeuvre 
Straight 

N=4040 (80.4%) 

Right 

N=454 (9.0%) 

Left 

N=534 (10.6%) 

Infrastructure selection 
Bicycle lane 

N=3532 (94.8%) 

Roadway 

N=67 (1.8%) 

Sidewalk 

N=128 (3.4%) 

Geometry 

Bicycle lane 
None 

N=634 (12.4%) 

Bicycle lane 

N=4485 (87.6%) 

 

Bicycle lane type 
None 

N=634 (12.4%) 

On-road 

N=2070 (40.4%) 

Separated 

N=2415 (47.2%) 

Parking 
None 

N=2268 (44.3%) 

Parking 

N=2851 (55.7%) 

 

Left turn lane 
None 

N=2484 (48.5%) 

Left turn lane 

N=2635 (51.5%) 

 

Centre island 
None 

N=1729 (33.8%) 

Centre island 

N=3390 (66.2%) 

 

Traffic 

Right lane occupancy  
No 

N=1617 (33.5%) 

Yes 

N=3214 (66.5%) 

 

Signal control 

Signal phase  
Red 

N=2817 (55.6%) 

Green 

N=2253 (44.4%) 

 

Specific bicycle signal 
Shared signal 

N=2438 (47.6%) 

Bicycle signal 

N=2681 (52.4%) 

 

Table 1 Description of categorical independent variables 128 

  129 
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Independent variable Unit Mean 
Std. 

Dev. 
Min Max 

Geometry 

Bicycle lane width m 1.5 0.7 0.0 2.2 

Sidewalk width m 3.5 1.6 0.9 9.3 

Roadway width (approach) m 7.9 3.0 0.0 12.0 

Roadway width (opposite approach) m 5.3 1.7 0.0 10.9 

Driving lanes (approach) - 2.4 0.9 0 4 

Driving lanes (opposite approach) - 1.6 0.6 0 2 

Total roadway width (current road) m 18.3 7.0 8.8 28.6 

Total roadway width (crossing road) m 16.8 5.5 8.8 28.6 

Total driving lanes (current road) - 4.0 1.4 2 6 

Total driving lanes (crossing road) - 3.6 1.2 2 6 

Traffic 

Cars in approach - 2.5 2.0 0 10 

Trucks in approach - 0.1 0.4 0 3 

Pedestrians in approach - 1.3 1.8 0 20 

Bicyclists in approach - 1.6 2.1 0 16 

Traffic volume (approach) veh/h 646.6 309.7 0 1800 

Traffic volume (crossing road) veh/h 523.9 286.6 0 1800 

Percentage HDV and buses (approach) % 4.9 4.0 0 16 

Percentage HDV and buses (crossing road) % 5.6 4.2 0 16 

Bicyclist volume (approach) bicycles/h 337.7 201.3 0 660 

Bicyclist volume (crossing road) bicycles/h 199.4 159.2 0 660 

Pedestrian volume (approach) ped/h 255.9 238.2 0 1160 

Pedestrian volume (crossing road) ped/h 329.5 358.3 0 1160 

Signal control 

Time since last phase change (red) s 25.5 16.2 0 98 

Time since last phase change (green) s 14.8 11.8 0 102 

Time until next phase change (red) s 28.0 17.9 0 91 

Time until next phase change (green) s 17.2 16.0 0 103 

Phase length  s 43.3 17.2 7 104 

Table 2 Description of continuous independent variables130 

 131 
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A logistic regression model for each of the tactical choices is specified and calibrated using 132 

recursive feature elimination, which combines k-fold cross validation and predictor selection based 133 

on the log likelihood of the model. The main effects and two-way interactions between the 134 

situational variables listed in Table 1 and Table 2 are used as an initial set of explanatory variables. 135 

The following steps are taken to identify the optimal set of explanatory variables for each of the 136 

tactical choice models and estimate the corresponding β parameters: 137 

1. Data pre-processing: Relevant cases are extracted from the complete dataset to analyse 138 

each of the tactical choices. For example, to estimate the regression model for predicting the 139 

response to a red signal, only data from bicyclists who encountered a red signal are selected 140 

(N=1935). Each of these data subsets is unique and is pre-processed prior to model 141 

estimation. This is done by removing variables that contain zero or near to zero variance. 142 

The pair-wise correlations between the remaining variables are assessed to identify inter-143 

correlated variables. If a pair-wise correlation greater than 0.6 is identified, the variable with 144 

the largest mean correlation with all other variables is removed from the dataset. Data pre-145 

processing is carried out in two phases. In the first phase, the main effects of variables listed 146 

in Table 2 are assessed and variables with near to zero variance and high correlations with 147 

other variables are removed from the dataset. Pair-wise interaction terms for the remaining 148 

variables are created and the pre-processing procedure is repeated.   149 

2. Recursive feature elimination: The resulting dataset is divided into 𝑘 = 10 equal subsets 150 

for the k-fold cross validation. The model is estimated using 𝑘 − 1 of the subsets and is 151 

validated using the remaining subset. This is repeated 𝑘 times using each of the data subsets 152 

once for validation. The backwards elimination process is carried out within each fold. The 153 

model is estimated using all of the variables remaining after the pre-processing step. The 154 

predictive power of the model, which is assessed using the Area Under the Curve (AUC) for 155 

binomial regression and accuracy for multinomial regression, is assessed using the held back 156 

dataset and the variables are ranked based on their importance. The least important variable 157 
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is removed and the model is re-estimated with the remaining variables. This is repeated until 158 

only one variable remains in the model. The optimal set of predictors (largest AUC or 159 

accuracy) is identified for each fold. The performance profiles of the variable subsets are 160 

calculated over all the held back samples of the k-fold cross validation and the optimal set of 161 

predictors is determined. 162 

3. Full model estimation: The entire data subset is used to estimate the 𝛽 values for the 163 

identified optimal set of predictors. In order to improve the interpretability of the regression 164 

models, the main effect of both variables in two-way interaction terms are added to the 165 

optimal set of predictors for the final model. This is done even if the main effects do not 166 

improve the predictive power of the model.  167 

4. Simplified model estimation: The 𝛽 values are re-estimated for a reduced model comprised 168 

of only the predictors found to be statistically significant (p < 0.01) in the full model. In cases 169 

where a main effect can replace an interaction term, the main effect predictor is given 170 

preference to maintain model simplicity.   171 

Binomial and multinomial regression models are estimated and evaluated using the statistics 172 

software package R (The R Foundation, 2016). The recursive feature elimination (RFE) function of 173 

the classification and regression training package caret (Kuhn, 2016) is used to identify the most 174 

powerful set of predictors from the 37 variables using combined backward selection and k-fold 175 

cross validation. The reduced models are presented in this paper because the detail offered is 176 

deemed sufficient for application in microscopic traffic simulation.  177 

 The Receiver Operating Characteristic (ROC) curve, which compares the false positive rate 178 

with the true positive rate of a binary predictor at various classification thresholds, is used to assess 179 

the binomial regression models and identify the optimal classification threshold. According to 180 

Hosmer et al. (2013, p. 174), “this measure has now become the standard for evaluating a fitted 181 

model’s ability to assign, in general, higher probabilities of the outcome to the subgroup who 182 

develop the outcome (y=1) than it does to the subgroup who do not develop the outcome (y=0)” 183 
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The predictive power of the model can be deduced from the Area Under the Curve (AUC), with 184 

larger areas signifying higher predictive power. AUC values range between 0.5 and 1.0, where 0.5 185 

indicates that the model is no better at predicting the outcome than random chance and 1.0 a 186 

perfect prediction. In general, AUC values between 0.5-0.7 indicate poor discrimination that is 187 

marginally better than random change, 0.7-0.8 indicates acceptable discrimination, 0.8-0.9 signifies 188 

excellent discrimination and above 0.9 shows outstanding discrimination (Hosmer et al., 2013). 189 

 In addition to evaluating the power of the logistic regression model, the ROC Curve is useful 190 

for selecting a well-suited cut-off point for the classification. Typically the cut-off point for a 191 

classification model is set at 0.5 such that if 𝑃(𝑦 = 1) ≥ 0.5, the outcome is predicted to be one. 192 

This value can be shifted, however, to maximize the sensitivity and specificity of the regression 193 

model. Here, a cut-off point is selected for each of the models that is plotted on the upper most left 194 

corner of the ROC Curve.  195 

 Along with AUC, the following metrics derived from classification tables are used to evaluate 196 

the predictive power of the models: 197 

 Accuracy (∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒 + ∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠⁄ )  198 

 Sensitivity (∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄ ) 199 

 Specificity (∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ∑ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁄ ) 200 

 Positive Predictive Value (∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁄ ) 201 

 Negative Predictive Value (∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ∑ 𝑇𝑒𝑠𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁄ )  202 

To evaluate multinomial logistic regression models, these evaluation parameters are generalised 203 

to the Mean Sensitivity, Mean Specificity, Mean Positive Predictive Value and Mean Negative 204 

Predictive Value across all choice categories.  205 

4. Results 206 

The resulting reduced regression models are presented in this section. The tactical choices 207 

selected for analysis, all of which are described using nominal variables with two or three 208 
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categories, are listed in Table 3 along with the number and percentage of bicyclists observed 209 

carrying out each tactical option. 210 

Tactical choice Category 1 Category 2 Category 3 

Infrastructure selection 

(no bicycle lane) 

N=451 

Roadway 

N=428 (94.9%) 

Sidewalk 

N=23 (5.1%) 
 

Infrastructure selection 

(bicycle lane) 

N=3727 

Bicycle lane 

N=3532 (94.8%) 

Roadway 

N=67 (1.8%) 

Sidewalk 

N=128 (3.4%) 

Response to red signal 

N=1935 

Stop 

N=1552 (80.2%) 

Violate 

N=383 (19.8%) 
 

Direction of travel 

N=4710 

With direction  

N=4651 (98.7%) 

Against direction 

N=59 (1.3%) 
 

Left turn manoeuvre  

N=426 

Direct turn 

N=66 (15.5%) 

Indirect turn 

N=166 (39.0%) 

Indirect turn (wrong way) 

N=194 (45.5%) 

Table 3 Tactical choices with categories and observed counts and percentages 211 

For each of the tactical choices, the optimal set of predictors is identified using recursive feature 212 

elimination and k-fold cross validation. The final model is estimated using predictors found to be 213 

statistically significant (𝑝 ≤  0.01). The predictors are sorted by their predictive power within the 214 

main effects and interaction effects. The most important predictors in each model are discussed 215 

and compared with the findings of previous studies. 216 

4.1. Infrastructure selection without bicycle lane 217 

Over 95% of the observed bicyclists use the roadway on approaches with no bicycle lane. A 218 

reduced model consisting of only two predictors is found to provide acceptable predictive power 219 

(AUC = 0.76). Traffic attributes on the approach have an important influence on infrastructure 220 

choice; the likelihood of using the roadway decreases by 1.76 (0.58-1) times for each additional car 221 

in the approach. This finding echoes that of Kuller et al. (1986), who found that high traffic volumes 222 

discourage roadway use. The manoeuvre of the bicyclist also affects the choice outcome. 223 

According to this model, bicyclists turning left are 6.09 (0.16-1) times less likely to use the roadway. 224 
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This finding seems counterintuitive but is due to the fact that many bicyclists turning left ride against 225 

the mandatory direction of travel (route simplification) and therefore use the sidewalk rather than 226 

the roadway.  227 

N = 451  

Sidewalk use = 0, Roadway use = 1 
β 

Odds 

ratio 
Sig. 

Intercept 4.24 69.20 0.000 

Cars in approach -0.54 0.58 0.000 

Manoeuvre (left turn) -1.81 0.16 0.000 

 

Classification threshold: 0.95 

AUC 0.76 

Accuracy 0.73 

Sensitivity 0.73 

Specificity 0.78 

Positive Predictive Value 0.98 

Negative Predictive Value 0.13 

Table 4 Binomial logistic regression model and k-fold cross validation for infrastructure selection 228 

without bicycle lane 229 

While roadway use is predicted with considerable success, the prediction of sidewalk use proves 230 

to be less reliable. This could indicate that bicyclists choose to use the sidewalk for reasons that 231 

are unobservable, such as a feeling of safety or the anticipation of upcoming manoeuvre. 232 

Additionally, the low number of sidewalk use observations limits the potential to identify patterns 233 

between the independent variables and this choice outcome. A high classification threshold of 0.95 234 

is identified, which addresses the observed skewness in decision outcomes by shifting predictions 235 

into the sidewalk category. 236 

4.2. Infrastructure selection with bicycle lane 237 

If a bicycle lane is provided, bicyclists tend to use this facility. Over 95% of bicyclists observed on 238 

approaches with a bicycle lane selected this infrastructure, which is slightly higher than the 90% 239 

found by Alrutz et al. (2009). Infrastructure selection can be framed as a discrete choice with three 240 
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possible outcomes, bicycle lane, roadway or sidewalk. Initially, a multinomial logistic regression 241 

model was estimated to predict infrastructure use. Although correlations were found between the 242 

predictors and the choice outcome, these correlations were not strong enough to estimate a model 243 

capable of predicting roadway or sidewalk use.  244 

 In order to capitalise on the simplicity of binomial logistic regression as well as the 245 

adjustable classification threshold, the model shown in Table 5 is developed to predict whether a 246 

bicyclist will use an available bicycle lane or not. The strongest predictor of bicycle lane use is a 247 

right turn manoeuvre, which decreases the likelihood of using the bicycle lane by 6.03 (0.17-1) 248 

times, due to increased sidewalk use. The width of the bicycle lane plays an important role in the 249 

choice, with the likelihood of bicycle lane use increasing by 1.25 times for each additional cm of 250 

width (𝑒
21.56

100 ). This effect is moderated by the volume of bicycle traffic on the approach, which 251 

decreases bicycle lane use by 1.09 times for each increase in one bicycle per hour. The presence 252 

of other road users in the approach has an interesting effect on bicycle lane use. If there are only 253 

cars or only pedestrians present, the likelihood of bicycle lane use is reduced. If both are present, 254 

however, the interaction term increases the probability of bicycle lane use. This make intuitive 255 

sense as the presence of other road users on the sidewalk and roadway likely push bicyclists into 256 

an available bicycle lane. The presence of other bicyclists on the other hand, propels bicyclists from 257 

the bicycle lane, particularly on separated facilities.  258 

 The model predicts bicycle lane use with acceptable overall accuracy. However, the 259 

prediction of bicycle lane use is more reliable than that of not using the bicycle lane. This is likely 260 

due to the overrepresentation of bicycle lane observations in the sample and the potential role of 261 

personal attributes and unobservable factors in the choice to use the roadway or sidewalk when a 262 

bicycle lane is available. The high classification threshold of 0.96 coerces the prediction of not using 263 

the bicycle lane, but these predictions are often incorrect (low negative predictive values).  264 

 The finding of previous studies indicate that the width and type of the bicycle lane are 265 

decisive in infrastructure selection while traffic conditions are unimportant (Alrutz et al., 2009; Guo 266 

et al., 2013). According to the findings here, the number and type of road users in the approach 267 
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have a strong influence on infrastructure choice. Previous studies found that wider bicycle lanes 268 

have a higher rate of acceptance, which is confirmed. However, unlike Alrutz et al. (2009), on-road 269 

bicycle lanes are found here to have a higher acceptance than separated facilities.  270 

N = 3727 

No bicycle lane use = 0, Bicycle lane use = 1 
β 

Odds 

ratio 
Sig. 

Intercept -30.86 0.00 0.000 

Manoeuvre (right turn) -1.80 0.17 0.000 

Bicyclist volume – approach (bicycles/h) 0.09 1.09 0.000 

Bicycle lane width (m) 21.56 2.32e9 0.000 

Bicycle lane type (separated) -5.65 0.00 0.001 

Driving lanes (same direction) 1.24 3.47 0.000 

Sidewalk width (m) -1.50 0.22 0.002 

Centre island  1.81 6.10 0.010 

Parking -1.67 0.19 0.000 

Pedestrians in approach -0.16 0.85 0.033 

Bicyclists in approach -0.04 0.96 0.421 

Cars in approach -0.01 0.99 0.828 

Bicycle lane width (m) * Bicyclist volume – approach (bicycles/h) -0.05 0.95 0.000 

Bicycle lane type (separated) * Bicyclists in approach -0.28 0.76 0.000 

Bicycle lane type (separated) * Sidewalk width (m) 0.75 2.11 0.056 

Cars in approach * Pedestrians in approach 0.06 1.06 0.047 

    

Classification threshold: 0.96 

AUC 0.76 

Accuracy 0.73 

Sensitivity 0.73 

Specificity 0.72 

Positive Predictive Value 0.98 

Negative Predictive Value 0.13 

Table 5 Binomial logistic regression model and k-fold cross validation for infrastructure selection 271 

with bicycle lane  272 

 273 

 274 
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4.1. Response to a red signal  275 

When faced with a red traffic signal, roughly a fifth of the observed bicyclists violated the signal. 276 

The manoeuvre carried out by a bicyclist plays a very strong role in whether or not he or she will 277 

stop at a red light. Bicyclists turning right are 134.15 times more likely to run a red light than those 278 

riding straight across the intersection. On one-way roads, bicyclists turning left are 13.76 times 279 

more likely to violate a red light (Roadway width – opposite = 0). For each meter of roadway width 280 

in the opposite direction, this probability increases by 1.33 times. This is due to the fact that carrying 281 

out an indirect left turn against the mandatory direction of travel includes the violation of the first 282 

traffic signal. The time elapsed since the signal became red has a deterring effect on red light 283 

violations; bicyclists become 1.35 (
1

𝑒−0.03∗10) times less likely to violate the signal for each ten 284 

seconds passed since the signal became red.  285 

N = 1935 

Stop = 0, Violate = 1 
β 

Odds 

ratio 
Sig. 

Intercept -1.22 0.29 0.000 

Manoeuvre (right turn) 4.90 134.16 0.000 

Time since signal change (s) -0.03 0.97 0.000 

Manoeuvre (left turn) 2.62 13.76 0.000 

Roadway width – opposite (m) -0.28 0.76 0.000 

Manoeuvre (left turn) * Roadway width – opposite (m) 0.28 1.33 0.008 

 

Classification threshold: 0.46 

AUC 0.92 

Accuracy 0.91 

Sensitivity 0.85 

Specificity 0.93 

Positive Predictive Value 0.74 

Negative Predictive Value 0.96 

Table 6 Binomial logistic regression model and k-fold cross validation for response to red signal 286 

The estimated binomial logistic regression model estimates the choice outcome with high accuracy. 287 

The prediction of signal compliance is slightly more reliable than that of signal violation. However, 288 
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the prediction rates for both suggest that this behaviour is highly influenced by observable 289 

situational factors. The resulting model supports previous studies that found that turning right 290 

increases the probability of violating a red light (Johnson et al., 2011). The influence of additional 291 

parameters, such as the signal phase, infrastructure selection and left turn manoeuvre, are 292 

identified here. 293 

4.2. Direction of travel 294 

The vast majority of the observed bicyclists rode in the mandatory direction of travel (98.7%). 295 

According to the reduced model, bicyclists turning left are 9.25 times more likely to travel against 296 

the direction of travel than those carrying out other manoeuvres. Interestingly, the availability of a 297 

left turn lane discourages travelling against the direction of travel to a large extent (6.36 (
1

𝑒−1.85) 298 

times decrease in likelihood). Parking increases the likelihood of riding against the mandatory 299 

direction of travel by 2.67 times while the presence of a separated bicycle lane decreases the 300 

likelihood by 9.87 (
1

𝑒−2.29) times. Together, these two factors increase the probability of riding the 301 

wrong way by 8.60 times.  302 

Far fewer bicyclists were observed riding against the mandatory direction of travel in this study than 303 

reported by Kuller et al. (1986) and Wachtel & Lewiston (1994). The only finding that could be 304 

verified in this study is that bicyclists turning left are more likely to ride the wrong way, reflecting 305 

the goal of path simplification that was noted by Kuller et al. (1986). 306 

 The cross-validation indicates a high success rate for predicting riding with the direction of 307 

travel and a low success rate for predicting those riding against the given direction of travel. The 308 

very low classification threshold of 0.02 reflects the skewing in the choice observations and the low 309 

positive predictive value of 0.04 reflects the inaccuracy caused by manipulating the classification 310 

threshold.  311 

 312 

 313 
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N =4710 

With direction = 0, Against direction = 1 
β 

Odds 

ratio 
Sig. 

Intercept -4.50 0.01 0.000 

Manoeuvre (left turn) 2.23 9.25 0.000 

Left turn lane -1.85 0.16 0.000 

Bicycle lane type (separated) -2.29 0.10 0.019 

Parking 0.98 2.67 0.202 

Parking * Bicycle lane type (separated) 2.15 8.60 0.035 

  

Classification threshold: 0.02 

AUC 0.77 

Accuracy 0.76 

Sensitivity 0.78 

Specificity 0.76 

Positive Predictive Value 0.04 

Negative Predictive Value 0.99 

Table 7 Binomial logistic regression model and k-fold cross validation for riding direction  314 

4.3. Left turn manoeuvre 315 

A multinomial regression model with three choice outcomes, direct left turn, indirect left turn and 316 

indirect left turn against the mandatory direction of travel, is estimated to predict the type of 317 

manoeuvre carried out by the bicyclist. The three choice outcomes are described in Section 2 and 318 

are shown graphically in Figure 1. The estimated 𝛽 parameters are in reference to the base 319 

category, which is the direct left-hand turn.  320 

 The most important predictor for the type of left turn is roadway use; bicyclists using the 321 

roadway are more than 60 (
1

𝑒−4.12) times less likely to carry out an indirect left turn and 20.5 (
1

𝑒−3.02) 322 

times less likely to carry out an indirect left turn against the given direction of travel. Two 323 

characteristics of the infrastructure design, the type of bicycle lane and the presence of car parking, 324 

influence the choice outcome. The probability of an indirect left turn increases by 3.42 times if there 325 

is only parking and 6.05 times if there is only a separated bicycle lane. If both these features are 326 

present, the likelihood of this manoeuvre increases by 4.43 (𝑒1.80+1.23+−1.54) times. A similar 327 

https://doi.org/https:/doi.org/10.1016/j.trf.2018.10.002


PREPRINT 
Please cite: Twaddle, Heather, & Busch, F. (2019). Binomial and multinomial regression models for 
predicting the tactical choices of bicyclists at signalised intersections. Transportation Research Part F: 
Traffic Psychology and Behaviour, 60, 47–57. https://doi.org/https://doi.org/10.1016/j.trf.2018.10.002 
 

Twaddle and Busch  18 

 

mechanism is at play for the choice to execute an indirect left turn against the mandatory direction 328 

of travel (5.18 times increase with parking only, 9.54 times increase with a separated bicycle lane 329 

only and 9.21 (𝑒2.26+1.64+−1.68) times with both features). The signal phase and the presence of 330 

other road users also play an important role in the left turn choice.  331 

N = 426 

Base category = Direct left turn 
β 

Odds 

ratio 
Sig. 

In
d

ir
e

c
t 

le
ft

 t
u

rn
 

Intercept -0.40 0.67 0.704 

Infrastructure selection (roadway) -4.12 0.02 0.000 

Bicycle lane type (separated) 1.80 6.05 0.052 

Parking 1.23 3.42 0.165 

Signal phase (green) 1.17 3.23 0.023 

Bicyclists in approach 0.53 1.69 0.008 

Parking * Bicycle lane type (separated) -1.54 0.22 0.158 

Signal phase (green) * Bicyclists in approach -0.72 0.49 0.003 

     

In
d

ir
e

c
t 

le
ft

 t
u

rn
 

(w
ro

n
g

 w
a
y

) 

Intercept 0.56 1.74 0.606 

Infrastructure selection (roadway) -3.02 0.05 0.000 

Bicycle lane type (separated) 2.26 9.54 0.020 

Parking 1.64 5.18 0.076 

Signal phase (green) -2.13 0.12 0.000 

Bicyclists in approach 0.30 1.34 0.121 

Parking * Bicycle lane type (separated) -1.68 0.19 0.136 

Signal phase (green) * Bicyclists in approach -1.11 0.33 0.022 

  

Accuracy 0.73 

Mean Sensitivity 0.70 

Mean Specificity 0.85 

Mean Positive Predictive Value 0.73 

Mean Negative Predictive Value 0.86 

Table 8 Multinomial regression model and k-fold cross validation for left turn manoeuvre 332 

 In contrast to the multinomial regression model for infrastructure selection, which failed to 333 

predict roadway and sidewalk use, the multinomial regression model for the left turning manoeuvre 334 

provides exceptional predictions for all three types of turn. The predictive power of this model 335 
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suggests that this decision is greatly influenced by observable situational factors at the intersection. 336 

 The resulting model supports the findings of a previous study that found that bicyclists using 337 

the roadway often carry out direct left turns while bicyclists on the sidewalk and bicycle lane do not 338 

(Amini et al., 2016). The signal stage and the time since the last stage change are also found to 339 

play a role in manoeuvre selection, as previously found.  340 

5. Discussion and Conclusion 341 

The findings presented in this paper are useful for understanding the relationships between the 342 

tactical choices of bicyclists at signalised intersections and the situational factors, strategic and 343 

prior tactical choices of the bicyclist. This knowledge is useful for predicting the behaviour of 344 

bicyclists and designing infrastructure and traffic control that takes this knowledge into 345 

consideration. For example, the manoeuvre of a bicyclist is found to have a strong influence on a 346 

number of tactical choices at intersections, including the reaction to a red light, direction of travel 347 

and infrastructure selection. If turning rates are known for given intersections, the levels of rule 348 

breaking behaviour such as red light violations and riding against the mandatory direction of travel 349 

can be predicted. Additional information describing the static attributes of the intersection, such as 350 

the geometry and average traffic volumes, provides further input for predicting tactical behaviour 351 

without using dynamic attributes. If it is possible to determine the dynamic state of the intersection, 352 

including the number of road users currently present and the state of the traffic signal, the choice 353 

outcomes can be predicted with more accuracy. Possible applications of dynamic models include 354 

traffic flow simulations, driver assistance systems and autonomous driving systems.   355 

 There is considerable variation between the predictive power of the four regression models. 356 

The models estimated to predict the reaction to a red signal and the type of left turn manoeuvre 357 

are capable of predicting each of the choice categories with exceptional accuracy. In contrast, the 358 

infrastructure selection models and the direction of travel model have difficulty predicting seldom 359 

occurring choice outcomes. Two possible explanations for this variation are suggested. First, the 360 

tactical behaviours may be motivated by different types of factors. The tactical behaviours that are 361 
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highly explainable using the developed regression models are likely motivated by situational factors 362 

that are externally observable. The difficulty in predicting at least one of the outcomes for the 363 

remaining behaviours, the direction of travel and infrastructure selection, suggests that the 364 

motivation factors for these choices are intrinsic or cannot be observed in the restricted observation 365 

area of one intersection. The predictive power of the estimated models is indicative of which rule 366 

breaking behaviours of bicyclists can be addressed through infrastructure design and traffic signal 367 

control and which are rooted in non-observable factors. The high predictive power of the models 368 

for the reaction to a red signal and the type of left turn manoeuvre suggest that these behaviours 369 

can be modified by altering the situation at the intersection. Riding against the given direction of 370 

travel and infrastructure selection, on the other hand, may be more responsive to softer measures 371 

such as safety campaigns and traffic rule enforcement.  372 

 A second possible explanation for the variation in predictive power is the number of 373 

observations for each of the choice outcomes. The observational data for the models with higher 374 

predictive power (left turn manoeuvre and red signal reaction) contained a relatively balanced 375 

distribution of the choice outcomes. Conversely, the tactical choices that are dominated by one 376 

outcome (e.g. using a bicycle lane and riding with the mandatory direction of travel) are found to 377 

be more difficult to predict using regression models. The low number of observations for seldom 378 

occurring events makes it very difficult to discern patterns in the independent variables that lead to 379 

this outcome. This is compensated in this paper by selecting varying classification thresholds and 380 

coercing predictions into the seldom occurring category. However, these coerced predictions are 381 

often incorrect, leading to very low negative (or positive) predictive values. Integration of further 382 

observations from additional intersections with differing geometric and traffic characteristics may 383 

increase the predictive power of these regression models.  384 

 Nevertheless, in light of the high accuracy and relatively balanced prediction success for all 385 

the possible outcomes, the regression models developed for the selection of a left turn manoeuvre 386 

and response to a red signal could be used by researchers and practitioners to predict the outcome 387 

of these choices. The effects of intrinsic factors, such as the socio-economic characteristics of the 388 
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bicyclist, personality traits (e.g. aggressiveness and nervousness), as well as factors that are 389 

observable over a long distance (e.g. route choice) on the tactical choices of bicyclists at signalised 390 

intersections would be an interesting extension of this work for future research. 391 
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