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Abstract

The underlying mechanisms of Parkinson´s disease are not completely revealed. Espe-

cially, early diagnostic biomarkers are lacking. To characterize early pathophysiological

events, research is focusing on metabolomics. In this case-control study we investigated

the metabolic profile of 31 Parkinson´s disease-patients in comparison to 95 neurologically

healthy controls. The investigation of metabolites in CSF was performed by a 12 Tesla

SolariX Fourier transform-ion cyclotron resonance-mass spectrometer (FT-ICR-MS). Multi-

variate statistical analysis sorted the most important biomarkers in relation to their ability to

differentiate Parkinson versus control. The affected metabolites, their connection and their

conversion pathways are described by means of network analysis. The metabolic profiling

by FT-ICR-MS in CSF yielded in a good group separation, giving insights into the disease

mechanisms. A total number of 243 metabolites showed an affected intensity in Parkinson´s

disease, whereas 15 of these metabolites seem to be the main biological contributors. The

network analysis showed a connection to the tricarboxylic cycle (TCA cycle) and therefore

to mitochondrial dysfunction and increased oxidative stress within mitochondria. The meta-

bolomic analysis of CSF in Parkinson´s disease showed an association to pathways which

are involved in lipid/ fatty acid metabolism, energy metabolism, glutathione metabolism and

mitochondrial dysfunction.

Introduction

Parkinson´s disease (PD) is a severe neurodegenerative disease with a prevalence of 0.6% in 65

to 69 years old population that increases up to 3.5% in the population between 85 and 89 years

old [1]. The clinical diagnosis relies on the typical cardinal symptoms: resting tremor, bradyki-

nesia, and rigidity. Hallmark of pathophysiological events is the progressive loss of dopaminer-

gic neurons, but symptoms appear when at least 60–80% of dopaminergic neurons are lost [2].

Up to date, early diagnostic biomarkers are lacking [3], therefore emerging interest is moving
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towards metabolic changes due to disease. Consequently, recent research is focusing on meta-

bolomics to uncover early metabolic events in PD by the use of different analytical technologies.

LeWitt et al. applied ultrahigh performance liquid chromatography-mass spectrometry and

gas chromatography-mass spectrometry for the analysis of plasma and cerebrospinal fluid

(CSF) metabolome of 49 PD affected patients [4]. They identified prognostic plasma-biomark-

ers. Burté et al. identified, by MS-based techniques, 20 metabolites in human serum associated

with PD and mild cognitive impairment [5]. The identified metabolites were mainly linked to

the fatty acid oxidation pathway. A metabolic profiling approach was implemented for CSF by

the use of NMR resulting in 15 metabolites, predominantly amino acids, which distinguished

between PD and control [6]. The mouse brain metabolome of the disease manganism–a Mn-

related Parkinsonian disease—was investigated by Fourier transform-ion cyclotron reso-

nance-mass spectrometry (FT-ICR-MS) [7, 8], a MS-based technique that offers ultra-high res-

olution and mass accuracy. This technique allows for the concurrent detection of thousands of

metabolites in a complex matrix [9] as well as the assignment of putative molecular formulas

[10, 11] to each experimentally detected feature. Changes in amino acid, fatty acid, glutathione,

glucose and purine/pyrimidine metabolisms were detected, showing an increase in oxidative

stress and in inflammation markers [7, 8]. A recent review summarizes the results of metabolic

profiling studies in Parkinson´s disease [12].

Generally, the metabolomics’ investigations can be targeted or non-targeted. A targeted

investigation is restricted to a specific compound or a class of compounds whereas non-tar-

geted analysis provides a comprehensive chemical characterization of a complex bio/chemical

system [13]. The analysis by FT-ICR-MS is semi-quantitative and considers the intensity of

each detected feature as a measure of their concentration. Therefore, this technique is suitable

for the profile screening in a discovery oriented way. For the first time, to our knowledge, a

non-targeted FT-ICR-MS was applied to get a not restricted deeper knowledge about the bio-

chemical pathways involved in PD. A suitable liquid to reflect metabolomic changes in neuro-

degenerative diseases is CSF, which is in close contact to the brain [14, 15].

A machine learning approach sorted the most important compounds in relation to their

ability to differentiate PD and control. An additional network analysis revealed mass differ-

ences of the selected, most important compounds for supplemental information about ongo-

ing processes. Notably, the network analysis showed a connection to the tricarboxylic acid

(TCA) cycle, to mitochondrial dysfunction, and increased oxidative stress within mitochon-

dria. With this unique combination of metabolic profiling and network analysis, the investiga-

tions provided deeper insights into ongoing disease mechanisms and the major effectors of the

disease. Especially oxidative stress (e.g. lipid peroxidation and changes in antioxidant com-

pounds like glutathione) and neuroinflammation (e.g. arachidonic acid) are known to be

involved in PD [16] and hence are the main focus of our investigation. Alterations may be due

to primary disease processes as well as due to compensatory or reactive (e.g. inflammatory)

mechanisms and epiphenomena.

Materials and methods

Chemicals

The purchased chemicals are: MeOH from CHROMASOLV LC-MS (Sigma-Aldrich,

St. Louis, USA) and L-Arginine from Sigma Aldrich (>98% purity, St. Louis, USA).

Study participants

A total of 126 CSF-samples were taken by standardized lumbar puncture at the Cologne Uni-

versity Hospital and were originally not intended for scientific use, but stored in the biobank
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of the hospital. The procedure of lumbar puncture was performed without problems and

patients recovered quickly. Thirty-one of the CSF-samples were taken from patients diagnosed

with PD and 95 samples derived from neurologically healthy controls (Table 1). The control

patients underwent lumbar puncture after neurological symptoms (e.g. headache, dizziness) to

exclude diseases of the central nervous system. Regarding the medication of the PD-patients,

the patients are divided into 18 patients without any PD-specific medication, 11 patients with

PD-specific medication (one or more of the following drugs: L-dopa, Madopar, Clarium,

Sifrol/Pramipexol, Azilect, amantadine, and Artane), and two patients had electrodes for deep

brain stimulation.

After lumbar puncture the samples remained at room temperature up to 6 hours for routine

diagnostics. Subsequently, the samples were stored at -20±1˚C temporary and later at -80±1˚C

until measurement. The count of erythrocytes was determined in a semi-quantitative manner

in a counting chamber (negative = no erythrocytes, isolated < 5 erythrocytes/μL, +< 90 eryth-

rocytes/μL, ++> 90 erythrocytes/μL, +++ > 350 erythrocytes/μL, plentiful = overlying eryth-

rocyte layers). Only samples with negative or isolated erythrocytes were involved in the study.

The study was approved by the Ethics Committee of the University Cologne (09.12.2014, no.

14–364). All patients consented to scientific use of their CSF-samples.

Sample preparation

Prior to FT-ICR-MS analyses a protein precipitation extraction (PPE) was performed. The

protocol was adapted from Forcisi et al. [9]. The frozen CSF-samples were thawed on ice and

vortex-mixed for 30 seconds prior to treatment. Ice-cold MeOH (320μl) was added to an 80 μL

aliquot of each CSF sample. The samples were vortex-mixed for 30 s at room temperature and

centrifuged at 18,900 g for 10 min at 4˚C. The recovered supernatant was diluted (dil. factor:

1/70) in MeOH prior to FT-ICR-MS analysis.

FT-ICR-MS measurement

Ultrahigh resolution mass spectra were acquired by means of FT-ICR-MS (Solarix, Bruker,

Bremen, Germany), equipped with a 12 Tesla superconducting magnet (Magnex Scientific,

Varian Inc., Oxford, UK) and an electrospray ionization (ESI) source (Apollo II, Bruker Dal-

tonics, Bremen, Germany). An external calibration was performed by analysis of a 3 mg/L argi-

nine solution in MeOH with calibration errors below 0.1 ppm. All measurements were

performed in negative ionization mode and ion accumulation time of 300 ms for higher sensi-

tivity. The injection flow rate was 2 uL/min for electrospray. Operating temperature was

180˚C for rapid solvent evaporation inside the electrospray. The ESI nebulizer gas flow rate

was 2 L/min and the dry gas flow rate 4 L/min. The spectra were recorded in a mass-to-

charge-ratio (m/z) range of 123–1000. For the generation of each mass spectrum 300 scans

were acquired. A time-domain transient of 4 MW size was produced for each acquisition,

which yielded ultra-high resolution for all signals, which are of metabolomic interest.

Table 1. Characteristics of PD and controls.

Parkinson Patients Healthy controls

Number of CSF-samples n = 31 n = 95

Age (years) 65.5 ± 12.2 44.9 ± 17.3

Sex (f/m) 9/22 59/36

duration of disease (years) 0,87 ± 2,2 /

https://doi.org/10.1371/journal.pone.0208752.t001
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Data pre-treatment and statistics

The spectra were calibrated with an in-house calibration tool developed in Matlab (Release 2016a,

The MathWorks, Inc., Natick, Massachusetts, US). The main principle is based on estimating the

most probable calibration curve given the density map describing the behavior of a mass accuracy

along the considered mass range. The extracted peaks were aligned within a 1 ppm tolerance win-

dow and stored in a data matrix [17]. The masses with a frequency below 10% were not considered

during further data mining, the intensities of absent masses were set to zero in the related samples.

We applied the in-house developed software Netcalc to remove potential spectral noise and isotope

peaks. This software assigns molecular formulas to the aligned m/z-peaks based on a mass differ-

ence between the detected features [18]. Moreover, additional annotation was performed using the

web server MassTRIX [19, 20] with Homo sapiens as reference organism. All annotations were

stored in the original data matrix. The assignment of a molecular formula to each m/z values was

performed by molecular formula propagation through mass difference networks (MDiN). Here,

m/z features (nodes) were connected by mass differences (edges) with corresponding molecular

formula labels (e.g. Δm/z = 14.01565! ΔCH2) and random walks starting from known peaks

updated the molecular formulas of yet unassigned m/z peaks. The network was optimized to cor-

rect conflicting relationships and to closely follow the intrinsic m/z-error distribution of a spectrum

for which reason this so-called Netcalc-algorithm is considered as an unsupervised filter that

reduces the data size and reveals an underlying biochemical network structure inside the data set

[21]. In order to improve the efficiency of the classification (Parkinson versus controls) and reduce

possible overfitting and noise, we preprocessed the entire dataset applying the ReliefF algorithm

[22]. The algorithm identified a subset of variables (in total 243 masses) that was able to maximize

the classification accuracy of the subsequent classification models. The features’ selection was based

on the highest rank value attributed to each variable by the software. For each masses (stored in the

S2 Table) we reported, the sensitivity, the specificity, the positive predictive value (PPV) and the

negative predictive value (NPV). A sparse Partial Least Squares-Discriminant Analysis (sPLS-DA)

was built in order to assign the respective metabolites for each class from the list of 243 masses.

sPLS-DA imposes sparseness within the latent components to improve variables selection while

performing simultaneous dimension reduction. A 7-fold cross-validation together with the receiver

operating characteristic curve (ROC) was chosen to evaluate the classification performance. For

this model, the Balanced Error Rate (BER) has been calculated to evaluate the performances. BER

is appropriate in case of an unbalanced number of samples per class as it calculates the average pro-

portion of wrongly classified samples in each class [23]. For the classification model we used the

MixOmics package and for the values presented in S2 Table (sensitivity, specificity, PPV and NPV)

we have used reportROC package (RStudio Version 1.0.136 – 2009–2016 RStudio, Inc.) Moreover,

an Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) model was

applied to have another classification model and to describe the orthogonal variance. The perfor-

mance of the fit and the prediction were evaluated with the R2 and Q2 values. Moreover, we pro-

vide the p-value for Analysis of Variance of Cross-Validation Estimators. Those elaborations were

done in SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden).

For the most important metabolites we did an analysis of covariance (ANCOVA) testing

the significance for the interactions of the factor (Parkinson vs. control) with age and also with

gender. Then we calculated all the p-values (adjusted by Dunnett test) of the differences

between Parkinson vs. control (being an unbalanced experimental design we chose to compare

the least squares means) controlled by gender (listed in Table 2). The elaboration was done

using the general linear model (GLM) analysis in SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

Additionally, a mass difference enrichment analysis (MDEA) was performed following

Moritz et al. [24]. The list of mass difference building blocks (Δm), investigated for enrichment
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with PD-markers, was obtained from the supporting material of the same publication [24].

The network was reconstructed on the full set of features with molecular formula assignment,

including the 243 differentially regulated features (features selected with the ReliefF algo-

rithm). The complete detected metabolome is assumed to provide the substrates for the (bio-)

synthesis of these 243 disease markers. MDEA tests which Δm’s (biochemical reactions) con-

nect markers to the remaining metabolome and therewith highlights probable reactions of bio-

marker synthesis [24, 25]. Fisher’s exact test was used to evaluate enrichment, resulting in

Z-Scores and p-values. The Z-scores of Z� 2 and Z� 2.5 relate to p� 0.05 and p� 0.01,

respectively. This way, MDEA addresses the differential usage patterns of molecular building

blocks in the biosynthesis of PD- and Control-markers.

Results

The metabolic profiles of 31 Parkinson-patients and 95 controls were analyzed by FT-ICR-MS.

A features selection was performed after the annotation of elemental formulas of the respective

m/z-values in the generated data matrix. The feature selection excluded a part of the data noise

and the information not related to the study design (Parkinson vs. control). The subset of

Table 2. Most important neutral masses to distinguish between PD and controls with respective molecular formula, possible compounds assignment and mean

intensity ± standard deviation (SD). The p-values are the result of the general linear model (GLM) adjusted with DUNNET.

Neutral

mass

Theoretical

molecular ion

mass

molecular

formula

Ion formula Compound most

probable in CSF

Mean

Intensity ± SD

control

Mean Intensity ± SD

Parkinson´s disease

alteration in

Parkinson´s

disease

p-

value

129.04261 128.03534 C5H7NO3 [C5H6NO3]- 5-Oxoproline 1.05E+06 ± 1.09E

+06

1.5E+06 ± 1.27E+06 " 0.0795

188.01433 187.00705 C7H8O4S [C7H7O4S]- p-cresol sulfate 5.74E+04 ± 3.23E

+05

5.33E+05 ± 1.03E+06 " 0.0002

186.06411 185.05684 C7H10N2O4 [C7H9N2O4]- S-AMPA 1.49E+05 ± 4.69E

+05

0.0E+0 0± 0.0E+0.0 # 0.2695

192.06343 191.05616 C7H12O6 [C7H11O6]- Quinic acid 6.30E+05 ± 1.02E

+06

1.07E+06 ± 1.3E+06 " 0.019

260.02032 259.01305 C6H12O9S [C6H11O9S]- D-Glucose-6-sulfate 4.1E+05 ± 8.18E

+05

5.54E+05 ± 8.94E+05 " 0.3258

163.09980 162.09253 C10H13NO [C10H12NO]- N-Acetylphenyl-

ethylamine

1.5E+04 ± 1.48E

+05

1.49E+05 ± 4.66E+05 " 0.0578

210.07402 209.06675 C7H14O7 [C7H13O7]- Sedoheptulose 1.31E+06 ± 1.14E

+06

8.06E+05 ± 9.76E+05 # 0.0701

268.07956 267.07228 C9H16O9 [C9H15O9]- α-mannosylglycerate 1.32E+06 ± 1.49E

+06

1.78E+06 ± 1.78E+06 " 0.1406

172.14637 171.13910 C10H20O2 [C10H19O2]- Decanoic acid 4.69E+04 ± 2.64E

+05

2.38E+05 ± 6.42E+05 " 0.0116

188.14116 187.13389 C10H20O3 [C10H19O3]- 10-Hydroxydecanoic

acid

1.67E+04 ± 1.64E

+05

1.76E+05 ± 5.5E+05 " 0.0129

234.16207 233.15480 C15H22O2 [C15H21O2]- Valerenic acid 8.67E+05 ± 1.06E

+06

1.23E+06 ±1.19E+06 " 0.1567

304.24043 303.23316 C20H32O2 [C22H31O2]- Arachidonic acid 4.01E+05 ± 8.42E

+05

9.15E+05 ± 1.52E+06 " 0.0494

306.25612 305.24885 C20H34O2 [C20H33O2]- Dihomo-γ-linolenic acid 6.61E+05 ± 1.28E

+06

8.62E+05 ± 1.19E+06 " 0.4911

622.55332 621.54604 C39H74O5 [C39H73O5]- DG (36:1) 1.73E+06 ± 2.23E

+06

8.17E+05 ± 1.62E+06 # 0.0677

747.61377 746.60650 C42H86NO7P [C42H85NO7P]- PC/PE 1.58E+06 ± 1.29E

+06

1.09E+06 ± 1.24E+06 # 0.0291

https://doi.org/10.1371/journal.pone.0208752.t002
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variables calculated with such algorithm was reduced to 243 m/z values. Consecutively, we

wanted to test if the list of 243 m/z was capable to separate the two groups under investigation.

We built a sPLS-DA analysis (Fig 1A) and an OPLS-DA (Fig 1B). Both were able to separate

controls from diseased individuals [26]. This separation was even clearer with the OPLS-DA

analysis, showing good values for the fitting and prediction (R2Y(cum) = 0.98 and Q2(cum) =

0.53. The cross validation Anova gave a p-value < 0.0001). The OPLS-DA explained 32% of

variance with the first two components (the sPLS-DA explained with the three main compo-

nents 16% of variance). The values of the Balanced Error Rate (BER) for the sPLS-DA model

are in the supplementary S5 Table. Moreover, we have observed that in both plots (1A and 1B)

the youngest patients do not cluster all together. In the clustering, we didn’t find any trends for

the age, meaning that the factor that drives the separation is related with the health status of

the person. Among the 243 masses, we found 81 metabolites with decreasing and 162 metabo-

lites with increasing signal intensities for PD samples relative to controls (Fig 1C), according

with both models (S2 Table). The highest loadings values were chosen as the most explicative

variables in the class separation. Fig 1D represents the ROC curve calculated from the first

Fig 1. The implemented statistical analysis models. A) sPLS-DA and B) OPLS-DA both validated with 7 fold cross-validation, C) compounds, which significantly

distinguished PD from controls, D) and E) represented the area under the Receiver Operating Characteristic (ROC) curve and the classification error rates by which the

number of components was tuned (7 cross-validation), F) compared intensities of selected lipids. expl. var., explorative variance.

https://doi.org/10.1371/journal.pone.0208752.g001
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component of the sPLS-DA analysis. The ROC curve, calculated on the 243 subset of masses

confirmed that this list could be optimal for the discrimination of the two groups. Moreover,

Fig 1E represents the performance plot. It is based on t-tests for significant difference in the

mean error rate between components. The error rate after the second components seems to be

stabilized. Therefore, two components are sufficient to achieve a good performance.

From the subset of metabolites we investigated only the possible assigned with the KEGG

database (in total are 32). Among those 32 candidates, we presented in Table 2 the most rele-

vant from a biological point of view (all possible assignments for these most relevant metabo-

lites are listed in S3 Table). Most of the affected compounds derived from the compound class

of lipids (decanoic acid, 10-hydroxydecanoic acid, arachidonic acid, dihomo-γ-linolenic acid,

diacylglycerol (DG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE)). Addi-

tionally, sugar derivatives and carboxylic acids were affected.

Moreover, an ANCOVA analysis was performed to evaluate the influence of age and gender

on the results. The analysis did not reveal any significant interactions between age and the

main factor (Parkinson vs. control) for each of the metabolites presented in Table 2. The only

significant interaction was found for gender for the Arachidonic acid (p = 0.003).

Based on the feature selection and the classification models results, the entire dataset (S1

Table) was analyzed by a network approach. The network was build up by connecting exact

m/z-features (nodes) using mass differences (Δm) that were derived from biochemical reac-

tions as demonstrated in Fig 2A for the conversion of 2-Ketosuccinate to 2-Ketoglutarate. The

Δm’s are characterized by Z-scores, which represent the increase or decrease of a Δm’s occur-

rence with significantly regulated metabolic features (all the z-scores are listed in S4 Table). Fig

2B illustrates the over-represented Δm s in PD. Different compounds, involved in the cellular

Fig 2. A) theory behind the network analysis shown for a specific example, B), over-represented Δm for PD as characterized by respective Z-scores.

https://doi.org/10.1371/journal.pone.0208752.g002
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respiration processes namely the TCA cycle, were observed increased in PD. These com-

pounds, which are part of the TCA cycle like α-ketoglutarate and pyruvate, were increased, but

also substrates for the synthesis of compounds of the TCA cycle like amino acids and break-

down products of several TCA-compounds were found over-represented in PD. Additionally,

the compounds lipoic acid and vitamin B3 are over-represented MDBs, which are important

for the function of pyruvate dehydrogenase.

Discussion

In this study, we investigated the metabolic profile of CSF-samples from PD patients and

controls. Our approach used CSF-samples to investigate the changes due to disease. CSF is a

suitable biofluids to investigate changes in neurodegenerative diseases, because it is in close

contact to the brain. This biofluids is in direct contact to the extracellular space of brain

parenchyma [14] and therefore metabolic changes within brain are likely to be reflected in

CSF [15]. In contrast to more common targeted analysis like LC-MS, this non-targeted

FT-ICR-MS analysis can be used to create new hypotheses, to evaluate as much compounds

as possible, and to compare results with other metabolomic investigations already done in

PD. The main aim of non-targeted determination by FT-ICR-MS is the spectral profile

comparison of healthy and diseased state. Targeted approaches need a prior hypothesis, e.g.

a specific compound class to determine, since only a part of the metabolome can be quanti-

fied. This application has major advantages when selected compounds have to be measured

and can be used as a follow up to non-targeted methods. It has to be clear, that none of the

existing techniques can cover all metabolites [27]. Therefore, to get a complete and compre-

hensive metabolite overview it is necessary to use several techniques and methods to cover

as much metabolites as possible.

As hypothesized, we revealed several altered metabolites in PD as compared to controls.

Specifically, metabolites belonging to the lipid/ fatty acid, glutathione, and energy metabolism

showed a strong shift. Especially the increased level of the fatty acid arachidonic acid is associ-

ated with increased oxidative stress and neuroinflammation [28–30].

Age and gender are important factors in metabolic balance [31–33]. The patient groups

investigated within this study are not matched for age and gender. Therefore, an ANCOVA

was performed to evaluate the influence of both factors on the differentiation of PD and con-

trol-patients. For the parameter age we couldn´t find any influence on the most significant

metabolites detected in the CSF samples. In contrast to age, the differentiation between PD

and control for arachidonic acid is also related to the gender. The interaction between the gen-

der and the variable (PD vs. control) is significant (p = 0.003). A gender influence on arachi-

donic acid concentration was also ascertained by a meta-analysis of 51 publications. This

gender influence was not true for other investigated fatty acids [34]. Moreover, 11 PD-patients

received PD-specific medication, 2 patients had electrodes and 18 patients didn´t have a medi-

cation at the time point of sample taking. Since medication of patients is too diverse this covar-

iate was not taken into consideration.

Statistical models were applied to the achieved mass spectra for calibration. All the models

gave an overall agreement, isolating a common list of important masses altered in the two dif-

ferent groups. The statistical analysis models sPLS-DA and OPLS-DA confirmed the good

group separation according to principal components 1 and 2. Moreover, the area under the

curve (ROC) showed also a high performance of the classification model, since it was calcu-

lated based on the predicted scores [23]. Additionally, the statistical analysis provided an

insight into the biological characterization of PD, and the consequent confirmation of some

biomarkers in the literature which are discussed in the following paragraphs.
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Glutathione metabolism

5-Oxoproline is an oxidation product and therefore elevated levels are a sign of increased oxi-

dation. It is also associated with oxidative stress [35]. 5-Oxoproline is a part of the γ-glutamyl-

cycle and thus it is implicated in glutathione (GSH) -metabolism. GSH is a protective com-

pound against oxidative stress by oxidizing to glutathione disulfide (GSSG) with simultaneous

reduction of H2O2 [36]. A higher rate of GSH-biosynthesis is associated with decreased oxida-

tive stress but also with higher need to remove reactive oxygen species (ROS). GSH is depleted

with increasing age [37] and in neurodegeneration, especially decreased values were found in

substantia nigra [38–40] and CSF [41] of PD-patients. In contrast to this, increased levels of

GSH have been found in an early stage of disease, possibly for protection against further oxida-

tive stress [37, 42]. Increased concentrations of 5-oxoproline were found in plasma of PD-

patients [43]. Additionally, Wu et al. [44] found an increased urinary excretion of 5-oxoproline

to be associated with a reduced availability of cysteine and glycine and hence reduced GSH-

biosynthesis in vivo. A reduced GSH-biosynthesis is followed by accumulation of ROS after a

short time and causes neurodegeneration. Although we did not measure GSH itself, the

increased 5-oxoproline content we have found in PD seems to be associated to protection

against oxidative stress in an early disease progress (duration of disease: 0.87 years).

Energy metabolism

Metabolites belonging to the energy metabolism were found within our study. We discovered

increased intensities of D-glucose-6-sulfate and α-mannosylglycerate and decreased intensity

of sedoheptulose in CSF of PD-patients. The metabolite α-mannosylglycerate is part of the

fructose and mannose metabolism, two compounds which were also found to be increased in

CSF of PD-patients [45]. These metabolites are also linked to glycolysis [46], which is increased

in conditions of oxidative stress to suppress oxidative phosphorylation in mitochondria [47].

In concordance with these increased concentrations of metabolites of the fructose and man-

nose pathways, Ahmed et al. found another metabolite linked with this pathway. Increased

concentrations of sorbitol were found in plasma of PD-patients. Additionally, Michell et al.

identified increased intensity of several monosaccharides in serum [48]. The used method was

not able to further differentiate in specific monosaccharides. Moreover, a study investigating

especially the changes of energy metabolism in dopaminergic cells after exposure to environ-

mental/ mitochondrial toxins (model for PD) was performed [49]. They found increased con-

centrations of sedoheptulose and the hexoses glucose and myoinositol. Although the direction

of some shifted metabolites is inconclusive comparing the studies, a clear hint to changes in

the energy metabolism due to PD is given and needs further investigation.

Fatty acids and lipid metabolism

Our investigations showed several fatty acids to be altered in PD. Quinic acid, decanoic acid,

10-hydroxydecanoic acid, valerenic acid, arachidonic acid, and dihomo-γ-linolenic acid were

found with increased intensities in PD. The lipid metabolism compounds DG, PC, and PE had

decreased intensities in PD. Medium and long chain fatty acids (5-dodecanoate, 3-hydroxyde-

canoate, docosadienoate, and docosatrienoate) were also found increased in biofluids (plasma,

CSF) of PD-patients by use of non-targeted metabolomic approaches [4]. Other studies also

found alterations in fatty acid composition, although with decreasing intensity in PD. Trupp et

al. found decreasing C16 and C18 fatty acids in plasma of PD patients [43] and Michell et al.
decreased amount of octenoic acid in serum [48] indicating a possible inverse behavior of fatty

acids in CSF and serum/plasma.
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Especially DGLA and arachidonic acid (ARA) were investigated several times in various

body fluids. Both compounds are polyunsaturated fatty acids (PUFA) present in human brain.

PUFAs are vulnerable to oxidative stress due to lipid peroxidation [28, 50]. DGLA can form

either anti-inflammatory compounds or pro-inflammatory ARA. Additionally, ARA is bound

to membranes in brain; it is released enzymatically upon inflammation [51]. We found an

increased content of DGLA and ARA in CSF of PD, which implies an elevation in pro-inflam-

matory characteristics. The enzymatic oxidation of ARA forms multiple pro-inflammatory

metabolites [51]. A study investigated the development of the prostaglandins (PG) PGE1 and

PGE2 (anti-inflammatory/ pro-inflammatory) after dietary DGLA intake in rat plasma [52].

The PGE1-level and the PGE2-level increased after DGLA-administration, but PGE1 increase

was much higher. This finding is linked to increased anti-inflammatory capacity, at least at the

beginning of disease. The ARA metabolism is strictly regulated in normal brain, but any mis-

balance due to neuroinflammation or oxidative stress can increase ARA metabolism in the

brain and can finally cause neurodegeneration [53]. Julien et al. [54] investigated the fatty acid

profile in postmortem brain of PD and in parkinsonian monkeys by gas chromatography.

They focused on fatty acids in the cortex of the brain and found a significant elevation of ARA

in humans and in monkeys after administration of the drug levodopa. ARA signaling was also

found to be increased in a rat model with PD [30]. Thereby, an up-regulation of the cytosolic

phospholipase A2 was found in cortex and putamen in affected rats, which is associated with

elevated neuroinflammation in the brains of diseased subjects. A disease-orientated investiga-

tion studied the metabolic changes in rat brain after an intravenous Mn-injection. K. Neth

et al. [7] found decreased DGLA-levels and nine other fatty acids and an increase in the lipid

mediators PGB1, 15-(S)-HETE and Resolvin D2, which are associated with inflammation. Our

investigation showed also a significant increase of DGLA and ARA in PD (Fig 1F), which can

be associated with neuroinflammation and oxidative stress. Although our results showed no

marked increase in the pro-inflammatory lipid mediators, arachidonic acid seems to have a

higher release from membranes due to inflammatory processes.

Additional information about reactions was provided by MDEA. The MDEA analysis

showed reactions with malondialdehyde (MDA)-production over-represented in PD. A direct

detection of MDA by FT-ICR-MS is impossible because of too small molecular weight and the

labile character of the compound. MDA is a marker for oxidative stress and a break-down

product of PUFAs. Therefore, MDA is also involved in lipid peroxidation. Several studies iden-

tified MDA as marker of PD [55]. They found increased MDA levels in plasma in an early and

late disease stages. Significantly increased MDA levels in PD compared to controls were also

found in erythrocytes [56] and in plasma [57]. A recent review gives an overview of the MDA-

metabolism [28].

Mitochondrial dysfunction

Mitochondrial dysfunction is known to be involved in PD [58, 59]. Mitochondria produce the

majority of cellular energy by oxidative phosphorylation. The 243 masses which differentiated

controls and PD patients were further analyzed by MDEA to get an insight into processes

involved in the disease. MDEA connected the masses within a network with specific mass dif-

ferences explaining biochemical reactions and compared the abundance of each biochemical

reaction in controls and PD. Our results showed over-represented metabolites associated with

the TCA-cycle, as illustrated in Fig 3. We found compounds of the TCA-cycle over-repre-

sented (colored orange in Fig 3), compounds which are mandatory to synthesize compounds

of the TCA-cycle (colored red in Fig 3) and also break-down products of several TCA-cycle

compounds (colored purple in Fig 3). Mitochondrial dysfunction is primarily caused by ROS
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generated within mitochondria, but also metabolic dysregulation [60, 61]. Various metabolo-

mic studies found altered metabolites of the TCA cycle within analysis. An increased concen-

tration of malate in plasma of PD-patients was found by [43] and an increased concentration

of citrate in CSF by [6]. In contrast to these observations, Ahmed et al. found decreased levels

of several TCA metabolites (citrate, malate, succinate, and isocitrate) in plasma [62]. The

inconsistent results may be due to differing sample matrix, sampling, storage and methods

used and need further clarification. Apart from the compounds within the TCA cycle, different

proteins, metals and other metabolites are needed for the synthesis and function of mitochon-

drial enzymes. Key nutrients are iron, manganese, copper, zinc, vitamin B3 and lipoic acid

[63]. The metals are important central atoms in proteins, lipoic acid and vitamin B3 are impor-

tant for the function of pyruvate dehydrogenase; the enzyme catalyzes the oxidative decarbox-

ylation of pyruvate. An analysis of CSF with capillary zone electrophoresis hyphenated with

inductively coupled plasma mass spectrometry shows the compounds fumarate, malate, oxalo-

acetate, α-ketoglutarate, citrate and NAD, which a part of the TCA-cycle, to be associated with

manganese [64]. A change of associated transition metal to the metabolites could be an ampli-

fying factor for increased oxidative stress in PD and also for mitochondrial dysfunction. A dys-

regulation of the metals iron, copper, manganese, and zinc was already found within these

Fig 3. Over-represented metabolites within the TCA cycle. Metabolites directly found with network analysis are colored orange. Metabolites indirectly found either by

substrates for synthesis of the respective compound (colored red) or by break-down products of the respective compound (colored purple).

https://doi.org/10.1371/journal.pone.0208752.g003
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sample-set [65]. Thereby a dysregulation of specific ratios between different mass fractions of

these metals were found to be significantly different in PD and controls. A correlation of

shifted metal concentrations and metal ratios with TCA cycle compound could be beneficial to

get further information regarding the relationship between metals and metabolites.

Conclusion

In conclusion, the pipeline we used gave us an understanding of the unknown space investigated.

We found several metabolites in CSF of PD and controls by using the untargeted metabolomics

technique FT-ICR-MS. Due to the use of multivariate statistical analysis a differentiation between

PD and controls was possible. Especially metabolites of the lipid metabolism showed up to be

affected due to disease. Moreover, indices of mitochondrial dysfunction and alterations of the

energy metabolism were found in PD. More research effort should be directed to targeted

approaches to unravel the lipid metabolism pathways affected in PD. Additionally, correlation of

metal-analysis with TCA cycle products may enable further insights into disease mechanisms.
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