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Zusammenfassung

In der vorliegenden Arbeit werden neue Vine basierte Modellierungsmethoden für Daten zweier

bedeutender Forschungsgebiete entwickelt: die Modellierung von multivariaten hochfrequenten

Volatilitätszeitreihen und die Analyse mehrdimensionaler Überlebenszeitdaten.

Zeitreihenmodelle zur Vorhersage von realisierten Kovarianzmatrizen unterliegen Restriktio-

nen, da positive Definitheit der Prognosen gewährleistet sein muss. Um dies zu umgehen, werden

reguläre Vines zur Datentransformation verwendet, wobei der Zusammenhang zwischen einer

positiv definiten Korrelationsmatrix und den durch eine reguläre Vine Struktur spezifizierten

partiellen Korrelationen genutzt wird. Diese Transformation ist nicht nur interpretierbar, son-

dern sie ermöglicht auch eine parametersparsame Modellierung der resultierenden Zeitreihen.

Abhängigkeitsstrukturen zwischen den realisierten Varianzen sowie den realisierten Pearson und

partiellen Korrelationen werden durch flexible reguläre Vine Verteilungen modelliert. Letztere

werden entsprechend der zugrundeliegenden regulären Vine Struktur durch beliebige bivariate

(bedingte) Copulas und Randverteilungen konstruiert. Die Modellierungs- und Vorhersagegüte

der entwickelten Methodik wird anhand einer Datenanwendung evaluiert und mit bekannten

Benchmark-Modellen, die auf der Cholesky Faktorisierung beruhen, verglichen.

Nachfolgend werden reguläre Vine Copula Modelle entwickelt, um komplexe Abhängigkeits-

strukturen in mehrdimensionalen Überlebenszeitdaten zu schätzen. Aufgrund eines begrenzten

Beobachtungszeitraumes sind Überlebenszeitdaten meist rechtszensiert. Demzufolge bedarf es

der Anpassung statistischer Analyseverfahren wie z.B. der Likelihood Schätzung. In einem er-

sten Projekt werden sogenannte univariat rechtszensierte Daten untersucht, wobei die gleiche

Anzahl an Beobachtungen für alle Probeeinheiten der Studie vorliegt. Ein zweistufiges Schätzver-

fahren wird entwickelt und die Performanz anhand ausführlicher Simulationen untersucht. Für

reale Daten wird aufgezeigt, wie ein adäquates reguläres Vine Copula Modell geschätzt wer-

den kann. In einem zweiten Projekt wird berücksichtigt, dass in vielen Überlebenszeitstudien

das untersuchte Ereignis wiederkehrend ist. Anders als in der klassischen Überlebenszeitanalyse

sind die Zeiten zwischen aufeinanderfolgenden Ereignissen und die Zeit zur Zensierung nicht

mehr stochastisch unabhängig. Zudem kann das beobachtete Ereignis für Studienteilnehmer

unterschiedlich oft eintreten. Unter Verwendung von D-Vine Copulas werden vier neue Model-

lierungsstrategien für derart beschaffene Daten vorgestellt: ein einstufiges parametrisches und ein

zweistufiges semiparametrisches Schätzverfahren, das jeweils global oder sequentiell durchgeführt

werden kann. Ausführliche Simulationen validieren alle Schätzmethoden. Die Analyse realer

Daten zeigt, dass D-Vine Copulas entscheidende Einblicke darüber ermöglichen, wie sich die

Abhängigkeit wiederkehrender Ereignisse in Form und Stärke über die Zeit entwickelt.
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Abstract

In this thesis, novel vine based methodologies for data in two quite different but likewise impor-

tant research fields are developed: modeling high-frequency volatility time-series and analyzing

multivariate time-to-event data.

First, when forecasting realized covariance matrices the requirement of positive definite pre-

dictions imposes restrictions on time-series models. To avoid this, regular vines are used to

transform the original data relying on the one-to-one relationship between a positive definite

correlation matrix and its set of partial correlations specified by any vine. The transformation

not only is interpretable, but also allows for parsimonious time-series modeling. Dependence pat-

terns between realized variances and realized standard and partial correlations are modeled by

extending regular vines to the flexible class of regular vine distributions. The latter can be con-

structed from a cascade of arbitrary bivariate (conditional) copulas and marginal distributions

according to the underlying regular vine structure. The modeling and forecasting performance of

the proposed methodology is evaluated through its application to real life data and is compared

to popular Cholesky decomposition based benchmark models.

Second, regular vine copula models to capture the possibly complex dependence pattern in

multivariate event time data are developed. Due to a limited follow-up period event time data

are often subject to right-censoring. As a consequence, the inferential tools existing for complete

data such as likelihood estimation need to be adapted. In a first project, balanced data subject

to common right-censoring are investigated. A two-stage estimation approach is established

and evaluated through extensive simulations. For real life data it is shown how an appropriate

regular vine copula model can be selected for data at hand. In a second project, it is taken

into account that in many time-to-event studies, the event of interest is recurrent. In contrast

to classical analysis, the times between subsequent events and censoring times can no longer

be assumed independent. Also, the number of recurrences typically varies among sample units

leading to unbalanced data. Using D-vine copulas, we propose four estimation strategies to tackle

these challenges: one-stage parametric and two-stage semiparametric estimation both proceeding

either globally or sequentially. Extensive simulations show good finite sample performance of all

proposed methods. The analysis of real life data reveals that a D-vine copula detects relevant

insights, on how the dependence of recurrent event times changes in strength and type over time.
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Chapter 1

Introduction

Interconnectedness and dependencies are omnipresent navigating phenomena in nature, human

interaction, economic development or biomedical processes to name few examples of an endless

list. In the recent years, the fast-paced technical progress significantly facilitated the availability

of all kind of data, and thus enhanced the opportunities for their statistical analysis. Likewise,

the increasing data volume and data complexity request elaborate computer-based mathematical

and statistical methodologies, which are able to translate and to transfer the hidden data content

into the practical context of relevant application fields.

For modeling the dependence among random variables copulas have become popular alter-

natives to classical multivariate distribution functions, which often require the cumbersome

estimation of many parameters or which are too restrictive to adequately reflect the variables’

joint behavior. Sklar (1959) laid the foundations for copula theory. According to his seminal

theorem, a copula is a dependence function, which interconnects the univariate marginal dis-

tribution functions of random variables and therewith models their joint distribution function.

Consequently, a copula model allows to separate the individual behavior of random variables

from their joint interaction – the dependence. This is particularly convenient, if for example

interest is in separate marginal models or in an explicit dependence model. However, it was not

until years later that with improving computational capacities copula theory attracted more

and more attention promoted by profound and thorough publications on copula modeling (Joe,

1997; Embrechts et al., 2003; Nelsen, 2006; Joe, 2014).

Ever since, copula models have been investigated and applied in diverse research fields (for

example, see Elidan (2013) or Aas (2016) for reviews). Popular and well-studied parametric cop-

ula classes are the Archimedean copula family and elliptical copulas with their two well-known

representatives: the Gaussian copula and the Student t copula. Elliptical copulas are symmet-

ric and only the Student t copula exhibits tail-dependence. In higher dimensions, they require

a large number of parameters. While upper and/or lower tail-dependence can be achieved by

Archimedean copulas, they rely on only a small number of parameters which control the depen-

dence among all variables. This results in a lack of flexibility and only restrictive dependence

patterns that can be detected by the model.

Motivated by the nevertheless appealing benefits of copula models and the large variety of

bivariate copulas, Joe (1996) proposed to construct multivariate copulas from bivariate ones
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Chapter 1 Introduction

using conditioning. The resulting pair-copula constructions represent a decomposition of the

d-dimensional density function of d random variables into a cascade of d− 1 unconditional and

d(d− 1)/2− (d− 1) conditional bivariate copulas. Since the type and strength of dependence of

these pair-copulas can be arbitrarily chosen and combined, pair-copula constructions stand out

through their ability to flexibly model complex asymmetric and nonlinear dependencies even in

high dimensions. Clearly, the conditioning underlying a pair-copula construction is not unique.

To order and describe the d!
2 2(d−2

2 ) decompositions possible in d dimensions (Morales Napoles

et al., 2010), Bedford and Cooke (2002) introduce regular vines as a graph theoretical object.

Therefore, pair-copula constructions are also referred to as regular vine (R-vine) copulas.

R-vine copulas experienced their ultimate kickoff when Aas et al. (2009) established statis-

tical inference such as maximum likelihood estimation. Ever since, R-vine copula theory was

constantly enhanced and extensively studied in literature including Bayesian analysis (Min and

Czado, 2010; Czado and Min, 2011; Gruber et al., 2015; Gruber and Czado, 2018), nonparametric

pair-copula constructions (Nagler and Czado, 2016; Nagler et al., 2017), parsimonious modeling

techniques (Brechmann et al., 2012; Brechmann and Joe, 2015), the estimation of standard er-

rors (Stöber and Schepsmeier, 2013) or the development of goodness-of-fit tests (Schepsmeier,

2016) just to name few contributions. In particular, the extensive software provided in the R-

package VineCopula (Schepsmeier et al., 2017) makes R-vine copula based modeling accessible

to a broad range of statisticians and practitioners. As a consequence, R-vine copulas have found

applications in widespread research fields such as sociology (Cooke et al., 2015), weather fore-

casting (Möller et al., 2018), biology (Schellhase and Spanhel, 2018), spatial statistics (Erhardt

et al., 2015), insurance (Erhardt and Czado, 2012; Shi and Yang, 2018) or finance (Loaiza Maya

et al., 2015; Brechmann and Czado, 2015; Fischer et al., 2017; Aas, 2016).

In this thesis, two new research fields are tackled in the context of R-vines and R-vine copulas.

In the first part, modeling and forecasting of volatility as one of the most actively discussed topics

in financial econometrics is investigated. The availability of high-frequency data allows to obtain

the so-called realized volatility as an estimate of the by itself non-observable daily volatility using

intra-day returns. Interest is in multivariate data, and thus the goal is to model and forecast

time-series of realized covariance matrices. In doing so, symmetry and positive definiteness of

the matrix forecasts have to be ensured. A common solution to handle this restraint is to not

directly model the components of the realized covariance matrices but to consider transformed

data. We propose to use partial correlation vines for this data transformation.

The second part of this thesis discusses R-vine copula models in the context of time-to-event

data, also referred to as survival data. The latter are collected whenever primary interest in

a study lies in the time until a prespecified event occurs. For example, time until failure of

machine parts could be observed or HIV-infected patients could be followed up for time until

AIDS diagnosis. Due to a limited follow-up period event time data typically are subject to

right-censoring. Thus, for some sample units the true event time is not observed but instead

a lower right-censored time is registered. The statistical analysis of univariate right-censored

event time data has been studied for decades and therefore is very well established. However, if

data appear in clusters the underlying dependence pattern between event times has to be taken
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into account as well. Thus, more flexible models are needed. For direct dependence modeling

copulas can be used. Copula theory is well established for complete data. However, the presence

of right-censoring in clustered event time data complicates the statistical analysis substantially.

While the incorporation of right-censoring is indispensable to arrive at a sound statistical data

analysis, this modeling aspect is not straightforward. Thus, the application of copulas to right-

censored clustered data has been less explored and has been restricted to rather simple copula

classes such as elliptical and Archimedean copulas. Against this background, we present two

common data settings for clustered right-censored event time data and develop R-vine copula

based estimation techniques to model the possibly complex within-cluster dependence.

Outline of the thesis

The content in this thesis is based on three research papers:

• Barthel, N., Czado, C. and Okhrin, Y. (2018a)

A partial correlation vine based approach for modeling and forecasting multi-

variate volatility time-series.

In revision at Computational Statistics & Data Analysis. arXiv: 1802.09585.

• Barthel, N., Geerdens, C., Killiches, M., Janssen, P. and Czado, C. (2018c)

Vine copula based likelihood estimation of dependence patterns in multivariate

event time data.

Computational Statistics & Data Analysis, 117:109-127.

• Barthel, N., Geerdens, C., Czado, C. and Janssen, P. (2018b)

Dependence modeling for recurrent event times subject to right-censoring with

D-vine copulas.

To appear in Biometrics. doi:10.1111/biom.13014

For this thesis the content of these papers was revised and extended in various sections including

additional methodology, illustrations or explanations.

In Section 2.1, we first introduce regular vines (R-vines) as a graph theoretical object that

specifies for d variables a set of d(d− 1)/2 bivariate (conditional) constraints. We proceed with

basic concepts of copula theory in Section 2.2 and combine in Section 2.3 the content of the

previous sections to establish the flexible class of R-vine copulas.

Chapter 3 is based on the research paper Barthel et al. (2018a). Motivated by a thorough liter-

ature review in Section 3.1 we propose to use partial correlation vine based data transformation

to model and forecast time-series of realized covariance matrices. As outlined in Section 3.2,

partial correlation vines assign to each edge in an R-vine structure a (partial) correlation coef-

ficient according to the corresponding conditioned and conditioning set. We use that there is a

one-to-one relationship between a positive definite correlation matrix and any partial correlation

vine (Bedford and Cooke, 2002). Further, the partial correlations specified through an R-vine

exhibit the convenient feature to be algebraically independent, i.e. arbitrary values in -1 and 1

3



Chapter 1 Introduction

can be assigned to the edges of the underlying R-vine structure while positive definiteness of the

corresponding correlation matrix is always preserved (Kurowicka and Cooke, 2003).

In Section 3.3, we formulate the general data setting and introduce our main benchmark

approach, which relies on the Cholesky decomposition for data transformation. The partial cor-

relation vine data transformation approach is outlined in Section 3.4 along with a real data

example. By using the same R-vine structure to transform a series of correlation matrices to a

series of partial correlation vines, univariate time-series of realized standard and partial correla-

tions are obtained. Together with the corresponding realized variance time-series the latter are

the model components of the partial correlation vine data transformation approach. We start

in Section 3.4.1 with the analysis of these model components and find that typical features of

volatility data such as long-memory behavior or volatility clustering are less pronounced for

certain higher partial correlation time-series. This finding motivates in Section 3.4.2 an R-vine

structure selection method, which exclusively relies on historical information of the realized

volatility data and which allows for parsimony when modeling the dynamics of the model com-

ponents. In this second step, we consider multivariate time-series modeling and forecasting based

on copulas (Section 3.4.3). Thus, while so far R-vines were exclusively used as a graph theoretical

tool to transform the series of realized correlation matrices, R-vine copulas come into play when

interconnectedness between the individual time-series of the model components is modeled.

In Section 3.5, we continue the analysis of the real data example. Thereby, appealing benefits

of the partial correlation vine data transformation approach such as practical interpretability of

the model components, dynamic incorporation of changes on the financial market (Section 3.5.2)

and model parsimony for the copula based time-series model (Section 3.5.3) become apparent.

For the forecasts of the realized covariance matrices obtained after inverting the predicted par-

tial correlation vines and combining the so-obtained predicted realized correlation matrices with

the predicted variances the forecasting performance as compared to the Cholesky decomposi-

tion based prediction model is investigated in Section 3.5.4. Our findings both with respect to

statistical precision of the forecasts and their mean-variance balance in the context of portfolio

optimization strategies give strong justification for the use of the partial correlation vine data

transformation approach in practice.

In Chapter 4, we embed R-vine copulas in a completely different context. Here, interest is in

modeling dependence patterns in multivariate right-censored event time data. In Section 4.1, we

reformulate theoretical background on R-vine copulas in survival terms and provide basics on

methodology for univariate right-censored time-to-event data.

In Section 4.2 and Section 4.3, balanced data subject to common right-censoring are discussed.

In large parts we refer to the publication Barthel et al. (2018c). After introducing the data

setting in Section 4.2.2, we develop an estimation strategy that proceeds in two subsequent

steps. In the first step, the marginal survival functions are estimated using standard parametric

and nonparametric estimation techniques under the presence of right-censoring. To model, in the

second step, the dependence structure we use for right-censored quadruple data results of Barthel

(2015) (master’s thesis), where the likelihood contributions in terms of R-vine copula components

are derived. Right-censoring clearly complicates likelihood optimization and leads to single and
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double integrals in the copula likelihood expression. Thus, numerical integration is needed for

its evaluation. To lower the computational burden we introduce in Section 4.2.3 a sequential

estimation approach. Considering trivariate right-censored event time data generated based on

a broad range of simulation scenarios we provide evidence for the good finite sample performance

of the presented estimators in Section 4.2.4. Parametric and nonparametric bootstrapping in the

presence of right-censoring is discussed in Section 4.3 to obtain standard errors for the likelihood

based R-vine copula parameter estimates. In Section 4.3.2, we show for a real data example

in four dimensions how to select an appropriate R-vine copula model and how to apply the

presented methodology for data at hand.

Section 4.4 is based on the research article Barthel et al. (2018b) and investigates the depen-

dence between recurrent event times subject to right-censoring. We focus on the dependence

among the corresponding gap times, i.e. the intervals between two consecutive events. When

introducing the general data setting in Section 4.4.2, several modeling challenges become appar-

ent: for example, the presence of induced dependent right-censoring and the unbalanced nature

of the data. To capture the serial dependence inherent in gap time data D-vine copulas are the

natural choice, since they impose a temporal ordering of the modeled variables. In Section 4.4.4,

we suggest a one-stage parametric estimation approach considering both global and sequential

likelihood optimization. To increase model flexibility, we propose in Section 4.4.5 two-stage semi-

parametric estimation, where the marginal survival functions are estimated nonparametrically

in a first step. Due to induced dependent right-censoring standard nonparametric estimators for

univariate right-censored event time data are no longer consistent. Thus, an alternative nonpara-

metric estimator, which is able to handle induced dependent right-censoring, is introduced. For

dependence modeling in the second step both global and sequential likelihood optimization are

discussed. The good finite sample performance of the four novel estimation strategies is evaluated

through extensive simulations in three and four dimensions (Section 4.4.7). The results allow us

to establish in Section 4.4.6 guidelines on the practical use of the four estimation approaches

taking into account their sensitivity with respect to specific data characteristics. Methods for

standard error estimation and model selection are discussed in Section 4.4.8 and Section 4.4.9,

respectively. As a real data example we consider in Section 4.4.10 a study on children suffering

from asthma. The data analysis based on D-vine copulas gives new insights on the evolution of

the disease. Conditional prediction of the time until relapse given the individual gap time history

of a child further demonstrates the flexibility of the proposed D-vine copula based methodology.

Both projects discussed in Chapter 4 stress the need for more flexible copula models in the

context of multivariate right-censored time-to-event data.
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Chapter 2

R-vines and R-vine copula models

In this chapter, we provide the theoretical basics and mathematical working tools needed

throughout the thesis. In large parts, the contents are based on Barthel et al. (2018a) and

Barthel et al. (2018b). First, regular vines as a graph theoretical object are introduced in Sec-

tion 2.1. They will play the key role in Chapter 3 as a data transformation tool for positive

definite correlation matrices. In Section 2.2, mathematical background on copulas will be dis-

cussed. Focus will be on their usage for dependence modeling. Lastly, Section 2.3 will combine

the first two concepts resulting in highly flexible dependence models, namely regular vine cop-

ulas. The latter will be the cornerstones for dependence modeling in Chapter 3 and in Chapter 4.

In the remainder of this thesis, capital letters denote random variables and small letters

correspond to their realizations. Further, bold capital and bold small letters, denote random

vectors and realizations of random vectors, respectively.

2.1 Regular vines

Bedford and Cooke (2002) introduce an R-vine on d elements as a set of d− 1 linked trees, i.e.

undirected and acyclic graphs, Vd := (T1, . . . , Td−1) with the set of edges E (Vd) := E1∪· · ·∪Ed−1

and the set of nodes N (Vd) := N1 ∪ · · · ∪Nd−1 such that

(i) T1 is a tree with nodes N1 = {1, . . . , d} and edges E1,

(ii) for ` = 2, . . . , d− 1, T` is a tree with nodes N` = E`−1 and edges E`,

(iii) the proximity condition holds: For ` = 2, . . . , d−1, whenever two nodes of T` are connected

by an edge, the corresponding edges of T`−1 share a node.

According to property (ii), the d − (` − 1) edges E`−1 in T`−1 become nodes in T`. Based on

this linkage, each sequence of trees of an R-vine – from now on referred to as R-vine structure

– allows to identify a set of
(
d
2

)
(conditional) bivariate constraints. We refer to Kurowicka and

Cooke (2003) and consider an arbitrary edge e = {a, b} ∈ E` of Vd, 2 ≤ ` ≤ d−1, with a, b ∈ N`.

Its complete union U∗e is the subset of nodes in T1, i.e. the subset of {1, . . . , d}, reachable from

7



Chapter 2 R-vines and R-vine copula models

e by the membership relation, i.e.

U∗e := {n ∈ N1 : ∃e1 ∈ E1, . . . , e`−1 ∈ E`−1 : n ∈ e1 ∈ · · · ∈ e`−1 ∈ e}.

The conditioning set De corresponding to e = {a, b} is the intersection of the complete unions

U∗a and U∗b corresponding to the edges a, b ∈ E`−1, i.e.

De := U∗a ∩ U∗b .

The corresponding symmetric difference is referred to as conditioned set

{ae, be} := {U∗a\De, U
∗
b \De}.

By definition, each conditioned set in Vd consists of two single elements and in particular forms

a unique pair of variables i, j ∈ {1, . . . , d}, i 6= j. Thus, each pair is modeled by Vd exactly once

either unconditioned, if it forms a conditioned set in the first tree level, or through conditioning,

if it forms a conditioning set in tree level ` = 2, . . . , d− 1.

Up to four dimensions there are only two possible types of R-vine structures. In all tree levels

of a C-vine structure, there is one central node being attached to all edges. This results in a

star-like R-vine structure, which reflects an ordering by importance. In a D-vine structure, each

node is attached to a maximum of two edges. Thus, a line structure is obtained reflecting a serial

ordering. Nodes with only one attached edge are called leafs.

Example 2.1. Figure 2.1 shows an R-vine structure on six elements labeled with the conditioned

set and the conditioning set corresponding to each edge. The latter is indicated by a leading

“|”. The bold tree segment in T2 corresponds to the edge e = {{1, 2}, {2, 6}}. Reachable from

edge {1, 2} ∈ T1 and {2, 6} ∈ T1 are the nodes 1, 2 ∈ N1 and 2, 6 ∈ N1, respectively. Thus,

De = U∗{1,2} ∩ U
∗
{2,6} = {1, 2} ∩ {2, 6} = {2} is the conditioning set corresponding to e and the

conditioned set is {ae, be} = {{1, 2}\{2}, {2, 6}\{2}} = {1, 6}.

6

2

3

5

1

4

T1

1,2

2,3
2,4

2,6

3,5

T2

2,6

1,2

2,3

3,5

2,4

1, 6|2

1, 3|2

3, 4|2
2, 5|3

T3

1, 6|2

1, 3|2

3, 4|2

2, 5|3

3, 6|1, 2

1, 4|2, 3

4, 5|2, 3

T4

3, 6|1, 2

1, 4|2, 3

4, 5|2, 3

4, 6|1, 2, 3

1, 5|2, 3, 4

T5

4, 6|1, 2, 3

1, 5|2, 3, 4

5, 6|1, 2, 3, 4

Figure 2.1: Example of a 6-dimensional R-vine structure with conditioning and conditioned sets
corresponding to each edge.
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2.2 Dependence modeling with copulas

2.2 Dependence modeling with copulas

One of the key themes in this thesis is dependence modeling. Consider a d-dimensional vector

X := (X1, . . . , Xd) of continuous random variables and denote by F and f the joint distribution

function and the joint density function, respectively. The corresponding marginal distribution

functions and marginal density functions are given by Fj and fj (j = 1, . . . , d), respectively. The

joint distribution function F incorporates information both on the individual behavior of the

random variables Xj (j = 1, . . . , d) described by their univariate marginal distributions Fj and

on the dependence between the random variables. Clearly, when interest is in estimating F both

data aspects have to be taken into account, which can be cumbersome in higher dimensions.

2.2.1 Sklar’s Theorem

For this modeling task, copulas are a useful and flexible tool. A copula C : [0, 1]d → [0, 1]

is defined as a multivariate distribution function with uniform marginal distributions. Thus,

the univariate marginal data for a copula are noninformative and the copula itself exclusively

describes the dependence between variables. Sklar (1959) provides the fundamental theorem

that for each multivariate distribution function F , there exist a copula C, which interconnects

the marginal distribution functions Fj (j = 1, . . . , d) and therewith models the joint distribution

function F , i.e.

F (x1, . . . , xd) = C{F1 (x1) , . . . , Fd (xd)}. (2.1)

The copula C is unique, if all marginal distributions Fj (j = 1, . . . , d) are continuous. Conse-

quently, the joint density function f expressed in terms of the copula density

c (u1, . . . , ud) = ∂d

∂u1···∂udC (u1, . . . , ud) with (u1, . . . , ud)
′ ∈ [0, 1]d is given by

f (x1, . . . , xd) = c{F1 (x1) , . . . , Fd (xd)}
d∏
j=1

fj (xj) .

In the following, we refer to

• the random variables Xj with distribution functions Fj and density functions fj

(j = 1, . . . , d) as the original data scale;

• and to Uj = Fj (Xj) as the copula data scale. Note that due to the probability integral

transform it holds that Uj ∼ U [0, 1] (j = 1, . . . , d).

It is essential to note that Sklar’s Theorem (Sklar, 1959) suggests to split the modeling of F into

two subsequent steps. First, the individual behavior, i.e. the marginal distribution functions

Fj (j = 1, . . . , d), are estimated to obtain approximately uniform pseudo copula data using

Ûj = F̂j (Xj). Second, the dependence is modeled by estimation of the copula C. This proceeding

was first proposed by Joe and Xu (1996) and is referred to as inference for margins method.

Asymptotic efficiency of this two-stage estimation method is provided in Joe (2005).
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Chapter 2 R-vines and R-vine copula models

2.2.2 Dependence measures

When modeling dependence between random variables measures to quantify the latter are

needed.

Pearson correlation

The most popular scalar dependence measure for bivariate data is the Pearson correlation coef-

ficient defined by

ρi,j := ρ (Xi, Xj) =
Cov (Xi, Xj)√

Var (Xi)
√

Var (Xj)
(2.2)

for two random variables Xi and Xj . An important extension needed later in this thesis are the

corresponding partial correlation coefficients. We consider a random vector XI := (X1, . . . , Xd),

d ≥ 2, with zero mean, where I is the index set {1, . . . , d}. Further, we consider a subset L ⊆ I
having at least cardinality 2, i.e. |L| ≥ 2. For a pair (i, j) (i, j ∈ L, i 6= j) we denote L with the

subset {i, j} removed by D{i,j} := L−{i,j} = L\{i, j} and the corresponding random vector by

XD{i,j} := {Xk, k ∈ D{i,j}}. The partial regression coefficient bi,j;D{i,j} is defined as the quantity

that minimizes

E
[
(Xi −

∑
j∈L−{i}

bi,j;D{i,j}Xj)
2
]
.

The corresponding partial correlation coefficient ρi,j;D{i,j} quantifies the dependence between Xi

and Xj without the linear effect of XD{i,j} and is defined by (Kurowicka and Joe, 2011, p. 47)

ρi,j;D{i,j} := sgn(bi,j;D{i,j})
(
bi,j;D{i,j}bj,i;D{i,j}

)1/2
.

While standard and partial correlation coefficients are not invariant with respect to monotone

transformations of the data, this is the case for the two subsequent dependence measures.

Kendall’s τ

First, Kendall’s τ as a global dependence measure is introduced (Kendall, 1938). For independent

and identically distributed random vectors (Xi, Xj) and (X̃i, X̃j) Kendall’s τ is defined by

τi,j := τ (Xi, Xj) = P{(Xi − X̃i)(Xj − X̃j) > 0} − P{(Xi − X̃i)(Xj − X̃j) < 0}.

One can show that

τi,j = 4

∫
[0,1]2

Ci,j (u1, u2) dCi,j (u1, u2)− 1,

where Ci,j is the bivariate copula corresponding to the joint distribution of (Xi, Xj). Thus,

Kendall’s τ is a property of the underlying copula and therefore does not depend on the marginal
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2.2 Dependence modeling with copulas

distribution functions. In particular, for the parametric copula families, that will be introduced

in Section 2.2.3 and used throughout this thesis, there is a one-to-one relationship between

the Kendall’s τ value and the specific copula parameter. This is of particular interest when

comparing the dependence strength among different parametric copulas fitted to data at hand.

Tail-dependence

Copulas further allow to investigate tail-dependence. The latter is a local dependence measure

capturing extremal behavior, i.e. the dependence for joint very small (lower tail-dependence)

and joint very large (upper tail-dependence) observations. For random variables Xi ∼ Fi and

Xj ∼ Fj with associated bivariate copula Ci,j we define the upper tail-dependence coefficient by

λU
i,j := lim

u↗1
P{Xi > F−1

i (u) |Xj > F−1
j (u)} = lim

u↗1

1− 2u+Ci,j (u, u)

1− u

given that the limit exists. The lower tail-dependence coefficient is defined by

λLi,j := lim
u↘0

P{Xi < F−1
i (u) |Xj < F−1

j (u)} = lim
u↘0

Ci,j (u, u)

u

given that the limit exists. Clearly, tail-dependence as well is a property of the underlying copula.

2.2.3 Parametric copula families

To adequately model data at hand a wide selection of copula families, which covers a broad

range of Kendall’s τ values and different tail-dependence behavior, is needed.

The independence copula
∏

is a straightforward nonparametric example. It is given by

∏
(u1, . . . , ud) =

d∏
j=1

uj

with constant copula density equal to 1. Except for the independence copula only parametric

copula families will be considered in this thesis, i.e. a parametric form of the copula underlying

the data will be assumed.

The most popular elliptical representative is the Gaussian copula, which is constructed from

the Gaussian distribution using the inversion of Sklar’s Theorem in (2.1):

C (u1, . . . , ud) = F{F−1
1 (u1) , . . . , F−1

d (ud)}.

With Φ the cumulative distribution function ofN (0, 1) and ΦΣ corresponding to a d-dimensional

Gaussian distribution with zero mean, unit variances and correlation matrix Σ the d-dimensional

Gaussian copula is defined by

C
Gauss (u1, . . . , ud) = ΦΣ{Φ−1 (u1) , . . . ,Φ−1 (ud)}.

Note that the Gaussian copula exhibits neither lower nor upper tail-dependence.
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Chapter 2 R-vines and R-vine copula models

Table 2.1: Popular bivariate Archimedean copulas with the range of their dependence parameter
θ, the formula of φ, the corresponding Kendall’s τ value and the tail-dependence
coefficients λU and λL.

Clayton Gumbel Frank

θ ∈ (0,∞) [1,∞) (−∞,∞) \ {0}

φ(s) (1 + θs)−1/θ e−s
1/θ −1

θ ln{1− (1− e−θ)e−s}

C(u1, u2) (u−θ1 + u−θ2 − 1)−
1
θ

e

[
−{(− lnu1)θ+(− lnu2)θ}

1
θ

]
−1
θ ln

{
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

}
τ τ = θ

θ+2 τ = 1− 1
θ

τ = 1− 4
θ + 4D1(θ)

θ

with D1(θ) =
∫ θ

0
t/θ
et−1dt

τ ∈ [0, 1] [0, 1] [−1, 1]

λU λU = 0 λU = 2− 21/θ λU = 0

λL λL = 2−1/θ λL = 0 λL = 0

Archimedean copulas constitute another popular copula class. They are given by

C(u1, . . . , ud) = φ{φ−1(u1) + . . .+ φ−1(ud)}, (2.3)

where φ : [0,∞[→ [0, 1] is a continuous strictly decreasing function with φ(0) = 1 and φ(∞) = 0

that satisfies the complete monotonicity condition (Joe, 1997; Nelsen, 2006), i.e. the derivatives

of φ must alternate in sign. From (2.3) it follows that an Archimedean copula is fully determined

by the choice of φ. Thus, a restrictive dependence structure is implied. For example, all marginal

copulas show exactly the same type and strength of association. Note that for the same global

dependence as expressed by Kendall’s τ , different Archimedean copulas can exhibit diverse local

dependence: a Clayton copula is lower tail-dependent, a Gumbel copula is upper tail-dependent

and a Frank copula shows no tail-behavior. For d = 2, details are listed in Table 2.1.

Note that for example the bivariate Clayton and Gumbel copula only allow for positive depen-

dence as expressed by Kendall’s τ . Model flexibility, however, can be extended by considering

reflected forms of these copula families. More precisely, according to Joe (1993) for the counter-

clockwise rotated equivalents of a bivariate copula C with copula density c we have

• 90 degree: C
90(u1, u2) := u2 −C(1− u1, u2)

with c90(u1, u2) := c(1− u1, u2),

• 180 degree: C180(u1, u2) := u1 + u2 − 1 +C(1− u1, 1− u2)

with c180(u1, u2) := c(1− u1, 1− u2),

• 270 degree: C270(u1, u2) := u1 −C(u1, 1− u2)

with c270(u1, u2) := c(u1, 1− u2).
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2.3 R-vine copula models

2.3 R-vine copula models

R-vine distributions combine R-vines as introduced in Section 2.1 and copula theory from Sec-

tion 2.2. They are also referred to as pair-copula constructions, since they assign to each of

the d (d− 1) /2 edges of a d-dimensional R-vine structure a bivariate unconditional copula (in

tree T1) or a bivariate conditional copula (in trees T2 to Td−1). We consider the copula data

(U1, . . . , Ud) corresponding to the random vector (X1, . . . , Xd) with marginal distribution func-

tions Fj (j = 1, . . . , d), i.e. Uj = Fj (Xj). Since in this case the marginals of the underlying

data are uniform, we speak of an R-vine copula. Following Czado (2010) and using the notation

introduced in Section 2.1, the d-dimensional R-vine copula density based on the R-vine structure

Vd with edge set E (Vd) = E1 ∪ · · · ∪ Ed−1 can be written as

c (u1, . . . , ud) =
d−1∏
`=1

∏
e∈E`

cae,be;De{Cae|De (uae |uDe) ,Cbe|De (ube |uDe) ;uDe}, (2.4)

where

• the indices ae and be correspond to the conditioned variables and De represents the con-

ditioning set of edge e.

• cae,be;De (·, ·;uDe) denotes the copula density corresponding to the conditional distribution

of (Uae , Ube) given UDe = uDe with UDe the vector containing all variables corresponding

to the conditioning setDe. The corresponding copula will be denoted byCae,be;De (·, ·;uDe).

• Cae|De (·|uDe) denotes the conditional distribution of Uae given UDe = uDe .

Given the large number of R-vine structures and given that the pair-copulas corresponding

to each edge of the underlying R-vine structure can be chosen and combined arbitrarily (for

example from the parametric copula families presented in Section 2.2.3) R-vine copulas clearly

constitute a highly flexible class of dependence models.

Throughout this thesis, we assume that in (2.4) the conditional pair-copula densities cae,be;De

in trees T` (` = 2, . . . , d − 1) do not depend on the conditioning vector uDe . Their arguments

Cae|De (uae |uDe) and Cbe|De (ube |uDe) indeed do depend on uDe . For details on this simplifying

assumption, see Hobæk Haff et al. (2010) and Stöber et al. (2013).

Joe (1997) provides the important result for pair-copula constructions that the conditional

distributions Cae|De (·|uDe) and Cbe|De (·|uDe), subsequently abbreviated as Ca|D (·|uD) and

Cb|D (·|uD), can be evaluated using only the pair-copulas specified in lower tree levels of the

underlying R-vine structure. Define for i ∈ {a, b} the set D+i := D ∪ {i}. Then,

Ca|D+b

(
ua|uD+b

)
= ha|b;D{Ca|D (ua|uD)

∣∣Cb|D (ub|uD)}

and

Cb|D+a

(
ub|uD+a

)
= hb|a;D{Cb|D (ub|uD)

∣∣Ca|D (ua|uD)},
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Chapter 2 R-vines and R-vine copula models

where

ha|b;D{Ca|D (ua|uD)
∣∣Cb|D (ub|uD)} :=

∂

∂u
Ca,b;D{Ca|D (ua|uD) , u}

∣∣∣∣
u=Cb|D(ub|uD)

(2.5)

and

hb|a;D{Cb|D (ub|uD)
∣∣Ca|D (ua|uD)} :=

∂

∂u
Ca,b;D{u,Cb|D (ub|uD)}

∣∣∣∣
u=Ca|D(ua|uD)

(2.6)

are the so-called h-functions corresponding to the pair-copula Ca,b;D. Clearly, the arguments of

the h-functions in (2.5) and (2.6) can again be expressed in terms of h-functions such that a

recursive representation of Ca|D (ua|uD) and Cb|D (ub|uD) in terms of lower tree pair-copulas is

obtained.

R-vine copulas have been extensively studied in the recent years including the development of

comprehensive statistical software. In this thesis, all implementations are done in the program-

ming language R (R Core Team, 2017) using and extending methods available in the VineCopula

package (Schepsmeier et al., 2017).
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Chapter 3

R-vine based modeling of multivariate
volatility time-series

This chapter is based on the research article Barthel et al. (2018a).

3.1 Introduction

The increasing availability of high-frequency data makes volatility modeling and forecasting to

one of the most vividly discussed topics in financial econometrics. Also, the strongly increas-

ing interaction and interconnectedness between financial markets have stimulated the need for

reliable modeling and forecasting techniques to capture the cross-sectional and temporal depen-

dencies of financial asset returns. Especially during negative economic phases and periods of

financial turmoil, assets become more dependent and linkages between asset market volatility

tighten (Cappiello et al., 2006). This affects fields such as asset pricing, portfolio allocation and

evaluation of risk.

High-frequency data allow to consistently estimate ex-post realized volatility and realized

covariances using the sum of squared intra-day returns (Doléans-Dade and Meyer, 1970; Jacod,

1994). By making naturally latent variables, namely volatilities and covariances, observable and

measurable, standard time-series approaches can be applied to model their realized counterparts.

Building upon the aforementioned classical estimator first used in the context of high-frequency

data by Barndorff-Nielsen and Shephard (2004), many refinements were investigated to improve

its overall quality and precision (Zhang, 2011), to reduce market microstructure noise (Gençay

et al., 2001; Zhang et al., 2005) and to take into account jumps (Christensen et al., 2010) and

asynchronicity (Hayashi et al., 2005).

The main modeling challenge when developing prediction tools for realized covariance matrices

are the algebraic restrictions of symmetry and positive definiteness the forecasts need to satisfy.

Direct modeling of the components using univariate time-series models does not meet this con-

straint (Andersen et al., 2006) and neglects for example dynamic volatility spillovers among the

series of variances and covariances (Voev, 2008). Several multivariate approaches such as the

Wishart Autoregressive (WAR) model (Gouriéroux et al., 2009) and its dynamic counterpart

the Conditional Autoregressive Wishart (CAW) model (Golosnoy et al., 2012) have been devel-

oped. Andersen et al. (2006) propose a multivariate generalization of the realized GARCH model
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(Hansen et al., 2012) by modifying the Dynamic Conditional Correlation (DCC) model of Engle

(2002). The basic idea of the latter model is to split up the estimation problem into the two

simpler tasks of modeling the conditional volatilities and the correlation dynamics. Halbleib and

Voev (2014) adopt this strategy using high-frequency data in the volatility part and daily data

in the correlation part at the expense of less flexible correlation specifications. As an alternative,

data transformation is one of the most frequently used approaches. Bauer and Vorkink (2011)

apply the matrix logarithm function and a factor model approach to the individual components,

which, however, leads to a computationally demanding model. First proposed by Andersen et al.

(2003) and having evolved to one of the standard ways to proceed, the Cholesky decomposition

is a proven tool to guarantee symmetry and positive definiteness of the forecasts. For example,

Chiriac and Voev (2011) decompose the series of realized covariance matrices via the Cholesky

factorization and model the so-obtained series of Cholesky elements with a vector autoregres-

sive fractionally integrated moving average (VARFIMA) process. Brechmann et al. (2018) build

upon this model approach, but pay special attention to the specific dependencies among the

Cholesky series induced by the nonlinear data transformation. While Cholesky decomposition

based models are straightforward and easy to implement, they also come with drawbacks. There

is no clear interpretation of the model components obtained after data transformation and the

latter induces an additive bias in the forecasts of the original data due to its nonlinear nature.

Also, the Cholesky decomposition depends on the ordering of the data within the realized co-

variance matrices with no obvious way to fix the order in advance. Complete enumeration leads

to a computationally expensive estimation problem. On the other hand, fixing the order upfront

ignores a possible changing behavior of the data over time.

Irrespective of the considered data transformation, multivariate approaches for time-series

modeling often suffer from lacking flexibility in the parameters. Further, they barely allow for

convenient modeling of non-Gaussianity and conditional heteroscedasticity, which, however, are

typical features of volatility data. In comparison, univariate time-series models allow for various

extensions and refinements to tackle these problems. Besides ARFIMA processes (Andersen

et al., 2006), heterogeneous autoregressive (HAR) processes are most commonly applied to (log-

transformed) realized volatility time-series capturing their long-memory behavior. They include

volatility measured over different time horizons and account for multifractal scaling (Corsi,

2009). Both ARFIMA and HAR models can be extended by GARCH augmentations to account

for non-Gaussianity and volatility clustering (Corsi et al., 2008). By considering skewed error

distributions for the residuals, typically observed high skewness and kurtosis can be additionally

captured (Bai et al., 2003; Fernández and Steel, 1998).

In the light of the above discussion, a tool to transform the realized covariance matrices, which

allows for reasonable computational effort, interpretability of the model components obtained

after data transformation and to exploit the beneficial features of univariate time-series model-

ing, is desirable. A promising candidate which meets these requirements are partial correlation

vines. The latter assign partial correlations to the edges of an R-vine tree structure. The latter

is a graph theoretical object first proposed by Bedford and Cooke (2002), which consists of a

set of linked trees specifying bivariate conditional constraints. The set of standard and partial
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correlations specified through an R-vine structure has attractive properties. Bedford and Cooke

(2002) proof that there is a bijection between the specified (partial) correlations and the set of

symmetric and positive definite correlation matrices. Further, Kurowicka and Cooke (2003) find

that any partial correlation vine specifies algebraically independent (partial) correlations, i.e.

the latter can take arbitrary values in (−1, 1) while still guaranteeing positive definiteness of the

corresponding correlation matrix. This result advocates partial correlation vines to be a useful

tool in several applications. Kurowicka and Cooke (2006a) use them to solve the completion

problem for positive definite matrices, whereas Lewandowski et al. (2009) introduce a method

to uniformly generate random correlation matrices from the space of positive definite correlation

matrices. Brechmann and Joe (2014) base a parsimonious parameterization of correlation ma-

trices on partial correlation vines in combination with factor analysis and Brechmann and Joe

(2015) use these findings to capture the dependence structure in multivariate data. Consider-

ing financial data, Poignard (2017) introduces a vine-GARCH approach as flexible multivariate

GARCH-type model, which parametrizes the latent correlations appearing in the DCC model

of Engle (2002) in terms of a partial correlation vine. Based on the specific nature of an R-vine

tree structure, their estimation technique proceeds iteratively by evoking only bivariate GARCH

models in each tree level and thus allows for dimension reduction as compared to computationally

highly demanding classical multivariate GARCH models.

To our knowledge, data transformation using partial correlation vines has not yet been in-

vestigated to model and forecast multivariate realized volatility time-series. We propose a joint

estimation and prediction model of the realized variance time-series and a subset of realized stan-

dard and partial correlation time-series. The latter are obtained after transforming the series of

realized correlation matrices based on an R-vine structure as first step of the model approach.

To select among the large number of possible R-vine structures the one used for data transfor-

mation, we propose a selection method, which exclusively relies on historical information of the

modeled time-series and thus dynamically adapts to changing data behavior over time. We will

show that data transformation based on this R-vine structure further allows for parsimony in

the resulting multivariate time-series models, which are to be estimated as second step of the

model approach. We opt for a copula based time-series model to exploit the beneficial features

of elaborate univariate time-series models. By considering flexible copulas for the dependence

between the model components possible asymmetry and nonlinearity can be captured. Combin-

ing in a third step the predicted realized variances and the predicted realized correlation matrix

obtained after back-transformation of the underlying realized partial correlation vine guarantees

a symmetric and positive definite realized covariance matrix forecast.

The paper is structured as follows. In Section 3.2, we introduce partial correlation vines com-

bining the notion of partial correlations (Section 2.2.2) and an R-vine structure (Section 2.1).

The transformation of a correlation matrix to a partial correlation vine based on a given R-vine

structure and vice versa is explained in detail. In Section 3.3, we introduce the general data set-

ting and motivate the choice of Cholesky decomposition based models as our main benchmarks.

In Section 3.4, we outline in detail the three main steps of the proposed partial correlation vine

data transformation approach including R-vine structure selection in Section 3.4.2 and multi-
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Chapter 3 R-vine based modeling of multivariate volatility time-series

variate time-series modeling in Section 3.4.3. Supported by the analysis of high-frequency data

for six stocks listed on the NYSE, AMEX and NASDAQ beneficial properties of the proposed

modeling strategy will be explored. In Section 3.5, detailed investigation of the real data exam-

ple will be continued. Section 3.5.4 shows the excellent forecasting performance of the partial

correlation vine data transformation approach both with respect to statistical precision and

mean-variance balance in portfolio optimization.

3.2 Partial correlation vines

First, we provide necessary background on the two main ingredients of the proposed model

approach – partial correlations and regular vines.

Partial correlations

We consider a random vector XI := (X1, . . . , Xd), d ≥ 2, with zero mean, where I is the index

set {1, . . . , d}. We denote the d× d covariance matrix by Y and obtain the corresponding d× d
correlation matrix R as R = D−1/2Y D−1/2, where D = diag (y1,1, . . . , yd,d) is the diagonal

matrix of variances. In Section 2.2.2 on page 10, we introduced for a subset L ⊆ I with |L| ≥ 2

the partial correlation coefficients ρi,j;D{i,j} (i, j ∈ L, i 6= j and D{i,j} = L−{i,j} = L\{i, j}) that

quantify the dependence between Xi and Xj with the linear effect of XD{i,j} = {Xk, k ∈ D{i,j}}
removed (Kurowicka and Joe, 2011, p. 47).

In the following, we refer to the cardinality of D{i,j} as order of the corresponding partial

correlation coefficient. For order zero, i.e. |L| = |{i, j}| = 2 and thus D{i,j} = ∅, we obtain

pairwise standard correlations between Xi and Xj (i, j ∈ I, i 6= j). Then, as in (2.2) we write

ρi,j;∅ = ρi,j . Now, consider for a subset L ⊆ I of at least cardinality 3, a set of distinct indices

{i, j, k} ⊆ L (i 6= j 6= k). We define D̃ := L−{i,j,k} such that D{i,j} = D̃ ∪ k. Anderson (1958)

derives a formula to recursively calculate the partial correlations of any order |D{i,j}| with

|D{i,j}| ≥ 1 in terms of (partial) correlations of lower order. With ρ2
i,k;D̃

< 1 and ρ2
j,k;D̃

< 1 it

holds that

ρi,j;D{i,j} =
ρi,j;D̃ − ρi,k;D̃ρj,k;D̃√
1− ρ2

i,k;D̃

√
1− ρ2

j,k;D̃

. (3.1)

Since the evaluation of higher order partial correlations gets too involved when exclusively

relying on this recursion formula, in practice typically a more efficient calculation procedure

is used (see Whittaker (2009)). Let Ω be the submatrix of standard correlations with indices

L ⊆ I, i.e. Ω = (ωk,`)k,`=1,...,|L| = (ρlkl`)k,`=1,...,|L|, where lk is the k-th element in L. Let P be

its inverse, i.e. P = Ω−1 = (pk,`)k,`=1,...,|L|. Then, it holds

ρlk,l`;D{lk,l`}
= −

pk,`√
pk,kp`,`

. (3.2)

Thus, through inversion of Ω all partial correlations between Xi and Xj (i, j ∈ L, i 6= j) given all

other variables XD{i,j} are simultaneously calculated. If interest is in a single partial correlation
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3.2 Partial correlation vines

ρi,j;D{i,j} for i, j ∈ L with i 6= j fixed, computing complexity can be reduced by assorting Ω

blockwise with indices (i, j) and D{i,j}, i.e.

Ω−1 =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)−1

= P =

(
P 1,1 P 1,2

P 2,1 P 2,2

)
,

where Ω1,1 is a 2 × 2 matrix with elements ω1,1 = ω2,2 = 1, ω1,2 = ω2,1 = ρi,j and P 1,1 its

counterpart with elements p1,1, p1,2 = p2,1, p2,2. Using standard results for block matrix inversion

(see Bernstein (2005)) we have P−1
1,1 = Ω1,1 −Ω1,2Ω

−1
2,2Ω2,1 with elements p̃1,1, p̃1,2 = p̃2,1, p̃2,2.

We conclude that

ρi,j;D{i,j}
(3.2)
= − p1,2√

p1,1p2,2
= −

− 1
detP 1,1

p̃1,2√
1

detP 1,1
p̃1,1

1
detP 1,1

p̃2,2

=
p̃1,2√
p̃1,1p̃2,2

. (3.3)

From now on, we refer to Cd as the set of all standard correlations and to Cp
d as the set of all

pairwise standard and partial correlations. The 1 ×
(
d
2

)
vector P Cd and the 1 ×

(
d
2

)
2d−2 vector

P Cpd
record all standard correlations and all standard and partial correlations, respectively, of

the random vector XI in lexicographical order with increasing subset L ⊆ I, i.e.

P Cd :=
(
ρ1,2, . . . , ρ1,d, ρ2,3, . . . , ρ2,d, . . . , ρ(d−1),d

)
and

P Cpd
:= (P Cd ,

ρ1,2;3, . . . , ρ1,2;d, ρ1,3;2, . . . , ρ1,d;(d−1), ρ2,3;1, . . . , ρ(d−1),d;(d−2),

...,

ρ1,2;3,...,d, . . . , ρ1,d;2,...,(d−1), . . . , ρ(d−1),d;1,...,(d−2)

)
.

To conclude and as illustrated in Figure 3.1, from a d × d covariance matrix Y the 1 × d

vector of variances y and the d × d correlation matrix R can be obtained. The latter fully

determines the vector P Cpd
, which takes values in (−1, 1) and collects all

(
d
2

)
2d−2 standard and

partial correlations. In the following, we will show that the other way round the correlation

matrix R can be uniquely determined from only a few elements of P Cpd
, which are selected

through a regular vine.

Partial correlation vine

Based on the previous section and Section 2.1, building the bridge between partial correlations

determined by a d × d correlation matrix and an R-vine structure Vd is straightforward: in a

partial correlation vine with R-vine structure Vd each edge e = {a, b} ∈ E (Vd) is identified with

the partial correlation coefficient ρCe,a,Ce,b;De that coincides with the conditioned and condition-

ing set specified by e. Thus, to each edge in Vd a value in (−1, 1) is assigned. We define the set

of the
(
d
2

)
standard and partial correlations specified by Vd as C (Vd) and denote by P C(Vd) the

1 ×
(
d
2

)
vector that collects the corresponding values specified by the correlation matrix R in
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Chapter 3 R-vine based modeling of multivariate volatility time-series

Data: random vector XI ∈ Rd
with covariance matrix Y ∈ Rd×d

Variance vector of XI
y′ = (y1,1, . . . , yd,d)

′ ∈ Rd>0

Correlation matrix of XI

R =


1 ρ1,2 · · · ρ1,d

ρ1,2 1 · · ·
...

...
...

. . .
...

ρ1,d · · · · · · 1

 ∈ (−1, 1)d×d

Vector of standard correlations of XI

P ′Cd =
(
ρ1,2, . . . , ρ(d−1),d

)′ ∈ (−1, 1)(
d
2)

Vector of standard and partial correlations of XI

P ′Cpd
=
(
ρ1,2, . . . , ρ(d−1),d;1,...,(d−2)

)′ ∈ (−1, 1)(
d
2)2d−2

formulas (3.1), (3.2)

Figure 3.1: Data prespecified by a given covariance matrix Y .

lexicographical order.

Bedford and Cooke (2002) provide the fundamental result that for any R-vine structure Vd
there is a one-to-one relationship between the set of d× d positive definite correlation matrices

and its set C (Vd), i.e. for each R-vine structure Vd there exists a bijection

FCor2PCor : (−1, 1)(
d
2) → (−1, 1)(

d
2) , FCor2PCor (P Cd) = P C(Vd). (3.4)

In particular, according to Kurowicka and Cooke (2003) the elements in P C(Vd) are algebraically

independent, i.e. for any arbitrary assignment of values in (−1, 1) to the edges of R-vine structure

Vd the correlation matrix calculated from P C(Vd) using the ‘inverse’ of (3.4) is positive definite

with correlation values in (−1, 1) for all off-diagonal elements. An efficient implementation of

the bijection FCor2PCor and its ‘inverse’ is available in the R-package VineCopula (Schepsmeier

et al., 2017). Pseudo-code is provided in Joe (2014). Note that while in the derivation of (3.3)

and in the following explanations we assume the submatrix of standard correlations Ω to be

assorted blockwise with indices (i, j) and D{i,j}, Joe (2014) assorts the indices using the order

D{i,j} and (i, j).
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3.2 Partial correlation vines

Example 3.1 (Example 2.1 on page 8 continued). We illustrate the data transformation based

on R-vine structure V6 in Figure 2.1. As illustrated below, each standard correlation in R on the

left-hand side is specified in the partial correlation vine corresponding to V6 through a (partial)

correlation of order `− 1 modeled in tree T` (` = 1, . . . , 5) , i.e.

R =



ρ1,2 ρ1,3 ρ1,4 ρ1,5 ρ1,6

ρ2,3 ρ2,4 ρ2,5 ρ2,6

ρ3,4 ρ3,5 ρ3,6

ρ4,5 ρ4,6

ρ5,6


�



ρ1,2 ρ1,3;2 ρ1,4;2,3 ρ1,5;2,3,4 ρ1,6;2

ρ2,3 ρ2,4 ρ2,5;3 ρ2,6

ρ3,4;2 ρ3,5 ρ3,6;1,2

ρ4,5;2,3 ρ4,6;1,2,3

ρ5,6;1,2,3,4


T1 T2 T3 T4 T5

Transformation of correlation matrix. First, we derive from R the partial correlations

corresponding to V6. Thus, proceeding in the illustration of the above matrices is from left to

right. While the standard correlations in T1 can simply be taken from the correlation matrix R,

the first order partial correlations in T2 can be calculated using recursion formula (3.1). For

example,

ρ1,6;2 =
ρ1,6 − ρ1,2ρ2,6√

1− ρ2
1,2

√
1− ρ2

2,6

.

From tree level ` = 3 on, we rely on formula (3.3) and elementwise calculate the partial

correlations specified by T3 to T5. For example, for ρ3,6;1,2 we set

Ω1,1 =

 1 ρ3,6

ρ3,6 1

 , Ω1,2 =

ρ1,3 ρ2,3

ρ1,6 ρ2,6

 , Ω2,1 =

ρ1,3 ρ1,6

ρ2,3 ρ2,6

 and Ω2,2 =

 1 ρ1,2

ρ1,2 1



and evaluate

p̃1,1 p̃1,2

p̃1,2 p̃2,2

 = Ω1,1 −Ω1,2Ω
−1
2,2Ω2,1. Then, we calculate

ρ3,6;1,2
(3.3)
=

p̃1,2√
p̃1,1p̃2,2

.

Back-transformation to correlation matrix. Now, proceeding in the illustration of the above

matrices is from right to left. We proceed treewise. The standard correlations from T1 can directly

be taken. To calculate the standard correlations that correspond to the conditioned sets of the

first order partial correlations available in T2, we use recursion formula (3.1). For example,

ρ1,6 = ρ1,6;2

√
1− ρ2

1,2

√
1− ρ2

2,6 + ρ1,2ρ2,6.

Note that due to the proximity condition of an R-vine structure all standard correlations needed

for this evaluation are available from the previous step.

21



Chapter 3 R-vine based modeling of multivariate volatility time-series

From tree level ` = 3 on, we rely on formula (3.3) to calculate the standard correlations that

correspond to the conditioned sets of the partial correlations specified in T3 to T5. For example,

to obtain ρ3,6 we set Ω1,2, Ω2,2 and Ω2,1 as above. Due to the proximity condition all standard

correlations to do so are available from previous steps ` = 1, 2. We calculateq1,1 q1,2

q1,2 q2,2

 = Ω1,2Ω
−1
2,2Ω2,1

such that p̃1,1 = 1− q1,1, p̃1,2 = p̃2,1 = ρ3,6 − q1,2, p̃2,2 = 1− q2,2 and obtain

ρ3,6
(3.3)
= ρ3,6;1,2

√
(1− q1,1)(1− q2,2) + q1,2.

To conclude, the set of all standard correlations Cd can be determined from any set C (Vd)
specified by a partial correlation vine with R-vine structure Vd. In particular, positive definiteness

of the correlation matrix is always guaranteed. Figure 3.2 provides a summary overview of the

relationships between the sets Cd, Cp
d and C (Vd).

set Cp
d

with |Cp
d | =

(
d
2

)
2(d−2)

(
d
2

)
standard correlations
ρ1,2, . . . , ρ(d−1),d

(
d
2

)
(d − 2) order 1 pcors

ρ1,2;3, . . . , ρ(d−1),d;(d−2)

...

(
d
2

)
order d-2 pcors

ρ1,2;3,...,d, . . . , ρ(d−1),d;1,...,(d−2)

algebraic independent
set C (Vd)

with |C (Vd) | =
(
d
2

)
partial correlation vine

with R-vine structure Vd

set Cd
with |Cd| =

(
d
2

)

select d-1

s.t. T1 is a tree

select d-2 under

proximity condition

s.t. T2 is a tree

select 1 under

proximity condition

s.t. Td−1 is a tree

F−1Cor2PCor

formulas (3.1), (3.2)

Figure 3.2: Illustration of the transformation of the set of standard correlations Cd through a
partial correlation vine, which consists of a subset of algebraic independent (partial)
correlations C (Vd) ⊂ Cp

d from all standard and partial correlations. The abbreviation
“pcor” is used for partial correlation.

22



3.3 General setting and benchmark models

3.3 General setting and benchmark models

In the following, partial correlation vine based data transformation will be used to model and

forecast multivariate volatility time-series. To do so, we introduce the general data setting first.

For the daily price series St ∈ Rd, t = 1, . . . , T , of d assets let rt = log (St)− log (St−1) be the

d× 1 vector of daily log-returns. The process rt can be written as

rt = E[rt|Ft−1] + εt,

where Ft−1 is the information set containing all information up to and including time point t−1.

For the innovation term εt, we suppose that εt = Σ
1/2
t ηt, where Σt = Var[rt|Ft−1] is the (d× d)-

dimensional symmetric and positive definite conditional covariance matrix. For the i.i.d. vector

ηt ∈ Rd it holds that E[ηt] = 0 and Var[ηt] = Id. Interest is in modeling and forecasting the series

of daily conditional covariance matrices Σt, t = 1, . . . , T , which however are naturally latent

variables and therefore are unobservable. Still, as proposed by Barndorff-Nielsen and Shephard

(2004) Σt, t = 1, . . . , T , can be specified nonparametrically using the realized covariance matrices

as consistent estimates. Considering M intra-day periods per day t, the latter are calculated

from high-frequency intra-day log-returns r`,t = log
(
St−1+`/M

)
− log

(
St−1+(`−1)/M

)
based on

the price series S`,t ∈ Rd, ` = 1, . . . ,M . The modeling and forecasting framework is then based

on the matrix valued time-series of realized covariance matrices

Y t =
M∑
`=1

r`,tr
′
`,t, t = 1, . . . , T. (3.5)

Since for the matrix forecasts symmetry and positive definiteness have to be ensured, algebraic

restrictions are imposed on time-series models. Thus, popular modeling strategies avoid direct

modeling of the realized covariance matrices considering transformed data instead. Then, the

modeling approach basically consists of three consecutive steps: (S1) data transformation of the

realized covariance matrices; (S2) multivariate time-series modeling and prediction based on the

transformed data; (S3) back-transformation of the transformed data to obtain predictions for the

realized covariance matrices, which are proxies for the future conditional covariance matrices.

The novelty in this thesis lies in the use of partial correlation vines for data transformation in

steps (S1) and (S3). By modeling and forecasting the time-series of partial correlation vines, we

obtain forecasts for the transformed data, which do not have any algebraic restrictions. On the

contrary, due to the algebraic independence of the model components positive definiteness of the

corresponding predicted correlation matrices is always guaranteed. In the literature, besides the

matrix log transformation suggested by Bauer and Vorkink (2011) data transformation based

on the Cholesky factorization is one of the most commonly used approaches.

Here, the series of realized covariance matrices Y t, t = 1, . . . , T , is decomposed such that

Y t = C ′tCt, whereC ′t is a lower triangular matrix with positive diagonal elements. The Cholesky
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Chapter 3 R-vine based modeling of multivariate volatility time-series

elements ci,j;t (i, j = 1, . . . , d) are recursively calculated by

ci,j;t =


1

ci,i;t

(
yi,j;t −

∑i−1
k=1 ck,i;tck,j;t

)
for i < j,√

yj,j;t −
∑j−1

k=1 c
2
k,j;t for i = j,

0 for i > j.

(3.6)

By modeling and forecasting the Cholesky elements in step (S2) no parameter restrictions need

to be imposed on the multivariate time-series models. Symmetry and positive definiteness of the

predicted covariance matrices Ŷ t, t = T + 1, T + 2, . . ., are automatically guaranteed through

the back-transformation

ŷi,j;t =

min{i,j}∑
k=1

ĉk,i;tĉk,j;t. (3.7)

Chiriac and Voev (2011) use the Cholesky decomposition in steps (S1) and (S3) and apply a

parsimonious VARFIMA model to the multivariate time-series of the Cholesky components in

step (S2). In their detailed analysis, they show the superiority of their approach over a variety

of competitor models. The comparison includes the above mentioned matrix log transformation

used in steps (S1) and (S3) for data transformation combined with VARFIMA and vector HAR

models in step (S2). Further, the Wishart autoregressive model of Gouriéroux et al. (2009) as well

as the multivariate GARCH model with dynamic conditional correlations of Engle (2002) and its

fractionally integrated version proposed by Baillie et al. (1996) are considered. Brechmann et al.

(2018) refine the Cholesky-VARFIMA model of Chiriac and Voev (2011) and allow for more

flexible modeling of the multivariate time-series in step (S2). They take account of challenging

data characteristics in the Cholesky elements by modeling the univariate marginal time-series

with elaborate HAR and ARFIMA models including GARCH-augmentations for the residuals.

The possibly complex dependence between the Cholesky components is captured by a copula.

Given these profound model reviews and comparisons already existing in literature, models based

on the Cholesky decomposition will be the main benchmarks in this chapter.

Chiriac and Voev (2011) and Brechmann et al. (2018) both consider high-frequency data from

the NYSE TAQ database containing tick-by-tick bid and ask quotes on six stocks listed on

the New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and the National

Association of Security Dealers Automated Quotation System (NASDAQ). The original raw data

were processed by Chiriac and Voev (2011), who provide detailed information on the employed

data preparation. Data of the six stocks American Express Inc. (AXP), Citigroup (C), General

Electric (GE), Home Depot Inc. (HD), International Business Machines (IBM) and JPMorgan

Chase & Co (JPM) were sampled from 9:30 until 16:00 for the period January 1, 2000, until

July 30, 2008, i.e. for 2156 trading days. While in (3.5) a single realized covariance matrix is

computed from M intra-day log-returns, Chiriac and Voev (2011) obtained for each day a refined

subsampled realized covariance matrix, which is more robust to market microstructure noise. For

each day t, a 5-minute spaced time grid, i.e. M = 78, was shifted by 10 seconds, resulting in 30

distinct sets of realized covariance matrices calculated from 78 intra-day log-returns. By taking
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3.4 Partial correlation vine data transformation approach

the average of these sets, the subsampled realized covariance matrix for day t was calculated.

Although the data are less recent, we consider the same data for comparison reasons. Further,

the data cover interesting periods of financial turmoil such as the aftermath of the dotcom bubble

in 2000 and the beginning of the financial crisis in 2008. Since the focus in this project is on the

novel data transformation defined by partial correlation vines, this will provide new interesting

insights about the data.

3.4 Partial correlation vine data transformation approach

In this section, we outline – supported by real data characteristics – steps (S1) to (S3) for the

proposed modeling strategy based on partial correlation vines.

3.4.1 Data characteristics

Time-series of realized co(variances) typically exhibit long-memory behavior detectable by high

autocorrelations, which decay at a slow rate (see Andersen and Bollerslev (1997); Andersen et al.

(2001)). Chiriac and Voev (2011) find that the time-series of Cholesky components obtained

through data transformation inherit this data feature. Further, according to Brechmann et al.

(2018) appropriate time-series models need to capture non-Gaussianity and volatility clustering

of the residuals extracted from the series of Cholesky elements.

In order to also appropriately setup the partial correlation vine data transformation model it is

essential to understand the properties of the corresponding model components, namely realized

variances and realized (partial) correlations. The latter are specified through the realized covari-

ance matrix via Y t = D
1/2
t RtD

1/2
t , t = 1, . . . , T . For day t, Dt = diag (y1,1;t, . . . , yd,d;t) contains

the realized variances and Rt is the realized correlation matrix. Realized partial correlations can

easily be obtained either using recursion formula (3.1) or through simultaneous calculation using

(3.2) (recall Figure 3.1). For reasonable time-series modeling later in step (S2), for all model

components data on the real line are needed. Thus, we log-transform the all positive realized

variance time-series and apply the Fisher z-transformation to the series of (partial) correlations,

i.e. for ρt being an arbitrary (partial) correlation at day t

z (ρt) =
1

2
log

(
1 + ρt
1− ρt

)
, t = 1, . . . , T. (3.8)

For the considered real data, Figure 3.3 shows a selection of time-series both on the original

(left) and the transformed (right) scale. The first panel illustrates for JPM the daily realized

variance series. Striking is the highly volatile behavior particularly during periods of financial

turmoil such as the aftermath of the dotcom bubble and the beginning of the financial crisis in

August 2007. Panels 2 to 6 show selected daily time-series of realized (partial) correlations with

increasing order. For example, the last panel illustrates the time-series of the fourth order realized

partial correlation between HD and JPM. For each day, the latter is a proxy of the conditional

(with respect to the information set) correlation between the log-returns of IBM and JPM given

the four remaining stocks. With increasing order the realized partial correlation time-series
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Chapter 3 R-vine based modeling of multivariate volatility time-series
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Figure 3.3: Daily realized variance series (1st row) and daily realized (partial) correlation series

(2nd – 6th row). Original data are shown in the left panel, log-transformed and
Fisher z-transformed data, respectively, are shown in the right panel.

become more stable while still exhibiting highly volatile behavior. Further, in Figure 3.4 data

characteristics of four time-series are illustrated. The figures in the top row correspond to the

realized variance time-series of JPM, which together with the remaining five realized variance

series always will be a model component. The long hyperbolic decay of the autocorrelation

function of the squared data on the left confirms the long-memory behavior and the presence

of volatility clustering. The log-periodogram shows higher peaks only for short frequencies as

expected for self-similar processes. In the second and third row, exemplary time-series, which

would appear in tree level T1 and T4, respectively, of an R-vine structure are shown. Interestingly,

while the realized standard correlation time-series corresponding to tree level T1 inherits the data

characteristics of the realized variance time-series, the latter are less pronounced for the realized

third order partial correlation time-series in T4.

To gain a deeper understanding of this last observation, recall that in a partial correlation
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3.4 Partial correlation vine data transformation approach
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Figure 3.4: Illustration of autocorrelation functions of squared data (left panel) and correspond-
ing log-periodograms (right panel) based on data from July 1, 2006, to June 30, 2008.
In the first row, the log-transformed realized variance time-series of JPM is consid-
ered. In rows 2 to 4 exemplary Fisher z-transformed realized (partial) correlation
time-series of increasing order are considered.

vine each variable pair (i, j) (i, j ∈ {1, . . . , d}, i 6= j) forms exactly once the conditioned set of

an edge. Thus, depending on the tree level ` the proxy for the conditional (with respect to the

information set) correlation between the log-returns of stocks i and j is either represented by the

realized standard correlation (if (i, j) occurs as conditioned set in T1) or through a (`−1)-th order

realized partial correlation (if (i, j) occurs as conditioned set in T` (` = 2, . . . , d−1)). In the latter

case, the linear effect of the `−1 stocks forming the conditioning set is removed. Clearly, for some

pairs the realized standard correlations might mainly be driven by other variables. Once this

influence is removed data features such as long-memory behavior weaken and the corresponding

realized partial correlation time-series behave more and more like noise. On the other hand, this

effect is not observable for pairs, which truly are strongly correlated such as the log-returns of

the two financial stocks C and JPM. The corresponding realized fourth order partial correlation

time-series, which would occur in the highest tree level, i.e. T5, of an R-vine structure, underlies

the two figures in the last row of Figure 3.4. It shows similar data characteristics as the realized

variance time-series in the top row.
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Chapter 3 R-vine based modeling of multivariate volatility time-series

The above analysis clearly stresses the practical interpretability of the model components in

the partial correlation vine data transformation approach, namely realized variances and realized

(partial) correlations. In the following, the detected inhomogeneous data complexity motivates

a specific choice for the R-vine structure used for data transformation in step (S1).

3.4.2 Step (S1): R-vine structure selection for data transformation

In d dimensions there exist d!/2 · d(d−2)(d−3)/2 valid R-vines (Morales Napoles et al., 2010). It is

important to note that, in general, each of these tree structures allows a valid transformation of

the realized correlation matrices. To allow for model parsimony later in step (S2), when modeling

the dynamics of the realized variance series and the realized (partial) correlation time-series

selected by the R-vine structure, we refer to the data characteristics detected in Section 3.4.1

and propose in this section an algorithm for R-vine structure selection.

We know that when transforming a series of realized correlation matrices based on the same

R-vine structure, to each edge in this R-vine a univariate time-series of realized standard or

partial correlations is assigned. Therefore, each edge can be characterized by a weight derived

from sample properties of the corresponding time-series. We decide for the average (partial)

correlation strength: we consider the average correlation matrix R̄ = (ρ̄i,j)i,j=1,...,d (which is

positive definite) calculated from Rt, t = 1, . . . , T . Then, we find the maximum spanning tree

T1 (Katoh et al., 1981) with edge weights set to ρ̄Ce,a,Ce,b . To construct tree T2, we calculate all

average first order partial correlations ρ̄Ce,a,Ce,b;De , i.e. |De| = 1, where (Ce,a, Ce,b;De) satisfies

the proximity condition given T1. Based on these weights, we find the maximum spanning tree

T2. In general, we construct the R-vine structure Vd within a top-down procedure and find tree

by tree (` = 1, . . . , d − 1) the maximum spanning tree T` with edge weights set to ρ̄Ce,a,Ce,b;De ,

where |De| = ` − 1 and (Ce,a, Ce,b;De) satisfies the proximity condition given T1 to T`−1. By

doing so, we equip based on historical information the R-vine structure with the highest realized

(partial) correlation means.

The correlation matrix R̄ can be obtained in various ways depending on how the average

is calculated. Considering for each pair (i, j) (i, j ∈ {1, . . . , d}, i 6= j) the empirical mean

ρ̄i,j = 1
T

∑T
t=1 ρi,j;t assigns to each day’s value ρi,j;t the same influence 1/T irrespective of

how far it lies in the past. For example, by using an exponentially weighted moving average

(EWMA) more influence can be assigned to values of more recent days. Here, the exact weights

are controlled by the smoothing parameter λ ∈ ]0, 1[ and are defined as wt = (1 − λ)λT−t,

t = 1, . . . , T . Thus, for decreasing λ the impact of more recent days increases and therewith the

sensitivity of the selected R-vine structure with respect to market changes.

For the real data example, the proposed R-vine structure selection method is illustrated in

Table 3.1. Recall that the data include three market participants of financial sectors, namely

AXP, C and JPM, IBM as an IT service, HD representing building materials trade and the di-

versified industrial corporation GE. As edge weights the empirical means of the realized (partial)

correlation series based on all data points, i.e. t = 1, . . . , 2156 (January 1, 2000 - July 30, 2008),

are chosen. In T1, we start with a full graph, i.e. all edges are allowed to be chosen. Edge by

edge a tree, i.e. a connected and acyclic graph, is built adding edges with the highest possible
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3.4 Partial correlation vine data transformation approach

Table 3.1: Illustration of the R-vine structure selection method for the real data example con-
sidering all available data points, i.e. the mean values ρ̄Ce,a,Ce,b;De are based on

t = 1, . . . , 2156.

pairs allowed by proximity condition
selected tree

De Ce,a, Ce,b ρ̄Ce,a,Ce,b;De

∅ C,JPM 0.547

IBM

AXP
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Chapter 3 R-vine based modeling of multivariate volatility time-series

correlation mean. For example, including the pair (AXP,JPM) would result in a cycle and is

thus not allowed. For T2 only edges satisfying the proximity condition given T1 are allowed. A

tree is constructed by the four edges with the highest mean values of realized first order partial

correlations, etc. The resulting R-vine structure captures the strong pairwise realized correla-

tions between the three financial services in trees T1 and T2. From T3 on only realized partial

correlations corresponding to stocks from different market sectors are modeled. Note that all

time-series illustrated in Figure 3.3 and Figure 3.4 are included in the final R-vine structure.

Consequently, using in step (S1) an R-vine structure selected by the proposed algorithm will

likely result in higher order realized partial correlation series, which allow for a parsimonious

time-series model specification in step (S2).

3.4.3 Step (S2): Multivariate time-series modeling and forecasting

After transforming the series of realized covariance matrices in step (S1), multivariate time-

series models in step (S2) can be applied to the transformed data without imposing any pa-

rameter restrictions. Except for the considered modeling components this step does not differ

from Cholesky decomposition based benchmark models. In both approaches, there are d(d+1)/2

model components after data transformation. In particular, the time-series of log-transformed

realized variances and Fisher z-transformed realized (partial) correlations could be modeled us-

ing a VARFIMA model as suggested for the Cholesky elements in Chiriac and Voev (2011).

Compared with this, copula based time-series modeling as applied in Brechmann et al. (2018)

showed superior results especially for economic applications.

A d̃-dimensional copula is a multivariate distribution function on [0, 1]d̃ with uniformly dis-

tributed margins. Since data are required to be approximately i.i.d., the copula model usu-

ally is not directly applied to the observed time-series, but to the corresponding standardized

residuals
(
ε1;t, . . . , εd̃;t

)
, t = 1, . . . , T . The latter are extracted after fitting appropriate uni-

variate time-series models to the original marginal data. While no longer being subject to

temporal dependence, the residuals inherit the cross-sectional dependence between the time-

series components. According to Sklar (1959), their joint distribution function F can be ex-

pressed in terms of its marginal distributions Fj (j = 1, . . . , d̃) and its corresponding copula, i.e.

F
(
ε1, . . . , εd̃

)
= C{F1 (ε1) , . . . , Fd̃

(
εd̃
)
}. Consequently, in a copula based time-series model the

individual behavior of the time-series components and their dependence are modeled separately.

This allows us to deepen the analysis of the realized variance and (partial) correlation series.

Univariate marginal time-series modeling

As discussed in Section 3.4.1 specific univariate time-series models are needed to reproduce the

long-memory property of the Cholesky components as well as of the realized variance and some

of the realized (partial) correlation series. HAR (Corsi, 2009) and ARFIMA (Andersen et al.,

2003) models are popular models capable of doing so.

Let ηt denote the variable of interest, i.e. a log-transformed realized variance, a Fisher z-

transformed realized (partial) correlation or a Cholesky element, at time t. A basic HAR model

accounts for different time horizons by incorporating one day (d = 1), one week (w = 5) and

30



3.4 Partial correlation vine data transformation approach

one month (m = 22) averages ηt−1, η
(w)
t−1 and η

(m)
t−1 as regressors for ηt:

ηt = α0 + α1ηt−1 + α2η
(5)
t−1 + α3η

(22)
t−1 + εt.

The error term εt is usually assumed to be Gaussian white noise. While showing very good mod-

eling and prediction performance given complex data features, the basic HAR model describes

an easy to estimate restricted autoregressive process.

The ARFIMA(p, D, q) model for the time-series ηt, t = 1, . . . , T , is specified by

φ (L) (1− L)D (ηt − µ) = ψ (L) εt,

where φ (L) = 1 − φ1L − . . . − φpLp and ψ (L) = 1 + ψ1L + . . . + ψqL
q are lag polynomials

for p, q ∈ N. D is the parameter of fractional differencing. We choose D ∈ (0, 0.5) to guarantee

stationarity of the process. Gaussian white noise is usually assumed for the error term εt.

In these basic models, the volatility h of the error term εt = hεt with εt ∼ N (0, 1) is assumed

to be constant. Given the presence of volatility clustering in the Cholesky series, Brechmann

et al. (2018) include a GARCH (1, 1) component, i.e. εt = htεt with h2
t = ω + β1ε

2
t−1 + β2h

2
t−1.

Usually, the innovation terms εt are standard normally distributed, i.e. εt ∼ N (0, 1). To ad-

ditionally capture possible high kurtosis and skewness, Brechmann et al. (2018) further allow

the innovations to follow a skewed generalized error distribution, i.e. εt ∼ SGED (µ, σ, ν, ξ)

(Bai et al., 2003; Corsi et al., 2008; Fernández and Steel, 1998). A specification of the skewed

generalized error distribution is provided in Section A.1 in Appendix A.

Dependence modeling

After fitting one of the above univariate time-series models to each of the model components, the

sample of i.i.d. standardized residuals
(
ε1;t, . . . , εd(d+1)/2;t

)
, t = 1, . . . , T , can be extracted. To

them, usually a two-stage proceeding is applied, called inference for margins methods (Joe and

Xu, 1996; Joe, 2005). First, the probability integral transform, ûj;t = F̂j (εj;t), is applied to each

residual component (j = 1, . . . , d(d + 1)/2) to obtain pseudo copula data
(
û1;t, . . . , ûd(d+1)/2;t

)
,

t = 1, . . . , T . The marginal estimates F̂j are specified through the corresponding marginal time-

series fit. For example, in case of a basic HAR or ARFIMA model F̂j is a normal distribution

with sample mean (approximately 0) and sample standard deviation (approximately 1).

Second, a copula is fitted to the pseudo copula data. To do so, we consider R-vine copulas as

introduced in Section 2.3. Note that while in step (S1) and (S3) of the partial correlation vine

data transformation approach, R-vines are exclusively used as a graph theoretical tool for data

transformation, they are now the cornerstones for this flexible copula class. Fitting an R-vine

copula to the sample
(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T , finalizes the model specification based

on in-sample data.
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Chapter 3 R-vine based modeling of multivariate volatility time-series

Forecasting of the model components

A one-day-ahead out-of-sample forecast Ŷ T+1 is now generated in multiple steps. First, inno-

vations on the copula scale
(
û1;T+1, . . . , ûd(d+1)/2;T+1

)
are sampled from the R-vine copula fit.

The corresponding innovations on their original scale are obtained using the inverse probability

integral transform, i.e. ε̂j;T+1 = F̂−1
j (ûj;T+1) (j = 1, . . . , d(d + 1)/2). Then, based on the cor-

responding time-series fit forecasts for the model components, which involve the corresponding

simulated innovations, are calculated. In the Cholesky decomposition based model, this results

in a predicted upper triangular matrix ĈT+1. In the partial correlation vine data transformation

approach, the log-transformation of the realized variances and the Fisher z-transformation of

the realized (partial) correlations have to be reversed first. This results in the predicted realized

partial correlation vine stored in P̂ C(Vd);T+1 and the corresponding predicted realized variance

vector (ŷ1,1;T+1, . . . , ŷd,d;T+1).

3.4.4 Step (S3): Back-transformation

Finally, based on ĈT+1 back-transformation (3.7) is applied for the Cholesky decomposition

based approach. Likewise, P̂ C(Vd);T+1 is back-transformed to a symmetric and positive defi-

nite correlation matrix (Section 3.2) based on the R-vine structure selected in step (S1) (Sec-

tion 3.4.2). Combined with the predicted realized variances a forecast for the realized covariance

matrix is obtained. Given that both backward procedures involve nonlinear transformations of

the copula-distributed innovation terms, the underlying dependence pattern has an explicit effect

on the matrix forecast. Clearly, in practice this simulation based procedure is to be replicated

several times. The final point-forecast Ŷ T+1, which is considered as a proxy for the conditional

covariance matrix, is obtained as the mean of the simulation based matrix forecasts.

In both modeling approaches the predictions of Ŷ T+1 are obtained after inverting a nonlinear

data transformation. Consequently, while the prediction errors of the model components have

zero mean, the nonlinear back-transformation induces a bias. Even though Chiriac and Voev

(2011) derive the theoretical bias correction for the Cholesky decomposition based model, they

stress that the theoretical formula crucially depends on the considered time-series model and

thus, has to be estimated in practice. However, given that in a copula based time-series model

the marginal time-series are estimated independently of each other, consistent estimation of the

covariance matrix of the forecast errors in Brechmann et al. (2018) is not feasible. Against this

background, Chiriac and Voev (2011) and Brechmann et al. (2018) both advocate a data-driven

bias correction. In the partial correlation vine data transformation approach, the forecast bias of

the variable pair (i, j) in Ŷ T+1 depends not only on the underlying time-series model but also on

the R-vine structure used for data transformation, making a theoretical correction practically

infeasible. We therefore as well opt for the heuristic data-driven bias correction proposed in

Chiriac and Voev (2011). The basic idea is to match the level of the observed volatilities by scaling

the predicted volatilities
√
ŷj,j;T+1 (j = 1, . . . , d) by the corresponding mean 1

T−s+1

∑T
t=s

√
yj,j;t√
ŷj,j;t

,

where s controls the number of past days included for level matching. Note that this proceeding

has no influence on the predicted correlation structure. Thus, in the partial correlation vine data

transformation approach only the nonlinear inversion of the log-transformation can be corrected.
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3.4 Partial correlation vine data transformation approach

3.4.5 Modeling approach at a glance

Figure 3.5 summarizes the partial correlation vine data transformation approach discussed in

the previous sections.

Data: series of daily realized covariance matrices Y t, t = 1, . . . , T
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Univariate time-series modeling resulting in an approximately i.i.d. sample of innovations(
ε1;t, . . . , εd(d+1)/2;t

)
, t = 1, . . . , T , and pseudo copula data

(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T

Fit an R-vine copula to
(
û1;t, . . . , ûd(d+1)/2;t

)
, t = 1, . . . , T

set i = 1

Simulate copula data
(
û1;T+1, . . . , ûd(d+1)/2;T+1

)
according to the R-vine copula fit

and calculate simulated innovations
(
ε̂1;T+1, . . . , ε̂d(d+1)/2;T+1

)

Calculate predicted model components scaled to Rd(d+1)/2

Predicted realized variance vector
(ŷ1,1;T+1, . . . , ŷd,d;T+1)

Predicted realized partial correlation
vine stored in P̂ C(Vd);T+1

Predicted realized correlation matrix R̂

Predicted realized covariance matrix based on i-th simulated innovation vector Ŷ
i

T+1

i = Ni = i+ 1

One-day-ahead forecast Ŷ T+1 obtained as mean of Ŷ
i

T+1, i = 1, . . . , N

Figure 3.1 Figure 3.2, Section 3.4.2

log-transformation
Fisher z-transformation

Section 3.4.3

Section 2.3

exp-transformation inverse Fisher z-transformation

Section 3.2, F−1
Cor2PCor

no

yes

Figure 3.5: Modeling and forecasting approach using partial correlation vine based data trans-
formation of the series of realized covariance matrices in step (S1) and an R-vine
copula based time-series model in step (S2). The one-day-ahead forecast Ŷ T+1 is
obtained as mean of N simulation based matrix forecasts.
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Chapter 3 R-vine based modeling of multivariate volatility time-series

3.5 Empirical study

The real data example introduced in Section 3.3 and Section 3.4 will now be investigated in

more detail. Based on the model specifications in Section 3.5.2 and Section 3.5.3, the out-of-

sample forecasting performance of the partial correlation vine data transformation approach

and Cholesky decomposition based benchmark models will be evaluated both with respect to

statistical precision and mean-variance trade-off in portfolio optimization strategies.

It is crucial to keep in mind that the realized covariance matrices are proxies for the unob-

servable true conditional covariance matrices, which we aim to predict. As a consequence, when

comparing the performance of different forecasting models, loss functions have to satisfy the

condition to deliver the same ranking whether the evaluation is based on the unbiased proxy,

i.e. the realized covariance matrix, or the true conditional covariance matrix. We will therefore

rely on loss functions, which according to Patton (2011) and Laurent et al. (2013) are robust to

noise in the volatility proxies. An example for single model components is the root mean squared

error.

Further, numerous different models for prediction will be compared. To avoid pairwise compar-

ison of loss functions we apply the model confidence set (MCS) approach developed by Hansen

et al. (2011). Starting with an initial set M0 of m0 competitor models, it sequentially selects a

set of superior models, which contains the best one with a specified level of confidence α. First,

for all models k (k = 1, . . . ,m0) the loss of the corresponding prediction at time t with respect

to the true realization is calculated, i.e.

Lk;t := L
(
Xt, X̂k;t

)
, t = 1, . . . , T,

where L is a loss function, which satisfies the conditions in Patton (2011) and Laurent et al.

(2013). In the following, the series Xt, t = 1, . . . , T , can represent either single model components

or the realized covariance matrices. Then, for all pairs (k, `) (k, ` = 1, . . . ,m0, k 6= `) the series

of loss differentials

dk,`;t := Lk;t − L`;t, t = 1, . . . , T,

is obtained. Based on the set of competitor models Ms ⊆ M0 after step s > 0 of the MCS

procedure, the null-hypothesis

H0,Ms : E [dk,`] = 0 for all k, ` = 1, . . . , |Ms|

is tested based on the test statistic

TMs = max
k,`∈Ms

|d̄k,`|√
V̂ar

(
d̄k,`
) ,

where d̄k,` = 1
T

∑T
t=1 dk,`;t. If H0,Ms is rejected at the given significance level α, the worst
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performing model given by the elimination rule

eMs = arg max
k

 sup
`∈Ms

|d̄k,`|√
V̂ar

(
d̄k,`
)


is removed from the setMs. If H0,Ms cannot be rejected for the set of remaining modelsMs, the

MCS procedure stops. More details including implementation aspects are provided in Hansen

et al. (2011).

3.5.1 Moving window approach

In the following, we proceed in a moving window approach. Data for the period from January

1, 2000, until June 30, 2008, are available, i.e. for 2156 days. For each time window 502 days

(about two years) are used as training set and 22 days (about one month) constitute the test

set for which one-day-ahead forecasts are made. Since in case of HAR based time-series models

a monthly (22 days) average of the data is involved, the first forecast is obtained for day 525.

In total, there are 75 time windows. Figure 3.6 illustrates the moving window approach.

Empirical data (observed days)

1 23 525 547 569

Jan 2000 Feb 2000 Feb 2002 Mar 2002 Apr 2002

45

1st monthly
HAR average

1st training set 1st forecasting
window W1

2nd training set 2nd forecasting
window W2

...

Figure 3.6: Moving window approach illustrated for the considered real data example.

3.5.2 Dynamic data transformation

For each time window Wi (i = 1, . . . , 75) the realized covariance matrices of the corresponding

training set are transformed in step (S1). Clearly, application of the R-vine structure selection

algorithm proposed in Section 3.4.2 can lead to varying R-vine structures among time windows.

Thus, data transformation in the partial correlation vine data transformation approach may

dynamically change over time. Depending on how the average correlation matrix used for R-

vine structure selection is calculated, the selected R-vine structure is more or less sensitive to

market developments.

In Figure 3.7, the first trees of the R-vine structures selected in each of the 75 time windows

are shown indicating the included model components by a black square. In the first row, em-

pirical means of the realized standard correlations are considered. In the second and third row,

35



Chapter 3 R-vine based modeling of multivariate volatility time-series
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Figure 3.7: Illustration of the dynamically changing R-vine structures used for transforming the
series of realized correlation matrices in each of the 75 time windows. The horizontal
time axis states the prediction month. Model components selected in tree T1 are
indicated by black squares. Green squares indicate selectable components allowed
by the proximity condition (which does not trigger in T1). In the first panel, the
average correlations used for R-vine structure selection are the empirical means of
the training set data. In the second and third row, they are exponentially weighted
moving averages with λ = 0.995 and λ = 0.98, respectively.

exponentially weighted moving averages based on λ = 0.995 and λ = 0.98, respectively, are

used. While in case of empirical means all days of the two training years are of equal weight,

for λ = 0.995 and λ = 0.98 the six most recent months and one and a half months, respec-

tively, already contribute half of the information for average calculation. Thus, in the latter

case R-vine structure selection is most sensitive to market changes resulting in more frequent

variations of the selected model components. For example, changes for the prediction months

in mid 2004 or at the beginning of the financial crisis are observed earliest. Nevertheless, for all

three setups the selected first tree is quite stable and we may identify three distinct periods:

February 2002–August 2006, September 2006–July 2007 and August 2007–July 2008. For these

periods, Figure 3.8 illustrates the first tree T1 of the predominantly chosen R-vine structures.

Until August 2006, pairwise correlations between the log-returns including Citigroup (C) and
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3.5 Empirical study

General Electric (GE) seem to be most pronounced. While C plays a key role within the financial

sector, GE as a diversified industrial corporation connects the representatives of the financial

sector with the two non-financial stocks. During the period from September 2006 to July 2007

C becomes the first root node in a C-vine, i.e. the node in T1 with the highest possible number

of edges attached to it. At the beginning of the financial crisis in August 2007, the correlations

between JP Morgan (JPM) and the other market participants seem to tighten. This results in

a predominantly chosen R-vine structure, where except for GE all pairwise correlations includ-

ing JPM are modeled. Note that in 2007 JPM replaced C as the biggest US-bank in terms of

revenues.

To conclude, selecting the R-vine structure for data transformation as proposed in Section 3.4.2

gives interesting insights into market activities over time. In addition, we already know about

the resulting inhomogeneous data complexity of the corresponding time-series, which will be

further analyzed in the next section. There, the R-vine structures will be selected using EWMA

based edge weights with λ = 0.995. Recall, however, that any R-vine structure could be used for

data transformation. To demonstrate the general adequacy of the partial correlation vine data

transformation approach irrespective of the R-vine structure used for data transformation, we

will consider two alternative ways of R-vine structure selection as well. First, we reverse the idea

of inducing model parsimony and select for each time window a C-vine, where in each tree level

the root node induces the on average lowest correlation strength. Thus, the effect of decreasing

data complexity as for the proposed R-vine structure selection should be eliminated. Second, an

R-vine structure on six elements is randomly sampled in each time window (Joe et al., 2011).

For the Cholesky decomposition, the model components depend on the ordering of the assets.

However, contrary to the data transformation based on partial correlation vines there is no

justifiable rule to decide ‘on the fly’ for a specific order. Thus, the ordering has to be set

upfront. In this sense, the Cholesky decomposition based data transformation is static. Clearly,

enumerating all possible permutations of the assets and performing a model analysis for each

of them is too time consuming and computationally demanding especially in higher dimensions.

Thus, a sensitivity analysis based on several Cholesky decompositions should be performed first.

For the considered data, Brechmann et al. (2018) find that the alphabetic ordering of the six

stocks performs best. We therefore, choose the latter for all time windows.

Feb ’02 – Aug ’06

C

AXP JPM

GE

HD

IBM

Sep ’06 – Jul ’07

C

AXP JPM

GE

HD

IBM

Aug ’07 – Jul ’08

C

AXP JPM

GE

HD

IBM

Figure 3.8: Predominantly selected first tree of the R-vine structure used for data transformation
during the periods February 2002 to August 2006, September 2006 to July 2007 and
August 2007 to July 2008.
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3.5.3 Multivariate time-series modeling

As explained in Section 3.4.3, to the sample of model components obtained after transforming

the series of realized covariance matrices, marginal time-series models need to be applied first.

Univariate marginal time-series modeling

Given the proposed R-vine structure selection method, we know that with increasing tree level

the data complexity decreases such that less elaborate time-series models might already be

sufficient for accurate in-sample estimation and out-of-sample forecasting. To support this pre-

sumption, for each period within the moving window approach time-series models of different

complexity are fitted to the log-transformed realized variance time-series and to the Fisher

z-transformed realized (partial) correlations specified by the R-vine structure found in Sec-

tion 3.4.2. For comparison, also the time-series specified by the C-vine, of which in each tree

level the root node induces the on average lowest correlation strength, are investigated.

Besides simply considering the mean value over time, basic univariate HAR and ARFIMA

models as well as HAR and ARFIMA models including a GARCH(1,1) component with normal

innovations (abbreviated as HN and AN) and with SGED innovations (abbreviated as HSGED

and ASGED) are fitted. To evaluate the statistical precision we use the root mean squared error

(RMSE), which according to Patton (2011) is robust to noise in the volatility proxies. Table 3.2

shows the out-of-sample RMSE for all time-series model components under consideration. In

each row, the set of superior models based on the MCS approach of Hansen et al. (2011) with

a confidence level of 10% is highlighted in gray. The model with the lowest RMSE, which is the

last one that would be rejected from the model confidence set, is highlighted in bold. In general,

ARFIMA based models show a superior prediction performance with respect to the RMSE

criterion. However, especially within the variations of the two base models the RMSE values

often are very close to each other. For the realized variance time-series and the realized standard

correlation time-series in T1 of the selected R-vine structure, the best model usually includes a

GARCH(1, 1) augmentation. For tree level T2 and T3, there is a shift to basic ARFIMA models,

while for tree level T4 and T5 even simply using the mean realized partial correlation value as

forecast is included in the model confidence set at a confidence level of 10%. This confirms

the presumption that given the proposed R-vine structure selection method with increasing tree

level more parsimonious time-series models already are sufficient. This hierarchical pattern is not

observed for the considered C-vine. Here, base models including a GARCH(1, 1) augmentation

with normal or SGED innovations most often would be the last ones to be eliminated from the

model confidence set. In particular, a simple mean forecast clearly is insufficient even in high

tree levels. Similar results are detected for the Cholesky elements and are given in Table A.1

in Appendix A.2. Given the close performance of the different time-series models in terms of

the RMSE, from a practical point of view the time-series model which is economically best

interpretable should be chosen for univariate marginal modeling.

In the following, we consider two groups of models. One including only HAR based time-series

models and the other including only ARFIMA based models. Given the above findings within the

38



3.5 Empirical study

partial correlation vine data transformation approach, we use HN and AN models, respectively,

for all components in case that a C-vine or a randomly sampled R-vine structure is taken for

data transformation. Likewise, we proceed for the Cholesky decomposition based model. In case

of R-vine structure selection according to Section 3.4.2, we stepwise increase model parsimony.

For model components corresponding to the realized variance and realized standard correlation

time-series in T1, we use HN and AN models, respectively. For the ones in tree level T2 and T3 we

apply basic HAR and ARFIMA models, respectively. For components in T4 and T5 we consider

in one setting basic HAR and ARFIMA models, respectively, and take in another setting simply

the mean value of the underlying training set as forecast.

Table 3.2: RMSE with respect to the complete out-of-sample forecasting horizon (1632 days)
for the model components in the partial correlation vine data transformation ap-
proach. Two different R-vine structures for data transformation are considered. The
set of superior models according to the MCS approach at a confidence level of 10%
is highlighted in gray. The lowest RMSE is highlighted in bold.

mean HAR HN HSGED ARFIMA AN ASGED

AXP 1.0429 0.4711 0.4715 0.4719 0.4684 0.4668 0.4680
C 1.0154 0.4469 0.4479 0.4510 0.4465 0.4455 0.4483
GE 0.8105 0.4634 0.4632 0.4647 0.4627 0.4625 0.4627
HD 0.7766 0.4554 0.4557 0.4568 0.4540 0.4543 0.4543
IBM 0.7242 0.4320 0.4322 0.4323 0.4317 0.4331 0.4327
JPM 1.0137 0.4653 0.4647 0.4671 0.4652 0.4641 0.4655
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4.
2)

AXP,C 0.2183 0.1572 0.1573 0.1576 0.1568 0.1568 0.1571
C,GE 0.1984 0.1531 0.1531 0.1530 0.1526 0.1526 0.1524
C,HD 0.1857 0.1519 0.1520 0.1520 0.1515 0.1516 0.1512
C,JPM 0.2149 0.1619 0.1620 0.1620 0.1615 0.1615 0.1615
GE,IBM 0.1914 0.1489 0.1490 0.1490 0.1490 0.1490 0.1490

AXP,GE;C 0.1395 0.1317 0.1317 0.1316 0.1313 0.1313 0.1313
AXP,JPM;C 0.1364 0.1295 0.1295 0.1296 0.1297 0.1297 0.1297
C,IBM;GE 0.1340 0.1271 0.1271 0.1272 0.1270 0.1270 0.1270
GE,HD;C 0.1384 0.1300 0.1301 0.1301 0.1292 0.1292 0.1292

AXP,IBM;C,GE 0.1246 0.1237 0.1237 0.1237 0.1231 0.1231 0.1232
GE,JPM;AXP,C 0.1211 0.1196 0.1196 0.1196 0.1191 0.1191 0.1191
HD,IBM;C,GE 0.1260 0.1253 0.1254 0.1254 0.1250 0.1250 0.1251

AXP,HD;C,GE,IBM 0.1175 0.1171 0.1171 0.1172 0.1168 0.1168 0.1170
IBM,JPM;AXP,C,GE 0.1237 0.1227 0.1227 0.1227 0.1225 0.1223 0.1225

HD,JPM;AXP,C,GE,IBM 0.1177 0.1175 0.1175 0.1175 0.1178 0.1177 0.1178

C
-v

in
e

AXP,HD 0.1873 0.1547 0.1547 0.1549 0.1538 0.1538 0.1539
C,HD 0.1857 0.1519 0.1520 0.1520 0.1515 0.1516 0.1512
GE,HD 0.1856 0.1517 0.1517 0.1517 0.1509 0.1509 0.1509
HD,IBM 0.1731 0.1488 0.1489 0.1489 0.1484 0.1484 0.1483
HD,JPM 0.1804 0.1532 0.1533 0.1533 0.1525 0.1523 0.1525

AXP,IBM;HD 0.1491 0.1349 0.1349 0.1349 0.1345 0.1344 0.1345
C,IBM;HD 0.1502 0.1320 0.1320 0.1320 0.1317 0.1317 0.1315
GE,IBM;HD 0.1574 0.1352 0.1352 0.1353 0.1353 0.1354 0.1355
IBM,JPM;HD 0.1486 0.1382 0.1382 0.1383 0.1376 0.1376 0.1376

AXP,GE;HD,IBM 0.1387 0.1303 0.1303 0.1302 0.1299 0.1300 0.1299
C,GE;HD,IBM 0.1371 0.1270 0.1270 0.1268 0.1270 0.1270 0.1268

GE,JPM;HD,IBM 0.1312 0.1251 0.1251 0.1251 0.1251 0.1251 0.1252
AXP,C;GE,HD,IBM 0.1496 0.1283 0.1283 0.1285 0.1281 0.1281 0.1282

AXP,JPM;GE,HD,IBM 0.1526 0.1321 0.1321 0.1321 0.1317 0.1316 0.1316
C,JPM;AXP,GE,HD,IBM 0.1398 0.1247 0.1247 0.1248 0.1241 0.1241 0.1242
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Dependence modeling

Now, for each time window interest is in the cross-sectional dependence between the model

components. Since dependencies between stocks are expected to be most pronounced during fi-

nancial turmoil, we consider as an example the time window from July 2006 to July 2008. Based

on the specified time-series models, the sample of innovations is obtained and transformed to

pseudo copula data (Section 3.4.3). Figure 3.9 shows the resulting data based on R-vine struc-

ture selection according to Section 3.4.2 and HAR based time-series modeling. It illustrates the

corresponding histograms on its diagonal, pairwise contour plots with standard normal margins

in the lower left corner and pairs plots with corresponding Kendall’s τ values in the upper right

corner. Only dependencies between model components corresponding to realized variances (last

six components) and realized standard correlations (first five components) are significant with

Kendall’s τ values ranging from 0.2 to 0.5. Dependencies including components, which corre-

spond to partial correlations, are rather small and close to zero for higher tree levels. Based

on these findings, we subsequently consider five different R-vine copula settings. First, inde-

pendence for all pairs is assumed. Second, a 21-dimensional R-vine copula is fitted to capture

dependence between all model components. Third, a reduced structured dependence is imposed,

where a 11-dimensional R-vine copula is fitted only to the components corresponding to realized

variances and realized standard correlations. The components corresponding to realized partial

correlations are assumed to be independent. Both in case of full and reduced structured R-vine

copula based dependence modeling, we allow as a first setting the pair-copulas to stem from var-

ious copula families such as Clayton, Gumbel, Frank, etc. including their reflected forms. Thus,

possible asymmetric and nonlinear dependence patterns can be detected. Given the primarily

elliptical shapes in Figure 3.9 we also consider an R-vine copula exclusively built from bivariate

(conditional) Gaussian copulas, i.e. a Gaussian vine. Except for the structured dependence, the

same settings for the copula models are taken in the Cholesky decomposition based benchmarks.

To fit an R-vine copula model we rely on the R-package VineCopula (Schepsmeier et al., 2017).

3.5.4 Forecasting performance

Based on the above findings, Table 3.3 summarizes the in total 36 data transformation based

prediction models considered to obtain one-day-ahead forecasts as described in Section 3.4.4. In

addition, we consider three naive benchmarks. First, Ŷ T+1 is set to the realized covariance matrix

at time point T , i.e. Ŷ T+1 = Y T . Second, Ŷ T+1 is calculated as the equally weighted average of

the realized covariance matrices in the corresponding training set. Third, Ŷ T+1 is obtained as an

exponentially weighted moving average, i.e. in our setup Ŷ T+1 = λŶ T + (1− λ)Y T , where the

smoothing parameter λ is set to 0.94 as commonly suggested in the framework of a RiskMetrics

approach (Morgan, 1996).
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PCV1

0.38 0.33 0.30 0.27 0.088 0.022 0.061 0.033 0.06 0.041 0.069 0.041 -0.017 0.078 0.23 0.25 0.16 0.19 0.18 0.25

PCV2

0.37 0.31 0.28 0.0036 0.058 0.051 -0.016 0.044 0.025 0.075 -0.011 0.016 0.003 0.21 0.25 0.20 0.19 0.18 0.32
PCV3

0.30 0.30 0.036 0.075 0.085 0.049 0.065 0.031 0.13 0.016 0.012 0.04 0.25 0.24 0.29 0.23 0.18 0.30

PCV4

0.26 0.055 0.016 0.05 0.041 0.02 0.045 0.049 0.053 0.08 0.019 0.18 0.21 0.17 0.20 0.18 0.22

PCV5

0.069 0.036 0.11 0.084 0.10 0.053 0.063 0.033 0.0061 0.057 0.21 0.21 0.24 0.21 0.19 0.22

PCV6

0.20 0.027 0.069 0.071 0.14 0.089 0.031 0.11 0.017 0.082 0.11 0.079 0.069 0.091 0.13

PCV7

0.082 0.076 0.015 0.11 0.16 0.036 0.033 0.019 0.069 0.11 0.11 0.054 0.053 0.086

PCV8

0.14 0.13 0.035 0.086 -0.032 0.0075 0.004 0.065 0.11 0.11 0.12 0.076 0.11

PCV9

0.056 0.14 0.046 0.17 -0.029 0.029 0.10 0.10 0.057 0.07 0.12 0.10

PCV10

0.013 0.12 0.034 0.00015 -0.02 0.0073 0.052 0.087 0.072 0.072 0.075

PCV11

0.028 0.041 0.067 -0.03 0.0052 0.046 0.045 0.11 0.038 0.0085

PCV12

0.066 0.025 0.03 0.12 0.11 0.12 0.08 0.12 0.13

PCV13

-0.025 0.056 -0.0016 0.037 0.044 0.02 0.036 0.029

PCV14

0.033 0.024 0.037 0.023 0.02 0.024 0.022

PCV15

0.07 0.073 0.045 0.029 0.014 0.076

PCV16

0.41 0.31 0.30 0.29 0.39
PCV17

0.34 0.33 0.34 0.49
PCV18

0.34 0.29 0.36
PCV19

0.29 0.35
PCV20

0.33
PCV21

Figure 3.9: Exploratory data analysis for the pairwise dependencies of the 21-dimensional pseudo
copula data estimated for the period July 2006 to July 2008 using the proposed
method for R-vine structure selection (Section 3.4.2) and HAR based time-series
modeling. Pairwise contour plots with normalized margins, histograms and pairs
plots with empirical Kendall’s τ values are shown. The first five components PCV1
to PCV5 correspond to realized standard correlations in T1, components PCV6 to
PCV9 correspond to realized first order partial correlations in T2, etc. Variables
PCV16 to PCV21 correspond to realized variances.
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Chapter 3 R-vine based modeling of multivariate volatility time-series

Table 3.3: Overview of all data transformation based prediction models compared with respect
to their forecasting performance in Section 3.5.4. ‘dims’ and ‘PC’ are used as abbrevia-
tions for ‘dimensions’ and ‘pair-copulas’, respectively. For models, which subsequently
will be investigated in more detail, short names are introduced in the last column.

Transformation Univariate time-series modeling R-vine copula assumed In the following
based on variances, T1 T2 & T3 T4 & T5 for transformed data referred to as

AN/HN A/H A/H
21 dims, all PCs
21 dims, Gauss A-/H-PCV-Sel-full

R-vine selection
AN/HN A/H mean

11 dims, all PCs
(Section 3.4.2) 11 dims, Gauss A-/H-PCV-Sel-struc

independence

C-vine AN/HN for all components

21 dims, all PCs
21 dims, Gauss A-/H-PCV-CVine
11 dims, all PCs
11 dims, Gauss
independence

random R-vine AN/HN for all components

21 dims, all PCs
21 dims, Gauss A-/H-PCV-random
11 dims, all PCs
11 dims, Gauss
independence

Cholesky AN/HN for all components
21 dims, all PCs
21 dims, Gauss A-/H-Chol
independence

Out-of-sample forecasting precision

To illustrate that the proposed forecasting approach is on target, Figure 3.10 shows for the

realized variance time-series of JPM (top panel), the realized covariance time-series of C and

JPM (mid panel) as well as IBM and JPM (bottom panel) the historical time-series from January

2002 until July 2008 together with the one-day-ahead forecasts based on the R-vine structure

selected according to Section 3.4.2, ARFIMA based time-series modeling and a 21-dimensional

Gaussian vine for dependence modeling. Results for all other realized variances and covariance

pairs are similar and given in Figure A.1 in Section A.2. The trends in all time-series including

high short-term peaks are well detected and modeled. Distances between historical extreme peaks

and corresponding forecasts are large. This finding holds true for all prediction models and is

due to the high volatility of the realized variances and covariances. The predicted time-series

incorporate smoothed long-term information of historical data and thus, are more stable.

To evaluate the statistical precision of the matrix forecasts, Table 3.4 summarizes for all con-

sidered models the RMSE based on the Frobenius norm between the realized and the predicted

covariance matrices. For the real matrix A = (ai,j)i,j=1,...,d := Y − Ŷ , the Frobenius norm is

defined as ‖A‖ =
∑d

i=1

∑d
j=1 a

2
i,j . This loss function satisfies the conditions in Laurent et al.

(2013) for consistent model ranking. In the right column, the RMSE based on bias corrected (bc)

matrix forecasts are shown. We use historical data over the period of one year for level correction

as described in Section 3.4.4. This reduces the out-of-sample forecasting horizon to 1368 days.
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Figure 3.10: Daily realized variance time-series for JPM (1st row) and daily realized covariance
time-series (2nd and 3rd row) together with the time-series of the corresponding
daily forecasts based on the partial correlation vine data transformation approach
with R-vine structure selected according to Section 3.4.2, ARFIMA based time-
series modeling and a 21-dimensional Gaussian vine for dependence modeling.

As in the previous analysis of the single model components, ARFIMA based models in general

have smaller RMSE values compared to HAR based models. All models using partial correlation

vine based data transformation and full dependence modeling exhibit a smaller RMSE than

Cholesky decomposition based models and show very similar performance among each other.

This confirms that any R-vine structure can be used for data transformation in step (S1) of the

model approach. Among the partial correlation vine data transformation based models those

with a C-vine structure used for data transformation have the highest RMSE. Recall that by

construction more complex data features are induced even for high tree levels. For C-vine and

random R-vine structures, time-series modeling in step (S2) with independent components and

reduced structured dependence between components is clearly improved by models, which cap-

ture dependence between all model components. Here, the decreasing data complexity does not

trigger. However, for the R-vine structure selected according to Section 3.4.2 the performance

in case of reduced structured dependence is only slightly improved by full dependence model-
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Chapter 3 R-vine based modeling of multivariate volatility time-series

ing. Thus, also the dependence between the model components allows for model parsimony. In

general, using a Gaussian vine for dependence modeling between the model components shows

comparable results as using more elaborate copulas allowing for tail-dependence. All discussed

prediction models clearly show superior results as compared to the naive benchmarks. Bias cor-

rection in step (S3) slightly improves results while maintaining the above observations among

the different models.

Table 3.4: RMSE based on the Frobenius norm between the realized and predicted correlation
matrices with respect to the complete out-of-sample forecasting horizon (1368 days)
for all models. In the last column, results for bias corrected (bc) forecasts are shown.

Marginals
Data transformation R-vine copula assumed

RMSE RMSE bc
based on for transformed data

A
R

F
IM

A
b

as
ed

P
C

V

independence 6.6314 6.6045
R-vine selection full all 6.5725 6.5632
(Section 3.4.2) full Gauss 6.5685 6.5619

structured all 6.5858 6.5740
structured Gauss 6.5864 6.5742

C-vine

independence 6.7076 6.6733
full all 6.5968 6.5854
full Gauss 6.5967 6.5860
structured all 6.6436 6.6189
structured Gauss 6.6410 6.6166

random R-vine

independence 6.6694 6.6393
full all 6.5826 6.5746
full Gauss 6.5886 6.5810
structured all 6.6155 6.5968
structured Gauss 6.6138 6.5954

Cholesky
independence 6.6732 6.6437
all 6.6121 6.6001
Gauss 6.6193 6.6075

H
A

R
b

as
ed

P
C

V

independence 6.7218 6.6566
R-vine selection full all 6.6332 6.5998
(Section 3.4.2) full Gauss 6.6313 6.5962

structured all 6.6544 6.6146
structured Gauss 6.6522 6.6122

C-vine

independence 6.7900 6.7085
full all 6.6574 6.6153
full Gauss 6.6575 6.6158
structured all 6.7117 6.6480
structured Gauss 6.7094 6.6453

random R-vine

independence 6.7527 6.6830
full all 6.6432 6.6117
full Gauss 6.6474 6.6158
structured all 6.6821 6.6334
structured Gauss 6.6796 6.6310

Cholesky
independence 6.7400 6.6866
all 6.6863 6.6621
Gauss 6.6841 6.6603

mean over training set 12.0894
previous day 7.2937
EWMA with λ = 0.94 7.8790
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3.5 Empirical study

To test the statistical significance of the results, we apply the MCS approach of Hansen et al.

(2011). Based on the above findings, we restrict the analysis to models using a Gaussian vine for

dependence modeling between the model components. Only in case of R-vine structure selection

according to Section 3.4.2 we consider reduced structured dependence modeling in addition to

the full one. In the following, we refer to these models using the short names introduced in

Table 3.3. Bias corrected forecasts are taken. Figure 3.11 shows for each half-year period of the

out-of-sample horizon the set of superior models (indicated by a gray dot), which contains the

best model at a confidence level of 10%. A blue triangle and an orange cross indicate the last and

the next model, respectively, that would be eliminated. For almost all periods, all models are

selected at the given confidence level showing very close performance of all models. Most often,

HAR based models would be eliminated next, while ARFIMA based models usually would be

the last ones to be eliminated from the set of superior models. In three out of eleven periods, the

ARFIMA-Cholesky model has the smallest RMSE based on the Frobenius norm and therefore

automatically would be the last model to be eliminated. All ARFIMA and partial correlation

vine data transformation based models show rather robust performance over the out-of-sample

forecasting horizon. Especially, the models based on R-vine structure selection according to

Section 3.4.2 usually are the ones to be eliminated last from the MCS, i.e. having the smallest

loss.
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Figure 3.11: Model confidence sets of Hansen et al. (2011) with confidence level 10% for all half-
year periods of the out-of-sample forecasting horizon. Gray dots indicate selected
models, blue triangles and orange crosses indicate the last and the next model,
respectively, that would be eliminated from the set of superior models.
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Chapter 3 R-vine based modeling of multivariate volatility time-series

Mean-variance trade-off in portfolio optimization

For additional economic evaluation of the forecasts, we construct portfolios based on each predic-

tion model, which are mean-variance efficient. For a risk-averse investor we assume a quadratic

utility function. Then, the problem to maximize the utility is reduced to finding the asset

weights w, which minimize the portfolio volatility σp based on a fixed target expected return

µp (Markowitz, 1952). The optimal portfolio is obtained by solving the quadratic problem

min
wt+1

w′t+1Σ̂t+1wt+1 s.t. w′t+1E [rt+1|Ft] = µp and w′t+11d = 1,

where wt+1 is the d× 1 vector of portfolio weights chosen at day t for t+ 1, 1d is a d× 1 vector

of ones, µp is the daily target expected return and Σ̂t+1 is the conditional (with respect to the

information set) covariance forecast at day t for t + 1. The latter corresponds to the realized

covariance forecasts Ŷ t+1.

For each prediction model, we solve the above optimization problem for a daily target return µp

for all 1368 days in the out-of-sample horizon. Based on the optimal portfolio weights wt for day

t (t = 1, . . . , 1368) the expected risk in terms of standard deviation,
√
w′tŶ twt, corresponding to

the target expected return µp can be calculated. Taking the averages over the forecasting horizon

and repeating the procedure for a grid of target returns, results in an average efficient frontier for

each prediction model. To obtain an average oracle efficient frontier, the true realized covariance

matrices for each day t are used. Figure 3.12 shows the efficient frontiers for the considered HAR
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Figure 3.12: Efficient frontier for each HAR (top) and ARFIMA (bottom) based prediction
model plotting the expected return versus its corresponding risk in terms of stan-
dard deviation. The curves are averages over the out-of-sample horizon (1368 days).
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3.5 Empirical study

and ARFIMA based prediction models. All partial correlation vine data transformation based

models show a clear improvement in terms of the expected mean-variance trade-off compared

to the two Cholesky decomposition based prediction models.

To validate this observation in an out-of-sample setting we calculate for each prediction

model based on the corresponding optimal portfolio weights wt+1 estimated at day t for t + 1

(t = 0, . . . , 1367) the ex-post realized portfolio return rp,t+1 = w′t+1rt+1 and the ex-post realized

portfolio volatility σp,t+1 =
√
w′t+1Y t+1wt+1. Here, rt+1 and Y t+1 are the true returns and the

true covariance matrix, respectively, realized at day t + 1. Given a small enough grid of target

returns, we are able to obtain for each prediction model the series of ex-post portfolio standard

deviation σp,t+1, t = 0, . . . , 1367, corresponding to a certain average ex-post realized return. For

an average annualized ex-post realized portfolio return of approximately 7.5%, 10%, 12% and

15%, Table 3.5 shows the average annualized ex-post realized portfolio standard deviation for

each prediction model. The set of models, which includes the model with the lowest standard

deviation at a confidence level of 10% based on the MCS approach of Hansen et al. (2011), is

highlighted in gray. The model with the lowest loss (deviation from zero) is highlighted in bold.

In general, HAR based prediction models perform better than their ARFIMA based counter-

parts. In the ex-post analysis, all ARFIMA based partial correlation vine data transformation

based models have the highest average standard deviation. This confirms the often seen phe-

nomenon that models with the lowest statistical loss do not necessarily show superior results

in economical applications (Laurent et al., 2013). The HAR based model with R-vine structure

selected according to Section 3.4.2 and with reduced structured dependence among the model

components is the best model at a confidence level of 10% for all considered annualized ex-post

realized portfolio returns. Comparing the average ex-post realized standard deviations of the

HAR based prediction models, further demonstrates the strength of the proposed methodology

irrespective of the R-vine structure used for data transformation.

Table 3.5: Annualized average ex-post standard deviation corresponding to four levels of annu-
alized ex-post realized return. The sets of models, which include the one with the
smallest standard deviation at a confidence level of 10%, are highlighted in gray. The
last model to be eliminated is highlighted bold.

Model Realized return in % (annualized)
7.5 10 12.5 15

A-PCV-Sel-full 12.5217 12.9545 13.5492 14.2832
A-PCV-Sel-struc 12.5055 12.9254 13.5086 14.2317

A-PCV-CVine 12.4981 12.9269 13.5252 14.2722
A-PCV-random 12.4949 12.9151 13.5027 14.2366

A-Chol 12.4616 12.8641 13.4352 14.1510
H-PCV-Sel-full 12.4754 12.8748 13.4359 14.1363

H-PCV-Sel-struc 12.4588 12.8447 13.3937 14.0796
H-PCV-CVine 12.4595 12.8606 13.4293 14.1429

H-PCV-random 12.4680 12.8680 13.4349 14.1413
H-Chol 12.4718 12.8729 13.4396 14.1475
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3.6 Discussion

In this chapter, we introduced a novel approach to model and forecast time-series of realized

covariance matrices. According to Barndorff-Nielsen and Shephard (2004), the latter are consis-

tent nonparametric estimates for the latent and thus non-observable daily conditional covariance

matrices underlying a process of daily log-returns.

In Section 3.1, existing literature was reviewed emphasizing the challenge to obtain symmetric

and positive definite forecasts for the realized covariance matrices. To avoid restrictions on the

time-series models imposed by this requirement, we proposed to not directly model the realized

covariance matrices, but to jointly model the realized variances and a subset of realized standard

and partial correlations specified by an R-vine structure. In Section 3.2, we therefore introduced

partial correlation vines as a graph theoretical object and explained in detail the data trans-

formation to determine from a realized correlation matrix the standard and partial correlations

corresponding to a partial correlation vine with given R-vine structure. Since the standard and

partial correlations specified in a partial correlation vine are algebraically independent, positive

definiteness of the correlation matrix obtained after inverting the data transformation is always

guaranteed.

In Section 3.3, we introduced the general data setting and the Cholesky decomposition as a

popular and commonly used alternative data transformation. Along with a real data example,

we outlined in Section 3.4 the proposed modeling and forecasting approach focusing on three

main steps. Specific data characteristics detected in Section 3.4.1 motivated for data transforma-

tion in step (S1) the R-vine structure selection method proposed in Section 3.4.2. The selection

algorithm built upon the practical interpretation of the model components, namely realized

variances and realized (partial) correlations. High average correlation strengths were captured

in lower tree levels of the R-vine structure leaving higher order realized partial correlation

time-series for which typical and challenging properties of volatility data such as long-memory

behavior or volatility clustering were no longer observed. Thus, an inhomogeneous data com-

plexity of the model components was obtained giving hope for possible parsimonious time-series

modeling in step (S2) of the model approach. Copula based multivariate time-series modeling

and forecasting for the transformed data and back-transformation of the model components in

step (S3) were discussed in Section 3.4.3 and Section 3.4.4, respectively.

In Section 3.5, the detailed analysis of the real data example was continued further exploring

the beneficial features of the proposed partial correlation vine data transformation approach

within a moving window approach (Section 3.5.1). In Section 3.5.2, the proposed R-vine struc-

ture selection method allowed the R-vine structure used for data transformation to dynamically

change over time providing interesting insights into market activities. Analyzing the univariate

time-series of the model components obtained after data transformation in Section 3.5.3, con-

firmed that data complexity decreases for time-series in higher tree levels when transforming

the realized correlation matrices based on the R-vine structure selected as proposed in Sec-

tion 3.4.2. In addition, cross-sectional dependence between these higher order partial correlation

series was negligible allowing for dimension reduction in the considered multivariate time-series
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models. In Section 3.5.4, the forecasting performance both in terms of statistical precision and

in an economic evaluation, where ex-post realizations of mean-variance efficient portfolios were

investigated, showed very good and in several settings even statistically significant superior

prediction capability compared to the Cholesky decomposition based benchmark models. In

particular, these findings also held true for partial correlation vine data transformation based

prediction models, where the R-vine structure was either randomly sampled or constructed such

that higher data complexity was intentionally induced for higher tree levels.

Given the excellent prediction power of the Cholesky decomposition based benchmark models

often demonstrated in literature, these findings combined with other beneficial properties of

the partial correlation vine data transformation approach such as interpretability of the model

components and model parsimony provide strong justification for its use in practice.
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Chapter 4

Modeling time-to-event data
using R-vine copulas

The material in this chapter is very similar to the publications Barthel et al. (2018c) and Barthel

et al. (2018b).

4.1 R-vine copulas for time-to-event data

Before the two main projects considering time-to-event data will be discussed in Section 4.2,

Section 4.3 and Section 4.4, some additional notation and theoretical background for R-vine

copula modeling need to be provided. This includes a general introduction of survival copulas in

Section 4.1.1 and the notation of pair-copula constructions in terms of survival components in

Section 4.1.2. Further, Section 4.1.3 discusses standard techniques for the estimation of univariate

right-censored event time data.

4.1.1 Sklar’s Theorem for survival functions

Copula models for time-to-event data typically are formulated in terms of the so-called survival

copula. Let (T1, . . . , Td) with Tj ≥ 0 (j = 1, . . . , d) be a d-dimensional positive valued random

vector of event times with marginal distribution functions Fj , marginal density functions fj and

marginal survival functions Sj , i.e.

Sj (tj) = 1− Fj (tj) = P (Tj > tj) =

∫ +∞

tj

fj (s) ds.

Further, let f be the joint density function and S be the joint survival function

S (t1, . . . , td) = P (T1 > t1, . . . , Td > td) .

Similar to Sklar’s Theorem (Sklar, 1959) as given in Section 2.2 the d-dimensional survival

copula CS corresponding to S is a dependence function that interconnects the marginal survival

functions, and thereby models the joint survival function of event times, i.e.

S (t1, . . . , td) = C
S{S1 (t1) , . . . , Sd (td)}.

51



Chapter 4 Modeling time-to-event data using R-vine copulas

If all Tj (j = 1, . . . , d) are continuous, CS is unique. Further, if the survival copula density

c
S (u1, . . . , ud) =

∂d

∂u1 · · · ∂ud
C

S (u1, . . . , ud)

exists, it holds that

f (t1, . . . , td) = (−1)d
∂d

∂t1 · · · ∂td
S (t1, . . . , td) = c

S{S1 (t1) , . . . , Sd (td)}
d∏
j=1

fj (tj) .

To provide the connection between the copula C corresponding to F and its survival copula

CS, let V`,u1:d
be the set of all d-dimensional vectors v1:d := (v1, . . . , vd)

′ ∈ [0, 1]d, where exactly

` elements are set to 0. The other d− ` elements are set to their corresponding value in u1:d, i.e.

V`,u1:d
:= {v1:d ∈ [0, 1]d : vj ∈ {0, uj},

d∑
j=1

1 (vj = 0) = `}.

Then, according to Georges et al. (2001) the following equalities for the copula C and the

corresponding survival copula CS hold:

C (u1, . . . , ud) =

d∑
j=0

(−1)j
∑

v1:d∈Vd−j,u1:d

C
S (1− v1, . . . , 1− vd) (4.1)

and vice versa

C
S (u1, . . . , ud) =

d∑
j=0

(−1)j
∑

v1:d∈Vd−j,u1:d

C (1− v1, . . . , 1− vd) . (4.2)

Consequently, if we identify uj = Sj (tj) (j = 1, . . . , d) in (4.2) and take the partial derivatives

with respect to all arguments, for the copula densities it follows that

c
S{S1 (t1) , . . . , Sd (td)} = c{1− S1 (t1) , . . . , 1− Sd (td)} = c{F1 (t1) , . . . , Fd (td)}. (4.3)

Example 4.1. We derive (4.2) and (4.3) for d = 3 as an example. Let F1, F2, F3, F1,2, F1,3 and

F2,3 denote the marginal distribution functions corresponding to the joint distribution function

F of the event times (T1, T2, T3). Likewise, let C1,2, C1,3 and C2,3 be the bivariate marginal

copulas of the copula C corresponding to F . Following the principle of inclusion and exclusion

(Roberts and Tesman, 2009), it holds that

S (t1, t2, t3) = 1− F1 (t1)− F2 (t2)− F3 (t3)

+ F1,2 (t1, t2) + F1,3 (t1, t3) + F2,3 (t2, t3)

− F (t1, t2, t3) .
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Using Sklar’s Theorem (Sklar, 1959), we conclude that

C
S{S1 (t1) , S2 (t2) , S3 (t3)}

= − 2 + S1 (t1) + S2 (t2) + S3 (t3)

+C1,2{1− S1 (t1) , 1− S2 (t2)}+C1,3{1− S1 (t1) , 1− S3 (t3)}+C2,3{1− S2 (t2) , 1− S3 (t3)}

−C{1− S1 (t1) , 1− S2 (t2) , 1− S3 (t3)}.

Further,

c
S{S1 (t1) , S2 (t2) , S3 (t3)} =

∂3

∂u1∂u2∂u3
C

S (u1, u2, u3)

∣∣∣∣ u1=S1(t1)
u2=S2(t2)
u3=S3(t3)

= c{1− S1 (t1) , 1− S2 (t2) , 1− S3 (t3)}

= c{F1 (t1) , F2 (t2) , F3 (t3)}.

4.1.2 Pair-copula constructions in terms of survival components

Now, we address the question how to express the joint density f of event times (T1, . . . , Td) using

a pair-copula construction built from bivariate survival copula densities. Recall from Section 2.3

that a d-dimensional R-vine density is constructed from d (d− 1) /2 unconditional and condi-

tional bivariate copulas. The R-vine structure is defined by a set of linked trees Vd = (T1, . . . , Td)
satisfying the three conditions given in Section 2.1 on page 7. Let the corresponding edge set be

E (Vd) := E1 ∪ · · · ∪ Ed−1. Then, the d-dimensional joint density function f of the event times

(T1, . . . , Td) can be written as a simplified R-vine density as follows:

f (t1, . . . , td)

Sklar (1959)
= c{F1 (t1) , . . . , Fd (td)}

d∏
j=1

fj (tj)

=
d∏
j=1

fj (tj)
d−1∏
`=1

∏
e∈E`

cae,be;De{Fae|De (tae |tDe) , Fbe|De (tbe |tDe)}. (4.4)

If all margins are uniform, we speak of an R-vine copula density. In (4.4),

• cae,be;De (·, ·) denotes the copula density corresponding to the conditional distribution of

(Tae , Tbe) given TDe = tDe with TDe the vector containing all event times with indices in

De. The corresponding copula will be denoted by Cae,be;De (·, ·). Note that the simplifying

assumption is applied.

• Fae|De (·|tDe) denotes the conditional distribution of event time Tae given TDe = tDe .

In an analogous way, we from now on denote by Sae|De (·|tDe) the conditional survival function

of event time Tae given TDe = tDe , i.e.

Sae|De (t|tDe) = 1− Fae|De (t|tDe) .
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Further, we denote by CS
ae,be;De

(·, ·) and cS
ae,be;De

(·, ·) the survival copula and the survival copula

density, respectively, corresponding to Cae,be;De (·, ·). Then, using (4.3) we are able to rewrite

(4.4) in terms of survival copulas:

f (t1, . . . , td)

(4.3)
= c

S{S1 (t1) , . . . , Sd (td)}
d∏
j=1

fj (tj)

=
d∏
j=1

fj (tj)
d−1∏
`=1

∏
e∈E`

c
S
ae,be;De{Sae|De (tae |tDe) , Sbe|De (tbe |tDe)}. (4.5)

Recall the important result for pair-copula constructions first given by Joe (1997) that the

conditional distribution functions Fae|De (·|tDe), subsequently abbreviated as Fa|D (·|tD), can

be evaluated using only the pair-copulas specified in lower tree levels of the underlying R-vine

structure. To do so, the corresponding h-functions as defined in Section 2.3 are recursively

applied. A similar recursive evaluation is feasible to determine the corresponding conditional

survival functions Sa|D (·|tD). Let a, b /∈ D, a < b, and define for i ∈ {a, b} the set D+i := D∪{i}.
Recall that

Fa|D+b

(
ta|tD+b

)
= ha|b;D{Fa|D (ta|tD)

∣∣Fb|D (tb|tD)} =
∂

∂u
Ca,b;D{Fa|D (ta|tD) , u}

∣∣∣∣
u=Fb|D(tb|tD)

.

To evaluate Sa|D+b

(
ta|tD+b

)
, we calculate

Sa|D+b

(
ta|tD+b

)
= 1− Fa|D+b

(
ta|tD+b

)
= 1− ∂

∂u
Ca,b;D{Fa|D (ta|tD) , u}

∣∣∣∣
u=Fb|D(tb|tD)

(4.1)
= 1− ∂

∂u

[
1− {1− Fa|D (ta|tD)} − (1− u) +C

S
a,b;D{1− Fa|D (ta|tD) , 1− u}

] ∣∣∣∣
u=Fb|D(tb|tD)

= 1−
[
1 +

∂

∂u
C

S
a,b;D{1− Fa|D (ta|tD) , 1− u}

] ∣∣∣∣
u=Fb|D(tb|tD)

chain rule
= − ∂

∂(1− u)
C

S
a,b;D{1− Fa|D (ta|tD) , 1− u}∂(1− u)

∂u

∣∣∣∣
u=Fb|D(tb|tD)

=
∂

∂v
C

S
a,b;D{Sa|D (ta|tD) , v}

∣∣∣∣
v=Sb|D(tb|tD)

.

In a similar manner, we obtain

Sb|D+a

(
tb|tD+a

)
=

∂

∂v
C

S
a,b;D{v, Sb|D (tb|tD)}

∣∣∣∣
v=Sa|D(ta|tD)

.

To conclude, the recursive character of the arguments appearing in a pair-copula construction
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4.1 R-vine copulas for time-to-event data

remains valid when expressing the latter in terms of bivariate (conditional) survival copula

densities. The term h-function will subsequently be used in an analogous way for the partial

derivatives of the survival pair-copulas with respect to their arguments.

If event time Tb corresponds to a leaf in the first tree of the underlying R-vine structure, it

will never occur as a conditioning variable. Then, given the possible recursive evaluation of the

conditional survival functions appearing in an R-vine density, there is a closed form expression of

Sb|D+a

(
·|tD+a

)
only in terms of the survival pair-copulas in lower trees and the survival margins.

In particular, we know Sb|D+a

(
·|tD+a

)
analytically and can simulate from it. To obtain lower

and upper bounds of a prediction interval, the conditional quantile function can be used. The

latter is the inverse of the conditional distribution function. Kraus and Czado (2017) show that

it also is exclusively based on lower tree pair-copulas and the marginals. The conditional quantile

function can be calculated from the conditional survival function as follows:

qα
(
tD+a

)
:= F−1

b|D+a

(
α|tD+a

)
= S−1

b|D+a

(
1− α|tD+a

)
.

We end this section with an important remark on tail-dependence. Note from the definition

of rotated bivariate copulas in Section 2.2.3 and (4.3) that the survival pair-copulas cS
ae,be;De

correspond to the 180 degree rotations of the corresponding counterparts cae,be;De . Thus, upper

tail-dependence and lower tail-dependence correspond to the joint occurrence of very small and

very large event times, respectively. The results of this section are summarized in Example 4.2

based on a four-dimensional ordered D-vine density.

Example 4.2. In case of a four-dimensional D-vine with ordering 1− 2− 3− 4, the pair-copula

construction in terms of survival components for the joint density function f is given by

f (t1, . . . , t4) = f1 (t1) f2 (t2) f3 (t3) f4 (t4)

× cS1,2{S1 (t1) , S2 (t2)}cS2,3{S2 (t2) , S3 (t3)}cS3,4{S3 (t3) , S4 (t4)}

× cS1,3;2{S1|2 (t1|t2) , S3|2 (t3|t2)}cS2,4;3{S2|3 (t2|t3) , S4|3 (t4|t3)}

× cS1,4;2,3{S1|2,3 (t1|t2, t3) , S4|2,3 (t4|t2, t3)}.

For example, the second argument of the pair-copula density cS1,4;2,3 in tree T3 of the underlying

D-vine tree structure – that is S4|2,3 (t4|t2, t3) – can be recursively evaluated using the h-functions

corresponding to CS
2,3 and CS

3,4 specified in tree T1 and CS
2,4;3 specified in tree T2 as follows:

S4|2,3 (t4|t2, t3) = h4|2;3{S4|3 (t4|t3)
∣∣S2|3 (t2|t3)}

= h4|2;3

[
h4|3{S4 (t4) |S3 (t3)}|h2|3{S2 (t2) |S3 (t3)}

]
. (4.6)

Let us consider the subvine only including variables T2, T3 and T4. Since T4 is a leaf, the

conditional α-quantile qα (t2, t3) can be calculated via inversion of S4|2,3 (·|t2, t3) as follows:

qα (t2, t3) =
(
S4|2,3

)−1
(1− α|t2, t3)

(4.6)
= S−1

4

[
h−1

4|3{h
−1
4|2;3

(
1− α

∣∣h2|3 (S2 (t2) |S3 (t3))
) ∣∣∣∣S3 (t3)}

]
.
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4.1.3 Modeling of the univariate survival margins

Before copula parameter estimation for right-censored event time data can be discussed, tech-

niques to estimate the survival marginals have to be introduced. In this thesis, survival margins

are modeled either parametrically using likelihood optimization or nonparametrically using the

popular Kaplan-Meier estimator or the Nelson-Aalen estimator. Details on all estimation tech-

niques can be found in Hougaard (2000).

First, recall that event time data typically are subject to right-censoring, i.e. considering

univariate data with sample size n for some observation units the corresponding true realization

ti (i = 1, . . . , n) of the event time T might not be observed, but a lower time ci stemming from

the right-censoring time C might be recorded. Thus, the observed data, which are to be modeled,

are given by yi = min (ti, ci) together with the censoring indicator δi = 1 (ti ≤ ci). A common

assumption, which we will adopt throughout, is that censoring times are noninformative and

independent of the event times.

If the observed data are supposed to be modeled parametrically, a parametric form with

parameters α for the univariate survival function S with corresponding density function f is

taken. The loglikelihood function for univariate right-censored data, which is to optimized with

respect to α, is given by

` (α; y1, . . . , yn, δ1, . . . , δn) =
n∑
i=1

δi log{f (yi)}+ (1− δi) log{S (yi)}.

Clearly, for each loglikelihood contribution observed true event times and right-censored observa-

tions have to be distinguished. In the first case, full information for the corresponding individual

is available and – as for complete data – the density function f is evaluated at the observed

value. In the latter case, the true event time is arbitrarily larger than the observed value. This

is reflected by evaluating the survival function S at the observed value. Examples for common

parametric models for univariate time-to-event data are the Weibull or Gamma distribution

family.

For nonparametric modeling of the survival function, let t(k) denote a time at which the

event of interest (for example death) occurred at least once, and let dk denote the number of

observation units, for which the event of interest occurred at time t(k). Further, denote by nk

the number of observation units at risk at time t(k), i.e. observation units that have not yet

experienced the event or been censored at time t(k). The Kaplan-Meier estimate for time t is

defined by

ŜKM (t) :=
∏
t(k)≤t

(
1− dk

nk

)

with ŜKM (0) = 1. While the Kaplan-Meier estimator directly models the survival function, the

Nelson-Aalen estimator provides estimates for the so-called cumulative hazard function

Λ (t) :=

∫ t

0
λ (s) ds = − log{S (t)},
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where λ (t) is the hazard rate. The latter describes the approximate probability for an indi-

vidual at time t to instantaneously experience the event of interest conditional on not having

experienced it before. The Nelson-Aalen estimate at time t is

Λ̂ (t) :=
∑
t(k)≤t

dk
nk

and thus, provides an estimate for the survival function at time t through the transformation

ŜNA (t) = exp{−Λ̂ (t)}.

Both estimators result in step functions with jumps only at the observed true event times, i.e.

the jump sizes WKM
i and WNA

i for a censored observation yi with δi = 0 equal zero. The jump

sizes for a true observed event yi with δi = 1 are determined both by the occurred true events

and the censored observations. In particular, note that the Kaplan-Meier estimate only drops

to zero, when the last observation is a true event.

For ease of notation, expressions for the d-dimensional survival copula CS corresponding to

event times (T1, . . . , Td) will in the following be given in terms of the corresponding copula data,

i.e. Uj = Sj (Yj) (j = 1, . . . , d), where Yj = min (Tj , Cj). If the survival margins are unknown,

one of the above estimation techniques will be applied to obtain pseudo copula data. Note that

the data on the copula level inherit the censoring status of their corresponding values on the

original scale. Further, since from now on we exclusively work with survival copulas, we omit

the superscript S. We also restrict ourselves to the wording copula instead of survival copula.
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Chapter 4 Modeling time-to-event data using R-vine copulas

4.2 Likelihood estimation of dependence patterns in

right-censored event time data

Building upon the provided basics in Section 4.1, in this section the first out of two projects using

R-vine copulas in the context of multivariate event time data is presented. The main concepts

in this section are based on the work in Barthel (2015) (master’s thesis). To the best of our

knowledge, R-vine copulas had not been studied for right-censored clustered event times before.

The results of the master’s thesis were later extended and published in Barthel et al. (2018c).

The following content is a slight variation of this publication.

4.2.1 Introduction

In many studies, primary interest lies in the time until a prespecified event occurs. Often, the

data appear in clusters of equal size, i.e. the data are balanced. For example, in Laevens et al.

(1997) time to mastitis infection in udder quarters of primiparous cows is observed. The cow

is the cluster and the infection times of the four udder quarters are the clustered data. For

an accurate analysis of clustered data flexible models are needed to describe the underlying

dependence pattern. Copulas provide the right tools for this goal. For clusters of size two, a

large catalog of bivariate copula families exists. For clusters of size more than two, popular

multivariate copulas such as exchangeable (EAC) and nested Archimedean copulas (NAC) (Joe,

1993; Embrechts et al., 2003; Nelsen, 2006; Hofert, 2008) only induce restrictive dependence

patterns. For instance, in EAC models all marginal copulas show exactly the same type (and

even strength) of tail-dependence. In NAC models, the nesting condition limits all building

blocks to stem from the same copula family leading again to the same type (but not strength) of

tail-dependence. More flexible models are thus needed to capture complex association patterns

present in clustered data. Flexible alternatives for EAC and NAC models include Joe-Hu copulas

(Joe and Hu, 1996) and R-vine copulas (Aas et al., 2009; Bedford and Cooke, 2002; Czado, 2010;

Kurowicka and Joe, 2011; Kurowicka and Cooke, 2006b). A Joe-Hu copula corresponds to a

mixture of positive powers of max-infinitely divisible bivariate copulas. The induced dependence

pattern is completely determined by the mixture and by the choice of bivariate copulas. The

idea of an R-vine copula is to decompose the joint density of the clustered event times into a

cascade of bivariate copula densities using conditioning. So, in both approaches bivariate copulas

or bivariate copula densities are the building blocks. Given the variety of well-studied bivariate

copulas, it is clear that Joe-Hu copulas and R-vine copulas allow a flexible modeling of the

within-cluster association in clustered event time data.

For the above mentioned copula models the focus is usually on complete, i.e. non-censored,

data. However, event time data are often subject to right-censoring. This means that for some

observations the true event time is not observed but instead a lower (censored) time is registered.

For example, in the mastitis study cows may be lost to follow-up (for example due to death) or

may experience the event after the end of the study (censored at study end). Since the presence

of right-censoring in clustered event time data complicates the statistical analysis substantially,

copula based modeling approaches for right-censored clustered data have been less explored and
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are restricted to rather simple copula classes such as elliptical or Archimedean copulas. Recently,

Geerdens et al. (2016a) studied, for balanced right-censored data, the model flexibility of Joe-Hu

copulas (Joe and Hu, 1996) as compared to less elaborate EAC and NAC models. R-vine copulas

have not yet been studied for right-censored clustered event times. Therefore, our main objective

is to develop a likelihood based estimation approach using the flexible class of R-vine copulas.

Using the theorem of Sklar (1959) and following the ideas in Shih and Louis (1995), we proceed

in two steps. In step one, the survival margins are modeled. Here, any estimation technique for

univariate right-censored event time data can be used, for example maximum likelihood estima-

tion or the nonparametric Kaplan-Meier estimator. Focus, however, lies in detecting the inherent

dependence pattern using R-vine copula based likelihood estimation in the second step. Due to

right-censoring, numerical integration is needed, making the global likelihood optimization com-

putationally challenging. We introduce a sequential estimation approach to find a fair trade-off

between the numerical demand caused by data complexity and the accuracy of the estimates.

In Section 4.2.2, we provide information on the general data setting and introduce the no-

tation used throughout. Following the ideas in Shih and Louis (1995), Section 4.2.3 contains

the loglikelihood function for right-censored quadruple event time data. In particular, we pro-

vide the loglikelihood expression in terms of R-vine copula components and therewith extend

existing R-vine copula concepts to the setting of right-censored clustered time-to-event data. In

this section, we also discuss how to deal with numerical aspects of the presented optimization

method. A simulation study is performed in Section 4.2.4 to demonstrate the good finite sample

performance of our approach.

4.2.2 Data setting and notation

Suppose a study includes n independent individuals. Each of it is to be considered as a cluster

of d observation units, which are simultaneously observed for the event of interest. We focus on

d = 3 and d = 4. Let Ti,j be the true j-th event time in cluster i (i = 1, . . . , n and j = 1, . . . , d).

Due to a limited follow-up period, the event times Ti,j are subject to right-censoring by Ci,j ,

which is the j-th censoring time of cluster i. Thus, for cluster i we observe Yi,j = min(Ti,j , Ci,j)

together with the censoring indicator δi,j = 1(Ti,j ≤ Ci,j) with j = 1, . . . , d. Throughout, we

assume that Ti,j and Ci,j are independent and that censoring is noninformative. Further, we

assume that Ci,j = Ci holds for all j = 1, . . . , d, i.e. all event times are subject to right-censoring

by the same censoring time. This setting is called common (univariate) right-censoring. It is

illustrated in Figure 4.1 considering four-dimensional data. Here, for cluster k (i, k ∈ {1, . . . , n}
and i 6= k) only the fourth event time Tk,4 is observed. All other observations are equal after

being censored at the end of the study. From Figure 4.1 it is clear that different joint censoring

states need to be distinguished among clusters. Based on the observed data Y i = (Yi,1, . . . , Yi,4)

and δi = (δi,1, . . . , δi,4) the latter are defined as follows in the four-dimensional case:
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Figure 4.1: Illustration of four-dimensional event time data subject to common right-censoring.

no censoring: ∆i (1, 2, 3, 4) := δi,1δi,2δi,3δi,4

all components censored: ∆i :=

4∏
j=1

(1− δi,j)

p-th component not censored: ∆i (p) := δi,p

4∏
j=1;j 6=p

(1− δi,j)

p-th, q-th component not censored for p 6= q: ∆i (p, q) := δi,pδi,q

4∏
j=1;j 6=p,q

(1− δi,j)

p-th, q-th, v-th component not censored
∆i (p, q, v) := δi,pδi,qδi,v (1− δi,w)

for w 6= p, q, v and p 6= q 6= v:

4.2.3 Likelihood estimation for four-dimensional event time data

The goal is to develop for d-dimensional event time data as described in the previous section

a likelihood estimation strategy. From now on we assume d = 4. Let C with density c be

the survival copula describing the vector (U1, U2, U3, U4), which corresponds to the vector of

observed times (Y1, Y2, Y3, Y4), i.e. Uj := Sj (Yj) (j = 1, . . . , 4), where Sj is the survival function

for event time Tj . At the moment, we assume Sj (j = 1, . . . , 4) to be known. Recall that in four

dimensions there are only two possible R-vine structures: D-vines and C-vines (see Figure 4.2).

Similar to the univariate case outlined in Section 4.1.3 the joint censoring status of a cluster

needs to be taken into account, when constructing an appropriate likelihood expression. Consider

the observed data ui,j = Sj (yi,j) (i = 1, . . . , n and j = 1, . . . , 4) and assume that for example

δi = (1, 0, 0, 1). Thus, we have ∆i (1, 4) = 1 and all other joint censoring indicators equal zero.

Then, ui,1 and ui,4 correspond to true event times. On the other hand, ui,2 and ui,3 correspond

to censoring times, meaning that the copula data linked to the unknown true event times would

take values smaller than ui,2 and ui,3. Thus, the contribution to the loglikelihood is given by
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Figure 4.2: Two examples of a four-dimensional R-vine structure: a D-vine on the left and a
C-vine on the right.

`i,4 (θ;ui, δi)

= log

[
∂2

∂ui,1∂ui,4
C{ui,1, S2(yi,2), S3(yi,3), ui,4;θ}

] ∣∣∣∣ui,1=S1(yi,1)
ui,4=S4(yi,4)

,

where ui = (ui,1, ui,2, ui,3, ui,4) and with θ the vector collecting all parameters of the copula C.

In general, the contribution of the i-th cluster to the loglikelihood is given by

`i,4 (θ;ui, δi)

:= ∆i log{C (ui,1, ui,2, ui,3, ui,4;θ)}

+
4∑
p=1

∆i (p) log{ ∂

∂ui,p
C (ui,1, ui,2, ui,3, ui,4;θ)}

+
∑
p 6=q

∆i (p, q) log{ ∂2

∂ui,p∂ui,q
C (ui,1, ui,2, ui,3, ui,4;θ)}

+
∑
p6=q 6=v

∆i (p, q, v) log{ ∂3

∂ui,p∂ui,q∂ui,v
C (ui,1, ui,2, ui,3, ui,4;θ)}

+ ∆i (1, 2, 3, 4) log{c (ui,1, ui,2, ui,3 ui,4;θ)}.

The loglikelihood for four-dimensional time-to-event data subject to right-censoring, which is to

be maximized with respect to θ, is therefore given by

` (θ;u1, . . . ,un, δ1, . . . , δn) :=
n∑
i=1

`i,4 (θ;ui, δi) . (4.7)

Massonnet et al. (2009) and Geerdens et al. (2016a) use this likelihood expression to model

dependencies within the mastitis data, which will be discussed in detail in Section 4.3.2. Shih

and Louis (1995) and Andersen (2005) consider similar versions for bivariate event time data.
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Once we have decided on the R-vine structure to be used, we need the version of the partial

derivatives in (4.7) in terms of pair-copula components. For instance, for the D-vine structure

considered in Figure 4.2 we have

∂2C (ui,1, ui,2, ui,3, ui,4)

∂ui,1∂ui,4

=

∫ ui,2

0

∫ ui,3

0
c1,2 (ui,1, vi,2) c2,3 (vi,2, vi,3) c3,4 (vi,3, ui,4)

× c1,3;2{C1|2 (ui,1|vi,2) ,C3|2 (vi,3|vi,2)}

× c2,4;3{C2|3 (vi,2|vi,3) ,C4|3 (ui,4|vi,3)}

× c1,4;2,3{C1|2,3 (ui,1|vi,2, vi,3) ,C4|2,3 (ui,4|vi,2, vi,3)}dvi,3dvi,2

=

∫ ui,2

0

∫ ui,3

0
c1,2 (ui,1, vi,2) c2,3 (vi,2, vi,3) c3,4 (vi,3, ui,4)

× c1,3;2{h1|2 (ui,1|vi,2) , h3|2 (vi,3|vi,2)}

× c2,4;3{h2|3 (vi,2|vi,3) , h4|3 (ui,4|vi,3)}

× c1,4;2,3

[
h1|3;2{h1|2 (ui,1|vi,2)

∣∣h3|2 (vi,3|vi,2)},

h4|2;3{h4|3 (ui,4|vi,3)
∣∣h2|3 (vi,2|vi,3)}

]
dvi,3dvi,2.

The complete collection of D- and C-vine equivalents of the partial derivatives is derived in

Barthel (2015, Chapter 3) and is given in Appendix B.1.1.

Practical implementation

We end this section by two remarks concerning the practical implementation of the presented

optimization problem.

First, note that in practice, the marginal survival functions, which are assumed to be known

in the above discussion, are typically unknown. Clearly, full maximum likelihood optimization of

all univariate marginal and copula parameters could be performed. To lower the computational

effort and to increase model flexibility, we use the two-stage estimation procedure described in

Shih and Louis (1995). A parametric approach can be applied. In stage one, we assume Sj(·)
to be known up to some parameter vector αj , i.e. Sj(·) = Sj(·,αj) (j = 1, . . . , 4). We obtain

the maximum likelihood estimate (MLE) α̂j of αj as described in Section 4.1.3 and calculate

ûi,j = Sj(yi,j , α̂j) (i = 1, . . . , n and j = 1, . . . , 4). In stage two, we replace ui,j by the pseudo

observation ûi,j (i = 1, . . . , n and j = 1, . . . , 4) and maximize the loglikelihood in (4.7) with

respect to θ. Alternatively, a more flexible semiparametric approach can be applied. In stage

one, we estimate the marginals nonparametrically as explained in Section 4.1.3. We obtain the

Kaplan-Meier estimate (KME) Ŝj(·) of Sj(·) (j = 1, . . . , 4) and calculate the pseudo observations

ûi,j = Ŝj(yi,j). In stage two, we use the latter as substitutes for ui,j and maximize the loglikeli-

hood in (4.7) with respect to θ.

Second, due to right-censoring the use of single and double integrals and hence numerical

integration cannot be avoided when evaluating the loglikelihood. Thus, appropriate starting
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values are indispensable for a reasonable trade-off between numerical demand and accuracy of

the estimates. Due to the rapidly increasing number of parameters for R-vine copulas in higher

dimensions this issue also arises for complete data. Herein, the so-called sequential estimation

approach of Dißmann et al. (2013) is usually applied. It splits up a d-dimensional estimation

problem into d(d − 1)/2 bivariate ones. First, the parameters of the d − 1 bivariate copulas in

T1 are estimated. Next, the parameter estimates are used to obtain estimates of the h-functions.

These estimates are needed as arguments in the pair-copulas in T2 when estimating the d − 2

copula parameters in T2, etc. Hobæk-Haff et al. (2013) and Stöber and Schepsmeier (2013) pro-

vide asymptotic properties for this approach. Since it makes the estimation of high-dimensional

R-vine copula models tractable and computationally easy while showing excellent estimation

performance, analysis for complete data often solely rely on the sequential estimation approach.

In the setting with right-censored quadruple data, we can mimic this idea and estimate the

parameters of the three bivariate copulas in T1 separately by using the bivariate version of the

loglikelihood given in (4.7). However, by construction the arguments in T2 and T3 are not directly

associated with observed (event or censored) times. As a consequence, estimation via the two-

dimensional version of (4.7) is no longer feasible. Instead, after having obtained the parameter

estimates for T1, we substitute them in the loglikelihood (4.7), which we then maximize with

respect to the remaining copula parameters in T2 and T3. By doing so, we achieve dimension

reduction by at least 3 for d = 4. We refer to this approach as T1-sequential estimation. Finally,

we use the estimates of the T1-sequential approach as starting values to solve the computationally

heavy optimization problem with respect to all 6 parameters (d = 4) of the R-vine copula model

simultaneously (step 2 in the two-stage estimation procedure of Shih and Louis (1995)).

For our calculations, we rely on standard optimization methods and the VineCopula package in

R (Schepsmeier et al., 2017), in which the evaluation of h-functions, of the cumulative distribution

function and of the density function is implemented for many parametric bivariate copulas.

4.2.4 Simulation study

We investigate the finite sample performance of the loglikelihood approach presented in Sec-

tion 4.2.3 through an extensive simulation study. To cover a broad range of simulation settings

while keeping the numerical effort for a large number of replications reasonable, we restrict

ourselves to three dimensions. The goal is to assess the impact of right-censoring on R-vine

copula based estimation of the within-cluster association. For this purpose, various degrees of

right-censoring, different types of tail-dependence and different strengths of dependence are con-

sidered. Our investigations build on the elaborate simulation study in Barthel (2015, Chapter

4) (master’s thesis). However, all simulations in Barthel et al. (2018c) and in this thesis are

completely rerun considering modified and additional simulation settings, which will be outlined

in the following section.

Considered scenarios

To generate multivariate right-censored time-to-event data with a dependence structure specified

by an R-vine copula, we simulate in a first step complete copula data using the R-package
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VineCopula (Schepsmeier et al., 2017). We assume the copula C to be an R-vine copula with

density

c (u1, u2, u3) = c1,2 (u1, u2) c2,3 (u2, u3) c1,3;2{C1|2 (u1|u2) ,C3|2 (u3|u2)}.

Note that in dimension three, all R-vine structures are equivalent up to the labeling of the nodes.

Here, the copulas C1,2 and C2,3 are assumed to arise from the same copula family. We investigate

both the scenario of lower tail-dependent copulas using the Clayton family and the scenario of

upper tail-dependent copulas using the Gumbel family. For ease of comparison, we take Kendall’s

τ to be the same in both tail-dependence scenarios; we set τ1,2 = 0.6 and τ2,3 = 0.6 assuming

strong dependencies. We assume C1,3;2 to be a Frank copula, which has no tail dependence, with

moderate dependence τ1,3;2 = 0.3. Two extra simulation settings with τ1,2 = τ2,3 = τ1,3;2 = 0.1

(weak dependencies) and τ1,2 = τ2,3 = τ1,3;2 = 0.3 (moderate dependencies) are included in

Appendix B.2. The three copula families are common choices covering the three standard tail-

dependence scenarios for bivariate data. Recall that in an R-vine copula model, these families

can be arbitrarily combined allowing for complex dependence structures such as asymmetric

tail-dependence behavior. While we focus on Archimedean copulas as building blocks of the

considered R-vine copula models, in Barthel (2015) a Gaussian copula is assumed in tree level

T2 showing similar estimation results. The scenarios of weak and moderate dependencies are not

considered in Barthel (2015).

In a second step, the inverse probability integral transform is applied to the marginal copula

data to obtain the true event times. Note that the proposed modeling strategy handles marginal

and dependence modeling separately with no restrictions with regard to the marginal estima-

tion. Thus, the settings for the marginal survival functions mainly serve the purpose to define

the transformation from copula data to data on the actual time scale without distorting the

dependence structure, which is our focus. Given that the Weibull is a commonly used paramet-

ric survival function, we assume this form for the margins of the event times as well as for the

censoring mechanism, i.e. S (t) = exp
(
−
(
t
λ

)α)
with shape parameter α and scale parameter λ

(in accordance with the parametrization used in R). The parameter choices are given in Table 4.1

and are inspired by the marginal estimates of the trivariate tumorigenesis data in Mantel et al.

(1977). The latter also motivated the extensive simulation study in Barthel (2015, Section 4.1.1).

Table 4.1: Specification of the Weibull parameters of the survival function for each of the event
times T1, T2, T3 and of the two common censoring distributions leading to 25% and
65%, respectively, overall common right-censoring. Further, the individual censoring
rates for each of the three margins are shown.

Event times Censoring times
T1 T2 T3 25% 65%

Weibull parameters
α 3.39 4.20 3.53 6.72 6.72
λ 3.32 2.21 2.68 3.11 2.17

Marginal censoring
52% 12% 29% ×
82% 49% 67% ×
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To assess the effect of censoring, we investigate the performance of the estimation procedure for

complete data as well as for a moderate overall censoring rate of 25% and for a heavy censoring

rate of 65%. Note that the margins are affected to a different extent by the censoring mechanism

as caused by distinct survival functions.

Finally, the observed data are obtained by taking the minima of the true event times and the

corresponding censoring times. To this data we apply a two-stage approach for known margins as

well as for parametrically (MLE) and nonparametrically (KME) estimated margins as described

in Section 4.2.3. In case of complete event time data, we use the empirical distribution functions

(ECDF) as nonparametric estimates for the marginals. All scenarios are investigated for samples

of size 200 and 500. Each sample is replicated 200 times.

Results

We visualize the results of the simulations in Figure 4.3 and Figure 4.4, where the true Kendall’s

τ values are indicated by a horizontal line. Figure 4.3 shows satisfactory performance of the

estimators when common right-censoring is present, even in case of heavy censoring (65%).

The two-stage approaches with (non)parametrically estimated margins benefit the most from

an increasing sample size. In particular, due to the comparable performance of the parametric

and the semiparametric estimation approach, the latter qualifies as an appropriate tool when

working with real data. It allows a flexible estimation of the marginals and excludes the risk to

misspecify the underlying parametric models. Figure 4.4 shows the censoring effect. Comparing

the first and second row illustrates the impact of the marginal censoring rates. Given that

event time T1 is affected most by right-censoring as shown in Table 4.1 we indeed expect that

τ2,3 can be estimated in a more accurate way than τ1,2. Also, the method is more sensitive to

a higher common right-censoring rate, especially when estimating the parameters of a lower

tail-dependent copula, as can be seen by comparing the left-hand side and right-hand side of

Figure 4.4. This is due to the lack of information in the data for small copula values, i.e. high

event times (see also Figure 4.6). Overall, we can conclude that the presented method is on

target for all investigated parameters in the underlying R-vine copula models.

A detailed summary of the simulation results can be found in Table 4.2 and Table 4.3 (Clayton

for T1 and Frank for T2) and Table 4.4 and Table 4.5 (Gumbel for T1 and Frank for T2). Here,

θ is the true parameter value, θ̄ is the mean estimate, b̂(θ̄) is the estimated bias, s2(θ̄) is the

estimated squared standard error and m̂se(θ̄) is the estimated mean squared error of θ̄. The

same performance measures are given for the corresponding Kendall’s τ values. Table B.2 to

Table B.9 in Appendix B.2 show similar results for the two extra simulation settings considering

weak and moderate dependencies for all three bivariate copulas.
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Clayton copulas in T1, Frank copula in T2

●
●

●
● ●●

●

●

●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 1
,2

●
● ●

●●

●

● ●

●

● ●

●

●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 2
,3

●
●● ●

●
●

●●
●

●

●

● ●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 1
,3

;2

Gumbel copulas in T1, Frank copula in T2

●●
●

●

●

●

● ●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 1
,2

● ● ●

●

●
● ●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 2
,3

●● ●
●

●

●
●

●
●●
●
● ●

●

●

n = 200 n = 500

K
no

w
n

M
LE

K
M

E

K
no

w
n

M
LE

K
M

E

0.
00

0.
25

0.
50

0.
75

1.
00

τ̂ 1
,3

;2

Figure 4.3: Boxplots of the estimated Kendall’s τ values for 65% common right-censored event
time data with Clayton copulas (left) and Gumbel copulas (right) in T1, true
τ1,2 = 0.6, τ2,3 = 0.6, τ1,3;2 = 0.3 and sample sizes 200 and 500. Known margins,
parametrically estimated (MLE) and nonparametrically (KME) estimated margins
are considered.
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Clayton copulas in T1, Frank copula in T2
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Figure 4.4: Boxplots of the estimated Kendall’s τ values for an increasing percentage of common
right-censoring with Clayton copulas (left) and Gumbel copulas (right) in T1, true
τ1,2 = 0.6, τ2,3 = 0.6, τ1,3;2 = 0.3 and sample size 500. Known margins, parametrically
estimated margins (MLE) and nonparametrically estimated margins (ECDF/KME)
are considered.
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Table 4.2: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true τ1,2 = 0.6,
τ2,3 = 0.6 and τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

20
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 3.00 3.14 0.1430 0.5762 0.5966 0.60 0.60 0.0025 0.0036 0.0036

C θ2,3 3.00 3.06 0.0609 0.2499 0.2536 0.60 0.60 0.0009 0.0016 0.0016
F θ1,3;2 2.92 3.03 0.1155 0.8131 0.8264 0.30 0.31 0.0052 0.0062 0.0062

M
L

E C θ1,2 3.00 3.22 0.2247 0.6998 0.7504 0.60 0.61 0.0073 0.0040 0.0041
C θ2,3 3.00 3.12 0.1240 0.3782 0.3936 0.60 0.60 0.0039 0.0024 0.0024
F θ1,3;2 2.92 3.04 0.1190 0.8641 0.8783 0.30 0.31 0.0052 0.0066 0.0066

K
M

E C θ1,2 3.00 3.15 0.1542 0.6681 0.6919 0.60 0.60 0.0021 0.0041 0.0041
C θ2,3 3.00 3.05 0.0455 0.3857 0.3877 0.60 0.60 -0.0025 0.0025 0.0026
F θ1,3;2 2.92 3.07 0.1548 0.8911 0.9151 0.30 0.31 0.0081 0.0066 0.0067

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 3.00 3.10 0.0983 0.2246 0.2343 0.60 0.60 0.0044 0.0013 0.0013

C θ2,3 3.00 3.03 0.0318 0.1083 0.1093 0.60 0.60 0.0008 0.0007 0.0007
F θ1,3;2 2.92 3.00 0.0855 0.3681 0.3754 0.30 0.31 0.0052 0.0027 0.0028

M
L

E C θ1,2 3.00 3.11 0.1143 0.2703 0.2833 0.60 0.61 0.0051 0.0015 0.0015
C θ2,3 3.00 3.05 0.0460 0.1364 0.1386 0.60 0.60 0.0016 0.0008 0.0008
F θ1,3;2 2.92 3.00 0.0855 0.3771 0.3844 0.30 0.31 0.0052 0.0028 0.0028

K
M

E C θ1,2 3.00 3.09 0.0887 0.2713 0.2791 0.60 0.60 0.0030 0.0016 0.0016
C θ2,3 3.00 3.00 0.0042 0.1323 0.1323 0.60 0.60 -0.0017 0.0008 0.0008
F θ1,3;2 2.92 3.02 0.0988 0.3867 0.3964 0.30 0.31 0.0063 0.0029 0.0029
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Table 4.3: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common right-
censored event time data with sample size 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true τ1,2 = 0.6,
τ2,3 = 0.6 and τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 3.00 3.03 0.0282 0.0537 0.0545 0.60 0.60 0.0014 0.0003 0.0003

C θ2,3 3.00 3.00 -0.0021 0.0322 0.0322 0.60 0.60 -0.0007 0.0002 0.0002
F θ1,3;2 2.92 2.94 0.0275 0.1431 0.1439 0.30 0.30 0.0015 0.0011 0.0011

M
L

E C θ1,2 3.00 3.03 0.0345 0.0872 0.0884 0.60 0.60 0.0014 0.0006 0.0006
C θ2,3 3.00 3.00 -0.0028 0.0599 0.0599 0.60 0.60 -0.0012 0.0004 0.0004
F θ1,3;2 2.92 2.95 0.0292 0.1478 0.1487 0.30 0.30 0.0017 0.0011 0.0011

K
M

E C θ1,2 3.00 2.99 -0.0113 0.0904 0.0905 0.60 0.60 -0.0024 0.0006 0.0006
C θ2,3 3.00 2.94 -0.0629 0.0621 0.0661 0.60 0.59 -0.0061 0.0004 0.0005
F θ1,3;2 2.92 2.96 0.0391 0.1497 0.1512 0.30 0.30 0.0025 0.0011 0.0012

n
=

50
0,

co
m

p
le

te
d

at
a

K
n

ow
n C θ1,2 3.00 3.04 0.0364 0.0235 0.0248 0.60 0.60 0.0025 0.0001 0.0002

C θ2,3 3.00 3.00 0.0036 0.0239 0.0239 0.60 0.60 -0.0001 0.0002 0.0002
F θ1,3;2 2.92 2.96 0.0457 0.0916 0.0937 0.30 0.30 0.0035 0.0007 0.0007

M
L

E C θ1,2 3.00 3.01 0.0110 0.0514 0.0515 0.60 0.60 0.0001 0.0003 0.0003
C θ2,3 3.00 2.98 -0.0247 0.0517 0.0523 0.60 0.60 -0.0028 0.0003 0.0003
F θ1,3;2 2.92 2.96 0.0408 0.0912 0.0929 0.30 0.30 0.0030 0.0007 0.0007

E
C

D
F C θ1,2 3.00 3.02 0.0153 0.0543 0.0545 0.60 0.60 0.0004 0.0003 0.0003

C θ2,3 3.00 2.98 -0.0176 0.0551 0.0555 0.60 0.60 -0.0023 0.0004 0.0004
F θ1,3;2 2.92 2.97 0.0481 0.0977 0.1000 0.30 0.30 0.0036 0.0007 0.0008
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Table 4.4: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true τ1,2 = 0.6,
τ2,3 = 0.6 and τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

20
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 2.50 2.53 0.0265 0.0641 0.0648 0.60 0.60 0.0003 0.0016 0.0016

G θ2,3 2.50 2.52 0.0201 0.0396 0.0400 0.60 0.60 0.0007 0.0010 0.0010
F θ1,3;2 2.92 2.99 0.0705 0.8978 0.9028 0.30 0.30 0.0008 0.0069 0.0069

M
L

E G θ1,2 2.50 2.52 0.0158 0.0827 0.0830 0.60 0.60 -0.0026 0.0021 0.0021
G θ2,3 2.50 2.53 0.0250 0.0570 0.0577 0.60 0.60 0.0004 0.0014 0.0014
F θ1,3;2 2.92 3.00 0.0783 0.9986 1.0048 0.30 0.30 0.0009 0.0076 0.0076

K
M

E G θ1,2 2.50 2.58 0.0820 0.1069 0.1136 0.60 0.61 0.0067 0.0023 0.0024
G θ2,3 2.50 2.56 0.0558 0.0634 0.0665 0.60 0.60 0.0049 0.0015 0.0015
F θ1,3;2 2.92 3.00 0.0805 0.9979 1.0044 0.30 0.30 0.0011 0.0075 0.0075

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 2.50 2.54 0.0376 0.0291 0.0305 0.60 0.60 0.0042 0.0007 0.0007

G θ2,3 2.50 2.51 0.0106 0.0170 0.0171 0.60 0.60 0.0006 0.0004 0.0004
F θ1,3;2 2.92 2.97 0.0494 0.3800 0.3825 0.30 0.30 0.0020 0.0030 0.0030

M
L

E G θ1,2 2.50 2.53 0.0324 0.0376 0.0386 0.60 0.60 0.0029 0.0009 0.0009
G θ2,3 2.50 2.51 0.0107 0.0243 0.0244 0.60 0.60 0.0002 0.0006 0.0006
F θ1,3;2 2.92 2.97 0.0507 0.3892 0.3918 0.30 0.30 0.0021 0.0030 0.0030

K
M

E G θ1,2 2.50 2.55 0.0524 0.0445 0.0472 0.60 0.61 0.0056 0.0010 0.0011
G θ2,3 2.50 2.52 0.0162 0.0254 0.0257 0.60 0.60 0.0010 0.0006 0.0006
F θ1,3;2 2.92 2.98 0.0578 0.4216 0.4249 0.30 0.30 0.0025 0.0033 0.0033
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Table 4.5: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common right-
censored event time data with sample size 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true τ1,2 = 0.6,
τ2,3 = 0.6 and τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (ECDF/KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 2.50 2.52 0.0181 0.0129 0.0132 0.60 0.60 0.0021 0.0003 0.0003

G θ2,3 2.50 2.51 0.0052 0.0100 0.0101 0.60 0.60 0.0002 0.0003 0.0003
F θ1,3;2 2.92 2.93 0.0107 0.1517 0.1518 0.30 0.30 0.0000 0.0012 0.0012

M
L

E G θ1,2 2.50 2.52 0.0207 0.0198 0.0203 0.60 0.60 0.0021 0.0005 0.0005
G θ2,3 2.50 2.51 0.0084 0.0148 0.0148 0.60 0.60 0.0004 0.0004 0.0004
F θ1,3;2 2.92 2.92 0.0027 0.1529 0.1529 0.30 0.30 -0.0007 0.0012 0.0012

K
M

E G θ1,2 2.50 2.52 0.0193 0.0207 0.0210 0.60 0.60 0.0018 0.0005 0.0005
G θ2,3 2.50 2.50 0.0018 0.0155 0.0155 0.60 0.60 -0.0007 0.0004 0.0004
F θ1,3;2 2.92 2.93 0.0106 0.1602 0.1603 0.30 0.30 -0.0001 0.0012 0.0012

n
=

50
0,

co
m

p
le

te
d

at
a

K
n

ow
n G θ1,2 2.50 2.52 0.0212 0.0078 0.0083 0.60 0.60 0.0029 0.0002 0.0002

G θ2,3 2.50 2.51 0.0064 0.0086 0.0086 0.60 0.60 0.0005 0.0002 0.0002
F θ1,3;2 2.92 2.96 0.0388 0.0997 0.1012 0.30 0.30 0.0028 0.0008 0.0008

M
L

E G θ1,2 2.50 2.51 0.0136 0.0123 0.0125 0.60 0.60 0.0014 0.0003 0.0003
G θ2,3 2.50 2.50 -0.0000 0.0131 0.0131 0.60 0.60 -0.0008 0.0003 0.0003
F θ1,3;2 2.92 2.95 0.0276 0.0983 0.0991 0.30 0.30 0.0018 0.0008 0.0008

E
C

D
F G θ1,2 2.50 2.53 0.0255 0.0135 0.0141 0.60 0.60 0.0032 0.0003 0.0003

G θ2,3 2.50 2.51 0.0094 0.0144 0.0145 0.60 0.60 0.0006 0.0004 0.0004
F θ1,3;2 2.92 2.95 0.0279 0.1040 0.1048 0.30 0.30 0.0018 0.0008 0.0008
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Chapter 4 Modeling time-to-event data using R-vine copulas

4.3 Estimating standard errors in the presence of right-censoring

In Section 4.2, focus was on likelihood based parameter estimation in R-vine copula models for

four-dimensional event time data affected by common (univariate) right-censoring. The loglikeli-

hood expression in (4.7) in terms of pair-copula components is already derived in Barthel (2015)

(master’s thesis) and is part of the publication Barthel et al. (2018c). Simulations in Barthel

et al. (2018c) are completely rerun in particular considering additional weak and moderate de-

pendence strengths of the pair-copulas. While for the simulation results (Section 4.2.4) standard

errors of the parameter estimates could be empirically obtained from the replications in each

simulation scenario, this is not feasible if interest is in real data. Thus, an important extension

in Barthel et al. (2018c) as compared to Barthel (2015) (master’s thesis) is the estimation of

standard errors for the R-vine copula based modeling approach proposed in Section 4.2.

For complete data, Hobæk-Haff et al. (2013), Stöber and Schepsmeier (2013) and Schepsmeier

and Stöber (2014) investigate asymptotic theory for R-vine copula based methodology and point

out the challenges when interest is in the calculation of standard errors for parameter estimates

in R-vine copula models. For right-censored data, the theory developed in these papers needs to

be adapted and given the extra data complexity will become even more challenging. As concluded

in Hobæk Haff et al. (2010) for complete data, we therefore opt as well for a more tractable

alternative for finite samples and develop an appropriate resampling scheme to obtain bootstrap

standard errors. Thus, an R-vine copula based parametric bootstrap algorithm is developed in

Section 4.3.1. In Section 4.3.2, it will be applied when analyzing the mastitis data in detail.

4.3.1 Parametric bootstrap algorithm

Under common (univariate) right-censoring, as described in Section 4.2.2, standard errors for

the estimated parameters of an R-vine copula can be obtained using a parametric bootstrap

algorithm (Davison et al., 1997; Massonnet et al., 2009). A similar procedure as the one subse-

quently proposed is used in Geerdens et al. (2016a) for Joe-Hu copulas (Joe and Hu, 1996) in

the context of multivariate right-censored event time data:

Step 1: Fit the R-vine copula model of interest to the copula data (ûi,j , δi,j), i = 1, . . . , n and

j = 1, . . . , d, where δi,j = 1(ti,j ≤ ci), ûi,j = Ŝj (yi,j) and yi,j = min (ti,j , ci) with Ŝj

the Kaplan-Meier estimate based on (yi,j , δi,j). Obtain the vector of copula parameter

estimates θ̂, which maximizes the corresponding loglikelihood function.

Step 2: Obtain the Kaplan-Meier estimate Ĝ of the censoring distribution G based on the

observations (max (yi,1, . . . , yi,d) , 1− δi,1 · . . . · δi,d), i = 1, . . . , n.

Step 3: Generate B bootstrap samples in the following way: For b = 1, . . . , B, i = 1, . . . , n

and j = 1, . . . , d,

Step 3.1: sample vine copula data
(
u

(b)
i,1 , . . . , u

(b)
i,d

)
from the fitted R-vine copula model with

parameter vector θ̂.

Step 3.2: Generate event times
(
t
(b)
i,1 , . . . , t

(b)
i,d

)
via t

(b)
i,j = Ŝ−1

j

(
u

(b)
i,j

)
.
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4.3 Estimating standard errors in the presence of right-censoring

Step 3.3: Generate independent censoring times c
(b)
i from Ĝ.

Step 3.4: Obtain observed data by setting y
(b)
i,j = min

(
t
(b)
i,j , c

(b)
i

)
and δ

(b)
i,j = 1

(
t
(b)
i,j ≤ c

(b)
i

)
.

Step 3.5: Set û
(b)
i,j = Ŝ

(b)
j

(
y

(b)
i,j

)
with Ŝ

(b)
j the Kaplan-Meier estimate based on

(
y

(b)
i,j , δ

(b)
i,j

)
.

Step 3.6: Given the bootstrap data
(
û

(b)
i,j , δ

(b)
i,j

)
, fit the R-vine copula model of interest by

maximizing the corresponding loglikelihood function to obtain θ̂
(b)

for bootstrap

sample b.

Step 4: Calculate elementwise the empirical standard deviations of θ̂
(1)
, . . . , θ̂

(B)
to obtain

bootstrap based standard errors for θ̂.

4.3.2 Data application

In the following, the proposed parametric bootstrap algorithm will be used to obtain standard

errors for the R-vine copula parameters estimated for the mastitis data. It will also help to

validate nonparametric bootstrapping in the presence of heavy right-censoring as present in the

mastitis data. The udder infection data of Laevens et al. (1997) already received considerable

attention in a number of papers, for example Duchateau and Janssen (2008), Massonnet et al.

(2009) and Geerdens et al. (2016a). The study aims to quantify the impact of mastitis on the milk

production and the milk quality. For this, information on the time from parturition to infection

is collected for the four udder quarters of a cow. The cow is the cluster and the infection times

of the four udder quarters are the clustered data.

For the 407 primiparous cows in the study, the available data consist of the cow identi-

fication number, the minimum of the infection time and the censoring time (both in days)

for each udder quarter as well as the corresponding censoring indicators. For example, for

the first and last cow the data information is given by {1, (67, 67, 119, 67), (1, 1, 1, 1)} and

{407, (279, 279, 279, 263), (0, 0, 0, 1)}, respectively, where the ordering in a data quadruple cor-

responds to left front, right front, left rear and right rear. For the cow with ID 1, the true time

Table 4.6: Censoring patterns of the mastitis data.

#censored observations in a cluster #cows

0 73
1 49
2 36
3 40
4 209

udder quarter percentage of censoring

front left 64.37%
front right 64.37%
rear left 68.80%

rear right 67.08%
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Chapter 4 Modeling time-to-event data using R-vine copulas

until mastitis infection is recorded for all four udder quarters. For the cow with ID 407, the time

until infection is only known for the right rear udder quarter while all other observations are

censored. Censoring in the mastitis data occurs at the level of the udder quarters and is common

(univariate) in the sense that the same censoring time applies to all udder quarters of an indi-

vidual cow. Table 4.6 summarizes information on the censoring patterns of the mastitis data.

In total, censoring is present in about 66.15% of the observations. Before starting the discus-

sion on model selection, it is important to note that the information loss due to right-censoring

complicates accurate model selection and implies the need for careful comparison of possible

models. Pairs plots can be used to demonstrate the information loss in a graphical way. Data

points corresponding to the two front udder quarters are for example given by (ûFL
i , ûFR

i ) with

ûFL
i = ŜFL(yFL

i ) and ûFR
i = ŜFR(yFR

i ), where yFL
i and yFR

i are the observed infection times for

the front left and the front right udder quarter of cow i (i = 1, . . . , 407) and ŜFL and ŜFR are the

corresponding Kaplan-Meier estimates as illustrated in Figure 4.5. Given the heavy censoring,

the latter level off away from zero. Thus, scatter plots for the data points on the original time

scale would contain only a few points in the upper right corner (of the first quadrant), which in

turn leads to an almost empty lower left corner in all pairs plots on the copula scale as shown

in Figure 4.6.

In the following, we investigate the dependence structure present in the mastitis data by fitting

several R-vine copula models. According to Laevens (personal communication and Laevens et al.

(1997)), there is no biological rule that could provide guidance for the dependence modeling.

The primary goal is therefore to illustrate how the methodology introduced in Section 4.2 and
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Figure 4.5: Kaplan-Meier estimates of the four udder quarters of the mastitis data illustrating
the high censoring rate for all four marginals.
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Figure 4.6: Pairs plots of all six udder pairs of the mastitis data based on pseudo observations
generated via Kaplan-Meier estimates of the marginals (see Figure 4.5). The effect
of right-censoring is reflected by the empty lower left corner in the pairs plots. Ob-
servations shown as • are event times for both udder quarters; ← is an event time
only for the vertical axis; ↓ is an event time only for the horizontal axis; censored in
both components is shown as ←↓.
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Chapter 4 Modeling time-to-event data using R-vine copulas

the parametric bootstrap algorithm proposed in Section 4.3.1 can be applied to real data. In

particular, we give insights about the effect of right-censoring in the context of copula estimation.

Also, earlier investigations of the mastitis data using EAC models (Massonnet et al., 2009;

Geerdens et al., 2016a) assumed equal correlations between all pairs of udder quarters inducing

rather restrictive dependence patterns. We will see that these less elaborate models do not

sufficiently fit the data.

Given the good performance of the two-stage semiparametric estimation in the simulation

study in Section 4.2.4, we flexibly model the marginal survival functions using the Kaplan-Meier

estimator and thus do not imply any parametric assumptions for the marginal data. We maximize

the loglikelihood (4.7) over all copula parameters using the parameter estimates obtained from

the T1-sequential approach as starting values. We consider R-vine copula models based on one

parameter bivariate copulas such that all considered models have the same number of parameters

(six). Thus, the AIC and BIC both select the model that gives the highest loglikelihood. We

therefore use the loglikelihood for model selection. The use of the loglikelihood value as well as

AIC and BIC for model selection in the context of two-stage semiparametric copula estimation

for right-censored data has been studied in Chen et al. (2010) and in Geerdens et al. (2016a).

In the following, we assume a D-vine tree structure for the mastitis data. This choice reflects

the temporal component of the infection, which may spread from one udder quarter to a neigh-

Table 4.7: D-vine structures considered for the mastitis data and corresponding loglikelihood
values obtained via simultaneous estimation of all six parameters (T1-sequential esti-
mation). Frank copulas are taken in T2 and T3.

FRONT

L
E

F
T

(a) (b) (c) (d) (e) (f)

R
IG

H
T

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(g) (h) (i) (j) (k) (l)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

REAR

D-vine
Common family in T1

Clayton Gumbel Frank

lo
gl

ik
el

ih
o
o
d

(a) -138.73 (-138.82) -153.45 (-153.69) -137.24 (-137.30)
(b) -139.19 (-139.25) -148.91 (-148.99) -136.05 (-136.10)
(c) -127.93 (-127.96) -142.98 (-143.09) -124.70 (-124.82)
(d) -138.47 (-138.56) -147.99 (-148.25) -134.91 (-134.95)
(e) -141.45 (-141.56) -142.29 (-142.44) -137.62 (-137.65)
(f) -129.78 (-129.88) -145.89 (-145.99) -130.10 (-130.16)
(g) -138.05 (-138.42) -143.71 (-144.80) -135.95 (-136.41)
(h) -132.53 (-132.60) -145.33 (-145.40) -131.17 (-131.28)
(i) -140.63 (-140.89) -145.50 (-145.98) -139.28 (-139.46)
(j) -133.55 (-132.57) -143.81 (-143.88) -134.71 (-134.82)
(k) -137.42 (-137.63) -141.61 (-141.81) -136.92 (-137.17)
(l) -134.37 (-134.50) -145.29 (-145.73) -134.23 (-134.29)
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4.3 Estimating standard errors in the presence of right-censoring

boring one. All possible 12 D-vines are represented in Table 4.7 by their first tree level, since

the latter uniquely determines the whole D-vine structure. For all D-vine copulas the same type

of copula is assumed in T1, however allowing for different parameters. We consider the Clayton,

Gumbel or Frank copula, respectively. With this choice we account for possible lower and upper

tail-dependence as well as for no tail-dependence inherent in the underlying data. In particular,

asymmetric tail-dependence behavior is modeled through combination of the copula families in

the considered D-vine copula models. Further, Frank copulas are taken in the two lower tree

levels. By doing so, 36 models are investigated in total. Table 4.7 shows the loglikelihood values

for the considered models obtained via simultaneous estimation of all six parameters. The log-

likelihood values obtained through the T1-sequential estimation approach are shown in brackets.

In general, D-vine structures that capture the dependence along the two flanks perform best,

whereas D-vines with two diagonals would generally not be selected. Further, the choice of Frank

and Clayton copulas in T1 is superior to the one of Gumbel copulas. Models with Frank cop-

ulas perform slightly better than those with Clayton copulas. Recall that for heavily censored

copula data the lower left corner of a pairs plot is empty. However, there might be a consider-

able amount of observed event times in the upper right corner, where, therefore, most of the

information is located (see Figure 4.6). Since Clayton and Frank copulas behave similar in the

upper right corner, i.e. for early event times, it is clear that the information loss in case of heavy

right-censoring makes it difficult to distinguish between Clayton and Frank copulas. In addition

to the presented D-vine copula models, we fitted Gaussian D-vines, i.e. D-vine copulas of which

all pair-copulas are Gaussian, to the data. The best performing D-vine structure results in a

rather low loglikehood value of -148.92 for both global and T1-sequential estimation.

To further explore the above findings we consider for the D-vine with structure (c) (the

best performing structure in Table 4.7) the 24 additional vine models (besides C-C-C, G-G-

G and F-F-F in T1) having structure (c), where we allow combinations of Clayton, Gumbel

and Frank copulas in T1. The loglikelihood values are listed in Table 4.8. The model with all

dependencies captured by Frank copulas remains the best (see Table 4.7), but the loglikelihood

values for models which combine Clayton and Frank copulas in T1 only are slightly smaller. The

estimated copula parameters of the four best models are given in Table 4.9 together with their

corresponding estimated Kendall’s τ values and tail-dependence coefficients.

To obtain standard errors in Table 4.9, 100 replications according to the parametric boot-

strapping algorithm in Section 4.3.1 are used, both for global likelihood estimation and for

T1-sequential likelihood estimation. Detailed estimation results for the bootstrap samples given

in Appendix B.3 show that using 100 bootstrap replications, the estimates for the standard

error of the various parameters are already quite accurate and the empirical means of the boot-

strap based parameter estimates are close to the corresponding parameters in the D-vine copula

models according to which the bootstrap samples are generated. In case of parametric boot-

strapping, we assume the estimated parametric model to be the true one. As a consequence

the bootstrap samples and the loglikelihood values obtained after refitting the model in each

replication are model dependent. Thus, in order to assess equal performance of the four best

models in Table 4.9 nonparametric bootstrap replications are needed. We generate bootstrap
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Table 4.8: Loglikelihood values obtained via simultaneous estimation of all six parameters (the
T1-sequential estimation approach). The considered models all have D-vine structure
(c) and combinations of Clayton (C), Gumbel (G) and Frank (F) copulas in T1. Frank
copulas are taken in T2 and T3.

Families in T1: fam1,3–fam3,4–fam2,4
lo

g
li

ke
li

h
o
o
d

C–C–F C–F–C F–C–C

-127.31 (-127.58) -125.73 (-125.83) -128.67 (-128.78)

C–F–F F–C–F F–F–C

-125.39 (-125.49) -127.81 (-127.90) -125.66 (-125.77)

C–C–G C–G–C G–C–C

-141.21 (-141.28) -137.64 (-137.66) -145.48 (-145.56)

C–G–G G–C–G G–G–C

-138.50 (-138.53) -155.25 (-155.28) -143.59 (-143.61)

C–G–F C–F–G G–C–F

-135.04 (-135.08) -137.86 (-138.14) -144.30 (-144.37)

F–C–G G–F–C F–G–C

-141.29 (-141.36) -141.28 (-141.47) -136.04 (-136.08)

G–G–F G–F–G F–G–G

-136.40 (-136.42) -139.75 (-139.77) -149.23 (-149.27)

G–F–F F–G–F F–F–G

-139.38 (-139.56) -132.76 (-132.77) -137.16 (-137.43)

samples by random sampling of 407 cow IDs with replacement. As an alternative the jackknife

resampling method could be considered. As already seen in the previous analysis, right-censoring

makes estimation less accurate and thus, the censoring percentage among the bootstrap samples

has to be carefully monitored. To validate the accuracy of nonparametric bootstrapping in the

presence of heavy right-censoring as present for the mastitis data, we perform a small simulation

study designed from the D-vine copula fits in Table 4.9. As illustrated in Figure 4.7, in each

simulation scenario we assume the corresponding D-vine copula fit to be the true model with

parameter vector θ. From this model, we simulate S data sets Dsims (s = 1, . . . , S) as described

in Section 4.3.1 and obtain via refitting based on the corresponding D-vine copula specification

estimated parameter vectors θ̂sims. Further, for each simulated data set Dsims a nonparametric

bootstrap is performed with bootstrap based samples D
(b)
sims (b = 1, . . . , B), for which refitting

based on the corresponding D-vine copula specification results in bootstrap based parameter

estimates θ̂
(b)

sims. Proceeding this way for the four D-vine copula models in Table 4.9 using T1-

sequential likelihood estimation and 100 bootstrap replications for each simulated data set, we

find that the 90% confidence intervals of the bootstrap based parameter estimates sufficiently

cover both the corresponding simulation based parameter estimates and the underlying true

parameters. The empirical means of the bootstrap parameter estimates are close to the corre-

sponding simulation based parameter estimates. Results for 16 different data sets are shown in

Table B.10 to Table B.13 in Section B.3.
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Table 4.9: Estimated copula parameters, Kendall’s τ values and tail-dependence coefficients for the four best models fitted to the mastitis
data with underlying D-vine structure (c). Results for both the T1-sequential estimation approach and for joint estimation of all six
parameters are shown. Standard errors (in parenthesis) are obtained using the parametric bootstrap algorithm described in 4.3.1.

T1-sequential estimation Global estimation

logll Parameter Kendall’s τ
Lower tail

logll Parameter Kendall’s τ
Lower tail

dependence dependence

F; θ̂1,3 6.38 (0.81) 0.53 (0.04) – 6.56 (0.80) 0.54 (0.04) –

F; θ̂3,4 6.34 (0.79) 0.53 (0.04) – 6.34 (0.75) 0.53 (0.04) –

F; θ̂2,4 -124.82
6.77 (0.80) 0.55 (0.04) –

-124.70
6.99 (0.77) 0.56 (0.03)

F; θ̂1,4;3 1.67 (0.57) 0.18 (0.06) – 1.68 (0.55) 0.18 (0.06)

F; θ̂2,3;4 2.81 (0.57) 0.29 (0.05) – 2.79 (0.55) 0.29 (0.05) –

F; θ̂1,2;3,4 3.72 (0.63) 0.37 (0.05) – 3.71 (0.65) 0.37 (0.05) –

C; θ̂1,3 3.60 (0.58) 0.64 (0.04) 0.82 (0.03) 3.78 (0.58) 0.65 (0.04) 0.83 (0.02)

F; θ̂3,4 6.34 (0.79) 0.53 (0.04) – 6.39 (0.75) 0.53 (0.04) –

F; θ̂2,4 -125.49
6.77 (0.79) 0.55 (0.04) –

-125.39
6.93 (0.74) 0.56 (0.03) –

F; θ̂1,4;3 1.49 (0.58) 0.16 (0.06) – 1.51 (0.53) 0.16 (0.05) –

F; θ̂2,3;4 2.81 (0.53) 0.29 (0.05) – 2.78 (0.51) 0.29 (0.05) –

F; θ̂1,2;3,4 3.48 (0.63) 0.35 (0.05) – 3.48 (0.61) 0.35 (0.05) –

F; θ̂1,3 6.38 (0.81) 0.53 (0.04) – 6.51 (0.79) 0.54 (0.04) –

F; θ̂3,4 6.34 (0.79) 0.53 (0.04) – 6.36 (0.72) 0.53 (0.04) –

C; θ̂2,4 -125.77
3.90 (0.60) 0.66 (0.03) 0.84 (0.02)

-125.66
4.10 (0.61) 0.67 (0.03) 0.84 (0.02)

F; θ̂1,4;3 1.54 (0.55) 0.17 (0.06) – 1.57 (0.55) 0.17 (0.06) –

F; θ̂2,3;4 2.76 (0.55) 0.29 (0.05) – 2.79 (0.55) 0.29 (0.05) –

F; θ̂1,2;3,4 3.86 (0.64) 0.38 (0.05) – 3.86 (0.65) 0.38 (0.05) –

C; θ̂1,3 3.60 (0.58) 0.64 (0.04) 0.82 (0.03) 3.75 (0.61) 0.65 (0.04) 0.83 (0.03)

F; θ̂3,4 6.34 (0.79) 0.53 (0.04) – 6.40 (0.74) 0.53 (0.04) –

C; θ̂2,4 -125.83
3.90 (0.59) 0.66 (0.03) 0.84 (0.02)

-125.73
4.04 (0.59) 0.67 (0.03) 0.84 (0.02)

F; θ̂1,4;3 1.36 (0.57) 0.15 (0.06) – 1.39 (0.55) 0.15 (0.06) –

F; θ̂2,3;4 2.71 (0.53) 0.28 (0.05) – 2.72 (0.51) 0.28 (0.05) –

F; θ̂1,2;3,4 3.70 (0.64) 0.37 (0.05) – 3.71 (0.63) 0.37 (0.05) –
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D-vine copula model with parameter vector θ

· · ·Dsim1 : θ̂sim1 DsimS : θ̂simS

· · ·D
(1)
sim1 : θ̂

(1)

sim1 D
(B)
sim1 : θ̂

(B)

sim1
· · ·D

(1)
simS : θ̂

(1)

simS D
(B)
simS : θ̂

(B)

simS

[5%–quantile, 95%–quantile] [5%–quantile, 95%–quantile]

Figure 4.7: Illustration of the simulation setup to validate nonparametric bootstrapping for the
mastitis data.

Based on these findings, we are confident to apply a nonparametric bootstrap to the mastitis

data. Table 4.10 shows the 90% confidence intervals of the pairwise loglikelihood differences

obtained based on 100 nonparametric bootstrap replications for the four D-vine copula models

in Table 4.9. While confirming the ranking based on their loglikelihood values, the hypothesis

of equal performance cannot be rejected at a confidence level of 10% for any model pair.

Given equal performance of the four D-vine copula models in Table 4.9, it is of particular

interest that strong lower tail-dependence and thus a strong association between late event times

is detected for Clayton copulas in T1, while a Frank copula exhibits no tail-behavior. Further,

the strength of overall dependence detected for the three udder pairs in T1 is higher for Clayton

copulas as compared to Frank copulas. Figure 4.8 illustrates the normalized contour plots of a

bivariate Frank and Clayton copula with Kendall’s τ strengths for the front left and rear left

udder quarter based on global likelihood estimation, i.e. τFrank
1,3 = 0.54 and τClayton

1,3 = 0.65. The

close match of the contour plots in the upper right quadrant, where most of the data information

is located, together with the knowledge about the information loss in the lower left quadrant

(recall Figure 4.6), clearly demonstrates the challenges with respect to model selection in the

presence of heavy right-censoring.

Table 4.10: 90% confidence intervals for the pairwise loglikelihood differences of the four best D-
vine copula fits for the mastitis data based on 100 nonparametric bootstrap samples.

T1-sequential estimation Global estimation

FFF-CFF [-2.29, 4.96] [-2.24, 5.10]
FFF-FFC [-2.76, 5.31] [-2.64, 5.20]
FFF-CFC [-3.34, 7.84] [-3.24, 7.90]
CFF-FFC [-6.38, 5.24] [-6.31, 5.21]
CFF-CFC [-3.47, 4.32] [-3.54, 4.42]
FFC-CFC [-2.82, 4.22] [-2.76, 4.12]
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4.3 Estimating standard errors in the presence of right-censoring
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Figure 4.8: Contour plots with standard normalized margins for a Frank (green) and Clayton
copula (blue) with Kendall’s τ strengths for the front left and rear left udder quarter

based on global likelihood estimation, i.e. τFrank
1,3 = 0.54 and τClayton

1,3 = 0.65.

The results in this section are in line with the findings in Geerdens et al. (2016a), where a

Joe-Hu copula that combines a Clayton Laplace transform with bivariate Frank copulas is in

the top three of the best models. Both analyses, using an R-vine copula or a Joe-Hu copula,

stress the need for flexible copula models for the mastitis data.

We conclude by an important remark on the practical implementation of the optimization pro-

cedure. A comparison of the estimation results for both considered estimation methods qualifies

the T1-sequential estimation approach as an important simplification and a valid alternative for

the computationally extensive full loglikelihood optimization. Given that heavy censoring goes

along with numerical challenges in the full optimization approach, the T1-sequential approach is

the estimation method to apply in practice.
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Chapter 4 Modeling time-to-event data using R-vine copulas

4.4 Modeling recurrent right-censored event time data

In Section 4.2 and Section 4.3, we investigated R-vine copula based likelihood estimation for

clustered right-censored event times in a balanced data setting and in the presence of common

(univariate) right-censoring. Building upon ideas of this project, extensions to recurrent data

were investigated and published in Barthel et al. (2018b). The following section is a slight

variation of this manuscript.

4.4.1 Introduction

While in the two previous sections all observation units per cluster simultaneously were under risk

of experiencing the event of interest, this is not the case if event times per cluster are recurrent.

For example, children with a high risk of developing asthma could be observed. Asthma is a

chronic lung disease that inflames and narrows the airways. It causes consecutive episodes of

wheezing, chest tightness and shortness of breath, commonly known as asthma attacks.

While the clusters (a child) are independent, the event times (intervals from study entry to

event), respectively the gap times (intervals between consecutive events) within a cluster are

dependent. Popular survival models that account for within-cluster association are the marginal

model (Wei et al., 1989), the (shared) frailty model (Duchateau and Janssen, 2008) and the

copula model. However, only the latter allows for direct dependence modeling. The copula model

describes the joint survival function of event times or gap times through their survival margins

and a copula that fully captures the within-cluster association (Sklar, 1959). Typically, copulas

are applied to clusters of equal size (balanced data as in Section 4.2 and Section 4.3), a feature

that recurrent event time data often lack. In the above example, one child could have two

asthma attacks, while another child experiences three or more asthma attacks. Prenen et al.

(2017) and Meyer and Romeo (2015) study copula based inference for unbalanced right-censored

clustered data with focus on Archimedean copulas. Unfortunately, the latter only allow for a

restrictive dependence structure: all time pairs in a cluster exhibit the same type and strength of

association. However, dependence between consecutive events may evolve over time. For example,

an asthma attack may weaken the lungs. We therefore advocate D-vine copulas as a flexible

alternative to Archimedean copulas (Aas et al., 2009; Czado, 2010). D-vine copulas arise from

a line structure, built from freely chosen bivariate (conditional) copulas. As such, they allow

for a complex association pattern, while taking the time ordering and the unbalanced nature

of recurrent event time data into account. Further, D-vine copulas allow for the two event

times, which correspond to leaf variables, to derive an analytical expression of their conditional

distribution given all other variables. Thus, predictions for the time until relapse given the

individual asthma disease history of a child can be made.

As Meyer and Romeo (2015) but opposed to Prenen et al. (2017), we focus on the analysis of

gap times and so an extra challenge arises: not only are the gap times in a cluster associated, but

they are also subject to induced dependent right-censoring. Meyer and Romeo (2015) account for

this by assuming parametric survival margins in a likelihood based global one-stage estimation

strategy. To increase model flexibility we additionally consider nonparametric survival margins
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4.4 Modeling recurrent right-censored event time data

together with global two-stage estimation. To lower the computational burden, we also present

alternative sequential estimation techniques.

In summary: for gap time data subject to induced dependent right-censoring we present four

novel estimation strategies based on the flexible class of D-vine copulas: one-stage parametric

(Section 4.4.4) or two-stage semiparametric (Section 4.4.5) together with global or sequential

estimation. Further, we establish guidelines on the best modeling approach for data at hand.

The data setting and notation are given in Section 4.4.2. In Section 4.4.4 to Section 4.4.7,

the four estimation strategies are outlined and evaluated under diverse simulation settings.

Parametric bootstrap algorithms to obtain standard errors for the parameter estimates of the

four estimation strategies are developed in Section 4.4.8. In Section 4.4.9, model selection in the

context of unbalanced gap time data subject to induced dependent right-censoring is discussed.

The asthma data are analyzed in Section 4.4.10. As an extension to Barthel et al. (2018b) this

section further includes a study, where prediction intervals for the times to asthma attacks of

each child conditional on the individual disease histories are investigated.

4.4.2 Data setting and notation

Suppose a study includes n independent individuals that are followed-up for a recurrent event.

For individual i (i = 1, . . . , n) let di denote the total number of consecutive events. Thus,

individual i corresponds to a cluster of size di. Let Ti,j be the true j-th event time for cluster

i, where Ti,j > 0 and Ti,1 < . . . < Ti,di (i = 1, . . . , n and j = 1, . . . , di). Due to a limited study

period, the follow-up time of cluster i is subject to right-censoring by Ci. The censoring times

are assumed to be noninformative and independent of the event times. The intervals between

two subsequent events are referred to as gap times Gi,j and are defined by

Gi,1 = Ti,1 and Gi,j = Ti,j − Ti,j−1 for i = 1, . . . , n and j = 2, . . . , di.

It follows that gap time Gi,1 is subject to right-censoring by Ci, while subsequent gap times Gi,j

(j = 2, . . . , di) are subject to right-censoring by Ci − Ti,j−1 = Ci −
∑j−1

`=1 Gi,`, which naturally

depends on previous gap times. The recurrent nature of the data thus induces dependence

between gap times and censoring times: we say that gap times are subject to induced dependent

right-censoring. Note that only the last gap time Gi,di can be right-censored. Hence, for cluster

i of size di the observed data are given by

Yi,di = min
(
Gi,di , Ci −

di−1∑
`=1

Gi,`
)
, δi,di = 1 (Yi,di = Gi,di) and Yi,j = Gi,j , δi,j = 1 for j < di.

Figure 4.9 illustrates the data setting.

Typically, not all individuals experience the same number of events, i.e. the cluster size di

varies among clusters, resulting in an unbalanced data setting. Let the maximum cluster size be

d = max{di|i = 1, . . . , n}. Denote by nj (j = 1, . . . , d) the number of clusters of size j such that

n = n1 + n2 + . . .+ nd−1 + nd. For ease of notation and for R-coding efficiency, we assume that

data are ordered by decreasing cluster size. The resulting data format is illustrated in Table 4.11.
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Study start Study end

cluster i

...

...

× = event of interest

× × ×
Gi,1 Gi,2 Gi,3

©

Ci

Ci −Gi,1

Ci −
∑2

`=1Gi,`

Figure 4.9: Illustration of gap time data subject to induced dependent right-censoring.

4.4.3 D-vine copulas for recurrent data

If interest is in R-vine copulas for dependence modeling of recurrent data, D-vine structures are

the natural choice due to the serial variable ordering. For example, Killiches and Czado (2018)

model for non-censored unbalanced data repeated measurements using D-vine copulas. In our

case of unbalanced gap time data, a natural approach is to choose the joint survival function

S(g1, . . . , gd) = P(G1 > g1, . . . , Gd > gd) with survival margins Sj(g) = P(Gj > g) (j = 1, . . . , d)

for the maximum cluster size d and to take the induced di-dimensional marginal survival function

S1:di(g1, . . . , gdi) for clusters of size 2 ≤ di < d. Hence, we consider the vector of gap times

(G1, . . . , Gd). The corresponding D-vine structure with variable order 1−2−. . .−d is illustrated in

Figure 4.10. In tree T1, the nodes correspond to the random variables Uj = Sj (Gj) (j = 1, . . . , d),

while the edges refer to the bivariate copula density ck,k+1 (·, ·) (k = 1, . . . , d−1) corresponding to

the bivariate distribution of (Uk, Uk+1). In tree T` (` = 2, . . . , d−1), we define for k = 1, . . . , d−`
the vector uk+1:k+`−1 := (uk+1, . . . , uk+`−1) and denote by ck,k+`;k+1:k+`−1 (·, ·;uk+1:k+`−1) the

bivariate conditional copula density linked to the conditional distribution of (Uk, Uk+`) given

Uk+1:k+`−1 = uk+1:k+`−1. As derived in detail in Czado (2010), the copula density c1:d of

(U1, . . . , Ud) can be expressed as a d-dimensional ordered D-vine copula density as follows:

c1:d(u1, . . . , ud) (4.8)

=
d−1∏
`=1

d−∏̀
k=1

ck,k+`;k+1:k+`−1{Ck|k+1:k+`−1(uk|uk+1:k+`−1),Ck+`|k+1:k+`−1(uk+`|uk+1:k+`−1)},

where Ck|k+1:k+`−1 (·|uk+1:k+`−1) denotes the univariate conditional distribution of Uk given

Uk+1:k+`−1 = uk+1:k+`−1 and Ck+`|k+1:k+`−1 (·|uk+1:k+`−1) denotes the univariate conditional

distribution of Uk+` given Uk+1:k+`−1 = uk+1:k+`−1. The copula parameters corresponding to

the bivariate copula density ck,k+`;k+1:k+`−1 are denoted by θk,k+`;k+1:k+`−1. The collection of

parameters of an ordered d-dimensional D-vine copula is then given by

θ1:d = {θk,k+`;k+1:k+`−1|k = 1, . . . , d− `, ` = 1, . . . , d− 1}.
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Table 4.11: Data format considered for the induced dependent right-censored gap time data
(yi,1, yi,2, . . . , yi,d−1, yi,d, δi,1, δi,2, . . . , δi,d−1, δi,d), i = 1, . . . , n: ordering by decreasing
cluster size.

i yi,1 yi,2 · · · yi,d−1 yi,d

1 g1,1 g1,2 · · · g1,d−1 y1,d
...

...
...

...
...

nd gnd,1 gnd,2 · · · gnd,d−1 ynd,d
nd + 1 gnd+1,1 gnd+1,2 · · · ynd+1,d−1
...

...
...

...
nd + nd−1 gnd+nd−1,1 gnd+nd−1,2 · · · ynd+nd−1,d−1
...

...
...

nd + . . .+ n2 + 1 ynd+...+n2+1,1
...

...
nd + . . .+ n2 + n1 = n yn,1

i δi,1 δi,2 · · · δi,d−1 δi,d

1 1 1 · · · 1 δ1,d
...

...
...

...
...

nd 1 1 · · · 1 δnd,d
nd + 1 1 1 · · · δnd+1,d−1
...

...
...

...
nd + nd−1 1 1 · · · δnd+nd−1,d−1
...

...
...

nd + . . .+ n2 + 1 δnd+...+n2+1,1
...

...
nd + . . .+ n2 + n1 = n δn,1

Thus, in case of only one-parametric pair-copula families the dependence among d variables

is described by d(d − 1)/2 copula parameters. Unless unclear, we do not explicitly include

the parameters in the notation of a D-vine copula. As commonly done, we assume in (4.8)

that the conditional pair-copulas ck,k+`;k+1:k+`−1 in trees T` (` = 2, . . . , d − 1) do not de-

pend on the conditioning vector uk+1:k+`−1. Their arguments Ck|k+1:k+`−1 (uk|uk+1:k+`−1) and

Ck+`|k+1,k+`−1 (uk+`|uk+1:k+`−1) indeed do depend on uk+1:k+`−1. For details on the simplifying

assumption, see for example Hobæk Haff et al. (2010) and Stöber et al. (2013).

In the following sections, we develop several procedures to estimate, for gap times subject

to induced dependent right-censoring, the parameters of Archimedean and D-vine copulas. We

denote C1:d the copula for the maximum cluster size d and C1:di represents the induced di-

dimensional marginal copula corresponding to clusters of size 2 ≤ di < d. The copula densities

are given by c1:d, respectively c1:di , with parameter vectors θ1:d, respectively θ1:di . Note from

Figure 4.10 and (4.8) that lower-dimensional D-vine copula densities c1:di (di < d), which cor-

respond to smaller sized clusters, are embedded in the copula density c1:d and thus explicitly

specified through c1:d. This allows easy handling of unbalanced data. Further, recall that for an

Archimedean copula θ1:d is one-dimensional and θ1:di = θ1:d for all 2 ≤ di < d. For a D-vine

copula, we have θ1:di ⊂ θ1:d, where θ1:di contains di(di − 1)/2 elements.
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U1 U2 U3 U4 ... Ud−2 Ud−1 Ud

U1, U2 U2, U3 U3, U4 Ud−1, UdUd−2, Ud−1...

U1, U3|U2 U2, U4|U3 Ud−2, Ud|Ud−1...

U1, Ud−1|U2:d−2 U2, Ud|U3:d−1

c1,2 (·, ·) c2,3 (·, ·) c3,4 (·, ·) cd−2,d−1 (·, ·) cd−1,d (·, ·)

c1,3;2 (·, ·;u2) c2,4;3 (·, ·;u3) cd−2,d;d−1 (·, ·;ud−1)

c1,4;2:3 (·, ·;u2:3)

c1,d;2:d−1 (·, ·;u2:d−1)

T1

T2

T3

...

Td−1

Figure 4.10: D-vine tree structure with order 1− 2− . . .− d.

Data sampling procedure

Throughout, we support our findings via simulations. To generate unbalanced induced dependent

right-censored d-dimensional data, which exhibit a dependence structure specified by a specific

copula model C1:d, we use the following procedure. First, we sample data on the copula level

from C1:d using in case of a D-vine copula standard techniques implemented in the R-package

VineCopula (Schepsmeier et al., 2017). Next, we apply – using appropriate assumptions for the

survival margins – the inverse probability transform to create gap times Gi,j (i = 1, . . . , n and

j = 1, . . . , d). The corresponding event times Ti,j are defined as Ti,1 = Gi,1 and Ti,j =
∑j

`=1Gi,`.

Based on sampled censoring times, the observed data are obtained as follows: if Ti,1 > Ci we set

di = 1 and retain Ci, if Ti,2 > Ci > Ti,1 we set di = 2 and retain (Ti,1, Ci), etc. In case of the

maximum cluster size, i.e. di = d, we distinguish between d− 1 events if Ti,d > Ci > Ti,d−1, i.e.

we retain (Ti,1, . . . , Ti,d−1, Ci), and d events if Ci > Ti,d, i.e. we retain (Ti,1, . . . , Ti,d). Finally, the

observed gap times for cluster i are given by Yi,j = Ti,j − Ti,j−1 = Gi,j for j = 1, . . . , di − 1 and

Yi,di = min(Ti,di − Ti,di−1, Ci − Ti,di−1) = min(Gi,di , Ci −
∑di−1

`=1 Gi,`) together with the right-

censoring indicator δi,di = 1(Yi,di = Gi,di). Note that with this procedure the last gap time in a

cluster of size di < d is always right-censored. Given that many studies have a limited follow-up

period, the latter most often holds true in practice, see for example the asthma data.

4.4.4 One-stage parametric copula parameter estimation

In the first modeling strategy, we take a parametric form with parameters α := (α1, . . . ,αd) for

the survival margins Sj (j = 1, . . . , d) and parameters θ1:d for the copula C1:d. As mentioned,

gap times are subject to induced dependent censoring. However, given that the latter results

from the gap time association, joint estimation of the margins and the dependence structure

resolves the issue.
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Global likelihood optimization

For cluster i (i = 1, . . . , n) of size di the observed data are defined as

(yi,1, . . . , yi,di−1, yi,di) ={gi,1, . . . , gi,di−1,min
(
gi,di , ci −

di−1∑
`=1

gi,`
)
}

with censoring indicator δi,di = 1 (yi,di = gi,di). The loglikelihood contribution of cluster i is

defined following the same arguments as in Section 4.2.3, i.e.

`1stage
i,di

(yi,1, . . . , yi,di , δi,di) (4.9)

= δi,di log [c1:di{S1 (yi,1;α1) , . . . , Sdi (yi,di ;αdi) ;θ1:di} · f1 (yi,1;α1) · . . . · fdi (yi,di ;αdi)]

+ (1− δi,di) log

[
(−1)di−1 ∂di−1

∂yi,1 · · · ∂yi,di−1
C1:di{S1 (yi,1;α1) , . . . , Sdi (yi,di ;αdi) ;θ1:di}

]
.

The first term in (4.9) covers the case of yi,di being a true gap time, i.e. the last event was

observed, the second term in (4.9) corresponds to the case of yi,di being a right-censored gap

time. For one-stage global parametric estimation, the loglikelihood, which is to be optimized

with respect to the marginal parameters α and the copula parameters θ1:d, is then given by

`1stage(α,θ1:d) =

n∑
i=1

`1stage
i,di

(yi,1, . . . , yi,di , δi,di). (4.10)

In case of an Archimedean copula all clusters contribute to the estimation of the single parameter

θ1:d. For a D-vine, with ` = 1, . . . , d − 1, k = max (1, j − `+ 1) , . . . , d − ` and j = 1, . . . , d

estimation of the parameters θk,k+`;k+1:k+`−1 is based only on clusters i of size di > j.

Recall that, if C1:d arises from a d-dimensional ordered D-vine copula, the di-dimensional

marginal copula densities c1:di (di < d) are embedded within c1:d and are ordered D-vine copula

densities themselves. In this case, explicit expressions in terms of pair-copula components are

available for the loglikelihood contributions in (4.10). If the last observation is a true gap time,

the loglikelihood contribution equals the di-dimensional copula density c1:di evaluated at the

observed data. According to Joe (1997) the latter can be expressed solely in terms of the pair-

copulas in T1 to Tdi−1. If the last observation is a right-censored gap time, the loglikelihood

contribution equals the partial derivative of the copula C1:di with respect to all its arguments

except for the last. Given that C1:di arises from a di-dimensional ordered D-vine copula, one

can show that

∂di−1C1:di(ui,1, . . . , ui,di)

∂ui,1 · · · ∂ui,di−1
= c1:di−1(ui,1, . . . , ui,di−1)Cdi|1:di−1(ui,di |ui,1:di−1), (4.11)

where ui,j = Sj (yi,j) (i = 1, . . . , n and j = 1, . . . , di) is set for ease of notation. The equality

in (4.11) is derived in Appendix B.1.2. The first part on the right-hand side (c1:di−1) is an

(di−1)-dimensional ordered D-vine copula density. Thus, according to Joe (1997) an expression

only in terms of the pair-copulas in T1 to Tdi−2 is available. The second part on the right-hand
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side (Cdi|1:di−1) is a univariate conditional distribution function, which corresponds to the h-

function hdi|1;2:di−1, i.e. the partial derivative of the pair-copula C1,di;2:di−1 with respect to the

first argument. In a di-dimensional ordered D-vine copula, the pair-copula C1,di;2:di−1 is specified

in tree level Tdi−1, and according to Joe (1997) can be recursively evaluated using only pair-

copulas in T1 to Tdi−2. To conclude, for both loglikelihood contributions in (4.10) there exist

analytical expressions solely based on the pair-copulas specified by the ordered D-vine copula.

Sequential estimation approach

The global one-stage parametric estimation approach is valid for both Archimedean and D-vine

copulas. For data of maximum cluster size d this requires, for D-vine copulas, the joint estimation

of d(d− 1)/2 copula parameters together with the parameters of d survival margins. We aim for

a more parsimonious estimation strategy by proceeding sequentially.

We use the fact that for each cluster size 2 ≤ di < d (i = 1, . . . , n), the copula density c1:di

is embedded within the copula density c1:d and stepwise increase the number of considered gap

times from 1 to d. In each step j (j = 1, . . . , d) estimates obtained from previous steps are fixed

such that only the marginal parameters of the j-th gap time and of the pair-copulas incorporating

the j-th gap time are to be estimated. In Figure 4.10 estimation proceeds from left to right.

Details are given in Algorithm 1 and are additionally illustrated in Figure 4.11. For example, for

a model having two-parametric marginal models (like Weibull) the (d(d−1)/2+2d)-dimensional

optimization is split into d optimizations of dimension j + 1 (j = 1, . . . , d).

Algorithm 1 Sequential left-right one-stage parametric estimation.

Input: gap time data (yi,1, yi,2, . . . , yi,di , δi,1, δi,2, . . . , δi,di), i = 1, . . . , n, subject to induced

dependent right-censoring ordered by decreasing cluster size.

Output: parameter estimates α̂ = (α̂1, α̂2, . . . , α̂d) and θ̂1:d with

d = max{di|i = 1, . . . , n}.
1: Set d = max{di|i = 1, . . . , n}.
2: Set N = nd + . . .+ n1.

3: Maximize
∑N

i=1 `
1stage
i,1 (yi,1, δi,1) with respect to α1. Denote the maximizer by α̂1.

4: Set N = nd + . . .+ n2.

5: Fix α1 at α̂1.

6: Maximize
∑N

i=1 `
1stage
i,2 (yi,1, yi,2, δi,2) with respect toα2 and θ1,2. Denote the maximizers

by α̂2 and θ̂1,2.

7: for j = 3, . . . , d do

8: if j < d then Set N = nd + . . .+ nj. end if

9: if j = d then Set N = nd. end if

10: Fix α1, . . . ,αj−1 at α̂1, . . . , α̂j−1 and θ1:j−1 at θ̂1:j−1.

11: Maximize
∑N

i=1 `
1stage
i,j (yi,1, . . . , yi,j, δi,j) with respect to αj and θ1:j\θ1:j−1. The

estimates obtained in steps 1 to j are α̂1, . . . , α̂j, θ̂1:j.

12: end for
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Figure 4.11: Illustration of the sequential left-right one-stage parametric estimation approach
assuming four-dimensional data.

Illustrating simulations

To investigate the finite sample performance of the suggested approaches, a wide range of sce-

narios inspired by the asthma data is considered. We use the procedure outlined in Section 4.4.3

for data sampling. In each scenario, the results are based on 250 data sets. We consider samples

of 250, 500 and 1000 clusters, each with a maximum size of 3. The gap times and the censoring

times are assumed to follow a Weibull distribution, i.e. S (g) = exp (−λgρ) . The scale (λ) and

shape (ρ) parameters are chosen such that the data show about 15% or 30% censoring. A third

scenario yields 30% censoring but with censored observations mainly located at late time points

(heavy tail - HT). It is assumed that gap 1 differs from gap 2 and gap 3, i.e. the latter are

expected to be shorter, reflecting a weakening of the lungs after a first asthma attack. The set-

tings for the gap times and the censoring are summarized in Table 4.12 and further illustrated

in Figure 4.12. The dependence between the gap times is modeled using a copula. We look at a
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Chapter 4 Modeling time-to-event data using R-vine copulas

three-dimensional (3d) Archimedean copula, where a single parameter controls the dependence

between all gap times. We focus on an intermediate dependence strength as expressed by a

Kendall’s τ of 0.5 and investigate the scenario of a Clayton copula (upper tail-dependent) and

a Gumbel copula (lower tail-dependent). For a three-dimensional (3d) D-vine copula, we take

τ1,2 = τ2,3 = 0.5 and τ1,3;2 = 0.25. We consider scenarios, where both pair-copulas in tree T1 are

Clayton or Gumbel. The pair-copula in tree T2 is assumed to be Frank. Table 4.13 summarizes

all underlying copula models using C for Clayton, G for Gumbel and F for Frank.

Table 4.12: Simulation settings for the marginal survival functions of the three gap times and for
the survival function of the censoring times leading to 15%, 30% or 30% HT (heavy
tail) censoring.

Weibull parameters Gap time 1 Gap time 2 - 3
Censoring

15% 30% 30% HT

scale λ 0.50 1.00 0.10 0.25 0.10
shape ρ 1.50 1.50 1.50 1.50 3.00
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Figure 4.12: Density functions for the Weibull specifications in Table 4.12.

Table 4.13: Simulation settings for Archimedean copulas and D-vine copulas, where c denotes
the (pair-) copula family, τ denotes the Kendall’s τ value and θ denotes the parameter
corresponding to c and τ .

3d Archimedean copula D-vine copula
c; τ ; θ c1,2; τ1,2; θ1,2 c2,3; τ2,3; θ2,3 c1,3;2; τ1,3;2; θ1,3;2

Setting 1 C; 0.50; 2.00 C; 0.50; 2.00 C; 0.50; 2.00 F; 0.25; 2.37
Setting 2 G; 0.50; 2.00 G; 0.50; 2.00 G; 0.50; 2.00 F; 0.25; 2.37
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4.4 Modeling recurrent right-censored event time data

The results are obtained under a correct specification of the marginal and copula format and

are illustrated in terms of Kendall’s τ in Figure 4.13. A detailed summary including copula

and marginal parameter estimates is given in Table B.14 to Table B.17 in Appendix B.4. On

average and taking the standard deviation into account, estimation is on target. It improves

with increasing sample size, but deteriorates with increasing censoring rate and – under fixed

censoring rate (30% and 30% HT) – if censored observations are mainly located at late time

points. Based on empirical mean and empirical standard deviation results for Clayton based

copulas (two top panels of Figure 4.13) are somewhat less accurate than those for Gumbel

based copulas (two bottom panels of Figure 4.13). This is due to the lower tail-property of

a Clayton copula, which makes the latter more sensitive to right-censoring when modeling a

survival function (see Figure 4.6 in Section 4.3.2). For the D-vine copulas, global and sequential

optimization perform alike indicating that the latter is a valid alternative for the computationally

more demanding global approach.

4.4.5 Two-stage semiparametric copula parameter estimation

In spite of the good performance of the one-stage parametric approaches, model flexibility is

increased when using two-stage semiparametric estimation. In stage one, the survival margins

(Sj) are estimated nonparametrically (Ŝj). In stage two, the pseudo data ûi,j = Ŝj(yi,j) are used

to estimate the copula parameters via likelihood optimization. This approach goes back to Shih

and Louis (1995), who consider bivariate survival data subject to independent right-censoring.

Extensions to multivariate survival data are for example in Geerdens et al. (2016a) and Barthel

et al. (2018c) and were discussed in Section 4.2 and Section 4.3 of this thesis. There, Kaplan-Meier

or Nelson-Aalen estimators are applied for nonparametric marginal modeling (see Section 4.1.3).

In the presence of induced dependent right-censoring these nonparametric estimators are no

longer consistent (Cook and Lawless, 2007) and alternatives are needed.

Univariate marginal modeling

For induced dependent right-censoring de Uña-Álvarez and Meira-Machado (2008) propose a

consistent nonparametric estimator for the survival margins. As an estimate for the joint distri-

bution F of the gap time vector (G1, . . . , Gd) they define

F̂ (g1, . . . , gd) =

n∑
i=1

WKM
i 1(yi,1 ≤ g1, . . . , yi,d ≤ gd),

where WKM
i is the jump of the Kaplan-Meier estimate obtained from observations (ỹi, δi,di) with

ỹi the total follow-up time for cluster i, i.e. ỹi = min (ti,di , ci) =
∑di

j=1 yi,j (i = 1, . . . , n). An

estimate for the j-th marginal survival function is then given by

ŜKM
j (g) = 1−

n∑
i=1

WKM
i 1(yi,j ≤ g), j = 1, . . . , d.
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Figure 4.13: Boxplots of Kendall’s τ estimates as obtained via one-stage parametric estimation
(lines 1 + 3 = global approach, line 2 + 4 = sequential approach) for a D-vine copula
with Clayton parts (two top panels) and a D-vine copula with Gumbel parts (two
bottom panels) based on 250 replications. The true Kendall’s τ values are indicated
through a horizontal line.
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4.4 Modeling recurrent right-censored event time data

Note that the Kaplan-Meier estimator drops to zero, whenever the largest total time is a true

event. After applying the probability integral transform this results in a zero value for the

corresponding copula data value. To avoid numerical difficulties in likelihood maximization, we

modify the de Uña-Álvarez and Meira-Machado (2008) estimator using the Nelson-Aalen estima-

tor for the cumulative hazard function Λ(ỹ) of the total times. The corresponding Nelson-Aalen

estimate based survival jumps WNA
i (i = 1, . . . , n) are then obtained via the transformation

exp(−Λ(ỹ)). The pseudo copula data then are:

ûi,j = ŜNA
j (yi,j) = 1 −

∑
`∈{i|1≤i≤n,di≥j}

WNA
` 1(y`,j ≤ yi,j), i = 1, . . . , n and j = 1, . . . , di. (4.12)

Global likelihood inference

Based on the pseudo data in (4.12), the copula parameters θ1:d are estimated via likelihood

maximization. As before, right-censoring needs to be taken into account. For cluster i of size di

(i = 1, . . . , n) the loglikelihood contribution equals

`2stage
i,di

(ûi,1, . . . , ûi,di , δi,di) (4.13)

= δi,di log [c1:di{ûi,1, . . . , ûi,di ;θ1:di}] + (1− δi,di) log

[
∂di−1

∂ûi,1 · · · ∂ûi,di−1
C1:di{ûi,1, . . . , ûi,di ;θ1:di}

]
.

Hence, the loglikelihood function, which needs to be optimized with respect to θ1:d, is

`2stage (θ1:d) =

n∑
i=1

`2stage
i,di

(ûi,1, . . . , ûi,di , δi,di) . (4.14)

Sequential estimation approach

For D-vine copulas, also in case of two-stage estimation, a sequential procedure for likelihood

maximization is feasible. It relies on the recursive nature of the arguments of the pair-copulas

(Section 4.1.2). In Figure 4.10, estimation proceeds from top to bottom. First, all pair-copula pa-

rameters in T1 are estimated separately. Based on the fitted pair-copulas, the arguments needed

in T2 are calculated by application of the corresponding h-functions. Using the obtained pseudo

data all pair-copula parameters in T2 can be estimated separately, etc. The procedure has been

developed for complete data (Aas et al., 2009; Dißmann et al., 2013). In case of right-censoring,

an extra challenge arises: from tree T2 on estimation is no longer based on the observed cop-

ula data themselves, but on pseudo data, namely univariate conditional distribution functions,

which are evaluated at the observed copula data. For these pseudo observations censoring in-

dicators need to be defined. Recall that for recurrent event time data only the last gap time

can be right-censored. Given the construction of an ordered D-vine, the value on the copula

scale ûi,di associated with the last gap time of cluster i (i = 1, . . . , n) corresponds to a leaf node

in the di-dimensional subvine and thus, only occurs as conditioned variable in the univariate

conditional functions. Further, the latter are monotonously increasing in their conditioned argu-

ment. Hence, the pseudo observations inherit the censoring status of their observed conditioned
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Chapter 4 Modeling time-to-event data using R-vine copulas

variable. By doing so, the d-dimensional estimation problem is split into d(d − 1)/2 bivariate

ones and the estimation of a high-dimensional D-vine copula becomes tractable and computa-

tionally easier. For each pair-copula ck,k+`;k+1:k+`−1 (·, ·; θk,k+`;k+1:k+`−1) (` = 1, . . . , d − 1 and

k = 1, . . . , k − `) the loglikelihood contribution of cluster i with di ≥ k + ` is given by

`2stage,seq
i,k,k+`

(
ûi,k|k+1:k+`−1, ûi,k+`|k+1:k+`−1, δi,k+`

)
= δi,k+` log

[
ck,k+`;k+1:k+`−1{ûi,k|k+1:k+`−1, ûi,k+`|k+1:k+`−1; θk,k+`;k+1:k+`−1}

]
+ (1− δi,k+`) log

[
∂

∂u
Ck,k+`;k+1:k+`−1{u, ûi,k+`|k+1:k+`−1; θk,k+`;k+1:k+`−1}

∣∣∣∣
u=ûi,k|k+1:k+`−1

]
,

where ûi,k|k+1:k+`−1 and ûi,k+`|k+1:k+`−1 are defined as the (pseudo) observations corresponding

to ck,k+`;k+1:k+`−1 (·, ·; θk,k+`;k+1:k+`−1). The corresponding bivariate loglikelihood, which is to

be maximized with respect to θk,k+`;k+1:k+`−1 is then given by

`2stage,seq
k,k+` =

N∑
i=1

`2stage,seq
i,k,k+`

(
ûi,k|k+1:k+`−1, ûi,k+`|k+1:k+`−1, δi,k+`

)
,

where N is the number of clusters i with di ≥ k + `. Details are given in Algorithm 2 and

illustrated in Figure 4.14. For complete and balanced data, see for example Hobæk-Haff et al.

(2013) and Stöber and Schepsmeier (2013) for asymptotic properties of this approach.
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T1

estimate C1,2 (·, ·; θ1,2)
using (ûi,1, ûi,2, δi,2)
for all i with di ≥ 2

Û1|2 := C1|2(Û1|Û2)

estimate C2,3 (·, ·; θ2,3)
using (ûi,2, ûi,3, δi,3)
for all i with di ≥ 3

Û3|2 := C3|2(Û3|Û2)

Û2|3 := C2|3(Û2|Û3)

estimate C3,4 (·, ·; θ3,4)
using (ûi,3, ûi,4, δi,4)
for all i with di = 4

Û4|3 := C4|3(Û4|Û3) T2

estimate C1,3;2 (·, ·; θ1,3;2)
using

(
ûi,1|2, ûi,3|2, δi,3

)
for all i with di ≥ 3

estimate C2,4;3 (·, ·; θ2,4;3)
using

(
ûi,2|3, ûi,4|3, δi,4

)
for all i with di = 4

Û1|2,3 := C1|2,3(Û1|Û2, Û3) Û4|2,3 := C4|2,3(Û4|Û2, Û3) T3

estimate C1,4;2,3 (·, ·; θ1,4;2,3)
using

(
ûi,1|2,3, ûi,4|2,3, δi,4

)
for all i with di = 4

Figure 4.14: Illustration of the sequential top-down two-stage semiparametric estimation ap-
proach assuming four-dimensional data.
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Algorithm 2 Sequential top-down two-stage semiparametric estimation.

Input: gap time data (yi,1, yi,2, . . . , yi,di , δi,1, δi,2, . . . , δi,di), i = 1, . . . , n, subject to induced

dependent right-censoring ordered by decreasing cluster size.

Output: parameter estimates θ̂1:d with d = max{di|i = 1, . . . , n}.
1: Set d = max{di|i = 1, . . . , n}.
2: for j = 1, . . . , d do

3: if j < d then Set N = nd + . . .+ nj. end if

4: if j = d then Set N = nd. end if

5: With (yi,j, δi,j), i = 1, . . . , N , estimate Ŝj nonparametrically (Section 4.4.5).

6: Obtain pseudo copula data (ûi,j, δi,j), i = 1, . . . , N , by ûi,j = Ŝj(yi,j).

7: end for

8: for k = 1, . . . , d− 1 do

9: if k < d− 1 then Set N = nd + . . .+ nk+1. end if

10: if k = d− 1 then Set N = nd. end if

11: Select a copula family for ck,k+1 and with (ûi,k, ûi,k+1, δi,k+1), i = 1, . . . , N ,

maximize
∑N

i=1 `
2stage,seq
i,k,k+1 (ûi,k, ûi,k+1, δi,k+1) with respect to θk,k+1.

12: Using the fitted copula Ck,k+1(·, ·; θ̂k,k+1) apply the corresponding conditional

cumulative distribution function (CDF) h-functions to calculate Ck|k+1(ûi,k|ûi,k+1)

and Ck+1|k(ûi,k+1|ûi,k), i = 1, . . . , N .

13: end for

14: for ` = 2, . . . , d− 1 do

15: for k = 1, . . . , d− ` do
16: if k < d− ` then Set N = nd + . . .+ nk+`. end if

17: if k = d− ` then Set N = nd. end if

18: For i = 1, . . . , N , set ui = Ck|k+1:k+`−1(ûi,k|ûi,k+1:k+`−1)

and vi = Ck+`|k+1:k+`−1(ûi,k+`|ûi,k+1:k+`−1).

Set censoring indicator δi corresponding to vi to

δi = 1(di > k + `) + 1(di = k + `)δi,k+`.

19: Select a copula family for ck,k+`;k+1:k+`−1 and with (ui, vi, δi), i = 1, . . . , N ,

maximize
∑N

i=1 `
2stage,seq
i,k,k+` (ui, vi, δi) with respect to θk,k+`;k+1:k+`−1.

20: Using the fitted copula Ck,k+`;k+1:k+`−1(·, ·; θ̂k,k+`;k+1:k+`−1) apply the

corresponding conditional CDF h-functions to calculate

Ck|k+1:k+`(ûi,k|ûi,k+1:k+`) = hk|k+`;k+1:k+`−1(ui|vi) and

Ck+`|k:k+`−1(ûi,k+`|ûi,k:k+`−1) = hk+`|k;k+1:k+`−1(vi|ui), i = 1, . . . , N .

21: end for

22: end for
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Illustrating simulations

To investigate the finite sample performance of the suggested two-stage semiparametric ap-

proaches, the same simulation settings as for one-stage parametric estimation are used (see

Table 4.12 and Table 4.13). The results for Kendall’s τ are visualized in Figure 4.15. Detailed

results including those for copula parameters are in Table B.18 and Table B.19 in Appendix B.5.

Results are calculated under the assumption of a correctly specified copula model. Compared

to one-stage parametric estimation, some additional uncertainty is induced by nonparametric

marginal estimation. For 15% and 30% censoring, estimation is (on average) accurate. However,

for 30% censoring with a heavy tail, estimation is off, i.e. the empirical mean estimates are

too high and the empirical standard deviations are larger. Increasing the sample size slightly

improves estimation. Clearly, in two-stage estimation not only the amount of censoring but also

the censoring position plays a role. In case of many large censored total times, the Nelson-Aalen

estimate for the survival function of the total times (usually) levels off away from zero. As such,

the estimated survival margins do not drop sufficiently low to zero, which in turn affects the

copula data and hence distorts estimation. This issue is not present for one-stage parametric

estimation as discussed in Section 4.4.4. Consequently, we recommend to use the latter when-

ever the tail of the Nelson-Aalen estimate for the survival function of the total times is heavily

affected by censoring (leveling off away from zero). The censoring effect is more manifest for

a Clayton copula and a D-vine copula with Clayton parts (two top panels of Figure 4.15) as

compared to a Gumbel copula and a D-vine copula with Gumbel parts (two bottom panels of

Figure 4.15), which again is due to the lower tail-property of Clayton copulas. The simulation

results also indicate that, for D-vine copulas, the sequential strategy is a good alternative for

the computationally more challenging global approach, when no heavy tail censoring is present.

4.4.6 Guidelines for real life data

Based on the findings of the illustrating simulations with all four estimation strategies Figure 4.16

serves as a guideline to decide for the best estimation approach given real data. It also gives an

overview of the four estimation techniques proposed in Section 4.4.4 and Section 4.4.5.
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Figure 4.15: Boxplots of Kendall’s τ estimates as obtained via two-stage semiparametric esti-
mation (lines 1 + 3 = global approach, line 2 + 4 = sequential approach) for a
D-vine copula with Clayton parts (two top panels) and a D-vine copula with Gum-
bel parts (two bottom panels) based on 250 replications. The true Kendall’s τ values
are indicated through a horizontal line.
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Data: recurrent gap times subject to induced dependent right-censoring

ỹi, δi,di , i = 1, . . . , n, are
censored with heavy tail?
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marginal modeling?
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Stage 1: nonparametric
estimation of margins

Stage 1: nonparametric
estimation of margins

Stage 2: Evidence to use
Archimedean copula?

Evidence to use
Archimedean copula?

Archimedean
copula

D-vine
copula

Archimedean
copula

D-vine
copula

Computational
need for dim.

reduction?

Computational
need for dim.

reduction?

global one-stage
estimation

sequential left-right
one-stage estimation

global two-stage
estimation

sequential top-down
two-stage estimation

yes

no

yes
no

yes no yes no

yes yesno no

Figure 4.16: Overview and guidelines for usage of the different estimation strategies.
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4.4.7 Simulation study

To further explore the finite sample performance of the suggested estimation approaches and to

emphasize the flexibility of D-vine copulas over Archimedean copulas with regard to dependence

modeling, we additionally investigate settings in which the association varies over time, either in

strength or in type. In all scenarios, the results are based on 250 data sets. We consider samples

of 250, 500 or 1000 clusters, each with a maximum size of 4, where gap time 4 follows the same

distribution as gap times 2 and 3. The censoring times stem from a Weibull survival function

with shape and scale parameters chosen such that 15% or 30% of the data are censored. We also

consider 30% censoring with large event times being more prone to censoring (HT). Table 4.14

summarizes these settings. The dependence between the four gap times is modeled via a D-

vine copula. In trees T2 and T3, we consider Frank copulas with τ1,3;2 = τ2,4;3 = 0.25 and

τ1,4;2,3 = 0.167. In T1, we increase the complexity. First, we fix the dependence strength, but

allow the type of association to vary over time: c1,2 is Clayton, c2,3 is Frank, c3,4 is Gumbel.

This reflects a slow change from lower to upper tail-dependence. Second, we fix the association

type to be Clayton, but allow the strength to increase: τ1,2 = 0.3, τ2,3 = 0.5, τ3,4 = 0.7. See

Table 4.15 for a summary using C for Clayton, G for Gumbel and F for Frank.

Table 4.14: Simulation settings for the marginal survival functions of the four gap times and for
the survival function of the censoring times leading to 15%, 30% or 30% HT (heavy
tail) censoring.

Weibull parameters Gap time 1 Gap time 2 - 4
Censoring

15% 30% 30% HT

scale λ 0.500 1.000 0.085 0.250 0.085
shape ρ 1.500 1.500 1.500 1.500 3.000

Table 4.15: Simulation settings for D-vine copulas.

D-vine copula (pair-copula families; Kendall’s τ ; parameter)
c1,2; τ1,2; θ1,2 c2,3; τ2,3; θ2,3 c3,4; τ3,4; θ3,4

Setting 1 C; 0.500; 2.00 F; 0.500; 5.76 G; 0.500; 2.00
Setting 2 C; 0.300; 0.86 C; 0.500; 2.00 C; 0.700; 4.67

c1,3;2; τ1,3;2; θ1,3;2 c2,4;3; τ2,4;3; θ2,4;3 c1,4;2,3; τ1,4;2,3; θ1,4;2,3

Setting 1 F; 0.250; 2.37 F; 0.250; 2.37 F; 0.167; 1.53
Setting 2 F; 0.250; 2.37 F; 0.250; 2.37 F; 0.167; 1.53

The results for Kendall’s τ in case of global and sequential one-stage parametric and two-

stage semiparametric estimation are illustrated in Figure 4.17 for Setting 1 and in Figure 4.18

for Setting 2. Detailed results including those for the copula and marginal parameters are given

in Table B.20 to Table B.24 in Appendix B.6. As before it holds that, under a correct copula

format, the one-stage parametric approaches perform well in all censoring scenarios, while the

two-stage semiparametric approaches are highly sensitive to the underlying censoring scheme (see
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Chapter 4 Modeling time-to-event data using R-vine copulas

lines 3 and 4 in Figure 4.17 and Figure 4.18). Clearly, except for the two-stage semiparametric

approach in case of heavy tail censoring the four proposed estimation strategies allow for accurate

estimation of a dependence pattern more complex than that of an Archimedean copula, including

varying type and strength of association. Information on runtime for all four proposed estimation

strategies is given in Table B.25 in Appendix B.6.
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Figure 4.17: Boxplots of Kendall’s τ estimates as obtained via one-stage parametric estimation
(line 1 = global approach, line 2 = sequential approach) as well as two-stage semi-
parametric estimation (line 3 = global approach, line 4 = sequential approach)
in Setting 1 (Table 4.15), i.e. for a D-vine copula with changing tail-behavior
(lower tail-dependence to upper tail-dependence) based on 250 replications. The
true Kendall’s τ values are indicated through a horizontal line.
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Figure 4.18: Boxplots of Kendall’s τ estimates as obtained via one-stage parametric estimation
(line 1 = global approach, line 2 = sequential approach) as well as two-stage semi-
parametric estimation (line 3 = global approach, line 4 = sequential approach) in
Setting 2 (Table 4.15), i.e. for a D-vine copula with increasing dependence strength
(Clayton copula with Kendall’s τ values 0.3, 0.5 and 0.7) based on 250 replications.
The true Kendall’s τ values are indicated through a horizontal line.
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Chapter 4 Modeling time-to-event data using R-vine copulas

4.4.8 Estimation of standard errors

When analyzing real data, standard errors for the copula parameters obtained through appli-

cation of the four estimation strategies proposed in Section 4.4.4 and Section 4.4.5 need to be

estimated. For this purpose, the algorithm for parametric bootstrapping outlined in Section 4.3.1

can be mimicked accounting for the setting of unbalanced, induced dependent right-censored gap

time data. Note that we need to distinguish whether the copula parameter estimates were ob-

tained through one-stage parametric or two-stage semiparametric estimation:

Step 1 (one-stage parametric): Under a prespecified parametric format for the marginal sur-

vival functions (for example Weibull), follow the global or sequential one-stage para-

metric estimation approach to fit the D-vine copula model of interest to the data

(yi,1, . . . , yi,di , δi,1, . . . , δi,di), i = 1, . . . , n. Obtain the marginal parameter estimates

α̂j (j = 1, . . . , d) and the D-vine copula parameter estimates θ̂1:d

with d = max{di|i = 1, . . . , n}.

Step 1 (two-stage semiparametric): Following the global or sequential two-stage semipara-

metric estimation approach to fit the D-vine copula model of interest to the data

(yi,1, . . . , yi,di , δi,1, . . . , δi,di), i = 1, . . . , n. Obtain the survival marginal estimates ŜNA
j

(j = 1, . . . , d) and the D-vine copula parameter estimates θ̂1:d with

d = max{di|i = 1, . . . , n}.

Step 2: Obtain the Nelson-Aalen estimate Ĝ of the censoring distribution G based on the

observations (yi,1 + yi,2 + . . .+ yi,di , 1− δi,di), i = 1, . . . , n.

Step 3: Generate B bootstrap samples in the following way: For b = 1, . . . , B and i = 1, . . . , n,

Step 3.1: sample copula data
(
u

(b)
i,1 , . . . , u

(b)
i,d

)
from the fitted D-vine copula model with

parameter vector θ̂1:d.

Step 3.2 (one-stage parametric): Generate gap times
(
g

(b)
i,1 , . . . , g

(b)
i,d

)
via g

(b)
i,j = S−1

j

(
u

(b)
i,j ; α̂j

)
(j = 1, . . . , d), where Sj (·; α̂j) follows the marginal distribution assumed to be

known with estimated parameters α̂j .

Step 3.2 (two-stage semiparametric): Generate gap times
(
g

(b)
i,1 , . . . , g

(b)
i,d

)
via

g
(b)
i,j =

(
ŜNA
j

)−1 (
u

(b)
i,j

)
(j = 1, . . . , d), where ŜNA

j is the nonparametric survival

marginal estimate obtained in Step 1 (two-stage semiparametric).

Step 3.3: Obtain event times t
(b)
i,j by setting t

(b)
i,j =

∑j
`=1 g

(b)
i,` .

Step 3.4: Generate independent censoring times c
(b)
i from Ĝ.

102



4.4 Modeling recurrent right-censored event time data

Step 3.5: Obtain observed data. If t
(b)
i,1 > c

(b)
i set di = 1 and retain y

(b)
i,1 = c

(b)
i , if t

(b)
i,2 > c

(b)
i set

di = 2 and retain (y
(b)
i,1 , y

(b)
i,2 ) = (g

(b)
i,1 , c

(b)
i − t

(b)
i,1), etc. If di = d distinguish between

d − 1 or d events, i.e. (y
(b)
i,1 , . . . , y

(b)
i,d−1, y

(b)
i,d ) = (g

(b)
i,1 , . . . , g

(b)
i,d−1, c

(b)
i − t

(b)
i,d−1) or

(y
(b)
i,1 , . . . , y

(b)
i,d−1, y

(b)
i,d ) = (g

(b)
i,1 , . . . , g

(b)
i,d−1, g

(b)
i,d ).

Define δ
(b)
i,j = 1 for j < di and δ

(b)
i,di

= 1

(
y

(b)
i,di
≤ c(b)

i − t
(b)
i,di−1

)
.

Step 3.6 (one-stage parametric): Under a prespecified parametric format for the marginal

survival functions (for example Weibull), follow the global or sequential one-stage

parametric estimation approach to fit the D-vine copula model of interest to the

bootstrap data (y
(b)
i,1 , . . . , y

(b)
i,di
, δ

(b)
i,1 , . . . , δ

(b)
i,di

), i = 1, . . . , n. Obtain the marginal

parameter estimates α̂
(b)
j (j = 1, . . . , d) and the D-vine copula parameter esti-

mates θ̂
(b)

1:d for bootstrap sample b.

Step 3.6 (two-stage semiparametric): Following the global or sequential two-stage semi-

parametric estimation approach to fit the D-vine copula model of interest to

the bootstrap data (y
(b)
i,1 , . . . , y

(b)
i,di
, δ

(b)
i,1 , . . . , δ

(b)
i,di

), i = 1, . . . , n. Obtain the D-vine

copula parameter estimates θ̂
(b)

1:d for bootstrap sample b.

Step 4 (one-stage parametric): Calculate elementwise the empirical standard deviations of

α̂
(1)
j , . . . , α̂

(B)
j (j = 1, . . . , d) and θ̂

(1)

1:d, . . . , θ̂
(B)

1:d to obtain bootstrap based standard

errors for α̂j (j = 1, . . . , d) and θ̂1:d.

Step 4 (two-stage semiparametric): Calculate elementwise the empirical standard deviations

of θ̂
(1)

1:d, . . . , θ̂
(B)

1:d to obtain bootstrap based standard errors for θ̂1:d.

4.4.9 Model selection

The simulations in Section 4.4.4, Section 4.4.5 and Section 4.4.7 showed that the four proposed

estimation procedures are on target. For two-stage semiparametric estimation we detected high

sensitivity in case of heavy tail censoring. Further, Section 4.4.8 provides a bootstrapping algo-

rithm to estimate standard errors based on a D-vine copula model fitted to induced dependent

right-censored gap time data. Thus, for analyzing real data the only remaining modeling aspect

is to select the best possible copula to describe the data at hand. To do so, we need a suitable

model selection tool. Focus is on model accuracy to capture complex dependence patterns such

as the ones investigated through the simulations in Section 4.4.7. Against this background, we

explore in this section the effect of using an incorrect copula specification and the role of AIC

as a valid model selection tool.

For both simulation settings considered in Section 4.4.7, we fit in addition to the correct D-

vine copula specification as given in Table 4.15 a four-dimensional Clayton copula (4d) and an

incorrect D-vine copula with all pair-copulas being of type Clayton (Clayton vine copula). In case

of one-stage parametric estimation the format of the survival margins is correctly specified. In

Table 4.16, we list for both simulation settings the preference by AIC, i.e. the proportion of data
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Chapter 4 Modeling time-to-event data using R-vine copulas

Table 4.16: Results on copula selection by AIC under global and sequential one-stage parametric
and two-stage semiparametric estimation for four-dimensional data (4d). The D-vine
copula model captures in Setting 1: tail-behavior for subsequent gap times changing
from lower tail-dependence (Clayton (C)) over no tail-dependence (Frank (F)) to
upper tail-dependence (Gumbel (G)) with same overall dependence of τ1,2 = τ2,3 =
τ3,4 = 0.5; and in Setting 2: for Clayton copulas in T1 increasing dependence with
τ1,2 = 0.3, τ2,3 = 0.5, τ3,4 = 0.7. We consider the fit of a correctly specified D-vine
copula, an incorrect Clayton D-vine and a Clayton copula. The AIC preference rate
is based on 250 replications and samples of different sizes affected by either 15%,
30% or heavy tail 30% right-censoring.

D-vine global
4d Clayton

D-vine sequential
4d Clayton

correct incorrect correct incorrect

S
et

ti
n

g
1

(T
ab

le
4.

15
)

P
ar

a
m

et
ri

c
o
n

e-
st

a
ge 15%

250 1 0 0 1 0 0
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

30%
250 1 0 0 1 0 0
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

30% HT
250 0.996 0.004 0 0.996 0.004 0
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

S
em

ip
ar

am
et

ri
c

tw
o-

st
ag

e

15%
250 1 0 0 1 0 0
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

30%
250 0.956 0.028 0.016 0.964 0.016 0.020
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

30% HT
250 0.844 0.116 0.040 0.836 0.108 0.056
500 0.928 0.064 0.008 0.928 0.064 0.008
1000 0.972 0.028 0 0.972 0.028 0

S
et

ti
n

g
2

(T
ab

le
4.

15
)

P
ar

am
et

ri
c

on
e-

st
ag

e

15%
250 0.964 0.036 0 0.964 0.036 0
500 0.996 0.004 0 0.996 0.004 0
1000 1 0 0 1 0 0

30%
250 0.896 0.104 0 0.892 0.108 0
500 0.960 0.040 0 0.960 0.040 0
1000 0.992 0.008 0 0.992 0.008 0

30% HT
250 0.804 0.176 0.020 0.800 0.176 0.024
500 0.924 0.076 0 0.924 0.076 0
1000 0.964 0.036 0 0.964 0.036 0

S
em

ip
ar

am
et

ri
c

tw
o-

st
ag

e

15%
250 0.956 0.044 0 0.960 0.040 0
500 1 0 0 1 0 0
1000 1 0 0 1 0 0

30%
250 0.816 0.172 0.012 0.864 0.124 0.012
500 0.908 0.092 0 0.936 0.064 0
1000 0.976 0.024 0 0.992 0.008 0

30% HT
250 0.424 0.344 0.232 0.472 0.260 0.268
500 0.552 0.392 0.056 0.632 0.292 0.076
1000 0.632 0.364 0.004 0.740 0.248 0.012
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sets, for which each of the three model specifications performed best based on AIC. It follows

that AIC is able to detect the correct copula model for the majority of simulated data sets,

indicating that AIC is a valid tool for model selection. As expected, the AIC preference for the

correct model increases as sample size grows, but decreases for a higher censoring rate. Also, AIC

selects the correct model more often for one-stage parametric estimation as compared to two-

stage semiparametric estimation. For the latter, heavy tail censoring again distorts estimation.

Finally, for the D-vine copula according to Setting 1 (Clayton, Frank, Gumbel in T1) the correct

vine is selected more often as compared to the D-vine copula according to Setting 2 (only Clayton

in T1). This is to be expected, since the latter resembles a Clayton vine copula and a Clayton

copula more closely, making model detection more difficult.

4.4.10 Data application

In this section, we use the proposed methodology to analyze the asthma data, which were

already mentioned in previous sections. Data on 232 children are available. The children entered

the study at the age of 6 months, at which they were randomized into a placebo group (113

children) or a treatment group (119 children). They were followed up for about 18 months. Due

to limited follow-up, the time to the last asthma attack may not be recorded, but a lower right-

censoring time may be observed instead. Meyer and Romeo (2015) model the association of gap

times via Archimedean copulas and thereby impose the same type and strength of dependence

between all gap times. However, an asthma attack further weakens the lungs and thus makes a

child more prone to another attack. Therefore, the dependence between gap times is expected

to change over time in type and/or strength. The simulations in Section 4.4.7 show that D-vine

copulas can capture such features.

Table 4.17 indicates that only few children have more than four asthma attacks, making

accurate estimation of the survival margins and of the association from the fifth gap time on

rather difficult. Hence, we focus on the first four gap times, i.e. we use the data of attack 1 up to

attack 4 even if there is information on subsequent attacks. By doing so, each child experiences

at least one asthma attack and 97 children have at least four attacks. For 25 of these children

the last asthma attack is right-censored (8 in the treatment group and 17 in the control group).

The overall censoring rate is 22.13%.

Dependence modeling

To explore the asthma data and to decide on the estimation strategy, we plot the Nelson-Aalen

estimate for the survival function of the total times. We consider the full data sample as well

as the data subsamples based on treatment to accommodate a possible effect of the latter on

the margins and on the dependence structure. As can be seen in Figure 4.19 each sample is

heavily right-censored with accumulation of censored observations at late time points, i.e. the

Nelson-Aalen estimates exhibit a heavily right-censored tail, leading to a leveling off at a survival

value around 0.6 for the full data set, around 0.7 for the treated group and around 0.5 for the

placebo group. Based on the simulation results and the guidelines in Figure 4.16, we opt to

apply a one-stage parametric estimation approach to model the dependence structure in the
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Chapter 4 Modeling time-to-event data using R-vine copulas

Table 4.17: Frequency table of the number of children in the asthma data considering the full
sample as well as subsamples based on treatment assignment and censoring status
of the last asthma attack. The last column (4mod) corresponds to the number of
clusters of size 4 after modifying the original data, i.e. even if the original cluster
size is larger than 4 only gap times 1 to 4 are considered. For example, for the
modified full sample the number of clusters of size 4 with last observation being a
true event is 72. This is the sum of all (full sample) entries with cluster size > 4
(both event and censored) and = 4 (event). The number of children with a censored
fourth attack remains unaffected by the data modification.

#Children with Cluster size
last attack 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 39 4mod

Full
event 1 3 1 2 0 0 2 0 1 0 0 1 1 1 1 0 72

censored 87 44 25 14 10 8 7 8 1 7 2 2 2 0 0 1 25

Treatment
event 0 3 1 1 0 0 1 0 1 0 0 0 0 0 1 0 27

censored 50 25 8 6 2 2 3 2 1 4 1 0 1 0 0 0 8

Control
event 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 45

censored 37 19 17 8 8 6 4 6 0 3 1 2 1 0 0 1 17

asthma data. As in Meyer and Romeo (2015), we assume Weibull survival margins, but opposed

to them, we allow for a flexible association pattern as modeled by diverse D-vine copulas.

The induced dependent right-censoring present in the asthma data makes model specification

challenging. Common data exploration tools cannot be applied. For example, due to the heavy

censoring for late gap times, pairs plots on the time scale, respectively on the copula scale, show

an empty upper right corner, respectively an empty lower left corner. Thus, visual inspection

is obscured (see Figure 4.6 in Section 4.3.2). To unravel the association in the asthma data,

we therefore fit a large variety of copula models. We consider the independence copula as well

as the four-dimensional (4d) Clayton, Gumbel and Frank copulas, together with several four-

dimensional D-vine copulas. For the latter, we consider in tree T1 all possible permutations of

Clayton, Gumbel and/or Frank copulas. In trees T2 and T3, all pair-copulas are taken to be

Frank. This results in a total of 27 D-vine copulas.

Table 4.18 gives the results of sequential and global one-stage parametric estimation in terms

of Kendall’s τ for the three best D-vine copulas as selected by AIC, the independence copulas

as well as for the Archimedean copulas. Results on marginal estimation are listed in Table B.26

in Appendix B.7. For global loglikelihood maximization the parameter estimates obtained from

sequential optimization are used as starting values. For each data sample, all D-vine copulas

perform better than the best Archimedean copula based on AIC. While the pair-copula families

in T1 of the best D-vine copula are the same for all samples, the best Archimedean copula

varies among the three data sets. Recall that for the latter all dependencies are described by a

single parameter. In the asthma data, this dependence is small and close to zero (as confirmed

by AIC). D-vine copulas provide a more local view on association and thereby allow varying

dependence between gap times. While the Kendall’s τ values in trees T2 and T3 are quite small,

the estimates in tree T1, i.e. for τ1,2, τ2,3 and τ3,4, increase over time. This finding supports the
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Figure 4.19: Nelson-Aalen estimate of the survival function for the total times (in years).

initial intuition that with each additional asthma attack, children are more prone to a relapse.

The fact that a Gumbel copula is chosen for the pair 2-3 suggests that the smaller gap time 2

is, the faster a third asthma attack will follow. The same holds true for pair 3-4. For pair 1-2

there is no clear best copula family, which might be explained by the low Kendall’s τ values of

on average 0.10. For such a low value the specific features of a copula family such as lower or

upper tail-dependence are less pronounced. Interestingly, the estimates for τ2,3 and τ3,4 for the

treatment and control group are quite alike, while there is a significant difference for τ1,2. For

treated children the occurrences of a first and a second asthma attack are close to independence,

while for children in the placebo group the estimate for τ1,2 is about 0.18. This suggests that

the medical treatment has a clear influence on the (time to) occurrence of a second asthma

attack. However, whenever a treated child has a relapse, subsequent attacks are as likely as for

untreated children. In general and most pronounced for the treatment group, Kendall’s τ values

including the first gap are smaller as compared to those not including the first gap. For D-vine

copula models, the sequential and global estimation approach show very similar results with a

slight model improvement (based on AIC) in case of global optimization.

The standard errors are based on 1000 bootstrap samples (see Section 4.4.8). In general, stan-

dard errors increase for estimates corresponding to late gap times. For them, fewer data are

available due to the unbalanced data setting. Note that while in the asthma data there are no

clusters of size 1, this may occur in the bootstrap samples (as in many data settings). Table B.27

in Appendix B.7 contains information on average cluster sizes and the average censoring per-

centage among the bootstrap replications showing that the data generation within the bootstrap

succeeds to mimic the features of the asthma data characteristics quite accurately.
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Table 4.18: AIC values and Kendall’s τ estimates with standard errors based on 1000 bootstrap
samples (in parentheses) of copula models fitted to each of the three samples of
the asthma data using sequential and global one-stage parametric estimation. In
case of Archimedean copulas the Frank (4dF), Gumbel (4dG), Clayton (4dC) and
the Independence (4dInd) copula are considered. In case of D-vine copulas only the
three best models are shown with Frank being the copula family in trees T2 and T3.

AIC τ1,2/τ τ2,3 τ3,4 τ1,3;2 τ2,4;3 τ1,4;2,3

S
eq

u
en

ti
al

on
e-

st
ag

e
p

ar
a
m

et
ri

c

F
u

ll

FGG 210.335 0.121 (0.052) 0.236 (0.059) 0.321 (0.062) -0.054 (0.064) 0.290 (0.080) -0.090 (0.079)

CGG 212.814 0.122 (0.063) 0.244 (0.059) 0.326 (0.061) -0.055 (0.063) 0.301 (0.080) -0.089 (0.077)

GGG 213.341 0.098 (0.047) 0.232 (0.059) 0.317 (0.062) -0.054 (0.065) 0.290 (0.081) -0.085 (0.081)

T
re

at
m

en
t

FGG 147.911 0.043 (0.077) 0.233 (0.094) 0.317 (0.103) 0.016 (0.104) 0.420 (0.119) -0.161 (0.134)

CGG 147.999 0.051 (0.077) 0.234 (0.094) 0.319 (0.102) 0.015 (0.103) 0.426 (0.117) -0.160 (0.134)

GGG 148.479 0.000 (0.035) 0.231 (0.095) 0.316 (0.103) 0.015 (0.107) 0.425 (0.119) -0.162 (0.138)

C
on

tr
ol FGG 67.229 0.186 (0.069) 0.240 (0.077) 0.298 (0.082) -0.114 (0.083) 0.189 (0.106) -0.034 (0.101)

FGF 68.784 0.186 (0.069) 0.240 (0.077) 0.285 (0.099) -0.114 (0.083) 0.165 (0.108) -0.027 (0.102)

GGG 69.801 0.165 (0.066) 0.235 (0.077) 0.294 (0.083) -0.114 (0.085) 0.192 (0.107) -0.026 (0.104)

G
lo

b
al

on
e-

st
ag

e
p

ar
am

et
ri

c

F
u

ll

FGG 210.103 0.122 (0.052) 0.258 (0.058) 0.333 (0.061) -0.050 (0.065) 0.293 (0.081) -0.090 (0.079)

CGG 212.582 0.129 (0.064) 0.266 (0.058) 0.338 (0.061) -0.052 (0.064) 0.304 (0.080) -0.090 (0.078)

GGG 213.026 0.100 (0.047) 0.253 (0.059) 0.329 (0.062) -0.050 (0.066) 0.292 (0.081) -0.087 (0.081)

4dF 233.678 0.055 (0.025)

4dG 235.377 0.047 (0.030)

4dC 236.456 0.064 (0.041)

4dInd 237.478

T
re

at
m

en
t

FGG 147.797 0.046 (0.077) 0.260 (0.092) 0.334 (0.101) 0.017 (0.106) 0.419 (0.120) -0.162 (0.140)

CGG 147.876 0.058 (0.080) 0.262 (0.092) 0.336 (0.100) 0.016 (0.104) 0.426 (0.119) -0.160 (0.137)

GGG 148.365 0.002 (0.036) 0.258 (0.092) 0.333 (0.101) 0.015 (0.108) 0.424 (0.121) -0.162 (0.142)

4dF 154.797 0.036 (0.031)

4dG 155.941 0.000 (0.022)

4dC 155.496 0.037 (0.051)

4dInd 153.941

C
on

tr
ol

FGG 67.079 0.185 (0.069) 0.259 (0.076) 0.308 (0.082) -0.111 (0.084) 0.193 (0.107) -0.034 (0.103)

FGF 68.722 0.185 (0.069) 0.241 (0.077) 0.286 (0.100) -0.112 (0.084) 0.167 (0.110) -0.026 (0.104)

GGG 69.616 0.166 (0.067) 0.254 (0.077) 0.304 (0.083) -0.112 (0.086) 0.194 (0.107) -0.028 (0.106)

4dF 78.349 0.063 (0.032)

4dG 77.859 0.062 (0.037)

4dC 79.947 0.073 (0.050)

4dInd 80.283
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Conditional prediction

In addition to Barthel et al. (2018b), we further analyze in this thesis quantiles for the time to

a relapse conditional on the individual risk profile of a child, which is specified by the previous

observed gap times. More precisely, in Section 4.1.2 we outlined that in case of an underlying

D-vine copula model there is an analytical expression for the conditional survival function which

describes the time to asthma attack (j + 1) given the observed disease history (yi,1, . . . , yi,j) of

child i. Conditional quantiles can thus be obtained through inversion.

For this purpose, using one-stage parametric estimation we fit for each child i in the asthma

data a D-vine copula model to the data where the observations corresponding to child i, i.e.

(yi,1, . . . , yi,di , δi,1, . . . , δi,di), are removed. Then, based on the fitted D-vine copula model we

calculate the 90% out-of-sample prediction interval, i.e. the conditional 5% and the conditional

95% quantile, for the time until the k-th asthma attack (k = 2, . . . , di) given the observed gap

times yi,1, . . . , yi,k−1. This is done for the complete data set as well as for the subsample based

on treatment to which child i belongs.

Table 4.19 provides the percentages of children for who the actual observed gap time lies

within the corresponding conditional 90% prediction interval. Results based on both the D-

vine copula fitted to the full sample with the considered child’s data removed and the D-vine

copula fitted to the corresponding subsample with the considered child’s data removed are

shown. Clearly, the percentage decreases with increasing gap time. For them, less data are

available due to the unbalanced data setting. In general, the prediction intervals cover the

true observations satisfactorily. Further, Figure 4.20 and Figure 4.21 show for representative

children in the treatment group and the control group, respectively, the estimated conditional

90% prediction intervals together with the corresponding true observations. The ID of each child

refers to its position in the corresponding subsample. Recall that there are 113 children in the

treatment group and 119 in the control group. Results for children with a cluster size of 4 are

in the top row of Figure 4.20 and Figure 4.21. For them, there are three prediction intervals

corresponding to gap time 2 given gap time 1, gap time 3 given gap times 1 and 2 and gap time

4 given gap times 1 to 3. Results for children with cluster size 3 and cluster size 2 are shown

in the middle rows and the bottom rows, respectively. Further, observations corresponding to

a true gap time are marked by a cross. Right-censored observations are denoted with a circle.

Recall that in the latter case the corresponding true gap time is larger than the observed value.

Table 4.19: Percentage of children for who the true observation of a gap time lies within the
corresponding conditional 90% prediction interval. Conditional predictions are based
on both the D-vine copula fitted to the full sample with the considered child’s data
removed and based on the D-vine copula fitted to the subsample (treatment or
control group) with the considered child’s data removed.

D-vine copula based conditional Treatment group Control group
quantile prediction based on gap 2 gap 3 gap 4 gap 2 gap 3 gap 4

full sample 100% 94% 91% 99% 98% 85%
subsample 100% 95% 89% 99% 96% 87%
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Figure 4.20: Conditional 90% prediction intervals for representative children in the treatment
subsample of the asthma data. Prediction intervals corresponding to clusters of
size 4, size 3 and size 2, respectively, are shown in the top row, the middle row and
the bottom row, respectively. Predictions based on the D-vine copula model fitted
to the full sample with the considered child’s data removed are shown in blue. Pre-
dictions based on the D-vine copula model fitted to the treatment subsample with
the considered child’s data removed are shown in green. Observations corresponding
to true gap times are denoted by ×. Right-censored observations are denoted by ◦.
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Figure 4.21: Conditional 90% prediction intervals for representative children in the control sub-
sample of the asthma data. Prediction intervals corresponding to clusters of size
4, size 3 and size 2, respectively, are shown in the top row, the middle row and the
bottom row, respectively. Predictions based on the D-vine copula model fitted to
the full sample with the considered child’s data removed are shown in blue. Pre-
dictions based on the D-vine copula model fitted to the control subsample with the
considered child’s data removed are shown in green. Observations corresponding to
true gap times are denoted by ×. Right-censored observations are denoted by ◦.
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We see that especially the prediction intervals for gap time 2 given gap time 1 are rather large

and indicate a heavily right skewed conditional distribution of the gap times. This finding is

more evident for results based on the treatment subsample as compared to the full sample,

but it is less pronounced based on the control subsample as compared to the full data. This

observation might be due to the significantly different association between gap time 1 and gap

time 2 for children of the two subsamples (see Table 4.18). For gap time 4 given gap times 1

to 3, the conditional 90% prediction intervals become significantly tighter while still covering

the true observations sufficiently well (compare Table 4.19). Note that even if right-censored

observations are smaller than the estimated conditional 5% quantile, the corresponding true gap

time may still be covered by the prediction interval.

To conclude, the D-vine copula based estimation approaches to model induced dependent

right-censored gap time data allow for an analytical closed form expression of the conditional

gap time distributions given an individual history of previous gap times. The resulting possibility

to obtain conditional quantiles is of particular interest and highly relevant in applications such

as the prediction of a relapse in the asthma study.

4.5 Discussion

In this chapter, we investigated R-vine copulas to model dependence patterns in multivariate

right-censored event time data. Prior to this work, R-vine theory had only been developed

for complete data. First, basic notations and results commonly used in R-vine copula based

methodology were reformulated in survival terms in Section 4.1. Then, two data settings, which

are typical in time-to-event studies, were discussed in detail.

In Section 4.2 and Section 4.3, balanced data subject to common right-censoring were con-

sidered. The developed estimation procedure was conducted in two subsequent steps (two-stage

approach). First, the marginal distributions were estimated considering standard parametric and

nonparametric estimation techniques for univariate right-censored data (Section 4.1.3). Second,

the dependence structure was modeled. The likelihood contributions for right-censored quadruple

data in terms of R-vine copula components were provided (Barthel (2015), Appendix B.1.1). Due

to the right-censoring single and double integrals showed up in the copula likelihood expression

such that numerical integration was needed for its evaluation. Hence, for dependence modeling

a sequential estimation approach that facilitates the computational challenges of the likelihood

optimization was proposed (Section 4.2.3). For right-censored trivariate data a simulation study

gave evidence that the presented estimators are on target (Section 4.2.4). To obtain standard

errors for likelihood based parameter estimates an R-vine copula based parametric bootstrap-

ping algorithm for right-censored data was proposed (Section 4.3.1). For the four-dimensional

mastitis data, while stressing the general difficulty of model selection in the presence of heavy

right-censoring, it was shown how an appropriate R-vine copula model can be selected for data

at hand. Both the full and the sequential estimation approach were used (Section 4.3.2). The

results qualified the latter as the preferable estimation technique in practice. It provides compa-

rable estimation results while significantly simplifying the numerically challenging optimization
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problem. Our findings for the mastitis data were in line with Geerdens et al. (2016a), where the

Joe-Hu family was used for flexible dependence modeling in right-censored event time data.

In Section 4.4, dependence between recurrent event times subject to right-censoring was in-

vestigated. We addressed several challenges arising when modeling gap time association such as

the presence of induced dependent right-censoring and the unbalanced nature of the data. Due

to their construction principle, which allows for a temporal ordering of the variables, D-vine cop-

ulas were the natural choice for dependence modeling. In total, four estimation strategies were

suggested: one-stage parametric estimation (Section 4.4.4) and two-stage semiparametric esti-

mation (Section 4.4.5) combined with global and sequential estimation. Extensive simulations

in three and four dimensions underlined the good finite sample performance of all estimation

strategies (Section 4.4.7). For the two-stage semiparametric modeling strategies the impact of

heavy induced dependent right-censoring was studied. Given its sensitivity with respect to heavy

tail censoring, guidelines on the practical use of the four estimation approaches were formulated

(Section 4.4.6). Further, methods for standard error estimation (Section 4.4.8) and model selec-

tion were provided (Section 4.4.9). The application to data on children suffering from asthma

provided new insights on the evolution of the disease (Section 4.4.10). These findings could not

be detected by Archimedean copulas, which impose a too restrictive dependence structure to

the data. The flexibility of D-vine copula models was further highlighted in the context of con-

ditional prediction of the time until relapse given the individual disease history of children in

the asthma data.

Both projects discussed in this chapter stressed the need for more flexible copula models as

compared to less elaborated ones such as elliptical or Archimedean copulas in the context of

right-censored event time data. They also showed that the data complexity due to right-censoring

makes the statistical analysis of multivariate event time data highly challenging with regard to

numerical demand and computational manageability.
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Chapter 5

Conclusion and outlook

In this thesis, novel methodologies to model and forecast time-series of realized covariance ma-

trices and dependence patterns for multivariate right-censored event time data were proposed.

In both research fields, these projects were the first attempts to incorporate regular vines and

regular vine copulas into the statistical analysis. While working on the presented results several

interesting new aspects and ideas have arisen being potential starting points for future research.

Parsimonious modeling and forecasting of realized volatility time-series in high dimensions

In Chapter 3, one of the striking advantages of the partial correlation vine data transformation

approach is that model parsimony is achieved. Not only does careful selection of the underlying

regular vine structure result in easy to model time-series data as compared to normally chal-

lenging volatility data, but also dependence between the model components, namely realized

standard and realized partial correlations as well as realized variances, is less pronounced as

between the model components obtained through the Cholesky factorization. To exploit the full

potential of this modeling aspect, we advocate for future work to apply the partial correlation

vine data transformation approach to high-frequency data in higher dimensions. In this case,

multivariate time-series models including factor copulas for dependence modeling might lead to

even more model parsimony (Krupskii and Joe, 2013).

R-vine copula based modeling of right-censored time-to-event data including covariates

Given the prevalence of multivariate right-censored data in many biomedical and health care

related studies, the availability of reliable and applicable (also for practitioners) statistical models

is crucial. In Chapter 4, we showed that despite the increased data complexity due to right-

censoring the proposed R-vine copula based models are able to capture the inherent dependence

patterns. In particular, less elaborate copula based models were insufficient to detect important

data features. Having the basic methodology at hand provides room for further research on the

use of R-vine copulas in the presence of censoring.

Often a data set includes one or more covariates. In the context of copula models a covariate

can affect the survival margins and/or the dependence structure. If the covariate is at the level

of the cluster and only takes a few values, the data set can be split into several subsets and the
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proposed copula modeling can be used for each subset separately as done for the asthma data

in Section 4.4.10. If the covariate at the level of the cluster is continuous, then one can model

the copula parameters as a function of the covariate (for example linear) and further proceed as

proposed in Section 4.2. If a covariate is not at the level of the cluster it is not possible to discuss

its impact on the association and the covariate can only be included in the margins. For example,

a Cox model can be used in the first estimation step. Nonparametric marginal estimation is more

involved when covariates are present. An option is to apply the Beran estimator or an extended

version of it (Beran, 1981).

R-vine copula based quantile regression for censored response data

A research field, which gained a lot of interest in the recent years, is the prediction of quantiles

of a random variable conditioned on the realization of other variables. Possible application areas

range from portfolio optimization or risk management in finance to the prediction of water levels

in hydrology, the claim sizes for insurances or as already shortly discussed in Section 4.4.10 the

time until an asthma attack given the individual health profile of a child. Clearly, the latter is

only one example out of many in a clinical context. Here, the response variable might be subject

to right-censoring. For complete data, Kraus and Czado (2017) propose a D-vine copula based

quantile regression method, which – given the ability for more flexible dependence modeling

between the response variable and the covariates – is able to outperform classical methods for

quantile prediction. Herrmann (2018) extends these ideas to the more general and even more

flexible class of R-vine copulas. The results of this master’s thesis will soon be submitted for

publication as a scientific research paper.

In case of right-censored response data, the methodology needs additional adaption. This

constitutes promising ongoing research. Besides the presence of right-censoring, which as is well

known complicates the statistical analysis of data, discrete and categorical explanatory variables

are common in regression data. For complete data and using parametric pair-copulas, D-vine and

R-vine copula based techniques to handle ordinal categorical variables, which are monotonically

related with other explanatory variables, are discussed in Schallhorn et al. (2017) and Chang and

Joe (2018), respectively. Nagler (2018) suggests to add random noise to discrete variables and

to model the jittered data. However, this approach only works in an unrestricted nonparametric

framework. Since the simplifying assumption is a structural assumption, the latter might cause

problems when applying simplified nonparametric pair-copula constructions as introduced by

Nagler and Czado (2016) in the above context. Geerdens et al. (2016b) propose a nonparametric

estimator for a bivariate survival copula for data subject to random right-censoring. For nominal

categorical explanatory variables, data splitting as suggested in the previous paragraph and as

done for the asthma data in Section 4.4.10 only is an option in case of high sample sizes and

few nominal explanatory variables with a small number of categories. Usually, for k categories

k − 1 binary dummy variables are considered in standard regression methods. Here, for each

observation unit at most one of the dummy variables will equal 1 while all others are equal to

zero. In this case, a possible application of pair-copula constructions in particular under the

simplifying assumption has again to be investigated with great care.
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Joint modeling of longitudinal and time-to-event data using R-vine copulas

A final project combines the methodology presented in Chapter 4, work on modeling of repeated

measurements using D-vine copulas (Killiches and Czado, 2018), ideas from R-vine quantile

regression for right-censored data as well as the inclusion of covariates. In many medical studies,

along with the possibly right-censored time to a specific event repeated measurements of several

biomarkers such as pulse, blood pressure or laboratory tests of tissues are available. While – to the

best of our knowledge – existing methodology in the majority of times only captures the influence

of a single biomarker measurement history on the event of interest, we propose an R-vine copula

model, which simultaneously involves three layers of dependence: the dependence between each

of the biomarkers and the event time, the dependence between the different biomarkers, and for

each of the biomarkers the temporal dependence within the measurement history.

The variety of possible future projects shows the need for flexible dependence models in

many highly relevant and challenging research fields. Thus, R-vine copula models will certainly

continue growing in popularity and in their application spectrum.
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A.1 Skewed generalized error distribution

The skewed generalized error distribution is specified by the location parameter µ, the scale

parameter σ, the shape parameter ν and the skewness parameter ξ. Its density function is given

by

f (ε|µ, σ, ν, ξ) =
C

σ
exp

(
− |ε− µ+ δσ|ν

[1− sign (ε− µ+ δσ) ξ]ν θνσν

)
with

C =
ν

2θ
Γ

(
1

ν

)−1

,

θ = Γ

(
1

ν

)1/2

Γ

(
3

ν

)−1/2

S (ξ)−1 ,

δ = 2ξAS (ξ)−1 ,

S (ξ) =
√

1 + 3ξ2 − 4A2ξ2,

A = Γ

(
2

ν

)
Γ

(
1

ν

)−1/2

Γ

(
3

ν

)−1/2

.

For the parameter specification ν = 2 and ξ = 0 the normal distribution is obtained.
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A.2 Additional results for the empirical study

Table A.1: RMSE with respect to the complete out-of-sample forecasting horizon (1632 days)
for the model components in the Cholesky decomposition based model. The set of
superior models according to the MCS approach at a confidence level of 10% is
highlighted in gray. The lowest RMSE is highlighted in bold.

mean HAR HN HSGED ARFIMA AN ASGED

AXP,AXP 0.5215 0.2355 0.2358 0.2359 0.2334 0.2336 0.2340
AXP,C 0.6789 0.3730 0.3706 0.3769 0.3698 0.3684 0.3750
C,C 0.4579 0.2069 0.2076 0.2094 0.2063 0.2070 0.2081

AXP,GE 0.4142 0.2648 0.2646 0.2682 0.2618 0.2616 0.2659
C,GE 0.2431 0.1725 0.1726 0.1735 0.1714 0.1718 0.1727
GE,GE 0.3676 0.2111 0.2108 0.2112 0.2102 0.2099 0.2096
AXP,HD 0.4624 0.2976 0.2998 0.3023 0.2944 0.2972 0.2997
C,HD 0.2732 0.2160 0.2176 0.2165 0.2155 0.2163 0.2153
GE,HD 0.2352 0.1906 0.1913 0.1925 0.1900 0.1904 0.1917
HD,HD 0.3516 0.2165 0.2165 0.2169 0.2158 0.2157 0.2156

AXP,IBM 0.3102 0.2190 0.2180 0.2202 0.2174 0.2166 0.2189
C,IBM 0.1929 0.1529 0.1539 0.1534 0.1527 0.1533 0.1532
GE,IBM 0.1768 0.1401 0.1404 0.1409 0.1399 0.1401 0.1404
HD,IBM 0.1321 0.1260 0.1257 0.1254 0.1248 0.1246 0.1246
IBM,IBM 0.3390 0.2021 0.2020 0.2021 0.2020 0.2022 0.2026
AXP,JPM 0.6646 0.3918 0.3895 0.3946 0.3894 0.3879 0.3931
C,JPM 0.4075 0.2777 0.2804 0.2803 0.2767 0.2789 0.2784
GE,JPM 0.1981 0.1758 0.1757 0.1756 0.1745 0.1743 0.1744
HD,JPM 0.1619 0.1552 0.1554 0.1556 0.1550 0.1551 0.1556
IBM,JPM 0.1559 0.1498 0.1497 0.1500 0.1496 0.1498 0.1500
JPM,JPM 0.4461 0.2114 0.2112 0.2123 0.2107 0.2107 0.2116
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Figure A.1: (part 1/3) Daily realized variance time-series and daily realized covariance time-
series together with the time-series of the corresponding daily forecasts based on
the partial correlation vine data transformation approach.
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Figure A.1: (part 2/3) Daily realized variance time-series and daily realized covariance time-
series together with the time-series of the corresponding daily forecasts based on
the partial correlation vine data transformation approach.

130



A.2 Additional results for the empirical study

0

10

20

30

40

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

C
,IB

M

0

2

4

6

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

G
E

,H
D

0

3

6

9

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

G
E

,IB
M

0

3

6

9

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

G
E

,J
P

M

0

10

20

30

40

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

H
D

,IB
M

0

5

10

15

20

Ja
n 

'0
2

Ju
l '

02

Ja
n 

'0
3

Ju
l '

03

Ja
n 

'0
4

Ju
l '

04

Ja
n 

'0
5

Ju
l '

05

Ja
n 

'0
6

Ju
l '

06

Ja
n 

'0
7

Ju
l '

07

H
D

,J
P

M

historical data one-day-ahead forecasts

Figure A.1: (part 3/3) Daily realized variance time-series and daily realized covariance time-
series together with the time-series of the corresponding daily forecasts based on
the partial correlation vine data transformation approach.
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B.1 Partial derivatives of R-vine copulas

B.1.1 Partial derivatives in four dimensions

In this section, the partial derivatives for all possible four-dimensional R-vine copulas – 24 in

total – are provided. Detailed proofs for the presented expressions are in Barthel (2015, Chapter

3). Recall that in four dimensions there are only D-vine and C-vine structures.

Derivation for an underlying D-vine structure

In four dimensions, there are 12 different D-vine structures. Without loss of generality, we present

in Theorem B.1 and Corollary B.2 the partial derivatives of the copula C assuming the variable

order 1−2−3−4, i.e. the copula density c can be expressed in terms of pair-copula components

as follows

c (u1, u2, u3, u4) = c1,2 (u1, u2) c2,3 (u2, u3) c3,4 (u3, u4)

× c1,3;2{C1|2 (u1|u2) ,C3|2 (u3|u2)}c2,4;3{C2|3 (u2|u3) ,C4|3 (u4|u3)}

× c1,4;2,3{C1|2,3 (u1|u2, u3) ,C4|2,3 (u4|u2, u3)}. (B.1)

Note that the partial derivatives for all other variable orders are obtained by index permutation.

Theorem B.1. For the copula density (B.1) the following holds:

1. C (u1, u2, u3, u4)

=

∫ u2

0

∫ u3

0
c2,3 (v2, v3)C1,4;2,3{C1|2,3 (u1|v2, v3) ,C4|2,3 (u4|v2, v3)}dv3dv2

2.(a)
∂C (u1, u2, u3, u4)

∂u1

=

∫ u2

0

∫ u3

0
c1,2 (u1, v2) c2,3 (v2, v3) c1,3;2{C1|2 (u1|v2) ,C3|2 (v3|v2)}

× ∂

∂ũ1
C1,4;2,3{ũ1,C4|2,3 (u4|v2, v3)}

∣∣∣∣
ũ1=C1|2,3(u1|v2,v3)

dv3dv2
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(b)
∂C (u1, u2, u3, u4)

∂u2

=

∫ u3

0
c2,3 (u2, v3)C1,4;2,3{C1|2,3 (u1|u2, v3) ,C4|2,3 (u4|u2, v3)}dv3

(c)
∂C (u1, u2, u3, u4)

∂u3

=

∫ u2

0
c2,3 (v2, u3)C1,4;2,3{C1|2,3 (u1|v2, u3) ,C4|2,3 (u4|v2, u3)}dv2

(d)
∂C (u1, u2, u3, u4)

∂u4

=

∫ u2

0

∫ u3

0
c2,3 (v2, v3) c3,4 (v3, u4) c2,4;3{C2|3 (v2|v3) ,C4|3 (u4|v3)}

× ∂

∂ũ4
C1,4;2,3{C1|2,3 (u1|v2, v3) , ũ4}

∣∣∣∣
ũ4=C4|2,3(u4|v2,v3)

dv3dv2

3.(a)
∂2C (u1, u2, u3, u4)

∂u1∂u2

=

∫ u3

0
c1,2 (u1, u2) c2,3 (u2, v3) c1,3;2{C1|2 (u1|u2) ,C3|2 (v3|u2)}

× ∂

∂ũ1
C1,4;2,3{ũ1,C4|2,3 (u4|u2, v3)}

∣∣∣∣
ũ1=C1|2,3(u1|u2,v3)

dv3

(b)
∂2C (u1, u2, u3, u4)

∂u1∂u3

=

∫ u2

0
c1,2 (u1, v2) c2,3 (v2, u3) c1,3;2{C1|2 (u1|v2) ,C3|2 (u3|v2)}

× ∂

∂ũ1
C1,4;2,3{ũ1,C4|2,3 (u4|v2, u3)}

∣∣∣∣
ũ1=C1|2,3(u1|v2,u3)

dv2

(c)
∂2C (u1, u2, u3, u4)

∂u1∂u4

=

∫ u2

0

∫ u3

0
c1,2 (u1, v2) c2,3 (v2, v3) c3,4 (v3, u4)

× c1,3;2{C1|2 (u1|v2) ,C3|2 (v3|v2)}c2,4;3{C2|3 (v2|v3) ,C4|3 (u4|v3)}

× c1,4;2,3{C1|2,3 (u1|v2, v3) ,C4|2,3 (u4|v2, v3)}dv3dv2

(d)
∂2C (u1, u2, u3, u4)

∂u2∂u3

= c2,3 (u2, u3)C1,4;2,3{C1|2,3 (u1|u2, u3) ,C4|2,3 (u4|u2, u3)}

(e)
∂2C (u1, u2, u3, u4)

∂u2∂u4

=

∫ u3

0
c2,3 (u2, v3) c3,4 (v3, u4) c2,4;3{C2|3 (u2|v3) ,C4|3 (u4|v3)}

× ∂

∂ũ4
C1,4;2,3{C1|2,3 (u1|u2, v3) , ũ4}

∣∣∣∣
ũ4=C4|2,3(u4|u2,v3)

dv3
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(f)
∂2C (u1, u2, u3, u4)

∂u3∂u4

=

∫ u2

0
c2,3 (v2, u3) c3,4 (u3, u4) c2,4;3{C2|3 (v2|u3) ,C4|3 (u4|u3)}

× ∂

∂ũ4
C1,4;2,3{C1|2,3 (u1|v2, u3) , ũ4}

∣∣∣∣
ũ4=C4|2,3(u4|v2,u3)

dv2

4.(a)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u3

= c1,2 (u1, u2) c2,3 (u2, u3) c1,3;2{C1|2 (u1|u2) ,C3|2 (u3|u2)}

× ∂

∂ũ1
C1,4;2,3{ũ1,C4|2,3 (u4|u2, u3)}

∣∣∣∣
ũ1=C1|2,3(u1|u2,u3)

(b)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u4

=

∫ u3

0
c1,2 (u1, u2) c2,3 (u2, v3) c3,4 (v3, u4)

× c1,3;2{C1|2 (u1|u2) ,C3|2 (v3|u2)}c2,4;3{C2|3 (u2|v3) ,C4|3 (u4|v3)}

× c1,4;2,3{C1|2,3 (u1|u2, v3) ,C4|2,3 (u4|u2, v3)}dv3

(c)
∂3C (u1, u2, u3, u4)

∂u1∂u3∂u4

=

∫ u2

0
c1,2 (u1, v2) c2,3 (v2, u3) c3,4 (u3, u4)

× c1,3;2{C1|2 (u1|v2) ,C3|2 (u3|v2)}c2,4;3{C2|3 (v2|u3) ,C4|3 (u4|u3)}

× c1,4;2,3{C1|2,3 (u1|v2, u3) ,C4|2,3 (u4|v2, u3)}dv2

(d)
∂3C (u1, u2, u3, u4)

∂u2∂u3∂u4

= c2,3 (u2, u3) c3,4 (u3, u4) c2,4;3{C2|3 (u2|u3) ,C4|3 (u4|u3)}

× ∂

∂ũ4
C1,4;2,3{C1|2,3 (u1|u2, u3) , ũ4}

∣∣∣∣
ũ4=C4|2,3(u4|u2,u3)

5. c (u1, u2, u3, u4)

= c1,2 (u1, u2) c2,3 (u2, u3) c3,4 (u3, u4)

× c1,3;2{C1|2 (u1|u2) ,C3|2 (u3|u2)}c2,4;3{C2|3 (u2|u3) ,C4|3 (u4|u3)}

× c1,4;2,3{C1|2,3 (u1|u2, u3) ,C4|2,3 (u4|u2, u3)}
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Corollary B.2. In terms of h-functions, for the copula density (B.1) the following holds:

1. C (u1, u2, u3, u4)

=

∫ u2

0

∫ u3

0
C1,4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (v3|v2)}, h4|2;3{h4|3 (u4|v3)
∣∣h2|3 (v2|v3)}

]
× c2,3 (v2, v3) dv3dv2

2.(a)
∂C (u1, u2, u3, u4)

∂u1

=

∫ u2

0

∫ u3

0
c1,2 (u1, v2) c2,3 (v2, v3) c1,3;2{h1|2 (u1|v2) , h3|2 (v3|v2)}

× h4|1;2,3

[
h4|2;3{h4|3 (u4|v3)

∣∣h2|3 (v2|v3)}
∣∣∣∣h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (v3|v2)}
]

dv3dv2

(b)
∂C (u1, u2, u3, u4)

∂u2

=

∫ u3

0
C1,4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (v3|u2)}, h4|2;3{h4|3 (u4|v3)
∣∣h2|3 (u2|v3)}

]
× c2,3 (u2, v3) dv3

(c)
∂C (u1, u2, u3, u4)

∂u3

=

∫ u2

0
C1,4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (u3|v2)}, h4|2;3{h4|3 (u4|u3)
∣∣h2|3 (v2|u3)}

]
× c2,3 (v2, u3) dv2

(d)
∂C (u1, u2, u3, u4)

∂u4

=

∫ u2

0

∫ u3

0
c2,3 (v2, v3) c3,4 (v3, u4) c2,4;3{h2|3 (v2|v3) , h4|3 (u4|v3)}

× h1|4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (v3|v2)}
∣∣∣∣h4|2;3{h4|3 (u4|v3)

∣∣h2|3 (v2|v3)}
]

dv3dv2

3.(a)
∂2C (u1, u2, u3, u4)

∂u1∂u2

=

∫ u3

0
c1,2 (u1, u2) c2,3 (u2, v3) c1,3;2{h1|2 (u1|u2) , h3|2 (v3|u2)}

× h4|1;2,3

[
h4|2;3{h4|3 (u4|v3)

∣∣h2|3 (u2|v3)}
∣∣∣∣h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (v3|u2)}
]

dv3

(b)
∂2C (u1, u2, u3, u4)

∂u1∂u3

=

∫ u2

0
c1,2 (u1, v2) c2,3 (v2, u3) c1,3;2{h1|2 (u1|v2) , h3|2 (u3|v2)}

× h4|1;2,3

[
h4|2;3{h4|3 (u4|u3)

∣∣h2|3 (v2|u3)}
∣∣∣∣h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (u3|v2)}
]

dv2
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(c)
∂2C (u1, u2, u3, u4)

∂u1∂u4

=

∫ u2

0

∫ u3

0
c1,2 (u1, v2) c2,3 (v2, v3) c3,4 (v3, u4)

× c1,3;2{h1|2 (u1|v2) , h3|2 (v3|v2)}c2,4;3{h2|3 (v2|v3) , h4|3 (u4|v3)}

× c1,4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (v3|v2)}, h4|2;3{h4|3 (u4|v3)
∣∣h2|3 (v2|v3)}

]
dv3dv2

(d)
∂2C (u1, u2, u3, u4)

∂u2∂u3

= c2,3 (u2, u3)C1,4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (u3|u2)}, h4|2;3{h4|3 (u4|u3)
∣∣h2|3 (u2|u3)}

]
(e)

∂2C (u1, u2, u3, u4)

∂u2∂u4

=

∫ u3

0
c2,3 (u2, v3) c3,4 (v3, u4) c2,4;3{h2|3 (u2|v3) , h4|3 (u4|v3)}

× h1|4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (v3|u2)}
∣∣∣∣h4|2;3{h4|3 (u4|v3)

∣∣h2|3 (u2|v3)}
]

dv3

(f)
∂2C (u1, u2, u3, u4)

∂u3∂u4

=

∫ u2

0
c2,3 (v2, u3) c3,4 (u3, u4) c2,4;3{h2|3 (v2|u3) , h4|3 (u4|u3)}

× h1|4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (u3|v2)}
∣∣∣∣h4|2;3{h4|3 (u4|u3)

∣∣h2|3 (v2|u3)}
]

dv2

4.(a)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u3

= c1,2 (u1, u2) c2,3 (u2, u3) c1,3;2{h1|2 (u1|u2) , h3|2 (u3|u2)}

× h4|1;2,3

[
h4|2;3{h4|3 (u4|u3)

∣∣h2|3 (u2|u3)}
∣∣∣∣h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (u3|u2)}
]

(b)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u4

=

∫ u3

0
c1,4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (v3|u2)}, h4|2;3{h4|3 (u4|v3)
∣∣h2|3 (u2|v3)}

]
× c1,2 (u1, u2) c2,3 (u2, v3) c3,4 (v3, u4) c1,3;2{h1|2 (u1|u2) , h3|2 (v3|u2)}

× c2,4;3{h2|3 (u2|v3) , h4|3 (u4|v3)}dv3

(c)
∂3C (u1, u2, u3, u4)

∂u1∂u3∂u4

=

∫ u2

0
c1,4;2,3

[
h1|3;2{h1|2 (u1|v2)

∣∣h3|2 (u3|v2)}, h4|2;3{h4|3 (u4|u3)
∣∣h2|3 (v2|u3)}

]
× c1,2 (u1, v2) c2,3 (v2, u3) c3,4 (u3, u4) c1,3;2{h1|2 (u1|v2) , h3|2 (u3|v2)}

× c2,4;3{h2|3 (v2|u3) , h4|3 (u4|u3)}dv2
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(d)
∂3C (u1, u2, u3, u4)

∂u2∂u3∂u4

= c2,3 (u2, u3) c3,4 (u3, u4) c2,4;3{h2|3 (u2|u3) , h4|3 (u4|u3)}

× h1|4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (u3|u2)}
∣∣∣∣h4|2;3{h4|3 (u4|u3)

∣∣h2|3 (u2|u3)}
]

5. c (u1, u2, u3, u4)

= c1,2 (u1, u2) c2,3 (u2, u3) c3,4 (u3, u4)

× c1,3;2{h1|2 (u1|u2) , h3|2 (u3|u2)}c2,4;3{h2|3 (u2|u3) , h4|3 (u4|u3)}

× c1,4;2,3

[
h1|3;2{h1|2 (u1|u2)

∣∣h3|2 (u3|u2)}, h4|2;3{h4|3 (u4|u3)
∣∣h2|3 (u2|u3)}

]

Derivation for an underlying C-vine structure

In total, there are 12 different C-vine structures. Without loss of generality, we present in

Theorem B.3 and Corollary B.4 the partial derivatives of the copula C assuming that the copula

density c can be expressed in terms of pair-copula components as follows

c (u1, u2, u3, u4) = c1,2 (u1, u2) c1,3 (u1, u3) c1,4 (u1, u4)

× c2,3;1{C2|1 (u2|u1) ,C3|1 (u3|u1)}c2,4;1{C2|1 (u2|u1) ,C4|1 (u4|u1)}

× c3,4;1,2{C3|1,2 (u3|u1, u2) ,C4|1,2 (u4|u1, u2)}. (B.2)

Note that the partial derivatives for all other variable orders are obtained by index permutation.

Theorem B.3. For the copula density (B.2) the following holds:

1. C (u1, u2, u3, u4)

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2)C3,4;1,2{C3|1,2 (u3|v1, v2) ,C4|1,2 (u4|v1, v2)}dv2dv1

2.(a)
∂C (u1, u2, u3, u4)

∂u1

=

∫ u2

0
c1,2 (u1, v2)C3,4;1,2{C3|1,2 (u3|u1, v2) ,C4|1,2 (u4|u1, v2)}dv2

(b)
∂C (u1, u2, u3, u4)

∂u2

=

∫ u1

0
c1,2 (v1, u2)C3,4;1,2{C3|1,2 (u3|v1, u2) ,C4|1,2 (u4|v1, u2)}dv1

(c)
∂C (u1, u2, u3, u4)

∂u3

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2) c1,3 (v1, u3) c2,3;1{C2|1 (v2|v1) ,C3|1 (u3|v1)}

× ∂

∂ũ3
C3,4;1,2{ũ3,C4|12 (u4|v1, v2)}

∣∣∣∣
ũ3=C3|1,2(u3|v1,v2)

dv2dv1
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(d)
∂C (u1, u2, u3, u4)

∂u4

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2) c1,4 (v1, u4) c2,4;1{C2|1 (v2|v1) ,C4|1 (u4|v1)}

× ∂

∂ũ4
C3,4;1,2{C3|1,2 (u3|v1, v2) , ũ4}

∣∣∣∣
ũ4=C4|1,2(u4|v1,v2)

dv2dv1

3.(a)
∂2C (u1, u2, u3, u4)

∂u1∂u2

= c1,2 (u1, u2)C3,4;1,2{C3|1,2 (u3|u1, u2) ,C4|1,2 (u4|u1, u2)}

(b)
∂2C (u1, u2, u3, u4)

∂u1∂u3

=

∫ u2

0
c1,2 (u1, v2) c1,3 (u1, u3) c2,3;1{C2|1 (v2|u1) ,C3|1 (u3|u1)}

× ∂

∂ũ3
C3,4;1,2{ũ3,C4|1,2 (u4|u1, v2)}

∣∣∣∣
ũ3=C3|1,2(u3|u1,v2)

dv2

(c)
∂2C (u1, u2, u3, u4)

∂u1∂u4

=

∫ u2

0
c1,2 (u1, v2) c1,4 (u1, u4) c2,4;1{C2|1 (v2|u1) ,C4|1 (u4|u1)}

× ∂

∂ũ4
C3,4;1,2{C3|1,2 (u3|u1, v2) , ũ4}

∣∣∣∣
ũ4=C4|1,2(u4|u1,v2)

dv2

(d)
∂2C (u1, u2, u3, u4)

∂u2∂u3

=

∫ u1

0
c1,2 (v1, u2) c1,3 (v1, u3) c2,3;1{C2|1 (u2|v1) ,C3|1 (u3|v1)}

× ∂

∂ũ3
C3,4;1,2{ũ3,C4|1,2 (u4|v1, u2)}

∣∣∣∣
ũ3=C3|1,2(u3|v1,u2)

dv1

(e)
∂2C (u1, u2, u3, u4)

∂u2∂u4

=

∫ u1

0
c1,2 (v1, u2) c1,4 (v1, u4) c2,4;1{C2|1 (u2|v1) ,C4|1 (u4|v1)}

× ∂

∂ũ4
C3,4;1,2{C3|1,2 (u3|v1, u2}, ũ4)

∣∣∣∣
ũ4=C4|1,2(u4|v1,u2)

dv1

(f)
∂2C (u1, u2, u3, u4)

∂u3∂u4

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2) c1,3 (v1, u3) c1,4 (v1, u4)

× c2,3;1{C2|1 (v2|v1) ,C3|1 (u3|v1)}c2,4;1{C2|1 (v2|v1) ,C4|1 (u4|v1)}

× c3,4;1,2{C3|1,2 (u3|v1, v2) ,C4|1,2 (u4|v1, v2)}dv2dv1

139



Appendix B Supplementary Material to Chapter 4

4.(a)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u3

= c1,2 (u1, u2) c1,3 (u1, u3) c2,3;1{C2|1 (u2|u1) ,C3|1 (u3|u1)}

× ∂

∂ũ3
C3,4;1,2{ũ3,C4|1,2 (u4|u1, u2)}

∣∣∣∣
ũ3=C3|1,2(u3|u1,u2)

(b)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u4

= c1,2 (u1, u2) c1,4 (u1, u4) c2,4;1{C2|1 (u2|u1) ,C4|1 (u4|u1)}

× ∂

∂ũ4
C3,4;1,2{C3|1,2 (u3|u1, u2) , ũ4}

∣∣∣∣
ũ4=C4|1,2(u4|u1,u2)

(c)
∂3C (u1, u2, u3, u4)

∂u1∂u3∂u4

=

∫ u2

0
c1,2 (u1, v2) c1,3 (u1, u3) c1,4 (u1, u4)

× c2,3;1{C2|1 (v2|u1) ,C3|1 (u3|u1)}c2,4;1{C2|1 (v2|u1) ,C4|1 (u4|u1)}

× c3,4;1,2{C3|1,2 (u3|u1, v2) ,C4|1,2 (u4|u1, v2)}dv2

(d)
∂3C (u1, u2, u3, u4)

∂u2∂u3∂u4

=

∫ u1

0
c1,2 (v1, u2) c1,3 (v1, u3) c1,4 (v1, u4)

× c2,3;1{C2|1 (u2|v1) ,C3|1 (u3|v1)}c2,4;1{C2|1 (u2|v1) ,C4|1 (u4|v1)}

× c3,4;1,2{C3|1,2 (u3|v1, u2) ,C4|1,2 (u4|v1, u2)}dv1

5. c (u1, u2, u3, u4)

= c1,2 (u1, u2) c1,3 (u1, u3) c1,4 (u1, u4)

× c2,3;1{C2|1 (u2|u1) ,C3|1 (u3|u1)}c2,4;1{C2|1 (u2|u1) ,C4|1 (u4|u1)}

× c3,4;1,2{C3|1,2 (u3|u1, u2) ,C4|1,2 (u4|u1, u2)}

Corollary B.4. In terms of h-functions, for the copula density (B.2) the following holds:

1. C (u1, u2, u3, u4)

=

∫ u1

0

∫ u2

0
C3,4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (v2|v1)}, h4|2;1{h4|1 (u4|v1)
∣∣h2|1 (v2|v1)}

]
× c1,2 (v1, v2) dv2dv1

2.(a)
∂C (u1, u2, u3, u4)

∂u1

=

∫ u2

0
C3,4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (v2|u1)}, h4|2;1{h4|1 (u4|u1)
∣∣h2|1 (v2|u1)}

]
× c1,2 (u1, v2) dv2
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(b)
∂C (u1, u2, u3, u4)

∂u2

=

∫ u1

0
C3,4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (u2|v1)}, h4|2;1{h4|1 (u4|v1)
∣∣h2|1 (u2|v1)}

]
× c1,2 (v1, u2) dv1

(c)
∂C (u1, u2, u3, u4)

∂u3

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2) c1,3 (v1, u3) c2,3;1{h2|1 (v2|v1) , h3|1 (u3|v1)}

× h4|3;1,2

[
h4|2;1{h4|1 (u4|v1)

∣∣h2|1 (v2|v1)}
∣∣∣∣h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (v2|v1)}
]

dv2dv1

(d)
∂C (u1, u2, u3, u4)

∂u4

=

∫ u1

0

∫ u2

0
c1,2 (v1, v2) c1,4 (v1, u4) c2,4;1

(
h2|1 (v2|v1) , h4|1 (u4|v1)

)
× h3|4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (v2|v1)}
∣∣∣∣h4|2;1{h4|1 (u4|v1)

∣∣h2|1 (v2|v1)}
]

dv2dv1

3.(a)
∂2C (u1, u2, u3, u4)

∂u1∂u2

= c1,2 (u1, u2)C3,4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (u2|u1)}, h4|2;1{h4|1 (u4|u1)
∣∣h2|1 (u2|u1)}

]
(b)

∂2C (u1, u2, u3, u4)

∂u1∂u3

=

∫ u2

0
c1,2 (u1, v2) c1,3 (u1, u3) c2,3;1{h2|1 (v2|u1) , h3|1 (u3|u1)}

× h4|3;1,2

[
h4|2;1{h4|1 (u4|u1)

∣∣h2|1 (v2|u1)}
∣∣∣∣h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (v2|u1)}
]

dv2

(c)
∂2C (u1, u2, u3, u4)

∂u1∂u4

=

∫ u2

0
c1,2 (u1, v2) c1,4 (u1, u4) c2,4;1{h2|1 (v2|u1) , h4|1 (u4|u1)}

× h3|4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (v2|u1)}
∣∣∣∣h4|2;1{h4|1 (u4|u1)

∣∣h2|1 (v2|u1)}
]

dv2

(d)
∂2C (u1, u2, u3, u4)

∂u2∂u3

=

∫ u1

0
c1,2 (v1, u2) c1,3 (v1, u3) c2,3;1{h2|1 (u2|v1) , h3|1 (u3|v1)}

× h4|3;1,2

[
h4|2;1{h4|1 (u4|v1)

∣∣h2|1 (u2|v1)}
∣∣∣∣h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (u2|v1)}
]

dv1

(e)
∂2C (u1, u2, u3, u4)

∂u2∂u4

=

∫ u1

0
c1,2 (v1, u2) c1,4 (v1, u4) c2,4;1{h2|1 (u2|v1) , h4|1 (u4|v1)}

× h3|4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (u2|v1)}
∣∣∣∣h4|2;1{h4|1 (u4|v1)

∣∣h2|1 (u2|v1)}
]

dv1
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(f)
∂2C (u1, u2, u3, u4)

∂u3∂u4

=

∫ u1

0

∫ u2

0
c3,4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (v2|v1)}, h4|2;1{h4|1 (u4|v1)
∣∣h2|1 (v2|v1)}

]
c1,2 (v1, v2) c1,3 (v1, u3) c1,4 (v1, u4) c2,3;1{h2|1 (v2|v1) , h3|1 (u3|v1)}

× c2,4;1{h2|1 (v2|v1) , h4|1 (u4|v1)}dv2dv1

4.(a)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u3

= c1,2 (u1, u2) c1,3 (u1, u3) c2,3;1{h2|1 (u2|u1) , h3|1 (u3|u1)}

× h4|3;1,2

[
h4|2;1{h4|1 (u4|u1)

∣∣h2|1 (u2|u1)}
∣∣∣∣h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (u2|u1)}
]

(b)
∂3C (u1, u2, u3, u4)

∂u1∂u2∂u4

= c1,2 (u1, u2) c1,4 (u1, u4) c2,4;1{h2|1 (u2|u1) , h4|1 (u4|u1)}

× h3|4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (u2|u1)}
∣∣∣∣h4|2;1{h4|1 (u4|u1)

∣∣h2|1 (u2|u1)}
]

(c)
∂3C (u1, u2, u3, u4)

∂u1∂u3∂u4

=

∫ u2

0
c3,4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (v2|u1)}, h4|2;1{h4|1 (u4|u1)
∣∣h2|1 (v2|u1)}

]
c1,2 (u1, v2) c1,3 (u1, u3) c1,4 (u1, u4) c2,3;1{h2|1 (v2|u1) , h3|1 (u3|u1)}

× c2,4;1{h2|1 (v2|u1) , h4|1 (u4|u1)}dv2

(d)
∂3C (u1, u2, u3, u4)

∂u2∂u3∂u4

=

∫ u1

0
c3,4;1,2

[
h3|2;1{h3|1 (u3|v1)

∣∣h2|1 (u2|v1)}, h4|2;1{h4|1 (u4|v1)
∣∣h2|1 (u2|v1)}

]
c1,2 (v1, u2) c1,3 (v1, u3) c1,4 (v1, u4) c2,3;1{h2|1 (u2|v1) , h3|1 (u3|v1)}

× c2,4;1{h2|1 (u2|v1) , h4|1 (u4|v1)}dv1

5. c (u1, u2, u3, u4)

= c1,2 (u1, u2) c1,3 (u1, u3) c1,4 (u1, u4)

× c2,3;1{h2|1 (u2|u1) , h3|1 (u3|u1)}c2,4;1{h2|1 (u2|u1) , h4|1 (u4|u1)}

× c3,4;1,2

[
h3|2;1{h3|1 (u3|u1)

∣∣h2|1 (u2|u1)}, h4|2;1{h4|1 (u4|u1)
∣∣h2|1 (u2|u1)}

]
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B.1 Partial derivatives of R-vine copulas

B.1.2 Conditional distribution of the leaf variable in a D-vine copula

Theorem B.5. If the d-dimensional copula C1:d arises from an ordered simplified D-vine copula

the following holds:

∂d−1C1:d(u1, . . . , ud)

∂u1 · · · ∂ud−1
= c1:d−1(u1, . . . , ud−1)Cd|1:d−1(ud|u1:d−1).

Proof. To proof the equality, we first note that

∂d−1C1:d (u1, . . . , ud)

∂u1 · · · ∂ud−1
=

∫ ud

0
c1:d (u1, . . . , ud−1, v) dv. (B.3)

Then, using

Cd|1:d−1(ud|u1:d−1) =

∫ ud

0
cd|1:d−1 (v|u1:d−1) dv

=

∫ ud

0

c1:d (u1, . . . , ud−1, v)

c1:d−1 (u1, . . . , ud−1)
dv

we obtain

c1:d−1 (u1, . . . , ud−1)Cd|1:d−1(ud|u1:d−1) =

∫ ud

0
c1:d (u1, . . . , ud−1, v) dv,

which combined with (B.3) concludes the proof.
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B.2 Additional simulation results for Section 4.2.4

Table B.1: Overview of considered simulation settings with references to corresponding results.

Kendall’s τ values Copula family in T1 Censoring Sample size Table and page

τ1,2 = τ2,3 = τ1,3;2 = 0.3

Clayton
65%

200
Table B.2 (page 145)

500

25% 500
Table B.3 (page 146)

complete data 500

Gumbel
65%

200
Table B.4 (page 147)

500

25% 500
Table B.5 (page 148)

complete data 500

τ1,2 = τ2,3 = τ1,3;2 = 0.1

Clayton
65%

200
Table B.6 (page 149)

500

25% 500
Table B.7 (page 150)

complete data 500

Gumbel
65%

200
Table B.8 (page 151)

500

25% 500
Table B.9 (page 152)

complete data 500
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Table B.2: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true τ1,2 = τ2,3 =
τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated margins
(KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

20
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.86 0.90 0.0410 0.1461 0.1478 0.30 0.30 -0.0015 0.0078 0.0078

C θ2,3 0.86 0.87 0.0170 0.0768 0.0771 0.30 0.30 -0.0023 0.0045 0.0046
F θ1,3;2 2.92 3.08 0.1652 0.8452 0.8725 0.30 0.31 0.0092 0.0063 0.0064

M
L

E C θ1,2 0.86 0.91 0.0495 0.1525 0.1550 0.30 0.30 0.0002 0.0080 0.0080
C θ2,3 0.86 0.88 0.0274 0.0858 0.0865 0.30 0.30 -0.0004 0.0050 0.0050
F θ1,3;2 2.92 3.09 0.1771 0.8877 0.9190 0.30 0.31 0.0100 0.0065 0.0066

K
M

E C θ1,2 0.86 0.91 0.0506 0.1576 0.1602 0.30 0.30 0.0001 0.0082 0.0082
C θ2,3 0.86 0.88 0.0201 0.0856 0.0860 0.30 0.30 -0.0023 0.0051 0.0051
F θ1,3;2 2.92 3.13 0.2138 0.9328 0.9786 0.30 0.31 0.0129 0.0068 0.0069

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.86 0.86 0.0070 0.0580 0.0581 0.30 0.30 -0.0032 0.0034 0.0034

C θ2,3 0.86 0.86 0.0058 0.0288 0.0288 0.30 0.30 -0.0010 0.0017 0.0017
F θ1,3;2 2.92 3.02 0.1038 0.3549 0.3657 0.30 0.31 0.0069 0.0027 0.0027

M
L

E C θ1,2 0.86 0.87 0.0087 0.0612 0.0612 0.30 0.30 -0.0030 0.0036 0.0036
C θ2,3 0.86 0.86 0.0074 0.0308 0.0309 0.30 0.30 -0.0008 0.0018 0.0018
F θ1,3;2 2.92 3.02 0.1065 0.3635 0.3748 0.30 0.31 0.0071 0.0027 0.0028

K
M

E C θ1,2 0.86 0.86 0.0065 0.0614 0.0615 0.30 0.30 -0.0035 0.0036 0.0036
C θ2,3 0.86 0.86 0.0018 0.0304 0.0304 0.30 0.30 -0.0021 0.0018 0.0018
F θ1,3;2 2.92 3.03 0.1154 0.3665 0.3798 0.30 0.31 0.0078 0.0027 0.0028
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Table B.3: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common
right-censored event time data with sample size 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true
τ1,2 = τ2,3 = τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (ECDF/KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.86 0.87 0.0170 0.0145 0.0148 0.30 0.30 0.0029 0.0008 0.0009

C θ2,3 0.86 0.86 0.0014 0.0102 0.0102 0.30 0.30 -0.0005 0.0006 0.0006
F θ1,3;2 2.92 2.96 0.0425 0.1144 0.1162 0.30 0.30 0.0030 0.0009 0.0009

M
L

E C θ1,2 0.86 0.87 0.0175 0.0185 0.0188 0.30 0.30 0.0027 0.0011 0.0011
C θ2,3 0.86 0.86 -0.0009 0.0136 0.0136 0.30 0.30 -0.0014 0.0008 0.0008
F θ1,3;2 2.92 2.96 0.0401 0.1181 0.1197 0.30 0.30 0.0028 0.0009 0.0009

K
M

E C θ1,2 0.86 0.86 0.0037 0.0180 0.0180 0.30 0.30 -0.0006 0.0011 0.0011
C θ2,3 0.86 0.84 -0.0141 0.0140 0.0142 0.30 0.30 -0.0047 0.0009 0.0009
F θ1,3;2 2.92 2.96 0.0454 0.1220 0.1241 0.30 0.30 0.0032 0.0009 0.0009

n
=

50
0,

co
m

p
le

te
d
at

a

K
n

ow
n C θ1,2 0.86 0.87 0.0136 0.0067 0.0069 0.30 0.30 0.0027 0.0004 0.0004

C θ2,3 0.86 0.86 0.0059 0.0071 0.0071 0.30 0.30 0.0008 0.0004 0.0004
F θ1,3;2 2.92 2.97 0.0536 0.0847 0.0875 0.30 0.30 0.0042 0.0007 0.0007

M
L

E C θ1,2 0.86 0.86 0.0052 0.0108 0.0108 0.30 0.30 0.0004 0.0007 0.0007
C θ2,3 0.86 0.85 -0.0025 0.0108 0.0108 0.30 0.30 -0.0015 0.0007 0.0007
F θ1,3;2 2.92 2.96 0.0397 0.0821 0.0837 0.30 0.30 0.0030 0.0006 0.0006

E
C

D
F C θ1,2 0.86 0.88 0.0222 0.0112 0.0117 0.30 0.30 0.0045 0.0007 0.0007

C θ2,3 0.86 0.87 0.0138 0.0115 0.0117 0.30 0.30 0.0024 0.0007 0.0007
F θ1,3;2 2.92 2.96 0.0423 0.0858 0.0876 0.30 0.30 0.0032 0.0007 0.0007
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Table B.4: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true τ1,2 = τ2,3 =
τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated margins
(KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)
n

=
20

0,
65

%
ce

n
so

ri
n

g

K
n

ow
n G θ1,2 1.43 1.44 0.0086 0.0121 0.0122 0.30 0.30 0.0001 0.0029 0.0029

G θ2,3 1.43 1.44 0.0084 0.0082 0.0082 0.30 0.30 0.0013 0.0020 0.0020
F θ1,3;2 2.92 3.02 0.0992 0.8832 0.8930 0.30 0.30 0.0034 0.0067 0.0067

M
L

E G θ1,2 1.43 1.44 0.0148 0.0138 0.0140 0.30 0.30 0.0026 0.0032 0.0032
G θ2,3 1.43 1.44 0.0131 0.0106 0.0108 0.30 0.30 0.0028 0.0025 0.0025
F θ1,3;2 2.92 3.04 0.1179 0.9273 0.9411 0.30 0.30 0.0047 0.0070 0.0070

K
M

E G θ1,2 1.43 1.47 0.0464 0.0163 0.0184 0.30 0.32 0.0170 0.0035 0.0038
G θ2,3 1.43 1.47 0.0365 0.0112 0.0125 0.30 0.31 0.0139 0.0025 0.0027
F θ1,3;2 2.92 3.07 0.1511 0.9618 0.9846 0.30 0.31 0.0074 0.0072 0.0072

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 1.43 1.44 0.0080 0.0053 0.0053 0.30 0.30 0.0022 0.0012 0.0012

G θ2,3 1.43 1.43 0.0030 0.0032 0.0033 0.30 0.30 0.0003 0.0008 0.0008
F θ1,3;2 2.92 2.96 0.0454 0.3610 0.3630 0.30 0.30 0.0018 0.0027 0.0027

M
L

E G θ1,2 1.43 1.44 0.0081 0.0064 0.0064 0.30 0.30 0.0018 0.0015 0.0015
G θ2,3 1.43 1.43 0.0038 0.0040 0.0040 0.30 0.30 0.0005 0.0010 0.0010
F θ1,3;2 2.92 2.96 0.0446 0.3685 0.3705 0.30 0.30 0.0017 0.0028 0.0028

K
M

E G θ1,2 1.43 1.45 0.0210 0.0074 0.0078 0.30 0.31 0.0077 0.0017 0.0017
G θ2,3 1.43 1.44 0.0127 0.0042 0.0044 0.30 0.30 0.0048 0.0010 0.0010
F θ1,3;2 2.92 2.98 0.0620 0.3768 0.3806 0.30 0.30 0.0031 0.0028 0.0028
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Table B.5: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common
right-censored event time data with sample size 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true
τ1,2 = τ2,3 = τ1,3;2 = 0.3 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (ECDF/KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 1.43 1.44 0.0071 0.0029 0.0029 0.30 0.30 0.0025 0.0007 0.0007

G θ2,3 1.43 1.43 0.0022 0.0025 0.0025 0.30 0.30 0.0002 0.0006 0.0006
F θ1,3;2 2.92 2.95 0.0312 0.1125 0.1135 0.30 0.30 0.0020 0.0009 0.0009

M
L

E G θ1,2 1.43 1.44 0.0090 0.0037 0.0037 0.30 0.30 0.0031 0.0009 0.0009
G θ2,3 1.43 1.43 0.0041 0.0030 0.0030 0.30 0.30 0.0010 0.0007 0.0007
F θ1,3;2 2.92 2.94 0.0245 0.1139 0.1145 0.30 0.30 0.0014 0.0009 0.0009

K
M

E G θ1,2 1.43 1.44 0.0136 0.0039 0.0041 0.30 0.31 0.0053 0.0009 0.0009
G θ2,3 1.43 1.44 0.0077 0.0031 0.0031 0.30 0.30 0.0027 0.0007 0.0007
F θ1,3;2 2.92 2.95 0.0295 0.1168 0.1177 0.30 0.30 0.0019 0.0009 0.0009

n
=

50
0,

co
m

p
le

te
d

at
a

K
n

ow
n G θ1,2 1.43 1.44 0.0069 0.0023 0.0023 0.30 0.30 0.0026 0.0005 0.0005

G θ2,3 1.43 1.43 0.0028 0.0023 0.0023 0.30 0.30 0.0006 0.0006 0.0006
F θ1,3;2 2.92 2.96 0.0474 0.0895 0.0917 0.30 0.30 0.0036 0.0007 0.0007

M
L

E G θ1,2 1.43 1.43 0.0041 0.0027 0.0027 0.30 0.30 0.0011 0.0006 0.0006
G θ2,3 1.43 1.43 0.0004 0.0028 0.0028 0.30 0.30 -0.0008 0.0007 0.0007
F θ1,3;2 2.92 2.95 0.0305 0.0873 0.0882 0.30 0.30 0.0021 0.0007 0.0007

E
C

D
F G θ1,2 1.43 1.44 0.0134 0.0031 0.0033 0.30 0.31 0.0055 0.0007 0.0007

G θ2,3 1.43 1.44 0.0093 0.0030 0.0031 0.30 0.30 0.0035 0.0007 0.0007
F θ1,3;2 2.92 2.95 0.0337 0.0892 0.0904 0.30 0.30 0.0024 0.0007 0.0007
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Table B.6: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true τ1,2 = τ2,3 =
τ1,3;2 = 0.1 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated margins
(KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

20
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.22 0.27 0.0487 0.0550 0.0573 0.10 0.11 0.0106 0.0074 0.0075

C θ2,3 0.22 0.26 0.0341 0.0353 0.0365 0.10 0.11 0.0077 0.0051 0.0052
F θ1,3;2 0.91 1.02 0.1120 0.6702 0.6827 0.10 0.11 0.0101 0.0075 0.0076

M
L

E C θ1,2 0.22 0.27 0.0511 0.0565 0.0592 0.10 0.11 0.0113 0.0075 0.0076
C θ2,3 0.22 0.26 0.0363 0.0364 0.0377 0.10 0.11 0.0084 0.0052 0.0053
F θ1,3;2 0.91 1.02 0.1108 0.7013 0.7136 0.10 0.11 0.0099 0.0078 0.0079

K
M

E C θ1,2 0.22 0.28 0.0564 0.0575 0.0606 0.10 0.11 0.0132 0.0076 0.0077
C θ2,3 0.22 0.26 0.0386 0.0361 0.0376 0.10 0.11 0.0094 0.0052 0.0053
F θ1,3;2 0.91 1.02 0.1103 0.7159 0.7281 0.10 0.11 0.0098 0.0080 0.0081

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.22 0.23 0.0099 0.0237 0.0238 0.10 0.10 -0.0002 0.0037 0.0037

C θ2,3 0.22 0.23 0.0101 0.0137 0.0138 0.10 0.10 0.0017 0.0021 0.0021
F θ1,3;2 0.91 0.96 0.0507 0.2776 0.2801 0.10 0.10 0.0047 0.0032 0.0032

M
L

E C θ1,2 0.22 0.23 0.0107 0.0241 0.0242 0.10 0.10 0.0001 0.0037 0.0037
C θ2,3 0.22 0.23 0.0094 0.0134 0.0135 0.10 0.10 0.0014 0.0021 0.0021
F θ1,3;2 0.91 0.96 0.0514 0.2776 0.2802 0.10 0.10 0.0048 0.0032 0.0032

K
M

E C θ1,2 0.22 0.24 0.0134 0.0234 0.0236 0.10 0.10 0.0013 0.0036 0.0036
C θ2,3 0.22 0.23 0.0087 0.0135 0.0136 0.10 0.10 0.0011 0.0021 0.0021
F θ1,3;2 0.91 0.96 0.0552 0.2797 0.2828 0.10 0.11 0.0052 0.0032 0.0033
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Table B.7: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common
right-censored event time data with sample size 500. The copula combination Clayton (C), Clayton (C), Frank (F) with true
τ1,2 = τ2,3 = τ1,3;2 = 0.1 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (ECDF/KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n C θ1,2 0.22 0.23 0.0031 0.0078 0.0078 0.10 0.10 -0.0001 0.0013 0.0013

C θ2,3 0.22 0.22 0.0024 0.0054 0.0054 0.10 0.10 -0.0000 0.0009 0.0009
F θ1,3;2 0.91 0.95 0.0395 0.0908 0.0924 0.10 0.10 0.0040 0.0011 0.0011

M
L

E C θ1,2 0.22 0.22 -0.0002 0.0080 0.0080 0.10 0.10 -0.0015 0.0013 0.0013
C θ2,3 0.22 0.22 -0.0009 0.0054 0.0054 0.10 0.10 -0.0013 0.0009 0.0009
F θ1,3;2 0.91 0.95 0.0379 0.0887 0.0902 0.10 0.10 0.0038 0.0010 0.0010

K
M

E C θ1,2 0.22 0.22 0.0017 0.0077 0.0077 0.10 0.10 -0.0007 0.0012 0.0012
C θ2,3 0.22 0.22 0.0009 0.0057 0.0057 0.10 0.10 -0.0007 0.0009 0.0009
F θ1,3;2 0.91 0.94 0.0355 0.0894 0.0907 0.10 0.10 0.0036 0.0010 0.0011

n
=

50
0,

co
m

p
le

te
d
at

a

K
n

ow
n C θ1,2 0.22 0.22 0.0024 0.0036 0.0036 0.10 0.10 0.0003 0.0006 0.0006

C θ2,3 0.22 0.23 0.0031 0.0036 0.0036 0.10 0.10 0.0006 0.0006 0.0006
F θ1,3;2 0.91 0.94 0.0285 0.0675 0.0683 0.10 0.10 0.0029 0.0008 0.0008

M
L

E C θ1,2 0.22 0.22 -0.0005 0.0040 0.0040 0.10 0.10 -0.0009 0.0007 0.0007
C θ2,3 0.22 0.22 0.0012 0.0038 0.0038 0.10 0.10 -0.0002 0.0006 0.0006
F θ1,3;2 0.91 0.93 0.0197 0.0657 0.0660 0.10 0.10 0.0019 0.0008 0.0008

E
C

D
F C θ1,2 0.22 0.23 0.0100 0.0043 0.0044 0.10 0.10 0.0033 0.0007 0.0007

C θ2,3 0.22 0.23 0.0112 0.0042 0.0043 0.10 0.10 0.0038 0.0007 0.0007
F θ1,3;2 0.91 0.93 0.0214 0.0670 0.0675 0.10 0.10 0.0021 0.0008 0.0008
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Table B.8: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of 65% common right-censored
event time data with sample sizes 200 and 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true τ1,2 = τ2,3 =
τ1,3;2 = 0.1 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated margins
(KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

20
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 1.11 1.12 0.0087 0.0049 0.0050 0.10 0.10 0.0036 0.0030 0.0030

G θ2,3 1.11 1.12 0.0068 0.0036 0.0036 0.10 0.10 0.0029 0.0023 0.0023
F θ1,3;2 0.91 0.97 0.0641 0.6779 0.6821 0.10 0.10 0.0050 0.0076 0.0076

M
L

E G θ1,2 1.11 1.12 0.0091 0.0048 0.0049 0.10 0.10 0.0039 0.0030 0.0030
G θ2,3 1.11 1.12 0.0070 0.0037 0.0038 0.10 0.10 0.0030 0.0024 0.0024
F θ1,3;2 0.91 0.97 0.0649 0.6984 0.7026 0.10 0.11 0.0050 0.0078 0.0079

K
M

E G θ1,2 1.11 1.13 0.0231 0.0058 0.0063 0.10 0.11 0.0145 0.0034 0.0036
G θ2,3 1.11 1.13 0.0179 0.0041 0.0044 0.10 0.11 0.0114 0.0025 0.0027
F θ1,3;2 0.91 0.98 0.0717 0.6913 0.6964 0.10 0.11 0.0058 0.0078 0.0078

n
=

50
0,

65
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 1.11 1.11 0.0032 0.0017 0.0018 0.10 0.10 0.0013 0.0011 0.0011

G θ2,3 1.11 1.11 0.0004 0.0013 0.0013 0.10 0.10 -0.0006 0.0008 0.0008
F θ1,3;2 0.91 0.92 0.0156 0.2675 0.2678 0.10 0.10 0.0009 0.0031 0.0031

M
L

E G θ1,2 1.11 1.11 0.0030 0.0018 0.0018 0.10 0.10 0.0012 0.0012 0.0012
G θ2,3 1.11 1.11 0.0007 0.0013 0.0013 0.10 0.10 -0.0004 0.0009 0.0009
F θ1,3;2 0.91 0.92 0.0147 0.2674 0.2676 0.10 0.10 0.0008 0.0031 0.0031

K
M

E G θ1,2 1.11 1.12 0.0097 0.0020 0.0021 0.10 0.11 0.0063 0.0013 0.0013
G θ2,3 1.11 1.12 0.0051 0.0014 0.0014 0.10 0.10 0.0031 0.0009 0.0009
F θ1,3;2 0.91 0.93 0.0233 0.2635 0.2641 0.10 0.10 0.0018 0.0030 0.0030
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Table B.9: Performance measures for the estimation of the copula parameters and Kendall’s τ values in case of complete and 25% common
right-censored event time data with sample size 500. The copula combination Gumbel (G), Gumbel (G), Frank (F) with true
τ1,2 = τ2,3 = τ1,3;2 = 0.1 is investigated. Known margins, parametrically estimated margins (MLE) and nonparametrically estimated
margins (ECDF/KME) are considered.

Copula parameter Kendall’s τ

θ θ̄ b̂
(
θ̄
)

s2
(
θ̄
)

m̂se
(
θ̄
)

τ τ̄ b̂ (τ̄) s2 (τ̄) m̂se (τ̄)

n
=

50
0,

25
%

ce
n

so
ri

n
g

K
n

ow
n G θ1,2 1.11 1.11 0.0031 0.0013 0.0013 0.10 0.10 0.0015 0.0009 0.0009

G θ2,3 1.11 1.11 0.0008 0.0011 0.0011 0.10 0.10 -0.0002 0.0007 0.0007
F θ1,3;2 0.91 0.94 0.0364 0.0898 0.0911 0.10 0.10 0.0037 0.0010 0.0011

M
L

E G θ1,2 1.11 1.11 0.0033 0.0014 0.0014 0.10 0.10 0.0016 0.0009 0.0009
G θ2,3 1.11 1.11 0.0015 0.0012 0.0012 0.10 0.10 0.0003 0.0008 0.0008
F θ1,3;2 0.91 0.94 0.0335 0.0889 0.0900 0.10 0.10 0.0034 0.0010 0.0010

K
M

E G θ1,2 1.11 1.12 0.0072 0.0015 0.0015 0.10 0.10 0.0048 0.0009 0.0010
G θ2,3 1.11 1.12 0.0044 0.0012 0.0012 0.10 0.10 0.0027 0.0007 0.0008
F θ1,3;2 0.91 0.94 0.0344 0.0885 0.0897 0.10 0.10 0.0035 0.0010 0.0010

n
=

50
0,

co
m

p
le

te
d

at
a

K
n

ow
n G θ1,2 1.11 1.11 0.0025 0.0011 0.0011 0.10 0.10 0.0013 0.0007 0.0007

G θ2,3 1.11 1.11 0.0008 0.0010 0.0010 0.10 0.10 -0.0001 0.0007 0.0007
F θ1,3;2 0.91 0.93 0.0253 0.0679 0.0685 0.10 0.10 0.0025 0.0008 0.0008

M
L

E G θ1,2 1.11 1.11 0.0015 0.0011 0.0011 0.10 0.10 0.0004 0.0007 0.0007
G θ2,3 1.11 1.11 0.0002 0.0011 0.0011 0.10 0.10 -0.0006 0.0007 0.0007
F θ1,3;2 0.91 0.92 0.0168 0.0664 0.0667 0.10 0.10 0.0016 0.0008 0.0008

E
C

D
F G θ1,2 1.11 1.12 0.0062 0.0012 0.0012 0.10 0.10 0.0041 0.0008 0.0008

G θ2,3 1.11 1.12 0.0045 0.0011 0.0012 0.10 0.10 0.0028 0.0007 0.0007
F θ1,3;2 0.91 0.93 0.0187 0.0673 0.0676 0.10 0.10 0.0018 0.0008 0.0008
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B.3 Additional bootstrapping results for Section 4.3.2

In this chapter, detailed results of the parametric and nonparametric copula bootstrap as ap-

plied to the four R-vine copula models that best describe the mastitis data (see Table 4.9 in

Section 4.3.2) are shown. All results are based on 100 replications. Each table contains in lines

1-4 the results for the copula parameters, in lines 5-8 the results for the Kendall’s τ values and in

lines 9-12 the results for the lower tail-dependence coefficients λL (LTD). Since Frank (F) copulas

do not exhibit any tail-dependence, the latter are only reported for Clayton (C) copulas. First,

the underlying model, i.e. the model estimated for the mastitis data, is given. Second, we pro-

vide estimation results, when refitting 100 simulated (based on the parametric model) data sets

before censoring is induced, i.e. in case of complete data. This serves as a benchmark to assess

the impact of information loss due to right-censoring. Second, we give estimation results in case

of 66% censoring (as in the mastitis data) using the parametric bootstrap (PB) introduced in

Section 4.3.1. Fourth, results based on a nonparametric bootstrap (NPB) are shown. We always

list the mean estimate together with the corresponding standard error (in parenthesis).

1st best model

• global likelihood estimation

P
a
ra

m
et

er model F ; θ̂1,3 : 6.56 F ; θ̂3,4 : 6.34 F ; θ̂2,4 : 6.99 F ; θ̂1,4;3 : 1.68 F ; θ̂2,3;4 : 2.79 F ; θ̂1,2;3,4 : 3.71

complete data 6.641 (0.406) 6.324 (0.377) 7.045 (0.444) 1.712 (0.295) 2.794 (0.304) 3.715 (0.353)

66% cens. PB 6.727 (0.797) 6.376 (0.746) 7.102 (0.770) 1.792 (0.549) 2.886 (0.553) 3.740 (0.650)

66% cens. NPB 6.526 (0.756) 6.493 (0.865) 7.128 (0.728) 1.812 (0.688) 2.887 (0.628) 3.593 (0.741)

K
en

d
a
ll
’s
τ

model F ; τ̂1,3 : 0.54 F ; τ̂3,4 : 0.53 F ; τ̂2,4 : 0.56 F ; τ̂1,4;3 : 0.18 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.37

complete data 0.545 (0.019) 0.530 (0.019) 0.563 (0.020) 0.184 (0.030) 0.288 (0.027) 0.366 (0.027)

66% cens. PB 0.547 (0.036) 0.531 (0.036) 0.565 (0.034) 0.192 (0.055) 0.295 (0.049) 0.366 (0.050)

66% cens. NPB 0.538 (0.035) 0.536 (0.040) 0.566 (0.031) 0.193 (0.069) 0.295 (0.055) 0.353 (0.058)

L
T

D

model

complete data

66% cens. PB

66% cens. NPB

• T1-sequential likelihood estimation

P
a
ra

m
et

er model F ; θ̂1,3 : 6.38 F ; θ̂3,4 : 6.34 F ; θ̂2,4 : 6.77 F ; θ̂1,4;3 : 1.67 F ; θ̂2,3;4 : 2.81 F ; θ̂1,2;3,4 : 3.72

complete data 6.641 (0.406) 6.324 (0.377) 7.045 (0.444) 1.712 (0.295) 2.794 (0.304) 3.715 (0.353)

66% cens. PB 6.561 (0.808) 6.367 (0.786) 6.860 (0.802) 1.771 (0.565) 2.917 (0.566) 3.733 (0.629)

66% cens. NPB 6.377 (0.768) 6.407 (0.906) 6.833 (0.784) 1.767 (0.677) 2.876 (0.616) 3.602 (0.725)

K
en

d
a
ll
’s
τ

model F ; τ̂1,3 : 0.53 F ; τ̂3,4 : 0.53 F ; τ̂2,4 : 0.55 F ; τ̂1,4;3 : 0.18 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.37

complete data 0.537 (0.019) 0.530 (0.019) 0.553 (0.020) 0.183 (0.030) 0.291 (0.027) 0.366 (0.027)

66% cens. PB 0.540 (0.038) 0.530 (0.038) 0.553 (0.036) 0.189 (0.057) 0.298 (0.050) 0.365 (0.049)

66% cens. NPB 0.531 (0.037) 0.531 (0.043) 0.552 (0.035) 0.188 (0.069) 0.294 (0.054) 0.354 (0.057)

L
T

D

model

complete data

66% cens. PB

66% cens. NPB
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2nd best model

• global likelihood estimation

P
a
ra

m
et

er model C; θ̂1,3 : 3.78 F ; θ̂3,4 : 6.39 F ; θ̂2,4 : 6.93 F ; θ̂1,4;3 : 1.51 F ; θ̂2,3;4 : 2.78 F ; θ̂1,2;3,4 : 3.48

complete data 3.810 (0.214) 6.364 (0.384) 6.972 (0.447) 1.538 (0.286) 2.768 (0.298) 3.516 (0.335)

66% cens. PB 3.824 (0.580) 6.420 (0.754) 7.052 (0.742) 1.624 (0.530) 2.858 (0.510) 3.491 (0.614)

66% cens. NPB 3.675 (0.591) 6.502 (0.859) 7.108 (0.707) 1.619 (0.689) 2.835 (0.645) 3.349 (0.7)

K
en

d
a
ll
’s
τ

model C; τ̂1,3 : 0.65 F ; τ̂3,4 : 0.53 F ; τ̂2,4 : 0.56 F ; τ̂1,4;3 : 0.16 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.35

complete data 0.655 (0.013) 0.532 (0.019) 0.560 (0.020) 0.167 (0.030) 0.286 (0.027) 0.350 (0.027)

66% cens. PB 0.653 (0.035) 0.533 (0.036) 0.562 (0.033) 0.175 (0.054) 0.293 (0.046) 0.346 (0.049)

66% cens. NPB 0.644 (0.036) 0.536 (0.040) 0.565 (0.030) 0.173 (0.070) 0.290 (0.057) 0.334 (0.057)

L
T

D

model C; λ̂L1,3 : 0.83

complete data 0.833 (0.008)

66% cens. PB 0.831 (0.024)

66% cens. NPB 0.825 (0.025)

• T1-sequential likelihood estimation

P
a
ra

m
et

er model C; θ̂1,3 : 3.60 F ; θ̂3,4 : 6.34 F ; θ̂2,4 : 6.77 F ; θ̂1,4;3 : 1.49 F ; θ̂2,3;4 : 2.81 F ; θ̂1,2;3,4 : 3.48

complete data 3.629 (0.206) 6.315 (0.382) 6.806 (0.441) 1.508 (0.287) 2.797 (0.297) 3.523 (0.335)

66% cens. PB 3.653 (0.578) 6.379 (0.785) 6.863 (0.786) 1.613 (0.576) 2.884 (0.534) 3.493 (0.633)

66% cens. NPB 3.566 (0.599) 6.407 (0.906) 6.833 (0.784) 1.587 (0.678) 2.826 (0.643) 3.361 (0.684)

K
en

d
a
ll
’s
τ

model C; τ̂1,3 : 0.64 F ; τ̂3,4 : 0.53 F ; τ̂2,4 : 0.55 F ; τ̂1,4;3 : 0.16 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.35

complete data 0.644 (0.013) 0.530 (0.019) 0.553 (0.020) 0.164 (0.030) 0.289 (0.027) 0.350 (0.027)

66% cens. PB 0.643 (0.037) 0.531 (0.038) 0.554 (0.035) 0.173 (0.059) 0.295 (0.048) 0.346 (0.051)

66% cens. NPB 0.637 (0.039) 0.531 (0.043) 0.552 (0.035) 0.170 (0.070) 0.289 (0.057) 0.335 (0.056)

L
T

D

model C; λ̂L1,3 : 0.82

complete data 0.826 (0.009)

66% cens. PB 0.824 (0.026)

66% cens. NPB 0.819 (0.028)

3rd best model

• global likelihood estimation

P
a
ra

m
et

er model F ; θ̂1,3 : 6.51 F ; θ̂3,4 : 6.36 C; θ̂2,4 : 4.10 F ; θ̂1,4;3 : 1.57 F ; θ̂2,3;4 : 2.79 F ; θ̂1,2;3,4 : 3.86

complete data 6.592 (0.407) 6.343 (0.376) 4.138 (0.237) 1.606 (0.288) 2.798 (0.302) 3.869 (0.357)

66% cens. PB 6.676 (0.792) 6.406 (0.719) 4.134 (0.612) 1.668 (0.549) 2.889 (0.550) 3.887 (0.650)

66% cens. NPB 6.539 (0.738) 6.471 (0.835) 4.139 (0.593) 1.674 (0.682) 2.836 (0.633) 3.704 (0.752)

K
en

d
a
ll
’s
τ

model F ; τ̂1,3 : 0.54 F ; τ̂3,4 : 0.53 C; τ̂2,4 : 0.67 F ; τ̂1,4;3 : 0.17 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.38

complete data 0.543 (0.019) 0.531 (0.019) 0.674 (0.013) 0.174 (0.030) 0.289 (0.027) 0.377 (0.027)

66% cens. PB 0.545 (0.036) 0.533 (0.035) 0.671 (0.033) 0.179 (0.056) 0.296 (0.049) 0.377 (0.050)

66% cens. NPB 0.539 (0.034) 0.535 (0.039) 0.671 (0.031) 0.179 (0.070) 0.29 (0.056) 0.362 (0.058)

L
T

D

model C; λ̂L2,4 : 0.84

complete data 0.845 (0.008)

66% cens. PB 0.843 (0.022)

66% cens. NPB 0.843 (0.020)
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• T1-sequential likelihood estimation

P
a
ra

m
et

er model F ; θ̂1,3 : 6.38 F ; θ̂3,4 : 6.34 C; θ̂2,4 : 3.90 F ; θ̂1,4;3 : 1.54 F ; θ̂2,3;4 : 2.76 F ; θ̂1,2;3,4 : 3.86

complete data 6.460 (0.403) 6.315 (0.375) 3.937 (0.228) 1.568 (0.288) 2.769 (0.301) 3.868 (0.358)

66% cens. PB 6.562 (0.808) 6.373 (0.791) 3.907 (0.598) 1.634 (0.550) 2.860 (0.553) 3.862 (0.635)

66% cens. NPB 6.377 (0.768) 6.407 (0.906) 3.946 (0.617) 1.649 (0.675) 2.833 (0.626) 3.721 (0.739)

K
en

d
a
ll
’s
τ

model F ; τ̂1,3 : 0.53 F ; τ̂3,4 : 0.53 C; τ̂2,4 : 0.66 F ; τ̂1,4;3 : 0.17 F ; τ̂2,3;4 : 0.29 F ; τ̂1,2;3,4 : 0.38

complete data 0.537 (0.019) 0.530 (0.019) 0.663 (0.013) 0.170 (0.030) 0.286 (0.027) 0.377 (0.027)

66% cens. PB 0.540 (0.038) 0.530 (0.039) 0.658 (0.034) 0.175 (0.056) 0.293 (0.049) 0.375 (0.048)

66% cens. NPB 0.531 (0.037) 0.531 (0.043) 0.660 (0.034) 0.176 (0.069) 0.290 (0.055) 0.363 (0.057)

L
T

D

model C; λ̂L2,4 : 0.84

complete data 0.838 (0.009)

66% cens. PB 0.834 (0.023)

66% cens. NPB 0.836 (0.023)

4th best model

• global likelihood estimation

P
a
ra

m
et

er model C; θ̂1,3 : 3.75 F ; θ̂3,4 : 6.40 C; θ̂2,4 : 4.04 F ; θ̂1,4;3 : 1.39 F ; θ̂2,3;4 : 2.72 F ; θ̂1,2;3,4 : 3.71

complete data 3.788 (0.212) 6.377 (0.380) 4.070 (0.235) 1.414 (0.274) 2.706 (0.292) 3.744 (0.339)

66% cens. PB 3.782 (0.612) 6.437 (0.742) 4.090 (0.590) 1.491 (0.552) 2.780 (0.509) 3.747 (0.625)

66% cens. NPB 3.664 (0.586) 6.501 (0.852) 4.093 (0.572) 1.490 (0.670) 2.758 (0.641) 3.550 (0.721)

K
en

d
a
ll
’s
τ

model C; τ̂1,3 : 0.65 F ; τ̂3,4 : 0.53 C; τ̂2,4 : 0.67 F ; τ̂1,4;3 : 0.15 F ; τ̂2,3;4 : 0.28 F ; τ̂1,2;3,4 : 0.37

complete data 0.654 (0.013) 0.533 (0.019) 0.670 (0.013) 0.154 (0.029) 0.281 (0.026) 0.368 (0.026)

66% cens. PB 0.650 (0.037) 0.534 (0.035) 0.669 (0.032) 0.161 (0.057) 0.286 (0.046) 0.366 (0.048)

66% cens. NPB 0.643 (0.036) 0.536 (0.039) 0.669 (0.030) 0.160 (0.069) 0.283 (0.057) 0.350 (0.057)

L
T

D

model C; λ̂L1,3 : 0.83 C; λ̂L2,4 : 0.84

complete data 0.832 (0.008) 0.843 (0.008)

66% cens. PB 0.829 (0.025) 0.841 (0.022)

66% cens. NPB 0.824 (0.024) 0.842 (0.020)

• T1-sequential likelihood estimation

P
a
ra

m
et

er model C; θ̂1,3 : 3.60 F ; θ̂3,4 : 6.34 C; θ̂2,4 : 3.90 F ; θ̂1,4;3 : 1.36 F ; θ̂2,3;4 : 2.71 F ; θ̂1,2;3,4 : 3.70

complete data 3.630 (0.206) 6.314 (0.378) 3.926 (0.229) 1.389 (0.275) 2.690 (0.291) 3.741 (0.339)

66% cens. PB 3.653 (0.578) 6.381 (0.791) 3.914 (0.588) 1.464 (0.565) 2.770 (0.530) 3.703 (0.644)

66% cens. NPB 3.566 (0.599) 6.407 (0.906) 3.946 (0.617) 1.463 (0.672) 2.742 (0.643) 3.560 (0.712)

K
en

d
a
ll
’s
τ

model C; τ̂1,3 : 0.64 F ; τ̂3,4 : 0.53 C; τ̂2,4 : 0.66 F ; τ̂1,4;3 : 0.15 F ; τ̂2,3;4 : 0.28 F ; τ̂1,2;3,4 : 0.37

complete data 0.644 (0.013) 0.530 (0.019) 0.662 (0.013) 0.151 (0.029) 0.279 (0.026) 0.368 (0.026)

66% cens. PB 0.643 (0.037) 0.531 (0.038) 0.659 (0.034) 0.158 (0.058) 0.285 (0.048) 0.363 (0.050)

66% cens. NPB 0.637 (0.039) 0.531 (0.043) 0.66 (0.034) 0.157 (0.070) 0.282 (0.058) 0.351 (0.057)

L
T

D

model C; λ̂L1,3 : 0.82 C; λ̂L2,4 : 0.84

complete data 0.826 (0.009) 0.838 (0.009)

66% cens. PB 0.824 (0.026) 0.835 (0.023)

66% cens. NPB 0.819 (0.028) 0.836 (0.023)
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Table B.10: Results for model FFF in Table 4.9: In each row, the 90% confidence intervals of
the differences between the nonparametric bootstrap based parameter estimates

(θ̂
(1)

sim, . . . , θ̂
(100)

sim ) with the true parameters underlying the D-vine copula model (θ)
and with the simulation based parameter estimates (θ̂sim) are shown in the first
and the second column, respectively. The third column contains the parameters
estimated for the simulated data set compared to the mean of the bootstrap based
parameter estimates in the fourth column. Four different seeds for data simulation
are considered.

[5%-quantile, 95%-quantile] of

θ
(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ̂sim θ̂sim mean

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)

S
im

u
la

ti
on

1 θ1,3 6.38 [-1.835, 0.366] [-0.944, 1.257] 5.489 5.613
θ3,4 : 6.34 [-1.703, 0.397] [-0.960, 1.140] 5.594 5.582
θ2,4 : 6.77 [-0.774, 1.640] [-1.015, 1.398] 7.007 7.062
θ1,4;3 : 1.67 [-0.679, 1.197] [-0.868, 1.008] 1.858 1.874
θ2,3;4 : 2.81 [-0.652, 0.820] [-0.615, 0.857] 2.773 2.867
θ1,2;3,4 : 3.72 [-1.825, 0.125] [-0.935, 1.015] 2.828 2.828

S
im

u
la

ti
o
n

2 θ1,3 : 6.38 [-1.188, 0.517] [-0.670, 1.036] 5.862 5.962
θ3,4 : 6.34 [-2.160, -0.237] [-0.814, 1.109] 4.991 5.056
θ2,4 : 6.77 [-1.283, 1.278] [-0.963, 1.598] 6.446 6.587
θ1,4;3 : 1.67 [-0.705, 1.116] [-0.944, 0.877] 1.907 1.873
θ2,3;4 : 2.81 [-1.057, 0.653] [-0.722, 0.988] 2.474 2.616
θ1,2;3,4 : 3.72 [-1.464, 0.213] [-0.802, 0.875] 3.055 3.084

S
im

u
la

ti
on

3 θ1,3 : 6.38 [-0.952, 1.382] [-1.090, 1.245] 6.518 6.554
θ3,4 : 6.34 [-1.608, 0.011] [-0.679, 0.941] 5.407 5.434
θ2,4 : 6.77 [-1.012, 0.996] [-1.008, 1.000] 6.762 6.778
θ1,4;3 : 1.67 [-0.102, 1.617] [-0.784, 0.935] 2.351 2.387
θ2,3;4 : 2.81 [ 0.167, 2.145] [-0.954, 1.024] 3.930 3.937
θ1,2;3,4 : 3.72 [-0.903, 0.698] [-0.815, 0.786] 3.629 3.607

S
im

u
la

ti
on

4 θ1,3 : 6.38 [-1.553, 0.798] [-1.126, 1.225] 5.954 6.075
θ3,4 : 6.34 [-2.122, -0.221] [-0.724, 1.177] 4.939 5.103
θ2,4 : 6.77 [-1.520, 0.609] [-0.767, 1.363] 6.012 6.251
θ1,4;3 : 1.67 [ 0.197, 1.943] [-0.963, 0.783] 2.828 2.728
θ2,3;4 : 2.81 [ 0.223, 2.229] [-0.807, 1.198] 3.840 3.937
θ1,2;3,4 : 3.72 [-0.683, 1.082] [-1.009, 0.756] 4.042 3.958
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B.3 Additional bootstrapping results for Section 4.3.2

Table B.11: Results for model CFF in Table 4.9: In each row, the 90% confidence intervals of
the differences between the nonparametric bootstrap based parameter estimates

(θ̂
(1)

sim, . . . , θ̂
(100)

sim ) with the true parameters underlying the D-vine copula model (θ)
and with the simulation based parameter estimates (θ̂sim) are shown in the first
and the second column, respectively. The third column contains the parameters
estimated for the simulated data set compared to the mean of the bootstrap based
parameter estimates in the fourth column. Four different seeds for data simulation
are considered.

[5%-quantile, 95%-quantile] of

θ
(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ̂sim θ̂sim mean

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)

S
im

u
la

ti
on

1 θ1,3 : 3.60 [-0.935, 0.952] [-0.983, 0.905] 3.645 3.598
θ3,4 : 6.34 [-1.433, 1.257] [-1.281, 1.408] 6.185 6.303
θ2,4 : 6.77 [ 0.335, 2.869] [-0.981, 1.553] 8.081 8.272
θ1,4;3 : 1.49 [-0.193, 1.315] [-0.738, 0.770] 2.030 2.024
θ2,3;4 : 2.81 [-1.189, 0.503] [-0.917, 0.775] 2.540 2.479
θ1,2;3,4 : 3.48 [ 0.053, 2.065] [-0.778, 1.234] 4.316 4.463

S
im

u
la

ti
on

2 θ1,3 : 3.60 [-1.166, 0.310] [-0.665, 0.811] 3.096 3.116
θ3,4 : 6.34 [-1.901, -0.128] [-0.735, 1.039] 5.170 5.251
θ2,4 : 6.77 [-1.428, 1.083] [-1.025, 1.486] 6.362 6.500
θ1,4;3 : 1.49 [-0.699, 1.336] [-0.982, 1.053] 1.769 1.737
θ2,3;4 : 2.81 [-1.130, 0.687] [-0.833, 0.984] 2.515 2.552
θ1,2;3,4 : 3.48 [-1.725, -0.015] [-0.889, 0.820] 2.649 2.680

S
im

u
la

ti
on

3 θ1,3 : 3.60 [-1.365, 0.318] [-0.719, 0.964] 2.951 3.055
θ3,4 : 6.34 [-2.632, -0.481] [-0.945, 1.206] 4.650 4.738
θ2,4 : 6.77 [-2.205, 0.153] [-1.080, 1.278] 5.640 5.721
θ1,4;3 : 1.49 [ 0.138, 1.569] [-0.602, 0.830] 2.225 2.289
θ2,3;4 : 2.81 [-0.069, 2.062] [-0.904, 1.227] 3.647 3.718
θ1,2;3,4 : 3.48 [-0.316, 1.615] [-0.818, 1.113] 3.986 4.071

S
im

u
la

ti
on

4 θ1,3 : 3.60 [-0.446, 1.899] [-0.992, 1.353] 4.143 4.198
θ3,4 : 6.34 [-1.105, 1.649] [-1.453, 1.301] 6.684 6.748
θ2,4 : 6.77 [-0.813, 1.763] [-1.111, 1.466] 7.063 7.087
θ1,4;3 : 1.49 [ 0.090, 1.671] [-0.734, 0.848] 2.309 2.348
θ2,3;4 : 2.81 [-1.429, 0.164] [-0.657, 0.936] 2.040 2.185
θ1,2;3,4 : 3.48 [-0.567, 1.690] [-0.941, 1.316] 3.858 4.004
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Table B.12: Results for model FFC in Table 4.9: In each row, the 90% confidence intervals of
the differences between the nonparametric bootstrap based parameter estimates

(θ̂
(1)

sim, . . . , θ̂
(100)

sim ) with the true parameters underlying the D-vine copula model (θ)
and with the simulation based parameter estimates (θ̂sim) are shown in the first
and the second column, respectively. The third column contains the parameters
estimated for the simulated data set compared to the mean of the bootstrap based
parameter estimates in the fourth column. Four different seeds for data simulation
are considered.

[5%-quantile, 95%-quantile] of

θ
(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ̂sim θ̂sim mean

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)

S
im

u
la

ti
on

1 θ1,3 : 6.38 [-1.835, 0.366] [-0.944, 1.257] 5.489 5.613
θ3,4 : 6.34 [-1.751, 0.271] [-0.963, 1.059] 5.549 5.528
θ2,4 : 3.90 [-0.756, 1.037] [-0.812, 0.981] 3.952 3.962
θ1,4;3 : 1.54 [-0.661, 1.063] [-0.797, 0.927] 1.672 1.675
θ2,3;4 : 2.76 [-0.653, 0.841] [-0.715, 0.779] 2.824 2.909
θ1,2;3,4 : 3.86 [-1.963, 0.100] [-1.099, 0.964] 2.999 3.009

S
im

u
la

ti
on

2 θ1,3 : 6.38 [-0.952, 1.382] [-1.090, 1.245] 6.518 6.554
θ3,4 : 6.34 [-1.603, -0.027] [-0.674, 0.902] 5.408 5.430
θ2,4 : 3.90 [-0.915, 0.613] [-0.740, 0.788] 3.721 3.710
θ1,4;3 : 1.54 [-0.038, 1.616] [-0.714, 0.940] 2.212 2.250
θ2,3;4 : 2.76 [ 0.226, 2.054] [-0.867, 0.961] 3.856 3.844
θ1,2;3,4 : 3.86 [-0.998, 0.758] [-0.936, 0.820] 3.801 3.781

S
im

u
la

ti
on

3 θ1,3 : 6.38 [-0.495, 2.690] [-1.399, 1.787] 7.284 7.420
θ3,4 : 6.34 [-1.290, 1.208] [-1.000, 1.498] 6.047 6.155
θ2,4 : 3.90 [-0.638, 1.075] [-0.795, 0.919] 4.053 4.064
θ1,4;3 : 1.54 [-1.526, -0.076] [-0.736, 0.715] 0.746 0.689
θ2,3;4 : 2.76 [ 0.345, 2.104] [-0.723, 1.036] 3.831 3.928
θ1,2;3,4 : 3.86 [-1.399, 0.716] [-0.881, 1.235] 3.344 3.470

S
im

u
la

ti
on

4 θ1,3 : 6.38 [-1.628, 0.815] [-1.201, 1.242] 5.954 5.954
θ3,4 : 6.34 [-2.175, -0.157] [-0.785, 1.234] 4.946 5.042
θ2,4 : 3.90 [-1.226, 0.120] [-0.659, 0.688] 3.329 3.343
θ1,4;3 : 1.54 [ 0.314, 1.948] [-0.838, 0.795] 2.689 2.669
θ2,3;4 : 2.76 [ 0.404, 2.202] [-0.718, 1.080] 3.885 3.986
θ1,2;3,4 : 3.86 [-0.443, 1.465] [-0.778, 1.129] 4.198 4.226
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B.3 Additional bootstrapping results for Section 4.3.2

Table B.13: Results for model CFC in Table 4.9: In each row, the 90% confidence intervals
of the differences between the nonparametric bootstrap based parameter estimates

(θ̂
(1)

sim, . . . , θ̂
(100)

sim ) with the true parameters underlying the D-vine copula model (θ)
and with the simulation based parameter estimates (θ̂sim) are shown in the first
and the second column, respectively. The third column contains the parameters
estimated for the simulated data set compared to the mean of the bootstrap based
parameter estimates in the fourth column. Four different seeds for data simulation
are considered.

[5%-quantile, 95%-quantile] of

θ
(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)
− θ̂sim θ̂sim mean

(
θ̂
(1)

sim, . . . , θ̂
(100)

sim

)

S
im

u
la

ti
on

1 θ1,3 : 3.60 [-0.757, 1.064] [-1.134, 0.687] 3.974 3.795
θ3,4 : 6.34 [-1.077, 1.645] [-1.097, 1.625] 6.357 6.544
θ2,4 : 3.90 [-1.079, 0.904] [-0.977, 1.005] 3.795 3.807
θ1,4;3 : 1.36 [-1.250, 0.390] [-0.568, 1.072] 0.682 0.807
θ2,3;4 : 2.71 [-0.377, 1.652] [-1.087, 0.943] 3.416 3.431
θ1,2;3,4 : 3.70 [-1.212, 0.621] [-0.949, 0.884] 3.439 3.428

S
im

u
la

ti
on

2 θ1,3 : 3.60 [-1.500, 0.155] [-0.748, 0.906] 2.846 2.913
θ3,4 : 6.34 [-1.392, 0.592] [-0.779, 1.205] 5.723 5.748
θ2,4 : 3.90 [-0.823, 1.112] [-0.957, 0.978] 4.030 4.060
θ1,4;3 : 1.36 [-0.668, 1.241] [-0.934, 0.975] 1.631 1.626
θ2,3;4 : 2.71 [-1.015, 0.473] [-0.682, 0.806] 2.374 2.482
θ1,2;3,4 : 3.70 [-2.054, 0.061] [-1.110, 1.005] 2.758 2.716

S
im

u
la

ti
on

3 θ1,3 : 3.60 [-0.987, 0.578] [-0.734, 0.831] 3.344 3.345
θ3,4 : 6.34 [-1.547, 0.128] [-0.705, 0.970] 5.494 5.508
θ2,4 : 3.90 [-0.819, 0.771] [-0.781, 0.809] 3.859 3.841
θ1,4;3 : 1.36 [ 0.164, 1.656] [-0.575, 0.917] 2.103 2.153
θ2,3;4 : 2.71 [ 0.157, 2.001] [-0.919, 0.925] 3.783 3.773
θ1,2;3,4 : 3.70 [-1.079, 0.720] [-0.894, 0.905] 3.517 3.508

S
im

u
la

ti
on

4 θ1,3 : 3.60 [-0.446, 1.899] [-0.992, 1.353] 4.143 4.198
θ3,4 : 6.34 [-1.041, 1.709] [-1.436, 1.315] 6.731 6.794
θ2,4 : 3.90 [-0.575, 1.235] [-0.796, 1.015] 4.117 4.110
θ1,4;3 : 1.36 [ 0.108, 1.662] [-0.685, 0.869] 2.157 2.225
θ2,3;4 : 2.71 [-1.431, 0.183] [-0.738, 0.875] 2.014 2.038
θ1,2;3,4 : 3.70 [-0.851, 1.388] [-0.974, 1.265] 3.824 3.926
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B.4 Additional simulation results for Section 4.4.4

Table B.14: Simulation results using one-stage parametric estimation for three-dimensional data.
A Clayton (3dC) copula (top panel right) and a Gumbel (3dG) copula (bottom panel
right) each with Kendall’s τ = 0.5 are considered. A D-vine copula including Clay-
ton copulas (top panel left), respectively Gumbel copulas (bottom panel left), with
τ1,2 = τ2,3 = 0.5 in T1 and a Frank (F) copula with τ1,3;2 = 0.25 in T2 is consid-
ered. For the D-vine copulas global and sequential likelihood estimation is reported.
The empirical mean (empirical standard deviation) for the Kendall’s τ es-
timates are presented based on 250 replications and samples of size 250 and 500
affected by either 15%, 30% or heavy tail 30% right-censoring.

D-vine copula model Archimedean copula
C; τ1,2 : 0.50 C; τ2,3 : 0.50 F; τ1,3;2 : 0.25 3dC; τ : 0.50

G
lo

b
a
l

15%
250 0.502 (0.035) 0.505 (0.041) 0.250 (0.052) 0.503 (0.033)
500 0.501 (0.027) 0.503 (0.029) 0.251 (0.036) 0.501 (0.024)
1000 0.500 (0.019) 0.500 (0.020) 0.250 (0.024)

30%
250 0.501 (0.049) 0.504 (0.058) 0.250 (0.068) 0.505 (0.041)
500 0.501 (0.033) 0.505 (0.041) 0.251 (0.046) 0.501 (0.029)
1000 0.501 (0.024) 0.501 (0.029) 0.250 (0.034)

30% HT
250 0.503 (0.059) 0.502 (0.083) 0.247 (0.080) 0.504 (0.051)
500 0.503 (0.041) 0.501 (0.057) 0.249 (0.053) 0.500 (0.038)
1000 0.502 (0.028) 0.499 (0.038) 0.248 (0.037)

S
eq

u
en

ti
a
l

15%
250 0.501 (0.036) 0.505 (0.042) 0.250 (0.052)
500 0.501 (0.028) 0.503 (0.030) 0.251 (0.036)
1000 0.500 (0.019) 0.500 (0.020) 0.250 (0.024)

30%
250 0.500 (0.049) 0.504 (0.059) 0.250 (0.068)
500 0.501 (0.033) 0.505 (0.041) 0.251 (0.046)
1000 0.501 (0.025) 0.500 (0.029) 0.250 (0.034)

30% HT
250 0.503 (0.060) 0.502 (0.081) 0.247 (0.080)
500 0.503 (0.041) 0.501 (0.057) 0.249 (0.053)
1000 0.502 (0.029) 0.499 (0.038) 0.248 (0.037)

G; τ1,2 : 0.50 G; τ2,3 : 0.50 F; τ1,3;2 : 0.25 3dG; τ : 0.50

G
lo

b
al

15%
250 0.498 (0.033) 0.501 (0.036) 0.251 (0.050) 0.500 (0.030)
500 0.499 (0.027) 0.501 (0.027) 0.250 (0.035) 0.501 (0.021)
1000 0.500 (0.018) 0.500 (0.019) 0.250 (0.024)

30%
250 0.501 (0.039) 0.503 (0.044) 0.249 (0.066) 0.504 (0.035)
500 0.502 (0.030) 0.504 (0.033) 0.251 (0.046) 0.502 (0.025)
1000 0.502 (0.021) 0.502 (0.023) 0.249 (0.036)

30% HT
250 0.507 (0.042) 0.507 (0.046) 0.245 (0.077) 0.504 (0.040)
500 0.506 (0.031) 0.506 (0.035) 0.248 (0.048) 0.503 (0.029)
1000 0.505 (0.022) 0.504 (0.025) 0.248 (0.038)

S
eq

u
en

ti
al

15%
250 0.498 (0.034) 0.501 (0.035) 0.250 (0.050)
500 0.499 (0.027) 0.501 (0.027) 0.250 (0.035)
1000 0.499 (0.019) 0.500 (0.019) 0.250 (0.024)

30%
250 0.501 (0.039) 0.503 (0.044) 0.249 (0.066)
500 0.500 (0.030) 0.503 (0.033) 0.252 (0.046)
1000 0.500 (0.022) 0.501 (0.023) 0.249 (0.036)

30% HT
250 0.499 (0.045) 0.502 (0.047) 0.247 (0.078)
500 0.501 (0.033) 0.502 (0.036) 0.249 (0.049)
1000 0.500 (0.023) 0.501 (0.025) 0.249 (0.038)
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B.4 Additional simulation results for Section 4.4.4

Table B.15: Simulation results using one-stage parametric estimation for three-dimensional data.
A Clayton (3dC) copula (top panel right) and a Gumbel (3dG) copula (bottom
panel right) each with Kendall’s τ = 0.5 are considered. A D-vine copula including
Clayton copulas (top panel left), respectively Gumbel copulas (bottom panel left),
with τ1,2 = τ2,3 = 0.5 in T1 and a Frank (F) copula with τ1,3;2 = 0.25 in T2 is
considered. For the D-vine copulas global and sequential likelihood estimation is
reported. The empirical mean (empirical standard deviation) for the copula
parameter estimates are presented based on 250 replications and samples of size
250 and 500 affected by either 15%, 30% or heavy tail 30% right-censoring.

D-vine copula model Archimedean copula
C; θ1,2 : 2.00 C; θ2,3 : 2.00 F; θ1,3;2 : 2.37 3dC; θ : 2.00

G
lo

b
a
l

15%
250 2.036 (0.292) 2.071 (0.353) 2.396 (0.554) 2.039 (0.266)
500 2.019 (0.218) 2.039 (0.242) 2.389 (0.375) 2.020 (0.198)
1000 2.009 (0.149) 2.010 (0.162) 2.376 (0.257) 2.016 (0.119)

30%
250 2.044 (0.412) 2.091 (0.503) 2.407 (0.722) 2.069 (0.345)
500 2.030 (0.269) 2.068 (0.341) 2.398 (0.489) 2.018 (0.233)
1000 2.016 (0.197) 2.019 (0.233) 2.384 (0.361) 2.023 (0.171)

30% HT
250 2.082 (0.494) 2.121 (0.670) 2.388 (0.870) 2.078 (0.424)
500 2.054 (0.339) 2.061 (0.471) 2.380 (0.563) 2.019 (0.307)
1000 2.030 (0.226) 2.012 (0.302) 2.364 (0.389) 2.012 (0.203)

S
eq

u
en

ti
al

15%
250 2.033 (0.293) 2.067 (0.359) 2.391 (0.551)
500 2.020 (0.224) 2.039 (0.247) 2.387 (0.375)
1000 2.008 (0.151) 2.009 (0.164) 2.375 (0.257)

30%
250 2.042 (0.415) 2.088 (0.506) 2.401 (0.721)
500 2.028 (0.273) 2.066 (0.343) 2.395 (0.488)
1000 2.014 (0.198) 2.017 (0.233) 2.383 (0.361)

30% HT
250 2.084 (0.499) 2.122 (0.665) 2.387 (0.867)
500 2.055 (0.340) 2.060 (0.472) 2.377 (0.563)
1000 2.030 (0.228) 2.011 (0.301) 2.363 (0.390)

G; θ1,2 : 2.00 G; θ2,3 : 2.00 F; θ1,3;2 : 2.37 3dG; θ : 2.00

G
lo

b
al

250 2.001 (0.131) 2.014 (0.145) 2.397 (0.536) 2.006 (0.119)
15% 500 2.003 (0.108) 2.009 (0.109) 2.381 (0.374) 2.005 (0.084)

1000 2.001 (0.072) 2.003 (0.077) 2.371 (0.256) 2.008 (0.055)

250 2.015 (0.159) 2.030 (0.179) 2.387 (0.705) 2.024 (0.143)
30% 500 2.016 (0.120) 2.024 (0.134) 2.401 (0.485) 2.013 (0.102)

1000 2.012 (0.083) 2.011 (0.091) 2.368 (0.378) 2.007 (0.068)

250 2.041 (0.173) 2.047 (0.191) 2.357 (0.840) 2.029 (0.165)
30% HT 500 2.033 (0.128) 2.035 (0.149) 2.369 (0.509) 2.019 (0.117)

1000 2.022 (0.090) 2.019 (0.100) 2.357 (0.397) 2.010 (0.082)

S
eq

u
en

ti
al

250 2.001 (0.133) 2.016 (0.145) 2.393 (0.535)
15% 500 2.003 (0.110) 2.012 (0.109) 2.381 (0.373)

1000 2.001 (0.074) 2.004 (0.077) 2.371 (0.256)

250 2.015 (0.159) 2.030 (0.179) 2.387 (0.705)
30% 500 2.008 (0.122) 2.019 (0.135) 2.406 (0.484)

1000 2.004 (0.085) 2.006 (0.092) 2.372 (0.379)

250 2.012 (0.181) 2.027 (0.192) 2.383 (0.851)
30% HT 500 2.011 (0.132) 2.020 (0.150) 2.382 (0.513)

1000 2.006 (0.094) 2.008 (0.101) 2.368 (0.399)
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Table B.16: Simulation results using one-stage parametric estimation for three-dimensional data.
A Clayton copula (top panel) with Kendall’s τ = 0.5 and a D-vine copula including
Clayton copulas (bottom panel) with τ1,2 = τ2,3 = 0.5 in T1 and a Frank copula
with τ1,3;2 = 0.25 in T2 is considered. For the D-vine copula global and sequen-
tial likelihood estimation is reported. The empirical mean (empirical standard
deviation) for the marginal parameter estimates are presented based on 250
replications and samples of size 250 and 500 affected by either 15%, 30% or heavy
tail 30% right-censoring.

3d Clayton copula
λ1 : 0.50 ρ1 : 1.50 λ2 : 1.00 ρ2 : 1.50 λ3 : 1.00 ρ3 : 1.50

G
lo

b
al

250 0.495 (0.042) 1.510 (0.072) 0.994 (0.077) 1.512 (0.083) 0.997 (0.079) 1.517 (0.088)
15% 500 0.500 (0.032) 1.504 (0.052) 1.001 (0.055) 1.505 (0.055) 1.001 (0.055) 1.501 (0.058)

1000 0.499 (0.021) 1.502 (0.039) 0.999 (0.038) 1.502 (0.039) 0.999 (0.041) 1.502 (0.044)

250 0.493 (0.041) 1.512 (0.083) 0.995 (0.094) 1.518 (0.114) 1.001 (0.101) 1.525 (0.119)
30% 500 0.498 (0.033) 1.509 (0.064) 1.006 (0.066) 1.507 (0.069) 1.006 (0.072) 1.498 (0.076)

1000 0.498 (0.021) 1.504 (0.048) 0.997 (0.047) 1.505 (0.049) 1.000 (0.054) 1.503 (0.059)

250 0.494 (0.041) 1.516 (0.092) 0.995 (0.119) 1.516 (0.130) 1.014 (0.154) 1.526 (0.146)
30% HT 500 0.499 (0.033) 1.508 (0.070) 1.010 (0.086) 1.510 (0.079) 1.013 (0.109) 1.503 (0.103)

1000 0.499 (0.021) 1.504 (0.048) 0.999 (0.054) 1.502 (0.060) 1.001 (0.076) 1.500 (0.069)

Clayton based D-vine model
λ1 : 0.50 ρ1 : 1.50 λ2 : 1.00 ρ2 : 1.50 λ3 : 1.00 ρ3 : 1.50

G
lo

b
al

15%
250 0.496 (0.044) 1.516 (0.076) 0.998 (0.081) 1.512 (0.079) 1.004 (0.082) 1.512 (0.087)
500 0.498 (0.029) 1.508 (0.049) 0.999 (0.055) 1.503 (0.058) 1.000 (0.056) 1.505 (0.062)
1000 0.493 (0.017) 1.507 (0.040) 0.977 (0.016) 1.502 (0.040) 0.992 (0.033) 1.507 (0.041)

30%
250 0.497 (0.048) 1.518 (0.084) 1.007 (0.102) 1.521 (0.102) 1.017 (0.132) 1.519 (0.123)
500 0.498 (0.030) 1.507 (0.059) 0.999 (0.065) 1.502 (0.069) 1.001 (0.080) 1.509 (0.084)
1000 0.495 (0.020) 1.506 (0.044) 0.972 (0.023) 1.494 (0.047) 0.991 (0.055) 1.501 (0.054)

30% HT
250 0.497 (0.046) 1.517 (0.091) 1.001 (0.122) 1.509 (0.128) 1.035 (0.218) 1.519 (0.159)
500 0.498 (0.030) 1.505 (0.063) 0.994 (0.091) 1.496 (0.085) 1.018 (0.139) 1.510 (0.106)
1000 0.500 (0.020) 1.503 (0.048) 0.997 (0.060) 1.499 (0.059) 1.010 (0.082) 1.502 (0.070)

S
eq

u
en

ti
al

15%
250 0.497 (0.046) 1.517 (0.085) 0.999 (0.082) 1.513 (0.080) 1.005 (0.083) 1.512 (0.088)
500 0.498 (0.030) 1.508 (0.054) 0.999 (0.055) 1.503 (0.061) 1.000 (0.057) 1.505 (0.062)
1000 0.500 (0.021) 1.503 (0.041) 0.999 (0.037) 1.501 (0.042) 1.005 (0.038) 1.503 (0.042)

30%
250 0.497 (0.048) 1.518 (0.090) 1.008 (0.103) 1.522 (0.102) 1.017 (0.133) 1.519 (0.124)
500 0.498 (0.031) 1.508 (0.061) 0.999 (0.066) 1.502 (0.070) 1.001 (0.080) 1.510 (0.085)
1000 0.500 (0.022) 1.504 (0.045) 0.997 (0.048) 1.500 (0.050) 1.005 (0.058) 1.501 (0.055)

30% HT
250 0.497 (0.047) 1.513 (0.091) 1.002 (0.124) 1.508 (0.128) 1.033 (0.211) 1.517 (0.157)
500 0.498 (0.030) 1.504 (0.064) 0.994 (0.092) 1.496 (0.084) 1.019 (0.139) 1.510 (0.107)
1000 0.500 (0.020) 1.503 (0.049) 0.997 (0.060) 1.499 (0.060) 1.011 (0.082) 1.502 (0.070)
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B.4 Additional simulation results for Section 4.4.4

Table B.17: Simulation results using one-stage parametric estimation for three-dimensional data.
A Gumbel copula (top panel) with Kendall’s τ = 0.5 and a D-vine copula including
Gumbel copulas (bottom panel) with τ1,2 = τ2,3 = 0.5 in T1 and a Frank copula
with τ1,3;2 = 0.25 in T2 is considered. For the D-vine copula global and sequen-
tial likelihood estimation is reported. The empirical mean (empirical standard
deviation) for the marginal parameter estimates are presented based on 250
replications and samples of size 250 and 500 affected by either 15%, 30% or heavy
tail 30% right-censoring.

3d Gumbel copula
λ1 : 0.50 ρ1 : 1.50 λ2 : 1.00 ρ2 : 1.50 λ3 : 1.00 ρ3 : 1.50

G
lo

b
al

15%
250 0.500 (0.043) 1.508 (0.084) 1.004 (0.084) 1.513 (0.079) 1.004 (0.080) 1.501 (0.085)
500 0.498 (0.031) 1.505 (0.054) 1.002 (0.057) 1.503 (0.055) 0.989 (0.059) 1.496 (0.062)
1000 0.500 (0.020) 1.498 (0.035) 0.997 (0.038) 1.497 (0.038) 1.000 (0.044) 1.496 (0.042)

30%
250 0.501 (0.043) 1.506 (0.090) 1.002 (0.097) 1.509 (0.099) 1.003 (0.112) 1.498 (0.103)
500 0.500 (0.032) 1.505 (0.060) 1.006 (0.068) 1.505 (0.070) 0.991 (0.084) 1.497 (0.076)
1000 0.500 (0.022) 1.500 (0.039) 1.000 (0.049) 1.500 (0.049) 1.000 (0.055) 1.498 (0.053)

30% HT
250 0.501 (0.043) 1.507 (0.095) 0.997 (0.111) 1.507 (0.116) 1.016 (0.161) 1.503 (0.132)
500 0.500 (0.030) 1.503 (0.067) 1.006 (0.082) 1.502 (0.082) 0.995 (0.124) 1.495 (0.098)
1000 0.501 (0.021) 1.498 (0.042) 1.003 (0.055) 1.498 (0.061) 1.010 (0.086) 1.500 (0.070)

Gumbel based D-vine model
λ1 : 0.50 ρ1 : 1.50 λ2 : 1.00 ρ2 : 1.50 λ3 : 1.00 ρ3 : 1.50

G
lo

b
al

15%
250 0.485 (0.038) 1.525 (0.081) 0.961 (0.038) 1.517 (0.085) 0.987 (0.078) 1.526 (0.094)
500 0.489 (0.025) 1.515 (0.053) 0.969 (0.027) 1.507 (0.058) 0.985 (0.049) 1.514 (0.061)
1000 0.493 (0.017) 1.507 (0.040) 0.977 (0.016) 1.502 (0.040) 0.992 (0.033) 1.507 (0.041)

30%
250 0.486 (0.041) 1.521 (0.089) 0.954 (0.048) 1.510 (0.097) 0.991 (0.133) 1.522 (0.130)
500 0.491 (0.028) 1.511 (0.060) 0.963 (0.035) 1.496 (0.069) 0.984 (0.085) 1.508 (0.082)
1000 0.495 (0.020) 1.506 (0.044) 0.972 (0.023) 1.494 (0.047) 0.991 (0.055) 1.501 (0.054)

30% HT
250 0.490 (0.042) 1.510 (0.091) 0.948 (0.056) 1.488 (0.103) 1.014 (0.197) 1.517 (0.152)
500 0.493 (0.028) 1.503 (0.063) 0.955 (0.048) 1.481 (0.071) 0.993 (0.128) 1.501 (0.098)
1000 0.496 (0.019) 1.501 (0.048) 0.968 (0.030) 1.486 (0.054) 0.990 (0.083) 1.496 (0.066)

S
eq

u
en

ti
al

15%
250 0.497 (0.046) 1.517 (0.085) 0.999 (0.079) 1.516 (0.086) 1.009 (0.091) 1.518 (0.095)
500 0.489 (0.025) 1.515 (0.053) 0.969 (0.027) 1.507 (0.058) 0.985 (0.049) 1.514 (0.061)
1000 0.500 (0.021) 1.503 (0.041) 0.999 (0.037) 1.501 (0.042) 1.005 (0.038) 1.503 (0.042)

30%
250 0.498 (0.047) 1.518 (0.090) 1.007 (0.102) 1.521 (0.099) 1.015 (0.142) 1.518 (0.123)
500 0.499 (0.031) 1.507 (0.061) 0.999 (0.070) 1.503 (0.071) 1.002 (0.093) 1.505 (0.080)
1000 0.500 (0.022) 1.504 (0.045) 0.997 (0.048) 1.500 (0.050) 1.005 (0.058) 1.501 (0.055)

30% HT
250 0.497 (0.047) 1.515 (0.093) 1.006 (0.117) 1.513 (0.112) 1.046 (0.211) 1.528 (0.153)
500 0.498 (0.030) 1.504 (0.064) 0.996 (0.088) 1.499 (0.080) 1.016 (0.137) 1.509 (0.100)
1000 0.500 (0.020) 1.503 (0.049) 0.998 (0.060) 1.499 (0.060) 1.007 (0.087) 1.501 (0.067)
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B.5 Additional simulation results for Section 4.4.5

Table B.18: Simulation results using two-stage semiparametric estimation for three-dimensional
data. A Clayton (3dC) copula (top panel right) and a Gumbel (3dG) copula (bot-
tom panel right) with Kendall’s τ = 0.5 is considered. A D-vine copula including
Clayton copulas (top panel left), respectively Gumbel copulas (bottom panel left),
with τ1,2 = τ2,3 = 0.5 in T1 and a Frank (F) copula with τ1,3;2 = 0.25 in T2 is consid-
ered. For the D-vine copulas global and sequential likelihood estimation is reported.
The empirical mean (empirical standard deviation) for the Kendall’s τ es-
timates are presented based on 250 replications and samples of size 250, 500 and
1000 affected by either 15%, 30% or heavy tail 30% right-censoring.

D-vine copula model Archimedean copula
C; τ1,2 : 0.50 C; τ2,3 : 0.50 F; τ1,3;2 : 0.25 3dC; τ : 0.50

G
lo

b
a
l

15%
250 0.495 (0.042) 0.497 (0.046) 0.253 (0.053) 0.496 (0.040)
500 0.496 (0.034) 0.498 (0.035) 0.253 (0.037) 0.497 (0.028)
1000 0.498 (0.023) 0.498 (0.023) 0.251 (0.025) 0.499 (0.019)

30%
250 0.504 (0.071) 0.505 (0.074) 0.249 (0.070) 0.504 (0.061)
500 0.501 (0.044) 0.504 (0.049) 0.253 (0.047) 0.498 (0.042)
1000 0.503 (0.035) 0.502 (0.037) 0.251 (0.035) 0.498 (0.031)

30% HT
250 0.558 (0.110) 0.556 (0.101) 0.245 (0.088) 0.546 (0.094)
500 0.558 (0.089) 0.549 (0.092) 0.246 (0.061) 0.543 (0.081)
1000 0.551 (0.069) 0.536 (0.072) 0.242 (0.042) 0.538 (0.066)

S
eq

u
en

ti
a
l

15%
250 0.495 (0.042) 0.497 (0.045) 0.252 (0.053)
500 0.497 (0.034) 0.498 (0.035) 0.253 (0.037)
1000 0.498 (0.023) 0.498 (0.023) 0.251 (0.025)

30%
250 0.504 (0.070) 0.511 (0.071) 0.246 (0.069)
500 0.502 (0.043) 0.510 (0.048) 0.251 (0.046)
1000 0.503 (0.035) 0.507 (0.035) 0.250 (0.035)

30% HT
250 0.558 (0.107) 0.564 (0.089) 0.242 (0.086)
500 0.557 (0.087) 0.556 (0.083) 0.243 (0.060)
1000 0.550 (0.067) 0.544 (0.064) 0.240 (0.041)

G; τ1,2 : 0.50 G; τ2,3 : 0.50 F; τ1,3;2 : 0.25 3dG; τ : 0.50

G
lo

b
al

15%
250 0.501 (0.038) 0.506 (0.039) 0.251 (0.051) 0.504 (0.033)
500 0.503 (0.028) 0.505 (0.028) 0.251 (0.036) 0.503 (0.022)
1000 0.501 (0.019) 0.502 (0.020) 0.250 (0.025) 0.504 (0.015)

30%
250 0.503 (0.049) 0.511 (0.049) 0.249 (0.067) 0.511 (0.042)
500 0.507 (0.033) 0.510 (0.037) 0.254 (0.047) 0.508 (0.028)
1000 0.505 (0.024) 0.505 (0.025) 0.249 (0.037) 0.506 (0.020)

30% HT
250 0.535 (0.065) 0.531 (0.058) 0.251 (0.087) 0.534 (0.063)
500 0.536 (0.053) 0.527 (0.052) 0.253 (0.061) 0.531 (0.048)
1000 0.533 (0.039) 0.523 (0.035) 0.249 (0.044) 0.526 (0.039)

S
eq

u
en

ti
al

15%
250 0.501 (0.038) 0.505 (0.039) 0.250 (0.051)
500 0.503 (0.028) 0.504 (0.028) 0.251 (0.036)
1000 0.501 (0.020) 0.501 (0.021) 0.250 (0.025)

30%
250 0.504 (0.049) 0.515 (0.050) 0.247 (0.067)
500 0.507 (0.033) 0.513 (0.037) 0.253 (0.046)
1000 0.505 (0.024) 0.507 (0.025) 0.249 (0.036)

30% HT
250 0.535 (0.065) 0.531 (0.058) 0.251 (0.087)
500 0.537 (0.053) 0.533 (0.050) 0.251 (0.059)
1000 0.534 (0.039) 0.528 (0.033) 0.247 (0.043)
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B.5 Additional simulation results for Section 4.4.5

Table B.19: Simulation results using two-stage semiparametric estimation for three-dimensional
data. A Clayton (3dC) copula (top panel right) and a Gumbel (3dG) copula (bottom
panel right) with Kendall’s τ = 0.5 is considered. A D-vine copula including Clayton
copulas (top panel left), respectively Gumbel copulas (bottom panel left), with τ1,2 =
τ2,3 = 0.5 in T1 and a Frank (F) copula with τ1,3;2 = 0.25 in T2 is considered. For
the D-vine copulas global and sequential likelihood estimation is reported. The
empirical mean (empirical standard deviation) for the copula parameter
estimates are presented based on 250 replications and samples of size 250, 500 and
1000 affected by either 15%, 30% or heavy tail 30% right-censoring.

D-vine copula model Archimedean copula
C; θ1,2 : 2.00 C; θ2,3 : 2.00 F; θ1,3;2 : 2.37 3dC; θ : 2.00

G
lo

b
a
l

15%
250 1.985 (0.329) 2.011 (0.370) 2.422 (0.567) 1.994 (0.315)
500 1.990 (0.274) 2.003 (0.288) 2.416 (0.388) 1.984 (0.225)
1000 1.991 (0.180) 1.994 (0.188) 2.384 (0.265) 1.993 (0.148)

30%
250 2.114 (0.601) 2.131 (0.617) 2.392 (0.747) 2.090 (0.511)
500 2.041 (0.359) 2.075 (0.414) 2.420 (0.494) 2.012 (0.338)
1000 2.041 (0.288) 2.035 (0.299) 2.393 (0.375) 1.996 (0.245)

30% HT
250 2.785 (1.094) 2.736 (1.062) 2.377 (0.959) 2.590 (0.923)
500 2.701 (0.881) 2.599 (0.836) 2.352 (0.653) 2.505 (0.752)
1000 2.554 (0.662) 2.402 (0.625) 2.302 (0.439) 2.409 (0.601)

S
eq

u
en

ti
al

15%
250 1.990 (0.327) 2.009 (0.368) 2.414 (0.564)
500 1.995 (0.272) 2.003 (0.284) 2.411 (0.387)
1000 1.993 (0.178) 1.992 (0.186) 2.382 (0.265)

30%
250 2.116 (0.596) 2.176 (0.607) 2.365 (0.737)
500 2.046 (0.356) 2.123 (0.415) 2.400 (0.487)
1000 2.041 (0.285) 2.079 (0.289) 2.379 (0.372)

30% HT
250 2.769 (1.072) 2.773 (0.956) 2.336 (0.939)
500 2.682 (0.861) 2.641 (0.767) 2.326 (0.640)
1000 2.541 (0.646) 2.463 (0.568) 2.279 (0.428)

G; θ1,2 : 2.00 G; θ2,3 : 2.00 F; θ1,3;2 : 2.37 3dG; θ : 2.00

G
lo

b
al

15%
250 2.014 (0.152) 2.036 (0.162) 2.397 (0.552) 2.026 (0.135)
500 2.018 (0.114) 2.028 (0.114) 2.389 (0.381) 2.018 (0.092)
1000 2.009 (0.079) 2.012 (0.084) 2.371 (0.263) 2.016 (0.060)

30%
250 2.034 (0.205) 2.067 (0.206) 2.395 (0.731) 2.061 (0.177)
500 2.035 (0.135) 2.051 (0.156) 2.429 (0.496) 2.037 (0.116)
1000 2.025 (0.098) 2.024 (0.103) 2.375 (0.388) 2.029 (0.080)

30% HT
250 2.191 (0.299) 2.164 (0.261) 2.442 (0.963) 2.184 (0.281)
500 2.183 (0.232) 2.139 (0.224) 2.437 (0.679) 2.154 (0.206)
1000 2.157 (0.177) 2.105 (0.152) 2.372 (0.468) 2.122 (0.167)

S
eq

u
en

ti
al

15%
250 2.014 (0.152) 2.033 (0.162) 2.392 (0.548)
500 2.018 (0.115) 2.022 (0.116) 2.389 (0.381)
1000 2.008 (0.079) 2.007 (0.085) 2.373 (0.264)

30%
250 2.034 (0.205) 2.084 (0.211) 2.373 (0.718)
500 2.036 (0.134) 2.065 (0.159) 2.416 (0.491)
1000 2.024 (0.098) 2.035 (0.106) 2.366 (0.385)

30% HT
250 2.191 (0.299) 2.164 (0.261) 2.442 (0.963)
500 2.186 (0.233) 2.165 (0.221) 2.409 (0.653)
1000 2.158 (0.177) 2.131 (0.149) 2.350 (0.457)
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B.6 Additional simulation results for Section 4.4.7

Table B.20: Simulation results using global and sequential one-stage parametric and two-stage
semiparametric estimation for four-dimensional data. The D-vine copula model
(Setting 1 in Table 4.15) captures tail-behavior for subsequent gap times chang-
ing from lower tail-dependence (Clayton (C)) over no tail-dependence (Frank (F))
to upper tail-dependence (Gumbel (G)) with same overall dependence of Kendall’s
τ1,2 = τ2,3 = τ3,4 = 0.5. The empirical mean (empirical standard deviation)
of the Kendall’s τ estimates are presented based on 250 replications and samples
of different sizes affected by either 15%, 30% or heavy tail 30% right-censoring.

D-vine copula model
C; τ1,2 : 0.500 F; τ2,3 : 0.500 G; τ3,4 : 0.500 F; τ1,3;2 : 0.250 F; τ2,4;3 : 0.250 F; τ1,4;2,3 : 0.167

O
n
e-
st
a
g
e
p
a
ra
m
et
ri
c g
lo
b
a
l

15%
250 0.505 (0.033) 0.504 (0.035) 0.501 (0.036) 0.253 (0.050) 0.252 (0.055) 0.169 (0.061)
500 0.505 (0.021) 0.503 (0.024) 0.500 (0.027) 0.254 (0.034) 0.250 (0.037) 0.165 (0.040)
1000 0.503 (0.015) 0.500 (0.017) 0.500 (0.020) 0.250 (0.023) 0.252 (0.025) 0.166 (0.028)

30%
250 0.508 (0.043) 0.510 (0.046) 0.509 (0.052) 0.255 (0.062) 0.253 (0.079) 0.167 (0.089)
500 0.504 (0.030) 0.507 (0.034) 0.503 (0.037) 0.257 (0.044) 0.250 (0.052) 0.166 (0.057)
1000 0.503 (0.023) 0.503 (0.022) 0.502 (0.026) 0.254 (0.033) 0.247 (0.036) 0.164 (0.040)

30% HT
250 0.507 (0.054) 0.513 (0.051) 0.512 (0.057) 0.257 (0.070) 0.249 (0.087) 0.165 (0.096)
500 0.504 (0.036) 0.510 (0.037) 0.506 (0.043) 0.259 (0.045) 0.250 (0.061) 0.165 (0.063)
1000 0.503 (0.028) 0.505 (0.024) 0.506 (0.027) 0.256 (0.035) 0.250 (0.038) 0.166 (0.045)

se
q
u
en
ti
a
l

15%
250 0.499 (0.037) 0.499 (0.036) 0.500 (0.037) 0.251 (0.049) 0.252 (0.055) 0.168 (0.060)
500 0.500 (0.023) 0.499 (0.026) 0.500 (0.027) 0.252 (0.035) 0.250 (0.037) 0.165 (0.040)
1000 0.500 (0.016) 0.497 (0.017) 0.500 (0.020) 0.248 (0.023) 0.252 (0.025) 0.165 (0.027)

30%
250 0.500 (0.046) 0.500 (0.052) 0.504 (0.053) 0.249 (0.061) 0.255 (0.077) 0.164 (0.087)
500 0.499 (0.032) 0.499 (0.037) 0.500 (0.038) 0.253 (0.046) 0.250 (0.052) 0.165 (0.056)
1000 0.499 (0.024) 0.497 (0.024) 0.500 (0.026) 0.250 (0.035) 0.248 (0.036) 0.164 (0.040)

30% HT
250 0.500 (0.057) 0.501 (0.059) 0.506 (0.058) 0.252 (0.071) 0.248 (0.086) 0.164 (0.095)
500 0.498 (0.038) 0.498 (0.043) 0.500 (0.045) 0.251 (0.048) 0.252 (0.062) 0.164 (0.063)
1000 0.499 (0.029) 0.496 (0.028) 0.500 (0.028) 0.250 (0.038) 0.252 (0.038) 0.166 (0.045)

T
w
o
-s
ta
g
e
se
m
ip
a
ra
m
et
ri
c

g
lo
b
a
l

15%
250 0.498 (0.046) 0.500 (0.038) 0.507 (0.040) 0.250 (0.050) 0.250 (0.056) 0.165 (0.060)
500 0.499 (0.032) 0.500 (0.028) 0.505 (0.030) 0.251 (0.035) 0.248 (0.037) 0.164 (0.040)
1000 0.499 (0.024) 0.498 (0.019) 0.502 (0.021) 0.248 (0.024) 0.251 (0.026) 0.164 (0.028)

30%
250 0.530 (0.092) 0.519 (0.064) 0.522 (0.059) 0.249 (0.066) 0.251 (0.080) 0.157 (0.086)
500 0.507 (0.070) 0.508 (0.050) 0.512 (0.043) 0.255 (0.047) 0.246 (0.054) 0.162 (0.058)
1000 0.509 (0.051) 0.506 (0.034) 0.507 (0.032) 0.250 (0.038) 0.247 (0.037) 0.162 (0.041)

30% HT
250 0.637 (0.150) 0.583 (0.114) 0.548 (0.067) 0.240 (0.087) 0.255 (0.090) 0.151 (0.091)
500 0.616 (0.114) 0.572 (0.084) 0.534 (0.058) 0.246 (0.055) 0.257 (0.068) 0.160 (0.071)
1000 0.614 (0.115) 0.564 (0.079) 0.534 (0.042) 0.246 (0.053) 0.260 (0.049) 0.161 (0.046)

se
q
u
en
ti
a
l

15%
250 0.497 (0.047) 0.500 (0.039) 0.507 (0.041) 0.249 (0.049) 0.251 (0.057) 0.163 (0.059)
500 0.499 (0.033) 0.500 (0.028) 0.504 (0.030) 0.251 (0.035) 0.249 (0.037) 0.163 (0.040)
1000 0.499 (0.024) 0.498 (0.019) 0.501 (0.022) 0.248 (0.024) 0.252 (0.026) 0.164 (0.028)

30%
250 0.529 (0.092) 0.523 (0.062) 0.530 (0.057) 0.247 (0.065) 0.248 (0.079) 0.152 (0.083)
500 0.506 (0.071) 0.515 (0.047) 0.520 (0.041) 0.253 (0.047) 0.249 (0.051) 0.159 (0.056)
1000 0.509 (0.052) 0.511 (0.033) 0.515 (0.031) 0.248 (0.038) 0.247 (0.036) 0.159 (0.041)

30% HT
250 0.638 (0.147) 0.583 (0.108) 0.559 (0.060) 0.239 (0.086) 0.242 (0.089) 0.143 (0.085)
500 0.616 (0.113) 0.573 (0.077) 0.546 (0.051) 0.245 (0.054) 0.247 (0.066) 0.154 (0.068)
1000 0.614 (0.114) 0.565 (0.074) 0.546 (0.036) 0.245 (0.053) 0.250 (0.047) 0.155 (0.044)
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B.6 Additional simulation results for Section 4.4.7

Table B.21: Simulation results using global and sequential one-stage parametric and two-stage
semiparametric estimation for four-dimensional data. The D-vine copula model
(Setting 2 in Table 4.15) captures for Clayton (C) copulas in T1 increasing de-
pendence with τ1,2 = 0.3, τ2,3 = 0.5, τ3,4 = 0.7. The empirical mean (empirical
standard deviation) of the Kendall’s τ estimates are presented based on 250
replications and samples of different sizes affected by either 15%, 30% or heavy tail
30% right-censoring.

D-vine copula model
C; τ1,2 : 0.300 C; τ2,3 : 0.500 C; τ3,4 : 0.700 F; τ1,3;2 : 0.250 F; τ2,4;3 : 0.250 F; τ1,4;2,3 : 0.167

O
n
e-
st
a
g
e
p
a
ra
m
et
ri
c g
lo
b
a
l

15%
250 0.299 (0.043) 0.500 (0.039) 0.701 (0.028) 0.249 (0.049) 0.253 (0.053) 0.170 (0.062)
500 0.300 (0.028) 0.500 (0.027) 0.700 (0.020) 0.251 (0.036) 0.251 (0.037) 0.165 (0.041)
1000 0.308 (0.018) 0.507 (0.015) 0.707 (0.011) 0.248 (0.024) 0.253 (0.025) 0.167 (0.026)

30%
250 0.300 (0.063) 0.499 (0.059) 0.702 (0.044) 0.248 (0.067) 0.253 (0.079) 0.169 (0.094)
500 0.299 (0.044) 0.499 (0.043) 0.700 (0.031) 0.251 (0.051) 0.251 (0.053) 0.167 (0.056)
1000 0.298 (0.031) 0.497 (0.029) 0.699 (0.021) 0.250 (0.035) 0.250 (0.034) 0.165 (0.040)

30% HT
250 0.300 (0.080) 0.499 (0.079) 0.699 (0.060) 0.244 (0.079) 0.254 (0.088) 0.163 (0.102)
500 0.295 (0.052) 0.497 (0.053) 0.698 (0.042) 0.251 (0.054) 0.253 (0.062) 0.166 (0.069)
1000 0.298 (0.041) 0.495 (0.034) 0.698 (0.030) 0.250 (0.042) 0.252 (0.039) 0.166 (0.048)

se
q
u
en
ti
a
l

15%
250 0.300 (0.045) 0.501 (0.039) 0.701 (0.028) 0.249 (0.048) 0.252 (0.054) 0.168 (0.061)
500 0.302 (0.030) 0.503 (0.026) 0.701 (0.020) 0.252 (0.035) 0.249 (0.038) 0.164 (0.041)
1000 0.304 (0.020) 0.505 (0.016) 0.706 (0.012) 0.248 (0.024) 0.253 (0.024) 0.167 (0.027)

30%
250 0.300 (0.064) 0.499 (0.060) 0.702 (0.044) 0.248 (0.066) 0.252 (0.079) 0.167 (0.092)
500 0.298 (0.045) 0.498 (0.044) 0.699 (0.031) 0.253 (0.050) 0.250 (0.052) 0.166 (0.056)
1000 0.298 (0.032) 0.497 (0.030) 0.699 (0.021) 0.249 (0.036) 0.250 (0.034) 0.165 (0.040)

30% HT
250 0.305 (0.082) 0.504 (0.080) 0.702 (0.060) 0.250 (0.081) 0.251 (0.087) 0.162 (0.098)
500 0.296 (0.054) 0.498 (0.054) 0.698 (0.042) 0.251 (0.053) 0.254 (0.061) 0.164 (0.068)
1000 0.299 (0.041) 0.495 (0.035) 0.698 (0.031) 0.250 (0.042) 0.251 (0.039) 0.165 (0.047)

T
w
o
-s
ta
g
e
se
m
ip
a
ra
m
et
ri
c

g
lo
b
a
l

15%
250 0.309 (0.054) 0.499 (0.046) 0.693 (0.035) 0.247 (0.051) 0.253 (0.055) 0.164 (0.060)
500 0.308 (0.039) 0.500 (0.034) 0.696 (0.024) 0.249 (0.037) 0.252 (0.038) 0.162 (0.041)
1000 0.303 (0.027) 0.496 (0.025) 0.696 (0.017) 0.246 (0.024) 0.253 (0.025) 0.164 (0.027)

30%
250 0.362 (0.119) 0.523 (0.089) 0.697 (0.061) 0.232 (0.070) 0.254 (0.078) 0.157 (0.093)
500 0.330 (0.082) 0.509 (0.067) 0.695 (0.044) 0.244 (0.054) 0.249 (0.055) 0.162 (0.056)
1000 0.329 (0.061) 0.508 (0.050) 0.697 (0.031) 0.244 (0.039) 0.251 (0.035) 0.159 (0.041)

30% HT
250 0.519 (0.189) 0.614 (0.142) 0.736 (0.085) 0.211 (0.087) 0.250 (0.090) 0.136 (0.100)
500 0.490 (0.159) 0.594 (0.117) 0.721 (0.075) 0.214 (0.067) 0.253 (0.071) 0.137 (0.077)
1000 0.496 (0.140) 0.596 (0.101) 0.730 (0.058) 0.221 (0.061) 0.251 (0.050) 0.141 (0.055)

se
q
u
en
ti
a
l

15%
250 0.311 (0.055) 0.498 (0.047) 0.693 (0.035) 0.248 (0.050) 0.251 (0.055) 0.162 (0.059)
500 0.309 (0.040) 0.499 (0.034) 0.696 (0.024) 0.250 (0.037) 0.251 (0.039) 0.161 (0.040)
1000 0.304 (0.028) 0.495 (0.025) 0.696 (0.017) 0.247 (0.025) 0.252 (0.026) 0.164 (0.027)

30%
250 0.364 (0.116) 0.526 (0.085) 0.700 (0.058) 0.233 (0.069) 0.251 (0.077) 0.152 (0.090)
500 0.331 (0.082) 0.513 (0.063) 0.698 (0.042) 0.244 (0.054) 0.249 (0.055) 0.160 (0.055)
1000 0.330 (0.060) 0.512 (0.047) 0.700 (0.029) 0.244 (0.040) 0.250 (0.036) 0.158 (0.041)

30% HT
250 0.300 (0.080) 0.499 (0.079) 0.699 (0.060) 0.244 (0.079) 0.254 (0.088) 0.163 (0.102)
500 0.489 (0.155) 0.596 (0.107) 0.726 (0.064) 0.212 (0.067) 0.246 (0.072) 0.133 (0.075)
1000 0.495 (0.134) 0.595 (0.095) 0.733 (0.050) 0.220 (0.061) 0.242 (0.050) 0.138 (0.053)
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Table B.22: Simulation results using global and sequential one-stage parametric and two-stage
semiparametric estimation for four-dimensional data. The D-vine copula model
(Setting 1 in Table 4.15) captures tail-behavior for subsequent gap times chang-
ing from lower tail-dependence (Clayton (C)) over no tail-dependence (Frank (F))
to upper tail-dependence (Gumbel (G)) with same overall dependence of Kendall’s
τ1,2 = τ2,3 = τ3,4 = 0.5. The empirical mean (empirical standard deviation)
of the copula parameter estimates are presented based on 250 replications and
samples of different sizes affected by either 15%, 30% or heavy tail 30% right-
censoring.

D-vine copula model
C; θ1,2 : 2.00 F; θ2,3 : 5.74 G; θ3,4 : 2.00 F; θ1,3;2 : 2.37 F; θ2,4;3 : 2.37 F; θ1,4;2,3 : 1.54

O
n
e-
st
a
g
e
p
a
ra
m
et
ri
c g
lo
b
a
l

15%
250 2.062 (0.273) 5.837 (0.631) 2.013 (0.143) 2.425 (0.531) 2.414 (0.588) 1.574 (0.594)
500 2.049 (0.173) 5.805 (0.455) 2.005 (0.109) 2.417 (0.362) 2.377 (0.386) 1.530 (0.387)
1000 2.032 (0.121) 5.747 (0.307) 2.004 (0.079) 2.372 (0.245) 2.395 (0.265) 1.528 (0.266)

30%
250 2.096 (0.363) 5.983 (0.871) 2.061 (0.224) 2.456 (0.675) 2.447 (0.850) 1.571 (0.871)
500 2.049 (0.247) 5.902 (0.637) 2.021 (0.154) 2.465 (0.476) 2.386 (0.549) 1.539 (0.552)
1000 2.033 (0.187) 5.806 (0.411) 2.013 (0.108) 2.418 (0.356) 2.352 (0.377) 1.517 (0.384)

30% HT
250 2.106 (0.455) 6.065 (0.981) 2.078 (0.247) 2.484 (0.766) 2.414 (0.938) 1.559 (0.953)
500 2.055 (0.295) 5.969 (0.692) 2.039 (0.175) 2.479 (0.485) 2.395 (0.643) 1.536 (0.615)
1000 2.039 (0.229) 5.843 (0.437) 2.030 (0.113) 2.448 (0.379) 2.378 (0.404) 1.538 (0.437)

se
q
u
en
ti
a
l

15%
250 2.016 (0.295) 5.756 (0.655) 2.011 (0.145) 2.398 (0.521) 2.411 (0.589) 1.563 (0.588)
500 2.012 (0.184) 5.745 (0.476) 2.006 (0.109) 2.398 (0.366) 2.381 (0.388) 1.524 (0.384)
1000 2.005 (0.130) 5.699 (0.313) 2.004 (0.080) 2.355 (0.247) 2.400 (0.266) 1.525 (0.266)

30%
250 2.038 (0.378) 5.812 (0.954) 2.038 (0.221) 2.384 (0.655) 2.462 (0.829) 1.544 (0.854)
500 2.007 (0.254) 5.767 (0.686) 2.011 (0.157) 2.420 (0.489) 2.394 (0.550) 1.535 (0.547)
1000 2.000 (0.189) 5.704 (0.431) 2.004 (0.108) 2.380 (0.370) 2.364 (0.379) 1.517 (0.383)

30% HT
250 2.051 (0.467) 5.866 (1.081) 2.054 (0.250) 2.427 (0.772) 2.396 (0.917) 1.545 (0.941)
500 2.010 (0.311) 5.757 (0.777) 2.016 (0.182) 2.398 (0.509) 2.416 (0.652) 1.523 (0.610)
1000 2.003 (0.232) 5.677 (0.495) 2.006 (0.114) 2.379 (0.399) 2.400 (0.408) 1.536 (0.436)

T
w
o
-s
ta
g
e
se
m
ip
a
ra
m
et
ri
c

g
lo
b
a
l

15%
250 2.015 (0.369) 5.776 (0.689) 2.042 (0.163) 2.388 (0.537) 2.395 (0.602) 1.529 (0.584)
500 2.009 (0.258) 5.757 (0.513) 2.027 (0.124) 2.392 (0.373) 2.358 (0.385) 1.512 (0.384)
1000 1.999 (0.192) 5.708 (0.353) 2.012 (0.087) 2.353 (0.251) 2.386 (0.273) 1.511 (0.268)

30%
250 2.417 (0.872) 6.236 (1.312) 2.122 (0.260) 2.393 (0.711) 2.422 (0.856) 1.475 (0.840)
500 2.138 (0.593) 5.971 (0.956) 2.065 (0.184) 2.446 (0.511) 2.352 (0.564) 1.508 (0.563)
1000 2.122 (0.434) 5.874 (0.634) 2.036 (0.136) 2.379 (0.405) 2.351 (0.387) 1.493 (0.399)

30% HT
250 4.303 (2.138) 8.131 (2.795) 2.261 (0.328) 2.322 (0.929) 2.479 (0.981) 1.420 (0.889)
500 3.643 (1.576) 7.545 (1.964) 2.178 (0.249) 2.350 (0.578) 2.482 (0.748) 1.495 (0.697)
1000 3.549 (1.347) 7.303 (1.678) 2.164 (0.189) 2.347 (0.575) 2.496 (0.519) 1.487 (0.451)

se
q
u
en
ti
a
l

15%
250 2.012 (0.374) 5.776 (0.701) 2.041 (0.167) 2.379 (0.530) 2.401 (0.608) 1.513 (0.577)
500 2.006 (0.262) 5.753 (0.515) 2.022 (0.125) 2.390 (0.374) 2.373 (0.390) 1.507 (0.382)
1000 1.999 (0.196) 5.703 (0.354) 2.008 (0.089) 2.351 (0.252) 2.393 (0.277) 1.509 (0.268)

30%
250 2.413 (0.871) 6.313 (1.292) 2.158 (0.258) 2.367 (0.701) 2.394 (0.839) 1.423 (0.802)
500 2.131 (0.598) 6.083 (0.921) 2.099 (0.181) 2.415 (0.504) 2.374 (0.541) 1.469 (0.543)
1000 2.120 (0.440) 5.970 (0.619) 2.071 (0.137) 2.360 (0.405) 2.353 (0.384) 1.467 (0.390)

30% HT
250 4.300 (2.125) 8.059 (2.647) 2.312 (0.311) 2.301 (0.922) 2.338 (0.943) 1.334 (0.826)
500 3.643 (1.561) 7.523 (1.816) 2.228 (0.232) 2.334 (0.572) 2.370 (0.707) 1.433 (0.660)
1000 3.550 (1.339) 7.276 (1.558) 2.217 (0.172) 2.340 (0.574) 2.385 (0.496) 1.430 (0.426)
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B.6 Additional simulation results for Section 4.4.7

Table B.23: Simulation results using global and sequential one-stage parametric and two-stage
semiparametric estimation for four-dimensional data. The D-vine copula model
(Setting 2 in Table 4.15) captures for Clayton (C) copulas in T1 increasing de-
pendence with τ1,2 = 0.3, τ2,3 = 0.5, τ3,4 = 0.7. The empirical mean (empirical
standard deviation) of the copula parameter estimates are presented based
on 250 replications and samples of different sizes affected by either 15%, 30% or
heavy tail 30% right-censoring.

D-vine copula model
C; θ1,2 : 0.86 C; θ2,3 : 2.00 C; θ3,4 : 4.67 F; θ1,3;2 : 2.37 F; θ2,4;3 : 2.37 F; θ1,4;2,3 : 1.54

O
n
e-
st
a
g
e
p
a
ra
m
et
ri
c g
lo
b
a
l

15%
250 0.866 (0.178) 2.024 (0.315) 4.756 (0.616) 2.381 (0.523) 2.420 (0.573) 1.579 (0.607)
500 0.864 (0.117) 2.014 (0.216) 4.702 (0.440) 2.389 (0.378) 2.394 (0.388) 1.523 (0.393)
1000 0.893 (0.076) 2.063 (0.128) 4.836 (0.256) 2.355 (0.248) 2.408 (0.260) 1.540 (0.257)

30%
250 0.878 (0.256) 2.046 (0.490) 4.861 (1.046) 2.377 (0.717) 2.453 (0.860) 1.600 (0.932)
500 0.864 (0.178) 2.023 (0.351) 4.731 (0.694) 2.405 (0.539) 2.398 (0.561) 1.548 (0.552)
1000 0.854 (0.128) 1.988 (0.230) 4.678 (0.476) 2.375 (0.370) 2.379 (0.363) 1.525 (0.392)

30% HT
250 0.897 (0.339) 2.090 (0.639) 4.912 (1.381) 2.358 (0.861) 2.475 (0.959) 1.549 (1.033)
500 0.852 (0.211) 2.023 (0.422) 4.754 (0.932) 2.407 (0.577) 2.427 (0.664) 1.544 (0.671)
1000 0.860 (0.168) 1.977 (0.267) 4.691 (0.671) 2.385 (0.441) 2.401 (0.415) 1.540 (0.463)

se
q
u
en
ti
a
l

15%
250 0.868 (0.184) 2.030 (0.314) 4.754 (0.623) 2.375 (0.503) 2.416 (0.573) 1.567 (0.598)
500 0.870 (0.123) 2.032 (0.211) 4.716 (0.447) 2.400 (0.371) 2.376 (0.396) 1.513 (0.393)
1000 0.875 (0.081) 2.043 (0.132) 4.808 (0.268) 2.351 (0.247) 2.405 (0.258) 1.539 (0.257)

30%
250 0.880 (0.264) 2.049 (0.501) 4.859 (1.042) 2.381 (0.711) 2.441 (0.853) 1.579 (0.916)
500 0.862 (0.183) 2.018 (0.358) 4.722 (0.710) 2.423 (0.527) 2.389 (0.553) 1.538 (0.548)
1000 0.854 (0.132) 1.989 (0.235) 4.675 (0.477) 2.372 (0.377) 2.377 (0.363) 1.521 (0.390)

30%HT
250 0.920 (0.351) 2.134 (0.659) 4.978 (1.386) 2.415 (0.879) 2.439 (0.952) 1.527 (0.979)
500 0.858 (0.222) 2.026 (0.429) 4.752 (0.922) 2.402 (0.569) 2.435 (0.654) 1.531 (0.666)
1000 0.864 (0.170) 1.978 (0.274) 4.680 (0.682) 2.382 (0.449) 2.396 (0.416) 1.528 (0.456)

T
w
o
-s
ta
g
e
se
m
ip
a
ra
m
et
ri
c

g
lo
b
a
l

15%
250 0.914 (0.227) 2.025 (0.372) 4.596 (0.739) 2.353 (0.539) 2.427 (0.591) 1.527 (0.588)
500 0.902 (0.167) 2.021 (0.273) 4.616 (0.514) 2.369 (0.397) 2.406 (0.400) 1.500 (0.393)
1000 0.875 (0.112) 1.982 (0.200) 4.608 (0.374) 2.339 (0.256) 2.403 (0.266) 1.515 (0.262)

30%
250 1.255 (0.674) 2.351 (0.882) 4.868 (1.418) 2.215 (0.737) 2.461 (0.842) 1.476 (0.926)
500 1.032 (0.381) 2.152 (0.581) 4.702 (0.971) 2.332 (0.575) 2.378 (0.580) 1.505 (0.548)
1000 1.006 (0.278) 2.107 (0.408) 4.659 (0.673) 2.316 (0.413) 2.389 (0.371) 1.472 (0.400)

30% HT
250 2.761 (1.686) 3.818 (1.901) 6.297 (2.415) 2.017 (0.894) 2.426 (0.979) 1.283 (0.981)
500 2.282 (1.245) 3.307 (1.407) 5.622 (1.812) 2.030 (0.690) 2.442 (0.773) 1.275 (0.760)
1000 2.238 (1.036) 3.211 (1.133) 5.693 (1.405) 2.096 (0.637) 2.397 (0.532) 1.299 (0.530)

se
q
u
en
ti
a
l

15%
250 0.919 (0.231) 2.017 (0.375) 4.608 (0.743) 2.366 (0.530) 2.402 (0.592) 1.506 (0.575)
500 0.904 (0.170) 2.013 (0.269) 4.609 (0.515) 2.380 (0.395) 2.397 (0.407) 1.491 (0.390)
1000 0.877 (0.116) 1.971 (0.199) 4.602 (0.370) 2.343 (0.260) 2.395 (0.272) 1.511 (0.262)

30%
250 1.259 (0.660) 2.365 (0.850) 4.923 (1.393) 2.220 (0.727) 2.426 (0.825) 1.427 (0.882)
500 1.037 (0.378) 2.181 (0.556) 4.748 (0.946) 2.330 (0.573) 2.379 (0.575) 1.480 (0.532)
1000 1.011 (0.276) 2.133 (0.394) 4.726 (0.645) 2.315 (0.418) 2.381 (0.378) 1.455 (0.392)

30% HT
250 0.897 (0.339) 2.090 (0.639) 4.912 (1.381) 2.358 (0.861) 2.475 (0.959) 1.549 (1.033)
500 2.256 (1.205) 3.266 (1.284) 5.670 (1.621) 2.010 (0.688) 2.362 (0.780) 1.236 (0.735)
1000 2.211 (0.994) 3.165 (1.051) 5.722 (1.260) 2.088 (0.638) 2.307 (0.527) 1.270 (0.507)
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Table B.24: Simulation results using global and sequential one-stage parametric estimation. In the top panels, the underlying D-vine copula
model (Setting 1 in Table 4.15) captures tail-behavior for subsequent gap times changing from lower tail-dependence (Clayton
(C)) over no tail-dependence (Frank (F)) to upper tail-dependence (Gumbel (G)) with same overall dependence of Kendall’s
τ1,2 = τ2,3 = τ3,4 = 0.5. In the bottom panels, the underlying D-vine copula model (Setting 2 in Table 4.15) captures for Clayton
(C) copulas in T1 increasing dependence with τ1,2 = 0.3, τ2,3 = 0.5, τ3,4 = 0.7. The empirical mean (empirical standard
deviation) of the marginal parameter estimates are presented based on 250 replications and samples of different sizes affected
by either 15%, 30% or heavy tail 30% right-censoring.

λ1 : 0.50 ρ1 : 1.50 λ2 : 1.00 ρ2 : 1.50 λ3 : 1.00 ρ3 : 1.50 λ4 : 1.00 ρ4 : 1.50

S
et

ti
n

g
1

(T
a
b

le
4
.1

5
)

g
lo

b
a
l

15%
250 0.491 (0.036) 1.507 (0.074) 0.980 (0.061) 1.517 (0.068) 0.965 (0.034) 1.513 (0.087) 0.984 (0.074) 1.530 (0.101)
500 0.492 (0.026) 1.508 (0.053) 0.986 (0.045) 1.513 (0.052) 0.972 (0.023) 1.509 (0.063) 0.986 (0.058) 1.518 (0.066)
1000 0.495 (0.018) 1.503 (0.036) 0.989 (0.028) 1.508 (0.039) 0.978 (0.014) 1.501 (0.043) 0.988 (0.041) 1.509 (0.047)

30%
250 0.493 (0.040) 1.508 (0.093) 0.981 (0.079) 1.513 (0.093) 0.951 (0.053) 1.499 (0.113) 1.004 (0.158) 1.528 (0.143)
500 0.494 (0.029) 1.505 (0.064) 0.989 (0.061) 1.515 (0.070) 0.964 (0.037) 1.500 (0.085) 0.987 (0.111) 1.512 (0.101)
1000 0.497 (0.019) 1.501 (0.042) 0.993 (0.042) 1.509 (0.048) 0.970 (0.026) 1.495 (0.054) 0.997 (0.075) 1.510 (0.070)

30% HT
250 0.494 (0.040) 1.507 (0.095) 0.984 (0.106) 1.509 (0.112) 0.939 (0.075) 1.485 (0.122) 1.025 (0.259) 1.526 (0.188)
500 0.495 (0.029) 1.505 (0.064) 0.988 (0.074) 1.510 (0.082) 0.949 (0.054) 1.483 (0.087) 0.986 (0.165) 1.500 (0.122)
1000 0.498 (0.019) 1.501 (0.044) 0.994 (0.052) 1.508 (0.056) 0.960 (0.041) 1.484 (0.055) 0.986 (0.116) 1.498 (0.078)

se
q
u

en
ti

a
l

15%
250 0.500 (0.042) 1.506 (0.082) 1.001 (0.073) 1.510 (0.073) 1.005 (0.074) 1.518 (0.091) 1.005 (0.083) 1.525 (0.105)
500 0.501 (0.031) 1.504 (0.058) 1.004 (0.053) 1.507 (0.056) 1.006 (0.055) 1.511 (0.065) 1.004 (0.065) 1.511 (0.068)
1000 0.502 (0.021) 1.500 (0.039) 1.003 (0.035) 1.504 (0.042) 1.004 (0.038) 1.503 (0.045) 1.002 (0.045) 1.504 (0.048)

30%
250 0.501 (0.044) 1.508 (0.095) 1.003 (0.091) 1.509 (0.093) 1.016 (0.119) 1.522 (0.121) 1.031 (0.169) 1.533 (0.142)
500 0.501 (0.033) 1.502 (0.067) 1.007 (0.068) 1.510 (0.072) 1.013 (0.088) 1.516 (0.093) 1.010 (0.120) 1.515 (0.102)
1000 0.502 (0.021) 1.500 (0.045) 1.006 (0.048) 1.506 (0.050) 1.006 (0.062) 1.507 (0.059) 1.015 (0.081) 1.513 (0.070)

30% HT
250 0.502 (0.042) 1.502 (0.093) 1.007 (0.113) 1.508 (0.111) 1.019 (0.163) 1.515 (0.140) 1.046 (0.252) 1.527 (0.180)
500 0.501 (0.031) 1.502 (0.067) 1.008 (0.081) 1.509 (0.084) 1.020 (0.128) 1.514 (0.108) 1.023 (0.179) 1.514 (0.125)
1000 0.502 (0.021) 1.499 (0.046) 1.009 (0.059) 1.510 (0.058) 1.013 (0.097) 1.510 (0.069) 1.017 (0.129) 1.513 (0.082)

S
et

ti
n

g
2

(T
a
b

le
4
.1

5
)

g
lo

b
a
l

15%
250 0.500 (0.042) 1.507 (0.080) 1.000 (0.077) 1.511 (0.074) 1.003 (0.072) 1.521 (0.078) 1.521 (0.078) 1.524 (0.084)
500 0.501 (0.030) 1.505 (0.055) 1.004 (0.058) 1.509 (0.053) 1.005 (0.056) 1.512 (0.053) 1.512 (0.053) 1.511 (0.058)
1000 0.493 (0.018) 1.499 (0.036) 0.972 (0.018) 1.507 (0.040) 0.971 (0.016) 1.504 (0.036) 0.970 (0.017) 1.505 (0.040)

30%
250 0.501 (0.043) 1.508 (0.095) 1.005 (0.110) 1.512 (0.100) 1.017 (0.122) 1.534 (0.111) 1.534 (0.111) 1.531 (0.131)
500 0.501 (0.033) 1.503 (0.065) 1.006 (0.079) 1.512 (0.070) 1.013 (0.082) 1.514 (0.077) 1.514 (0.077) 1.517 (0.088)
1000 0.502 (0.021) 1.500 (0.043) 1.007 (0.053) 1.508 (0.048) 1.007 (0.061) 1.510 (0.055) 1.011 (0.066) 1.511 (0.064)

30% HT
250 0.501 (0.042) 1.505 (0.096) 1.008 (0.139) 1.509 (0.113) 1.027 (0.172) 1.527 (0.143) 1.527 (0.143) 1.559 (0.186)
500 0.501 (0.031) 1.502 (0.066) 1.011 (0.091) 1.512 (0.080) 1.016 (0.122) 1.514 (0.096) 1.514 (0.096) 1.521 (0.121)
1000 0.502 (0.021) 1.499 (0.045) 1.008 (0.068) 1.510 (0.055) 1.011 (0.089) 1.510 (0.063) 1.019 (0.119) 1.517 (0.087)

se
q
u

en
ti

a
l

15%
250 0.500 (0.042) 1.506 (0.082) 1.001 (0.077) 1.508 (0.077) 1.003 (0.072) 1.515 (0.084) 1.515 (0.084) 1.519 (0.088)
500 0.499 (0.029) 1.503 (0.058) 0.999 (0.056) 1.506 (0.057) 0.998 (0.053) 1.511 (0.059) 1.511 (0.059) 1.509 (0.063)
1000 0.502 (0.021) 1.500 (0.039) 0.977 (0.016) 1.512 (0.043) 0.974 (0.016) 1.508 (0.042) 0.972 (0.016) 1.509 (0.043)

30%
250 0.501 (0.044) 1.507 (0.095) 1.004 (0.110) 1.511 (0.101) 1.015 (0.121) 1.527 (0.116) 1.527 (0.116) 1.527 (0.134)
500 0.502 (0.033) 1.500 (0.066) 1.008 (0.079) 1.510 (0.073) 1.016 (0.084) 1.514 (0.082) 1.514 (0.082) 1.513 (0.088)
1000 0.502 (0.021) 1.500 (0.045) 1.007 (0.054) 1.507 (0.051) 1.008 (0.062) 1.509 (0.059) 1.011 (0.066) 1.510 (0.065)

30% HT
250 0.502 (0.043) 1.501 (0.094) 1.005 (0.138) 1.502 (0.112) 1.009 (0.169) 1.509 (0.134) 1.509 (0.134) 1.531 (0.185)
500 0.501 (0.031) 1.502 (0.067) 1.010 (0.092) 1.507 (0.079) 1.018 (0.123) 1.515 (0.096) 1.515 (0.096) 1.517 (0.119)
1000 0.502 (0.021) 1.498 (0.047) 1.008 (0.067) 1.508 (0.057) 1.012 (0.090) 1.509 (0.065) 1.019 (0.119) 1.513 (0.084)
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B.7 Additional results for the asthma data

Runtime comparison

Table B.25: Average computation time in seconds for the simulation settings considered in the
extensive simulation study of Section 4.4.7 based on 250 replications. Results for
one-stage parametric and two-stage semiparametric together with sequential and
global proceeding are compared. Calculations were run on a Linux cluster with
Intel Xeon E5-2690 v3 CPU 64 GB RAM.

One-stage parametric Two-stage semiparametric
sequential global sequential global

S
et

ti
n

g
1

(T
ab

le
4.

15
)

15%
250 129.65 1077.56 5.61 51.95
500 159.34 1328.51 11.64 101.72
1000 338.29 2752.166 23.31 198.96

30%
250 58.19 513.40 3.73 39.62
500 109.37 952.54 7.30 77.97
1000 218.12 1945.72 14.38 149.63

30% HT
250 60.44 545.05 3.75 41.06
500 109.96 996.14 7.52 78.49
1000 217.78 2072.00 14.41 152.21

S
et

ti
n

g
2

(T
ab

le
4.

15
)

15%
250 101.20 427.07 6.40 53.33
500 193.52 747.64 12.97 101.00
1000 373.06 1303.48 25.82 203.71

30%
250 60.98 281.48 3.95 35.48
500 109.94 451.16 7.73 69.79
1000 205.77 775.33 15.03 137.75

30% HT
250 57.05 301.71 3.74 32.08
500 108.21 506.98 7.16 60.23
1000 194.64 791.06 14.18 113.58

B.7 Additional results for the asthma data
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Table B.26: Marginal parameter estimates with standard errors based on 1000 bootstrap samples (in parentheses) of copula models fitted to
each of the three samples of the asthma data using sequential and global one-stage parametric estimation. In case of Archimedean
copulas the Frank (4dF), Gumbel (4dG), Clayton (4dC) and the Independence (4dInd) copula are considered. In case of D-vine
copulas only the three best models are shown with Frank being the pair-copula family in trees T2 and T3.

λ1 ρ1 λ2 ρ2 λ3 ρ3 λ4 ρ4

S
eq

u
en

ti
a
l

es
ti

m
a
ti

o
n

Full
FGG 1.900 (0.135) 1.005 (0.058) 1.285 (0.120) 0.612 (0.043) 1.365 (0.183) 0.698 (0.058) 1.664 (0.360) 0.726 (0.068)
CGG 1.900 (0.135) 1.005 (0.058) 1.234 (0.121) 0.600 (0.043) 1.347 (0.182) 0.696 (0.059) 1.611 (0.353) 0.719 (0.068)
GGG 1.900 (0.135) 1.005 (0.058) 1.273 (0.115) 0.626 (0.044) 1.364 (0.185) 0.704 (0.059) 1.655 (0.365) 0.732 (0.069)

Treatment
FGG 1.759 (0.179) 1.174 (0.099) 1.043 (0.148) 0.595 (0.065) 1.062 (0.242) 0.619 (0.086) 1.554 (0.657) 0.711 (0.112)
CGG 1.759 (0.179) 1.174 (0.099) 1.027 (0.149) 0.591 (0.065) 1.060 (0.240) 0.620 (0.086) 1.518 (0.641) 0.706 (0.112)
GGG 1.759 (0.176) 1.174 (0.099) 1.050 (0.144) 0.599 (0.066) 1.065 (0.245) 0.621 (0.086) 1.547 (0.653) 0.707 (0.112)

Control
FGG 2.057 (0.209) 0.898 (0.074) 1.596 (0.205) 0.639 (0.059) 1.602 (0.256) 0.756 (0.079) 1.834 (0.485) 0.745 (0.092)
FGF 2.057 (0.209) 0.900 (0.074) 1.596 (0.205) 0.639 (0.059) 1.602 (0.256) 0.756 (0.079) 1.889 (0.547) 0.763 (0.096)
GGG 2.057 (0.209) 0.900 (0.074) 1.563 (0.197) 0.653 (0.060) 1.601 (0.260) 0.763 (0.080) 1.811 (0.507) 0.750 (0.093)

G
lo

b
a
l

es
ti

m
a
ti

o
n

Full

FGG 1.891 (0.135) 1.008 (0.058) 1.247 (0.116) 0.602 (0.041) 1.330 (0.180) 0.684 (0.057) 1.662 (0.354) 0.716 (0.067)
CGG 1.899 (0.135) 1.005 (0.058) 1.200 (0.118) 0.590 (0.041) 1.307 (0.179) 0.682 (0.057) 1.568 (0.345) 0.708 (0.066)
GGG 1.900 (0.135) 0.989 (0.056) 1.241 (0.112) 0.613 (0.042) 1.325 (0.181) 0.689 (0.057) 1.617 (0.361) 0.720 (0.068)
4dF 1.869 (0.135) 1.008 (0.056) 1.303 (0.110) 0.620 (0.044) 1.543 (0.170) 0.698 (0.055) 2.660 (0.420) 0.761 (0.067)
4dG 1.879 (0.161) 0.995 (0.063) 1.302 (0.131) 0.616 (0.048) 1.585 (0.234) 0.696 (0.063) 2.827 (0.592) 0.766 (0.084)
4dC 1.890 (0.136) 1.006 (0.058) 1.273 (0.115) 0.612 (0.044) 1.478 (0.189) 0.680 (0.055) 2.525 (0.434) 0.731 (0.063)

4dInd 1.900 (0.137) 1.005 (0.060) 1.293 (0.110) 0.620 (0.044) 1.657 (0.176) 0.690 (0.056) 3.068 (0.435) 0.742 (0.066)

Treatment

FGG 1.757 (0.179) 1.175 (0.100) 1.018 (0.146) 0.590 (0.063) 1.025 (0.240) 0.608 (0.085) 1.503 (0.640) 0.700 (0.110)
CGG 1.760 (0.179) 1.173 (0.099) 1.001 (0.146) 0.586 (0.062) 1.021 (0.238) 0.609 (0.084) 1.463 (0.613) 0.695 (0.109)
GGG 1.763 (0.180) 1.172 (0.099) 1.026 (0.142) 0.595 (0.064) 1.028 (0.239) 0.610 (0.084) 1.497 (0.635) 0.696 (0.109)
4dF 1.730 (0.177) 1.175 (0.099) 1.055 (0.136) 0.596 (0.068) 1.312 (0.241) 0.609 (0.083) 3.584 (1.116) 0.776 (0.116)
4dG 1.759 (0.196) 1.174 (0.101) 1.050 (0.150) 0.599 (0.071) 1.379 (0.264) 0.601 (0.090) 3.989 (1.423) 0.753 (0.129)
4dC 1.753 (0.182) 1.173 (0.095) 1.038 (0.135) 0.594 (0.070) 1.290 (0.247) 0.597 (0.086) 3.541 (1.118) 0.750 (0.111)

4dInd 1.759 (0.182) 1.174 (0.095) 1.051 (0.136) 0.559 (0.072) 1.378 (0.243) 0.601 (0.084) 3.989 (1.118) 0.753 (0.109)

Control

FGG 2.039 (0.209) 0.906 (0.075) 1.548 (0.200) 0.626 (0.057) 1.566 (0.252) 0.740 (0.076) 1.803 (0.493) 0.736 (0.091)
FGF 2.039 (0.209) 0.906 (0.075) 1.561 (0.202) 0.632 (0.057) 1.601 (0.257) 0.754 (0.078) 1.881 (0.559) 0.762 (0.096)
GGG 2.038 (0.209) 0.881 (0.071) 1.526 (0.192) 0.637 (0.058) 1.563 (0.256) 0.736 (0.077) 1.787 (0.509) 0.740 (0.092)
4dF 2.011 (0.203) 0.902 (0.072) 1.604 (0.191) 0.647 (0.061) 1.751 (0.281) 0.767 (0.080) 2.405 (0.500) 0.763 (0.092)
4dG 2.028 (0.233) 0.891 (0.075) 1.600 (0.214) 0.643 (0.065) 1.786 (0.316) 0.761 (0.087) 2.525 (0.631) 0.773 (0.102)
4dC 2.047 (0.212) 0.900 (0.071) 1.565 (0.189) 0.639 (0.060) 1.655 (0.257) 0.744 (0.081) 2.252 (0.497) 0.739 (0.086)

4dInd 2.057 (0.215) 0.898 (0.071) 1.583 (0.176) 0.648 (0.062) 1.883 (0.269) 0.759 (0.080) 2.766 (0.523) 0.756 (0.086)
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B.7 Additional results for the asthma data

Table B.27: Average cluster sizes and average censoring percentage among the 1000 bootstrap
replications used for standard error calculation of the copula and marginal parameter
estimates in the asthma data. Results for all three subsamples are shown. In case
of Archimedean copulas the Frank (4dF), Gumbel (4dG), Clayton (4dC) and the
Independence (4dInd) copula are considered. In case of D-vine copulas only the
three best models are shown with Frank being the pair-copula family in T2 and T3.
One stage-parametric estimation is considered. For D-vine copulas both sequential
(top panels) and global (bottom panels) estimation are performed.

#size 1 #size 2 #size 3
#size 4 #size 4

%censoring
(event) (censored)

S
eq

u
en

ti
al

es
ti

m
a
ti

o
n

Full
FGG 17.85 63.74 46.36 23.68 80.38 21.67
CGG 17.84 63.49 46.51 23.88 80.28 21.67
GGG 17.85 64.65 47.37 24.02 78.12 22.08

Treatment
FGG 8.96 39.86 24.32 8.01 31.85 25.34
CGG 8.96 39.73 24.39 8.06 31.86 25.32
GGG 8.96 39.77 24.76 8.11 31.40 25.50

Control
FGG 8.49 24.47 22.61 14.81 48.62 18.61
FGF 8.49 24.47 22.61 14.37 49.06 18.50
GGG 8.49 25.01 23.26 15.15 47.10 19.10

G
lo

b
al

es
ti

m
at

io
n

Full

FGG 17.99 65.68 45.82 22.91 79.61 21.90
CGG 17.85 65.24 46.06 23.12 79.72 21.85
GGG 18.10 66.08 46.76 23.25 77.80 22.22
4dF 18.98 62.26 45.53 21.78 83.45 21.22
4dG 18.59 62.60 45.05 21.32 84.45 21.04
4dC 18.17 62.83 44.30 20.57 86.14 20.71

4dInd 17.82 63.26 44.06 20.36 86.51 20.69

Treatment

FGG 8.97 40.65 23.98 7.79 31.61 25.51
CGG 8.96 40.55 23.96 7.87 31.68 25.47
GGG 8.94 40.57 24.42 7.92 31.15 25.67
4dF 9.31 39.51 22.99 6.65 34.55 24.42
4dG 9.01 39.88 23.09 6.20 34.82 24.34
4dC 9.07 39.54 23.21 6.11 35.07 24.23

4dInd 8.94 39.70 23.38 6.18 34.81 24.32

Control

FGG 8.62 25.45 22.51 14.35 48.07 18.87
FGF 8.62 25.21 22.37 14.19 48.61 18.70
GGG 8.76 25.65 23.01 14.62 46.96 19.23
4dF 9.13 23.87 22.35 14.04 49.62 18.37
4dG 8.80 23.79 21.88 13.98 50.55 18.05
4dC 8.49 23.77 21.93 13.66 51.15 17.85

4dInd 8.43 24.00 21.37 13.67 51.53 17.73
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