
FAKULTÄT FÜR
ELEKTROTECHNIK UND

INFORMATIONSTECHNIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Dr.-Ing. Thesis

On Fault-Effect Analysis at the
Virtual-Prototype Abstraction Level

Bogdan-Andrei Tăbăcaru

Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

On Fault-Effect Analysis at the Virtual-Prototype
Abstraction Level

Bogdan-Andrei Tăbăcaru

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informa-
tionstechnik der Technischen Universität München zur Erlangung des akademis-
chen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Ralph Brederlow

Prüfer der Dissertation:

1. Hon.-Prof. Dr.-Ing. Wolfgang Ecker
2. Priv.-Doz. Dr.-Ing. Daniel Müller-Gritschneder

Die Dissertation wurde am 04.03.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 19.12.2019 angenommen.

Acknowledgments

I feel privileged to take the time and acknowledge the people who stood by me
and helped me during my research and writing this thesis.

To my supervisor, Wolfgang Ecker, I want to extend my heartfelt gratitude for
offering me the research topic in the first place and for supporting me throughout
the whole process.

I wish to thank my second supervisor, Daniel Müller-Gritschneder, for taking
the time to review my work. I appreciate your feedback and support, and I am
looking forward to working together again in the future.

I also want to thank my former colleague and manager, Thomas Kruse.
Thomas, your patience, and kindness are unmatched, and I can compare your
command of English grammar only to the greatest of scholars.

To my work colleagues, Cristiano and Moomen, I want to thank for the time we
spent discussing, arguing, and planning the safety-verification flow for Infineon.

I wish to thank my students, Daniel, Karol, and Leandro, who have helped
me to implement and verify the fault-injection tools presented in this work.

I want to acknowledge my friends, Elif, Jen, and Teodora, for their support
and for proofreading my thesis.

Finally, I wish to thank my parents, Monica and Doru, for motivating me in
my time of need and being there for me.

Bogdan-Andrei Tăbăcaru
Munich, March 14, 2020

v

Abstract

The increase of automation in today’s cars has led to the need for safer and
more robust hardware systems in the automotive industry. Consequently, the
safety standard for automotive applications, ISO 26262, has been adopted in 2011.
ISO 26262 requires safety-critical systems to maintain correct functionality in the
event of fault occurrence up to 99% of the time. As a result, safety-critical systems
require safety verification and must contain safety mechanisms to reduce their
failure rate. Safety experts use safety-verification flows to analyze fault effects on
safety-critical systems-on-chip (SoCs), and quantify an SoC’s fault-tolerance level.
Safety-verification flows enhance traditional functional-verification features (e.g.,
reference models, test-benches) with fault-injection methods, which emulate the
behavior of random hardware faults. Based on fault-injection results, the SoC’s
fault tolerance is improved by designing better safety mechanisms.

ISO 26262 recommends fault injection into register-transfer-level (RTL) and
gate-level models. However, these models are available late in a system’s devel-
opment cycle, which increases the cost of safety-mechanism design. Furthermore,
RTL and gate-level models have slow simulation speeds, and thus, long simu-
lation runs. Finally, safety verification on RTL and gate-level models requires
injection of thousands and even millions of faults (e.g., bit flips, stuck-at faults)
in various scenarios, usually by injecting only one fault per simulation. Such sce-
narios lead to the injection of millions of faults during slow simulations. Besides,
time-to-market windows are becoming increasingly shorter, which increases the
need for faster and more efficient simulations. To address these issues, hardware
developers are migrating safety-verification methods to higher abstraction levels
such as virtual prototypes (VPs) developed using SystemC or TLM models.

Because VPs are more abstract than RTL and gate-level models, they benefit
from faster simulation speeds and early availability during SoC development.
These advantages contribute to fast fault-injection results and reduced cost
of safety-mechanism design. However, this higher level of abstraction causes
VP-based safety-verification results to correlate poorly with safety-verification
results obtained from RTL and gate-level models. Furthermore, fault injection
into VPs can lead to the observation of pseudo-failures (i.e., failures without

vii

Abstract

counterpart on the physical SoC).
The methods presented in this thesis improve the accuracy of safety ver-

ification on VPs, avoid pseudo-failures, optimize the fault-verification space
of VPs, and accelerate the safety-verification process. To achieve these goals,
the thesis introduces a comprehensive safety-verification flow, named SaVer,
three VP-based fault-injection methods, and multiple fault-injection optimization
approaches. SaVer automatically abstracts gate-level information to the VP ab-
straction level and performs fast fault-injection simulations using an optimized
fault library. The results obtained after applying SaVer on three microprocessors
show (i) 100% correlation between VPs and gate-level models, (ii) 33-34-fold
reduction of redundant transient faults, and (iii) acceleration of fault-injection
simulations compared to RTL and gate level by up to two orders of magnitude.

viii

Contents

Acknowledgments v

Abstract vii

1. Introduction 1
1.1. Safety Verification in the Automotive Industry 2
1.2. Safety Verification on Hardware Architectures 3
1.3. Motivation . 5

1.3.1. Linking Safety Analysis and Verification 6
1.3.2. Need for Early Safety-Architecture Exploration 7
1.3.3. Optimization of Safety-Verification Campaigns 7

1.4. State of the Art . 8
1.4.1. Simulation-Based Fault-Injection Methods 8
1.4.2. Optimization of Fault-Injection Simulations 12

1.5. Contributions of this Thesis . 15
1.6. Previous Publications . 17
1.7. Structure of this Thesis . 17

2. Safety-Verification of Hardware Models 19
2.1. Virtual Prototypes . 19

2.1.1. SystemC . 20
2.1.2. TLM . 20

2.2. Simulation-Based Fault Injection 22
2.2.1. Fault-Injection Environment 22
2.2.2. Fault-Injection Attributes 23
2.2.3. Fault-Verification Space . 24
2.2.4. Fault-Propagation Paths . 25
2.2.5. Types of Hardware Simulators 25
2.2.6. Fault Models . 27

2.3. Summary . 30

ix

Contents

3. Generic Fault-Injection Methods for Virtual Prototypes 31
3.1. Introduction . 31
3.2. SCFIT . 31

3.2.1. Fault-Injection Locations . 32
3.2.2. Fault Models . 34
3.2.3. Fault-Injection Flow . 34
3.2.4. Model-Based Automation and Graphical User Interface . 35

3.3. Simulator Commands for SystemC 36
3.4. Simulator Commands for SystemC/TLM 38

3.4.1. Injectable Interface . 39
3.4.2. Injectable Payload . 39
3.4.3. Injectable Sockets . 40

3.5. Summary . 42

4. Improving the Correlation of Fault-Injection Results 43
4.1. Introduction . 43
4.2. Fault-Masking Effects . 43

4.2.1. Electrical . 44
4.2.2. Latch Window . 44
4.2.3. Temporal . 44
4.2.4. Logical . 44

4.3. Pseudo-Faults and Pseudo-Failures 45
4.4. Fault-Matching Points . 47
4.5. Augmentation of Virtual Prototypes with Gate-Level Data 51

4.5.1. VERITAS . 51
4.5.2. VERITAS++ . 54

4.6. Summary . 56

5. Optimizing Fault-Injection Simulations 59
5.1. Introduction . 59
5.2. Measures for Verification Completeness 60
5.3. SaVer . 62

5.3.1. Fault-Injection Flow . 62
5.3.2. Fault-Injection Methods . 62

5.4. Spatial and Temporal Fault Pruning 63
5.4.1. Removal of Redundant Fault-Injection Locations 63
5.4.2. Simulation-Trace Analysis 64

5.5. Parallelization of Fault-Injection Simulations 65

x

Contents

5.6. Simulation Checkpointing . 66
5.6.1. Checkpoint . 66
5.6.2. Restore . 68
5.6.3. Checkpointing within SaVer 69
5.6.4. Performance Analysis . 70

5.7. Summary . 72

6. Experimental Results and Discussion 75
6.1. Application Example . 75

6.1.1. Adder Architectures . 75
6.1.2. Microprocessor Cores . 76

6.2. Experimental Setup . 77
6.3. Quantitative Analysis of Fault-Matching Points 78
6.4. Qualitative and Quantitative Analysis of Permanent-Fault Effects 80
6.5. Simulation Performance of Fault-Injection Methods 85

6.5.1. SCFIT . 85
6.5.2. Injectable TLM Sockets . 86
6.5.3. Fault-Injection Objects . 87

6.6. Performance Measurements of Checkpointing Mechanism 87
6.6.1. Requirements of Hard-Disk Space 88
6.6.2. Generation Time of Checkpoints 89

6.7. Reduction of Fault-Verification Space 90
6.7.1. Spatial Fault Pruning . 90
6.7.2. Temporal Fault Pruning . 90

6.8. Speed-Up of Fault-Effect Analysis 91
6.8.1. VERITAS and VERITAS++ 91
6.8.2. Checkpointing Mechanism 95

6.9. Summary . 96

7. Conclusion 99

A. ISO 26262 and Functional Safety 103
A.1. Introduction . 103
A.2. Hardware Models . 103
A.3. Automotive Safety-Integrity Levels (ASILs) 104
A.4. Failures Modes . 105
A.5. Tolerance-Time Interval . 106
A.6. Safety-Coverage Metrics . 108

A.6.1. Single-Point-Fault Metric (SPFM) 108

xi

Contents

A.6.2. Latent-Fault Metric (LFM) 108

B. Architecture Vulnerability Factor 109

C. Linking Safety Analysis to Fault-Injection Frameworks 111

Acronyms 115

Glossary 119

List of Figures 121

List of Tables 125

Bibliography 127

xii

1. Introduction

Car manufacturers currently focus on implementing advanced driver-assistance
systems (ADAS) [1] and even autonomous-driving features [2]. However, if
not developed correctly, such features can sometimes cause systems-on-chip
(SoCs) to fail, which can then lead to injury and even loss of human life [3],
[4]. Consequently, in 2011, the automotive industry has adopted the safety
standard ISO 26262 [5] to regulate the development, verification, and validation
of safety-critical SoCs against random hardware (HW) faults.

One of the leading causes of system failures in the automotive industry is the
increasing density of electronic and electric devices inside road vehicles. As cars
become more automated, the number of safety-critical SoCs within a car also
increases. Furthermore, these SoCs process more and more real-life data, such
as monitoring car and pedestrian activities and analyzing traffic signs. These
increases in density and data-processing rate make SoCs more susceptible to
the effects of random HW faults. As a result, fault occurrences can cause data
corruption and data loss, which then can lead to system failures. This behavior
prompts the need for more robust and safer SoCs.

Another cause of system failures is the transistor size. Currently, HW devices
continue to decrease in size as described by “Moore’s Law” [6]. However, these
shrinking technology nodes increase the sensitivity of safety-critical SoCs to the
effects of random HW faults, such as cosmic radiation [7] and aging effects [8]–
[10]. This behavior further underlines the need for robust and safe SoCs.

To mitigate the effects of random HW faults, various types of fault-mitigation
methods, also called safety mechanisms, have been developed. The goal of these
components is to harden a SoC and improve its self-healing capabilities [11].
However, safety mechanisms increase the development complexity and cost
of safety-critical SoCs, which involves balancing several trade-offs across the
system’s power consumption, performance, and area characteristics. For instance,
the addition of a lock-step mechanism increases the system’s area and power
consumption, while other mechanisms may reduce its performance [12], [13].
Furthermore, ISO 26262 increases the verification and validation complexity of
SoCs by recommending the utilization of safety-analysis and safety-verification

1

1. Introduction

methods to evaluate the benefits of safety mechanisms.
Because of these added constraints, semiconductor companies must improve

their process of developing, verifying, and validating SoCs to meet their time-
to-market constraints. To achieve this goal, they require methods which speed
up and improve the accuracy of safety analysis and safety verification on safety-
critical SoCs. Even though many such methods already exist, there is still a
growing need for more automated, faster, and more accurate safety analysis and
verification.

1.1. Safety Verification in the Automotive Industry

The safety standard for automotive applications, ISO 26262, defines the product
life-cycle process (development, verification, and validation) of safety-critical
systems (Fig. 1.1). Additionally, ISO 26262 provides requirements for functional
safety analysis across this life-cycle (Annex A). As a result, a system’s safety level
must be analyzed at different stages of a system’s development. Safety-analysis
methods can be broken down into:

Methods based on expert judgment predict a system’s fault tolerance, also
called failure-in-time (FIT) rate, using data from field returns of similar
systems, pre-compiled safety catalogs (e.g., SN 29500), and expert judg-
ment [5]. The most widely utilized methods in this category are the failure
modes, effects, and diagnostics analysis (FMEDA) [14], the fault-tree analy-
sis (FTA) [15], and the dependent-failure analysis (DFA) [16].

Analytical methods use mathematical models to predict a system’s fault tol-
erance. These approaches can be grouped further into methods which
calculate a system’s architecture-vulnerability factor (AVF) [17]–[26] (An-
nex B), and those which use graph-based models such as Markov chains,
binary-decision diagrams, arithmetic-decision diagrams, and even Petri
nets [27]–[30].

Since analytical methods and those based on expert judgment do not analyze
the system’s behavior, ISO 26262 recommends fault-injection-based safety verifi-
cation for products classified using the automotive safety-integrity levels (ASILs)
C or D. According to the safety standard, fault-injection methods “serve as a
check of particular points of the HW design [. . .] for which analytical methods
[. . .] are not considered to be sufficient” [5]. Faults must be injected at multiple

2

1.2. Safety Verification on Hardware Architectures

Safety
Requirements

System
Architecture

Product
Architecture

Product Implementation

Product Integration
and Verification

System Integration
and Verification

System Validation Hazard Analysis

System Safety
Analysis

Product Safety
Analysis

Hardware-Block
Architecture

Hardware-Block
Verification

Hardware-Block
Safety Analysis

Figure 1.1.: ISO 26262’s simplified V-model diagram

stages of the safety standard’s V-model (Fig. 1.1). On the left side of the V-model,
safety analysis is required at three main stages before product implementation:
system, product, and HW block architectures. On the V-model’s right side, fault
injection is needed to test and validate the analyzed system.

ISO 26262 regards fault injection as a suitable method for validating the safety
requirements of a safety-critical system, verifying the effectiveness of safety
mechanisms, and estimating the system’s fault tolerance. Safety mechanisms
are usually verified by injecting HW faults directly into system components
using a method called direct fault injection. Additionally, HW faults can be
inserted randomly into a system using methods for statistical fault injection (SFI).
SFI determines a system’s failure distribution, fault vulnerability, and FIT rate.
However, ISO 26262 does not specify how to link the results of safety analysis
and fault-injection-based safety verification.

1.2. Safety Verification on Hardware Architectures

Currently, the automotive industry is researching more effective methods to
develop, verify, and validate safety-critical SoCs. Existing safety-verification
methods aim to improve the development of safety mechanisms for SoCs. This
goal is achieved by estimating the fault-tolerance level of a safety-critical SoC,
and be determining which components of the SoC are most sensitive to HW
faults. Once these values have been determined, safety mechanisms can be

3

1. Introduction

applied systematically to the system to improve its fault-tolerance level (FIT rate)
and maintain optimal power, area, and performance trade-off. Safety-verification
methods can be grouped based on their execution platform as:

Physical testing determines the fault tolerance of safety-critical SoCs by bom-
barding the physical SoC with radiation [29].

Emulation methods estimate a SoC’s fault tolerance by executing a system’s
gate-level net-list on dedicated HW devices such as field-programmable
gate arrays (FPGAs) [31]–[34] or graphics-processing units (GPUs) [35].

Simulation methods estimate a SoC’s fault tolerance by simulating the system’s
functionality at different levels of abstraction on one or more personal
computers (PCs) using a HW simulator [29], [36].

While these fault-injection methods can be used successfully to determine a
system’s fault tolerance, physical testing and emulation methods significantly
increase the cost of SoC verification and validation because of their need for
dedicated HW components (e.g., radiation sources, FPGAs, GPUs). Additionally,
they can only be applied late in the development cycle of a safety-critical SoC
once the system’s gate-level net-list is available or the system has been already
manufactured. Consequently, the SoC may need to be redesigned and even
re-manufactured several times before it reaches its required failure rate; a process
which can also significantly increase the SoC’s development cost.

State-of-the-art simulation methods can be further categorized based on the
abstraction level of the HW models they are simulating:

Transistor-level models characterize the fault tolerance of technology cells (e.g.,
logic gates, flip-flops) using in SPICE simulations [29], [37].

Gate-level net-lists are similar to emulation methods, but executed on one or
more PCs instead of FPGAs or GPUs [7], [10], [29], [38]–[45].

Register-transfer-level (RTL) models are more abstract than gate-level net-
lists, and thus, offer better simulation performance [40], [41], [45]–[49].

Unfortunately, these abstraction levels suffer from different drawbacks. The
transistor abstraction level uses models of currents and voltage potentials, and is
too detailed to be used in simulations of entire safety-critical SoCs. Gate-level
net-lists and RTL models suffer from slow simulation speed and are available late

4

1.3. Motivation

in the development phase of a SoC, when changes to the system are expensive
and may require redesign. Furthermore, the high granularity of gate-level net-
lists and RTL models leads to long and complex safety-verification campaigns
(e.g., thousands and even millions of simulations).

Commercial simulation-based fault-injection methods are also available [50]–
[54]. However, these methods require considerable manual input and expert
judgment. Furthermore, they are applied in the late stages of SoC development
on gate-level net-lists and RTL models.

1.3. Motivation

According to ISO 26262, the results of safety analysis on safety-critical SoCs
must be proven using fault-injection methods. However, the safety standard only
recommends this approach for systems classified as ASIL C or D. Furthermore,
it does not provide a method to link the results from fault injection to those
from safety analysis. Consequently, these results are mainly linked manually,
which is an error-prone approach. Therefore, there is a need for a solution which
automates this process, reduces the risk of human error, and bridges the gap
between predictions, which are based on expert judgment, and fault-injection
results.

As already mentioned, state-of-the-art fault-injection methods can only be
applied late in the development cycle of safety-critical SoCs. In this case, systems
which do not achieve the desired fault-tolerance level may require a cost-intensive
redesign of safety mechanisms. Consequently, there is a need to migrate fault-
injection methods to earlier stages of SoC development, for instance at the
architecture-exploration stage, when safety mechanisms are also developed.

Apart from their late applicability, state-of-the-art safety-verification cam-
paigns require the execution of a large number of faults to obtain significant
statistical results. For large SoCs with various application scenarios, such as
a car’s engine-control unit (ECU) [55], such campaigns increase the cost of
safety verification, and can even become unfeasible. Therefore, there is a need
to speed up fault-injection methods, and reduce the size and complexity of
safety-verification campaigns.

5

1. Introduction

1.3.1. Linking Safety Analysis and Verification

Based on the recommendations of ISO 26262, safety analysis must be performed
on a SoC’s architecture to predict its fault tolerance. Given their applicability,
safety-analysis methods can be defined as:

Top-down methods (e.g., FTA) start at the system’s top-level (e.g., package
and pins), and uses deduction to hierarchically determine the SoC’s failure
causes down to its smallest components (e.g., gates, transistors).

Bottom-up methods (e.g., FMEDA) start with a flattened list of failure causes
for the system’s smallest components and uses induction to predict the
failure rate of the component hierarchies, and finally the entire system.

One way to analyze a system’s safety levels is by breaking down a safety-
critical SoC into hierarchical sub-components, and determining their root causes
using FTA. Next, DFA is applied to the resulting fault tree, which identifies
the contributions of dependent failure causes to the system’s failure rate. Then,
individual failure rates are predicted for the leaf nodes of the fault tree using
FMEDA. Finally, the failure rate of the entire system is determined hierarchi-
cally. Typical sources for the prediction of failure rates are safety catalogs (e.g.,
SN 29500), field-return data from existing products, expert judgment, and others.
Similar safety-analysis methods already exist such as HiP-HOPS [56].

Using these safety-analysis results, safety mechanisms are developed to in-
crease the SoC’s fault tolerance, and reach the system’s required ASIL. If the
SoC is an ASIL C or D product, safety verification through fault injection is rec-
ommended to prove the predicted failure rate of a particular system component.
For this reason, the predicted failure rates from safety analysis are used to derive
information necessary for fault-injection campaigns, such as where to inject a
fault within the SoC (e.g., registers, flip-flops, memory cells), or the type of the
injected HW fault (e.g., open or short circuit, or bit-flip). These derived data are
stored in so-called fault libraries. Then, the results of fault-injection campaigns
are compared with the initial predictions from safety analysis. In the case of
a substantial mismatch between the two values, it may be necessary to design
more efficient safety mechanisms.

Safety analysis and verification are a continuous process throughout a SoC’s
development cycle. Thus, as the architecture of a safety-critical SoC is updated,
the initial safety analysis must also be refined to reflect the new architecture.
However, these results are mainly updated manually, which is an inherently error-
prone process. Similarly, faults must regularly be injected (with every update

6

1.3. Motivation

of the SoC’s architecture) as part of the SoC’s safety verification. However,
the creation and maintenance of fault-injection libraries is usually a manual
approach. Moreover, results from fault-injection experiments are annotated
manually to the safety analysis.

1.3.2. Need for Early Safety-Architecture Exploration

Before developing a safety-critical SoC using RTL and gate-level models, the
feasibility of the SoC’s architecture must first be analyzed. Safety analysis uses
the resulting SoC architecture to predict its failure rate and derive safety mech-
anisms which improve the architecture’s fault-tolerance level. Currently, this
feasibility is analyzed by simulating abstract HW models of the architecture
called virtual prototypes (VPs). Depending on the industry where they are ap-
plied, VPs may be modeled in many ways (e.g., LabVIEW, Matlab, Simulink [57]).
In the automotive industry, the SystemC and transaction-level-modeling (TLM)
libraries have become the de facto standard for VP modeling [58].

VPs modeled using SystemC and TLM are utilized to explore different architec-
ture configurations of a SoC, such as various bus architectures, or communication
interfaces across central-processing units (CPUs) and peripherals. Furthermore,
VPs are used to evaluate the configuration’s impact on overall system perfor-
mance, area, and power consumption. For safety-critical SoCs, such VPs can
be extended to explore various safety-mechanism configurations as well, and
thus, perform early safety-architecture exploration. To enable this capability on
VPs, efficient fault-injection methods are required for SystemC and TLM models.
However, existing safety verification methods focus on fault injection into RTL
models and gate-level net-lists.

1.3.3. Optimization of Safety-Verification Campaigns

As mentioned in section 1.2, emulation and simulation-based fault injection
into gate-level net-lists are currently the preferred safety-verification methods.
The main benefit of these techniques is their similarity to the physical system.
Since such HW models are highly detailed, fault-injection results are accurate
and can be reproduced on the physical design. Furthermore, because of these
models’ increased granularity, faults may be injected into many different parts
of a safety-critical SoC, such as registers, combinational logic gates, flip-flops,
and others. Such systems may also experience the effects of several types of HW
faults such as electromigration, cross-talk, or neutron strikes. As a result, safety-

7

1. Introduction

verification campaigns end up having to evaluate the outcomes of thousands
and even millions of fault injections.

The verification space of safety-critical SoCs also increases with the increase
of the SoC’s complexity, and the real-world applications which such SoCs have
to execute. Modern SoCs have different operational modes (e.g., test mode,
normal mode), and also benefit from power-saving features such as sleep mode for
different unused components, or clock and power gating. For this reason, the
SoC’s application may influence the propagation of faults through the system.
For instance, faults injected into components which are in sleep mode do not
propagate through the system, and do not produce outcomes. Thus, such faults
only waste resources (e.g., verification time). For this reason, safety-verification
methods cannot treat systems as black-boxes, which can be verified by purely
statistical means. In this case, effective fault-injection methods must also consider
the system’s application.

To address the challenges of the slow execution speed of RTL and gate-level
models, and their inherent late availability during SoC development, optimiza-
tions are required to speed-up the execution of fault-injection campaigns, reduce
the size of the SoC’s verification space, and offer faster safety-verification results.

1.4. State of the Art

This section presents state-of-the-art methods for fault-injection-based safety-
verification approaches developed for SystemC and TLM models, and for opti-
mizing fault-injection simulations.

1.4.1. Simulation-Based Fault-Injection Methods

The fault-injection approaches presented in this section are categorized based on
the breadth of their applicability: methods only applied to VPs, and methods
used across multiple abstraction levels (i.e., VPs, RTL models, and gate-level
net-lists).

At the Virtual-Prototype Level

The first fault-injection approaches for SystemC-based VPs have created SystemC
models similar to gate-level net-lists and RTL models [59]–[62]. Furthermore, the
authors of [61], [62] have implemented traditional design-for-test methods, such
as automatic test-pattern generation (ATPG), for such SystemC models. However,

8

1.4. State of the Art

these models have slower performance than commercial HW simulators [62].
In [63], the SystemC library has been enhanced to support concurrent fault
simulation with the goal of improving the slow simulation performance of
SystemC-based gate-level models. Here, dedicated 32-bit data types have been
used to store the results of 31 parallel fault simulations and one reference
simulation. The simulator has only been applied to combinational logic.

In [64], the authors have developed a generic debugging approach for SystemC
VPs. They have set breakpoints on SystemC data types using the GNU Debugger
(GDB) to access data from the HW model, control the SystemC simulation, and
manually inject faults. This method allows fault injection without having to
modify the original SystemC model (i.e., non-intrusive method). However, this
approach does not support automated or generic fault injection into the VPs.
Moreover, TLM models are not supported.

In [65], the authors have created fault-injection data types for SystemC models
which are controlled from a test-bench during a SystemC simulation. Thus, VPs
which use these data types benefit from fault-injection capabilities. However,
legacy models must be manually updated, which makes this method intrusive.
Furthermore, this approach does not support fault injection into private SystemC
data members.

In [66], SystemC models are parsed, analyzed, and transformed into extended
finite-state machines (FSMs). During the transformation phase of the SystemC
code, this approach uses code mutation to introduce permanent faults into
the FSM’s implementation. However, this method requires the generation of
multiple FSMs to analyze the behavior of different permanent faults, which
reduces the method’s performance. Furthermore, this approach only supports
the injection of a limited set of fault types. Finally, it has reduced simulation
performance due to the complex nature of the generated FSMs.

Other approaches combine the SystemC library with other programming
languages. One such work links SystemC to Python [67] using the simple
wrapper interface generator (SWIG). The authors have named the resulting
library SystemPy. SystemC modules are created directly in Python and still
use the SystemC simulation kernel implemented in C++. However, SystemPy
only supports manual fault injection. Other works, such as ReSP, use the
Boost.Python library to connect to the SystemC and TLM library and extend the
SystemC simulation kernel [68]–[71]. ReSP can inject faults into SystemC models
and perform safety verification using Python. ReSP is non-intrusive and uses
Python’s introspection capabilities to enhance the SystemC library. However, the
extra Python classes and computational complexity add a significant simulation

9

1. Introduction

overhead to the SystemC simulation, which degrades the VP’s performance.
The VP-based fault-injection approaches mentioned above focus on manually

abstracting RTL and gate-level models to the VP level. However, the authors
of [72] have reversed the process by using a high-level logic-synthesis tool to
generate RTL code from SystemC VPs. The authors have injected faults using
static code mutation. Thus, instead of modifying the values of logic gates during
simulation, the authors have modified its function (i.e., arithmetic, logic, shift,
relational, and binary). However, the high-level synthesis tool generates registers,
which cannot be reached by the fault-injection tool during simulation. Finally, the
high-level synthesis tool employed in this approach is used only for a reduced
set of HW architectures.

In [73], fault injection is performed using a TLM-based saboteur, which is
a TLM module that interconnects a TLM initiator and a TLM target compo-
nent. Fault injection is broken down into three methods: cycle-accurate models,
untimed TLM models, and timed TLM models. In the case of fault injection
over multiple abstraction levels, this approach requires manually-implemented
adapters across every abstraction level to enable usage of TLM fault-injection
modules. This method uses two fault models: data and address faults. Even
though this approach implements a robust fault-injection mechanism for TLM
models, it suffers from two main drawbacks. First, it requires manual imple-
mentation of adapters and fault-injection modules. Second, the re-usability of
fault-injection modules is limited to using generic payloads. In the case of TLM
models which implement specialized sockets or payloads, new fault-injection
modules must be created manually. As a result, this approach does not scale for
large safety-critical microcontrollers (e.g., the STMicroelectronics SPC5TM [74]
family, the Infineon AURIXTM [55] family).

In [75], faults are injected into TLM models by hijacking the virtual tables of
Microsoft’s VisualC++ and GNU’s GCC compilers. Additional virtual methods
are inserted into components of the TLM library during compilation time by
creating so-called hooks to the compiled TLM models. These hooks are accessed
from an e test-bench [75]. The e language is an object-oriented verification
language for hardware-description languages (HDLs) [76]. It contains aspect-
oriented features which enable users to define objects (e.g., classes, enumerations,
and other data types) and then, extend these objects’ functionality without
modifying their already existing implementation. This approach allows third-
party models to be fitted for fault injection, even though they initially did not
come equipped with fault-injection capabilities. For this reason, the method is
non-intrusive. However, the authors have reported a high simulation overhead

10

1.4. State of the Art

of 20-30% introduced by the instrumented virtual tables and interposed modules.
Furthermore, over 40 virtual methods have been added to the TLM library, which
renders the fault-injection application programming interface (API) complicated
to use.

At Mixed Abstraction Levels

In [77], VPs are co-simulated with models from the RTL and the gate level. The
authors’ goal has been to speed up fault-injection simulations by combining
the advantages of two or more abstraction levels, such as the granularity of
gate-level models with the verification speed of VPs. Similarly, in [78], VPs are
used to quickly bring a CPU into a state ready for fault injection. Afterward,
the VP information is used to start a detailed RTL simulation of the same CPU.
Then, the RTL models are used to inject faults and observe their effects.

In [79], faults are injected separately into sequential components of VPs, RTL,
and gate-level models to quantify the models’ accuracy trade-off. The authors
have used simulation as well as emulation techniques to assess this trade-off.
Several failure outcomes have been recorded as a result of injecting faults into a
LEON3 processor. Furthermore, the authors have discovered inconsistencies of
fault-injection results across VPs, and RTL and gate-level models.

In [80], [81], the authors have attempted to speed up the fault-simulation
process on HW models. For this reason, they have characterized the fault
tolerance of a LEON3 processor using RTL models. Afterward, they have used
an instruction-set simulator to migrate the fault effects from RTL models to VPs.
The authors have abstracted faults manually to the VP level. Similar to [79], the
authors have noted different fault-injection results across the abstraction levels.

In [82], a cross-layer framework migrates faults from detailed models to more
abstract models. The authors have achieved this by injecting faults into gate-level
net-lists. The observed fault effects have then been reproduced at the VP level
using statistical methods. Finally, the faults which have produced the same
effects as on the gate-level net-lists have been used to characterize the analyzed
system’s fault tolerance. Faults are injected into TLM-based VPs by modifying
TLM-specific components such as the TLM-payload attributes (e.g., address, data
pointer, the transaction’s delay parameter). Furthermore, faults are transferred
from gate-level net-lists to the VP through a manually implemented wrapper
function, which maps parts of the gate-level net-list to functional blocks of the
VP. Since VPs are more abstract than gate-level net-lists, they have been manually
extended to more closely resemble the gate-level implementation.

11

1. Introduction

1.4.2. Optimization of Fault-Injection Simulations

This section presents two types of methods, which optimize the fault-injection-
based safety verification. The first type reduces the complexity of fault-injection
experiments. The second type speeds up the remaining experiments using
simulation checkpointing.

Reduction of Safety-Verification Complexity

As the complexity of modern safety-critical SoCs increases, so do the number
of faults which can affect the system, the system’s sensitivity to faults, and
the complexity of modeling optimal fault-injection scenarios. One of the main
problems of safety verification is determining which faults propagate through the
system and cause failures, and which get masked (i.e., do not cause failures) [83].
Another significant problem in safety verification are faults which have the same
propagation paths, and thus, lead to the safe failures. In [84], [85], two methods
are introduced which cluster such faults and exclude them from subsequent
simulations: fault pruning and fault collapsing. Fault collapsing eliminates
faults, which have the same effect on the system. Fault pruning removes faults,
which are always masked by a system.

In [86], a method is presented to group interconnected combinational gates
which are connected to sequential elements (e.g., latches, flip-flops) or output
ports. This group is called a cone of influence (COI). As a result, faults occurring
within the COI can be collapsed to a single fault occurring within the output or
sequential element at the output of the COI. If a COI is connected to multiple
outputs, the effects of such a fault injection must be spread out across each
output, for instance, using DFA [16].

In [87], a method to perform fault pruning is presented which analyzes the
logic dominance of combinational logic gates (i.e., ‘0’ for AND gates, and ‘1’ for
OR gates). These dominance values are decided at each simulation step using
a reference simulation. If the gate’s input has a dominant value, faults are not
injected into the other input of that logic gate. In [88], a similar approach is
introduced which prunes faults using static code analysis. In this case, safety-
critical blocks are broken down into basic blocks. Then, these blocks are analyzed
based on available HW masking effects and the definition of constant variables.
Faults which are always masked by the system are pruned out. In [20], [52],
faults are pruned by analyzing the behavior of safety-critical HW components
(e.g., logic gates, flip-flops, latches, memory cells). This behavioral analysis
executes gate-level net-lists and RTL models and determines which faults can

12

1.4. State of the Art

propagate through the system and which get masked immediately after their
injection.

In [89], a method different from fault pruning is introduced to avoid faults
on RTL and gate-level models which are always masked by the system. This
method focuses on determining which fault-injection scenarios to use based on
the available list of faults. Compared to classic SFI approaches which inject HW
faults randomly into randomly selected workloads, this approach maps which
faults must be injected into each workload. Therefore, this method reduces the
probability of faults being masked by the system.

Simulation Checkpointing

Checkpoint-restore methods [90], also known as snapshotting methods, have
been used initially for HW-verification purposes. A HW model’s states can be
dumped to a file (checkpoint) during one simulation and restored from that
saved checkpoint to run subsequent simulations (Fig. 1.2). As a result, simulation
time is saved, and the overall verification effort of HW models is minimized.
For instance, consider the verification effort of a microprocessor with a lengthy
boot-up cycle. This phase is usually independent of the firmware code which
is executed on the microprocessor. However, every time the microprocessor is
simulated, the boot-up phase must also be executed. By saving a snapshot after
the boot-up phase, new simulations can start from a more convenient point. This
ability leads to faster simulation results.

tcheckpoint 0

tstop

Reference

tstart

tsim

tstop

tstart

Reduced
Simulation

Time

Test Case 0

tsim tsim

tstop

Test Case m …

tcheckpoint n

…

Check-
Points

101
010

tstart

Figure 1.2.: Generic checkpoint-restore mechanism

In the context of safety verification, before faults are injected into a system,
a simulation must first bring the system into the necessary state. Furthermore,
various faults may be injected into the same system state which may then
propagate and become failures. Checkpointing mechanisms can remove this
unnecessary simulation time, thus speeding up fault-injection campaigns.

13

1. Introduction

Checkpointing mechanisms can be grouped into three categories based on
HW, software (SW), and virtual machine (VM) solutions.

HW-based checkpointing is a particular type of safety mechanism imple-
mented in safety-critical SoCs [32], [91]. It relies on periodically saving a given
system’s state using individual checkpointing registers. The saved state is
restored from the checkpoint in the event of error detection, thus, avoiding
expensive system resets. However, this technique is useful during a SoC’s
operation, not for safety verification.

SW-based checkpointing is a widely used technique to create snapshots of HW
models during a simulation [85]; it is supported by commercial HW simulators
and has a standardized interface within the Verilog language via built-in methods
(e.g., $save, $restart) [92]. Commercial simulators provide their implementation
of the checkpointing mechanism which varies regarding hard-disk space require-
ments and stored information (e.g., HW models, type of HW simulator) [93]–[95].
Moreover, in the case the checkpointed HW models are changed (e.g., signals
added or removed), snapshots can be reused only in limited conditions. This
limitation considerably reduces their usefulness when debugging.

GDB can be successfully used to create checkpoints by dumping the whole
memory content of a SW application or HW simulation and restoring it later [96].
However, GDB’s checkpoints require substantially more hard-disk space than
those of commercial tools; in this case, much more data are saved (e.g., cached
data, memory buffers, data pointers) than just the HW model’s states and
simulator kernel. GDB’s limitations have been addressed in [97] through the
development of two new checkpointing mechanisms: an operating-system-
level method and a process-level approach. However, these mechanisms create
checkpoints which require several MBs of hard-disk space and multiple seconds
to generate and store. Therefore, these techniques are still infeasible for fault-
injection campaigns which need several thousand snapshots.

SW-based checkpointing is also applied to SystemC and TLM-based VPs [98].
In [99], particular checkpointing data types are used instead of SystemC signals
and variables to save a VP’s state during simulation. However, the approach is
limited to SystemC methods only. Thus, SystemC threads are not checkpointed
since they are operating-system dependent.

VM-based checkpointing of HW models uses a VM’s built-in snapshotting
mechanism to store a HW model’s state [100]. This technique addresses the
limitations of [99] because SystemC/TLM simulation-states can be implicitly
saved as part of the VM’s snapshot. However, this approach uses a considerable
amount of hard-disk space because it saves the SystemC/TLM model’s states

14

1.5. Contributions of this Thesis

(i.e., including SystemC threads), and also all VM-specific information (e.g.,
caches, buffers, pointers).

In [86], [101], two checkpoint-restore methods have been integrated into
different safety-verification flows to speed-up fault-injection simulations. Both
methods create snapshots using commercial HW simulators for RTL and gate-
level models. However, these methods suffer from four significant drawbacks.
First, checkpoint generation requires a substantial amount of hard-disk space.
Existing checkpointing tools save more than just the HW model’s states (e.g.,
simulator kernel state, waveforms, scheduled events). Thus, particular systems
have many signal states which must be saved but also a considerable amount of
simulator information. Consequently, saving a sufficient number of snapshots
for a fault-injection campaign risks exhausting the project’s available hard-disk
space. Second, checkpoints can only be generated during a running simulation.
Thus, additional simulations must be run just to create new checkpoints. Third,
checkpoint generation requires a considerable amount of time. The safety
verification of large systems involves the creation of thousands of checkpoints.
Fourth, snapshots are created manually, which results in sub-optimal fault-
injection regressions.

1.5. Contributions of this Thesis

This thesis introduces several improvements to the field of safety verification
of safety-critical SoCs in the automotive industry. This section outlines the
contributions of this thesis to current state-of-the-art methods.

In this thesis, three fault-injection methods are introduced for the verification
of VPs developed using SystemC and TLM. Fault-injection-based verification
is a well-established practice in the aerospace, railway, computer, and other
industries. With the adoption of ISO 26262, fault-injection verification has
also become an integral part of the automotive industry. These fault-injection
methods enable early safety-architecture exploration because they can be used
during the early stages of SoC development, when safety mechanisms are
evaluated for a safety-critical SoC. New VPs may immediately integrate the fault-
injection features into their design. These methods also support non-intrusive
fault injection. Thus, legacy models do not need to be updated. Additionally,
faults are injected generically from the VP’s test-bench. Therefore, VPs can be
transferred to third parties (e.g., customers) without needing to disclose the VP’s
implementation details (i.e., protection of intellectual property).

15

1. Introduction

Fault injection into VPs benefits from faster results because of more abstract
HW models. However, this also creates a need for more abstract fault models. As
shown in [9], the vast range of physical faults (e.g., electromigration, and neutron
strikes) and transistor-level faults (e.g., bridging, open, and short circuits) can
be successfully simplified at the gate level and RTL by injecting faults (e.g.,
bit-flips, stuck-ats) into memory cells, flip-flops, and other logic gates. However,
at the abstract VP level, bit-flips and stuck-at faults are no longer useful. In
this case, more abstract fault models are required, which are specialized on
multi-bit components such as buses (e.g., bus fault), and even on higher-level
components such as memories (e.g., instruction-memory fault, data-memory
fault), register banks (e.g., register-read fault, register-write fault), and others.
The three fault-injection methods introduced in this thesis support injection of
classic single-bit faults (e.g., bit-flips, stuck-ats), but also modeling and injection
of abstract faults.

With the increasing trend of performing safety verification on VPs, the question
of result accuracy arises. It is essential to analyze the correlation of fault-injection
results across multiple abstraction levels. In [102], when comparing results from
VPs and gate-level fault injection, over 45% of the faults injected into VPs have
led to false-positive results (i.e., failures which did not occur on the gate-level
net-list). A similar correlation gap has been presented in [29] as well, where
25% of injected faults have led to false-positive results, when injecting faults
into a CPU core. This thesis introduces two mechanisms which guarantee the
correlation of fault-injection results on any SoC model and avoid false-positive
results. One of the mechanisms, VERITAS, augments existing VPs with gate-
level information from equivalent net-lists. The other mechanism, VERITAS++,
transforms entire gate-level net-lists into abstract, optimized SystemC VPs.

To bridge the gap between safety analysis and safety verification, this thesis
introduces a safety-verification flow, called SaVer. SaVer uses the fault-injection
methods presented above to inject faults into VPs automatically. Faults are
injected from a so-called fault library, which is a formalized database, which
describes the fault-injection scenarios required to verify the SoC. This fault
library is created automatically during safety analysis by mapping data, such
as information about failure modes and safety mechanisms to modeled HW
elements within the VP. After performing a fault-injection campaign, SaVer pro-
vides simulation reports, which can be used to prove the failure rates predicted
by safety analysis.

Even on the VP level, safety-verification methods require a large number of
simulations to verify the safety mechanisms of a SoC, and also to characterize

16

1.6. Previous Publications

the system’s fault-tolerance levels. In this thesis, several optimization methods
are introduced to speed up fault-injection simulations, and reduce their number.
One of these approaches analyzes the structure of gate-level net-lists, and reduces
the number of redundant fault-injection locations. Another approach performs
trace analysis of fault-free simulations using different simulation scenarios (i.e.,
SoC workloads). Based on this information, the approach determines the optimal
number of faults which can be injected into the system. Furthermore, this method
groups such faults based on each workload. Experimental results have shown an
average fault reduction of over 95%. This thesis also introduces a checkpointing
mechanism, which halves the duration of fault-injection campaigns. This speed-
up factor has been previously impossible due to technological constraints. The
checkpointing mechanism requires three orders of magnitude less hard-disk
space than other state-of-the-art methods, and generates checkpoints one order
of magnitude faster. Finally, SaVer allows multiple fault-injection simulations to
run in parallel, a process which further speeds up the safety-verification process.

1.6. Previous Publications

The state-of-the-art methods and challenges of safety verification on VPs are
presented in [103]. The fault-injection methods for VPs are given in [104]–[108].
The methods to improve the accuracy of fault injection into VPs are introduced
in [109]–[113]. The method which analyzes simulation traces and optimizes fault-
injection simulations on VPs is discussed in [114]. The checkpointing mechanism
is introduced in [115]. The link between safety analysis and safety verification is
documented in [116]–[122].

1.7. Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 presents the
background of simulation-based fault injection and VP development. Chapter 3
introduces three fault-injection methods for VPs developed using SystemC, TLM,
and C++. Chapter 4 describes the challenges of fault injection into VPs and
introduces two methods to overcome them (i.e., VERITAS and VERITAS++).
Chapter 5 introduces multiple optimization methods to speed-up the fault-
injection process. Chapter 6 presents experimental results for several HW models,
and quantifies the effectiveness of the contributions of this thesis. Chapter 7
concludes the thesis.

17

2. Safety-Verification of Hardware
Models

This chapter presents the basics of virtual prototyping using SystemC and TLM
and the basics of the fault-injection methodology.

2.1. Virtual Prototypes

The SystemC and TLM libraries have become the de facto standard for virtual
prototyping [98], [123]–[125]. The IEEE 1666-2011 standard defines SystemC
and TLM as “an ANSI standard C++ class library for system and HW design
for use by designers and architects who need to address complex systems that
are a hybrid between HW and SW” [98]. System architects, also called concept
engineers, typically use SystemC and TLM to model large-scale systems at an
abstract SW-accessible register-accurate level. This modeling method allows HW
developers to perform early architecture exploration and SW developers to design
and validate their applications early in the development phase of a system.
Moreover, safety-verification methods are being developed for SystemC/TLM-
based VPs to perform early safety-architecture exploration.

With the steady increase in complexity of HW models, current gate-level
net-lists and RTL models suffer from long development and verification times.
Consequently, complex SoCs may fail to meet the market’s growing constraints.
For this reason, researchers are developing and standardizing leaner models
such as VPs based on SystemC and TLM [98]. These VPs aim to speed up
HW simulations, shorten development and debugging iterations, and improve
the initial design of HW systems. Thus, VPs are a robust modeling approach
complementary to traditional RTL and gate-level modeling.

Besides their quick turn around, SystemC VPs support binding to high-level
programming languages (e.g., C++, Python). Such VPs benefit from interoper-
ability with standard and third-party libraries supported by these languages.
Compared to RTL design, VPs benefit from object-oriented programming pat-

19

2. Safety-Verification of Hardware Models

terns which improve their re-usability and programming flexibility [98], [106].
Furthermore, HW designers can use VPs as reference implementations to enable
parallel system development. Hence, VPs allow concurrent design and verifi-
cation of firmware and HW models. Consequently, firmware developers can
directly execute their code on a VP with predefined accuracy (i.e., clock-cycle
accuracy, approximately timed, loosely timed, or untimed) instead of waiting to
receive a running HW module or emulator. However, VPs are not suitable for
SoC sign-off as they are too abstract.

2.1.1. SystemC

Similar to RTL and gate-level modeling, SystemC-based virtual prototyping
encapsulates HW components into modules, which can be nested within other
modules to create a system hierarchy (Fig. 2.1). Two or more modules can be
connected using ports (e.g., input or output) which describe the directional
flow of data. For instance, data from the output port of one module flow into
the input port of another module. Additionally, data from input ports of a
module flow into the input ports of sub-modules. Since ports do not store the
information passed between modules, ports must be connected via signals. The
SystemC library contains a built-in event-driven simulator which can compile
and execute SystemC models.

Top Module

Sub-
Module A

Sub-
Module B

Figure 2.1.: Simple SystemC model

2.1.2. TLM

Because SystemC models follow a similar modeling paradigm to RTL and gate-
level models, the TLM library has been created to add another layer of abstraction
to virtual prototyping. TLM models structure HW information hierarchically
using so-called initiator and target modules (Fig. 2.2). The communication
among these modules is achieved using initiator and target sockets instead of
ports. Sockets pass data around modules using abstract payloads instead of

20

2.1. Virtual Prototypes

bit-wise signals. Furthermore, payloads are transported using SW calls instead
of scheduled events. Thus, TLM models further improve the execution speed
of VPs. TLM communication is modeled as follows. The initiator model (e.g., a
CPU core) initiates a SW call to the instruction memory to fetch an instruction.
In doing so, it passes a payload which contains the command for the next
instruction. The target model (e.g., the instruction memory) implements the
SW method, which the initiator has called. This SW method stores the next
instruction in the payload, increments the program counter (i.e., an internal
variable), and returns a payload with the instruction. Then, the initiator sends
the instruction to the instruction decoder block, and the process repeats.

Target

Module

Initiator

Module

Payload

Figure 2.2.: Basic TLM model

SystemC and TLM models can be linked together using a wrapper module
(Fig. 2.3). This module synchronizes the communication across the two models
by packing pin-level information into payloads, or unpacking payloads and
providing information on individual pins.

TLM-SystemC
Wrapper

TLM
Model

SystemC
Model

Figure 2.3.: TLM-SystemC wrapper module which synchronizes the communica-
tion across SystemC and TLM models

TLM models benefit from the following modeling styles [98]:

Un-timed do not simulate any timing information. This modeling style is
similar to behavioral HW models executed on instruction-set simulators
such as QEMU [126]. Such models utilize the blocking-transport method.
The communication across modules is simple and uses dedicated payloads.
In other words, payloads are not shared across multiple modules.

Loosely-timed contain limited timing information passed during payload trans-
actions across several modules. Similar to un-timed models, this style

21

2. Safety-Verification of Hardware Models

utilizes the blocking-transport method and has a simple communication
scheme across modules.

Approximately-timed have complex interdependencies, and their communica-
tion is modeled using several timing phases. Compared to the other two
modeling styles, payloads are shared and passed across multiple modules.

2.2. Simulation-Based Fault Injection

Before its adoption in the automotive industry via ISO 26262, fault injection has
already been utilized in several other industries such as avionics, computing, and
networking. This section explores the theory of simulation-based fault injection
and its components.

2.2.1. Fault-Injection Environment

The first generic simulation-based fault-injection framework was introduced in
1997, and it was based on the structure of a test-bench [41]. A test-bench is a
closed system used to test the functionality of a HW model, which mimics the
operational environment of a system under verification up to a predefined level
of detail. The traditional test-bench framework contains a stimulus generator,
monitor for output data from the system, a simulation controller, and a data
analyzer (Fig. 2.4). The stimulus generator drives data either randomly or
targeted (i.e., using a stimulus library) onto the system’s inputs. Stimuli can
be provided statically (e.g., test sequences written in files) [127], symbolically
(i.e., symbolic simulation) [128], or randomly [129]. The monitor detects changes
at the model’s output ports and sends the observed data to an analyzer for
processing. The data analyzer determines whether the system has executed
its task correctly (based on the provided input stimuli). Finally, the controller
regulates the driven stimulus and the lifetime of a simulation.

Monitor

Controller

System Under
Verification

Stimulus
Generator

Data
Analyzer

uses

Stimulus
Lib

Figure 2.4.: Generic test-bench framework

22

2.2. Simulation-Based Fault Injection

The fault-injection framework introduced in [41] extends the traditional test-
bench’s structure by adding two new components: a fault injector and a fault
library (Fig. 2.5). The fault injector works similarly to a stimulus generator, but
instead of driving stimuli, it inserts abstract representations of physical HW
faults into the HW system. This information is stored in the fault library. Finally,
the fault-injection framework monitors the system’s outputs and internal states
to determine the injected fault’s propagation path. After fault injection, results
are logged, and coverage information is computed referring to the injected fault’s
effect (e.g., detected, masked, not detected, latent) and propagation path. Next,
the system’s vulnerability is calculated and continuously updated after each new
fault injection until all simulations are executed.

uses Fault
Lib

Monitor

Controller

System Under
Verification

Fault Injector

Stimulus
Generator

Data
Analyzer

uses

Stimulus
Lib

Figure 2.5.: Generic fault-injection testbench [41]

Fault-injection-based safety verification requires bug-free HW systems. The
presence of development faults (i.e., bugs) may lead to inaccurate fault-injection
results. For instance, a bug may hinder fault propagation or may lead to incorrect
fault propagation. Consequently, it is difficult if not even impossible to determine
whether the observed fault effect has been caused (or masked) by the bug. Thus,
fault injection into safety-critical systems requires comprehensive functional
verification beforehand.

2.2.2. Fault-Injection Attributes

Fault-injection frameworks require fault libraries which hold information vital
for fault-injection simulations. Generic fault-injection methods need only three
essential attributes to successfully inject faults into a HW model during simula-
tion [87], [130], [131]: (i) fault-injection location, (ii) fault-activation time, and
(iii) fault type. Even though different fault-injection tools may also use other
fault-injection attributes, these three are fundamental and are always present
(Fig. 2.6).

23

2. Safety-Verification of Hardware Models

Time

Location
Type

Fault Space

Figure 2.6.: Fault verification space [89]

Fault-injection locations represent internal elements within a HW system
model (e.g., signals, registers, latches, memory cells, variables) into which faults
can be injected. Unlike system ports, fault-injection locations are not accessible
from outside of the system by the stimulus generator. Fault-activation times are
the instance of execution time used to inject a specific fault into a fault-injection
location (e.g., at 5 ns, 10 ms). Fault types are the fault models used to inject faults
into a system at a specific abstraction level (e.g., VP, RTL, gate-level). These fault
models are abstract representations of actual HW faults (e.g., electromigration,
aging effects, neutron strikes).

2.2.3. Fault-Verification Space

The fault-verification space of safety-critical HW systems is the cross-product
of the attributes mentioned above (Fig. 2.6). When describing a system’s fault-
verification space, fault-injection locations (e.g., registers) and fault types (i.e.,
permanent or transient) are extracted from the system’s structure. However,
fault-activation times, which cause system failures, are usually determined
statistically through simulation [89], [102]. In other words, faults are injected
at random simulation times, and their effects are observed at the end of the
simulation. This difficulty is caused by the combination of the system’s structure
(including safety mechanisms), operational profile (i.e., test workloads), and
mode of operation (e.g., sleep mode, test mode). Similarly, it is difficult to determine
whether a system is inherently safe against a particular fault. In other words,
can a distinct fault be injected into a specific system location and never lead to a
failure for any fault-activation time and system configuration? If this question
cannot be quickly answered analytically, statistical verification is necessary across
a sufficient number of test workloads and fault-activation times.

24

2.2. Simulation-Based Fault Injection

Because of the inherent complexity of determining correct fault-activation
times, researchers such as [89], [102] consider the fault-verification space to be
infinitely large. However, it is not necessary to test all fault-injection locations and
fault types across infinitely many fault-activation times. Instead, given a system’s
structure and operational profile, it is sufficient to define test workloads, for
which an activated fault causes a system failure. If no workload can be defined
for such fault-activation times, the analyzed SoC can be considered safe from
this fault effect, and the fault can be removed from the fault-injection campaign.
Consequently, only a finite number of fault-activation times is necessary to cause
all possible failures of a system. Furthermore, the number of fault-injection
locations and fault types within a system are also finite. Hence, the fault-
verification space, even though large, is finite in size.

2.2.4. Fault-Propagation Paths

Faults can propagate through a system on the same abstraction level, and also at
different abstraction levels. The authors of [132] have documented two types of
fault propagation: horizontal and vertical.

Horizontal fault propagation occurs when a fault occurs in one system (e.g.,
System A), and propagates to another system (e.g., System B) (Fig. 2.7). In
this case, two types of fault-propagation paths become apparent: internal
and external. Internal propagation occurs when activated faults propagate
through the first system [83]. This propagation either leads to faults being
masked by the system or to faults reaching the system output and becoming
failures. External propagation occurs when failures from the first system
propagate to the next system and cause faults.

Vertical fault propagation occurs when a fault defined on one abstraction level
(e.g., RTL model) represents a failure on a lower abstraction level (e.g.,
gate-level net-list) (Fig. 2.8). Conversely, fault effects, also called errors, on
detailed abstraction levels (e.g., gate-level net-lists) are considered faults
on higher abstraction levels (e.g., RTL models or VPs).

2.2.5. Types of Hardware Simulators

Fault simulation has evolved from static analysis of memory cells, logic elements,
and flip-flops to analysis of clock trees, transient faults, and fault-masking

25

2. Safety-Verification of Hardware Models

System A System B

Fault Error Failure Fault
Activation Propagation Causation

Figure 2.7.: Horizontal fault-error-failure propagation chain [83]

Increasing Level of Abstraction

Increasing Level of Implementation Details

Figure 2.8.: Vertical fault-error-failure propagation chain

effects [29]. As already discussed previously, simulation-based fault-injection
methods use fault libraries and verification environments to emulate fault effects
on the model of a HW system. Such methods utilize specialized HW simulators
to execute the functionality (behavior) of a HW system on one or more PCs.
HW models are developed using specific HDLs (e.g., Verilog, VHDL), SystemC,
or TLM. Furthermore, the faults injected into these HW models are abstract
representations of real faults.

Fault simulation requires a HW simulator which mimics the system model’s
functionality. Many types of HW simulators are available for simulation-based
safety verification, such as cycle-accurate simulators (CASs), event-driven simu-
lators (EDSs), fault simulators, host-compiled simulators, and others [36]. These
simulators have different advantages based on what type of HW models they
support. For this reason, an adequate simulator must be chosen based on the
model’s abstraction level and the verification intent (e.g., performance testing,
safety verification).

CASs execute the complete HW model at every clock cycle [133], [134]. They
have high performance for single-core systems, but the execution degrades sig-
nificantly on multi-core systems. EDSs only simulate active components of a

26

2.2. Simulation-Based Fault Injection

HW model on each clock cycle [93], [95]. Active components are determined
using cascading events. In other words, active components trigger the next set
of active components. These events are prioritized and ordered by a scheduler
and stored in event queues. The performance of EDSs depends on the size
and complexity of the simulated system. Even though EDSs tend to have a
lower simulation performance on single-core systems, their performance consid-
erably increases on multi-core systems [36]. Fault simulators execute multiple
fault-injection simulations in parallel using the same simulator kernel [135]. By
comparison, CASs and EDSs can also run in parallel, but they use a separate
kernel for each simulation. By sharing the same simulator kernel across mul-
tiple fault-injection simulations, fault simulators use less memory and require
less computational power than CASs and EDSs. The main drawback of fault
simulators is hyperactivity, which appears when fault injection leads to long
and unique fault-propagation paths [136]. Such scenarios considerably decrease
the overall simulation performance. Host-compiled simulators, also known as
compiled-code simulators, compile the system model into machine code and
execute it on a target machine (e.g., Intel X86_64 architecture) [133], [134]. These
simulators are on average twice as fast as EDSs [36].

2.2.6. Fault Models

As already discussed, fault-injection methods utilize abstract representations of
random HW faults, also called fault models, during fault-injection experiments.
Fault models emulate the effects of real HW faults. Their structure depends
on the type of fault-injection method (e.g., physical, emulation, or simulation
testing). In simulation-based safety verification, fault models also depend on
the HW model’s abstraction level. Thus, it is important to distinguish among
gate level, RTL, and VP fault models. This section explains the causes of random
HW faults, describes the most commonly used fault models, and classifies them
based on the HW abstraction level where they are used (Table 2.1).

Types and Causes of Hardware Faults

Faults which affect modern semiconductor systems can be modeled as the
effect of natural radiation, mechanical stress (e.g., wire breaks), aging (e.g.,
electromigration), and others. On the one hand, ionizing doses accumulated
by electrons and protons may permanently damage a transistor’s switching
capabilities [29]. On the other hand, neutrons, protons, and heavy ions may lead

27

2. Safety-Verification of Hardware Models

Table 2.1.: Example of fault-model classifications based on abstraction level

Abstraction Level Permanent Transient

Transistor Level
Single-event gate ruptures Single-event latch-ups

Single-event burnouts Electric latch-ups

Circuit Level
(RTL Model or

Gate-Level Net-List)

Stuck-at-0 Single-event upsets

Stuck-at-1 Single-event transients

Bridging Single-event functional interrupts

Timing (transition delay) Spatial/temporal multi-bit upsets

Virtual Prototype
(SystemC or TLM Model)

Register read
Register write

Bus access
CPU pipeline stage

to reversible bit-flips in combinational and sequential gates, called single-event
effects [29]. In this case, each particle can cause upsets in the affected components
without the need to accumulate ionizing doses. The most critical single-event
effects on modern semiconductor devices are permanent and transient faults.

Permanent faults, also called hard errors, are mainly caused by physical faults
which are either the result of manufacturing variations or occur over time in the
SoC due to random dopant fluctuation [137], electromigration [13], and other
aging effects [13], [138]–[140]. These hard effects are essential for a range of
applications: medical, military, space, security, automotive, and others.

Transient faults, also called soft errors, are mainly the result of radiation
effects which affect the electric charge within logic gates and memory elements.
These create bit-flips in the digital system [9]. Contrary to hard errors, soft
errors do not cause permanent damage to the affected circuit, and thus can be
eliminated by writing new data to the affected system. Within the terrestrial
radiation environment, soft errors are induced by alpha particles from the SoC’s
package [10], high-energy cosmic radiation (i.e., galactic radiation) [10], [141],
and low-energy cosmic radiation (i.e., neutron particles) [10].

Transistor-Level Fault Models

Transistor-level fault models describe effects which are either common to all
transistors or particular to some. Single-event gate ruptures are permanent
fault effects which lead to breakdowns in the gates of transistors. At the physical

28

2.2. Simulation-Based Fault Injection

level, these faults create transient electric fields across the gate oxide of power
metal-oxide-semiconductor-field-effect-transistors (MOSFETs) [12]. Single-event
burnouts affect power MOSFETs and create a forward bias in the parasitic
transistor [12]. Single-event latch-ups are caused when the complementary
metal-oxide-semiconductor (CMOS) parasitic bipolar transistors between well
and substrate are turned on by radiation effects. These faults can only be
removed after powering down the system and can lead to permanent damage
to the affected SoC [10], [29]. Electric latch-ups are the same as single-event
latch-ups but are caused by over-voltage. They also do not require the system to
be powered down to remove their effect [10].

Circuit-Level Fault Models

Individual transistor faults are abstracted at the circuit level, and modeled based
on the behavior of logic gates [9]. Since logic gates are composed of different
transistors, fault effects at the gate abstraction level may be the result of any
number of faulted transistors. Thus, gate-level fault models mainly describe a
delayed output or an output whose value differs from an expected logical value.

Stuck-at faults create permanent effects which fix a HW signal (i.e., metal
wire) to a specific logic value: ‘1’ (i.e., stuck-at-1) or ‘0’ (i.e., stuck-at-0) [142].
Bridging and timing faults are well-known fault effects discovered for several
decades which are mainly handled through ATPG testing [143], [144]. Bridging
faults represent short circuits between two or more signals of a HW system [142].
Such faults usually occur between signals which are near each other. Thus,
bridging faults can only be effectively modeled in the presence of gate-level
layout information. Timing faults, also called transient-delay faults, represent
the effects of faults which lead to a delayed response in the system. Here, the
affected system parts calculate the correct result, but the response is observed
later than in the fault-free scenario. Timing faults are used to model a series
of physical faults caused by temperature, supply noise, process variations,
and others [142]. Single-event upsets represent a reversible bit inversion on a
memory cell, latch, or flip-flop during execution [10]. Single-event transients
create a temporary change in a combinational gate’s output voltage. They
become single-event upsets after the bit-flip gets propagated to a sequential logic
element and becomes latched there [10].

29

2. Safety-Verification of Hardware Models

Virtual-Prototype Fault Models

At the VP abstraction level, fault models become even more abstract and rep-
resent combinations of one or more random HW faults. Here, transistor and
circuit-level faults (e.g., stuck-at faults, timing faults) are too specific and require
considerable modeling effort. In this case, faults models are defined based
on system components and sub-components (e.g., bus-access fault, cache fault,
register-read fault, register-write fault). Thus, the primary benefit of VP fault
models is their reduced granularity. Furthermore, since VP fault models are tai-
lored for a specific part of a system, they provide a human-readable description
of the analyzed fault effects. For instance, a bus-access fault models a fault effect
which occurs when accessing a bus. Additionally, a system without a bus model
requires no bus-fault injection.

VP fault models can be broken down into more granular faults (e.g., bus read-
access fault, bus-arbitration fault). Theoretically, this process may be repeated
until the granularity level reaches that of the original circuit-level faults. However,
this approach loses all the benefits provided by the abstraction in the first place:
early availability and reduced modeling effort. However, since faults are specific
to a system’s component, they must be manually defined for every component
within the system. As a result, it is not possible to reuse a bus fault as a CPU-core
fault or as a cache fault. In contrast, generic fault models (e.g., stuck-at, bit-flip)
from the circuit level can be applied automatically to any signal or gate within a
system.

2.3. Summary

Fault simulation can be applied to system models developed on different levels
of abstraction such as VPs, RTL models, and gate-level net-lists. During fault
simulation, a verification environment stimulates system inputs with real-life
data and monitors system outputs for fault effects. Additionally, a fault-injection
mechanism inserts faults into internal system states either during a simulation or
before the start of a simulation. This mechanism uses fault models stored inside
a fault library to simulate the effects of physical faults on the system models.
The outcomes of injected faults are determined by automatically comparing the
simulation results to those from a fault-free simulation also called a reference
simulation. The VPs, RTL models, and gate-level net-lists are executed using spe-
cialized HW simulators. The execution speed of the HW model can be influenced
by the type of the simulator (e.g., CAS, EDS, compiled-code simulators).

30

3. Generic Fault-Injection Methods
for Virtual Prototypes

3.1. Introduction

As already discussed, existing fault-injection methodologies for SystemC/TLM-
based VPs introduce a significant simulation overhead to the analyzed models,
require complicated model-dependent adapters to inject faults, and need modi-
fications of the original model. This chapter introduces several fault-injection
methods developed to tackle these drawbacks.

3.2. SCFIT

SCFIT (SystemC Fault-Injection Tool) is a fault-injection tool for SystemC and
TLM models [105]. SCFIT uses GDB to control the SystemC simulation kernel
and to gain access to a compiled SystemC model’s data types at runtime (Fig. 3.1).
Faults are injected during simulation using breakpoints and watchpoints set on:

• SystemC ports, signals, and processes

• TLM sockets and payloads

• C++ variables

These breakpoints and watchpoints are set and controlled using Python scripts
connected to GDB through GDB’s Python API [96]. This mechanism allows
direct access to public, private, and protected data types during a SystemC
simulation without changing the original model.

As the name suggests, breakpoints and watchpoints stop the execution of
a SystemC/TLM model when a specific SystemC process is executed, or a
variable’s value is updated. Standard Intel x86_64 processors offer up to four
dedicated HW breakpoints and watchpoints [145], [146]. In other words, multiple
simultaneous faults may be injected into a running SystemC model. If more

31

3. Generic Fault-Injection Methods for Virtual Prototypes

Fault-Injection
Configuration

GDB

SystemC/TLM Model Breakpoints

Watchpoints

Python API Ports/Sockets

Signals/Payload/Variables

Processes

Figure 3.1.: SCFIT’s fault-injection mechanism

than four HW breakpoints and watchpoints are required, GDB automatically
creates SW ones. However, it is important to avoid software breakpoints and
watchpoints because they lack significant computational resources and slow
down simulation performance.

3.2.1. Fault-Injection Locations

Faults are injected by first setting one or more breakpoints on the desired fault-
injection location (Table 3.1). SCFIT is designed to insert faults into SystemC
signals, SystemC ports, TLM sockets, TLM payloads, static, and non-static
C++ variables. These data types are used extensively in SystemC/TLM-based
HW modeling to describe transactions through-out a HW system. Other Sys-
temC/TLM-specific data types such as events, processes, or the quantum keeper
are not suitable fault-injection locations because they are mainly associated with
the system’s structure and with the simulation kernel of a SystemC/TLM-based
VP. Nevertheless, SCFIT can be easily adapted to support fault injection into any
SystemC/TLM data type.

Table 3.1.: SCFIT’s requirements for placing breakpoints and watchpoints
Data Type Location of Breakpoints/Watchpoints

SystemC Signal
• SystemC process or C++ method which accesses the signal
• Write method and overloaded operator= method or
• Read method and overloaded cast operator

TLM Socket
• b_transport method
• nb_transport_fw method
• nb_transport_bw method

TLM Payload
• Set and get methods of each payload attribute (e.g., address, data,

command)
C++ Static
Variable

• SystemC process or C++ method which accesses the variable
• Watchpoint on the variable itself

C++ Non-Static
Variable

• SystemC process or C++ method where the variable is declared
• Watchpoint on the variable itself

32

3.2. SCFIT

Each SystemC signal has a read and write method, which can be called during
simulation to transfer data from one signal to the next (e.g., o.write(i.read())).
Additionally, since SystemC signals are C++ classes, read and write methods
may be replaced by the class’s overloaded methods (e.g., o = i). Faults may be
injected either when a signal is read or when it is written. Thus, a breakpoint
is required on each of read or write methods (two in total). A breakpoint is
also needed on the SystemC process or C++ method which accesses the signal.
Therefore, a total of three HW breakpoints are necessary for any fault injection
into SystemC signals.

TLM sockets have three transport methods: blocking, non-blocking forward,
and non-blocking backward. Hence, a total of three breakpoints are required (i.e.,
one on each transport method) to gain access to the TLM socket’s payload and
time-delay attribute. Alternatively, the TLM payload may be accessed by setting
a breakpoint on its setter or getter methods for each attribute (e.g., address, data,
command). Thus, each TLM-payload attribute requires a pair of breakpoints
(i.e., one on the setter method and the other on the getter method).

GDB views static C++ variables within the program’s global scope and there-
fore, only one HW watchpoint is necessary to access them. If it is essential to
determine which SystemC process or C++ method accessed the static variable, a
breakpoint may also be placed on that process or method.

Non-static C++ variables are only visible within the class or method where
they are declared. Thus, a breakpoint is required on the C++ method or SystemC
process which updates or reads the variable. Then, a watchpoint must be set
on the variable to stop the simulator’s execution when the variable is accessed.
After the simulation exits the method’s scope, the watchpoint is deleted and
must be created again when the simulator reenters the method’s scope.

Before setting breakpoints to SystemC and TLM template-based data types,
it is important to determine the argument type of each template. From the
perspective of C++, a Boolean SystemC signal (i.e., sc_signal<bool>) is different
from an integer SystemC signal (i.e., sc_signal<int>). C++ also considers the
methods of classes with different template arguments to have different scopes
and signatures. Consequently, even though both signals have read and write
methods and are of type sc_signal, breakpoints must be set for each SystemC data
type separately. The same reasoning applies to TLM sockets whose complexity
increases as TLM sockets use multiple template arguments.

During a simulation, breakpoints are triggered for all possible instances of a
specific data type. However, fault injection occurs only into a specific instance of
a SystemC, TLM, or C++ data type. Thus, SCFIT uses SystemC’s introspection

33

3. Generic Fault-Injection Methods for Virtual Prototypes

to determine the correct instance where to inject faults. This is achieved by
monitoring the name attribute of a TLM socket, SystemC process, or signal.
However, TLM payloads do not have such an attribute. In this case, the most
flexible method of accessing a TLM payload’s attributes is via a TLM socket. C++
variables also lack a name attribute. Nevertheless, watchpoints are sufficient to
access the correct variable declaration.

3.2.2. Fault Models

Two types of faults can be injected using SCFIT: transient (i.e., bit-flips) and
permanent faults (i.e., stuck-at faults). Transient faults are injected at a user-
defined simulation time. Their effects may be overwritten by the simulator
at the next access of the signal. Thus, the breakpoints are programmed to be
triggered at a user-defined simulation time and for a specific instance of a data
type. After injecting the fault (i.e., modifying the object’s value), breakpoints and
watchpoints are deleted, and the simulation runs until completion. Permanent
faults are injected every time a breakpoint is triggered since a SystemC/TLM
simulation can override the injected fault. Their effect starts at the beginning of
the simulation and persists throughout the whole simulation. Thus, breakpoints
and watchpoints are active during the entire simulation and continuously set
the data type’s value (i.e., stuck-at-0 or stuck-at-1) each time they are triggered.

3.2.3. Fault-Injection Flow

SCFIT uses the same test-bench structure as in Fig. 2.5. The system’s original
SystemC/TLM test-bench is used to provide real stimuli. SCFIT injects faults and
controls the SystemC simulation kernel using GDB and Python scripts. Faults
are stored in a text-based file, called a fault library. SCFIT parses the fault library
during the configuration phase, and injects faults into the SystemC VP. Faults
are described based on their three main attributes: location (i.e., SystemC, TLM,
or C++ data-type instance), type (i.e., permanent or transient), and fault-injection
time.

SCFIT’s fault-injection flow has four phases (Fig. 3.2). First, the SystemC
models and the test-bench are compiled. Additionally, SCFIT is configured to
set breakpoints and watchpoints on specific data-type instances (e.g., signals,
payloads, variables) derived from the fault library. Next, the SystemC models
are loaded into GDB and SCFIT is initialized by setting breakpoints. During
the simulation, breakpoints and watchpoints are triggered automatically, and

34

3.2. SCFIT

faults are injected. Results are gathered by the SystemC/TLM test-bench in the
form of a value-change dump (VCD) file. Finally, SCFIT analyzes fault-injection
simulation outcomes by comparing the results of a fault-free simulation, also
known as a reference simulation, to those of each fault-injection simulation
(Fig. 3.3). In the case of a mismatch between the two simulations, the injected
fault caused a failure. Otherwise, the fault is considered to have been masked by
the system.

Load Models
into GDB

Initialize GDB
Through SCFIT

Break on Data-
Type Instance

Compile SystemC
Models

Configure SCFIT

Phase 1 – Setup Phase 2 – Initialize Phase 3 – Simulate Phase 4 – Analyze

Analyze
Simulation

Results

Watch Variable

Figure 3.2.: SCFIT’s fault-injection execution flow

Execute
Reference Model

Execute
Faulty Model

Compare
Outputs

Generate
Input Patterns

Generate
Single-Bit Faults

Phase 1 Phase 2 Phase 3 Phase 4

Process
Failure Coverage

Figure 3.3.: SCFIT’s fault-injection flow

SCFIT can inject any number of faults into SystemC designs. However, due to
the HW limitation of current processors, a maximum of one fault per simulation
is recommended to maintain minimal computational overhead (see Chapter 6.5.1).
Chapter 3.3 presents a solution to overcome this limitation.

3.2.4. Model-Based Automation and Graphical User Interface

SCFIT benefits from a model-based graphical user interface (GUI) which gener-
ates a fault library and documentation about fault-injection campaigns based on

35

3. Generic Fault-Injection Methods for Virtual Prototypes

user inputs [104]. The GUI parses the SystemC hierarchy (e.g., modules, ports,
signals) provided either by the SystemC library or by an external application.
The information is stored into a data model which is represented graphically.
Users can map corresponding locations (e.g., signals, payloads) to fault types
and set an injection time for transient faults. In the example from Fig. 3.4, a
multi-bit fault with value 42 is injected into output port d_out1 at simulation
time 600 ns.

Figure 3.4.: Example of SCFIT’s GUI

The generated fault library is a series of Python scripts with all the information
required to run a fault-injection campaign. The generated documentation is a
text file which describes scenarios performed during the fault-injection campaign.
The example presented in Fig. 3.5 shows four fault-injection simulations. Here,
different faults are injected into three C++ variables (e.g., value 3 in variable
top0.fsm0.y at simulation time 40 ns).

3.3. Simulator Commands for SystemC

Safety verification may be further improved by replacing the GDB-based ap-
proach with a method based on simulator commands. Simulator commands
represent actions which can be programmed on a HW simulator, usually via
a dedicated API, to control the behavior of a simulation. Each simulator im-
plements its list of simulation commands. The most widely available ones
are commands for probing or modifying a signal’s value during simulation.
Simulator commands are non-intrusive because the HW model’s source code

36

3.3. Simulator Commands for SystemC

Fault-Injection Documentation for SystemC Test-Case FSM_PORT.
Automatically Generated with SCFIT Gen.

Manipulated Variables:
 top0.fsm0.y
 top0.fsm0.a
 top0.fsm1.y

Fault-Injection Scenarios:
 @40 SC_NS until 80 SC_NS: force write-fault in top0.fsm0.y with value 3.
 @90 SC_NS until 160 SC_NS: force write-fault in top0.fsm0.y with value ranging from 15 to 30.
 @90 SC_NS until 130 SC_NS: force write-fault in top0.fsm1.y with value 70.
 @80 SC_MS until 90 SC_SEC: force read-fault in top0.fsm0.a with value 0.

Figure 3.5.: Example of SCFIT’s generated fault-injection report

does not require modifications. Additionally, they are a more efficient fault-
injection method compared to saboteurs and code mutation [48]. They are
generic, re-usable on any HW model, and have low simulation overhead which
is advantageous when running thousands of fault-injection simulations.

The current implementation of the SystemC simulator (i.e., SystemC 2.3.1) does
not support simulator commands. For this reason, this thesis introduces new
data types to the SystemC library, which support fault-injection methods (e.g.,
fault-injection signal, buffer, variable). The newly added fault-injection objects
(FIOs) use object-oriented inheritance to retain all properties and attributes of
the original SystemC data types (e.g., SystemC signal, buffer) while adding fault-
injection methods for transient (e.g., bit flip) and permanent faults (e.g., stuck-
at-0, stuck-at-1). Similar to SystemC data types, FIOs also use C++ templates
to make the new data types generic and reusable. This implementation is
particularly useful for injecting faults into C++ variables. In this case, standard
Boolean, integer, float, etc. variables can be replaced by a generic FIO specialized
for the type of the specific variable.

FIOs are extensions to SystemC’s read and write accesses as described in
the previous section. The additional fault-injection methods contained by FIOs
are used as software switches to turn on a specific fault effect. These methods
allow SystemC components to emulate the occurrence of HW faults during
simulation. Besides this, fault-free simulations can be run merely by not calling
any fault-injection method from the test-bench. This mechanism allows fault-
injection regressions to be executed on the same compiled SystemC model
without needing to change the model for a new fault-injection simulation.

Thanks to their implementation, test-benches can access FIOs declared as

37

3. Generic Fault-Injection Methods for Virtual Prototypes

private or protected within a SystemC model. Upon instantiation, FIOs are
automatically registered to a FIO manager which can be accessed from anywhere
within the test-bench (Fig. 3.6). The FIO manager maps each FIO instance to
its SystemC hierarchical name. After obtaining the desired FIO, faults may
be injected at any time during the simulation by calling the appropriate fault-
injection method.

fio x0(“x0”)

Testbench SystemC Model
Register
by Name

Access
by Name

fio x1(“x1”)

fio s0(“s0”)

x0.inject_sa0()

x0 = getFio(“x0”)

start_simulation()

Fault-Injection
Object Manager

private:

Figure 3.6.: Registration of fault-injection objects to fault-injection-object manager
and access from testbench

Simulator commands successfully overcome the limitations of SCFIT. First,
SystemC models can be sent to customers or third parties without the risk of
divulging protected intellectual property. This feature is made possible because
simulator commands do not require the SystemC models to be compiled in
debug mode (i.e., using GCC’s ‘-g’ option). In turn, the SystemC model’s
implementation remains hidden from the customer. Second, this approach does
not use any breakpoints or watchpoints. Since FIOs are not bound by the four-
HW-breakpoints limitation, any number of faults can be injected into SystemC
models with almost negligible simulation overhead. Third, FIOs have smaller
simulation overhead compared to SCFIT. The performance measurements of
FIOs are described in Chapter 6.5.3.

3.4. Simulator Commands for SystemC/TLM

Similar to the SystemC library, the TLM extension to SystemC does not support
simulator commands. Additionally, the TLM library’s implementation makes
it impossible to use FIOs as described in the previous section. Two main
reasons cause this limitation. First, TLM models are more abstract than SystemC
models, which renders TLM fault models more abstract, too. Second, when
comparing data types, TLM sockets and payloads have more complex data-
transfer algorithms compared to the pure read and write access patterns of RTL
and SystemC signals. Consequently, this thesis presents three TLM extensions
which introduce simulator commands to TLM models: injectable interface,

38

3.4. Simulator Commands for SystemC/TLM

injectable payload, and injectable sockets. These extensions are described in the
following sections.

3.4.1. Injectable Interface

The injectable interface is an extension of the original TLM backward and forward
interfaces (Fig. 3.7). Besides the typical virtual functions defining the blocking
and non-blocking interfaces, a configuration data member (i.e., fault_mode) is
used to activate fault injection during simulation. The data member is con-
figurable to set the interface in normal or in fault-injection mode. In normal
mode, the system continues its ordinary functions calling TLM interface routines.
Once the simulation goes into fault-injection mode, the tlm_fault_inject trans-
port method is called to inject faults into the interface model by corrupting the
generic TLM payload’s attributes. This injectable interface is usable in the early
system-development phase, in which the communication protocol between two
or more TLM modules is not yet fully defined and implemented. Therefore, this
mechanism emulates fault effects (e.g., bus-access fault, cache fault, register-read
fault, register-write fault) on the communication path between corresponding
TLM models. Moreover, the communication protocol’s safety requirements can
be verified via fault injection before implementing the actual HW models.

TLM Injectable Interface

virtual TRANS& tlm_fault_inject(…) = 0;

Target Initiator
Payload

inherits inherits

bool fault_mode;

virtual TRANS& tlm_fault_inject(…) = 0;

bool fault_mode;

Figure 3.7.: TLM injectable interface

3.4.2. Injectable Payload

The injectable payload is an extended version of the TLM generic payload. It
replaces the data types of each generic-payload attribute (e.g., address, command,
data) with a FIO data type. Thus, each TLM payload attribute receives access

39

3. Generic Fault-Injection Methods for Virtual Prototypes

to dedicated fault-injection methods. The FIOs used for each attribute of the
injectable payload are adapted to inject TLM faults (e.g., bus-access fault, cache
fault, register-read fault, register-write fault). Even though they are more abstract
than single-bit and multi-bit faults on RTL models and gate-level net-lists (e.g.,
stuck-at faults, bit flips), they are functionally equivalent and can be matched to
each other.

3.4.3. Injectable Sockets

Based on the adopted TLM modeling style (i.e., untimed, loosely timed, approxi-
mately time), fault injection into TLM models may not offer sufficient accuracy.
In the case of an approximately-timed simulation, for example, it may be difficult
to schedule a fault injection into a TLM payload without prior knowledge of the
correct TLM phase. Injectable sockets are developed to avoid such limitations.
Injectable sockets use C++ function callbacks to connect and disconnect different
fault models during a simulation (e.g., bus-transaction faults, delay faults from
logic/arithmetic operations, instruction-fetch faults). The callbacks represent
extensions of the TLM transport mechanism:

Pre/post-transport a fault injector connected to this callback injects faults be-
fore/after the execution of the transport method implemented in the target
block. Therefore, faults injected with the pre-transport callback are useful
for safety verification on the target block’s forward path, whereas faults in-
jected in the post-transport callback are used to emulate error-propagation
from the target block on the TLM response path.

Transport override a fault-injector connected to this callback replaces the trans-
port method implemented in the target block. Thus, faults injected here
are particularly useful when the block’s correct functionality must be tem-
porarily exchanged with a faulty one, without replacing the code of the
original target block.

TLM faults are injected by a fault injector which is connected to a specific
callback either on the initiator or target socket (Fig. 3.8). Faults are inserted dur-
ing a TLM transport call (e.g., b_transport, nb_transport_fw, nb_transport_bw).
Injectable sockets allow fault models to directly access the transported payload’s
attributes, inject timing faults by modifying the TLM transport’s delay argument,
and probe the TLM-phase argument. Each fault injector contains a fault model

40

3.4. Simulator Commands for SystemC/TLM

and a SystemC process. Fault models (e.g., bus-access fault, cache fault, register-
read fault, register-write fault) are a part of the fault injector and not part of the
analyzed TLM model. Fault models can be (dis-)connected during simulation to
emulate the behavior of permanent or transient faults via a dedicated SystemC
process. By developing fault models outside of the TLM models into which
faults are injected, non-intrusive fault injection and fault modeling are possible.
Furthermore, such fault models provide higher fault-model re-usability (e.g.,
register-address fault, bus-access fault).

Target Initiator Payload

(Dis-)connect

Fault Models

Fault Injector

TLM Fault Models

SystemC Process
(Dis-)connect

Fault Models

Fault Injector

TLM Fault Models

SystemC Process

Injectable
Initiator
Socket

Call-Backs

pre

override

post

Injectable
Target
Socket

Call-Backs

pre

override

post

Figure 3.8.: TLM injectable sockets

Compared to FIOs which are internal components of a TLM model, sockets
are found at the boundary between two or more TLM models. Consequently,
injectable sockets only allow fault injection into the interface of these VPs, which
is a useful method for fault injection when some models are only accessible as
black boxes (e.g., third-party models). However, faults can only be injected at the
interface between the black-box model and its test-bench or another TLM model.
To also inject faults inside TLM models, injectable sockets may be combined
either with SCFIT (see Chapter 3.2) or with FIOs (see Chapter 3.3). When using
SCFIT, faults are injected at the boundary between two or more TLM models
using injectable sockets and SCFIT is used to inject faults into the TLM models

41

3. Generic Fault-Injection Methods for Virtual Prototypes

themselves. Alternatively, the TLM model’s structure may be enhanced using
FIOs and faults may be injected from the test-bench by calling the appropriate
FIO’s fault-injection method.

3.5. Summary

The fault-injection tools mentioned above have led to a comprehensive fault-
injection library for SystemC/TLM VPs. Each tool addresses a specific problem
or a set of limitations present in the current scientific literature. For instance,
they enable non-intrusive fault injection into SystemC/TLM VPs. In other words,
fault injection into HW models occurs without changing the original model’s
source code or structure. SCFIT even allows non-intrusive fault injection into
pre-developed (i.e., legacy) SystemC/TLM VPs. All tools support generic fault
models (e.g., stuck-at-0, stuck-at-1, bit-flips) and the injection of single-bit and
multiple-bit faults, which improves the fault-modeling flexibility of any safety-
critical system. Furthermore, they enable modeling and reuse of abstract TLM
fault models (e.g., bus-transaction faults, register-access faults) across multiple
VPs as generic faults. As a result, safety experts can integrate these tools into
safety-verification flows and use them for the safety verification of complex
HW systems. The simulator-command extensions added to the SystemC/TLM
libraries also enable VP integration into third-party models or test-benches
without publishing the VP’s source code. In this case, third party models or
test-benches access the VP’s fault-injection API. Hence, the intellectual property
present within the integrated VP remains hidden.

42

4. Improving the Correlation of
Fault-Injection Results

4.1. Introduction

Emerging simulation-based fault-injection methods have enabled research on the
comparison of fault effects on different abstraction levels. However, results from
fault injection into VPs correlate poorly with results from RTL and gate-level
models [78], [79], [81]. In [79], [81], the poor correlation is blamed on the VP’s
high abstraction level. However, other reasons also exist, which lead to such a
poor correlation. This chapter describes the fault-masking effects, which affect
the propagation paths of injected faults, and introduces the notions of fault-
matching points, pseudo-faults, and pseudo-failures. Furthermore, it introduces
two generic and automated methods which guarantee correlation of VPs and
gate-level net-lists.

4.2. Fault-Masking Effects

As already presented in Chapter 2.2.6, safety verification may be accelerated
by continuously abstracting fault effects from one abstraction level to the next.
However, in doing so, the safety-verification accuracy is gradually lost as each
higher abstraction level contains less information than the previous one. This
loss of accuracy is partly caused by the accidental loss of fault-masking effects
through abstraction.

Fault masking is an intrinsic property of HW systems and contributes to the
system’s overall robustness against faults. Currently, four main fault-masking
effects are known which influence fault propagation of random HW faults:
electrical [44], latch window [44], temporal [147], and logical [44].

43

4. Improving the Correlation of Fault-Injection Results

4.2.1. Electrical

Electrical masking effects are modeled at the circuit level, where a particle strike
upsets a wire’s voltage. The particle strike is modeled as an electric pulse.
This pulse occurs randomly during system execution and is attenuated by the
circuit’s logic gates. The resulting soft error is considered masked if the pulse
is sufficiently attenuated and does not cause a failure. However, if an input of
a logic gate samples an electric pulse with a strong-enough amplitude, then
the logic gate registers the faulty information as a bit-flip, and the soft error
propagates. This effect cannot be modeled at the VP level since VPs do not
model voltage pulses.

4.2.2. Latch Window

Latch-window masking is a particular case of electrical masking which occurs at
the input of sequential elements and is characterized by the sequential element’s
setup and hold times. Particle strikes propagate from combinational circuits
to a sequential gate only if they first latch on to the sequential gate. In other
words, propagation occurs if the electrical pulse of a particle strike reaches the
gate’s forward latch at the same time as the clock transition or latching window.
Otherwise, the soft error is considered masked at the latching window of a
sequential element. Similar to electrical masking, this effect is neglected on VPs
since it cannot be modeled.

4.2.3. Temporal

Temporal masking is an effect exclusively attributed to soft errors. Here, a soft
error is masked if its effect is overwritten by the system before it has the chance
to propagate to a sequential element. For instance, if a bit-flip occurs within a
register, the fault only propagates if the faulty data within the register is read
by a subsequent flip-flop or latch. However, if the faulty register is rewritten
with correct data before the fault gets a chance to propagate, then the fault is
considered temporally masked [147]. This effect can be modeled on the VP level.

4.2.4. Logical

Logical masking occurs at the input of combinational gates and refers to the
gate’s logical dominance. OR gates exhibit logic-‘1’ dominance while AND
gates exhibit logic-‘0’ dominance. For instance, if one input of an OR-gate

44

4.3. Pseudo-Faults and Pseudo-Failures

has a logic-‘1’ value, a fault injected into the other input (either logic ‘1’ or
‘0’) is masked since the gate’s output is not affected. This masking effect is
usually modeled incompletely at the VP level since VPs contain much less
implementation information than RTL or gate-level models. Logical masking
does not depend on the integrated circuit’s technology. However, it is considered
the most challenging type of masking to model [44].

4.3. Pseudo-Faults and Pseudo-Failures

Pseudo-faults are single-bit or multiple-bit faults injected into VPs which lead
to system failures but whose effects are not reproducible on the actual HW
system. For safety-analysis reasons, ISO 26262 considers gate-level models to be
a sufficiently-good approximation of the real HW system [5]. Therefore, pseudo-
faults can also be defined as VP-based fault-effects which cannot be reproduced
through injection of single-bit faults into gate-level models. Pseudo-failures
are pseudo-fault effects observed at the outputs of VPs. The leading causes
of pseudo-failures are structural differences between a VP and its gate-level
counterpart (e.g., limited timing information, development of behavioral models
opposed to structurally-accurate models). These differences result in fewer
fault-masking effects on VPs.

Fault injection into VPs often leads to different results compared to fault injec-
tion into RTL models [79]. For instance, consider the Verilog-RTL model from
Listing 4.1. The truth table of this circuit only has two possible binary values:
‘0000’ and ‘1111’. Fault injection into the input bit of this model creates a change
in the whole 4-bit output. Furthermore, single-bit fault injection into any of the
output port’s bits will lead to a situation from Table 4.1. Consequently, there is
no single-bit fault injection capable of flipping two output bits simultaneously
with this implementation. This result is only achievable through injection of
2-bit faults (Table 4.2). Nevertheless, a VP has no notion of such a structural
constraint. Neither does it support the notion of single-bit or multi-bit fault
injection. Fault models on VPs mainly describe an abstract faulty state. In this
case, a ‘special-logic’ error can have any 4-bit value from Table 4.1 or Table 4.2.
Thus, the simulation of any fault effect from Table 4.2 on a VP represents a
pseudo-fault injection since its effects are not reproducible through single-bit
fault injection on the particular Verilog-RTL model.

Upon closer inspection, however, it is still possible to modify the Verilog
model’s implementation in such a way as to remove some pseudo-faults. In

45

4. Improving the Correlation of Fault-Injection Results

module special_logic (i, o);

input i;
output [3:0] o;

assign o = { i, i, i, i };

endmodule

Listing 4.1: Verilog model which exhibits pseudo-fault effects

Table 4.1.: Single-bit failures observed on special_logic module

Input Injected fault Output Bit Output Failure

0 Stuck-at-1

0 0001

1 0010

2 0100

3 1000

1 Stuck-at-0

0 1110

1 1101

2 1011

3 0111

Table 4.2.: Double-bit failures observed on special_logic module

Input Injected fault Output Bits Output Failure

0 Stuck-at-1

1, 0 0011

2, 0 0101

2, 1 0110

3, 0 1001

3, 1 1010

3, 2 1100

1 Stuck-at-0

1, 0 1100

2, 0 1010

2, 1 1001

3, 0 0110

3, 1 0101

3, 2 0011

46

4.4. Fault-Matching Points

this case, the subset of the pseudo-faults mentioned above become real faults.
Consider Schematic 1 (Fig. 4.1a) as the gate-level representation of the Verilog
model. Schematic 2 (Fig. 4.1b) is behaviorally identical, but it contains two
extra wire nodes (Listing 4.2). These wires are represented by the Verilog-RTL
model called special_logic_schematic2 as n0 and n1. In this case, single-bit fault
injection into n0 and n1 simultaneously cause 2-bit failures at [o0, o1] and [o2, o3],
respectively. ISO 26262 classifies these 2-bit failures as common-cause failures.
However, not all combinations of Table 4.2 are achievable using the topology
from Schematic 2. Many potential pseudo-faults are still present (Table 4.3).
Nevertheless, HW experts can develop other topologies, which address these
remaining combinations. Furthermore, some topologies may even exist which
are pseudo-failure free. However, such a modeling attempt merely increases the
development complexity of HW systems. In other words, HW experts should
not manually develop low-level abstraction models (e.g., RTL models and gate-
level net-lists) just to ensure the validity of fault-injection experiments on VPs.
Instead, structural information from a HW system’s gate-level layout shall be
automatically back-annotated to the VP when specifically required. This way,
HW experts enhance VPs with missing gate-level information, fault-matching
points, and fault-masking effects [108].

i

o[0]

o[1]

o[2]

o[3]

(a) Schematic 1

i

o[0]

o[1]

o[2]

o[3]

n0

n1

(b) Schematic 2

Figure 4.1.: Schematics of special_logic Verilog module

4.4. Fault-Matching Points

Even though VP-based safety verification benefits from fast simulation speeds,
rapid modeling, quick debugging, and early availability, it has lower accuracy
than safety verification on RTL and gate-level models. Since only temporal
and logical masking effects can be modeled on VPs, safety-verification results
obtained from VPs must be correlated with the results from circuit-level models

47

4. Improving the Correlation of Fault-Injection Results

module special_logic_schematic2 (i, o);

input i;
output [3:0] o;

wire n0; // Illustrated as red wires
wire n1; // in the diagram of Schematic 2

assign n0 = i;
assign n1 = i;

assign o = { n0, n0, n1, n1 };

endmodule

Listing 4.2: Modified Verilog model with fewer pseudo-fault effects than in
Listing 4.1

Table 4.3.: Failures caused by 2-bit faults injected into special_logic_schematic2

Input Injected fault Output Bits Output Failure

0 Stuck-at-1

2, 0 0101

2, 1 0110

3, 0 1001

3, 1 1010

1 Stuck-at-0

2, 0 1010

2, 1 1001

3, 0 0110

3, 1 0101

(e.g., gate-level net-lists). The goal of this correlation is the avoidance of pseudo-
faults and the development of optimal safety mechanisms.

Fault-matching points are fault-injection locations which are available across
two or more abstraction levels (e.g., VPs and gate-level net-lists). In other words,
fault-matching points are elements of a HW model (e.g., signals, variables, ports)
which are found on every abstraction level and which support fault injection.
For instance, consider an RTL model and an equivalent gate-level net-list. These
abstraction levels implicitly present a significant number of fault-matching points
such as input-output interfaces, registers, and all signals present on the RTL
model. However, most combinational gates and their interconnecting signals do

48

4.4. Fault-Matching Points

not represent fault-matching points. RTL models use abstract representations
of combinational gates, whose exact structure only becomes clear after a logic-
synthesis tool generates and optimizes the gate-level net-list.

However, VPs have much fewer fault-matching points with lower abstraction
levels. For instance, gate-level net-lists describe processor components, such as
arithmetic-logic units (ALUs), utilizing hundreds or even thousands of gates.
However, VPs and even RTL models reduce ALU implementations to simple
operations (e.g., addition, subtraction, shifting). Even in the case of complex
adder architectures (e.g., carry lookahead, carry save), which have distinct
implementations at the gate-level, VPs replace them by a simple plus-operator.
Hence, the adder’s structure becomes wholly abstracted, and any potential
fault-matching points become limited to the adder’s operands.

The following presents an example of the differences in fault-matching points
across gate-level models and VPs on an abstract graph-based representation of a
safety-critical SoC (Fig. 4.2a). The nodes represent components, such as flip-flops
and combinational logic gates, which store system states. The unidirectional
edges represent the flow of data across these system components. The VP is
functionally equivalent to the gate-level net-list (Fig. 4.2b). Since VPs are more
abstract than gate-level net-lists, they also contain fewer implementation details.
These structural differences are represented by fewer nodes and a different
configuration of edges.

Gate-Level Net-List

(a) Gate-level net-list

Virtual Prototype

(b) VP

Figure 4.2.: Graph-based representation of missing fault-matching points across
gate-level net-lists and VPs

To understand why missing fault-matching points lead to the observation
of pseudo-failures, the propagation paths of injected random HW faults must
be analyzed. For this, the propagation path on the gate-level model is used as
a reference (i.e., the red path in Fig. 4.3a). In this example, the VP is missing
the fault-injection location used for gate-level fault injection. In this case, faults
must be injected into different system locations, which will then follow the same
propagation paths as on the gate-level model. However, manual inspection of

49

4. Improving the Correlation of Fault-Injection Results

the system’s structure and its communication path is necessary to determine
correct alternative fault-injection locations. In the example above, the following
fault-injection scenarios become apparent on the VP:

Scenario 1 inject a fault closer to the VP’s output (Fig. 4.3b).

Scenario 2a inject a fault closer to the VP’s input (location a) (Fig. 4.3c).

Scenario 2b inject a fault closer to the VP’s input (location b) (Fig. 4.3d).

Gate-Level Net-List

(a) Reference fault-injection outcome

Virtual Prototype

(b) Scenario 1: after the missing fault-
injection point; same outcome

Virtual Prototype

(c) Scenario 2a: before the missing
fault-injection point; same outcome

Virtual Prototype

(d) Scenario 2b: before the missing
fault-injection point; different out-
come (pseudo-failure observed)

Figure 4.3.: Graph-based representation of fault-propagation paths on gate-level
net-lists and VPs

In all three scenarios, the same system failure as on the gate-level net-list is
observed. However, in the third scenario (Fig. 4.3d), a pseudo-failure is also
observed because the fault-injection location contains an extra fault-propagation
path. Therefore, the selection of the alternative fault-injection location is essential.
Unfortunately, manual analysis of complex systems is not feasible, especially
when multiple scenarios must be considered when selecting alternate fault-
injection locations. For this reason, an automated method is needed which
guarantees sufficient fault-matching points across VPs and gate-level net-lists,
and avoids analysis of pseudo-fault effects on VPs.

50

4.5. Augmentation of Virtual Prototypes with Gate-Level Data

4.5. Augmentation of Virtual Prototypes with
Gate-Level Data

This section introduces two methods (i.e., VERITAS, VERITAS++) which avoid
the injection of pseudo-faults into VPs, automatically link VPs to gate-level
net-lists, and ensure sufficient fault-matching points to gate-level net-lists.

4.5.1. VERITAS

VERITAS (Verilog net-list to SystemC transformer) has been explicitly created
to enhance VPs with missing fault-matching points from the gate-level net-
list. While other approaches attempt to link VPs to RTL or gate-level models
manually [81] or through co-simulation [82], VERITAS follows an automated
approach which adds gate-level granularity to SystemC VPs.

VP Augmentation Process

VERITAS focuses on the abstraction of combinational gates to the VP level. It
achieves this by using Python-based Verilog and Liberty-file parsers to extract
the structure of combinational circuits and the functionality of the instantiated
cells (i.e., logic gates) (Fig. 4.4). These extracted data are stored into a data model.
Afterward, VERITAS arranges the extracted logic gates into topological order.
Next, single-bit wires are directly transformed into Boolean variables (Fig. 4.5).
Input buses are modeled as (long) integer types and are broken down into
individual variables using shifting operations. Output buses are concatenated
from different variables using masking operations (Fig. 4.6). Finally, combina-
tional gates are transformed into logic operations, which respect the circuit’s
topological order of execution (i.e., mimic the original net-list’s behavior). The
result of this transformation is a C++ model with the same granularity as the
original Verilog gate-level net-list but with higher execution performance (see
Chapter 6.8.1).

VERITAS also generates SystemC and TLM wrappers for the resulting C++
code. The SystemC generator creates input and output ports and a SystemC
process for the generated function. The SystemC process is sensitive to the
model’s inputs. The TLM generator creates a TLM target module with the
blocking-transport method. The generated C++ code is then called directly by
the transport method. The transport method’s delay attribute is user-defined
and may be set after code generation. The TLM generator only requires support

51

4. Improving the Correlation of Fault-Injection Results

VERITAS

Verilog Net-
List Parser

C++
Generator

Liberty-File
Parser Meta-Model

x
y cout

s
Full

Adder
cin

Gate-Level Net-List

Liberty
File

SystemC
Generator

TLM-Wrapper
Generator

x
y

cout

s cin

SystemC
Wrapper

TLM Target

void full_adder (…)

b_transport (…)

call

call

Figure 4.4.: VERITAS flow diagram

x
y cout

s cin

Full
Adder

Gate-Level Net-List Generated C++ Code

VERITAS

void full_adder (const bool& x, const bool& y,
 bool& cout, bool& s)
{
 bool n0 = x ^ y; s = n1 ^ cin;
 bool n1 = x | y; bool n2 = cin & n1;
 bool n3 = x & y; cout = n2 | n3;
}

Figure 4.5.: VERITAS C++ representation of a full adder

for loosely-timed TLM models. As previously mentioned, combinational logic
gates are generated as logic operations and are executed when one input of the
logic cone changes its value. Afterward, the result is propagated to connecting
SystemC/TLM models or (sub-)system output ports. Thus, entire logic cones
(e.g., an adder module or a processor’s ALU) are abstracted to a single-step
method call which returns the logic cone’s output (e.g., the adder’s sum and
its carry bit). Consequently, it is not required to generate approximately-timed
TLM models (e.g., non-blocking-transport methods and TLM phases).

Gate-level information may be directly integrated into existing SystemC/TLM-
based VPs by replacing behavioral functions modeled in TLM with code gen-
erated by VERITAS. Consider a HW system which requires a specific adder
implementation (e.g., carry-save adder), for instance. On the VP, the adder
may have been merely modeled using the ‘+’ operator from C++. In this case,
VERITAS can be used to augment the TLM model with the adder’s gate-level
information. The TLM ‘+’ operation is then replaced with C++ code generated
by VERITAS, which implements the HW model of an adder circuit. As a result,
valuable fault-matching points are added to the VP since the generated code has
the same granularity as the gate-level net-list. Furthermore, the TLM model is

52

4.5. Augmentation of Virtual Prototypes with Gate-Level Data

Generated C++ Code

void adder_2bit (const int& x, const int& y,
 bool& cout, int& s)
{
 x0 = x & 1; x1 = (x >> 1) & 1;
 // ...
 s = s0 | (s1 << 1);
}

Gate-Level Net-List

VERITAS

x[1:0]
y[1:0]

cout
s[1:0]

2-Bit
Adder

Figure 4.6.: VERITAS breakdown of multi-bit operations

enhanced with gate-level fault-masking effects, which ultimately improves the
VP’s fault-propagation paths during fault-injection simulations. Consequently,
faults injected into the augmented VP have a 1-to-1 mapping to the gate-level
net-list.

From a modeling perspective, the transformation of Verilog code into C++
code may not seem like an abstraction at all. However, this is not the case.
Consider a HW system modeled using HDLs. First, HDLs use specific constructs
to model the system’s structure (e.g., modules, processes, signals, ports). Second,
HDLs use particular modeling methods (e.g., process-sensitivity lists) to emulate
the parallel behavior of HW elements. Third, systems are modeled differently
from one abstraction level to the next: (i) gate-level uses wires and gates, (ii) RTL
uses buses and registers, and (iii) VPs use sockets, payloads, and variables. Each
abstraction level focuses on modeling system behavior while removing specific
properties which more accurately describe the system’s structure. VERITAS
performs the same process. VERITAS abstracts Liberty files which describe a
gate’s structural, behavioral, and electrical properties into Verilog models. As a
result, the gate’s electrical properties are ignored (i.e., abstracted out). VERITAS
further abstracts the system by transforming combinational HDL blocks into
C++ code (with optional SystemC and TLM wrappers). In this case, it is not
the system’s structure which is abstracted but its representation and thus, its
simulation semantics. Combinational gates are no longer described by modules
and processes but by C++ variables and simple logic operations. Furthermore,
gates are ordered topologically and simulated sequentially instead of using
event-driven simulation. Thus, process-sensitivity lists which are mainly present
in HDLs are also abstracted out. After augmenting the VP with gate-level
information, new fault-injection locations become available on the TLM model
which require verification. Consequently, the VP’s corresponding test-bench
must be extended with fault-injection test cases.

53

4. Improving the Correlation of Fault-Injection Results

Fault Injection

Fault injection may be performed with any tool presented in Chapter 3. SCFIT
can be used out of the box on the C++ models generated by VERITAS [108]. Fur-
thermore, SCFIT’s configuration is significantly simplified for each fault-injection
scenario because the C++ variables created by VERITAS are not templatized
and do not have read/write methods (Fig. 4.5). Thus, SCFIT only requires one
HW breakpoint on the generated C++ method and one HW watchpoint on each
C++ variable targeted for fault injection. Additionally, simulator commands for
SystemC (i.e., FIOs) and TLM (i.e., injectable sockets) are added to VERITAS by
extending its C++ and TLM-wrapper generators. In the case of FIOs, the original
Boolean variables are replaced with global FIO instances, whose fault-injection
methods can be accessed directly from the system’s test-bench (Fig. 4.7) [112].

Generated C++ Code

fi_object<bool> x0("x0"), x1("x1");
fi_object<bool> s0("s0"), s1("s1");
// ...
void adder_2bit (const int& x, const int& y,
 bool& cout, int& s)
{
 x0 = x & 1; x1 = (x >> 1) & 1;
 // …
 s = s0 | (s1 << 1);
}

Gate-Level Net-List

VERITAS

x[1:0]
y[1:0]

cout
s[1:0]

2-Bit
Adder

Figure 4.7.: Extension of VERITAS’ C++ generator to support fault-injection
objects

4.5.2. VERITAS++

VERITAS++ is an extension to VERITAS. The Python-based model-driven ap-
proach from VERITAS is replaced in VERITAS++ by a C++-based tool called Veri-
lator [148] (Fig. 4.8). Compared to VERITAS which only processes combinational-
logic blocks within a HW system, VERITAS++ also processes sequential-logic
blocks (e.g., flip-flops, latches). Consequently, VERITAS++ represents a safety-
verification framework suitable for safety verification on complete HW systems.

Verilator requires synthesizable Verilog models for each gate described in a
Liberty file. As a result, VERITAS++ is used to parse Liberty files and transform
them into functional Verilog models (Fig. 4.8). The gate models generated by
VERITAS++ are then integrated into the system’s gate-level net-list, parsed

54

4.5. Augmentation of Virtual Prototypes with Gate-Level Data

Liberty
File SystemC

Wrapper

C++ Model

call

VERITAS++

Liberty-
File Parser

Meta-Model

Verilog
Generator

Verilog
Models

Verilator Gate-Level
Net-List

Figure 4.8.: VERITAS++ flow diagram

by Verilator, and abstracted into SystemC/C++ code. Consequently, VPs no
longer need to be augmented with gate-level information. Instead, gate-level
net-lists are directly abstracted to C++ and SystemC models. Similar to VERITAS,
Verilator abstracts the target system by transforming the known HDL structure
into C++ code (with an optional SystemC wrapper).

Abstracting Gate-Level Net-Lists to Virtual Prototypes

Verilator is an open-source Verilog to C++/SystemC compiler, which transforms
synthesizable Verilog and a subset of SystemVerilog code into functionally equiv-
alent C++ or SystemC code (Fig. 4.9). Similar to VERITAS, Verilator levelizes
the hierarchy of a Verilog model and optimizes (i.e., collapses) redundant sig-
nals within the HW model. All HW signals, including those removed during
optimization, are traced using VCD files.

i0
i1 o0

o1
i2

Verilog
Net-List

i0
i1 o0

o1
i2

Verilog RTL
Model

SystemC Wrapper

i0
i1 o0

o1
i2

Verilated
C++ Models

Synthesis

Cycle-Accurate
Simulator

 Verilator

Verilog
Parser

C++
Generator

Simulator
Generator

SystemC
Generator

Communication

Signal Traces
(VCD File)

o0

o2

o1 i0
i1

C++/SystemC

Test-Bench

Figure 4.9.: Verilator flow diagram

Generated SystemC code represents a SystemC module with corresponding
SystemC-specific input and output ports. Furthermore, the transformed code is

55

4. Improving the Correlation of Fault-Injection Results

executed by a SystemC process which is sensitive to the module’s inputs. The
SystemC module is a wrapper around the levelized C++ code (Fig. 4.9). The
generated code can be directly compiled with a C++ compiler (e.g., Clang, G++).

Verilator provides a cycle-accurate compiled-code simulator for the generated
levelized code. Compared to EDSs, which schedule and execute processes based
on event triggering (e.g., write events on signals), Verilator executes the whole
design in topological order at every simulation step. As a result, Verilator’s
simulator utilizes only a small number of internal state variables (i.e., event
queues are not needed since no event scheduling takes place during simulation).

Fault Injection

Verilator does not support fault injection. The authors of [78] have used Verilator
for safety verification by transforming RTL code into SystemC/C++ models
and by connecting these models to TLM test-benches. Faults have been injected
into the TLM models, and their impact has been analyzed on the transformed
RTL models. However, this approach requires TLM models with fault-injection
capabilities and also needs synchronization between the TLM test-bench and the
generated SystemC/C++ models.

VERITAS++ uses a different fault-injection approach to that proposed in [78].
VERITAS++ extends Verilators’s open-source C++ and SystemC generators to
add support for simulator commands (i.e., FIOs). Since Verilator uses C++
data types to store data from HW models which do not have dedicated fault-
injection capabilities, simulator commands have been added by replacing these
C++ data types with FIOs. As a result, all HW signals become instances of
FIOs. Hence, faults can be directly injected from a C++ or SystemC test-bench
by merely calling the appropriate fault-injection method. Since FIOs can be
optimized by the C++ compiler, they offer better performance than SCFIT’s
GDB-based approach. Furthermore, as already mentioned in Chapter 3.2, GDB’s
performance is limited by the number of HW breakpoints and watchpoints
available in current processor technologies.

4.6. Summary

Safety experts perform fault injection into VPs to establish a system’s fault
tolerance early in the HW system’s development cycle when architectural errors
are easy to correct by implementing better safety mechanisms. However, the lack
of implementation details, fault-matching points, and fault-masking effects on

56

4.6. Summary

VPs leads to the observation of pseudo-failures. In turn, safety verification on
VPs becomes difficult if not even impossible. Consequently, safety verification
must be repeated on the RTL or gate level to obtain correct results. To address
this issue, two methods (i.e., VERITAS and VERITAS++) have been introduced
in this chapter, which improve the correlation of fault-injection results across
gate-level net-lists and VPs. VERITAS augments existing VPs with combinational
information from gate-level net-lists by transforming this information into C++
code. VERITAS++ further transforms entire gate-level net-lists (i.e., sequential
and combinational information) into VPs.

57

5. Optimizing Fault-Injection
Simulations

5.1. Introduction

Fault-injection campaigns require a considerable number of simulations to pro-
vide accurate results. Currently, SFI methods using Monte-Carlo simulations
must exercise tens of thousands of fault-injection experiments on a safety-critical
SoC to achieve results with sufficient statistical confidence such as 99.8%. Fur-
thermore, these simulations must be repeated on multiple SoC workloads (i.e.,
real-life applications). Thus, complex SoCs may require millions of fault-injection
simulations.

Moreover, some injected faults may be masked by the simulated system due to
its inherent fault-masking effects. In this case, the simulation does not provide
any relevant information for two reasons. First, the system may be safe against
the effects of the injected fault, in which case, the fault may be excluded from
the fault-injection campaign altogether. Second, the masked fault may lead
to a system failure under different simulation circumstances such as using
another system workload or changing the fault-injection attributes (i.e., time,
fault type, and location). Hence, from a verification perspective, the simulation
time has been wasted. It would be more efficient to determine beforehand if the
analyzed system is immune to the effects of a specific fault or if the injected fault
would lead to fault propagation during a simulation. Such information would
drastically reduce the number of simulations required to determine a system’s
fault-tolerance levels. However, pure SFI methods do not use such information
about the system.

To reduce the number of fault-injection simulations, this chapter introduces
a safety-verification flow called SaVer, which enables automatic fault injection
into VPs. Furthermore, this chapter introduces four optimization techniques,
developed to reduce the verification complexity of safety-critical SoCs and speed
up fault-injection simulations: (i) removal of redundant fault-injection locations,

59

5. Optimizing Fault-Injection Simulations

(ii) discovery and removal of fault-injection simulations which do not lead to fault
propagation (iii) parallelization of fault-injection simulations, and (iv) simulation
checkpointing.

5.2. Measures for Verification Completeness

A system’s fault-tolerance level may be accurately determined using formal
(mathematical) or statistical (simulation-based) verification methods. Formal
methods employ mathematical properties, also known as assertions, to exhaus-
tively analyze HW models [149], [150]. As a result, they automatically check all
possible fault-injection scenarios and fault-propagation paths. Therefore, they
have an essential measure for completeness. Unfortunately, formal methods are
computationally expensive and require a long time to complete their analysis
even for relatively small systems. Consequently, formal methods are not yet
scalable with sizable safety-critical SoCs.

Statistical methods analyze fault effects by randomly injecting faults into
a system (i.e., one fault per simulation) using Monte-Carlo simulations with
uniform distributions [102]. In other words, the same probability is used to
randomly inject faults into any system location and at any simulation time.
However, contrary to formal methods, SFI methods do not have an implicit
measure for completeness. Therefore, it is important to determine how many
fault-injection simulations are required to reach a sufficient confidence level.
In [102], the number of fault-injection simulations is expressed based on the
statistical distribution of faults within a system:

n =
N

1 + e2 N−1
t2·p·(1−p)

(5.1)

where

n = the number of fault-injection simulations
N = the number of faults extracted from the system’s fault-verification space
p = the proportion of faults from the fault-verification space which can lead

to failures. Conservative SFI methods assume p = 0.5.
e = the margin of error
t = the standard error obtained from N (i.e., the t-test). This value depends

on N and the expected confidence interval of SFI results.

This equation can be more easily visualized by plotting it using the following
example values: p = 0.5, e = 1%, and t = 3.0902 (Fig. 5.1). This t value

60

5.2. Measures for Verification Completeness

corresponds to a confidence interval of 99.8% as defined in [151]. The increase
of N leads to the increase of n. In other words, the more faults a system’s fault-
verification space presents, the more fault-injection simulations are required
to analyze the system sufficiently. Nevertheless, the graph also presents a
horizontal asymptote when N tends to infinity. Hence, only a limited number of
fault-injection simulations is required to analyze a system regardless of the size
of N sufficiently.

The maximum number of fault-injection simulations nmax needed by a HW
system with large fault-verification space can be calculated from Eq. 5.1 as:

nmax = lim
N→∞

f (N) =
t2

e2 · p · (1− p) (5.2)

By inserting the previous example values for p, e, and t into Eq. 5.2 and
by rounding up to the next integer, nmax becomes 23 874. In other words, a
conservative SFI approach (i.e., p = 0.5) requires only 23 874 fault-injection
simulations with different faults to sufficiently analyze a HW system. The SFI
results have a 99.8% confidence interval and 1% margin of error regardless of
the size of the system’s fault-verification space.

0

5

10

15

20

25

0,001 0,01 0,1 1 10 100

N
u

m
b

e
r

o
f

fa
u

lt
-i

n
je

ct
io

n

si
m

u
la

ti
o

n
s

(n
)

Th
o

u
sa

n
d

s

Number of faults in a system (N) Millions

Figure 5.1.: Saturation curve for the number of fault-injection simulations n given
by the number of faults N (p = 0.5, e = 1%, and t = 3.0902 for 99.8%
confidence interval)

61

5. Optimizing Fault-Injection Simulations

5.3. SaVer

This thesis introduces SaVer, a simulation-based safety-verification flow for
SystemC/TLM VPs, which allows statistical injection of tens of thousands of
faults during a fault-injection campaign.

5.3.1. Fault-Injection Flow

SaVer uses a three-phase approach to inject faults into a VP and determine the
results of fault-injection simulations (Fig. 5.2). First, a reference simulation is
run with a given workload and without fault injection. Simulation results are
saved as signal traces provided by the simulator. Next, multiple fault-injection
simulations are executed using the same initial workload. Each fault-injection
simulation injects a different fault into the HW model. Finally, fault-injection
simulation results are compared to the results obtained from the reference
simulation.

Mismatches in the simulation outputs are the result of fault propagation
through the system. If mismatches are observed in any of the system’s outputs,
a failure is recorded. If no mismatch is found, the fault is considered masked
by the system. In this case, improved testing is required to determine if the
fault is safe or if the injected fault’s effect is latent. Under the correct conditions
(i.e., system workload, simulation duration, and fault-injection attributes) latent
faults may lead to failures.

Run Reference
Simulation

Run Fault-Injection
Simulations

Workload
Library

Fault Library Process
Failure Coverage

Dump Fault-
Injection Results

Dump Reference
Results

Reference Phase

Fault-Injection Phase

Results Phase

Compare
Outputs

Figure 5.2.: SaVer’s fault-injection regression flow

5.3.2. Fault-Injection Methods

SaVer utilizes the three methods introduced in Chapter 3 to generically inject
faults into the analyzed VPs. SaVer supports two fault-injection regression modes:

62

5.4. Spatial and Temporal Fault Pruning

SFI and user-defined fault injection (UDFI). During SFI, fault-injection locations
are selected randomly from the system’s list of internal signals. In this case, only
one fault is injected per simulation. Fault types (e.g., stuck-at-0, stuck-at-1, bit
flip) are also randomly chosen. Permanent faults are injected at the beginning of
a simulation, and their effects last for the whole simulation. Transient faults are
injected at a random simulation time and last until overridden by the system.
Consequently, a system’s average fault tolerance can be computed. During UDFI,
all fault attributes (i.e., location, type, simulation time) are user-defined. This
mode is mainly designed for debugging and directed testing. In this case, users
can inject any number of faults into the analyzed system. Fault attributes which
result from SFI or UDFI are stored in a fault library. SaVer uses fault libraries to
inject faults during fault-injection simulations.

5.4. Spatial and Temporal Fault Pruning

This section introduces two methods to remove redundant fault-injection loca-
tions from a system. The first method implements spatial fault pruning. The
latter utilizes temporal fault pruning.

5.4.1. Removal of Redundant Fault-Injection Locations

When abstracting gate-level net-lists to SystemC/C++ models using VERITAS++,
Verilator’s optimization techniques significantly reduce the number of signals
present on the net-list. These optimization techniques remove redundant signals
which typically have the same behavior during simulation. An excellent example
of redundant signals is output ports of a subsystem connected to input ports of
other subsystems through signals. The triplet (output port, signal, input port)
can be collapsed to a single C++ variable. Nevertheless, for debugging purposes,
Verilator still traces all signal values (including the ones removed).

Since the optimized signals are redundant, fault injection into any of them
results in the same fault propagation. In other words, fault effects observed
on these signals are equivalent. Thus, it is sufficient to inject faults into any
of the redundant signals to obtain accurate results. Spatial fault pruning does
not reduce the number of fault-matching points across generated SystemC/C++
models and their equivalent gate-level net-lists. It only removes redundant fault
locations and optimizes the fault-verification space.

63

5. Optimizing Fault-Injection Simulations

5.4.2. Simulation-Trace Analysis

Fault-effect analysis can be accelerated by pruning the number of faults avail-
able for injection. Fewer faults to inject also means fewer simulations to run.
However, it is essential to prune only those faults which, after injection, do not
propagate through the system. This thesis introduces a fault-pruning method for
SaVer, which determines safe faults and groups redundant faults with the same
propagation paths. This method has been developed for VPs based on SystemC
and TLM .

Simulation-trace analysis inspects read and write accesses on components of
a HW system to determine whether faults injected into those components can
propagate through the system. Before running a fault-injection simulation, the
analysis determines if the system can mask an injected fault. In this case, this
fault can be excluded from a fault-injection campaign because its effect becomes
overridden by the system. However, if the fault is not masked by the system, a
complete fault-injection simulation is needed to determine whether the fault’s
effect reaches the system’s output and becomes a failure.

SaVer’s fault-pruning method follows three steps: (i) analysis of simulation
traces, (ii) extraction of valid fault-injection intervals, and (iii) fault-library
generation.

Simulation traces are usually dumped into a trace file, such as a VCD. However,
typical HDL simulators only offer information about write accesses on HW
components. Since lifetime analysis also requires knowledge about read accesses,
this thesis introduces a new trace-file format, called value-access dump (VAD).
The VAD format efficiently extends the VCD format with read-access information
(Fig. 5.3). Similar to VCD, VAD files record value changes on each traced signal
at every simulation time stamp. Additionally, VAD files record the type of access
(i.e., read or write) and the number of accesses per simulation time.

VCD Format

VAD Format

[value][signal name]

[value][signal name][access type][access count]

Figure 5.3.: VAD format compared to VCD format

To analyze simulation traces, a fault-free simulation is first performed, and a
VAD file is dumped. Next, the resulting VAD file is parsed using a Python-based
VAD-file parser. Then, an algorithm is applied to the extracted data to determine

64

5.5. Parallelization of Fault-Injection Simulations

which faults are masked. Finally, after eliminating all maskable faults, a fault
library is generated and used in subsequent fault-injection simulations.

SaVer’s fault-pruning algorithm scans all read and write accesses issued by
the HW simulator on each HW register (Fig. 5.4). Fault masking occurs when
faults are injected before a write access since transient faults (e.g., bit-flips) are
overridden by the HW system. However, fault injection before a read access
always leads to fault propagation (at least for a short distance) since the register’s
faulty value is read by a different register or logic gate. The propagated fault may
be masked later during system execution or, under appropriate circumstances,
may lead to a system failure.

t2 t0 t1 t3 t4 tsim

w r r w

Register

w

Propagating
Fault

Masked
Fault

Figure 5.4.: Difference between masked faults and faults which propagate based
on read-write accesses on registers

After determining which faults propagate through the system, this algorithm
further removes faults which have the same propagation paths. For instance,
consider an arbitrary workload which writes a generic register 100 ns after the
simulation starts. Additionally, the system reads the register’s content at 150 ns.
Any fault injected anywhere within the 100 ns and 150-ns time stamps (e.g.,
at 101 ns, 115 ns) will ultimately have the same fault-propagation path. As a
result, these faults are equivalent, and can be injected as a single fault. Thus,
this method further reduces the system’s fault-verification space.

5.5. Parallelization of Fault-Injection Simulations

One method by which SaVer reduces the duration of fault-injection campaigns
is by executing simulations in parallel. This is achieved because SaVer’s fault-
injection simulations run independently from each other. Thus, instead of
simulating each fault injection sequentially, they can be run in parallel by us-
ing a server farm (computer cluster). When using VERITAS++, fault-injection
simulations are run after compiling the C++ and SystemC models generated

65

5. Optimizing Fault-Injection Simulations

by Verilator. Fault-injection simulations are started in parallel using a Makefile
which controls the compilation and simulation of the C++ code [152].

5.6. Simulation Checkpointing

The simulation time of each fault injection can be reduced by using checkpointing
mechanisms. By saving simulation snapshots, the simulation time leading up
to the insertion of a HW fault can be avoided. As a result, the duration of a
fault-injection simulation may be limited to analyzing the propagation path of a
fault through the safety-critical HW system.

A checkpoint-restore approach has been developed for C++ and SystemC mod-
els generated by Verilator and has been integrated into SaVer’s fault-injection
flow. In other words, this approach is designed for VPs with gate-level granular-
ity. The approach follows the standard two steps of snapshotting: checkpointing
a simulation and restoring a simulation from a previously saved checkpoint.

5.6.1. Checkpoint

Checkpoints are generated in two steps: simulation (including signal tracing and
trace generation) and then, checkpoint generation. In the first step, a simulation
is run until a predetermined simulation time. During this time, the HW model’s
activity (e.g., signal and register values), internal variables of Verilator’s CAS,
and simulation time are stored for each simulation time step. In the second step,
the previously gathered information is used to generate an arbitrary number of
checkpoints offline.

Checkpoints are not generated as a single file like in other snapshotting
approaches (e.g., [93]–[95]), but broken down into one header file and multiple
data files (i.e., one per checkpoint). The header file contains a list of signals and
registers saved from the HW model. The data file includes the saved signals’
values listed in the same order as their names. Signal names contain the full
hierarchy of the HW model and thus require several orders of magnitude more
storage space than their values whose size depends only on their bit-widths.
Moreover, signal names are constant over all checkpoints, whereas their values
may vary from one checkpoint to the next. Thus, saving signal names within
every checkpoint file represents a sub-optimal usage of limited hard-disk space.
By separating a HW model’s signal names and values into two files and by
only generating new files for the signals’ value changes, the size of checkpoints

66

5.6. Simulation Checkpointing

is optimized when generating large numbers of checkpoints. Hard-disk space
requirements of checkpoints are further reduced by only snapshotting Verilator’s
optimized signals.

While the HW model’s activity is saved in the form of a VCD file generated
by Verilator, the internal CAS variables are not tracked by Verilator’s VCD
mechanism. For this reason, Verilator’s C++ generators have been extended to
monitor internal states of Verilator’s CAS as well. Thus, internal simulation
states are saved using a comma-separated value (CSV) format, consisting of
triples of internal variables’ name, value, and the current simulation time stamp.

Snapshots are created using a model-based Python application which gen-
erates checkpoints for a list of simulation-time values (Fig. 5.5). First, a list of
optimized signals generated by Verilator, the HW model’s VCD file, and the
internal simulator variables saved in CSV format are parsed. The VCD-file parser
is described in [153]. Next, the parsed data are stored into a data model from
which the values of each optimized signal and each internal simulator variable
are extracted at a given simulation time. Finally, the extracted data are stored
as name-value pairs, which are compressed and written into the checkpoint’s
header file (i.e., signal and variable names) and data files (i.e., signal and variable
values). When generating multiple checkpoints, the header file is generated only
once, while a data file is generated for each checkpoint.

Simulation
VCD

Simulator
Internal

Variables

Checkpoint
Data Files

Verilator’s
Optimized

Signals Checkpoint
Header File

Extract Name-Value Pairs of

at Given Simulation-Time Value

Compress Extracted Data

Internal Simulator Variables

Optimized HW-Model Signals

Figure 5.5.: VCD-based checkpointing-generation flow

The VCD-file parser uses the model-based Python application from [153]. This
application’s data model is structured based on the VCD format’s ASCII symbols
(Fig. 5.6); each symbol contains a list of time-value pairs and a list of associated
nets (i.e., signals). Each time-value pair contains the signals’ value paired with

67

5. Optimizing Fault-Injection Simulations

its corresponding simulation time. Each associated net (i.e., HW model signal)
contains four attributes: name, bit-with, type, and hierarchical name within the
HW model.

VCD Symbol

TV

Time : int [1]
Value : str [1]

Net

Hierarchy : str [1]
Name : str [1]
Size : int [1]
Type : TypeEnum [1]

<< enum >>
TypeEnum

Reg : TypeEnum
Wire : TypeEnum

*

*

Legend
Directional
Composition

*

Figure 5.6.: UML diagram of meta-model structure

The appropriate values of nets and internal simulator variables are extracted
by iterating through the VCD’s data model and searching for the net’s value at a
given simulation-time. If a net does not explicitly contain an entry for the probed
simulation-time value, the first simulation-time entry smaller than the given one
is selected from the list (i.e., the net’s value was set at a previous simulation
time and was not changed since). By only saving the HW model’s activity
and the internal states of Verilator’s CAS, each checkpoint’s hard-disk space
requirements are significantly reduced. Moreover, the creation of checkpoints
after a simulation allows better checkpoint-lifetime management. In other words,
checkpoints can be generated in chunks when needed and then deleted to save-
up hard-disk space; this allows the generation of other checkpoint chunks from
the same reference simulation. Thus, hard-disk space management is more easily
controllable, and fewer simulations are required for generating checkpoints.

5.6.2. Restore

The initialization phase of Verilator’s simulator is modified to allow restoring
a simulation from a saved checkpoint. Previously, this phase was used to
initialize signals before the start of a simulation. However, when restoring from
a checkpoint, the simulator must open the generated checkpoint header and
data files and automatically initialize the simulator’s internal variables as well
as the HW model’s signals (Fig. 5.7).

This restoring mechanism presents high flexibility, which allows it to be reused
even if the HW model generated by Verilator was changed (e.g., signals added or

68

5.6. Simulation Checkpointing

Checkpoint
Header File

Continue
Simulation

Checkpoint
Data File

Create Name-Value Pairs

Extract Checkpointed Data

Initialize Internal
Simulator-Variables

Initialize HW-Model’s Signals

Initialize Simulation-Time Value

Figure 5.7.: VCD-based restoring-from-checkpoint flow

removed). This approach is highly beneficial to speed-up debugging (e.g., bug
fixing of HW blocks independently of the checkpointed data), a feature which
is currently unavailable in commercial HDL simulators. If signals are removed
from the design, the restoring phase just ignores them. If a signal is added to
the HW model, it can be manually appended to the checkpoint files as a new
name-value pair. When restoring the simulation, the added signal’s value before
restoration is set to undefined; then, its value is restored from the checkpoint file
and henceforth, updated by the simulator until the simulation ends.

5.6.3. Checkpointing within SaVer

To reduce the simulation time of fault-injection simulations, SaVer has been
enhanced with checkpointing capabilities by tracing system states and internal
simulator states for each reference simulation (Algorithm 1). The traced infor-
mation is saved in the form of VCD files. Furthermore, a fault library is used
to create a set fault-injection simulation times. Next, this set of simulation-time
values and the reference VCD files are used to generate checkpoints. Finally,
fault-injection simulations are run for all faults in the fault library by automat-
ically restoring the reference simulation from an optimally chosen checkpoint
(e.g., one clock cycle before fault injection). Compared to SaVer’s original imple-
mentation (Fig. 5.2), the introduction of the VCD-based checkpoint mechanism
adds an intermediary checkpointing phase (Fig. 5.8).

69

5. Optimizing Fault-Injection Simulations

Algorithm 1 Checkpoint-driven fault-injection simulation
Require: workload library and fault library
Ensure: fault-injection simulation results

for all workloads do
Run reference simulation
Dump VCD file with traced system states and internal simulator states

for all fault-injection times in fault library do
Create set of checkpoint-time values

for all checkpoint-time values do
for all pairs of reference VCD files do

Create checkpoint
for all fault-injection times in fault library do

Run fault-injection simulation from optimal checkpoint
Dump fault-injection VCD file

5.6.4. Performance Analysis

The maximum simulation speed-up, which can be reached using simulation
checkpointing, can be mathematically described as:

S =
N f aults · tsim

∑
N f aults
i=1 (tsim − tchkpti)

(5.3)

where

S = speed-up factor
N f aults = number of faults to be injected during a fault-injection campaign
tsim = number of simulation steps executed per fault-injection simulation
tchkpti = simulation time saved after restoring a simulation from a checkpoint

assigned to fault i

The fraction’s numerator represents the time it takes to run a fault-injection
campaign without checkpointing. The denominator illustrates the time required
by a fault-injection campaign which uses checkpointing. The value of S increases
with the amount of simulation time saved through checkpointing. Hence, faults
injected closer to the end of a simulation lead to shorter safety-verification
campaigns.

Fault-injection campaigns, which are using SFI, distribute faults uniformly
across a fault-injection simulation. For instance, consider a fault-injection cam-
paign with 10 000 faults and a simulation of 2500 simulation time steps. Uniform

70

5.6. Simulation Checkpointing

Run Reference
Simulation

Run Fault-Injection
Simulations

Workload
Library

Fault Library Process
Failure Coverage

Dump Fault-
Injection Results

Dump Reference
Results

Reference Phase

Fault-Injection Phase

Results Phase

Compare
Outputs

Create
Checkpoints

Dump Simulation
Traces and Internal
Simulator Variables

Checkpointing Phase

Figure 5.8.: SaVer’s checkpointing-based fault-injection regression flow

fault distribution leads to injection of four faults at each simulation step but into
different system components. Hence, N f aults can be written as a multiple of tsim:

N f aults = K · tsim, K ∈ R (5.4)

where K represents the number of times each time step is used for fault injection.
After introducing Eq. 5.4 and expanding the sum, Eq. 5.3 becomes:

S =
K · t2

sim

K · t2
sim −∑

N f aults
i=1 tchkpti

(5.5)

As shown in this thesis, fault-injection campaigns require complicated fault
libraries. Nevertheless, faults can be injected into each simulation step (i.e., 1, 2,
3, . . . , tsim) using a uniform distribution. Also, faults injected into different parts
of a system can share the same fault-injection time. In turn, such faults also
share the same simulation checkpoint. Consequently, the sum term in Eq. 5.5
can be rewritten as the sum of an arithmetic series scaled by the K factor:

N f aults

∑
i=1

tchkpti = bKc ·
tsim · (tsim + 1)

2
+ N f aults mod tsim (5.6)

where

bKc = the floor of K
N f aults mod tsim = the remainder of dividing N f aults to tsim

For instance, consider a fault-injection campaign of 17 faults injected into

71

5. Optimizing Fault-Injection Simulations

simulations of five time steps. A uniformly distributed fault library requires
3 checkpoints for each simulation time step (i.e., bKc = b17/5c = 3). The
remaining two faults (i.e., N f aults mod tsim = 17 mod 5 = 2) are randomly
attributed to any of the existing checkpoints (e.g., time steps 2 and 3).

By replacing the sum term into Eq. 5.5 and performing simplifications, S
becomes:

S =
2 · K · t2

sim
(K + {K}) · t2

sim − bKc · tsim − 2 · N f aults mod tsim
(5.7)

where {K} is the fractional part of K, expressed as:

{K} = K− bKc (5.8)

When simulation times are long, the speed-up factor becomes:

S′ = lim
tsim→∞

S = 2
K

K + {K} (5.9)

On the one hand, for small fault libraries (i.e., {K} = K), there are too few
faults for the checkpointing mechanism to have any benefit:

lim
K→0

S′ = 1 (5.10)

On the other hand, for huge fault libraries, the checkpointing mechanism
achieves its maximum speed-up for uniformly distributed fault libraries:

lim
K→∞

S′ = 2 (5.11)

A 2x speedup factor is a significant simulation improvement when using
simulation checkpointing because, until now, technological constraints (e.g.,
limited hard-disk space, manual checkpointing approaches) have prevented
safety-verification flows from achieving any speedup whatsoever. The check-
pointing mechanism introduced in this thesis makes this speedup factor possible.

5.7. Summary

SFI methods require thousands and even millions of simulations to provide
confident results. Additionally, large safety-critical systems with complex work-
loads suffer from long simulation runs. Thus, fault-injection campaigns on

72

5.7. Summary

such systems are computationally intensive and require methods to reduce
their execution time. To achieve this requirement, this chapter has introduced
a safety-verification framework called SaVer, which automates the injection of
faults into VPs. Furthermore, several optimization methods introduced in this
chapter have been designed to reduce the simulation time and also the number
of simulations of fault-injection campaigns.

One optimization method has been designed to group and remove redundant
fault-injection locations, such as output ports, signals, and input ports. Since
these locations exhibit the same fault-propagation paths and lead to the same
fault-injection results, they can be reduced to a single fault-injection location.
Thus, fewer fault-injection simulations are required to accurately verify the SoC.

Another optimization method has been designed to reduce the number of
simulations in a fault-injection campaign. Compared to the previous method,
this one analyzes the traces of a fault-free simulation and determines whether
the injection of transient faults leads to fault propagation or not. As a result,
faults, which are immediately masked by the system, are also removed from the
fault-injection campaign.

The third optimization method speeds up the fault-injection campaign by
allowing fault-injection simulations to run concurrently (in parallel). Thus, the
speed of obtaining fault-injection results increases with the number of processor
cores available to run simulations and respects Amdahl’s Law [154].

The final method introduced in this chapter speeds up fault-injection simula-
tions by using an optimized and automated simulation-checkpointing approach.
This checkpointing mechanism achieves a speed-up factor of up to 2x, which is
higher than any speedup achieved by previous approaches.

73

6. Experimental Results and
Discussion

This chapter presents several HW architectures used to evaluate the methods
described previously. Additionally, this chapter introduces the experimental
setup used to perform fault-injection simulations and to measure fault effects,
simulation outcomes, and performance results for the contributions introduced
in this thesis. Finally, results are interpreted and the applicability of this thesis’
contributions is presented.

6.1. Application Example

This section introduces several HW architectures used to selectively test and mea-
sure the techniques contributed in the previous two chapters. These architectures
range from purely combinational adder circuits to complicated microprocessor
cores. They do not contain any safety mechanisms.

6.1.1. Adder Architectures

This thesis experimented on various adder architectures such as carry-save
adders and carry-lookahead adders, which range from full adders to 32-bit
adders. The adders are modeled as SystemC/TLM-based VP and as equivalent
gate-level net-lists. These models use the same interface: three inputs (i.e., two
operands and one carry-in bit) and two outputs (i.e., the sum and a carry-out
bit). The experiments use a VP with programmable operand bit-width for all
adder architectures. The VP uses a TLM-target module with a blocking-transport
method. Furthermore, the VP uses a dedicated TLM payload to model the adder
interface. Consequently, the transport method simply performs the addition
operation using the payload’s attributes. The adders’ gate-level net-lists are
created using logic synthesis of each adder’s RTL model using a commercial
synthesis tool [155] and a generic technology file.

75

6. Experimental Results and Discussion

6.1.2. Microprocessor Cores

Besides the adder architectures, this thesis also experimented on three CPU cores:
(i) microcontroller oc8051, (ii) AltOr32 (i.e., an alternative implementation of the
Open RISC 1000 CPU), and (iii) NanoMIPS (i.e., a simplified in-house version
of a MIPS CPU) [109], [113]. AltOr32 and oc8051 are thoroughly documented
in [156] and in [157], respectively. Similar to the adder architectures, a VP
and corresponding gate-level net-lists are used for the 8051 and AltOr32 CPUs.
Gate-level net-lists are obtained by synthesizing the cores using a commercial
tool [155] and a generic technology file. VPs are generated from gate-level net-
lists using VERITAS and VERITAS++. NanoMIPS contains a 32-bit integer-based
instruction set, hazard detection and forwarding units, and a five-stage pipeline.
These features are mirrored within the gate-level net-list and VPs. The MIPS
CPU is documented in [158].

NanoMIPS is modeled across multiple abstraction levels. It has an RTL model
(Fig. 6.1) which contains a dedicated module for each pipeline stage. NanoMIPS
also has a gate-level net-list generated from its RTL model using a commercial
synthesis tool [155] and a generic technology file. Furthermore, NanoMIPS has
three different VP models: a SystemC VP and two TLM VPs. While the SystemC
VP closely resembles the RTL model’s structure (Fig. 6.1), the TLM VPs are
more abstract and are developed using the loosely-timed method (Fig. 6.2) and
approximately-timed method (Fig. 6.3). Even here, the loosely-timed TLM model
is more abstract than the approximately-time model. Both TLM models use a
TLM-initiator module for the instruction-fetch pipeline stage. The other stages
are TLM-interconnect modules. Finally, the instruction and data memories are
TLM-target modules. Contrary to the RTL model, the write-back pipeline stage
is integrated into the memory-access stage for model-simplification reasons.
Each pipeline stage uses a specific set of TLM-payload extensions. The loosely-
timed TLM model employs the blocking-transport method. The approximately-
timed TLM model uses the non-blocking transport method. Besides NanoMIPS’
manually implemented SystemC and TLM VPs, VERITAS was also applied
to combinational blocks of NanoMIPS’ gate-level net-list to transform them
into TLM models. The resulting code augments NanoMIPS’ TLM models (e.g.,
adders, look-up tables, shifters, branching units). Finally, VERITAS++ is used on
the gate-level net-list to generate a complete gate-level-accurate SystemC/C++
version of NanoMIPS.

76

6.2. Experimental Setup

Figure 6.1.: Block diagram of NanoMIPS’ SystemC, RTL, and gate-level model

NanoMIPS
Loosely-Timed TLM Style

Instruction

Decode

Instruction

Fetch

Memory
Access

Instruction

Memory

Data

Memory

Execute
Write

Back

Figure 6.2.: Block diagram of NanoMIPS’ loosely-time TLM model

6.2. Experimental Setup

The studies presented in this thesis inject faults randomly using Monte-Carlo
simulation. Each test injects only one fault into internal system states (e.g.,
signals, buses, register, variables) and outputs of system blocks. These studies
measure each HW model’s base fault tolerance. The experiments on adder archi-
tectures inject random values into each operand. Additionally, they exhaustively
test all adder architectures up to 16 bits in size (i.e., half, full, nibble, 8-bit, and
16-bit adders). The experiments on microprocessor cores use a broad range
of firmware tests as input stimuli for the (e.g., ALU tests, interrupt-controller

77

6. Experimental Results and Discussion

NanoMIPS
Approximately-Timed TLM Style

Instruction Decode

Instruction

Fetch

Execute Memory
Access

Instruction

Memory

Data

Memory

Forwarding

Unit

Forwarding

Unit

Hazard
Detection

Unit

Write

Back

Figure 6.3.: Block diagram of NanoMIPS’ approximately-time TLM model

tests, memory tests). The experiments execute the SystemC/TLM VPs with the
SystemC reference simulator. They run the RTL models and gate-level net-lists
with commercial simulators [93]–[95].

The experiment results have been used to calculate and compare several ratios
such as speedup, correlation, simulation overhead, and others. These ratios
have been averaged using the harmonic mean because it is more stable against
extreme values than the geometric mean. The arithmetic mean has been excluded
because it can lead to wrong results when comparing ratios [159].

All simulations have been performed on 64-bit computers with an Intel R©
Xeon R© E5 CPU @3.00 GHz, L3 cache 25600 kB, and 264 GB RAM. Compilation
and elaboration times of the simulated models are negligible and thus have been
excluded from the results section. The simulation time of each case study has
been measured with the UNIX time command.

6.3. Quantitative Analysis of Fault-Matching Points

This section presents a new approach to quantify the correlation factor of VPs and
gate-level net-lists for several adder architectures and the NanoMIPS CPU core.
It does this by quantifying the number of fault-matching points (i.e., internal
signals and output ports) available within the VPs and gate-level net-lists:

Correlation =
NVP

NGL
(6.1)

where

NVP = number of fault-matching points on the VP
NGL = number of fault-matching points on the gate-level net-list

78

6.3. Quantitative Analysis of Fault-Matching Points

Additionally, the approach calculates the augmentation factor:

Augmentation =
1

Correlation
(6.2)

Finally, the approach augments the VPs with gate-level information using
VERITAS and VERITAS++. This step enriches the original VPs with all fault-
matching points present on the gate-level net-lists. Thus, the VP’s correlation
factor is increased to 100%.

In the case of the adder architectures, the correlation factor depends on the
adder’s size: the larger the adder, the more logic gates it contains, and thus,
the lower the correlation (Table 6.1). Based on the performed experiments,
the highest correlation factor did not exceed 34% in the case of a full adder
while the average value was below 13%. Hence, adders larger than 8 bits
exhibit a correlation below the recorded harmonic mean. Additionally, some
adder architectures, such as the carry-lookahead adder, further reduce the
correlation factor because of the high gate-level complexity compared to the
VP. Nevertheless, all of these poor-correlating adders benefit significantly from
augmentation using VERITAS and VERITAS++. As already mentioned, the
augmentation factor is the inverse of the correlation factor. In other words, the
lower the correlation factor of a VP, the more that VP benefits from augmentation.
Thus, the VPs enriched with VERITAS and VERITAS++ were augmented, on
average, approximately sixfold. The 32-bit carry-lookahead adder recorded the
highest augmentation (i.e., one order of magnitude).

Table 6.1.: Adders–Correlation factor across the VP and gate abstraction levels
A B C D = B/C E = C/B

Model Name
Injectable Fault Locations (#) Correlation

Factor (%)
Augmentation

Factor TLM Model Gate-Level Net-List

full_adder 2 6 33.33 3.00x

adder_2bit 3 9 33.33 3.00x

nibble_adder 5 31 16.13 6.20x

adder_4bit 5 35 14.29 7.00x

addsub_8bit 9 69 13.04 7.67x

adder_8bit 9 77 11.69 8.56x

adder_16bit 17 163 10.43 9.59x

adder_32bit 33 339 9.73 10.27x

carry_lookahead_32bit 33 523 6.31 15.85x

Harmonic Mean 12.65 6.07x

79

6. Experimental Results and Discussion

Measurements performed on the NanoMIPS core provide similar results to
those obtained on the adder modules (Table 6.2). Multiple combinational TLM
blocks correlate poorly with their corresponding gate-level net-lists. Similar to
the adder architectures, the augmentation of NanoMIPS’ combinational blocks
was, on average, almost sixfold. Even here, the approach recorded a VP augmen-
tation greater than one order of magnitude for some blocks such as id_control,
hazard_detection, and logic shift.

Table 6.2.: NanoMIPS–Correlation factor across the VP and gate abstraction levels

A B C D = 100*B/C E = C/B

Model Name
Injectable Fault Locations (#) Correlation

Factor (%)
Augmentation

Factor TLM Model Gate-Level Net-List

write_back 38 82 46.34 2.16x

jump 3 10 30.00 3.33x

subtractor 33 174 18.97 5.27x

adder 33 209 15.79 6.33x

logic_unit 32 266 12.03 8.31x

ex_forwarding 4 38 10.53 9.50x

id_control 11 116 9.48 10.55x

hazard_detection 4 73 5.48 18.25x

shift 32 931 3.44 29.09x

Harmonic Mean 9.70 5.92x

These results confirm the expectations from Chapter 4.4: user-developed
VPs and gate-level net-lists correlate poorly because VPs lack sufficient fault-
matching points. Furthermore, these results indicate the benefits of VERITAS
and VERITAS++ over traditional VP-based safety-verification approaches. Thus,
the accuracy of safety verification on VPs can be significantly improved by
augmenting VPs with gate-level information. VERITAS and VERITAS++ increase
the correlation factor to 100%, add missing fault-matching points to VPs, enrich
the models with correct fault-propagation paths, and, by extension, provide the
VPs with more fault-masking effects.

6.4. Qualitative and Quantitative Analysis of
Permanent-Fault Effects

This section documents the approach to qualitatively and quantitatively analyze
the effects of permanent faults (i.e., stuck-at-0 and stuck-at-1) on the adder

80

6.4. Qualitative and Quantitative Analysis of Permanent-Fault Effects

architectures and combinational blocks of the NanoMIPS core. This approach
uses the Monte-Carlo method to cover a broad spectrum of input stimuli and
fault-injection patterns.

After simulating 10 000 samples for each fault model, the approach observed
all possible single-bit failures in the adder’s sum output (Fig. 6.4). These findings
are independent of adder size and fault type (i.e., stuck-at-0 and stuck-at-1),
type of HW models used (i.e., TLM-based VPs and gate-level net-lists), and
fault-injection locations (i.e., at the input-interface level or internal). However,
the Monte-Carlo approach is not as efficient when considering corner cases (i.e.,
less probable outcomes). On the one hand, random stuck-at-1 injection into the
adders has successfully led to failure observation (i.e., failure coverage) in the
carry-out output of all adder sizes (the bars below the 50% coverage margin in
Fig. 6.5). On the other hand, stuck-at-0 faults have only registered these effects
for 8-bit and 16-bit adders. In the case of the 32-bit adders, the approach did not
register a carry-out failure even after 10 000 000 simulations. This result can be
visualized as the missing bars above the 50% coverage margin. Consequently,
directed tests are necessary to cover the carry-out corner case and to reduce the
total verification time of the 32-bit adders.

0

8

16

24

32

adder08 adder16 adder32

O
b

se
rv

e
d

 S
in

gl
e

-B
it

Fa

ilu
re

s

Gate-Level–only Input Fault Injection - sa0 Gate-Level–only Input Fault Injection - sa1

Gate-Level–with Internal Fault Injection - sa0 Gate-Level–with Internal Fault Injection - sa1

TLM - sa0 TLM - sa1

Figure 6.4.: Observed number of faulted bit positions in the sum output of an 8,
16, and 32-bit adder after 10 000 samples

Next, the approach quantifies the differences of injecting faults into gate-level
and TLM models by comparing the size of the observed multi-bit failures after
injecting stuck-at-1 (Fig. 6.6) and stuck-at-0 (Fig. 6.7) faults. An n-bit adder
offers a maximum multi-bit failure of n+1 bits given by its n-bit sum output
and 1-bit carry-out output. This study used the same input patterns for both
abstraction levels. First, fault injection into (i) inputs of the adders’ gate-level
net-list, (ii) inputs and internal signals of these gate-level net-lists, and (iii) inputs
of their corresponding TLM models offered similar simulation results. Second,
to observe multi-bit failures, the necessary average number of random samples

81

6. Experimental Results and Discussion

Models

Samples

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

k

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

adder08 adder16 adder32 adder08 adder16 adder32 adder08 adder16 adder32

Gate-Level–only Input Fault Injection Gate-Level–with Internal Fault Injection TLM

sa1 sa0

100%

50%

0%

C
o

ve
ra

ge

Figure 6.5.: Coverage of carry-out failures per fault type observed for 8, 16, and
32-bit adder

depends on the adder’s size. This number becomes unmanageable as this size
increases. For the 8-bit adder, 10 000 samples generated all possible multi-bit
failures (i.e., up to 9 bits) for both permanent fault models. However, stuck-at-0
injection has offered better results than stuck-at-1 insertion for the 16-bit adder.
In this case, stuck-at-0 faults needed only 1 000 000 samples to cover all multi-bit
failures (i.e., up to 17 bits), while stuck-at-1 faults barely covered 16 bits after
10 000 000 samples. Similarly, 10 000 000 samples only covered multi-bit failures
up to 21 bits for the 32-bit adder, regardless of fault model. Directed testing is
necessary to include these missing scenarios and to perform exhaustive safety
verification on the adders.

Samples

Models

1

9

17

25

33

10k 100k 1000k 10000k 10k 100k 1000k 10000k 10k 100k 1000k 10000k

adder08 adder16 adder32

O
b

se
rv

e
d

 M
u

lt
i-

B
it

Fa

ilu
re

s

Gate-Level–only Input Fault Injection Gate-Level–with Internal Fault Injection TLM

Figure 6.6.: Maximum multi-bit failure observed after injecting stuck-at-1 faults
in adders of variable sizes

This approach calculates the adder’s failure probability to quantify the number
of random samples needed, on average, by an n-bit adder to cause a maximum
multi-bit failure. The failure probability is calculated as a function of the adder’s
size. In this case, the approach considers fault injection only into the model’s
inputs. The total number of input stimuli subject to fault injection give the total
number of all outcomes (AO). This number of stimuli exhaustively covers all
input bit configurations of an n-bit adder. Given the adder’s size (i.e., n-bits)

82

6.4. Qualitative and Quantitative Analysis of Permanent-Fault Effects

Samples

Models

1

9

17

25

33

10k 100k 1000k 10000k 10k 100k 1000k 10000k 10k 100k 1000k 10000k

adder08 adder16 adder32

O
b

se
rv

e
d

 M
u

lt
i-

B
it

Fa

ilu
re

s

Gate-Level–only Input Fault Injection Gate-Level–with Internal Fault Injection TLM

Figure 6.7.: Maximum multi-bit failure observed after injecting stuck-at-0 faults
in adders of variable sizes

and its inputs (i.e., two n-bit inputs and one carry-in bit), the number of input
stimuli is:

Nstimuli = 22n+1 (6.3)

where n is the adder’s size in bits. Additionally, any of the adder’s 2n+1 input
bits supports stuck-at fault injection, regardless of the given input pattern. Thus,
AO becomes:

AO = (2n + 1) · 22n+1 (6.4)

Next, the approach derives the number of samples necessary to cause an
n+1-bit failure in an n-bit adder. Two cases exist which lead to the observation
of maximal multi-bit failures. First, consider a full adder with the input pattern
a=0, b=0, and carry-in=1 which leads to the outputs carry-out=0 and s=1. A
stuck-at-1 fault injected into either a or b causes a 2-bit failure by flipping the
output bits (i.e., carry-out=1 and s=0). Second, consider the input pattern a=0,
b=1, and carry-in=1 which leads to the outputs carry-out=1 and s=0. A stuck-at-0
fault injected into either b or carry-in causes a 2-bit failure by flipping the output
bits (i.e., carry-out=0 and s=1). As a result, the approach determined the number
of desired outcomes (DO) for any particular stuck-at fault experimentally and
generalized it as:

DO = 2(2n + 2d
n−1

n e) (6.5)

where

dKe = the ceiling of number K

Thus, the probability of causing an n+1-bit failure by randomly generating

83

6. Experimental Results and Discussion

input patterns and injecting a particular stuck-at fault becomes:

P =
DO
AO

(6.6)

Finally, the average number of simulations with random stimuli required to
cause a maximum MBF is:

Navg =
1
P

(6.7)

The approach applied Eq. 6.7 on various adder sizes to illustrate the average
number of Monte-Carlo simulations (Table 6.3). The probability of obtain-
ing a maximum multi-bit failure for a 32-bit adder is intrinsically small (i.e.,
about 3.58 · 10−10%). These results also validate the experimental results. The
10 000 000 samples used in the Monte-Carlo simulation were not sufficient to
obtain a maximum multi-bit failure. Additionally, while 4318 simulation for an 8-
bit adder are still feasible, current technological limitations cannot simulate over
two million samples for 16-bit adders in a reasonable amount of time. Therefore,
directed testing becomes a powerful method in overcoming this limitation.

Table 6.3.: Average number of simulations required to cause a maximum multi-
bit failure in several adders

Adder Size Average Number of Simulations

 1 4

 8 4318

16 2 162 622

32 279 172 874 110

For NanoMIPS, 10 000 samples have been sufficient to cause at least one
single-bit failure in all outputs of NanoMIPS’ combinational sub-blocks (Fig. 6.8).
Besides this, the results of multi-bit fault injection coincide with those from the
previous case study (Fig. 6.9). As in the case of the adders, a multi-bit failure’s
size increases with the number of output bits of a sub-block. For instance,
consider the write_back block, which contains 32 output bits. A fault-injection
campaign of 1 000 000 samples only led to one 29-bit failure. Consequently,
directed tests are necessary to cover the remaining multi-bit failures. These
results apply to both the TLM models and gate-level net-list and are fault-model
independent.

84

6.5. Simulation Performance of Fault-Injection Methods

0
8

16
24
32
40

O
b

se
rv

e
d

 S
in

gl
e

-B
it

Fa

ilu
re

s

sa0 sa1

Figure 6.8.: Single-bit failures observed for various MIPS CPU gate-level sub-
blocks after injecting permanent faults into 10 000 random samples

0

8

16

24

32

40

O
b

se
rv

e
d

 M
u

lt
i-

B
it

Fa

ilu
re

s

10k 100k 1000k

Figure 6.9.: Multi-bit failures observed for several MIPS CPU gate-level sub-
blocks after injecting stuck-at-1 faults

6.5. Simulation Performance of Fault-Injection
Methods

This section presents different case studies which measured the average compu-
tational overhead of SCFIT, injectable TLM sockets, and FIOs.

6.5.1. SCFIT

This test case measures SCFIT’s simulation overhead on the manually developed
SystemC models of NanoMIPS (Table 6.4). The test case grouped this measure-
ment into one fault-free simulation (injection of 0 faults), followed by simulation
with up to three faults. Column B represents the amount of time required
to run a NanoMIPS simulation without SCFIT. Based on these measurements,
SCFIT’s usage of Python and GDB introduces a static simulation overhead of
1-2%. Furthermore, SCFIT introduces a simulation overhead of 10-11% when
injecting a single fault into the SystemC VP. However, when injecting two or

85

6. Experimental Results and Discussion

more faults, the simulation overhead more than doubles because SCFIT exceeds
the four HW breakpoints available on Intel x86_64 CPUs. In this case, GDB
creates software breakpoints which dramatically reduce the performance of the
fault-injection simulation. Nevertheless, single-bit fault injection is currently
sufficient for safety verification [5], which makes SCFIT an efficient tool. SCFIT
provides a useful measure for single-bit and multi-bit (e.g., two or three bits)
fault-injection campaigns, especially for precompiled modules, which do not
allow model changes.

Table 6.4.: Simulation overhead measured for SCFIT

A B C D = 100*(C/B-1)

Faults Injected
per Simulation

Reference
Simulation Time (s)

Fault-Injection
Simulation Time (s)

Simulation Overhead (%)

0 3.71 3.771 1.62

1 3.71 4.146 10.52

2 3.71 4.713 21.28

3 3.71 4.899 24.27

Harmonic Mean 4.99

6.5.2. Injectable TLM Sockets

This study measures the simulation overhead of injectable TLM sockets on man-
ually implemented TLM models of the NanoMIPS core (Table 6.5). This study
considered the loosely-timed TLM blocking-transport method. Nevertheless,
the injectable TLM sockets support fault injection using the TLM non-blocking-
transport method. Similar to SCFIT, this study measures the tools’ performance
by running fault-injection simulations with up to three fault injections, respec-
tively. Next, the study compared the simulation results to a reference simulation
on equivalent TLM models which did not use injectable TLM sockets. These
results show a greater static overhead during fault-free simulations than SCFIT.
Nevertheless, the injectable TLM sockets offer a clear improvement in simulation
performance when injecting single and even multiple faults. In this case, the
simulation overhead is less than half compared to SCFIT. The first reason for this
improvement is because injectable TLM sockets do not require any breakpoints.
Thus, TLM sockets support significantly more fault injections into a system than
SCFIT for the same performance penalty. The second reason is that fault-injection

86

6.6. Performance Measurements of Checkpointing Mechanism

simulations use compiled injectable TLM sockets, which provide faster results
compared to SCFIT’s interpreted Python code.

Table 6.5.: Simulation overhead measured for injectable TLM sockets

A B C D = 100*(C/B-1)

Faults Injected
per Simulation

Reference
Simulation Time (ms)

Fault-Injection
Simulation Time (ms)

Simulation Overhead (%)

0 248.538 253.706 2.04

1 248.538 258.934 4.02

2 248.538 272.149 8.68

3 248.538 274.137 9.34

Harmonic Mean 4.16

6.5.3. Fault-Injection Objects

This case study applies FIOs on the SystemC models generated for NanoMIPS,
oc8051, and AltOr32 using VERITAS and VERITAS++ and also on the manually-
developed SystemC models of NanoMIPS. This study benchmarks FIOs against
C++ Boolean variables after compiling the code using the GNU G++ compiler
and the O3 optimization flag. Additionally, it declares all HW registers as
wires present within each core as FIOs. Each CPU core uses firmware tests
which executed 232 register accesses (i.e., read and write) over 100 simulations.
Results show an average 2% simulation overhead compared to Boolean variables.
Simulations using FIOs required, on average, 1216.798 ms, compared to the
simulation with C++ boolean variables which needed on average 1240.866 ms.
Furthermore, the study recorded a negligible simulation overhead when injecting
multiple faults per simulation. Hence, FIOs are more efficient than SCFIT and
injectable TLM sockets.

6.6. Performance Measurements of Checkpointing
Mechanism

The following test cases measure the performance of the checkpoint-restore
mechanism presented in Chapter 5.6. Measurements have been made on the

87

6. Experimental Results and Discussion

oc8051, AltOr32, and NanoMIPS cores by analyzing the following three cate-
gories: hard-disk-space requirements, generation time, and safety-verification
speed-up.

6.6.1. Requirements of Hard-Disk Space

The test case measures the hard-disk-space requirements for SaVer’s checkpoint-
ing mechanism in two situations: for one checkpoint and 1000 checkpoints.
Additionally, this test case compares the results to three commercial HW simula-
tors with checkpointing capabilities. The first two simulators are event-driven.
The third one is a compiled-code simulator. Even though 1000 seems like an
arbitrary number, current computational constraints (i.e., insufficient hard-disk
space) limit this value. However, the resulting information far exceeds what is
typically presented in similar scientific studies and adds an extra benefit to this
thesis.

When generating a single checkpoint, SaVer outperforms all three commercial
tools, on average, by one to two orders of magnitude (Table 6.6, columns F, H,
and J). The main reason for this difference is SaVer’s optimized checkpointing
method. SaVer only saves a VCD file for the analyzed HW model and the
internal states of Verilator’s simulator (i.e., only five variables for each test CPU
core). Conversely, checkpoints saved by commercial tools contain significantly
more information (e.g., waveform data, annotated time delays, scheduled events,
simulator configuration). These surplus data ultimately increase the hard-disk
size of each commercial tool’s snapshot.

Table 6.6.: Hard-disk-space requirements for one checkpoint

A B C D = C/B E F = E/B G H = G/B

CPU
Verilator

(MB)
Vendor I

(MB)
Reduction

Factor
Vendor II

(MB)
Reduction

Factor
Vendor III

(MB)
Reduction

Factor

oc8051 0.136 4.1 30.15x 6.5 47.79x 33.3 244.85x

NanoMIPS 0.585 15.0 25.64x 20.0 34.19x 37.3 63.76x

AltOr32 0.205 5.6 27.32x 8.3 40.49x 33.8 164.88x

Harmonic Mean 27.58x 40.07x 116.13x

When generating multiple checkpoints, SaVer outperforms the commercial
tools by three to four orders of magnitude. SaVer only requires 0.5 MB to
2.5 MB to generate 1000 checkpoints whereas commercial tools require several
GBs (Table 6.7, columns D, F, and H). SaVer achieves this by splitting each

88

6.6. Performance Measurements of Checkpointing Mechanism

checkpoint file into a header file and multiple data files. The header file contains
all checkpointed signal names. Each data file contains the signals’ values for the
given checkpoint’s simulation time stamp. As a result, SaVer generates a single
data-heavy header file and several lightweight data files.

Table 6.7.: Hard-disk-space requirements for 1000 checkpoints
A B C D = C/B E F = E/B G H = G/B

CPU
Verilator

(MB)
Vendor I

(GB)
Reduction

Factor
Vendor II

(GB)
Reduction

Factor
Vendor III

(GB)
Reduction

Factor

oc8051 0.76 30.18 39.86 Kx 6.50 8.60 Kx 47.84 63.20 Kx

NanoMIPS 2.30 110.40 48.00 Kx 20.02 8.70 Kx 147.21 64.00 Kx

AltOr32 0.71 41.22 57.80 Kx 8.31 11.65 Kx 61.09 85.68 Kx

Harmonic Mean 47.46 Kx 9.46 Kx 69.58 Kx

6.6.2. Generation Time of Checkpoints

Checkpoints not only need a lot of hard-disk space, but they also require a
long time to generate. This study measures SaVer’s checkpoint generation
time for 1000 checkpoints and compared it to three commercial tools. SaVer’s
checkpointing method is, on average, 5 to 11 times faster than the commercial
tools (Table 6.8, columns D, F, and H). This speed can be further improved by
replacing the Python-based checkpoint generator with a C/C++ implementation
and by using a more efficient format for the checkpoint’s contents than ASCII.
The latter would also further decrease the size of checkpoints.

Table 6.8.: Generation time for 1000 checkpoints

A B C D = C/B E F = E/B G H = G/B

CPU
Verilator

(s)
Vendor I

(s)
Reduction

Factor
Vendor II

(s)
Reduction

Factor
Vendor III

(s)
Reduction

Factor

oc8051 0.41 3.61 8.80x 2.09 5.10x 6.47 15.78x

NanoMIPS 1.06 9.91 9.35x 4.13 3.90x 7.51 7.08x

AltOr32 0.47 5.51 11.72x 3.31 7.04x 6.96 14.81x

Harmonic Mean 9.81x 5.04x 11.03x

89

6. Experimental Results and Discussion

6.7. Reduction of Fault-Verification Space

This section presents the results of performance analysis of the methods in-
troduced in this thesis to reduce the fault-verification space of safety-critical
SoCs.

6.7.1. Spatial Fault Pruning

This approach analyzes the effectiveness spatial-fault pruning as introduced
by VERITAS++. After running this approach on three cores, the two methods
classified around half of the signals present on the gate-level net-list as redun-
dant and removed them from the safety verification (Table 6.9). This result
corresponds to halving the fault-injection-locations attribute from the three cores’
fault-verification spaces and overall minimizing each core’s fault library.

Table 6.9.: VERITAS++–Spatial fault pruning

A B C D = B/C

CPU Gate-Level Signals C++ Signals Optimization Factor

oc8051 8646 3903 2.22x

AltOr32 12 051 6166 1.95x

NanoMIPS 36 570 14 178 2.58x

Harmonic Mean 2.22x

6.7.2. Temporal Fault Pruning

This study measures the performance gain obtained from applying SaVer’s
temporal-fault-pruning feature on SystemC models of NanoMIPS (Table 6.10).
SaVer implements temporal fault pruning by analyzing the simulation traces
of registers and signals (see Chapter 5.4.2). First, this study conducts a fault-
injection campaign to determine the effectiveness of classic Monte-Carlo-based
safety verification. Next, it applies temporal fault pruning to optimize the
safety verification for transient faults by reducing the number of fault-injection
locations and fault-injection simulations. Finally, this study quantifies the ben-
efit of temporal fault pruning by calculating the reduction factor which this
feature introduces. After injecting over one million transient faults (one fault
per simulation) into NanoMIPS’ 88 SystemC registers using the Monte-Carlo
approach, only 13.80% of these faults led to failures while the system masked

90

6.8. Speed-Up of Fault-Effect Analysis

the remaining ones. However, fault pruning on NanoMIPS classified 31 registers
as safe because they could not lead to failures from injection of transient faults,
which led to a 1.84-fold initial reduction. Furthermore, lifetime analysis on the
remaining 57 registers generated only 33 275 simulations valid for transient-fault
injection. This result led to 33.88-fold fewer fault-injection simulations compared
to the Monte-Carlo approach without pruning. Finally, after injecting a transient
fault into each of the resulting simulations, over 88% of the faults led to fail-
ures. SaVer’s temporal-fault-pruning approach is over 70% more efficient than
Monte-Carlo simulation without pruning.

Table 6.10.: SaVer–Temporal fault pruning
A B C D E F G H=B/E I=C/F

Model

Fault Injection at
Random Simulation Time

Fault Injection into
Valid Time Intervals

Reduction Factor

Accessed
Signals

Number of
Simulations

Effectiveness
Percentage

Accessed
Signals

Number of
Simulations

Effectiveness
Percentage

Accessed
Signals

Number of
Simulations

NanoMIPS 88 1 127 280 13.80% 57 33 275 88.62% 1.54x 33.88x

6.8. Speed-Up of Fault-Effect Analysis

This section presents several test cases which quantify the accuracy and speed-up
improvements of VERITAS and VERITAS++ when performing VP-based safety
verification. This section also reports the benefits of three safety-verification
optimization techniques: (i) spatial and (ii) temporal fault pruning and (iii) sim-
ulation checkpointing.

6.8.1. VERITAS and VERITAS++

This study measures VERITAS’ performance on adder modules and combi-
national blocks of NanoMIPS (e.g., ALU operations, instruction decode and
write-back block) [110], [111]. During this study, VERITAS adds gate-level-
specific information to the TLM models (see Chapter 6.3). As expected, the
TLM-based adder models augmented with gate-level information introduce a
noticeable simulation overhead. These models are, on average, four times slower
than the original TLM models (i.e., without gate-level augmentation) (Table 6.11).
This simulation overhead increases with the adder’s size. Additionally, the

91

6. Experimental Results and Discussion

adder’s architecture influences the simulation complexity (i.e., a 32-bit carry-
lookahead adder has a more complicated structure than a simple 32-bit carry
adder).

Table 6.11.: Adders–Simulation overhead introduced by VERITAS
A B C D = B/C

Model Name
Simulation Time (s)

Slow-Down Factor
Augmented TLM Model Original TLM Model

full_adder 0.041 0.040 1.03x

adder_2bit 0.097 0.087 1.11x

nibble_adder 0.260 0.122 2.13x

adder_4bit 0.310 0.122 2.54x

addsub_8bit 0.690 0.194 3.57x

adder_8bit 1.600 0.194 8.27x

adder_16bit 3.470 0.405 8.58x

adder_32bit 13.550 1.142 11.87x

carry_lookahead_32bit 16.040 1.142 14.05x

Harmonic Mean 2.64x

Even though the augmented TLM models have slower execution than the
original TLM models, they run two to five times faster than the original gate-
level net-lists, as indicated by the bottom bars in Fig. 6.10. These bars are below
the 50% line for each adder because the augmented TLM models require less
execution time than the gate-level net-list. Furthermore, this speedup improves
with adder complexity. Thus, the bigger and more complicated the adder
architecture is, the higher the simulation speed-up becomes. For instance, the
speed-up of the carry-lookahead adder is six times higher than the speed-up of
the 2-bit adder.

Augmented TLM models have lower performance than pure TLM models
but much higher than gate-level net-lists. Thus, it is necessary to determine the
benefit of applying VERITAS on gate-level net-lists. First, fault injection into
VPs alone can lead to observation of pseudo-faults (see Chapter 4.3). Therefore,
safety experts must perform fault-injection simulations on gate-level net-lists to
validate the results obtained on VPs. This process leads to independent fault-
injection campaigns on each abstraction level. However, by merely performing
fault injection into the augmented TLM models, safety experts can avoid such
subsequent fault-injection campaigns. Second, it is worth comparing the trade-off
between simulation performance and the improved correlation of VPs and gate-
level net-lists (Table 6.12). This trade-off factor is determined by first multiplying

92

6.8. Speed-Up of Fault-Effect Analysis

0%

50%

100%

TL
M

 v
s.

 G
at

e
-L

ev
e

l
Si

m
u

la
ti

o
n

 S
p

e
ed

Gate-Level-Accurate TL Model Verilog Gate-Level Model

Figure 6.10.: Simulation-speed comparison between each gate-level and gate-
level-accurate TLM

the VP augmentation factor (i.e., increase in simulation complexity) with the
VP speed-up factor over gate-level simulation and then by dividing the VP
slow-down factor over pure TLM simulation. If the resulting trade-off factor is
higher than one, the augmentation of TLM models with gate-level information
improves both the speed and accuracy of the safety verification. If the trade-off
is less than one, safety experts should avoid augmenting their VPs.

Table 6.12.: Adders–Simulation performance vs improved fault-injection correla-
tion

A B C D E = B*C/D

Model Name
Augmentation
of TLM (Factor)

Speed-Up vs. Gate
Level (Factor)

Slow-Down
vs. TLM (Factor)

Trade-Off
(Factor)

full_adder 3.00x 1.09x 1.03x 3.20x

adder_2bit 3.00x 1.28x 1.11x 3.48x

nibble_adder 6.20x 1.10x 2.13x 3.20x

adder_4bit 7.00x 1.80x 2.54x 4.96x

addsub_8bit 7.67x 2.76x 3.57x 5.93x

adder_8bit 8.56x 6.43x 8.27x 6.66x

adder_16bit 9.59x 6.46x 8.58x 7.23x

adder_32bit 10.27x 8.41x 11.87x 7.28x

carry_lookahead_32bit 15.85x 10.29x 14.05x 11.61x

Harmonic Mean 6.07x 2.23x 2.64x 5.01x

The adder modules have a trade-off factor between about three and 12. Thus,
VERITAS proves to be a useful tool for improving the accuracy and speed of

93

6. Experimental Results and Discussion

safety verification on combinational circuits. NanoMIPS offers similar measure-
ment results. This study compares augmented TLM models to NanoMIPS’s
loosely-timed TLM-style models and equivalent NanoMIPS RTL models (Ta-
ble 6.13). Furthermore, it replaces individual combinational TLM modules with
augmented ones. Then, it compares the resulting system modules to the original
RTL and TLM models. Similar to the adder modules, simulation performance
depends on the complexity of augmented TLM models. The more complicated
the model is, the greater the simulation overhead compared to the pure TLM
model. However, the speed-up over RTL decreases with the increase in complex-
ity. Finally, this study calculates the trade-off between simulation performance
and improved fault-injection correlation (Table 6.14). All combinational blocks
contain trade-off factors greater than 1 by 1-2 orders of magnitude (i.e., up to
340-fold for the jump block). The only exception is the shift block which still
has a trade-off value greater than 2. These results further strengthen VERITAS’
effectiveness.

Table 6.13.: NanoMIPS–Simulation performance introduced by VERITAS

A B C D E = B/C F = D/B

Model Name
Simulation Time (s) Simulation

Slow-Down
Factor

Abstraction
Speed-Up

Factor
Augmented
TLM Model

Original
TLM Model

RTL
Model

write_back 0.380 0.24 70.831 1.58x 186.40x

jump 0.408 0.24 70.831 1.70x 173.56x

subtractor 2.164 0.24 70.831 9.02x 32.73x
adder 2.593 0.24 70.831 10.80x 27.32x

logic_unit 2.761 0.24 70.831 11.50x 25.65x

ex_forwarding 1.192 0.24 70.831 4.97x 59.40x
id_control 1.914 0.24 70.831 7.98x 43.99x

hazard_detection 1.610 0.24 70.831 6.71x 37.01x

shift 13.564 0.24 70.831 56.51x 5.22x

Harmonic Mean 4.49x 23.97x

A different study measures the performance and effectiveness of VERITAS++
on three CPU cores and compares these results with the results obtained from
three commercial simulators (Table 6.15). The simulators from Vendors I and
II are event-driven. The one from Vendor III is a compiled-code simulator
(similar to Verilator’s). By using Verilator, VERITAS++ outperforms all three
commercial tools on all accounts. The increase in simulation performance
ranges, on average, from 1.6-fold to over 5.5-fold. Compared to gate-level

94

6.8. Speed-Up of Fault-Effect Analysis

Table 6.14.: NanoMIPS–Simulation speed vs improved fault-injection correlation

A B C D E = B*C/D

Model Name
Augmentation
of TLM (Factor)

Speed-Up
vs. RTL (Factor)

Slow-Down
vs. TLM (Factor)

Trade-Off
(Factor)

write_back 2.16x 186.40x 1.58x 254.58x
jump 3.33x 173.56x 1.70x 340.31x

subtractor 5.27x 32.73x 9.02x 19.13x

adder 6.33x 27.32x 10.80x 16.02x
logic_unit 8.31x 25.65x 11.50x 18.54x

ex_forwarding 9.50x 59.40x 4.97x 113.54x

id_control 10.55x 43.99x 7.98x 58.13x
hazard_detection 18.25x 37.01x 6.71x 100.66x

shift 29.09x 5.22x 56.51x 2.69x

Harmonic Mean 5.92x 23.97x 4.49x 15.42x

simulation speed, the models generated using VERITAS++ are approximately
three orders of magnitude faster. This analysis shows that VERITAS++ is an
excellent complementary approach to VERITAS as it is usable on sequential HW
elements as well (e.g., flip-flops, registers).

Table 6.15.: Simulation performance of VERITAS++

A B C D = C/B E F = E/B G H = G/B

CPU
VERITAS++

(s)
Vendor I

(s)
Speed-Up

Factor
Vendor II

(s)
Speed-Up

Factor
Vendor III

(s)
Speed-Up

Factor

oc8051 466.01 755.09 1.62x 755.09 1.62x 3031.3 6.50x

NanoMIPS 1216.80 1840.35 1.51x 1950.31 1.60x 4693.5 3.86x

AltOr32 511.58 978.63 1.91x 955.60 1.87x 4438.4 8.68x

Harmonic Mean 1.67x 1.69x 5.68x

6.8.2. Checkpointing Mechanism

SaVer’s automated checkpointing method offers the possibility to assess the
safety-verification speed-up of checkpoint-driven fault-injection simulations. Un-
til now, current technological limitations made this analysis impossible using
other simulators with checkpointing features. This study uses VERITAS++ to
generate SystemC models for the NanoMIPS core to measure this simulation
speed-up. It performs three fault-injection campaigns on them. Each campaign

95

6. Experimental Results and Discussion

uses a fault library of 1000 transient faults (i.e., one bit-flip injection per sim-
ulation). Transient-fault injection is applied to randomly selected signals (i.e.,
over 14 K signals) and at random simulation times (i.e., up to 300 ns). In some
cases, faults share the same injection time but are injected into different signals.
Consequently, these faults also share the same checkpoint for fault injection.
Each campaign uses a different distribution of fault-injection times. The first
campaign concentrates them in the first half of the simulation. This scenario
corresponds to systems which require long simulations to produce meaningful
results. The second campaign focuses its fault-injection times on the second half
of the simulation. This scenario corresponds to systems with long boot-up cycles,
which also require simulation, before running the actual firmware code. The
third campaign distributes its fault-injection times over the whole simulation.
This scenario represents a generic HW system. Results show different speed-up
values based on the distribution of injection times (Table 6.16). Faults injected
closer to a simulation’s end (e.g., in the second half of a simulation) benefit from
the most significant speed-up. In this case, each fault-injection simulation starts
at some point during the second half of the simulation and therefore avoids
unnecessary simulation cycles (e.g., CPU boot-up, watchdog interrupts).

Table 6.16.: Safety-verification speed-up
A B C D = B/C

Injection-Time Distribution
Across the Simulation

Simulation Time
Without Checkpointing

Simulation Time
With Checkpointing

Speed-Up
Factor

First half 1216.798 908.058 1.34x

Second half 1216.798 305.728 3.98x

Uniform 1216.798 593.560 2.05x

Harmonic Mean 2.02x

6.9. Summary

The average correlation factor of the analyzed VPs and gate-level net-lists is
less than 13%. Therefore, VPs lack a significant number of fault-matching
points to their equivalent gate-level net-lists. In turn, this limitation leads to
a significant lack of fault-masking effects on such VPs and the observation of
pseudo-fault effects. Furthermore, the three fault-injection tools introduced
in this thesis have high performance when injecting single-bit and also multi-
bit faults. For instance, SCFIT has, on average, 10-11% simulation overhead

96

6.9. Summary

when injecting a single fault, injectable TLM sockets have approximately 4-5%
simulation overhead, and FIOs have the best performance with, on average,
only 2% simulation overhead. SaVer uses spatial and temporal fault-pruning
methods which detect and eliminate redundant fault injections. Furthermore,
it enhances VPs with gate-level information using VERITAS and VERITAS++,
two methods which have also been introduced in this thesis. Even though
this approach sacrifices some of the original VP’s simulation speed, the two
methods improve the simulation speed compared to gate-level simulations, on
average, by one order of magnitude. Moreover, these methods are up to six times
faster than commercial simulators. Finally, SaVer’s automated checkpointing
approach achieved up to a 2x simulation speed-up, which has previously been
technologically impossible. This speedup is now possible because SaVer saves
checkpoints which are four orders of magnitude smaller than those from current
state-of-the-art checkpointing methods. As a result of this reduction in size,
SaVer also generates checkpoints up to one order of magnitude faster than
existing checkpointing methods.

97

7. Conclusion

The goals of safety analysis and verification are to determine a system’s fault
tolerance, and develop appropriate safety-mitigation methods based on the
system’s safety requirements. However, as safety-critical SoCs steadily increase
in complexity, more robust safety-verification methods are required to offer fast
and accurate results.

In the attempt to provide fault-injection results early in a safety-critical SoC’s
development cycle, safety verification is being migrated from RTL models and
gate-level net-lists to VPs. However, appropriate fault-injection methods are
required at the VP level. This thesis has introduced three simulation-based,
high-performance, and generic fault-injection methods for VPs developed using
SystemC and TLM models. SCFIT has, on average, 10-11% simulation overhead
when injecting a single fault using GDB. The injectable TLM sockets have 4-5%
simulation overhead. The saboteur-based FIOs have the best performance, on
average, with only 2% overhead.

Safety verification on VPs has two primary goals: the verification of safety
mechanisms, and the calculation of a safety-critical SoC’s fault-tolerance level.
To achieve the first goal, safety-verification methods inject faults into SystemC
and TLM-based VPs using direct fault injection. Then, simulation outcomes are
analyzed to determine if the safety mechanism has detected and even corrected
the injected faults. To achieve the second goal, faults are injected statistically (e.g.,
using Monte Carlo) into the SoC. Then, fault-injection outcomes are compared
to a fault-free simulation to determine if an injected fault has caused system
failures, has been masked by the system, detected, or corrected by a safety
mechanism. These results are quantified to calculate the system’s fault-tolerance
level. However, as shown in this thesis, safety verification on VPs leads to
inaccurate fault-injection results compared to fault injection into the SoC’s gate-
level net-lists. This inaccuracy is caused by the lack of implementation details
on VPs compared to gate-level models, more explicitly missing fault-matching
points and fault-masking effects. As already mentioned, VPs trade off these
implementation details for faster simulation speed.

This thesis has quantified the number of fault-matching points, which are

99

7. Conclusion

fault-injection locations common across equivalent gate-level net-lists and VPs.
Based on this quantification, even though the HW models are functionally
equivalent, they only share fewer than 13% fault-matching points. Consequently,
the correlation factor of VPs and gate-level net-lists is also low (i.e., less than 13%)
because it decreases with the number of fault-matching points. Furthermore, a
small correlation factor leads to high inaccuracy of fault-injection results, which
leads to the observation of pseudo-fault effects on VPs (i.e., faults which cannot
be reproduced on the gate-level net-list or physical implementation of the SoC).
As a result, pseudo-fault effects can lead to the development of sub-optimal
or even wrong safety mechanisms. Thus, better methods are needed to ensure
quick and also accurate safety-verification results.

To address the shortcomings of missing fault-matching points, and to reduce
the occurrence of pseudo-fault effects, this thesis has introduced two methods,
called VERITAS and VERITAS++. These methods augment VPs with gate-level
information by transforming combinational blocks (e.g., adders) and registers
into behavioral models, which are then executed as part of the VPs. In doing
so, these methods guarantee 100% correlation of VPs and gate-level net-lists.
Furthermore, they improve the simulation speed of the original gate-level net-
lists, on average, by a factor of two on adder architectures, and over one order
of magnitude on a MIPS CPU core. Additionally, these methods produce VPs
which simulate, on average, between 1.5x and over 5x faster than commercial
HW simulators.

The simulation speed-up introduced by VERITAS and VERITAS++ has been
further improved using multiple optimization methods. Parallel simulation
allows the execution of multiple fault-injection simulations in parallel. Addition-
ally, a fault-collapsing method has been developed, which reduces the number
of redundant fault-injection locations, on average, by a factor of 2. A fault-
pruning method has also been introduced in this thesis to decrease the system’s
fault-verification space even further. This method uses simulation-trace anal-
ysis to determine correct simulation times when injected faults can propagate
through the analyzed system. On average, this fault-pruning method removes
over 95% of faults from a fault library. Finally, a checkpointing mechanism
speeds up safety-verification simulations approximately by a factor of 2. This
speedup has been previously technologically impossible. This checkpointing
mechanism requires, on average, four orders of magnitude less hard-disk space
than the checkpoints from other safety-verification flows. Additionally, this
method creates checkpoints up to six times faster than commercial simulators.

The three fault-injection methods, VERITAS, VERITAS++, and the optimiza-

100

tion methods presented above have been integrated into a safety-verification
flow called SaVer. SaVer injects faults automatically into VPs developed using
SystemC and TLM by using a fault library, which is created using data from
safety-analysis methods (e.g., FMEDA). The outcomes of fault injection are de-
termined by comparing fault-injection results with the results of a fault-free
simulation (i.e., reference simulation). At the end of the fault-injection campaign,
SaVer’s simulation results can be used to calculate the analyzed system’s fault
tolerance. Furthermore, these results can be used to determine the accuracy of
the failure rates predicted during safety analysis.

To sum up, the contributions presented in this thesis

• Enable early safety-architecture exploration on VPs.

• Overcome the challenges of fault-injection into VPs, such as missing fault-
matching points and pseudo-faults.

• Speed-up fault-injection simulations.

• Bridge the gap between safety verification and safety analysis.

As a result, these contributions can be used to

• Obtain fast and accurate fault-injection results during the development
process of safety-critical SoCs.

• Develop optimal safety mechanisms for safety-critical SoCs.

• Prove the accuracy of safety-analysis results predicted using FTA, DFA,
and FMEDA.

Future work will focus on extending the tools and techniques presented in this
thesis to analog circuits and embedded-software development. The long-term
goal of this research is to create a safety-verification framework usable on any
mixed-signal SoC, and thus, perform domain-independent safety verification.
The short-term goal of this research is to implement additional automation
approaches to SaVer, and further reduce the need for manual input from safety
experts.

101

A. ISO 26262 and Functional Safety

A.1. Introduction

As cars become smarter, more interconnected, and enhanced with electronic and
electric devices (e.g., GPS, ADAS, radar systems, video cameras), the complexity
of guarantying a car’s functionality (e.g., fault operational) also increases.

ISO 26262 defines functional safety as “the absence of unreasonable risk due to
hazards caused by malfunctioning behavior of electronic and electric systems” [5].
ISO 26262 applies to all electronic and electric and SW components built into
vehicles up to 3.5 tons. It defines processes for manufacturing vehicles with
the purpose of avoiding electronic and electric failures. The standard provides
methods to prevent and control possible systematic and random HW failures,
for instance, by defining safety requirements and development processes meant
to reduce the risk of human injury or death.

ISO 26262 proposes an initial list of possible system faults in part 5, annex
D, appendix 1 [5]. Fault models (e.g., offset, stuck in range) are introduced
and classified based on the HW components they affect (e.g., relays, sensors,
processing units). Furthermore, faults are attributed with safety-coverage metrics:
low (60% of occurring HW faults), medium (90%), and high (99%), which can be
achieved by enhancing the safety-critical system with safety mechanisms.

This section describes the notions of HW models, ASILs, timing requirements
for safety-critical systems, and safety metrics introduced by ISO 26262.

A.2. Hardware Models

The safety standard uses HW models to assess a system’s vulnerability towards
faults (e.g., RTL models and gate-level net-lists). Models are defined as an
abstraction of a physical system in which the system’s inputs are mapped to its
outputs. The model’s abstraction level and granularity depend on the model’s
purpose. Thus, it is possible to create several models of the same system, which
are used in different safety-critical analyses. Such models may be found on

103

A. ISO 26262 and Functional Safety

various development layers of a safety-critical SoC, such as the application layer,
the system layer, SW layer, the HW-architecture layer [160].

The completeness and granularity of a model represent a deciding factor to
accurately assess a system’s fault vulnerability [160]. However, specific models
suffer from either under-specification or oversimplification. These models may
lead to either too pessimistic or too optimistic results, which, in turn, may lead
to the implementation of incorrect or unneeded safety mechanisms. Probabilistic
models are examples of model incompleteness [160]. Here, experts may tend to
use either failure catalogs (e.g., SN 29500) or incomplete field data to estimate a
system’s failure rate which may lead to overestimation or underestimation.

Models must be adequate for safety analysis regardless of their completeness
and granularity levels [160]. In other words, the probability of residual failure
within a model must have a realistic rate. However, this constraint can only
be achieved if a model is specified with sufficient accuracy. In case of under-
specification, the residual failure rate could still be low enough, but the system
may continue to fail for other reasons unspecified in the model. Unfortunately,
ISO 26262 provides no measures against such modeling insufficiencies (e.g., the
insufficient granularity of a HW model).

A.3. Automotive Safety-Integrity Levels (ASILs)

ISO 26262 defines four safety compliance levels called ASILs, and it labels them
with the letters A to D (the strictest). ASILs are valid over the system’s entire
lifecycle. ASILs define how safety-critical a system is (i.e., the system’s maximum
allowed FIT rate) and what type of safety measures have to be implemented
in the system. Additionally, ASILs are given by three parameters (i.e., classes):
(i) the severity (S) of a potential HW failure, (ii) the probability of exposure (E) to
the failure, and (iii) the controllability (C) of an occurring failure. S determines
a range of degrees of injury which the failure can inflict; the range spans from
no injury (S0) to life-threatening (S3) (Table A.1). E describes the probability of
exposure to an occurred failure and ranges from incredible (E0) to high probability
(E4) (Table A.2). C characterizes how much control is lost in the event of failure
occurrence. The interval varies from controllable in general (C0) to difficult to
control or uncontrollable (C3) (Table A.3).

A system with a combination of sufficiently low S, E, C values (e.g., S2 E3 C2)
is given ASIL A while a system with a combination of high S, E, C levels (i.e.,
S3 E4 C3) is assigned ASIL D. Table A.4 contains all possible ASIL combinations.

104

A.4. Failures Modes

Table A.1.: Class of failure severity [5]

Severity S0 S1 S2 S3

Description No injuries
Light and
moderate

injuries

Severe and life-threatening
injuries (survival probable)

Life-threatening injuries
(survival

uncertain), fatal injuries

Table A.2.: Class of exposure probability to a failure [5]

Exposure E0 E1 E2 E3 E4

Description Incredible
Very low

probability
Low probability

Medium
probability

High probability

Table A.3.: Class of controllability in case of failure [5]

Controllability C0 C1 C2 C3

Description
Controllable

in general
Simply

controllable
Normally

controllable
Difficult to control
or uncontrollable

Furthermore, specific S-E-C configurations are attributed to quality management
(QM) instead of an ASIL. QM requires compliance with quality-management
standards such as ISO/TS 16949, ISO 9001, or equivalent.

A.4. Failures Modes

ISO 26262 introduces a failure-classification system based on failure causes
and the system’s ability to detect and correct them (Fig. A.1). ISO 26262 also
introduces the term safe fault. A fault can be considered safe in two situations:
either the analyzed HW element is not safety-relevant, or no fault or combination
of two or more faults exists which can cause the system to fail. Since failure
occurrence in non-safety-relevant HW elements does not lead to harm or loss of
human life, it is not necessary to analyze fault effects on such elements. In the
case of safety-relevant HW elements, a fault may propagate through the system
on its own or by interacting with other faults. If a fault can propagate alone and
if the system has no safety mechanism to detect or even correct it, the fault is
called an single-point fault (SPF). Nevertheless, if a safety mechanism is already

105

A. ISO 26262 and Functional Safety

Table A.4.: ASIL determination [5]

Severity
Class

Probability
Class

Controllability Class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

implemented but fails to prevent the failure, the fault becomes residual. However,
upon detection, the fault becomes a detected multiple-point fault (MPF). If the
HW does not detect the fault’s effect, a human may still observe it. For instance,
a driver may observe a problem with the car’s steering wheel even if the car fails
to signal this problem to the driver. Such a fault is called perceived MPF. Finally,
if the fault’s effect is neither detected nor perceived, it is called a latent MPF.
MPFs can also occur if a fault only propagates through a system by interacting
with other faults.

A.5. Tolerance-Time Interval

ISO 26262 defines a timing requirement for safety-critical systems called the
tolerance-time interval (TTI). This interval describes the time allowed for the
system to recover from a fault (Fig. A.2). The system recovers from faults by
detecting them or their effects and then taking appropriate fault-mitigation
actions (e.g., correct the fault, ignore the fault, reset the system, re-issue a
command, enter a safe mode). Additionally, ISO 26262 defines the time allowed
for fault detection as the diagnostic-test interval (DTI) and the time necessary
to decide the severity of a fault as reaction time (RT). In general, the sum of
TTI and RT must be smaller than TTI. Otherwise, the system is either unable to
detect the fault or to recover from it. If the system detects the fault, reacts, and

106

A.5. Tolerance-Time Interval

Safety-Relevant?

Safe
Fault

SPF
Residual

Fault
MPF,

Detected
MPF,

Perceived

yes

not considered in the safety analysis

MPF,
Latent

Failure Mode

Potential to Violate a Safety Goal?

Safety Mechanism Present?

Is the Safety Mechanism Preventing
the Violation of Safety Goal?

Failure Mode
Detected?

Failure Mode
Perceived?

If Combined
with Other

Independent
Failures?

no no

yes

yes

yes

no

yes

yes

no

yes

no

no

considered
in the
safety analysis

no

Figure A.1.: Failure-mode classification according to ISO 26262 [5]

enters in a safe state within the allotted TTI, the fault is considered as tolerated.
Otherwise, ISO 26262 considers the fault as hazardous.

Normal
Operation

Unknown
Behavior

System
Reaction

Safe
State

Fault
Occurrence

Fault
Detection

Diagnostic-Test Interval Fault Reaction Time

Fault-Tolerant Time Interval

Possible
Hazard

Figure A.2.: Diagnostic test interval, reaction time and tolerance time interval [5]

107

A. ISO 26262 and Functional Safety

A.6. Safety-Coverage Metrics

Traditionally, safety coverage is determined using three metrics [83]:

Simulation coverage the number of simulations which lead to the observation
of failures divided by the total number of simulations.

Error-detection coverage the number of simulations in which errors are de-
tected divided by the total number of simulations.

Error-correction coverage the number of simulations in which errors are cor-
rected divided by the total number of simulations.

ISO 26262 introduces two additional safety-coverage metrics: the single-point-
fault metric (SPFM) and the latent-fault metric (LFM).

A.6.1. Single-Point-Fault Metric (SPFM)

The SPFM is a measure of how many different SPFs and unique residual faults
(RFs) a safety-critical system can recover from. “A high single-point-fault metric
implies that the proportion of single-point faults and residual faults in the
hardware of the item is low” [5]. System robustness is provided either by the
system’s safety mechanisms or by its implicit design (e.g., fault tolerance of
technology node, fault-masking effects, redundancy). The SPFM is given by
the number of SPFs and RFs present in a safety-critical system divided by the
system’s total number of faults. Each ASIL defines a minimum number of SPFs
from which a system must recover: ASIL B: 90%, ASIL C: 97%, and ASIL D: 99%.

A.6.2. Latent-Fault Metric (LFM)

The LFM “reflects the robustness of the item to latent faults either by coverage
of faults in safety mechanisms or by the driver recognizing that the fault exists
before the violation of the safety goal or by design (primarily safe faults). A high
latent-fault metric implies that the proportion of latent faults in the hardware
is low” [5]. The LFM is calculated as the number of perceived latent faults
(LFs) and safe faults divided by the total number of faults present in the system.
LFs are faults which are masked by the system for when running a specific
application. However, this does not mean the faults are safe. For instance, MPFs
can only lead to failures if additional faults are present. ISO 26262 only requires
LF coverage of at least: 60% for ASIL B, 80% for ASIL C, and 90% for ASIL D.

108

B. Architecture Vulnerability Factor

The AVF is one of the most widely used analyses in the computer industry [17]–
[22]. Since its introduction, it has been adapted into various branches, and has
led to the creation of the AVF stack (Fig. B.1). This stack currently comprises
the program vulnerability factor (PVF) [20], the operating-system vulnerability
factor (OSVF) [23], the virtual-machine vulnerability factor (VMVF) [23], the HW
vulnerability factor (HVF) [23], and the timing vulnerability factor (TVF) [24].
AVF is even used in the semiconductor industry to evaluate instruction-set
architectures, where it is called the instruction vulnerability factor (IVF) [20].

User Program

Operating System

Virtual Machine

Microarchitecture

Devices

PVF

TVF

OSVF

VMVF

HVF

AVF

Figure B.1.: AVF stack across multiple branches in the computer industry [23]

In AVF analysis, the FIT rate of a system is given by the Cartesian product
between the system’s estimated AVF and its raw FIT rate obtained from technol-
ogy catalogs, fault catalogs, or field samples. AVF is calculated as the sum of
all architectural-correct-execution (ACE) bits within a system. An ACE bit is a
system element (e.g., registers, flip-flops) which can cause a failure under the
effect of a random HW faults. If the bit cannot produce a system failure, it is
considered safe (i.e., un-ACE) [23].

In the computer industry, the resulting FIT rate estimates the system’s fault
vulnerability with sufficient accuracy [21]. However, the AVF calculation does
not consider fault-masking effects. Furthermore, it assumes that all ACE bits
have a uniform impact on the system. In reality, system elements switch between
ACE and un-ACE states during execution. This switch is mainly influenced by
the system’s configuration and its workloads. Consequently, some bits exhibit

109

B. Architecture Vulnerability Factor

more ACE states than others. A status register, for example, may be polled
(i.e., read) more times than a configuration register which is accessed only once
during system start-up. As a result, the status register has more ACE states than
the configuration register, and thus, a higher probability of causing a system
failure. Therefore, this method of AVF calculation is not sufficiently accurate to
verify safety-critical systems.

The AVF accuracy of safety-critical systems can be improved by establishing
the criticality of each ACE bit. This criticality can be determined using life-
time analysis, which measures the fraction of simulation time in which system
elements are in ACE states (i.e., when injected faults can cause failures) and
un-ACE states (i.e., when injected faults are masked by the system). Thus, AVF
can be calculated as the ratio between the sum of simulation-time intervals of all
ACE bits of a system and the total simulation time [23]:

AVF =
∑n

i=0 tACE−biti
sim

tsim
(B.1)

Despite this improvement, AVF suffers from a series of drawbacks. First,
technologies smaller than 90 nm require safety verification of temporal and
spatial multi-bit faults. However, when determining FIT rates for multi-bit faults,
AVF overestimates these results sevenfold [22]. Second, the abstract behavioral
models used to compute AVF do not contain all the necessary information
available within detailed RTL or gate-level models. For this reason, AVF is 2-3x
less reliable than SFI [25]. Furthermore, the reduction of AVF for some system
components may even increase the AVF of others without obtaining an overall
benefit [26]. Third, the current definition of ACE bits does not take into account
all safety requirements. For instance, the occurrence of a potentially catastrophic
fault in a car’s ECU may lead the ECU to interpret the brake command as an
accelerate command. In the computer industry, this is not a fault scenario since
both the break and accelerate commands are valid within the ECU. However, this
is a critical fault scenario in the safety domain. Such a fault would cause the
car to speed up instead of slowing down, which is a deviation from the driver’s
intention, and thus, from the system’s specified behavior. Furthermore, if the
driver is braking to stop at a busy intersection or to exit the freeway, this fault
could potentially endanger the passengers’ lives. Consequently, the definition
of ACE bits must be redefined to also focus on such safety requirements and
the AVF estimation accuracy must be improved to avoid such safety-critical
misbehaviors.

110

C. Linking Safety Analysis to
Fault-Injection Frameworks

To avoid “unnecessary risk” [5], ISO 26262 requests the prediction of potential
risks using high-level safety analyses, which can be performed on safety-critical
systems using FTAs [117], DFAs [117], and FMEDAs [119]. FTA is a qualitative
(deductive) analysis performed top-down starting from problematic situations
on the system level and looking for the similar causes within the system’s
components [122]. DFA is a qualitative analysis which focuses on failures
whose occurrence is interdependent (also called common-cause failures or cascad-
ing failures); these failure modes either have the same cause or their occurrence
necessarily triggers another subsequent failure. FMEDA is a quantitative (in-
ductive) approach which starts bottom-up from local component malfunctions
moving towards the corresponding effects on the complete system [118].

These system-level analyses help to predict a system’s FIT rate and drive the
development of safety mechanisms, such as error-correction code (ECC), lock-
step, or redundant registers. However, as the complexity of safety-critical systems
increases, the manual effort of performing such analyses also increases [121].
Furthermore, FTAs, DFAs, and FMEDAs are not evaluated on an actual safety-
critical system. Instead, they only predict a system’s FIT rate. The system’s real
FIT rate is then assessed on the manufactured product or by performing fault-
injection-based safety verification. However, even in this case, high-level safety
analyses and fault-injection experiments are performed independently from each
other. Consequently, this decoupling hinders safety verification refinement and
also limits the re-usability of FTAs, DFAs, and FMEDAs on future products [117].
These drawbacks can be mitigated by linking safety analyses with fault-injection
methods [119], [121]. In doing so, FIT rates predicted using high-level safety
analysis become significantly refined with statistical results (i.e., estimated FIT
rates) obtained from fault-injection simulations.

Before linking system-level safety analyses to fault-injection frameworks, the
structure of FMEDAs, DFAs, and FTAs must first be formalized (e.g., databases,
spreadsheets). This step allows software tools to parse and analyze the data

111

C. Linking Safety Analysis to Fault-Injection Frameworks

contained therein (e.g., system information, failure modes, safety mechanisms)
(Fig. C.1). For instance, the authors of [121] used model-based frameworks to
formalize the contents of FMEDAs, DFAs, and FTAs. Here, additional parsers
are needed to extract information from a system’s implementation (e.g., VPs,
RTL models, gate-level net-lists). The extracted data (e.g., modules, sub-modules,
flip-flops, logic gates) are mapped to relevant safety functions from the FMEDA,
DFA, and FTA to define the HW system’s fault-verification space. In other words,
the mapping step between the safety-analysis and the fault-simulation platforms
sets up fault-injection points, observation points, fault types (e.g., stuck-at faults,
bit-flips) and other attributes necessary for executing fault-injection simulations.
Next, the data collected within the data models are used to generate fault
libraries which are then utilized by safety-verification flows (e.g., SaVer). Then,
the simulation results provided by fault-injection simulations (e.g., diagnostic
coverage, passed/failed tests) are back-annotated to the FMEDAs and FTAs data
models. Finally, FIT rates, which were only predicted at first, become refined by
the fault-injection simulation results.

Figure C.1.: Model-based safety analysis and link to fault simulation [119]

The link between safety analysis and the HW system takes advantage of the
correspondence among basic safety-evaluation features (e.g., targets, threats, and
counter-measures) and basic HW-system features (e.g., modules, sub-modules,
entities, components) (Fig. C.2). Consequently, safety targets such as parts and
functions in the FMEDA as well as elements in the DFA are mapped to modules,
sub-modules, entities, components, and other elements from the safety-critical
system. Threats are classified differently based on the employed safety analysis

112

and their mapping on the system level. First, they are classified as failure modes
in FMEDAs and dependent failures in DFAs and are mapped to fault-injection
points such as signals, ports, sockets, etc. Second, they are classified as failure
effects in FMEDAs and DFAs which are mapped to observation points. Third,
they are classified as events in FTAs, which are mapped either to injection or
observation points based on their functionality. Counter-measures are defined
as safety measures in FMEDAs and DFAs and are mapped to diagnostic and
correction points. The implementation of these measures can be done either
with additional modules or by using members of already existing modules (e.g.,
HW signals).

Figure C.2.: Data mapping from safety analysis to the HW system [119]

Mapping safety-analysis information to the HW system takes place through
expression and pattern matching (Fig. C.3). This step is necessary because the
safety analysis and system-level modeling take place in parallel based on the
available (safety) requirements and development specification. The mapping
step can be performed in two ways and begins once both safety analysis and

Object in Safety
Analysis Model

ID: -----------------------
Name: ------------------
Description: ----------

Object in System

Model

ID: -----------------------
Name: ------------------
Description: ----------

Condition: Full Model Consistency

Expressive
Segments

--- ∈ ?

Figure C.3.: Conditions for data mapping from safety analysis to fault injec-
tion [119]

113

C. Linking Safety Analysis to Fault-Injection Frameworks

the HW are stable. First, ID-based matching is useful if safety-analysis data are
kept consistent with data from system modeling. In this case, specific IDs must
be defined in the development specification for modules, sub-modules, signals,
parts, functions, etc. These IDs are then used consistently throughout the system
and safety analysis. Second, name-based matching is used instead of IDs. In this
case, particular names, descriptions, and other attributes from the system (e.g.,
signal paths) and safety analysis (e.g., failure-mode names) are preprocessed
and filtered to identify so-called expressive segments. Thus, the user is provided
with a flexible tool to map the correct safety information to the safety-critical
system.

114

Acronyms

ACE Architectural Correct Execution

ADAS Advanced Driver-Assistance Systems

ALU Arithmetic-Logic Unit

API Application Programming Interface

ASIL Automotive Safety-Integrity Level

ATPG Automatic Test-Pattern Generation

AVF Architecture-Vulnerability Factor

CAS Cycle-Accurate Simulator

CMOS Complementary Metal-Oxide-Semiconductor

COI Cone of Influence

CPU Central Processing Unit

CSV Comma-Separated Value

DFA Dependent-Failure Analysis

ECC Error-Correction Code

ECU Engine-Control Unit

EDS Event-Driven Simulator

FIO Fault-Injection Object

FIT Failure in Time

FMEDA Failure Modes, Effects, and Diagnostics Analysis

115

Acronyms

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

FTA Fault-Tree Analysis

GDB GNU Debugger

GPU Graphics-Processing Unit

GUI Graphical User Interface

HDL Hardware-Description Language

HW Hardware

LF Latent Fault

LFM Latent-Fault Metric

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MPF Multiple-Point Fault

PC Personal Computer

QM Quality Management

RF Residual Fault

RT Reaction Time

RTL Register-Transfer Level

SFI Statistical Fault Injection

SoC System on Chip

SPF Single-Point Fault

SPFM Single-Point-Fault Metric

SW Software

116

Acronyms

TLM Transaction-Level Modeling

TTI Diagnostic-Test Interval

TTI Tolerance-Time Interval

UDFI User-Defined Fault Injection

VAD Value-Access Dump

VCD Value-Change Dump

VM Virtual Machine

VP Virtual Prototype

117

Glossary

Fault-Matching Point Fault-injection locations present across two or more ab-
straction levels (e.g., VPs and gate-level models). 45, 49–53, 59, 80–82, 98,
101–103

ISO 26262 The automotive safety standard applied on all electronic-and-electric
components built into vehicles up to 3.5 t. vii, 1–3, 5, 6, 16, 22, 47, 49,
105–110, 115, 125, 126

Latent Fault Multiple-point fault whose presence is not detected by a safety
mechanism nor perceived by the driver within a predetermined time
interval. 120

Latent-Fault Metric Reflects the robustness of the item to latent faults either
by coverage of faults in safety mechanisms or by the driver recognizing
that the fault exists before the violation of the safety goal, or by design
(primarily safe faults). A high latent-fault metric implies that the proportion
of latent faults in the hardware is low. 120

Multiple-Point Fault A SPF which leads to a failure when combined with other
independent SPFs. 120

Pseudo-Failure The effects of pseudo-fault injection observed at the outputs of
virtual prototypes. vii, viii, 45, 47, 49, 51, 52, 59

Pseudo-Fault Single-bit or multiple-bit faults injected on the VP abstraction
level which lead to system failures but whose effects cannot be reproduced
on the gate abstraction level through injection of single-bit faults. 45, 47,
49, 50, 52, 53, 94, 98, 102, 103, 123

Residual Fault Portion of a hardware or software fault which by itself leads to
the violation of a safety requirement. 120

119

Glossary

SaVer Safety-verification flow optimized for the analysis of effects of random
HW faults on VPs. viii, 17, 18, 61, 64–68, 71, 73, 75, 90–93, 97, 99, 103, 116,
126, 129

SCFIT A fault-injection tool for SystemC and TLM models developed under
any abstraction level. 33–40, 44, 56, 58, 87–89, 98, 101, 125, 129

Single-Point Fault A hardware or software fault which is not covered by a safety
mechanism and that leads directly to the violation of a safety requirement.
120

Single-Point-Fault Metric Reflects the robustness of the item to single-point
and residual faults either by coverage from safety mechanisms or by design
(primarily safe faults). A high single-point fault metric implies that the
proportion of single-point faults and residual faults in the hardware of the
item is low. 120

System on Chip A system which is fully integrated onto a single chip (e.g.,
single or multiple cores, high-speed bus, a peripheral bus, several dedicated
HW peripherals). 120

SystemC A class library on top of C++ which supports HDL concepts for
modeling concurrency and communication. vii, 7–10, 15–21, 26, 33–41, 43,
44, 53–58, 64–68, 77, 78, 80, 87, 89, 92, 97, 101, 103, 123

VERITAS A tool which transforms Verilog net-lists to C++, SystemC, TLM code.
17, 18, 53–57, 59, 78, 81, 82, 89, 93–97, 99, 102, 126, 129

VERITAS++ An extension brought to VERITAS. 17, 18, 53, 56–59, 65, 67, 78,
81, 82, 89, 92, 93, 96, 97, 99, 102, 126, 129

120

List of Figures

1.1. ISO 26262’s simplified V-model diagram 3
1.2. Generic checkpoint-restore mechanism 13

2.1. Simple SystemC model . 20
2.2. Basic TLM model . 21
2.3. TLM-SystemC wrapper module which synchronizes the commu-

nication across SystemC and TLM models 21
2.4. Generic test-bench framework . 22
2.5. Generic fault-injection testbench [41] 23
2.6. Fault verification space [89] . 24
2.7. Horizontal fault-error-failure propagation chain [83] 26
2.8. Vertical fault-error-failure propagation chain 26

3.1. SCFIT’s fault-injection mechanism 32
3.2. SCFIT’s fault-injection execution flow 35
3.3. SCFIT’s fault-injection flow . 35
3.4. Example of SCFIT’s GUI . 36
3.5. Example of SCFIT’s generated fault-injection report 37
3.6. Registration of fault-injection objects to fault-injection-object man-

ager and access from testbench . 38
3.7. TLM injectable interface . 39
3.8. TLM injectable sockets . 41

4.1. Schematics of special_logic Verilog module 47
4.2. Graph-based representation of missing fault-matching points

across gate-level net-lists and VPs 49
4.3. Graph-based representation of fault-propagation paths on gate-

level net-lists and VPs . 50
4.4. VERITAS flow diagram . 52
4.5. VERITAS C++ representation of a full adder 52
4.6. VERITAS breakdown of multi-bit operations 53

121

List of Figures

4.7. Extension of VERITAS’ C++ generator to support fault-injection
objects . 54

4.8. VERITAS++ flow diagram . 55
4.9. Verilator flow diagram . 55

5.1. Saturation curve for the number of fault-injection simulations n
given by the number of faults N (p = 0.5, e = 1%, and t = 3.0902
for 99.8% confidence interval) . 61

5.2. SaVer’s fault-injection regression flow 62
5.3. VAD format compared to VCD format 64
5.4. Difference between masked faults and faults which propagate

based on read-write accesses on registers 65
5.5. VCD-based checkpointing-generation flow 67
5.6. UML diagram of meta-model structure 68
5.7. VCD-based restoring-from-checkpoint flow 69
5.8. SaVer’s checkpointing-based fault-injection regression flow . . . 71

6.1. Block diagram of NanoMIPS’ SystemC, RTL, and gate-level model 77
6.2. Block diagram of NanoMIPS’ loosely-time TLM model 77
6.3. Block diagram of NanoMIPS’ approximately-time TLM model . 78
6.4. Observed number of faulted bit positions in the sum output of an

8, 16, and 32-bit adder after 10 000 samples 81
6.5. Coverage of carry-out failures per fault type observed for 8, 16,

and 32-bit adder . 82
6.6. Maximum multi-bit failure observed after injecting stuck-at-1

faults in adders of variable sizes 82
6.7. Maximum multi-bit failure observed after injecting stuck-at-0

faults in adders of variable sizes 83
6.8. Single-bit failures observed for various MIPS CPU gate-level sub-

blocks after injecting permanent faults into 10 000 random samples 85
6.9. Multi-bit failures observed for several MIPS CPU gate-level sub-

blocks after injecting stuck-at-1 faults 85
6.10. Simulation-speed comparison between each gate-level and gate-

level-accurate TLM . 93

A.1. Failure-mode classification according to ISO 26262 [5] 107
A.2. Diagnostic test interval, reaction time and tolerance time interval [5]107

B.1. AVF stack across multiple branches in the computer industry [23] 109

122

List of Figures

C.1. Model-based safety analysis and link to fault simulation [119] . . 112
C.2. Data mapping from safety analysis to the HW system [119] . . . 113
C.3. Conditions for data mapping from safety analysis to fault injec-

tion [119] . 113

123

List of Tables

2.1. Example of fault-model classifications based on abstraction level 28

3.1. SCFIT’s requirements for placing breakpoints and watchpoints . 32

4.1. Single-bit failures observed on special_logic module 46
4.2. Double-bit failures observed on special_logic module 46
4.3. Failures caused by 2-bit faults injected into special_logic_schematic2 48

6.1. Adders–Correlation factor across the VP and gate abstraction levels 79
6.2. NanoMIPS–Correlation factor across the VP and gate abstraction

levels . 80
6.3. Average number of simulations required to cause a maximum

multi-bit failure in several adders 84
6.4. Simulation overhead measured for SCFIT 86
6.5. Simulation overhead measured for injectable TLM sockets 87
6.6. Hard-disk-space requirements for one checkpoint 88
6.7. Hard-disk-space requirements for 1000 checkpoints 89
6.8. Generation time for 1000 checkpoints 89
6.9. VERITAS++–Spatial fault pruning 90
6.10. SaVer–Temporal fault pruning . 91
6.11. Adders–Simulation overhead introduced by VERITAS 92
6.12. Adders–Simulation performance vs improved fault-injection cor-

relation . 93
6.13. NanoMIPS–Simulation performance introduced by VERITAS . . 94
6.14. NanoMIPS–Simulation speed vs improved fault-injection correlation 95
6.15. Simulation performance of VERITAS++ 95
6.16. Safety-verification speed-up . 96

A.1. Class of failure severity [5] . 105
A.2. Class of exposure probability to a failure [5] 105
A.3. Class of controllability in case of failure [5] 105
A.4. ASIL determination [5] . 106

125

Bibliography

[1] S. Choi, F. Thalmayr, D. Wee, and F. Weig, Advanced Driver-Assistance
Systems: Challenges and Opportunities Ahead, Accessed on 02.01.2018, 11:15,
Feb. 2016. [Online]. Available: https://www.mckinsey.com/industries/
semiconductors/our-insights/advanced-driver-assistance-systems-
challenges-and-opportunities-ahead.

[2] K. Korosec, Intel Predicts a $7 Trillion Self-Driving Future, Accessed on
02.01.2018, 11:22, Jun. 2017. [Online]. Available: https://www.theverge.
com/2017/6/1/15725516/intel-7-trillion-dollar-self-driving-
autonomous-cars.

[3] N. Bunkley, Toyota Settles Over California Deaths, Accessed: 2015-11-10,
17:53, Sep. 2010. [Online]. Available: https://www.nytimes.com/2010/
09/19/business/19autos.html.

[4] P. Koopman, A Case Study of Toyota Unintended Acceleration and Software
Safety, Accessed: 2018-06-20, 17:24, Sep. 2014. [Online]. Available: https:
//users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.
pdf.

[5] ISO, CD, “26262, Road Vehicles–Functional Safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[6] R. R. Schaller, “Moore’s Law: Past, Present and Future,” IEEE spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[7] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and T. Toba, “Impact of
Scaling on Neutron-Induced Soft Error in SRAMs from a 250 nm to a
22 nm Design Rule,” Electron Devices, IEEE Transactions on, vol. 57, no. 7,
pp. 1527–1538, 2010.

[8] G. Rangarajan and J. Deng, Addressing Signal Electromigration (EM) in
Today’s Complex Digital Designs, Accessed on 12.04.2017, 15:00, Jan. 2013.
[Online]. Available: http://www.eetimes.com/document.asp?doc_id=
1280370.

127

https://www.mckinsey.com/industries/semiconductors/our-insights/advanced-driver-assistance-systems-challenges-and-opportunities-ahead
https://www.mckinsey.com/industries/semiconductors/our-insights/advanced-driver-assistance-systems-challenges-and-opportunities-ahead
https://www.mckinsey.com/industries/semiconductors/our-insights/advanced-driver-assistance-systems-challenges-and-opportunities-ahead
https://www.theverge.com/2017/6/1/15725516/intel-7-trillion-dollar-self-driving-autonomous-cars
https://www.theverge.com/2017/6/1/15725516/intel-7-trillion-dollar-self-driving-autonomous-cars
https://www.theverge.com/2017/6/1/15725516/intel-7-trillion-dollar-self-driving-autonomous-cars
https://www.nytimes.com/2010/09/19/business/19autos.html
https://www.nytimes.com/2010/09/19/business/19autos.html
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
http://www.eetimes.com/document.asp?doc_id=1280370
http://www.eetimes.com/document.asp?doc_id=1280370

Bibliography

[9] A. Herkersdorf, M. Engel, M. Glaß, J. Henkel, V. B. Kleeberger, M. Kochte,
J. M. Kühn, S. R. Nassif, H. Rauchfuss, W. Rosenstiel, et al., “Cross-Layer
Dependability Modeling and Abstraction in System on Chip,” in Workshop
on Silicon Errors in Logic-System Effects (SELSE), 2013.

[10] R. C. Baumann, “Radiation-Induced Soft Errors in Advanced Semicon-
ductor Technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, 2005.

[11] V. V. Kumar and J. Lach, “Fine-Grained Self-Healing Hardware for Large-
Scale Autonomic Systems,” in Database and Expert Systems Applications,
2003. Proceedings. 14th International Workshop on, IEEE, 2003, pp. 707–712.

[12] E. Ibe, K.-i. Shimbo, H. Taniguchi, T. Toba, K. Nishii, and Y. Taniguchi,
“Quantification and Mitigation Strategies of Neutron Induced Soft-Errors
in CMOS Devices and Components,” in Reliability Physics Symposium
(IRPS), 2011 IEEE International, IEEE, 2011, pp. 3C–2.

[13] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori,
and N. Wehn, “Reliable On-Chip Systems in the Nano-Era: Lessons Learnt
and Future Trends,” in Proceedings of the 50th Annual Design Automation
Conference, ACM, 2013, p. 99.

[14] J. C. Grebe and W. M. Goble, “FMEDA–Accurate Product Failure Metrics,”
FMEDA Development Paper, Rev, vol. 1, 2007.

[15] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault Tree
Handbook,” Nuclear Regulatory Commission Washington dc, Tech. Rep.,
1981.

[16] L. Stein, ISO 26262 Part 11 - Blog Post 3: Dependent Failure Analysis (DFA),
Accessed on 05.01.2017, 11:34, Jul. 2017. [Online]. Available: https://
lorit-consultancy.com/en/2017/07/iso-26262-part-11-blog-post-
3-dependent-failure-analysis-dfa/.

[17] M. Maniatakos, C. Tirumurti, A. Jas, and Y. Makris, “AVF Analysis Ac-
celeration via Hierarchical Fault Pruning,” in European Test Symposium
(ETS), 2011 16th IEEE, IEEE, 2011, pp. 87–92.

[18] M. Maniatakos, M. K. Michael, and Y. Makris, “Investigating the Limits
of AVF Analysis in the Presence of Multiple Bit Errors,” in On-Line Testing
Symposium (IOLTS), 2013 IEEE 19th International, IEEE, 2013, pp. 49–54.

128

https://lorit-consultancy.com/en/2017/07/iso-26262-part-11-blog-post-3-dependent-failure-analysis-dfa/
https://lorit-consultancy.com/en/2017/07/iso-26262-part-11-blog-post-3-dependent-failure-analysis-dfa/
https://lorit-consultancy.com/en/2017/07/iso-26262-part-11-blog-post-3-dependent-failure-analysis-dfa/

[19] S. Mittal and J. Vetter, “A Survey of Techniques for Modeling and Im-
proving Reliability of Computing Systems,” IEEE Transaction on Parallel
and Distributing Systems, vol. 27, no. 4, pp. 1226–1238, 2016.

[20] S. Mukherjee, Architecture Design for Soft Errors. Morgan Kaufmann, 2011.

[21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” in Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2003, p. 29.

[22] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient Fault Mod-
els and AVF Estimation Revisited,” in Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on, IEEE, 2010, pp. 477–486.

[23] V. Sridharan and D. R. Kaeli, “Using Hardware Vulnerability Factors to
Enhance AVF Analysis,” in ACM SIGARCH Computer Architecture News,
ACM, vol. 38, 2010, pp. 461–472.

[24] N. Seifert and N. Tam, “Timing Vulnerability Factors of Sequentials,”
IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 516–
522, 2004.

[25] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE Analysis Re-
liability Estimates using Fault Injection,” in ACM SIGARCH Computer
Architecture News, ACM, vol. 35, 2007, pp. 460–469.

[26] L. Duan, Y. Zhang, B. Li, and L. Peng, “Universal Rules Guided Design
Parameter Selection for Soft Error Resilient Processors,” in Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International Sympo-
sium on, IEEE, 2011, pp. 247–256.

[27] R. A. Howard, Dynamic Probabilistic Systems: Markov Models. Courier
Corporation, 2012, vol. 1.

[28] E. Karimi, M. H. Haghbayan, A. Maleki, and M. Tabandeh, “Graph
Based Fault Model Definition for Bus Testing,” in 2013 IFIP/IEEE 21st
International Conference on Very Large Scale Integration (VLSI-SoC), 2013.

[29] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault Sim-
ulation and Emulation Tools to Augment Radiation-Hardness Assurance
Testing,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119–2142,
2013.

129

Bibliography

[30] P. Maistri and R. Leveugle, “Towards Automated Fault Pruning with
Petri Nets,” in On-Line Testing Symposium, 2009. IOLTS 2009. 15th IEEE
International, IEEE, 2009, pp. 41–46.

[31] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace
Applications: Soft Errors and Fault-Tolerant Design. Springer, 2015.

[32] A. G. Schmidt, B. Huang, R. Sass, and M. French, “Checkpoint/Restart
and Beyond: Resilient High Performance Computing with FPGAs,” in
Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th
Annual International Symposium on, IEEE, 2011, pp. 162–169.

[33] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and G. R.
Sechi, “Evaluation of Single Event Upset Mitigation Schemes for SRAM
Based FPGAs Using the FLIPPER Fault Injection Platform,” in Defect
and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International
Symposium on, IEEE, 2007, pp. 105–113.

[34] F. Lima, C Carmichael, J Fabula, R Padovani, and R. Reis, “A Fault Injec-
tion Analysis of Virtex FPGA TMR Design Methodology,” in Radiation
and Its Effects on Components and Systems, 2001. 6th European Conference on,
IEEE, 2001, pp. 275–282.

[35] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A Methodology for Evaluating the Error Resilience of GPGPU Applica-
tions,” in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, IEEE, 2014, pp. 221–230.

[36] T. S. Tan and B. A. Rosdi, “Verilog HDL Simulator Technology: A Survey,”
Journal of Electronic Testing, vol. 30, no. 3, pp. 255–269, 2014.

[37] R Rajaraman, J. Kim, N. Vijaykrishnan, Y. Xie, and M. J. Irwin, “SEAT-LA:
A Soft Error Analysis Tool for Combinational Logic,” in 19th International
Conference on VLSI Design held jointly with 5th International Conference on
Embedded Systems Design (VLSID’06), IEEE, 2006, 4–pp.

[38] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational circuits,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 14, no. 11, pp. 1370–1378, 1995.

[39] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits,” in Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, ACM, 1998, pp. 283–289.

130

[40] V. Sieh, O. Tschäche, and F. Balbach, “VHDL-Based Fault Injection with
VERIFY,” Interner Bericht, vol. 5, p. 96, 1996.

[41] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault Injection Techniques and
Tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[42] I. Stefanovici, A. Hwang, and B. Schroeder, DRAM’s Damning Defects–and
How They Cripple Computers, Accessed on 06.06.2016, 15:43, Nov. 2015.
[Online]. Available: http://spectrum.ieee.org/computing/hardware/
drams-damning-defects-and-how-they-cripple-computers.

[43] M. Raji, B. Ghavami, and H. Pedram, “Gate Resizing for Soft Error Rate
Reduction in Nano-scale Digital Circuits Considering Process Variations,”
in Digital System Design (DSD), 2015 Euromicro Conference on, IEEE, 2015,
pp. 445–452.

[44] N. George and J. Lach, “Characterization of Logical Masking and Error
Propagation in Combinational Circuits and Effects on System Vulner-
ability,” in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, IEEE, 2011, pp. 323–334.

[45] Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE transactions on software engineering, vol. 37, no. 5,
pp. 649–678, 2011.

[46] I.-D. Vidrascu, “Implementation of a Safety Verification Environment
(SVE) Based on Fault Injection,” Master’s thesis, Fachhochschule Kärnten,
Klagenfurt am Wörthersee, Austria, 2015.

[47] A. K. Ghosh, T. A. DeLong, B. W. Johnson, and J. A. Profeta III, “Fault
Injection in the Design Process Using VHDL,” in VHDL International
Users’ Forum Fall Conference, 1995, pp. 15–19.

[48] H. Ziade, R. A. Ayoubi, R. Velazco, et al., “A Survey on Fault Injection
Techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004.

[49] S. Tixeuil, W. Hoarau, and L. Silva, “An Overview of Existing Tools for
Fault-Injection and Dependability Benchmarking in Grids,” in Second
CoreGRID Workshop on Grid and Peer to Peer Systems Architecture, 2006.

[50] R. Mariani, G. Boschi, and F. Colucci, “Using an Innovative SoC-Level
FMEA Methodology to Design in Compliance with IEC61508,” in Pro-
ceedings of the conference on Design, automation and test in Europe, EDA
Consortium, 2007, pp. 492–497.

131

http://spectrum.ieee.org/computing/hardware/drams-damning-defects-and-how-they-cripple-computers
http://spectrum.ieee.org/computing/hardware/drams-damning-defects-and-how-they-cripple-computers

Bibliography

[51] K. Greb, A. Arora, and R. Yogitech, Tool For Automation Of Functional
Safety Metric Calculation And Prototyping Of Functional Safety Systems, US
Patent App. 14/020,802, Jun. 2014. [Online]. Available: https://www.
google.com/patents/US20140173548.

[52] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A Functional Verification
Based Fault Injection Environment,” in Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT’07. 22nd IEEE International Symposium on, IEEE, 2007,
pp. 114–122.

[53] Cadence, Functional Safety, Accessed: 12.01.2017, 2016. [Online]. Available:
https://www.cadence.com/content/cadence-www/global/en_US/home/
solutions/automotive-solution/functional-safety.html.

[54] Synopsys, Automotive Safety Verification for ISO 26262, Accessed: 12.01.2017,
2016. [Online]. Available: https://www.synopsys.com/verification/
automotive-safety-verification-for-iso-26262.html.

[55] Infineon Technologies AG, AURIX–TriCore Datasheet, Accessed: 2016-2-22.
[Online]. Available: https://www.infineon.com.

[56] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uhlig,
U. Grätz, and R. Lien, “Engineering Failure Analysis and Design Op-
timisation with HiP-HOPS,” Engineering Failure Analysis, vol. 18, no. 2,
pp. 590–608, 2011.

[57] Y. Xiong, B. Qin, M. Wu, J. Yang, and M. Fan, “LabVIEW AND MATLAB-
Based Virtual Control System for Virtual Prototyping of Cyclotron,” in
Particle Accelerator Conference, 2007. PAC. IEEE, IEEE, 2007, pp. 281–283.

[58] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Interactive
Presentation: Implementation of a Transaction Level Assertion Framework
in SystemC,” in Proceedings of the conference on Design, automation and test
in Europe, EDA Consortium, 2007, pp. 894–899.

[59] S. A. Misera, “Simulation von Fehlern in Digitalen Schaltungen mit
SystemC,” PhD thesis, Universitätsbibliothek, 2007.

[60] S. Misera, H. T. Vierhaus, and A. Sieber, “Fault Injection Techniques
and Their Accelerated Simulation in SystemC,” in Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference
on, IEEE, 2007, pp. 587–595.

[61] A. Fin, F. Fummi, and G. Pravadelli, “SystemC as a Complete Design and
Validation Environment,” in SystemC, Springer, 2003, pp. 127–156.

132

https://www.google.com/patents/US20140173548
https://www.google.com/patents/US20140173548
https://www.cadence.com/content/cadence-www/global/en_US/home/solutions/automotive-solution/functional-safety.html
https://www.cadence.com/content/cadence-www/global/en_US/home/solutions/automotive-solution/functional-safety.html
https://www.synopsys.com/verification/automotive-safety-verification-for-iso-26262.html
https://www.synopsys.com/verification/automotive-safety-verification-for-iso-26262.html
https://www.infineon.com

[62] A. Fin and F. Fummi, “Laerte++: An Object Oriented High-Level TPG
for SystemC Designs,” in Languages for system specification, Springer, 2004,
pp. 105–117.

[63] W. Lu and M. Radetzki, “Efficient Fault Simulation of SystemC Designs,”
in Digital System Design (DSD), 2011 14th Euromicro Conference on, IEEE,
2011, pp. 487–494.

[64] F. Rogin, E. Fehlauer, C. Haufe, and S. Ohnewald, “Debug Patterns for
Efficient High-level SystemC Debugging,” in Design and Diagnostics of
Electronic Circuits and Systems, 2007. DDECS’07. IEEE, IEEE, 2007, pp. 1–6.

[65] R. A. Shafik, P. Rosinger, and B. M. Al-Hashimi, “SystemC-Based Min-
imum Intrusive Fault Injection Technique with Improved Fault Rep-
resentation,” in On-Line Testing Symposium, 2008. IOLTS’08. 14th IEEE
International, IEEE, 2008, pp. 99–104.

[66] F. Bruschi, F. Ferrandi, and D. Sciuto, “A Framework for the Functional
Verification of SystemC Models,” International Journal of Parallel Program-
ming, vol. 33, no. 6, pp. 667–695, 2005.

[67] J. Vennin, S. Penain, L. Charest, S. Meftali, and J.-L. Dekeyser, “Embed
scripting inside systemc,” in FDL, 2005, pp. 373–385.

[68] F. Arlati-arlati, A. Miele, and F. Bruschi, “ReSP User Manual,” Revision 2:
June 2011.

[69] C. Bolchini, A. Miele, and D. Sciuto, “Fault Models and Injection Strategies
in SystemC Specifications,” in Digital System Design Architectures, Methods
and Tools, 2008. DSD’08. 11th EUROMICRO Conference on, IEEE, 2008,
pp. 88–95.

[70] G. Beltrame and L. Fossati, “ReSP: A Design and Validation Tool for Data
Systems,” in DASIA 2008 Data Systems In Aerospace, vol. 665, 2008, p. 22.

[71] G. Beltrame, L. Fossati, and D. Sciuto, “ReSP: A Nonintrusive Transaction-
Level Reflective MPSoC Simulation Platform for Design Space Explo-
ration,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, no. 12, pp. 1857–1869, 2009.

[72] V. Guarnieri, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson, et al., “Mu-
tation Analysis for SystemC Designs at TLM,” in Test Workshop (LATW),
2011 12th Latin American, Mar. 2011, pp. 1–6.

133

Bibliography

[73] K.-J. Chang and Y.-Y. Chen, “System-Level Fault Injection in SystemC
Design Platform,” in Proceedings of 8th International Symposium on Advanced
Intelligent Systems (ISIS), Citeseer, 2007.

[74] STMicroelectronics, 32-bit Power Architecture R©Microcontroller for Automo-
tive SIL3/ASIL-D Chassis and Safety Applications, SPC56 Datasheet, Rev 11,
2014.

[75] A. d. Silva, P. Parra, Ó. R. Polo, and S. Sánchez, “Runtime Instrumentation
of SystemC/TLM2 Interfaces for Fault Tolerance Requirements Verifica-
tion in Software Cosimulation,” Modelling and Simulation in Engineering,
vol. 2014, p. 42, 2014.

[76] Cadence, Preliminary e Language Reference Draft, Accessed: 29.12.2017, 2003.
[Online]. Available: http://rise.cse.iitm.ac.in/people/faculty/
kama/prof/eLRM1.pdf.

[77] L. Duan and W.-M. Lin, “Hardware vs. Simulation: Bridging the Gap
between Efficiency and Flexibility for Computer Engineering Education
and Research,” in ASEE Gulf-Southwest Annual Conference, 2015, pp. 1–6.

[78] D. Mueller-Gritschneder, M. Greim, and U. Schlichtmann, “Safety Eval-
uation Based on Virtual Prototypes: Fault Injection with Multi-Level
Processor Models,” in Integrated Circuits (ISIC), 2016 International Sympo-
sium on, IEEE, 2016, pp. 1–2.

[79] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quantita-
tive Evaluation of Soft Error Injection Techniques for Robust System De-
sign,” in Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE,
IEEE, 2013, pp. 1–10.

[80] J. Espinosa, D. de Andrés, J. C. Ruiz, C. Hernandez, and J. Abella, “To-
wards Certification-Aware Fault Injection Methodologies Using Virtual
Prototypes,” Forum on Specification and Design Languages (FDL) – Work in
Progress (WiP), pp. 1–4, 2015.

[81] J. Espinosa, C. Hernandez, and J. Abella, “Characterizing Fault Propaga-
tion in Safety-Critical Processor Designs,” in On-Line Testing Symposium
(IOLTS), 2015 IEEE 21st International, IEEE, 2015, pp. 144–149.

[82] R. Baranowski, S. Di Carlo, N. Hatami, M. E. Imhof, M. A. Kochte, P.
Prinetto, et al., “Efficient Multi-Level Fault Simulation of HW/SW Systems
for Structural Faults,” Science China Information Sciences, vol. 54, no. 9,
pp. 1784–1796, 2011.

134

http://rise.cse.iitm.ac.in/people/faculty/kama/prof/eLRM1.pdf
http://rise.cse.iitm.ac.in/people/faculty/kama/prof/eLRM1.pdf

[83] L. Pintard, “From Safety Analysis to Experimental Validation by Fault
Injection–Case of Automotive Embedded Systems,” PhD thesis, INP
Toulouse, 2015.

[84] S. Sastry Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Application Resiliency Analyzer for Transient Faults,” Micro, IEEE, vol. 33,
no. 3, pp. 58–66, 2013.

[85] L. Berrojo, I. González, F. Corno, M. S. Reorda, G. Squillero, L. Entrena,
and C. Lopez, “New Techniques for Speeding-Up Fault-Injection Cam-
paigns,” in Design, Automation and Test in Europe Conference and Exhibition,
2002. Proceedings, IEEE, 2002, pp. 847–852.

[86] R. Mariani, Method for Performing Failure Mode and Effects Analysis of
an Integrated Circuit and Computer Program Product Therefore, US Patent
7,937,679, May 2011. [Online]. Available: https://www.google.com/
patents/US7937679.

[87] A. Benso, M. Rebaudengo, L. Impagliazzo, and P. Marmo, “Fault-List Col-
lapsing for Fault-Injection Experiments,” in Reliability and Maintainability
Symposium, 1998. Proceedings., Annual, IEEE, 1998, pp. 383–388.

[88] P. R. Maier, V. Kleeberger, D. Mueller-Gritschneder, and U. Schlichtmann,
“Fault Injection at Host-Compiled Level with Static Fault Set Reduction
for SoC Firmware Robustness Testing,” in Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, ACM, 2016, p. 18.

[89] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation. Springer, 2004.

[90] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt: Transparent Checkpoint-
ing Under UNIX. Computer Science Department, 1994.

[91] C. Hernandez and J. Abella, “Low-Cost Checkpointing in Automotive
Safety-Relevant Systems,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015, IEEE, 2015, pp. 91–96.

[92] S. Sutherland, “The IEEE Verilog 1364-2001 Standard What’s New, and
Why You Need It,” in 9th Internatioinal HDL Conference (HDLCon), 2000.

[93] M. Graphics R©, Questa R© SIM User’s Manual, Accessed: 2016-2-23. [Online].
Available: http://rise.cse.iitm.ac.in/people/faculty/kama/prof/
questa_sim_user_manual.pdf.

[94] Synopsys R©, VCSi User Guide 10.3, 2005.

135

https://www.google.com/patents/US7937679
https://www.google.com/patents/US7937679
http://rise.cse.iitm.ac.in/people/faculty/kama/prof/questa_sim_user_manual.pdf
http://rise.cse.iitm.ac.in/people/faculty/kama/prof/questa_sim_user_manual.pdf

Bibliography

[95] Cadence R©, Incisive R© Enterprise Simulator User Guide.

[96] R. Stallman, R. H. Pesch, S. Shebs, et al., GDB User Manual: Debugging
with GDB (The GNU Source-Level Debugger), 2014.

[97] C. Artho, K. Suzaki, M. Hagiya, W. Leungwattanakit, R. Potter, E. Pla-
ton, Y. Tanabe, F. Weitl, and M. Yamamoto, “Using Checkpointing and
Virtualization for Fault Injection,” International Journal of Networking and
Computing, vol. 5, no. 2, pp. 347–372, 2015.

[98] O. S. Initiative et al., “IEEE Standard SystemC Language Reference Man-
ual,” IEEE Computer Society, 2006.

[99] M. Monton, J. Engblom, C. Schröder, J. Carrabina, and M. Burton, “Check-
point and Restore for SystemC Models,” in Advances in Design Methods
from Modeling Languages for Embedded Systems and SoC’s, Springer, 2010,
pp. 41–57.

[100] P. Yang and K. Gopalan, System and Method for Security and Privacy Aware
Virtual Machine Checkpointing, US Patent App. 14/040,820. Accessed: 2016-
04-11, Apr. 2014. [Online]. Available: https://www.google.com/patents/
US20140095821.

[101] Y. Hollander and Y. Feldman, Automatic Debug Apparatus and Method
for Automatic Debug of an Integrated Circuit Design, US Patent 8,302,050.
Accessed: 2016-03-10, Oct. 2012. [Online]. Available: https://www.google.
com/patents/US8302050.

[102] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical Fault
Injection: Quantified Error and Confidence,” in 2009 Design, Automation
Test in Europe Conference Exhibition, Apr. 2009, pp. 502–506.

[103] J.-H. Oetjens, O Bringmann, M Chaari, W Ecker, B.-A. Tabacaru, et al.,
“Safety Evaluation of Automotive Electronics Using Virtual Prototypes:
State of the Art and Research Challenges,” in Design Automation Conference
(DAC), 51st ACM/EDAC/IEEE, IEEE, 2014, pp. 1–6.

[104] B.-A. Tabacaru, M. Chaari, W. Ecker, and T. Kruse, “A Meta-Modeling-
Based Approach for Automatic Generation of Fault-Injection Processes,”
DVCon Europe, pp. 1–7, 2014.

[105] ——, “Runtime Fault-Injection Tool for Executable SystemC Models,”
DVCon India, pp. 1–7, 2014.

136

https://www.google.com/patents/US20140095821
https://www.google.com/patents/US20140095821
https://www.google.com/patents/US8302050
https://www.google.com/patents/US8302050

[106] B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello, “Compari-
son of Different Fault-Injection Methods into TLM Models,” Resiliency in
Embedded Electronic Systems (REES), 1st International ESWEEK Workshop
on, pp. 1–6, 2015.

[107] B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, K. Liu, N. Hatami, C.
Novello, H. Post, and A. von Schwerin, “Fault-Injection Techniques for
TLM-Based Virtual Prototypes,” Forum on Specification and Design Lan-
guages (FDL) – Work in Progress (WiP), pp. 1–4, 2015.

[108] B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello, “Fault-
Effect Analysis on Multiple Abstraction Levels in Hardware Modeling,”
DVCon USA, pp. 1–12, 2016.

[109] ——, “Fault-Effect Analysis on System-Level Hardware Modeling using
Virtual Prototypes,” Forum on Specification and Design Languages (FDL),
pp. 1–7, 2016.

[110] ——, “Speeding up Safety Verification by Fault Abstraction and Simula-
tion to Transaction Level,” IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 1–6, 2016.

[111] ——, “Safety-Verification Flow Sporting Gate-Level Accuracy and Near
Virtual-Prototype Speed,” DVCon Europe, pp. 1–8, 2016.

[112] ——, “Gate-Level-Accurate Fault-Effect Analysis at Virtual-Prototype
Speed,” ERCIM/EWICS/ARTEMIS Workshop on “Dependable Embedded and
Cyber-physical Systems and Systems-of-Systems” (DECSoS’16), pp. 1–13, 2016.

[113] ——, “Safety Analysis on Multiple Abstraction Levels,” DATE, 2016.

[114] ——, “Optimization of Transient-Fault Injection Through Analysis of
Simulation Traces,” edaWorkshop, pp. 1–6, 2016.

[115] ——, “Efficient Checkpointing-Based Safety-Verification Flow Using Com-
piled-Code Simulation,” Digital System Design (DSD), 2016 Euromicro
Conference on, pp. 1–8, 2016.

[116] M. Chaari, W. Ecker, T. Kruse, and B.-A. Tabacaru, “Automation of Failure
Propagation Analysis through Metamodeling and Code Generation,” in
ITG/GI/GMM-Workshop Testmethoden und Zuverlässigkeit von Schaltungen
und Systemen (TuZ), 2015.

137

Bibliography

[117] M. Chaari, B.-A. Tabacaru, W. Ecker, C. Novello, and T. Kruse, “Bridging
the Gap Between Probabilistic Safety Analysis and Fault Injection in
Virtual Prototypes,” in 1st International Workshop on Resiliency in Embedded
Electronic Systems, Amsterdam, The Netherlands, 2015, pp. 34–35.

[118] M. Chaari, W. Ecker, C. Novello, B.-A. Tabacaru, and T. Kruse, “A Model-
Based and Simulation-Assisted FMEDA Approach for Safety-Relevant
E/E Systems,” in Proceedings of the 52nd Annual Design Automation Confer-
ence, ACM, 2015, pp. 1–6.

[119] M. Chaari, W. Ecker, T. Kruse, C. Novello, and B.-A. Tabacaru, “Efficient
Exploration of Safety-Relevant Systems Through a Link Between Analysis
and Simulation,” in Design and Verification Conference & Exhibition DVCon
Europe, 2016.

[120] M. Chaari, W. Ecker, B.-A. Tabacaru, C. Novello, and T. Kruse, “Linking
Model-Based Safety Analysis to Fault Injection and Simulation in Virtual
Prototypes,” in Electronic Design Automation Workshop (edaWorkshop 16),
2016.

[121] M. Chaari, W. Ecker, and B.-A. Tabacaru, “Towards Cross-Domain and
Multi-Level Dependability Analysis Through Metamodeling and Code
Generation,” in Electronic Design Automation Workshop (edaWorkshop 16),
2016.

[122] M. Chaari, W. Ecker, T. Kruse, C. Novello, and B.-A. Tabacaru, “Transfor-
mation of Failure Propagation Models into Fault Trees for Safety Evalua-
tion Purposes,” in Dependable Systems and Networks (DSN) Industrial Track,
2016.

[123] W. Müller, W. Rosenstiel, and J. Ruf, SystemC: Methodologies and Applica-
tions. Springer, 2003.

[124] F. Ghenassia et al., Transaction-Level Modeling with SystemC. Springer, 2005.

[125] G. Arnout, “SystemC Standard,” in Proceedings of the 2000 Asia and South
Pacific Design Automation Conference, ACM, 2000, pp. 573–578.

[126] M.-C. Chiang, T.-C. Yeh, and G.-F. Tseng, “A QEMU and SystemC-Based
Cycle-Accurate ISS for Performance Estimation on SoC Development,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 30, no. 4, pp. 593–606, 2011.

138

[127] F. Corno, P. Prinetto, M. Rebaudengo, M. S. Reorda, and E. Veiluva, “A
Portable ATPG Tool for Parallel and Distributed Systems,” in VLSI Test
Symposium, 1995. Proceedings., 13th IEEE, IEEE, 1995, pp. 29–34.

[128] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic
Approach for Evaluation the Robustness of Secured Codes against Control
Flow Injections,” in Software Testing, Verification and Validation (ICST), 2014
IEEE Seventh International Conference on, IEEE, 2014, pp. 213–222.

[129] U. V. Methodology, “1.1 User’s Guide,” Accellera, May, 2011.

[130] P. R. Maier, D. Müller-Gritschneder, U. Schlichtmann, and V. B. Klee-
berger, “Embedded Software Reliability Testing by Unit-Level Fault Injec-
tion,” in 21st Asia and South Pacific Design Automation Conference (ASP-DAC
2016), 2016.

[131] P. R. Maier, V. Kleeberger, D. Mueller-Gritschneder, and U. Schlichtmann,
“Fehlerinjektion auf Unit-Ebene zur Robustheitsverifikation eingebetteter
Software,” edaWorkshop, pp. 1–6, 2016.

[132] M. R. Lyu et al., Handbook of Software Reliability Engineering. IEEE computer
society press CA, 1996, vol. 222.

[133] L.-T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio, “SSIM: A Software
Levelized Compiled-Code Simulator,” in Proceedings of the 24th ACM/IEEE
Design Automation Conference, ACM, 1987, pp. 2–8.

[134] S. Gai, F. Somenzi, and E. Ulrich, “Advances in Concurrent Multilevel
Simulation,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 6, no. 6, pp. 1006–1012, 1987.

[135] D. Alexandrescu and E. Costenaro, “Towards Optimized Functional Eval-
uation of SEE-Induced Failures in Complex Designs,” in 2012 IEEE 18th
International On-Line Testing Symposium (IOLTS), IEEE, 2012, pp. 182–187.

[136] J. B. Gosling, Simulation in the design of digital electronic systems. Cambridge
University Press, 1993.

[137] A. Asenov, “Random Dopant Induced Threshold Voltage Lowering and
Fluctuations in sub-0.1 µm MOSFET’s: A 3-D “Atomistic” Simulation
Study,” Electron Devices, IEEE Transactions on, vol. 45, no. 12, pp. 2505–
2513, 1998.

[138] J. Shah, Hot Carriers in Semiconductor Nanostructures: Physics and Applica-
tions. Elsevier, 2012.

139

Bibliography

[139] T. Grasser, Bias Temperature Instability for Devices and Circuits. Springer
Science & Business Media, 2013.

[140] J. Keane and C. H. Kim, Transistor Aging, Accessed on 03.01.2017, 15:44,
2011. [Online]. Available: https://spectrum.ieee.org/semiconductors/
processors/transistor-aging/0.

[141] L. Dirk, M. E. Nelson, J. F. Ziegler, A. Thompson, and T. H. Zabel,
“Terrestrial Thermal Neutrons,” Nuclear Science, IEEE Transactions on,
vol. 50, no. 6, pp. 2060–2064, 2003.

[142] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diagnosis for
Small-Delay Defects. Springer-Verlag New York, 2012.

[143] F. J. Ferguson and T. Larrabee, Test Pattern Generation for Realistic Bridge
Faults in CMOS ICs. University of California, Santa Cruz, Computer
Research Laboratory, 1991.

[144] W.-Y. Chen, S. K. Gupta, and M. A. Breuer, “Test Generation for Crosstalk-
Induced Delay in Integrated Circuits,” in Test Conference, 1999. Proceedings.
International, IEEE, 1999, pp. 191–200.

[145] Intel, “Intel R© 64 and IA-32 Architectures Software Developer’s Manual,”
Volume 3A: System Programming Guide, Part 1, 2010.

[146] ——, “Intel R© 64 and IA-32 Architectures Software Developer’s Manual,”
Volume 3B: System Programming Guide, Part 2, 2013.

[147] A. L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu, “De-
sign for Soft Error Resiliency in Internet Core Routers,” IEEE Transactions
on Nuclear Science, vol. 56, no. 6, pp. 3551–3555, 2009.

[148] W. Snyder, “Verilator and SystemPerl,” in North American SystemC Users’
Group, Design Automation Conference, 2004.

[149] G. Brat, D. Bushnell, M. Davies, D. Giannakopoulou, F. Howar, and T.
Kahsai, “Verifying the Safety of a Flight-Critical System,” in FM 2015:
Formal Methods, Springer, 2015, pp. 308–324.

[150] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “To-
wards Formal Approaches to System Resilience,” in Dependable Computing
(PRDC), 2013 IEEE 19th Pacific Rim International Symposium on, IEEE, 2013,
pp. 41–50.

[151] B. B. Gerstman, StatPrimer, Accessed on 06.01.2017, 09:53, 2003. [Online].
Available: http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-
table.pdf.

140

https://spectrum.ieee.org/semiconductors/processors/transistor-aging/0
https://spectrum.ieee.org/semiconductors/processors/transistor-aging/0
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

[152] GNU Make: Parallel Execution, Accessed on 25.01.2017, 12:34. [Online].
Available: https://www.gnu.org/software/make/manual/html_node/
Parallel.html.

[153] S. Gauria, Verilog-VCD File Parser v1.07, Accessed: 2016-03-10. [Online].
Available: https://pypi.python.org/pypi/Verilog_VCD.

[154] G. M. Amdahl, Validity Of the Single Processor Approach to Achieving Large
Scale Computing Capabilities, Accessed on 13.01.2017, 15:44, 1967. [Online].
Available: http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.
pdf.

[155] Synopsys R©, Design Compiler R© User Guide, Accessed: 2016-2-23. [Online].
Available: http://acsweb.ucsd.edu/~coz004/DC_user_guide.pdf.

[156] S. Teran and J. Simsic, 8051 Core, Accessed: 2016-03-14, 2002. [Online].
Available: http://opencores.org/project,8051.

[157] Open Cores, AltOr32, Accessed: 2016-03-14, 2012. [Online]. Available:
http://opencores.org/project,altor32.

[158] D. A. Patterson, Computer Architecture: A Quantitative Approach. Elsevier,
2011.

[159] T. Hoefler and R. Belli, “Scientific Benchmarking of Parallel Computing
Systems: Twelve Ways to Tell the Masses when Reporting Performance
Results,” in Proceedings of the international conference for high performance
computing, networking, storage and analysis, ACM, 2015, p. 73.

[160] B. Spanfelner, D. Richter, S. Ebel, U. Wilhelm, W. Branz, and C. Patz,
Challenges in Applying the ISO 26262 for Driver Assistance Systems, Accessed
on 06.06.2016, 14:43. [Online]. Available: http://www.ftm.mw.tum.de/
uploads/media/28_Spanfelner.pdf.

141

https://www.gnu.org/software/make/manual/html_node/Parallel.html
https://www.gnu.org/software/make/manual/html_node/Parallel.html
https://pypi.python.org/pypi/Verilog_VCD
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://acsweb.ucsd.edu/~coz004/DC_user_guide.pdf
http://opencores.org/project,8051
http://opencores.org/project,altor32
http://www.ftm.mw.tum.de/uploads/media/28_Spanfelner.pdf
http://www.ftm.mw.tum.de/uploads/media/28_Spanfelner.pdf

	Acknowledgments
	Abstract
	Contents
	Introduction
	Safety Verification in the Automotive Industry
	Safety Verification on Hardware Architectures
	Motivation
	Linking Safety Analysis and Verification
	Need for Early Safety-Architecture Exploration
	Optimization of Safety-Verification Campaigns

	State of the Art
	Simulation-Based Fault-Injection Methods
	Optimization of Fault-Injection Simulations

	Contributions of this Thesis
	Previous Publications
	Structure of this Thesis

	Safety-Verification of Hardware Models
	Virtual Prototypes
	SystemC
	TLM

	Simulation-Based Fault Injection
	Fault-Injection Environment
	Fault-Injection Attributes
	Fault-Verification Space
	Fault-Propagation Paths
	Types of Hardware Simulators
	Fault Models

	Summary

	Generic Fault-Injection Methods for Virtual Prototypes
	Introduction
	SCFIT
	Fault-Injection Locations
	Fault Models
	Fault-Injection Flow
	Model-Based Automation and Graphical User Interface

	Simulator Commands for SystemC
	Simulator Commands for SystemC/TLM
	Injectable Interface
	Injectable Payload
	Injectable Sockets

	Summary

	Improving the Correlation of Fault-Injection Results
	Introduction
	Fault-Masking Effects
	Electrical
	Latch Window
	Temporal
	Logical

	Pseudo-Faults and Pseudo-Failures
	Fault-Matching Points
	Augmentation of Virtual Prototypes with Gate-Level Data
	VERITAS
	VERITAS++

	Summary

	Optimizing Fault-Injection Simulations
	Introduction
	Measures for Verification Completeness
	SaVer
	Fault-Injection Flow
	Fault-Injection Methods

	Spatial and Temporal Fault Pruning
	Removal of Redundant Fault-Injection Locations
	Simulation-Trace Analysis

	Parallelization of Fault-Injection Simulations
	Simulation Checkpointing
	Checkpoint
	Restore
	Checkpointing within SaVer
	Performance Analysis

	Summary

	Experimental Results and Discussion
	Application Example
	Adder Architectures
	Microprocessor Cores

	Experimental Setup
	Quantitative Analysis of Fault-Matching Points
	Qualitative and Quantitative Analysis of Permanent-Fault Effects
	Simulation Performance of Fault-Injection Methods
	SCFIT
	Injectable TLM Sockets
	Fault-Injection Objects

	Performance Measurements of Checkpointing Mechanism
	Requirements of Hard-Disk Space
	Generation Time of Checkpoints

	Reduction of Fault-Verification Space
	Spatial Fault Pruning
	Temporal Fault Pruning

	Speed-Up of Fault-Effect Analysis
	VERITAS and VERITAS++
	Checkpointing Mechanism

	Summary

	Conclusion
	ISO 26262 and Functional Safety
	Introduction
	Hardware Models
	Automotive Safety-Integrity Levels (ASILs)
	Failures Modes
	Tolerance-Time Interval
	Safety-Coverage Metrics
	Single-Point-Fault Metric (SPFM)
	Latent-Fault Metric (LFM)

	Architecture Vulnerability Factor
	Linking Safety Analysis to Fault-Injection Frameworks
	Acronyms
	Glossary
	List of Figures
	List of Tables
	Bibliography

