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List of symbols and mathematical notation

In this thesis, the following mathematical notation is used consistently:

j − imaginary unit

x −
{
a variable representing a real number
a continuous or discrete function returning a real number

x(t) − value of the continuous function x : R 7→ R for input t
x − a vector

xk −


if x is a vector: value of its kth element
if x is a discrete function x : Z 7→ R: value of x for input k
else: any of the possibilities described under x

X −



a constant such as the period T or the number of items N
a set
a matrix X ∈ Rm×n or X ∈ Cm×n

a variable representing a complex number
a function returning a complex number

Xij − the element in the ith row and jth column of matrix X
X(t) − value of the continuous function X : R 7→ C for input t

Xk −
{
if X is a discrete function X : Z 7→ C: value of X for input k
else: any of the possibilities described under X

Whether x, xk, X or Xk represents a variable or a function is described
explicitly when the specific symbol is introduced. Signals are considered to be
functions in this thesis, since they relate a signal value (output) to a certain
point in time (input).

The notation above is unusual in parts: in other publications, functions are
often expressed including the argument, e.g., x(t). However, this notation is
not accurate and can lead to contradictions, as explained in Lee & Varaiya
(2011, p. xiv). Moreover, according to norms such as IEC 60050-131:2002
(2002), the voltage, current and active power are written with uppercase letters,
whereas they are written with lowercase letters here for consistency reasons. In
this way, the current i is also clearly distinguishable from the complex current
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harmonic In. Frequently used symbols and their meanings are listed in the
following Table 0.1.

Table 0.1: List of frequently used symbols
Symbol Meaning
f Arbitrary signal
t Time
k Time, discretely measured
u Voltage
i Electric current
I Electric current harmonic
p Active power
q Reactive power
s Apparent power
d Distortion power
z Z-value, also referred to as standard score
T Duration of one period in a periodic signal
N Number of elements
φ Phase angle
ω Angular frequency
θ Signal referring to the operating behavior of a two-state load,

whose value is either 0 (off) or 1 (on)
ξ Signal representing the probability of a step change
ε Error
σ Standard deviation
µ Mean
N Gaussian distribution



List of abbreviations

Abbreviations are used sparsely in the thesis. The few abbreviations that are
not listed in dictionaries are presented in Table 0.2.

Table 0.2: List of uncommon abbreviations used in this thesis
Abbreviation Meaning
FSM Fixed-speed motor
NILM Nonintrusive load monitoring
PLC Programming logic controller
UBR Uncontrolled bridge rectifier
VSD Variable speed drive





1 Introduction

This chapter describes the initial situation and the problem that this thesis
aims to solve. Moreover, the requirements for a potential solution are specified,
and the structure of the thesis is explained.

1.1 Initial situation

For many manufacturing companies in Germany increasing the energy efficiency
has become a relevant objective (Abele & Reinhart 2011; Putz et al.
2017). For example, the car manufacturing companies BMW AG, Daimler AG,
Volkswagen AG and General Motors Company LLC proclaimed that they will
reduce the energy consumption per produced vehicle by between 20 % and
45 % (see Tab. 1.1).

Table 1.1: Energy efficiency targets of car manufacturers

Company and source Reduction target for energy consumption
per produced vehicle

BMW AG
(BMW AG 2018, p. 55)

45 % between 2006 and 2020

Daimler AG
(Daimler AG 2018, p. 119)

25 % between 2015 and 2022
(for Mercedes-Benz car plants)

Volkswagen AG
(VW AG 2018, p. 77)

25 % between 2010 and 2018

GM Company LLC
(GMC LLC 2018, p. 105)

20 % between 2010 and 2020

Their motivation is manifold. First, by increasing energy efficiency, their
energy costs can be reduced. This has become of particular interest since
the electricity price for industrial companies in Germany, including taxes,
has increased by a factor of 284 % between 2000 and 2018 (see Fig. 1.1).
Second, manufacturing companies can reduce their tax burden of the electricity
price under certain conditions, according to §10 StromStG (electricity tax act)
and §40 EEG (renewable energy sources act). One of these conditions is the
implementation of organizational measures according to, e.g., the ISO 500001,
EMAS or DIN 16247-1 norm. According to these norms, the companies



2 1 Introduction

must demonstrate a continuous effort and corresponding results regarding the
improvement in energy efficiency. Third, some end customers prefer sustainably
manufactured products and are willing to pay more for such products (see
Fig. 1.2).
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Figure 1.1: Electricity price for industrial customers (BDEW 2018)

2013 2014 2015

year

0 %

20 %

40 %

60 %

80 %

p
er

ce
n
ta

g
e

50 %
55 %

66 %

Figure 1.2: Percentage of customers (N=30,000 based on an online survey)
that are willing to pay extra for products and services that come
from companies committed to positive social and environmental
impact (The Nielsen Company LLC 2015, p. 8)
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One of the ways in which a manufacturing company can increase energy effi-
ciency is by increasing the electric energy efficiency of its production machines.
This area is relevant, since electric energy costs represents approximately 67 %
of all energy costs in the mechanical engineering sector (Graßl 2015). About
66 % of the electric energy is converted via machines into mechanical energy,
process heating or process cooling in the mechanical engineering sector (Rohde
2017). The residual 34 % of the electric energy is used for illumination, hot
water, room heating and cooling as well as information technology. Therefore,
in the mechanical engineering sector, the share of the electric energy costs from
production machines in the total energy costs of an average company can be
estimated to be 50 %.

To increase the electric energy efficiency of an existing production machine, its
electric energy demand needs to be reduced while maintaining its value-adding
output (Gebbe et al. 2015; Patterson 1996) (see Fig. 1.3).

value-adding
output

non-value-adding output

energy
input

Figure 1.3: Schematic Sankey diagram describing the term energy efficiency.
Based on (Patterson 1996)

This can be achieved in the following ways (Reinhart et al. 2010):

• Reduction of the non-value-adding output during idle times;
• Reduction of the non-value-adding output during active times;
• Providing the value-adding output more efficiently by, e.g., substituting

components.

Several related examples have been reported in literature and they will be
described next:

Reduction of non-value adding output during idle times One possibility is
to simply reduce the duration of idle times. This can be achieved through
manufacturing scheduling strategies which take into account the energy demand
of machines in various states (Ataby et al. 2014; Kohl et al. 2014; Langer
et al. 2014; Neugebauer et al. 2012b; Stoldt et al. 2013; Teiwes et al.
2018; Willeke et al. 2016). Another possibility is to turn off parts of the
machine, i.e., machine components, which are not necessary at that moment
(Li et al. 2011). Turning off machine components can be automated by
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modifying the control system of existing machines. This was performed by
the Leoni AG, which operated a galvanization process, comprising, among
other things, two circulation pumps (Reinhart et al. 2016). These pumps
worked under full load the whole time, even during idle times, since no standby
mode was available. By retrofitting the pumps for 500 €, a standby mode
was introduced, which lead to annual cost savings of approximately 3,000 €.
Similarly, in (Steinhilper et al. 2015), a blasting machine was analyzed. It
was found that during idle times, an industrial robot as well as a conveyor
system for the blasting abrasive, comprising a lifting unit, a screw conveyor and
a sieving unit, were unnecessarily active. Through a simple reprogramming,
the energy demand during idle times could be reduced by 4.4 kW or 80 %.
More examples in which the energy demand of machines during idle times was
reduced are presented in (Reinhart et al. 2016): Voith GmbH & Co. KGaA
reprogrammed automated weaving looms in several of their plants with the help
of the loom manufacturer. Fujitsu Technology Solutions GmbH implemented
a new, less energy-consuming standby mode with a longer ramp-up time for
an existing soldering unit. BSH Hausgeräte GmbH noticed that one plastic
manufacturing machine consumed 50 % as much electric energy in standby
mode as in the active mode. While a modification was not economical for the
existing machine, improvement measures were derived for the next purchase of
a similar machine. In all examples described above the electric energy demand
of the machine components was measured at first to quantify their degree
of utilization and to estimate the energy saving potential of a new control
strategy.

Reduction of non-value adding output during active times Even in active
times, machine components can generate non-value-adding output, namely if
the output is excessive. In these cases, the energy demand can be reduced by
varying the process parameters. For example, the energy efficiency of cleaning
systems could often be increased by reducing the duration of the cleaning
process or the temperature of the cleaning fluid because these parameters were
often defined with a large safety margin (Kübler 2017; Reinhart et al.
2017). The energy demand per cleaned piece could consequently be reduced
by approximately 30 % in real-world applications. The fluid temperature of
a cleaning basin was also reduced by BSH Hausgeräte GmbH by utilizing
an alternative cleaning agent (Reinhart et al. 2016). In a similar manner,
Herrmann et al. (2014) suggested reducing the system pressure of the
hydraulic fluid in a pressure casting machine, Eberspächer et al. (2014)
recommended adjusting the magnetization current of the main drives of a
tooling machine during partial load and Denkena et al. (2013) proposed
reducing the temperature, duration and raw part volume of a forging process.
Apart from the above mentioned process parameters, several authors (Brossog
et al. 2014, 2015; Brüggemann & Laumeyer 2013; Senft 2012; Simon
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2015) reported that changing the movement paths of industrial robots from
linear paths to more circular ones can lead to significant energy savings. Also
in these cases, it is advised to measure the electric energy demand of relevant
machine components in order to quantify the effect of a parameter change on
their electric energy demand. One could argue that it would suffice to measure
the electric energy demand of the machine as a whole. However, Popp & Zäh
(2014a, b) showed that the electric energy demand of machine as a whole is
often not reproducible due to decentralized controls. Therefore, it is at least
beneficial to measure the components directly and thus quantify the effect
accurately.

Substitution of components Last, machine components have been substituted
to increase energy efficiency. A frequent example are electric motors which run
at partial load and thus, generally, at a lower than nominal efficiency (Auinger
2001; USDOE 1997). If the motor is substituted with a smaller one, the load
factor and accordingly the efficiency increases. Such a substitution is usually
only economical if a new motors needs to be purchased in any case, e.g., due
to a defect. In these cases, purchasing a smaller motor reduces not only energy
costs but also investment costs. The substitution of a motor was recommended
in a case study by Böhner et al. (2014), in which one of the main drives in a
manufacturing plant had a nominal power of 260 kW but only supplied 179 kW
at peak times. Therefore, a downsizing of the current motor into two separate
100 kW motors was advised. This measure was estimated to increase the motor
efficiency by nine percentage points on average and thus generate energy cost
savings of approximately 14,000 € annually. Similarly, the Leoni AG discovered
that two pumps in a closed circuit were significantly overdimensioned. As a
result, they removed one of the pumps and installed a variable speed drive on
the other pump which resulted in cost savings of 12,000 € per year (Reinhart
et al. 2016). In both cases it was necessary to measure the electric energy
demand of the motor to determine the load factor and evaluate the saving
potential of substituting the motor. Apart from motors, machine components
used for energy storage can be substituted. For example, in (Abele et al.
2014), the valves of a hydraulic fluid storage tank, which were free of defects,
were substituted with less leaking ones. In doing so, the average power of
the hydraulic pump during standby was reduced from 826 W to 5 W. The
unexpectedly high leakage rate was discovered by measuring the electric energy
demand of the hydraulic pump during standby and noticing the high frequency
of turn-on and turn-off events every 27 seconds.

As the examples above demonstrate, measuring the electric energy demand of a
production machine at the component level is necessary for identifying and
subsequently evaluating certain efficiency measures. Therefore, this kind of
measurement is recommended by several systematic approaches for improving
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the energy efficiency of machines (Abele et al. 2015; Böhner et al. 2014;
Dörr et al. 2013; Liebl et al. 2018; Reinhart et al. 2010). It has also
been performed in several other case studies analyzing the energy efficiency of
tooling machines (Abele et al. 2011; Behrendt et al. 2012; Brecher et al.
2010, 2012; Denkena et al. 2014, 2015; Neugebauer et al. 2010, 2012a) or
handling processes (Fleischer et al. 2016). In addition, the energy demand
of machine components is a required input for several energy efficiency oriented
control systems (Eberspächer et al. 2014; Larek et al. 2011; Verl et al.
2011b).

1.2 Problem statement

Each electric energy demanding machine component represents an (electric) load
according to (IEC 60050-151:2001 2001). This definition includes components
that convert the input electric energy into another form of electric energy,
such as a 24 V power supply. The electric energy demand of any load can be
determined by measuring the current flow through the load and the voltage
drop across the load. Based on those two signals, the active power demand can
be calculated (IEC 60050-113:2011 2011), which represents the time derivative
of the electric energy demand (IEC 60050-131:2002 2002).

Therefore, a current clamp needs to be installed at each load of a production
machine. In this thesis, it is assumed that only loads that are illustrated in
the first level in Fig. 1.4 need to be measured. Loads in deeper levels, such as
sensors or actors which are fed by a 24 V power supply, are typically of much
lower interest due to their lower energy demand, and are thus not measured.
This simplification also allows one to acquire the voltage signal only once, since
it is approximately the same for all loads in the first level, as they are connected
in a parallel circuit.

While this type of setup can be considered to be the reference measurement
method, it is rather expensive and time consuming: First, dozens of current
clamps are typically required for a manufacturing machine, since one machine
comprises several loads, and most loads draw current on three phases. In
combination with a data acquisition device which can record dozens of signals
synchronously with a suitable sampling rate in the order of kilohertz, the
investment costs for the measurement equipment quickly exceed 10,000 € or
20,000 €. Second, by German law, only a certified electrician can install the
current clamps as it requires opening the cabinet box of a machine. Moreover,
operating the often complex measurement equipment demands additional
competences. Third, the person who installs the current clamps is usually not
familiar with the assembly of the electric structure in the cabinet box and
needs to consult the wiring diagram provided by the machine manufacturer.
Determining which loads need to be measured and finding the appropriate wires
to which to attach the current clamps might take hours. Fourth, the wires are
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L1 L2

L2.1

L3

L2.2.1

L4.2L4.1 L4.3

L5

L2.2

L4

Load which converts electrical energy into another kind of energy
(e. g. a motor or a heating element)

Load which converts electrical energy only into another form
(e. g. a 24 V power supply)

electric connector to mains supply

system boundary of machine

current clamps

first level

second level

third level

Figure 1.4: Schematic electric structure of a production machine including
its components and installed current clamps

usually fastened tightly in the cabinet box with little space around them so that
some current clamps cannot be installed due to lack of space. In such cases,
only one of the three phases might be measured at once, or an electrician might
need to elongate the existing wiring. Fifth, the data acquisition device needs to
be configured by labeling the channels, specifying the type of connection (delta,
star or any kind of voltage transformer in between) and displaying the signals.
Sixth, the recorded data must be validated. Common errors are attaching a
current clamp in the wrong direction, accidentally removing a voltage sensor
or a current clamp from the data acquisition device, assigning the wrong
voltage signal to a current signal or misinterpreting the wiring diagram. Even
if everything has been performed correctly, the actual wiring of the machine
might deviate from the specifications of the wiring diagram, for example, in
terms of permutated phases. In total, the setup for one measurement can easily
take several staff hours up to a day, considering all involved persons.

Since the reference measurement method exhibits high purchasing costs for
the necessary equipment and a long setup time for each measurement, which
translates into high recurring costs, a more economical measurement method
is sought after.
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1.3 Requirements on solution

An alternative measurement method should be characterized by lower costs
and a similar benefit compared to the reference method described above. The
cost and benefit depend on the following properties:

• The initial costs depend on the utilized measurement equipment.
• The running costs depend on the effort for each measurement.
• The benefit of a measurement can be characterized by the quality of the

measurement result.

Therefore, three related requirement categories are defined in the following.

Requirements on the measurement equipment:

• The measurement equipment can be used for multiple ma-
chines. Since a medium-sized factory usually contains hundreds of
machines, it is essential that the measurement equipment can be used
not only for a few selected machines, but for any.

• The initial costs for the measurement equipment are approxi-
mately 10,000 € or less. The measurement itself does not generate
cost savings, and it is not guaranteed that suitable efficiency measures
resulting in cost savings can be identified by conducting a measurement.
It is thus important that the initial costs are low. Based on the fact that
typical energy efficiency measures yield cost savings of the order of magni-
tude of several thousand euros per year, per machine (see subsection 1.1),
initial costs of approximately 10,000 € would be amortized in a few years
by finding only one such efficiency measure. Such a reward-to-risk ratio
seems appropriate.

Requirements on the effort for each measurement:

• The measurement method can be executed by non-experts.
While energy managers or members of the energy efficiency team have
certain competencies, they are not necessarily certified electricians or
knowledgeable in operating production machinery. However, if the exe-
cution of a measurement method requires such knowledge, they cannot
perform the measurement method themselves, and an expert needs to be
called in. This prolongs the measurement process and increases the costs
for each measurement.

• The setup time for a measurement at a new machine requires
approximately one hour or less. Similar to the argument above,
any performed measurement should be as time-efficient and hence as
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economical as possible, since the benefit is uncertain. Probably more
important than the economic aspect is the fact that measurements with
a setup time of several hours or days are likely to be postponed, because
they are rarely urgent or top-priority matters, neither for an energy
manager nor for an electrician. Based on this thought, a setup time
of one hour seems sensible, as it can be easily integrated into a typical
working day.

Requirements on the measurement result quality:

• The identified loads make up approximately 80 % or more of
the aggregate active power demand. In theory, it is desirable to
know the power demand of every load in a machine. However, in practice,
carrying out an energy efficiency measure is only profitable if the cost
savings are significant. The reason is that the cost savings must outweigh
the costs for planning and executing an efficiency measure. This cannot
be achieved with loads exhibiting a low power demand such as a small
power supply or a fan venting the cabinet box. Therefore, such loads are
not of practical interest. A sensible threshold value is 80 %, based on the
Pareto principle (Juran & Gryna 1951) or the ABC analysis (Dickie
1951).

• The measurement accuracy for each of the identified loads is
approximately 85 % or higher. In this thesis, the term measurement
accuracy is defined as

acc = 1−
∫
|pmeas(t)− pref (t)|dt∫

|pref (t)|dt︸ ︷︷ ︸
≡ε

, (1.1)

where pmeas refers to the active power demand determined by a new
measurement method, and pref represents the "true" active power demand
determined by the reference measurement method described above. The
subtrahend ε is referred to as the measurement error. In principle, an
accuracy of 100 % is desirable. However, in practice, it is only necessary
to detect those energy deficits that are economically feasible to tackle.
This does not hold true for deficits in which the energy demand is only a
few percent in excess of what is actually required because, in these cases,
the cost savings are less than the costs for carrying out the efficiency
measure. Instead, the cost savings and hence the difference between the
actual and the required energy demand needs to be significant, e.g., by a
factor of 150 % (see subsection 1.1). To detect such a deficit, an accuracy
of 85 % is sufficient, since it would measure an excess factor of 150 % as
128-173 %, which is still excessive.
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1.4 Scientific approach and structure of thesis

The work in this thesis can be classified as applied research which is defined as
"an original investigation undertaken in order to acquire new knowledge [. . . ]
directed primarily towards a specific, practical aim or objective" (OECD 2015,
p. 29). According to Siegwart (1974, p. 15), it aims at "providing a scientific
basis for finding economically viable solutions to relevant problems".

The relevant problem in this thesis was explained in subsection 1.2. It came to
the authors attention through discussions with various energy managers involved
in the research project Green Factory Bavaria as well as through literature
research. In order to find a solution to this problem, first, existing measurement
methods were analyzed and assessed (see chapter 3). One promising method
works by only measuring the active power demand of the aggregate load (i.e.,
the entire machine), and then disaggregating it into its parts automatically.
While this method has been proven to be successful for determining the active
power demand of residential household devices, it has never been applied to
machines used in manufacturing. Since its suitability depends on the type of
loads present in the aggregate load, an empirical analysis of approximately
150 loads of machines used in manufacturing was carried out (see chapter 4).
Based on this analysis, the suitability of the existing disaggregation methods
was evaluated in more detail for the most prevalent loads. The evaluation
revealed four distinct deficits, which were mathematically proven when possible
(see chapter 5). For each of the four deficits a new, improved method was
designed (see chapter 6). These new methods were merged into a combined
measurement method based on disaggregation and applied to seven machines
used in manufacturing (see chapter 7). Based on the application results, the
new combined measurement method was assessed according to the criteria
defined in section 1.3 (see chapter 8). Finally, the research carried out in
this thesis was summarized and future research directions were proposed (see
chapter 9).

The structure of this thesis is presented graphically in Fig. 1.5. The dominant
part of the scientific work can be characterized as design work according
to Balzert et al. (2017, p. 72ff) while chapter 4 and chapter 5 comprise
empirical and theoretical work, respectively. All conducted steps were devised
to comply to the research principles of replicability, independence, precision
and falsification (Recker 2012, p. 16).
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2 Fundamentals

In order to prepare the reader for the following chapters, some information
taught in (advanced) university courses is briefly summarized in this chapter.
Since the main topic of the thesis is the measurement of electrical energy,
relevant electrical properties such as the active power, current harmonics and
the total harmonic distortion are defined in section 2.2. These definitions
make use of the Fourier transform, which is therefore introduced in section 2.1
beforehand. One of the most relevant machine components in this thesis are
motors fed by a variable speed drive, which are thus presented in section 2.3.
All of the variable speed drives discussed in this thesis comprise rectifiers, whose
characteristic current draw is explained in section 2.4. Finally, many signals
are classified automatically in this thesis using machine learning methods and
the relevant technical terms are hence introduced in section 2.5.

2.1 Fourier transform

The Fourier transform decomposes a signal into its various frequency compo-
nents (Sung et al. 2002). With the continuous Fourier transform a continuous,
integrable signal f ′ : R 7→ R can be transformed into another continuous signal
F ′ : R 7→ C as

F ′(v) =
∫ +∞

−∞
f ′(t)e−2πjvtdt , (2.1)

where j represents the imaginary unit, t the time and v the frequency.

Similarly, a discrete signal f : Z 7→ R with fk = f ′(t0 + kT ) with a sampling
frequency of T and k = 0, 1, ..., N − 1 possesses a discrete Fourier transform
F : Z 7→ C defined as

Fn = 1
N

N−1∑
k=0

fke
−2πj(n/N)k , (2.2)

where n/N is analogous to the frequency v (Bracewell 1978, p. 260). If f is
real valued (fk ∈ R∀k), the symmetry FN−n = F ∗n holds true.
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Based on the discrete Fourier transform F , the original signal f can be recon-
structed using the inverse discrete Fourier transform:

fk =
N−1∑
n=0

Fne
2πjnk/N (2.3)


f0
f1
f2
...

fN−1


︸ ︷︷ ︸
≡ f

= F0


1
1
1
...
1


︸ ︷︷ ︸
≡ f0

+F1


1

e2πj·1·1/N

e2πj·1·2/N

...
e2πj·1·(N−1)/N


︸ ︷︷ ︸

≡ f1

+ . . .+ FN−1


1

e2πj·(N−1)·1/N

e2πj·(N−1)·2/N

...
e2πj·(N−1)·(N−1)/N


︸ ︷︷ ︸

≡ fN−1

The equation above can be understood such that the original signal f can
be represented as the sum of f0, f1, ..., fN−1, which are oscillations of a single
frequency (see Fig. 2.1). Moreover, it can be demonstrated, that f0, f1, ..., fN−1
are pairwise orthogonal to each other, since:

< fm, fn > = FmF
∗
n

N−1∑
k=0

e2πjmk/Ne−2πjnk/N (2.4)

= FmF
∗
n

N−1∑
k=0

e2πj(m−n)k/N

= FmF
∗
nNδmn ,

where δmn represents the Kronecker delta.

time

f

f1

f2

f3

Figure 2.1: The signal f can be represented as the sum of f1, f2 and f3
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2.2 Electrical properties

The electric power is defined as the derivative with respect to time t of the
energy e being transferred or transformed (IEC 60050-113:2011 2011). Based
on the measured voltage u and the current i, the instantaneous power pinst
can be calculated as

pinst(t) ≡
d

dt
e(t) = u(t)i(t) . (2.5)

If the flow of electric charges represented by i is in only one direction, the
operating mode is referred to as direct current (DC). If, on the other hand, i
changes its direction periodically, one speaks of alternating current (AC). In the
latter case, pinst will oscillate with period T/2, and instead of the instantaneous
power, the more relevant property is the active power p, which is defined as
(IEC 60050-131:2002 2002)

p(t0) ≡ 1
T

∫ t0+T

t0

pinst(t)dt . (2.6)

For a sinusoidal voltage and a linear load, u and i can be represented with
ω = 2π/T and φ = α− β as

u(t) =
√

2ûcos(ωt+ α) = R

(
√

2 ûejα︸︷︷︸
U

ejωt

)
= R

(√
2Uejωt

)
and (2.7)

i(t) =
√

2̂icos(ωt+ β) = R

(
√

2 îejβ︸︷︷︸
I

ejωt

)
= R

(√
2Iejωt

)
.

The instantaneous and active power can then be calculated as

⇒ pinst(t) =u(t)i(t) = R
(√

2Uejωt
)
· R
(√

2Iejωt
)

(2.8)

=2 · 1
2
(
Uejωt + U∗e−jωt

) 1
2
(
Iejωt + I∗e−jωt

)
=1

2
(
UIe2jωt + U∗I∗e2jωt + UI∗ + U∗I

)
=R
(
UIe2jωt + UI∗

)
and

⇒ p(t0) = 1
T

∫ t0+T

t0

p(t)dt = R (UI∗) = R
(
|U ||I|ej(α−β)) = |U ||I|cos(φ) .
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In contrast to the above, any periodic, but not necessarily sinusoidal voltage and
current can be represented by means of the Fourier transform as (Hanzelka
& Milanović 2008)

u(t) =R

(
∞∑
n=0

√
2Unejnωt

)
and (2.9)

i(t) =R

(
∞∑
n=0

√
2Inejnωt

)
.

Each summand represents an oscillation whose angular frequency is an integer
multiple n of the base angular frequency ω. Therefore, these summands are
also termed harmonics, e.g., the summand with n = 2 can be called the
second harmonic. Moreover, the vector [I0, I1, · · · , I∞] can be referred to as
the spectral envelope of the current harmonics. Based on the spectral envelope,
the total harmonic distortion (THD) of the current i can be calculated as

THD =
√
|I2|2 + |I3|2 + |I4|2 + . . .

|I1|
. (2.10)

For this general scenario, the active power p and another electric property
called the apparent power s can be defined as

p(t0) =
∫ t0+T

t0

u(t)i(t)dt =
∞∑
n=0

|Un||In|cos(φn) and (2.11)

s(t0) ≡

√
1
T

∫ t0+T

t0

u(t)2dt

√
1
T

∫ t0+T

t0

i(t)2dt =

√√√√ ∞∑
n=0

|Un|2
∞∑
n=0

|In|2 .

Furthermore, Budeanu (1927) proposed defining the reactive power q and the
distortion power d as√

s(t0)2 − p(t0)2 ≡
∞∑
n=0

|Un||In|sin(φn)︸ ︷︷ ︸
q(t0)

+d(t0) . (2.12)

It is important to note that for an ideal alternating voltage source,
(Un = 0|n 6= 1), so that p = |U1||I1|cos(φ1) and q = |U1||I1|sin(φ1). If the
current is also a pure sinus, i.e., (In = 0|n 6= 1), the distortion power is zero,
i.e., d = 0, and s2 = p2 + q2 holds. Even though the power theory of Budeanu
(1927) has several disadvantages (Czarnecki 1997), it still remains popular
today (Czarnecki 2011; Jeltsema 2015).
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2.3 Electric motors

Electric motors are used to convert electrical energy into mechanical energy. In
the last century, a wide variety of electrical motor types have been developed.
According to Sclater & Traister (2003, p. 346), they can be broadly
classified as either AC or DC motors based on their necessary electric energy
supply. Alternating current motors can be further partitioned into synchronous
and induction motors or single- and poly-phase motors. The classification
scheme by Sclater & Traister (2003) is illustrated in Fig. 2.2.

AC
motor

- permanent 
  magnet
- series wound
- shunt wound
- compound
  wound

single
phase

poly
phase universal

induc-
tion

synchro-
nous

induc-
tion

synchro-
nous

squirrel
cage

wound
rotor

- split phase
- capacitor
  start
- permanent
  split
  capacitor
- shaded pole
- two-value
  capacitor

- repulsion
- repulsion 
  start
- repulsion
  induction

- shaded
  pole
- hysteresis
- reluctance
- permanent
  magnet

- wound rotor
- squirrel cage

DC
motor

Figure 2.2: Classification of electric motors (Sclater & Traister 2003,
p. 346)

One relevant motor, which is not explicitly presented in Fig. 2.2, is the elec-
tronically commutated motor, also called brushless DC motor. This motor
is similar to the AC synchronous permanent-magnet motor. The difference
between them is the wave shape of their induced electromotive force (Kr-
ishnan 2001, p. 523; Pillay & Krishnan 1989a, b). It is sinusoidal for
AC synchronous permanent-magnet motors and trapezoidal for electronically
commutated motors.
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In the simplest form, AC and DC motors are directly connected to an AC or
DC supply respectively. To vary the motor speed or optimize the performance,
motors can be equipped with an additional variable speed drive. A variable
speed drive system consists of an electric motor, a power converter and a
controller (see Fig. 2.3). There are various ways in which to classify variable
speed drive systems, e.g., by application, by power converter type or by motor
(Rashid 2007, p. 887 ff). A list of typical applications for variable speed
drive systems is presented in Table 2.1, which indicates their importance for
manufacturing companies.

power converter mech.
loadM

control system command signals

AC
supply

potential
transformer

potential
gearsmotor

sensors

Figure 2.3: Structure of a variable speed drive (Rashid 2007, p. 882)

Table 2.1: Exemplary applications of different variable speed drives
(Koschnick & Sattler 2013)

Type of variable speed drive Exemplary applications

Drive controller for AC motors
with a joint DC link

Tooling machines, packaging machines
and industrial robots

Drive controller for AC motors
(single axis)

Pumps, fans, compressors, extruders,
conveyors, cranes and ship propulsion

Drive controller for electronically
commutated motors

Pick and place, handling and adjusting

Drive controller for DC motors
(single axis)

Rolling mill, cableway and test stands

Due to the importance of AC squirrel cage induction motors for the industry
(Rashid 2007, p. 897; Frost & Sullivan 2014; Chaudhary 2015), such drive
systems shall be discussed in more detail. In order to change the rotor speed
of an induction motor, the number of poles, the slip or the supply frequency
can be changed (Krishnan 2001, p. 262). A variable supply frequency from
the AC mains can be achieved through a rectifier, a DC-link and a pulse-
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width-modulated inverter (see Fig. 2.4). Similarly, the power converter of
an AC synchronous permanent-magnet motor drive consists of a rectifier, a
DC-link and a pulse-width-modulated inverter (Pillay & Krishnan 1989b;
Rasmussen et al. 1997).

induction
motor

pulse width 
modulation

inverter

diode
rectifier

DC link
filter

C M

three-phase
AC power

supply

VDC

Figure 2.4: Exemplary structure of the power converter of a variable speed
drive for an induction motor (Krishnan 2001, p. 314)

2.4 Rectifier circuits

As explained above, several types of variable speed drives comprise rectifiers.
Thereby, they exhibit a characteristic current waveform, which can be explained
by looking only at the rectifier and modeling the inverter, the connected motor
and the mechanical load as a DC source (Wichakool et al. 2009; Xu et al.
1999) or as a simple ohmic resistor (Zhou et al. 2015). The influence of
the inverter, motor and mechanical load on the current shape is assumed to
be negligible as explained by Xu et al. (1999). The characteristic current
waveform depends on the type of rectifier. Here, three types of rectifiers shall
be differentiated:

• A single-phase uncontrolled full-wave bridge rectifier;
• A three-phase uncontrolled full-wave bridge rectifier;
• Any type of rectifier (three-phase or single-phase) using power factor

correction.

Single-phase uncontrolled bridge rectifier The structure of a single-phase
uncontrolled full-wave bridge rectifier is illustrated in Fig. 2.5. In its simplest
form, it comprises four diodes, and, as explained above, the load can be modeled
as either a DC source or as an ohmic resistor. These options yield the same
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result when the current through the resistor is constant, which is approximately
true for the scenarios in the following. Therefore, the load was modeled as a
resistor Rload. The voltage between both ends of the diodes can be calculated
as uDC(t) ≈ max(uL(t), uN (t))−min(uL(t), uN (t)) ∝ |sin(ωt)| (see Fig. 2.5).
By introducing a capacitor parallel to the resistor the diodes only become
conducting for brief moments when uDC is larger than the voltage across the
capacitor. Then, the resulting form of iL can be described by one narrow peak
per half-period (see Fig. 2.5). To limit the magnitude of the DC current, an
additional ohmic resistance Rseries (Xu et al. 1999) or inductance Lseries
(Lee et al. 2005; Zhou et al. 2015) can be introduced in series with the
capacitance and Rload.
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Figure 2.5: Electric circuit used for the simulation of an uncontrolled full-
wave single-phase bridge rectifier (top) and simulated voltages
and current with Rseries = Lseries = 0, Rload = 100 Ω and
C = 10 mF (with C) or C = 0 (without C) (bottom)
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Three-phase uncontrolled bridge rectifier The structure of a three-phase
uncontrolled full-wave bridge rectifier is presented in Fig. 2.6. It strongly
resembles the single-phase version. Again, the voltage between both ends
of the diodes can be calculated as uDC(t) ≈ max(uL1(t), uL2(t), uL3(t)) −
min((uL1(t), uL2(t), uL3(t))). Though, in this case, uDC(t) shows a different
pattern with a six times shorter period than the AC system. As a consequence,
the resulting signals iL1, iL2, iL3 typically exhibit two peaks per half-period.
The signals are zero for φ ∈ [−30°, 30°] ∪ [150°, 210°] and around φ = 90°
and φ = 270°. For large values of either the series resistance Rseries or the
inductance Lseries the current shape may change such that the signal is zero
only for φ ∈ [−30°, 30°] ∪ [150°, 210°] and nonzero otherwise. However, such a
current shape was not observed in this thesis.
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Figure 2.6: Electric circuit used for the simulation of an uncontrolled full-
wave three-phase bridge rectifier (top) and simulated voltages
and current with Rseries = Lseries = 0, Rload = 100 Ω and
C = 10 mF (with C) or C = 0 (without C) (bottom)
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Rectifier featuring power factor correction Rectifiers featuring power factor
correction do not exhibit peaks in the current waveform (see Fig. 2.7). Instead,
the current waveform is rather sinusoidal with a typical total harmonic distortion
of less than 5 % (Microchip Technology Inc. 2008). This is exactly one of
the two purposes of the power factor correction. Apart from reducing the total
harmonic distortion, which can cause problems for other electric loads in the
same building, it also aims at increasing the power factor λ(t) = |p(t)|/s(t) ≈
|p(t)|/

√
p(t)2 + q(t)2. In other words, it is employed to reduce the demand of

the reactive power q. Different topologies using high-frequency switching can
be used to achieve this goal (Microchip Technology Inc. 2008).
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Figure 2.7: Schematic voltage and current of a single-phase uncontrolled
full-wave bridge rectifier (left) and a rectifier with power factor
correction (right). Based on Microchip Technology Inc. (2008,
p. 10).

2.5 Classification in the context of machine learning

According to Mohri et al. (2012), classification is the process of assigning
a category to items. In the context of machine learning, items are said to be
characterized by features (attributes), and instead of the word category, the
word label is rather used. The function that performs the classification can be
referred to as the classifier.

A classifier can either be manually specified or it can automatically "learn" a de-
sired behavior based on existing data, i.e., without being explicitly programmed
(Koza et al. 1996). In the latter case, it is important to differentiate between
supervised and unsupervised learning (Jain et al. 1999). In supervised learn-
ing, the classifier learns from training data in which all items are labeled (see
Fig. 2.8). After this learning phase or "training", one of these labels is assigned
to new, unlabeled data.
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In contrast, no labeled (training) data exist in unsupervised learning. Instead,
a classifier is constructed such that the given data are grouped into meaningful
clusters. All items in one cluster are assigned the same label. In some cases the
number of clusters can be specified by the user. Unsupervised classification is
often referred to with the term clustering instead of the term classification.

Both supervised and unsupervised learning methods are employed in this thesis
to classify electric signals according to their electrical properties with the
purpose of identifying the type of an electric load.
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Figure 2.8: Exemplary labeled training data in the case of supervised learning
and unlabeled data in the case of unsupervised learning
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This chapter lists different measurement methods for determining the elec-
tric energy demand of machine components, and it assesses their suitability
according to the six requirements specified in section 1.3. The term measure-
ment method is defined as the "generic description of a logical organization
of operations used in a measurement" by the Joint Committee for Guides in
Metrology (JCGM 2012). The term measurement is defined as the "process of
experimentally obtaining one or more quantity values that can reasonably be
attributed to a quantity" (JCGM 2012).

To assess the measurement methods, it is helpful to differentiate electric loads
according to their number of operating states (see Fig. 3.1). Simple loads,
which can only be switched on and off and exhibit a constant active power
demand when turned on, have just two operating states and can thus be called
two-state loads. Other loads may have more than two states, but still a finite
number of operating states whose active power demand is constant and pairwise
different. These loads are referred to as multi-state loads in this thesis. Last,
there are loads in which the active power demand varies continuously. These
loads effectively have an infinite amount of operating states, and they are
referred to as continuously variable loads.

ac
ti
ve

 p
ow

er
 in

 W

time

multi-statetwo-state continuously
variable

Figure 3.1: The active power demand of a two-state, a multi-state and a
continuously variable electric load (from left to right)
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The following seven measurement methods will be analyzed:

1. Reference measurement method with mobile equipment (see section 1.2);
2. Reference measurement method with permanently installed equipment;
3. Estimation of the electric energy demand by an expert;
4. Simulation of the electric energy demand;
5. Disaggregation of the measured electric energy demand of the machine

by manually controlling the operating status of its components;
6. Disaggregation of the measured electric energy demand of the machine

by monitoring the operating status of its components;
7. Disaggregation of the measured electric energy demand of the machine

using only the measured voltage and current.

3.1 Reference method with mobile equipment

The most straightforward method to quantify the active power demand of
the electric loads in a machine is to measure the voltage and current of each
electric load. As described in section 2.2, the active power demand can then
be calculated as p(t0) ≡ 1

T

∫ t0+T
t0

u(t)i(t)dt.

In practice, the voltage is measured only once rather than at each electric load.
The reason is that the electric loads are normally connected to the mains in
a parallel circuit, and in an ideal parallel circuit, the voltage drop across the
loads is exactly the same (see Fig. 3.2). In contrast to an ideal parallel circuit,
in reality, the wirings have a non-zero electrical impedance, which differs for
each electric load due to, e.g., the cable length and the quality of the electric
connectors. However, since the impedance of the wiring is typically significantly
less than the impedance of the electric load, the assumption of an ideal parallel
circuit leads to negligible measurement errors.

uL

uN

L1 L2 L3 L4

i1
i3

i2
i4

uLN

Figure 3.2: In the reference method the current i is measured for each electric
load L and the voltage u is only measured once.
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As explained in section 1.2, with this measurement method, the true quantity
value can be obtained within the accuracy of the measurement equipment.
Potential measurement errors can be introduced by all components of the
measurement chain, including the voltage and current sensors, the current-
to-voltage transducer, the analog-to-digital converters and any transmission
unit such as cables in between (Borši et al. 2003; Hofmann 2000). In
this application scenario, some of the largest error sources are typically the
employed current clamps, which are specified with errors of a few percent
relative to the measured value. While current sensors with lower specified
errors exist, they tend to be more expensive, bulkier and may not be opened,
thereby significantly complicating the installation process. Nevertheless, the
requirement of a measurement accuracy of at least 85 % is definitely fulfilled.
Moreover, all electric loads can be measured given a sufficient number of current
clamps and enough space to attach them.

The costs of the equipment depends significantly on the necessary accuracy
and the number of electric loads. The current clamps used in this thesis cost
around 150 € per piece (Gossen Metrawatt WZ12b). Assuming that 20 current
signals corresponding to approximately seven three-phase electric loads need to
be measured, the costs of the current clamps amount to 3,000 €. In addition, a
data acquisition system that is capable of synchronously monitoring 20 current
channels and three voltage channels amounts to approximately 15,000 € (e.g.,
Dewesoft DS-Net, National Instruments DAQ) It is possible to build a system
out of automation equipment that is not meant for mobile use and thereby
decrease the costs to around 5,000 € (e.g., Beckhoff CX5140 in combination
with EL3773). However, such systems need to be assembled and programmed
after the purchase, resulting in labor costs of approximately 5,000 €. Finally,
the costs of cables, voltage clamps and hardware such as a monitor and input
devices can be approximated to 1,000 €. In total, the initial costs will most
likely exceed 10,000 €.

The disadvantages of this measurement method have already been detailed
in section 1.2. Apart from the high initial costs, the time to set up the
measurement is long due to the necessary expert competencies, the need
to study the machine wiring specifications, the lack of space, the necessary
configuration of the measurement equipment and the validation of the recorded
signal data.

3.2 Reference method with permanently installed equipment

Similarly to the measurement method described above, the same equipment
could be permanently installed, for example, by the machine manufacturer. In
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that case, some of the drawbacks mentioned in section 1.2, such as the lack of
space and the time to study the wiring diagram, would not apply.

However, since such permanently installed equipment can only be used for the
measurement of one machine, the costs for multiple machines would increase
many times over.

3.3 Estimation by an expert

Even without any measurement of the voltage or the current, the power
demand of the machine components can be estimated by an expert based on
the measurement results of similar machinery and specification sheets provided
by the machine manufacturer (Eisele 2014). First, all relevant electric loads
and the times at which they are switched on or off could be identified with the
help of the machine operator. Further, the rated power can be found on the
type plate of motors (IEC 60034-16-1:2011 2011) or machines (Directive
2006/42/EC 2006). However, the rated power only refers to a specific operating
condition - often full load in continuous duty (USDOE 1997). In contrast, the
actual power demand can differ significantly from that value, as the examples
in section 1.1 demonstrated. Due to these uncertainties in the estimation, a
measurement accuracy of approximately 85 % for all loads is highly unlikely.

Moreover, such an estimation can only be performed by experts, and the
necessary time to discuss the electric loads of the machine, analyze its data
sheets and find relevant measurement data for comparison can total several
hours if performed diligently.

3.4 Simulation of the electric energy demand

Several authors have used simulation models to estimate the power demand
of electric loads in machines. For example, in (Eisele 2014), a method was
developed to simulate the energy demand of all components of metal cutting
machines. This simulation model was then used to minimize the energy demand
for a specific product. With the same purpose, a state-based consumption
simulation model was developed for a milling machine (Dietmair & Verl
2009; Eberspächer & Verl 2013), with which the energy consumption in
idle times could be minimized. Similar work has been reported in (Schmitt
et al. 2011; Verl et al. 2011a). Apart from tooling machines components,
the energy demand of each of the six axes of an industrial robot was simulated
by Brossog et al. (2014, 2015).

By using such models, all relevant electric loads can be simulated, and an
accuracy of above 85 % can be reached (Dietmair & Verl 2009; Eisele 2014).
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However, an expert is required to perform the simulation, and the necessary
setup time to develop an accurate machine model is in the order of days or
weeks, not hours. The development costs for this "measurement equipment" is
thus significantly larger than 10,000 €.

The greatest disadvantage of this method is that simulation models are machine
specific. While the framework and certain parts of the simulation model may
be transferable, the majority of the work needs to be performed again for a new
machine. Moreover, many machine models are trained with measurement data
acquired through the reference method mentioned above (Dietmair & Verl
2009; Eberspächer & Verl 2013). In these cases, the simulation method is
not a substitute for the reference measurement method but rather an extension
for other problem settings.

3.5 Disaggregation by means of manual control

Another method is to measure only the voltage and current of the aggregate
load (i.e., the machine as a whole), and then turn electric loads on and off
manually, one by one. In this case, the active power demand p of the manually
controlled electric load can be calculated as the difference between the measured
aggregate power and the baseline aggregate power before switching on the load
as follows:

p(t) = pagg(t)− pagg(tbefore) . (3.1)

This method can be referred to as disaggregation, since the power demand
of the individual loads is estimated based on the power consumption of the
aggregate load. Measuring the aggregate load only requires a suitable mobile
data acquisition system including three current clamps. Such a system is
available for around 2,000 € (e.g., FLUKE 1730).

The accuracy of this method depends on the types of loads and extent to which
they can be controlled manually. For example, power supplies often can not be
controlled manually, neither can a ventilator cooling a spindle in a machine
tool (without modification of the programmable logic controller). Therefore, it
is not certain whether the majority of the loads can be measured. Even if each
electric load can be controlled manually, it is not guaranteed that a typical
process of a machine can be realistically imitated through manual control.
Moreover, the power demand of all electric loads contributing to pagg(tbefore)
has to be constant, which cannot always be assured.

Performing this measurement method requires the competence to manually
control the individual electric loads of the machine, to imitate a typical process
and to identify relevant electric loads. While no formal certification is necessary,
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such competence can only be acquired through extensive experience in operating
machines.

3.6 Disaggregation by means of operating status monitoring

Panten et al. (2016) and Gebbe et al. (2014) proposed using the operating
status of electric loads to disaggregate the active power demand of an aggregate
load. While Gebbe et al. (2014) focused on disaggregating the power demand
of a process chain into the power demand of individual machines, Panten
et al. (2016) concentrated on disaggregating the power demand of a machine
into the power demand of its individual components, which is the same goal
as the one pursued in this thesis. In both cases, the power demand of the
components is calculated via a linear regression:

p̂1, p̂2, · · · , p̂N = argmin
p1,p2,···pN

∫ ∣∣∣∣∣pagg(t)−
N∑
n=0

pnθn(t)

∣∣∣∣∣
2

dt , (3.2)

where p̂1, p̂2, · · · , p̂N ∈ R refer to the estimated power of each load and θn : Z 7→
{0, 1} to the operating status of a two-state load (either on or off). Each electric
load is hence assumed to be a two-state load, and if this condition does not hold
true, the accuracy will deteriorate accordingly. Another detrimental situation
explained in (Gebbe et al. 2014) occurs if two electric loads are switched
on and off at similar times, leading to a linear correlation and numerical
instabilities. In conclusion, an accuracy of 85 % can only be achieved in a few
cases.

A more important question relates to how the operating status of the electric
loads can be obtained. It can be observed manually, which is rarely appropriate,
or it can be automatically inferred from analog or digital signals. These signals
can be monitored either at different cables in the cabinet box, which would
mean a similar effort and similar measurement equipment to those in the
reference method, or centrally from the control variables in the programming
logic controller (PLC). However, while it is rather straightforward to establish a
physical connection with the PLC, the control variables are rarely made easily
accessible through, e.g., a OPC-UA server. Instead, a symbol file exported
from the program code is necessary, which only the machine manufacturer
possesses and is usually hesitant to distribute. Moreover, some electric loads
might not be controlled by a central PLC, but by small decentralized control
loops. An example would be a simple cooling device, which turns on once a
threshold temperature is exceeded.

Adding to this disadvantage, the equipment cost for this measurement method
can become high due to the large variety of PLC suppliers and their different
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physical and network interfaces. Dealing with different systems will also require
expert knowledge. Therefore, this measurement method is only relevant for
the following types of companies:

• Those who have a limited variety of PLCs;
• Those who have access to the program code of the PLCs;
• Those whose electric loads can be reasonably approximated as ideal

two-state loads;
• Those whose electric loads are centrally controlled by a PLC for each

machine.

3.7 Disaggregation using only the voltage and the current

Last, there is the possibility to perform a disaggregation automatically through
only a detailed analysis of the current and voltage of the aggregate load. Neither
a manual control of the electric loads nor information about their operating
statuses is necessary.

This method is often termed nonintrusive load monitoring (NILM) or nonintru-
sive appliance load monitoring and the number of published papers per year
in this area has grown significantly in the past decade (see Fig. 3.3). In this
thesis, The term NILM shall refer to measurement methods that estimate the
power consumption and operational schedule of electric loads based on only
a detailed analysis of the measured current and the measured voltage of the
aggregate load (Anderson 2014; Berges et al. 2010a; Hart 1992). This is a
rather narrow understanding of the term NILM. In a broader sense, additional
information such as the operating state of electric loads (Panten et al. 2016),
environmental information from light sensors (Berges et al. 2010b), acoustic
sensors (Guvensan et al. 2013; Schoofs et al. 2010; Uddin & Nadeem
2012) or contextual information such as the time of the day (Kim et al. 2011;
Powers et al. 1991) or location of a person (Harris & Cahill 2005; Yoo
et al. 2011) can be used for the disaggregation. Nonintrusive load monitoring
can be contrasted with intrusive load monitoring, where a sensor is installed at
each electric load (Hart 1992; Ridi et al. 2015). Alternatively, NILM can
be referred to as single-point sensing, and intrusive load monitoring can be
referred to as distributed sensing (Zoha et al. 2012).

Despite its popularity, no publication exists today in which NILM has
been applied to production machines. Instead, the primary application
area of NILM has been the disaggregation of the electric energy demand of
residential households. A few authors have already addressed the industry
sector. However, they either focused on the heating, ventilation, and air condi-
tioning (Laughman et al. 2003) or a refrigerated warehouse (Holmegaard
& Baun Kjaergaard 2016) or they discussed the challenges and potential
solutions theoretically (Adabi et al. 2015). None of them targeted production
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Figure 3.3: Number of publications per year with the topic nonintrusive load
monitoring (in different spellings) according to (Elsevier 2018)

machines. Since production machines comprise different electric loads in terms
of number, type and operating behavior than residential households, the extent
to which existing disaggregation algorithms developed for households are also
suitable for production machines is unclear.

The disaggregation method using only the aggregate voltage and the aggregate
current is more complex than in cases, where, additionally the operating status
of the loads are either controlled or monitored. In fact, to date, the following
four different disaggregation routes have been proposed (Zeifman & Roth
2011; Zoha et al. 2012) (see Fig. 3.4) and they will be explained in detail in
the next subsections:

• Disaggregation based on switching events,
• Disaggregation as an optimization problem,
• Disaggregation based on correlations,
• Disaggregation using neural networks.
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Figure 3.4: Different disaggregation methods using only the measured current
and voltage of the aggregate load
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Not all four of those methods are suitable for two-state, multi-state and
continuously variable loads (see Table 3.1). Moreover, they may need to be
trained in some cases, which means that they initially need to be provided with
the ground truth and can only perform after the training period (see section 2.5).
In this application scenario, it would mean that first the electric energy demand
of all components would need to be measured with the reference measurement
method. Based on these training data, the disaggregation algorithm can learn
the desired result, and only then is it sufficient to measure the aggregate load
alone and run the disaggregation algorithm. The necessity of obtaining such
training data first stands in contrast to the requirements of a short setup time
(see subsection 1.3). Therefore, disaggregation methods requiring training do
not represent a valid alternative, and they are only briefly described next.

Table 3.1: Summary of the suitability and training requirement of the four
different disaggregation methods using no additional information.
The symbols indicate whether a statement is correct , correct
only in some cases or incorrect .

Suitable
for two-
state
loads

Suitable
for
multi-
state
loads

Suitable
for
contin-
uously
variable
loads

Does not
require
training

Disaggregation based on
switching events
Disaggregation as an
optimization problem
Disaggregation based on
correlations
Disaggregation using neural
networks

In all four methods, it is sufficient to only acquire the voltage and current of the
aggregate load (assuming no training is required). The initial investment costs
for the hardware are thus only around 2,000 €. In addition, the disaggregation
algorithms would need to be implemented either on the device or on an external
computer. In either case, the costs can be expected to be less than 10,000 €.
Moreover, since the disaggregation is performed automatically, and since the
aggregate current and voltage could be measured by connecting a measurement
device in series with the electric connector of the machine, this measurement
method could be performed by a non-expert within minutes.
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3.7.1 Disaggregation based on switching events

The term nonintrusive load monitoring was first introduced by George W. Hart
in 1985 (Hart 1985). His idea was based on the observation that each switching
event of an appliance, e.g., from on to off or vice versa, leads to a step change
in the active power demand and other electric properties such as the reactive
power demand (see Fig. 3.5 top). Such a step change can be mathematically
represented as a vector [∆p,∆q], where ∆p refers to the magnitude of the step
change in the active power and ∆q represents the magnitude of the step change
in the reactive power. For a two-state load, this vector is approximately the
same for each turn-on or turn-off event. On the other hand, different two-state
loads are characterized by different vector values. Thereby, it is possible to
identify which step changes belong to the same electric load. The complete
algorithm can be summarized in five steps:

1. Data acquisition,
2. Event detection,
3. Clustering of events,
4. Estimation of power demand for each load,
5. Labeling of loads.

First, the current and voltage of the aggregate load are measured and relevant
electric properties are calculated (see section 2.2). Second, step changes are
detected in both the active and reactive power by calculating the difference
between any two consecutive steady states (see Fig. 3.5 top). If an event is
detected, its feature vector [∆p,∆q] is extracted. Third, once all events in a
timeframe are detected, they are clustered according to their absolute features
values. Since Hart (1985) used two features, the clustering can be easily
represented in a two-dimensional plane (see Fig. 3.5 bottom). Each cluster
is assumed to be a different appliance. Fourth, for each cluster, its active
power demand is estimated as p(t) = θ(t)pon, where θ(t) = {0, 1} represents
the operating state of the load (either on or off) and can be inferred from
the detected events in a cluster, and pon ∈ R represents the constant active
power demand in the on-state, which can be calculated as the average of all
detected step-change magnitudes in a cluster. Fifth, a cluster can be labeled
as a specific appliance type, e.g., a dishwasher or an oven, based on its feature
values and its calculated duration in the on and off states. For this purpose,
either a-priori information or training data is necessary.

The actual implementation of the algorithm is more complex as described
above, since in reality, more complex situations can arise:

First, the voltage in the grid fluctuates so that even for a simple ohmic resistor
the step change ∆p calculated as ∆p = u · i = u2/R is not constant. Therefore,
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which can be clustered (bottom). Based on (Hart 1992).
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instead of the active power p, a normalized active power pnorm is used instead
which is defined as

pnorm = (Unorm/u)2 p = (Unorm/u)2 (u2/R) = U2
norm/R = const , (3.3)

where Unorm is a constant, for example, Unorm = 230 V in Europe.

Second, the algorithm above is only suitable for two-state loads. However,
Hart (1985) observed that some appliances have multiple operating states,
for example, a washing machine. In these cases, there are not just two, but
more transitions between the states, whose magnitude differs. Therefore, these
transitions will not be grouped in the same cluster, which makes the situation
much more complex. For such appliances, Hart laid out ideas in (Hart 1985)
and sketched out a "tentative" algorithm in (Hart 1992). In this algorithm the
appliances are modeled as finite-state machines and learned by hypothesizing
several possibilities and choosing the one that best fits the data according to a
number of heuristics. After one finite-state machine is learned, its events are
removed from the data so that they are learned one by one.

Third, it may be that two appliances coincidentally turn on or off at the same
time. This would lead to two missed events of known appliances, plus a new
event, which, in general, will not be grouped in a cluster and thus represents an
outlier. To resolve these situations, an anomaly resolution system is built into
the disaggregation approach. It works by searching for appliances with missed
events, which, because of the missed events, are estimated to be switched on
or off twice in a row, against common sense.

Fourth, the above-mentioned approach described the scenario in which all the
measured data are processed at once after the measurement has been performed.
In contrast, in most applications, it is desired that the measurement data are
processed close to real time. This complicates the clustering process, and
dynamic algorithms become necessary. While the algorithms become more
sophisticated, the general idea remains the same.

The structure of recent disaggregation methods based on switching events is
still the same as in Hart’s original algorithm. However, several additions and
improvements have since been made:

• More features than only the active and reactive power have been used to
classify switching events.

• Different classification and labeling procedures have been tested.
• Different methods for estimating the power demand of each cluster have

been proposed.
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3.7.1.1 More features

As additional features, current harmonics, voltage noise, transients and V-I-
trajectories have been suggested.

Harmonics Several authors have pointed out that two different appliances
may lead to the same step change [∆p,∆q] when switched on. This would lead
to an inability to distinguish them in the best case, and to an appliance being
estimated to be switched on or off twice in a row in the worst case. For this
reason, Akbar & Khan (2007); Bernard & Marx (2016); Bernard et al.
(2015); Laughman et al. (2003) used the step changes in the harmonics of
the measured aggregate current as additional features. In this way, Laughman
et al. (2003) were able to differentiate between a computer and a light bulb,
even though they had similar [∆p,∆q] values.

The vector of all harmonics is often referred to as the spectral envelope (see
section 2.2 and Fig. 3.6), and efficient ways in which to calculate it are discussed
in (Shaw & Laughman 2007). In (Bernard & Marx 2016; Bernard et al.
2015), the current harmonics were calculated until the 11th order, which
correlates to a frequency of 550 Hz in the European grid. Therefore, according
to the Nyquist–Shannon sampling theorem (Shannon 1949), the sample rate
has to be at least 1,100 Hz. In practice though, sampling rates of several
kilohertz are used to calculate the harmonics.
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Figure 3.6: Part of the spectral envelope of the current from a monitor, floor
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for the imaginary part of the current harmonic (Bernard et al.
2015).
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Srinivasan et al. (2006) also used the spectral envelope of the measured
aggregate current as the only feature to classify electric loads after a supervised
training period. However, in this paper, the absolute values of the harmonics
were used as features instead of the step changes in the harmonics. In this way,
all possible combinations of the operating states of 8-10 loads were measured or
simulated and used for training the classifier. However, this approach does not
seem practical (Zeifman & Roth 2011) because in a house with 40 two-state
loads, 240 = 1.10 · 1012 combinations would need to be learned. Moreover,
integration of new appliances would require excessive retraining.

Voltage noise An additional feature for the classification can be extracted
when using sampling rates in the high kilohertz to megahertz range for the
voltage. Patel et al. (2007) were the first to observe that solid-state switched
electric loads, such as switch mode power supplies used for consumer appli-
ances, generate high-frequency electromagnetic interference during steady state
operation, which propagates through a home’s power wiring (see Fig. 3.7.)
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Figure 3.7: Steady state voltage noise from various appliances (Gupta et al.
2010)

Based on the findings of Patel et al. (2007), Gupta et al. (2010) tested
a disaggregation based on only this feature in seven different homes with
7 to 20 appliances, and they reported an average classification accuracy of 94 %
for the switching events after a supervised training period. One disadvantage
was that not all appliances generated voltage noise in their operation. Examples
are devices with large resistive loads such as electric stoves or dryers as well as
the majority of washing machines.

Gupta et al. (2010) also tested whether devices of the same model yield
similar features. While this was true for eight LCD screens, the voltage noise
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spectra of four compact fluorescent lights, which were purchased as a package,
were shifted slightly such that the peak of the voltage noise varied between
50-55 kHz. Moreover, it was observed that the features of an LCD screen were
influenced by the touch of a hand (Gupta 2014, p. 92) and that the features of
a TV monitor were affected by the type of screen content (Gupta 2014, p. 88).
In fact, it was even possible to predict the type of movie for a TV monitor
after a training period.

Transient features All previously mentioned features are extracted from the
electric properties in the steady state. In contrast, features can also be obtained
from the transient state, which Shenkman (2006, p. 2) describes as follows:
"an electrical system is said to be in transient state when the variables are
changed non-periodically, i.e., when the system is not in steady-state. The
transient-state vanishes with time and a new steady-state regime appears."

Sultanem (1991) noticed that appliances generate different transient responses
when turned on (see Fig. 3.8). Therefore, in the disaggregation procedure, the
duration of the transient active power is used to distinguish between the loads
in addition to the [∆p,∆q] features.
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Figure 3.8: Transient currents of various appliances when switched on (Sul-
tanem 1991)



40 3 Previous work

Similarly, Leeb et al. (1993) described that the "transient behavior of a
typical load is intimately related to the physical task that the load performs"
based on a load survey conducted in Leeb (1993). In this survey, Leeb (1993)
analyzed and explained the transient behavior of linear loads, electrothermal
loads, electromechanical loads (further partitioned into DC machines, induction
machines and synchronous machines) as well as power electronic loads. As
a result, Leeb (1993); Leeb et al. (1993) used the pattern of the transient
active and reactive power for classification. Since the transients can be several
seconds or even minutes long, they are prone to overlap with another turn-on
transient. They consequently only used those segments of the transient that
varied the most - those segments were dubbed v-sections. The comparison
was performed using a transversal filter. The same approach was utilized in
(Norford & Leeb 1996).

Two years later, Leeb et al. (1995) proposed using the elements of the
spectral envelope of the transient aggregate current as features. In contrast to
section 2.2, where the elements of the spectral envelope are constant for at least
one period, Leeb used time-varying coefficients by calculating the Fourier series
coefficients in a sliding window manner - for more information see (Sanders
et al. 1991). These time-varying coefficients were then used for a classification
similar to the one described in (Leeb 1993; Leeb et al. 1993).

Instead of the Fourier series coefficients, Camps et al. (1994) used the co-
efficients from a wavelet transform of the transient power for classification.
While Camps et al. (1994) used it to classify power system disturbances,
Cole & Albicki (1998) laid out the idea to classify electric loads with it –
apparently not aware of Leebs similar work in the earlier years because Leeb
et al. (1995) was neither cited nor mentioned in the paper. Due to the
computational effort to compute wavelets, Cole & Albicki (1998) actually
proposed approximating the transient active power of electric loads with a
linear slope (see Fig. 3.9). Only the idea was presented; no classification was
performed with a case study.

From 2007 to 2012 Hsueh-Hsien Chang analyzed several ways in which to use
the transient state for classification. In (Chang et al. 2007, 2008, 2010, 2012;
Yang et al. 2007), the energy in the transient state e =

∫ tend
tstart

p(t)dt was
used as a feature, and it was classified using different types of neural networks.
In addition, in (Chang et al. 2012), the duration of the transient was used
as well.

Patel et al. (2007), who focused on voltage noise caused by electromagnetic
interference (see above), observed not only steady state voltage noise, but
also transient voltage noise and they described the frequency range between
0.5 kHz and 5 kHz as an effective range for analysis. They performed a
fast Fourier transform on the measured voltage and classified its coefficients
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Figure 3.9: Approximation of the transient active power with a linear slope
(Cole & Albicki 1998)

using a support vector machine. This classification method was tested for five
different houses over a six-week period. After extensively training the classifier,
classification accuracies between 84 and 92 % were achieved for each house.
The same features were also classified using a simple majority classifier, leading
to accuracies below 8 %, which demonstrates that the accuracy is significantly
influenced by the choice of the classifier. Classifying electric loads using the
transient voltage noise was also analyzed by Cox et al. (2006), albeit without
reporting quantitative results.

v-i trajectories Lam et al. (2007) proposed extracting features from the
v-i trajectories (see Fig. 3.10) of loads to classify appliances. Examples of
the features extracted from a shape are its asymmetry, its looping direction,
its area and its curvature of the mean line. The voltage and current were
normalized before creating the v-i trajectory so that their magnitude becomes
irrelevant. While Lam et al. (2007) were able to cluster dozens of typical
household appliances into meaningful groups, it seems that all appliances
were measured individually. This scenario is much easier than working with
aggregate currents, and it is questionable whether the classification would work
as well with aggregate currents. Since (Lam et al. 2007), no other work on
v-i trajectories in the context of disaggregation is known to the author.



42 3 Previous work

normalized voltage

no
rm

al
iz

ed
cu

rr
en

t

normalized voltage

no
rm

al
iz

ed
cu

rr
en

t

peak
peak

(a) (b)

Figure 3.10: v-i trajectories of a radio (left) and a CD-player (right) operating
in standby mode (Lam et al. 2007)

3.7.1.2 Classification and labeling procedure

It is important to differentiate between classification methods for switching
events which require training data (supervised learning) and those who do not
(unsupervised learning) (see section 2.5).

Unsupervised classification is more commonly referred to as clustering, and
it was employed in the original method by Hart (1985). Different clustering
methods have been tested, for example k-means clustering (Hart 1985), genetic
k-means (Gonçalves et al. 2011), mean-shift clustering (Barsim et al. 2014)
and hierarchical clustering (Jazizadeh et al. 2014) . The clustering results
can be further evaluated, e.g., by estimating finite-state machines that can
also represent multi-state loads. For this purpose, Baranski & Voss (2004b)
employed a genetic algorithm. In the unsupervised case, labeling of the loads
can only be performed based on manual a-priori knowledge. For example, the
power factor of each load defined as λ = |p|/s (IEC 60050-131:2002 2002)
indicates whether a load is resistive or rather inductive or capacitive. Resistive
loads with a high active power demand are often electric heating elements in
households. In addition to the power factor, the transient current could be
used for labeling through manually defined rules, as Sultanem (1991) describes
that some appliances exhibit characteristic transient currents.

In contrast, the supervised classification comprises a training stage, in which the
features of all electric loads are learned. This greatly simplifies the classification,
since the classes are already defined, and the algorithm only has to assign a new
event to the most likely class. Several different classification methods have been
used for this purpose, such as a nearest neighbor classifier, a Gaussian Naive
Bayes classifier, decision trees, support vector machines and artificial neural
networks (Berges et al. 2009, 2011; Patel et al. 2007; Srinivasan et al.
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2006; Zoha et al. 2012). Further, Liang et al. (2010a) proposed combining
several classifiers via a committee decision mechanism. This means that each
classifier is run in parallel, and the final result is chosen based on either the
most common occurrence, the least unified residue or the maximum-likelihood.
In supervised classification not only the classification, but also the labeling
process is much simpler. Since all events in the training phase are labeled with
a name, any new events simply inherit the name of the assigned class.

As Hart (1992) has stated, the unsupervised classification is "clearly superior
from the user’s point of view", because it requires less work. On the other hand,
it generally yields a lower accuracy compared to the supervised classification.
In this thesis, only the unsupervised classification is relevant because a minimal
setup time is required (see section 1.3).

3.7.1.3 Estimation of power demand of each load

While the estimation of the power demand based on the clustering results is
straightforward in principle, already Hart (1992) employed additional sanity
checks and proposed a tentative algorithm to handle multi-state loads by
representing them as finite-state machines.

A slightly different method for this purpose was proposed by Baranski & Voss
(2004a, b). According to this method, first all possible finite-state machines
based on the clustering results are generated. Then, for each potential finite-
state machine, all possible time sequences are evaluated individually using a
quality criterion. To this end, the problem was reformulated as a shortest
path problem (Ahuja et al. 1990) and solved using a dynamic programming
algorithm similar to the Viterbi algorithm. Finally, the sum of the active power
demand of all appliances is evaluated to find overlapping events.

Another method is described by Shao et al. (2012). After a steady state
extraction, they employed a combination of probabilistic sequential mining and
motif mining to find repetitive episodes in a time series. Based on these results,
the individual appliances and their active power demand is estimated.

3.7.2 Disaggregation as an optimization problem

In the original paper by Hart (1985), the active power demand of each load
is estimated one by one without taking into account the measured aggregate
active power demand. In contrast, several approaches try to match pagg as
close as possible by formulating the disaggregation problem as an optimization
problem. Therefore, the operating behavior of each load has been modeled in
one of two ways:

• As a simple two-state load, resulting in a combinatorial optimization;
• As a hidden Markov model or variants thereof.
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While the disaggregation method formulated as an optimization problem can
be performed alone, some authors have used the results of the disaggregation
method based on switching events as fixed parameters for the optimization,
such as the times at which switching events were detected (Egarter et al.
2013) or the magnitude of the step changes (Hart 1992).

Combinatorial optimization Already in (Hart 1992) but also later in (Ba-
tra et al. 2014; Liang et al. 2010a, b) it has been described that the
disaggregation problem can be formulated as a combinatorial optimization
problem:

θ̂(t) = argmin
θ(t)

∫ (
pagg(t)−

N∑
n=1

θn(t)p̂n

)2

dt , (3.4)

where θ = [θ1, θ2, · · · , θN ] represents the operating states of the N identified
loads in the classification, and p̂1, p̂2, . . . , p̂N refers to the estimated active power
demand of each load. Since only integer values are permitted for θ1, θ2, . . . , θN
(either zero or one), equation 3.4 represents an integer optimization problem.
This idea was implemented by Egarter et al. (2013) and tested for simulated
data. Egarter et al. (2013) added the constraint that appliances could only
turn on at times when an edge was detected. Despite assuming a perfect edge
detection and a-priori knowledge about p̂1, p̂2, . . . , p̂N , a detection percentage
of only 80 % was reported in the presence of five different loads. The detection
percentage drops further once unknown loads are added to the aggregate signal
pagg(t).

Combinatorial optimization was also tested by Suzuki et al. (2008). Instead
of fitting the aggregate active power demand, they targeted the measured
aggregate current, which resulted in the following equation:

θ̂(t) = argmin
θ(t)

∫ (
iagg(t)−

N∑
n=1

θn(t)̂in

)2

dt , (3.5)

where î1, î2, . . . , ˆiN represents the mean current of one period of the N loads.
After a training period, they achieved accuracies between 73 and 97 % for the
power demand of a residential household for five different days.

However, as (Hart 1992) and Parson (Parson 2013) already cautioned, a
challenge with optimization is overfitting. Imagine, for example, three estimated
loads with p̂1 = 100 W , p̂2 = 200 W and p̂3 = 301 W . If pagg(t) = 300 W , hen
the best fit would be a summation of the first two power demands. However,
if the measured aggregate power changes slightly to pagg(t) = 301 W , the
best fit would be that only the load represented by the third cluster is active.
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Moreover, the event detection and classification steps are likely to yield at least
some errors. In these cases, an optimization does not make sense, because
pagg cannot be explained by the detected events and clusters. In contrast,
an optimization will try to minimize the difference between the estimated
and measured aggregate power as much as possible. Last, some loads have a
continuously variable power demand. Such loads cannot be represented with
the appliance models p(t) = θ(t)pon above. If the model would be extended
accordingly, the problem would be significantly underdetermined.

Hidden Markov Models In the optimization approaches presented
above the active power demand of the appliances was modeled as
p(t) = θ(t)pon with θ(t) = 0, 1 and the model parameters θ(t) = θ1, θ2, . . . , θN
and p = p1, p2, . . . , pN are determined using any suitable optimization
algorithm. In contrast to this simple model, more sophisticated mathematical
models can be used to describe the operating behavior of appliances.

To this end, Kim et al. (2011) proposed modeling all appliances with a
factorial hidden Markov model, which is a special variant of a Markov model.
A Markov model is a finite-state machine in which the future state depends
only on the current state and not on any past states. While in simple Markov
models the states are directly observable, in hidden Markov models only an
output is observable, which depends on the current state (see Fig. 3.11). A
hidden Markov model can be used to describe the behavior of any multi-state
appliance, since the active power demand can be represented by the output,
and the operating states of the appliance correspond to the hidden states.

y1 y2 y3 y4

X1 X2 X3
a12

a21

a23

a32

b11

b31 b12
b21 b22

b32 b13
b23

b33 b14
b24

b34

Figure 3.11: Structure of an exemplary hidden Markov model
x — states
y — possible observations
a — state transition probabilities
b — output probabilities
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However, a residential household comprises not one but usually n� 1 number
of appliances, hence a combination of hidden Markov models is necessary.
This can be achieved through a factorial hidden Markov model, in which the
hidden state is represented by a vector st = [s1

t , s
2
t , · · · , snt ], where each sit

with i = 1, 2, . . . , n refers to the state of the appliance i at time t, e.g., x1 or x2
(Ghahramani & Jordan 1996). To reduce the computational complexity, it is
often assumed that the transitions of each appliance occur independently from
each other. Such a factorial hidden Markov model is represented in Fig. 3.12.
Moreover, in (Kolter & Jaakkola 2012), the output y of the factorial hidden
Markov model is modeled as a Gaussian distribution as yt = N

(∑n

i=1 µ(sit),Σ
)
,

where N (µ, σ2) represents the Gaussian distribution, µ(sit) ∈ Rm refers to the
mean observed output of state i at time t, Σ ∈ Rmxm is the variance matrix
and the parameter m represents the number of observed features. That the
assumption of a Gaussian distribution for the active power demand of one
appliance state is justified has been previously demonstrated by Kim et al.
(2011).

s(1)
t-1 s(1)

t s(1)
t+1

s(2)
t-1 s(2)

t s(2)
t+1

s(3)
t-1 s(3)

t s(3)
t+1

y  t-1 y  t y  t+1

Figure 3.12: Structure of a constrained factorial hidden Markov model
(Ghahramani & Jordan 1996)

Different kinds of factorial hidden Markov models were employed in (Johnson
& Willsky 2013; Kim et al. 2011; Kolter & Jaakkola 2012; Parson 2014;
Parson et al. 2014). Kolter & Jaakkola (2012) reported disaggregation
accuracies between 90-100 % for synthesized data, Johnson & Willsky (2013)
a mean accuracy of 80 % for a manually selected subset of the data published
in (Kolter & Johnson 2011) and Parson (2014); Parson et al. (2014) a
normalized mean error between approximately -40 % and +25 % in a real case
study with cold appliances.

3.7.3 Disaggregation based on correlations

The disaggregation methods presented so far are only applicable to two-state
and multi-state loads. In contrast, the disaggregation method based on cor-
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relation is primarily applied to continuously variable loads. It relies on the
correlation between the active power demand and the current harmonics. More
precisely, a mapping function f : R 7→ R is required, which relates a particular
aggregate current harmonic Inagg to the active power of an individual electric
load pind = f(Inagg).

The existing publications concerning disaggregation methods based on correla-
tion differ in terms of how this mapping function is determined. They can be
grouped in three clusters:

• Laughman et al. (2003); Lee (2003) and Lee et al. (2005)
• Wichakool et al. (2009),
• Wichakool et al. (2015).

All individual methods were primarily developed for uncontrolled bridge rec-
tifiers. As described in section 2.4, these rectifiers exhibit a characteristic
waveform that differs significantly from a pure sinus and thus contains signifi-
cant fractions of current harmonics. Moreover, uncontrolled bridge rectifiers
are often found in variable speed drives (see section 2.3), whose continuously
variable active power demand could thus be extracted with these methods. The
suitability of the individual methods for the three types of rectifiers defined in
section 2.4 is summarized in Table 3.2

Table 3.2: Suitability of the existing disaggregation methods based on corre-
lation (subsec. 3.7.3) for different types of rectifiers: suitable ,
suitable if transferred and not suitable .

three-
phase
uncon-
trolled
bridge
rectifier

single-
phase
uncon-
trolled
bridge
rectifier

rectifiers
with power
factor
control

Laughman et al. (2003); Lee
(2003); Lee et al. (2005)
Wichakool et al. (2009)
Wichakool et al. (2015)

Laughman et al. (2003); Lee (2003); Lee et al. (2005): Laughman et al.
(2005) noticed that the temporal behavior of the magnitude of the fifth and
seventh current harmonic is closely related to the temporal behavior of the
active power (see Fig. 3.13).
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Figure 3.13: Temporal behavior of the magnitude of the fifth and seventh cur-
rent harmonic as well as of the active power demand (Laughman
et al. 2003)

Therefore, they proposed that the active power demand of a variable speed
drive featuring an uncontrolled bridge rectifier can be estimated based on the
measured aggregate current if the following two conditions hold true:

1. The magnitude of the fifth or seventh harmonic of the aggregate cur-
rent is dominated by the uncontrolled bridge rectifier. This can be
mathematically expressed for the case of the fifth harmonic as

|Iagg5 | = |IUBR5 |+ |IA5 |+ |IB5 |+ |IC5 |+ . . . ≈ |IUBR5 | (3.6)
⇔ |IUBR5 | � |IA5 |+ |IB5 |+ |IC5 |+ . . . ,

where |I5| represents the magnitude of the fifth current harmonic, the
superscript UBR stands for uncontrolled bridge rectifier, and the su-
perscripts A, B and C represent any other loads part of the aggregate
load.

2. The functional relation between the active power demand and the mag-
nitude of the fifth or seventh harmonic is known. This means that a
function f5 : R 7→ R of f7 : R 7→ R is known, which fulfills

pUBR = f5(|IUBR5 |) = f7(|IUBR7 |). (3.7)
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If both conditions hold true, the active power demand of the uncontrolled
bridge rectifier can be estimated in one of the following two ways:

pUBR = f5(|IUBR5 |) ≈ f5(|Iagg5 |) , (3.8)
pUBR = f7(|IUBR7 |) ≈ f7(|Iagg7 |) .

While Laughman et al. (2003) only laid out the idea of the algorithm, it
was implemented in (Lee 2003; Lee et al. 2005). Instead of looking at
the correlation between the active power demand and the aggregate current
harmonics, they examined the correlation between the active power demand
and an aggregate electric property sn, which they defined as

sn ≡
√
p2
k + q2

k , where (3.9)

pn ≡
1
T

∫ t

t−T
i(s) Upeak cos(2πk/T )ds , and

qn ≡
1
T

∫ t

t−T
i(s) Upeak sin(2πk/T )ds ,

where i refers to the measured aggregate current, and Upeak = const represents
the peak voltage magnitude. This formula is similar to the formula for calcu-
lating the magnitude of the complex current harmonic |Ik| via a continuous
Fourier transform (see section 2.1).

According to Lee et al. (2005), the functions f5 and f7, which relate the
active power demand of a variable speed drive with s5 and s7 respectively,
may be derived analytically given the precise circuit schematic, control scheme,
and mechanical loading conditions of the variable speed drive. However, this
information are rarely available. Thus, in (Lee 2003; Lee et al. 2005) the
function was determined statistically by collecting data over a period of one
day (see Fig. 3.14). The relation was mapped with the model

saggn = a ·
(
pUBR

)b ⇔ pUBR = b
√
saggn /a = fk(saggn ) , (3.10)

where the parameters a and b were fitted using a least squares regression.

Lee (2003); Lee et al. (2005) applied the disaggregation algorithm on the
measurement data of a test building which comprised two variable speed drives
featuring a three-phase uncontrolled bridge rectifier for a supply and an exhaust
fan. To this end, only f5 was used, not f7. Since the disaggregation result was
not compared to direct measurements of the variable speed drive, no accuracy
evaluation could be reported.

After the disaggregation, Lee et al. (2005) also removed any colored noise
from the aggregate active power demand based on the assumption that all the
colored noise is a result of the uncontrolled bridge rectifier. The purpose is to
only leave white noise, for which the event based disaggregation methods are
modeled.
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Figure 3.14: Correlation between the active power demand and s5 and s7
(Lee et al. 2005)

Wichakool et al. (2009) Wichakool et al. (2009) proposed another way
in which to determine a mapping function based on the current harmonics.
Instead of mapping one current harmonic to the active power demand, they
proposed mapping several higher current harmonics to the first (complex)
current harmonic I1. As described in section 2.2, for ideal voltage sources,
the active power demand can be calculated as p = R(U1I1

∗). Since U1 of the
uncontrolled bridge rectifier is the same as the measured one of the aggregate
load, by estimating I1 the active power demand of the uncontrolled bridge
rectifier can be calculated. Analogous to the correlation method described
above, it is assumed that the higher harmonics are only generated by the
uncontrolled bridge rectifier.

To determine this mapping function, Wichakool et al. (2009) require neither
a statistical analysis nor knowledge about the specific electronic structure of
the bridge rectifier. Instead, they used a rather sophisticated mathematical
derivation based on the discrete Fourier transform in combination with heuristic
approximations. A detailed summary is presented in section A.3.

They applied it to a test case comprising one variable speed drive featuring
an uncontrolled bridge rectifier and one resistive load, and they reported
disaggregation accuracies close to 100 % for the variable speed drive.
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Wichakool et al. (2015) Later, Wichakool et al. (2015) considered not only
uncontrolled bridge rectifiers, but also other continuously variable appliances
such as computers or light dimmers (see current waveform in Fig. 3.15). More
exactly, the new method is applicable to any appliance, whose current is real-
valued, periodic, point symmetric, approximately band-limited and exhibits
regions in which the current is zero. Again, they determined a mapping
function between multiple higher current harmonics and the first current
harmonic through a different mathematical derivation in combination with
heuristic approximations (see details in subsection A.3).
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Figure 3.15: Current waveform of a computer (top) and a light dimmer
(bottom) (Wichakool et al. 2015)

Wichakool et al. (2015) applied this disaggregation method on three test
cases. In all test cases the aggregate load was composed of one continuously
variable load and one two-state load. For the continuously variable load, a
variable speed drive featuring an uncontrolled bridge rectifier, a computer and a
dimmable light were chosen. The graphical representations of the disaggregation
results in Wichakool et al. (2015) indicate a high accuracy of close to 100 %,
even though it was not quantified.
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3.7.4 Disaggregation using neural networks

A rather recent idea is to use deep neural networks for the disaggregation of a
power demand. However, as mentioned earlier (see section 3.7) these methods
require training data, which stands in contrast to the requirements of a short
setup time. Thus, these methods are only presented briefly.

One of the earliest publications in this field comes from Mauch & Yang
(2015). They advocate a special class of neural networks named recurrent
neural networks. These networks are characterized by the fact that information
in the network can be passed from one time step to another. This makes
them suited to classify data sequences. However, if the relevant information
components are far apart from each other in the sequence, the basic form
of recurrent neural networks cannot correlate such information in practice.
Therefore, Mauch & Yang (2015) used a special kind of recurrent neural
network called long short term memory network, which does not exhibit this
drawback (for more information, see (Hochreiter & Schmidhuber 1997)).

Its input layer corresponds to a sequence of the aggregate power demand,
while its output layer represents the sequence of the power demand of a single
appliance at the same time. This means that one such network can only extract
one appliance out of an aggregate power demand. In order to extract all
appliances, it is necessary to run multiple networks in parallel and merge their
results. Moreover, the network requires supervised learning (see section 2.5).
Mauch & Yang (2015) applied this disaggregation method on a house with 18
appliances. They ran three networks in parallel for a fridge, a dishwasher and
a microwave, respectively. Their normalized root mean square error ranged
from 33 to 74 %.

A subsequent paper from Mauch & Yang (2016) analyzed a combination of a
hidden Markov model and deep neural networks. Also here, multiple estimators
have to be run in parallel to disaggregate the power of the aggregate load.
The application to a case study demonstrated improvement compared to the
method explained in their previous paper.

Kelly & Knottenbelt (2015) compared three different types of deep neural
network architectures:

• A long short term memory network similar to the one used in (Mauch
& Yang 2015) (see disaggregation result in Fig. 3.16);

• A denoising autoencoder neural network;
• A deep neural network, in which the appliance is modeled as a two-state

load. To achieve this, the network outputs only three parameters, namely
the start and stop time of the appliance as well as its average power
demand.



3.7 Disaggregation using only the voltage and the current 53

kettle washing machine fridge

ag
gr

eg
at

e
ap

pl
ia

nc
e

m
ea

su
re

d 
da

ta
ne

ur
al

 n
et

LS
T

M

time time time

ac
ti
ve

 p
ow

er

Figure 3.16: The measured aggregate power demand (top row), the measured
appliance power demand (middle row) and the estimated appli-
ance power demand when using the long short term memory
(LSTM) neural network (bottom row) (Kelly & Knottenbelt
2015)

These disaggregation methods were applied to real data. It turned out that the
second and third network outperformed the long short term memory network
in terms of mean absolute error. They also yielded superior results compared
to the approaches based on a combinatorial optimization and factorial hidden
Markov models (see sections above). The denoising autoencoder network was
further analyzed and extended in (Bonfigli et al. 2018) (see structure in
Fig. 3.17).

The advantage of deep neural networks is that any type power sequence can
be trained and subsequently estimated, including the one from variable speed
drives. Moreover, deep neural networks are currently investigated in many other
fields (Schmidhuber 2015) so that an advancement of these methods can be
expected. On the other hand, deep neural networks require a significant amount
of training due to their high degree of freedom. For example, the networks used
by Kelly & Knottenbelt (2015) comprise 1-150 mio. parameters. Another
more important disadvantage is that the estimation is not anchored to the
physical understanding of the operation behavior of the loads. This leads to
unusual estimation results compared to other disaggregation methods. For
example, Mauch & Yang (2015) have reported that the estimation results
have a low-pass characteristic, meaning that the power profiles do not exhibit
the expected rectangular shape but rather a smoothed version (see Fig. 3.16).
Similarly, Bansal (2017) has stated that the disaggregation result changes when
adding a constant baseline. Such a change would not affect the event-based
disaggregation at all.
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Figure 3.17: Structure of the denoising autoencoder deep neural network used
in (Bonfigli et al. 2018)

3.8 Comparison of measurement methods

Based on the explanations above, the degree to which the requirements are
fulfilled by the seven measurement methods are summarized in Table 3.3. While
the reference method provides high accuracy, the equipment costs and the
effort for the measurement are higher than allowed. The measurement method
through estimation by experts does not comply with the requirement of being
executable by nonexperts. Moreover, its accuracy is most likely less than 85 %.
A prediction of the active power demand using simulation models can achieve a
high accuracy given a sufficiently complex energy model of a machine. However,
as described earlier, such models are usually trained with measurement data
and thus represent an extension of the reference measurement method rather
than a substitute.

Another option is to only measure the current and voltage of the aggregate load
and to infer the active power demands of the individual loads by controlling
them manually. This method completes all requirements at least partially.
However, some loads cannot be controlled manually (without a significant
alteration of the machine) and others are difficult to control manually in such a
way, that the actual operation is imitated. Such conditions impair the accuracy.
Moreover, it is necessary to be familiar with the machine to be measured, which
may require expert knowledge. For those reasons, the measurement method
does not fulfill the requirements completely.

Using the operating status of the individual loads to disaggregate the active
power demand of the machine can lead to suitable accuracies for two-state
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Table 3.3: Comparison of the seven measurement methods with respect to
the requirements described in section 1.3. Requirements are either
fulfilled completely , partially or not at all .

Usable
for
mul-
tiple
ma-
chines

Invest-
ment
costs
less
than
10.000 €

Execu-
table
by
non-
ex-
perts

Setup
time
less
than
one
hour

Identi-
fication
of
most
loads

Accu-
racy
of
85 %
or
more

1. Reference method
mobile equipment
2. Reference method
stationary equipment
3. Estimation by an
expert
4. Simulation
methods
5. Disaggregation by
means of controlling
6. Disaggregation by
means of monitoring
7. Disaggregation
using only voltage and
current

?

and multi-state loads. However, it will not work, if the electric load has
a continuously variable power demand. More importantly, it is difficult to
monitor the operating status of all electric loads in the majority of cases, since
a connection to the programmable logic controller and sensitive information
from the machine manufacturer are necessary.

This stands in contrast to the last measurement method, in which the disaggre-
gation of the aggregate load is performed based on only a detailed analysis of
the current and the voltage. Since in this case only the aggregate current and
voltage have to be measured, the equipment costs are low, and the measurement
can be executed by a non-expert. In applications in the residential sector, most
loads could be identified, and the disaggregation yielded an accuracy of 85 %
or more.

However, so far, this kind of disaggregation has never been applied to the active
power demand of machines used in manufacturing. Hence, the level of accuracy
that can be achieved for this problem setting is not clear, since the relevant
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conditions such as the number of electric loads, their type and their operating
behavior are likely to be different than in the residential problem setting. If a
suitable accuracy can be attained, this method would meet all requirements.
Due to this prospect, this disaggregation method shall be examined further,
and the following questions shall be answered:

• What type of electric loads do machines used in manufacturing comprise
and how do they operate?

• To what extent can the active power demand of the most prevalent load
types in such machines be extracted with the existing methods? What
are current challenges and how can they be overcome?

• What measurement accuracy can be achieved with this method?

These questions are addressed in the next chapters: First, 151 electric loads of
18 machines used in manufacturing are classified in chapter 4. For the most
common load types the extent to which the existing disaggregation methods
are applicable is assessed. Based on this analysis, the current challenges
are summarized in chapter 5. For each challenge, a solution in the form
of a new or an improved method is developed and presented in chapter 6.
Finally, the disaggregation is performed on the active power demand of seven
manufacturing machines in chapter 7, and the resulting accuracy values are
critically discussed.



4 Analysis of electric loads

As stated in chapter 3, the accuracy of the measurement method in which the
electric energy demand of an aggregate load is disaggregated using only the
measured voltage and current depends on the type of the constituent loads and
their operating behavior. To find out which types of loads exist in machines
used in manufacturing, 151 loads in 18 machines are classified in section 4.2.
Therefore, a suitable classification scheme is first determined in section 4.1.
The most common load types are more closely examined in terms of their
operating behavior in section 4.3. Based on this information, the suitability
of existing disaggregation methods for the most common loads is evaluated in
section 4.4.

4.1 Classification system for electric loads

According to Jacob (2004) a classification system can be defined as "a system
of classes, ordered according to a predetermined set of principles and used to
organize a set of entities [into groups]". Hence, in order to classify electric
loads, it is important to decide on the principle according to which they shall
be grouped. To this end, the following seven possibilities are evaluated:

• Classification according to the type of appliance,
• Classification according to the operating behavior of a load,
• Classification according to existing norms relevant for manufacturing,
• Classification according to the position in the control hierarchy,
• Classification according to the electric properties of a load„
• Classification according to the type of energy output,
• Classification according to the type of energy conversion.

According to appliance type When disaggregating the total power demand of
households, electric loads are often classified according to their home appliance
type and –group. For example, Zimmermann et al. (2012, p. 245) classified
electric loads as a fridge-freezer, a refrigerator, an upright freezer, a chest freezer
or a wine cooler. All these home appliance types belong to the larger appliance
group of cold appliances. Other possible groups are cooking appliances, washing
and drying appliances, heating and cooling appliances, water heating appliances,
lighting, computer sites, audiovisual sites and other appliances. Similarly,
Wang & Zheng (2012) proposed the following classes: major appliances
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(including refrigerators, washing machines, plasma TVs, air conditioners),
household appliances, kitchen appliances, sound and image as well as health
and beauty equipment. Many authors (Berges et al. 2010a; Ducange et al.
2014; Egarter et al. 2015; Gulati et al. 2014; Wang & Zheng 2011) only
used the classification by home appliance type (and not by appliance group)
with classes such as food cutters, hair dryers, ovens, refrigerators, waffle irons,
clothes dryers, toasters and irons. While this classification is easy to follow for
residential households, the electric loads of manufacturing machines do not fit
into these classes.

According to operating behavior Another prominent classification scheme
in nonintrusive load monitoring literature is the distinction of electric loads
according to their operating mode (see introduction in chapter 3). Using this
principle, four different classes are proposed in (Hart 1992; Zeifman & Roth
2011; Zoha et al. 2012):

• Class 1 - appliances with only two states of operation (On/Off), e.g., a
toaster or a table lamp;

• Class 2 - appliances with a finite number of operating states such as on,
off and standby, e.g., a washing machine or a stove burner;

• Class 3 - appliances with a continuously variable active power demand
(and thus infinite operating states), e.g., a power drill or a light dimmer;

• Class 4 - appliances of class 1 that remain active throughout weeks or
months, e.g., a smoke detector or a telephone.

Similarly, Wang & Zheng (2011) distinguished between three classes based
on the operating mode of the appliance:

• Appliances with a variable active power demand and a high switching
frequency, e.g., a washing machine;

• Appliances with a variable active power demand and a low switching
frequency, e.g., a television, an air-conditioning or a stereo;

• Appliances with only two states of operation, e.g., a heater, a refrigerator
or a cooker.

Further, the duty types S1-S10 defined in the (IEC 60034-1:2017 2017), which
describe different operating modes, could be used as classes. The analysis
of the operating mode is also helpful for electric loads in machines used in
manufacturing. However, this classification system has two imprecisions. First,
appliances of class 3 are always an aggregate of the electric loads of class 1. An
example is the washing machine, which usually consists of a heating element, a
motor for rotation and a motor driving the lye pump. Another example is a
stove, whose different discrete power levels are achieved by switching on ohmic
heating elements in various combinations. Hence, it is questionable, whether
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class 3 is actually necessary. Second, appliances of class 4 and of class 1 can
have the same electric characteristics despite being assigned to different classes.
This would mean that only two classes may be relevant in the end, which is a
low number for differentiating electric loads.

According to existing norms relevant for manufacturing One of the most
frequently used classification systems in manufacturing is described in the
(DIN 8580:2003-09 2003) and can be employed to organize manufacturing
processes. However, there is no clear link between a class of manufacturing
processes and electric loads. To perform a manufacturing process either several
electric loads (for example, in a complex milling machine) or no electric loads
at all (manual process) may be used. Other relevant norms apply to machine
elements, such as bearings (e.g., DIN 611), screws (e.g., DIN 267-27) or gear
wheels (e.g., DIN ISO 3952-2). While these elements may be part of an electric
load such as a motor, they do not offer suitable principles according to which
electric loads could be classified.

According to position in control hierarchy Schmitt et al. (2011) discussed
various classification schemes for energy consumers in cutting machine tools,
and they proposed the following classes: control systems, machine components
(further divided into main components and auxiliary components) as well as
common supply systems. This type of classification system reflects the control
hierarchy in machine tools, but it does not consider the electric properties of
the electric loads at all. Therefore, it is not recommended for the purpose of
disaggregation.

According to electric properties Another option is to characterize the loads
according to their electric properties or elemental load type. To this end,
Barker et al. (2013) proposed using the classes resistive loads, inductive loads,
capacitive loads and non-linear loads. However, the boundaries between these
classes are soft. Moreover, the class non-linear loads comprises significantly
different types of electric loads and the total number of classes is low.

According to type of energy output Another option is to classify electric
loads according to the type of output energy into which the electric input
energy is converted. One possibility is to define the following four types of
energy, including subtypes: inner energy (comprising thermal, chemical and
nuclear energy), mechanical energy (kinetic and potential energy), electrical
energy and radiation energy (Feynman et al. 2011, section 4-4). Such energy
forms are not precisely defined though, since, for example, macroscopic thermal
energy can also be considered as microscopic kinetic energy. Moreover, these
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classes seem too broad for the classification of electric loads. For example, both
an electric furnace and an industrial refrigeration unit convert electrical energy
into thermal energy and would thus be assigned to the same class despite their
significantly different structures. Furthermore, a heat pump comprising three
motors driving a pump, a compressor and a ventilator could be classified as
an aggregate electric load producing thermal energy, or instead, each motor
could be assigned to the class kinetic energy. Due to these imprecisions, this
classification system is not recommended.

According to type of energy conversion A new proposal is to classify electric
loads according to the dominant "type" of energy conversion. While no such
types have been defined in literature, each energy conversion process follows a
physical law or a combination of physical laws. For example, the conversion
from electrical energy to thermal energy in an electric furnace can be described
using Joule’s first law. In contrast, in an industrial refrigeration unit based
on vapor-compression, the electrical energy is first converted into mechanical
energy in a motor, which can be described using the Lorentz force law. The
motor drives a compressor, which increases the pressure of a fluid used to
transfer thermal energy from one point to another. The relevant aspect is that
the conversion of the electrical energy can be described with the Lorentz force
law. While classifying according to the type of energy conversion is related
to classifying according to the type of energy output, the former classification
system is more precise and offers an even finer distinction. For example,
the conversion of electrical energy into mechanical energy could be described
with either the Lorentz force law or the inverse piezoelectric effect (which
is a combination of Hooke’s law and the electric permittivity of a material).
Moreover, it seems likely that the type of energy conversion strongly affects the
electric properties of loads, which are used for the disaggregation process.

Summary In summary, all classification principles, except for the physical law
governing the energy conversion, were found to be unsuitable in one way or
another (see Table 4.1). In contrast, classifying loads according to the physical
law governing the energy conversion promises a clear distinction and many
relevant classes. Most importantly, the electric properties in each class are
likely to be similar so that all loads in one class can be treated similarly during
disaggregation. For these reasons, electric loads are classified according to the
physical law governing the energy conversion in the following section.
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Table 4.1: Summary of potential classification systems and their suitability

Classification ac-
cording to . . .

Classes Suitability

. . . type of appli-
ance

Toaster, refrigerator, wash-
ing machine, television, . . .

Not suitable because exist-
ing classes for household
appliances are not applica-
ble to electric loads in man-
ufacturing machines.

. . . operating be-
havior

Two states (On/Off),
multiple states
(On/Off/Standby), in-
finite states (variable),
always on

Not suitable because only
two classes may be rele-
vant, which would allow for
little separation.

. . . existing
manufacturing
norms

Casting, forming, sepa-
rating, joining, coating,
changing of material prop-
erties

Not suitable because there
is no direct link between
the manufacturing process
and the necessary electric
loads.

. . . electrical
properties

Resistive, capacitive, in-
ductive, non-linear

Not suitable because the
boundaries in between the
classes are soft. Moreover,
the number of classes is low

. . . position in
control hierar-
chy

Control system, main com-
ponents, auxiliary compo-
nents, supply system

Not suitable because
electric loads with sim-
ilar properties could be
grouped into different
categories.

. . . type of en-
ergy output

Thermal energy, chemical
energy, mechanical energy,
radiation energy, electric
energy, . . .

Not suitable because a
toaster and refrigerator
would both be grouped
into the class thermal en-
ergy despite their different
structures.

. . . type of en-
ergy conversion

Joule’s first law, Lorentz
force law, Faraday’s law of
electrolysis, Lorentz force
law, inverse piezoelectric
effect, radiative recombina-
tion, specific electronic cir-
cuits such as magnetrons
or inverters, . . .

Suitable
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4.2 Occurrence of classes in case study

Using the classification system based on the type of energy conversion, the
electric loads of 18 machines used in manufacturing were analyzed (see Ta-
ble 4.2).

These machines were selected for the analysis based on two criteria. First, the
machines should vary in terms of their purpose and their structure, so that
the analysis is generally valid. Thus, several different manufacturing processes
according to (DIN 8580:2003-09 2003) are represented by the selected machines
including primary shaping, forming, separation and joining. Moreover, auxiliary
machines such as industrial robots, external cooling devices and quality control
machines were included in the analysis because they can be found in most
factories. Second, all selected machines comprise three to 40 electric loads,
otherwise the challenge of the disaggregation was either deemed as too low
or as too high. The number 40 was chosen based on the fact that a typical
residential household consists of 30−50 appliances (Zeifman & Roth 2011).

Table 4.2: List of analyzed machines
Description of analyzed machine Number of

machines
Vacuum-based handling equipment for carbon composites 1
Six-axis industrial robot 1
Machine for folding cardboard boxes 1
Selective laser sintering machine 2
External cooling device 2
Optical quality control system for battery separator foils 1
Thermoform machine 1
Water jet cutting machine 1
Milling machine 1
Plasma cleaning system 1
Ultrasonic cleaning system 2
Heated washing basin 1
Food shredding machine 1
Food mixing machine 2
Total 18

As was illustrated in Fig. 1.4, some of the loads in a machine, such as DC power
supplies or variable speed drives, convert the electric energy into another form,
which is then transferred to another electric load in the machine. In these
cases, both loads, e.g., the variable speed drive and the motor, are presented
in the analysis.
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The result of the classification according to the type of energy conversion is
that approximately 92 % of the 151 analyzed electric loads belong to one of
the following classes (see Fig. 4.1 and details in A.1):

• Lorentz force (motor),
• Variable speed drive + Lorentz force (motor),
• Joule heating,
• Rectifier + electronic load (e.g., programmable logic controller).

The residual 8 % represented different electric loads, which all required vary-
ing types of power converters. Among those loads are compact fluorescent
lamps, semiconductor laser diodes, ultrasonic actuators and capacitive plasma
generators.

Lorentz force (motor)

Variable speed drive
+ Lorentz force (motor)

Joule heating

Rectifier + electronic load
(e. g. programmable logic controller)

Rectifier + resonant inverter + impact
ionization (compact fluorescent lamp)

Rectifier + high frequency inverter
+ inverse piezoelectric effect (ultrasound)

Rectifier + radiative recombination
(semiconductor laser)

Rectifier + high frequency inverter
+ capacitor (plasma generator)

57

40

22

20

5

4

2

1

Figure 4.1: Distribution of the analyzed electric loads (N=151)

The motors could be further partitioned by looking at their mechanical load
(see Table 4.3). Around 85 % of the analyzed fixed-speed motors drove either
a pump, a fan or a compressor. The difference between these three mechanical
loads is that a pump transfers a liquid from a region of low pressure to a region
of high pressure, whereas a fan moves a gas with adding negligible amounts
of pressure to it, and a compressor raises the pressure of a gas significantly
(Marchildon & Mody 2006). The residual 15 % of the fixed-speed motors
moved other types of mechanical loads such as a conveyor belt. Among the
motors controlled by a variable speed drive, only one instance moved a pump,
while four instances moved a fan, and all other 35 instances moved other types
of mechanical loads.
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Table 4.3: Distribution of the mechanical loads of the motors
Fan Pump Com-

pressor
Other mechan-
ical load

Total

Motor 26 16 7 8 57
Variable speed
drive + motor

4 1 0 35 40

4.3 Operating behavior of the most frequent classes

As section 4.2 demonstrated, the four most prevalent loads in machines used
for manufacturing are fixed-speed motors, motors fed by a variable speed
drive, Joule heating elements and rectifiers supplying different types of other
electronic loads. For those four load classes, the operating behavior is examined
next because it determines which disaggregation algorithms can be applied to
them (see Table 3.1). A summary of the results is presented in Table 4.4.

Table 4.4: Operating behavior of the four most common load classes. The
symbols indicate whether all loads , some loads or no loads
of the same type exhibit that particular operating behavior.

Two-
state

Multi-
state

Contin-
uously
variable

Comment

Fixed-speed
motor

Depends on mechani-
cal load.

Variable speed
drive + motor
Joule heating
element
Rectifier +
electronics

Depends on elec-
tronic load. May be
approximated as a
two-state load.

Fixed-speed motor Motors without a variable speed drive run at fixed speed.
In most cases observed in this thesis their active power demand was approxi-
mately constant (see Fig. 4.2 top). However, when the mechanical load changes,
the active power demand of the motor does so too. For example, the active
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power demand of a motor driving a vacuum pump depicted in the bottom of
Fig. 4.2 changes approximately ±20 % around the mean value of P = 750 W .
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Figure 4.2: Active power demand of two different fixed-speed motors, of which
one has an approximately constant mechanical load (top) and the
other a varying mechanical load (bottom)

Variable speed drive + motor Variable speed drives are installed for the
purpose of deliberately varying the motor output power. Therefore, they are a
prime example of a continuously variable load (see Fig. 4.3). Moreover, they
are important electric loads in terms of their relative electric energy demand
in several machine types such as tooling machines or six-axis robots.

Joule heating The operating behavior of simple ohmic heating elements in
production machines closely resembles that of an ideal two-state load. While
it could be expected that the resistance of such loads changes when the loads
become warmer or cooler, such an effect was not observed, or at least, it was
found to be negligible in this thesis. However, what was observed was a frequent
switching behavior of these loads within up to 100 ms (see Fig. 4.4). If the
active power demand is calculated by averaging the instantaneous power over
10 periods according to the (IEC 61000-4-30:2015 2015), corresponding to
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Figure 4.3: Active power demand of a motor fed by a variable speed drive
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Figure 4.4: Active power demand of a heating element calculated from the
instantaneous power with different averaging time periods
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approximately 200 ms, the actual steady states become blurred out, which
impedes the disaggregation. Therefore, the instantaneous power is averaged
over only one period in the whole thesis. Decreasing the average period even
further to a half-period resulted in oscillations of the active power demand,
which again would impede the disaggregation.

Rectifier + electronic load The active power demand of rectifiers supplying
electronic loads such as programmable logic controllers may change over time
depending on its electronic load. Thus, they may represent a continuously
variable load. An example is illustrated in Fig. 4.5, where the active power
demand fluctuates by ±20 % around the mean value of P = 150 W . However,
the magnitude of the active power demand generally tends to be small, compared
to the aggregate power. In other words, the rectifier and its attached electronic
loads are rarely the main power consumer. Moreover, it is questionable whether
any profitable efficiency measures could be implemented for rectifiers supplying
electronic loads. Hence, this load class may be approximated with two states
in most practical cases, even if it leads to accuracies below 85 %, since such
loads are rarely of any real interest to the energy manager.
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Figure 4.5: Active power demand of a rectifier (top and bottom), in com-
parison with the active power demand of the aggregate load
(bottom)
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4.4 Suitability of existing disaggregation algorithms

As described in section 3.7, four different disaggregation methods exist:

• Disaggregation based on switching events,
• Disaggregation as an optimization problem,
• Disaggregation based on correlations,
• Disaggregation using neural networks.

In the following section, only the disaggregation method based on switching
events and the one based on correlations will be considered further. The disag-
gregation method using neural networks was already discarded in subsection 3.7
because it requires training, which stands in contrast to the requirements spec-
ified in subsection 1.3. Furthermore, the disaggregation method formulated as
an optimization problem does not offer any advantage over the disaggregation
method based on switching events because no multi-state loads were observed
in the case study (see Table 4.4). Instead, it has the disadvantage of being
less rooted to the physical interpretation of a signal, thereby being more likely
to overfit signals and mask detection errors. The suitability of the remaining
two disaggregation methods for the four most prevalent load types identified
in section 4.2 is evaluated in Table 4.5.

The disaggregation method based on switching events is only suitable for loads
that have two operating states. Since the active power demand of rectifiers can
often be reasonably approximated with two states (see section 4.3), the method
can also be applied to them. In contrast, the disaggregation method based on
correlation is primarily suited to continuously variable loads. However, not
all continuously variable loads can be extracted through disaggregation, but
only those with a high total harmonic distortion (see equation 2.10), such as
uncontrolled bridge rectifiers (see subsection 3.7.3). While all variable speed
drives observed in this thesis comprised uncontrolled bridge rectifiers, not all
rectifiers feeding diverse electronics were of this rectifier type. Instead, some
of them seemed to feature a power factor control, so that the disaggregation
method based on correlation cannot be applied. Similarly, the disaggregation
method based on correlation cannot be employed for fixed-speed motors.

In conclusion, the existing disaggregation method based on switching events
and the existing disaggregation method based on correlation could be combined,
so that the active power demand of all uncontrolled bridge rectifiers and all
two-state loads could be extracted (see diagram of such a combined method
in Fig. 4.6). Furthermore, the two-state loads could be labeled according to
a-priori knowledge, for example, by their power factor λ = |p|/s or by their
step-change magnitude (see subsubsection 3.7.1.2).
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Table 4.5: Suitability of the existing disaggregation methods for the four most
prevalent loads. The symbols indicate whether a disaggregation
method is suitable , suitable only to a certain degree or not
suitable .

Type of load Operating
behavior

Features un-
controlled
bridge
rectifier

Disaggrega-
tion based
on switching
events

Disaggrega-
tion based
on correla-
tions

Fixed-speed
motor

Two-State irrelevant

Fixed-speed
motor

Variable no

Variable speed
drive + motor

Variable yes

Joule heating
element

Two-State irrelevant

Rectifier +
electronics

Two-State irrelevant

Rectifier +
electronics

Variable yes

Rectifier +
electronics

Variable no
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uagg, iagg

Measurement of aggregate load

Disaggregation method
based on correlation

Disaggregation method
based on event detection

pagg

- +

pUBR

uncontrolled bridge rectifiers
(including variable speed drives)

Labeling of loads

∈{pi | i   T}

presidual

Two-state loads:
- fixed-speed motors with a
 constant mech. load

- Joule heating elements
- Rectifier with an approx.
 constant elec. load

Figure 4.6: Flow chart of a preliminary combined disaggregation method
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In chapter 4 it was identified that the four most common loads in production
machines are fixed-speed motors, motors fed by a variable speed drive featuring
an uncontrolled bridge rectifier, Joule heating elements and rectifiers supplying
different types of electronics. Based on their operating behavior, the suitability
of existing disaggregation algorithms for these load types was assessed, and a
preliminary combined disaggregation method was proposed (see Fig. 4.6).

However, this preliminary method exhibits several deficits, which are summa-
rized below and explained in detail in the following sections:

1. As Table 4.5 indicates, there are currently no disaggregation methods
with which fixed-speed motors exhibiting a continuously variable active
power demand due to a varying mechanical load can be extracted.

2. Motors fed by a variable speed drive featuring an uncontrolled bridge
rectifier can be extracted using the disaggregation method based on
correlation. However, this method has several disadvantages:

• It requires training, otherwise an accuracy of at least 85 % cannot
be guaranteed.

• It is susceptible to other loads generating current harmonics.
• It does not work in the case where both a three-phase and a single-

phase uncontrolled bridge rectifier are present in the load.
• It only estimates the active power demand or the fundamental

current harmonic, but not directly the current of the uncontrolled
bridge rectifier. This is adverse if other methods work directly on
the current such as classifying the transient current (see below).

3. Two-state loads can be extracted from an aggregate load using the
disaggregation method based on switching events. However, the current
methods for detecting such events and determining their step-change
magnitude may lead to inappropriate results, particularly in the case of
inrush currents or in the presence of continuously variable loads.

4. Fixed-speed motors represented the most frequent load class in the case
study (see Fig. 4.1). Hence, it would be advantageous if these loads could
be further differentiated automatically. To this end, a differentiation
according to their mechanical load, e.g., a fan or a pump (see Table 4.3),
based on the transient turn-on current has been indicated in literature.
However, whether such a differentiation is actually feasible has never
been tested.
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5.1 Deficits in extracting fixed-speed motors

Fixed-speed motors can exhibit a continuously variable active power demand if
their mechanical load changes over time. An example thereof was illustrated
in the bottom of Fig. 4.2, in which the active power demand of a motor
driving a vacuum pump is depicted. This power demand changes periodically
between approximately 600 W and 950 W within a few seconds. In contrast
to variable speed drives featuring uncontrolled bridge rectifiers, the current
waveform of fixed-speed motors is approximately sinusoidal (see Fig. 5.1) and
does not exhibit any characteristic shapes or current harmonics. In fact, for
that particular signal, the total harmonic distortion according to equation 2.10
is only 4 % in contrast to a value of 116 % for a variable speed drive featuring
an uncontrolled bridge rectifier installed in the same machine. Therefore,
the disaggregation algorithm based on correlations with characteristic current
harmonics is not suitable for fixed-speed motors.
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Figure 5.1: Current of a fixed-speed motor with a continuously variable power
demand (same load as in Fig. 4.2 bottom)



5.2 Deficits in extracting uncontrolled bridge rectifiers 73

5.2 Deficits in extracting uncontrolled bridge rectifiers

As described in subsection 3.7.3, three different types of disaggregation methods
for uncontrolled bridge rectifiers (and hence also for variable speed drives
featuring uncontrolled bridge rectifiers) can be differentiated:

• Method described in (Laughman et al. 2003; Lee 2003; Lee et al.
2005),

• Method described in (Wichakool et al. 2009),
• Method described in (Wichakool et al. 2015).

All of the methods extract a load based on an existing correlation between the
aggregate current harmonics and the active power demand of the specific load
(or the first current harmonic of the load with which the active power demand
can be calculated). They differ in terms of how this correlation in the form of
a mapping function is determined.

Laughman et al. (2003); Lee (2003); Lee et al. (2005) suggested determining
a mapping function f5 or f7 such that pUBR = f5(|Iagg5 |) or pUBR = f7(|Iagg7 |),
either through exact knowledge of the electronic structure of the uncontrolled
bridge rectifier or through training data. However, the exact electronic structure
is rarely known and the need for training data violates the requirement of a
short setup time (see section 1.3). Therefore, it is not possible to infer an exact
mapping function within the constraints of the problem setting. Instead, it is
analyzed next whether an approximate, generally valid mapping function exists,
that is applicable to all uncontrolled bridge rectifiers and does not require
training data for each measurement. It will be revealed that such a function
has several disadvantages:

• A low accuracy,
• A high susceptibility to other loads exhibiting current harmonics,
• An inapplicability if the aggregate load comprises both a three-phase and

a single-phase uncontrolled bridge rectifier,
• An inability to extract the current directly.

These disadvantages also hold true in a similar way for the mapping functions
proposed by Wichakool et al. (2009, 2015). In these two publications, the
mapping function relates not one but multiple aggregate current harmonics
to the first current harmonic of, e.g., an uncontrolled bridge rectifier so that
the mapping function takes the form IUBR1 = F (Iagg5 , Iagg7 , . . . ). However,
since the mathematical derivation of this mapping function depends on many
parameters, it is more difficult to explicitly prove these disadvantages. One
would need to run the sophisticated derivation for all parameter combinations
and multiple test cases, which seems hardly adequate. Instead, both methods
are explained in detail in the attachment A.3, and either the inaccuracies are
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explicitly pointed out or an example is provided, where an accuracy of 85 %
cannot be achieved.

5.2.1 Low accuracy

In order to evaluate the accuracy of an approximate, generally valid mapping
function for uncontrolled bridge rectifiers, the current draw of several such
rectifiers, which differ in terms of their electric components, is first simulated.
Then, an analysis is conducted to determine whether a mapping function
inferred from one rectifier is also valid for a different rectifier. Only three-phase
uncontrolled bridge rectifiers are henceforth analyzed since they are more
commonly mentioned in literature (see subsection 3.7.3). However, the analysis
could be carried out analogously for single-phase bridge rectifiers.

The electronic structure of a three-phase uncontrolled bridge rectifier was
already described in section 2.4 and it is presented again in the top of Fig. 5.2.
Six different three-phase uncontrolled bridge rectifiers A,B,C,D,E,F are simu-
lated next. They differ in terms of their values for C, Rseries and Lseries (see
Table 5.1). For each rectifier the current draw is simulated for the values of
Rload ∈ [10, 15, 20, 30, 40, 80, 160, 320, 640, 1000] Ω (see Fig. 5.2 middle). Based
on the simulated current draw, the active power demand as well as the fifth and
seventh current harmonic are calculated and plotted in a diagram (see Fig. 5.2
bottom). This is performed for all six rectifiers, resulting in the two diagrams
presented in Fig. 5.3. Details concerning the simulation and more intermediate
results can be found in A.2. As Fig. 5.3 illustrates, the relation between p and
|I5| or p and |I7| differs significantly for the six different rectifiers, especially
for larger values of p. The difference is the largest for the rectifiers D and E.

Table 5.1: Parameters used in the simulation of the six different rectifiers A-F
Rectifier C in F Rseries in Ω Lseries in mH

A 0.001 0.1 none
B 0.001 0.5 none
C 0.001 0.1 0.5
D 1 0.1 none
E 1 0.8 none
F 1 0.1 0.2
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Figure 5.2: A three-phase uncontrolled bridge rectifiers (structure at top)
defined by the parameters C, Rseries and Lseries was simulated
for different values of Rload. Based on the simulated current
and voltage (middle), the active power demand and the current
harmonics were calculated and plotted (bottom).
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Assuming that the approximate mapping function festimn , mapping either |I5|
or |I7| on p, is inferred from the mean value of the curves from rectifiers
D and E, i.e., festimn (|In|) = 0.5 ·

(
fDn (|In|) + fEn (|In|)

)
, the accuracy of such

a function for rectifiers D and E can be compared with the exact mapping
functions fDn (|In|) and fEn (|In|), respectively. In this case, the error ε for the
rectifier D can be calculated as

εD(|In|) = |pestim − preal||preal|
=
∣∣festimn (|In|)− fDn (|In|)

∣∣
|fDn (|In|)|

, (5.1)

where pestim represents the active power demand defined by the approximate
mapping function, and preal refers to the one defined by the exact mapping
functions for rectifier D. The error εE(|In|) for rectifier E can be calculated in
the same way.

For the values of |I5| and |I7| marked with a dashed vertical line in Fig. 5.3, the
estimation error ε ranges from 19 % to 136 % depending on the rectifier and
whether |I5| or |I7| was used for the estimation (see Table 5.2). In conclusion,
the required accuracy of 85 % cannot be achieved using an approximate mapping
function, at least not for all cases.

Table 5.2: Calculation of the estimation error ε according to equation 5.1.
The values are drawn from the data presented in Fig. 5.3

n = 5 n = 7
|In| in A 13.8 5.9
fDn (|In|) in W 5,233 2,302
fEn (|In|) in W 8,557 8,557
festimn (|In|) in W 6,895 5,430
εD(|In|) 32 % 136 %
εE(|In|) 19 % 37 %

5.2.2 Susceptibility to current harmonics from other loads

Apart from the accuracy, another vulnerability of any mapping function ap-
proach is that the fifth and seventh current harmonic of the aggregate load may
be generated not only by the uncontrolled bridge rectifier but also by other
electric loads. Assuming that another electric load generates a fifth or seventh
current harmonic with the same magnitude and phase as the uncontrolled
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bridge rectifier, the estimation error with the mapping function approach is
approximately 100 %, and the measurement accuracy is thus 0 %:

preal = f(|IV SD5 |) (5.2)
pestim = f(|Iagg5 |)

= f |(IV SD5 |+ |Iother5 |)
= f(2 · |IV SD5 |)
≈ 2 · f(|IV SD5 |)

⇒ acc = 1− |pestim − preal||preal|
≈ 1− 2− 1

1 = 0 .

5.2.3 Inapplicability if two different types of uncontrolled bridge
rectifier are present

Another disadvantage of the disaggregation method based on correlation is
that it is not suitable if both a three-phase and a single-phase uncontrolled
bridge rectifier are present in the aggregate load (see example in Fig. 5.4). The
reason is that both loads exhibit similar current harmonics, which cannot be
differentiated by looking at the current harmonics alone.

5.2.4 Inability to extract the current

Finally, the method only estimates the active power demand or the fundamental
current harmonic of, e.g., an uncontrolled bridge rectifier. Those values are
calculated once per period, and it is thus not possible to infer the current
waveform from them. However, this may be desirable if either the current of
the uncontrolled bridge rectifier or the current from the residual loads is further
processed.
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Figure 5.4: Example of an aggregate load on uL3 comprising both a three-
phase and a single-phase uncontrolled bridge rectifier as well as
a Joule heating element (top). Despite the fact that the peaks
in the aggregate current (middle) can be clearly associated with
either the three-phase or the single-phase uncontrolled bridge
rectifier, it is not possible to extract their currents because they
exhibit similar current harmonics (bottom).
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5.3 Deficits in detecting switching events

According to Anderson et al. (2012), three types of methods for detecting
events in the form of step changes have been proposed in literature: expert
heuristics, matching filters and probabilistic methods (see Table 5.3). The
following section only considers the probabilistic method by Luo et al. (2002)
which was also adapted with minor changes by Berges et al. (2011); Jin
et al. (2011). Methods using matching filters are omitted because they require
a mask generated from training, which stands in contrast to the required short
setup time (see section 1.3). Similarly, methods based on expert heuristics are
discarded because they are not robust against fluctuations of the aggregate
signal due to noise or the presence of continuously variable loads (Luo et al.
2002).

Table 5.3: Comparison of methods for detecting events in the form of step
changes. The symbols indicate whether a method fulfills a require-
ment or not .

Type of method Does not require
training

Is robust against
fluctuations

Expert heuristics,
e.g., (Hart 1985)
Matching filters,
e.g., (Leeb et al. 1995)
Probabilistic methods,
e.g., (Luo et al. 2002)

The probabilistic method by Luo et al. (2002) for determining step changes
can be described using the following three functions:

• ξ : Z 7→ R for calculating the probability of a step change, including the
parameter ξthres to decide whether or not a step change has occurred;

• ∆f : Z 7→ R for determining the step-change magnitude for each detected
event;

• f̂ : Z 7→ R for reconstructing the original signal based on the detected
step changes.

These functions are explained in more detail next, and they are applied to a
simulated signal in Fig. 5.5. Thereafter, the disadvantages of this method are
explained, namely a low robustness against narrow peaks and a dissimilarity
between the reconstructed and the original signal.
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Figure 5.5: Approach for detecting events with probabilistic methods for
a simulated signal f (top row): first the probability of a step
change ξ is determined (second row), and then the step-change
magnitude ∆f is calculated (third row). Based on these step
changes, the original signal can be reconstructed f̂ (bottom row).
Here, ND = NP = 3 was chosen so that ξthres = ND/2·52 = 37.5.
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Determine probability of step change using ξ: First, for each point k, a
pre-event window Pk = {k − 1, k − 2, . . . , k −NP } and a detection window
Dk = {k, k + 1, . . . , k + (ND − 1)} are defined. Based on these windows, the
test statistic function ξ is defined as

ξk = ln

(∏
i∈Dk

N (fi, µD, σD)∏
i∈Dk

N (fi, µP , σP )

)
, (5.3)

where N (x, µ, σ) represents the normal distribution and fi refers to the signal
value at time i. Moreover, µD and σD represent the mean and standard
deviation of (fi|i ∈ Dk) and µP and σP refer to the mean and standard
deviation of (fi|i ∈ Pk).

The equation can be more easily understood as a summation of three factors:

ξk =ln
(∏

i∈Dk
N (fi, µD, σD)∏

i∈Dk
N (fi, µP , σP )

)
=
∑
i∈Dk

ln
N (fi, µD, σD)
N (fi, µP , σP ) (5.4)

=
∑
i∈Dk

ln
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2πσ2
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2 + 1
2
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i∈Dk

z2
i .

In conclusion, the indicator represents a sum of three values: the logarithmic
ratio of σP /σD times the number of samples in the detection window ND, a
constant value of -ND/2, and the sum of the squared standard score (sometimes
also called the z-value) zi of the values fi with respect to the normal distribution
defined by µP and σP . The most relevant part is the standard score zi. If a
step change has occurred, zi and hence ξ are high.
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In order to find a suitable threshold value, the case σD = σP will be analyzed,
which often holds approximately true:

ξk =ND ln
(
σP
σP

)
︸ ︷︷ ︸

=0

−ND2 + 1
2
∑
i∈Dk

(
fi − µP
σP

)
(5.5)

= · · · = ND
2

(
µD − µP
σP

)2
.

This means that for σD = σP , the test statistic represents the squared stan-
dard score of µD with respect to the normal distribution defined by µP and
σP , multiplied by the number of samples in the detection window and 0.5.
Based on this information, a threshold value ξthres can be easily defined by
requiring that µD is at least, e.g., five standard scores away from µP , such
that ξthres = ND/2 · 52. A standard score of five occurs only once in about
two million values for an ideal Gaussian distribution. Therefore, false positives
should be rare. Here, false positives should be even rarer because the mean of
the standard scores is used.

Determine magnitude of step change using ∆f : After a step change has
been detected for a particular point, its magnitude can be straightforwardly
calculated with the function ∆f , which is defined here as

∆fk =
{
µD − µP . . . if a step change is detected at k
0 . . . otherwise

. (5.6)

Reconstruct signal using f̂ : Based on the detected step changes, the original
signal can be reconstructed using the function f̂ , which can be defined as

f̂k = f0 +
∑
k′≤k

∆fk′ . (5.7)

While reconstruction is not necessary in the actual disaggregation, it is similar
to what occurs in the clustering and estimation step (see subsection 3.7.1).
Therefore, if the reconstruction of the signal using f̂ closely resembles the
original signal, it is likely that the accuracy of the disaggregation is high.
Inversely, if the reconstructed signal does not resemble the original signal, the
disaggregation accuracy is likely to be low.
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5.3.1 Low robustness against narrow peaks

The active power demand of fixed-speed motors often closely resembles the
signal (fk|0 ≤ k ≤ 30) displayed in Fig. 5.5: While there appears to be a
constant steady state when the motor is active, there is initially a high peak
due to an inrush current (Scheda 1986). This peak leads to an overestimation
of the step-change magnitude, as can be seen in Fig. 5.5.

Moreover, the probability of a step change is higher for the turn-on event
(at k = 10 in Fig. 5.5) than for the turn-off event (at k = 20), which seems
undesirable, since the real absolute step-change magnitude is the same for
those two events. In fact, it can be demonstrated that ξ yields nearly the same
probability for a narrow delta peak fp as for an actual step change fs with
the same magnitude m (see Fig. 5.6). More specifically, the following values
shall be assumed:

• For the signal fs,

– (fsk |k ≥ k∗) =
{
µP + σ for even k
µP − σ for odd k

and

– (fsk |k < k∗) =
{
µP +m+ σ for even k
µP +m− σ for odd k

.

• For the signal fp,

– (fpk |k 6= k∗) =
{
µP + σ for even k
µP − σ for odd k

and

– (fpk |k = k∗) =
{
µP +m+ σ for even k
µP +m− σ for odd k

.

Moreover, m� ND · σ and ND > 1 shall hold true. Then, it can be demon-
strated that the probabilities only differ by a factor of ND:

for fs : ξk∗
see eq. 5.5= ND

2

(
µD − µP
σP

)2
= ND

2

(
m

σ

)2
, (5.8)

for fp : ξk∗
see sec. A.5
≈ 1

2

(
m

σ

)2
.

These findings can be demonstrated with a graphical example, in which µP = 0,
σ = 1, m = 10, ND = 4, k∗ = 10 and ξthres = (ND/2) · 52 = 50 (see Fig. 5.6).
Then, the test statistic becomes ξk∗ = 200 for signal fs and ξk∗ = 60 for signal
fp. In comparison, equation 5.8 yields very similar values, namely 200 and 50,
respectively. Thus, the narrow delta peak in fs would be misclassified as a
step change.
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Figure 5.6: Two signals representing an actual step change (top) and a narrow
delta peak (bottom)

5.3.2 Dissimilarity between reconstructed and original signal

As Fig. 5.5 also illustrates, the reconstructed signal does not resemble the
original signal at all. This is due to two reasons. First, different step-change
magnitudes were determined for the turn-on event at k = 10 and the turn-off
event at k = 20, even though they should be the same. Second, gradual changes
between 30 ≤ k < 40 and 40 ≤ k < 50 due to, e.g., a fixed-speed motor with a
varying mechanical load, are not accounted for at all. Thus, it is likely that
the disaggregation accuracy is low too.
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5.4 Deficits in classifying fixed-speed motors

As the analysis of electric loads in machines used for manufacturing indicated
(see section 4.2), nearly 40 % of them are fixed-speed motors, which can be
further classified according to the mechanical load they drive (a fan, a pump,
a compressor or any other mechanical load). This raises the following question:
does a simple, generally valid classifier exist that can differentiate motors
according to their mechanical loads?

A positive answer to this question has been indicated by Sultanem (1991),
who describes that pump-operated appliances typically exhibit long transients
when turned on, and also by Leeb et al. (1993), who state that the "transient
behavior of a typical load is intimately related to the physical task that the
load performs". However, no one has examined that question in more detail.
Instead, previous papers dealing with features extracted from the transient
state examined whether a classifier exists that can differentiate between, e.g.,
a motor, a linear load and a fluorescent lamp (see paragraph titled "transient
state" in subsection 3.7.1 and detailed summary in Table A.3). In addition,
previous studies exhibit three other imperfections:

First, in nearly all case studies, only 3-5 electric loads were used to validate the
classifier, which is a small sample size. A noteworthy exception is the study
by Patel et al. (2007), who classified the appliances of six houses, which
probably comprised dozens of electric loads. However, Patel et al. (2007)
used the voltage noise as a feature, which is not examined here since it requires
data acquisition hardware in the megahertz range.

Second, no one has compared the features extracted from the transient state
with each other, for example, in terms of their effect on the classification
accuracy. Instead, most papers have only analyzed one particular feature from
the transient state. A comparison between the features proposed in different
papers is not feasible, since different data sets have been used to assess the
quality of the proposed features.

Third, previous works did not clearly differentiate between using the measured
motor current and using the measured aggregate current for classification. This
is relevant because even if a classification is possible using the motor current,
it is not necessarily possible using the aggregate current. In fact, the degree of
accuracy with which the transient motor current can be extracted from the
aggregate current has not been analyzed yet.
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For each of the four deficits explained in detail in chapter 5, either a new (in
a case where no previous method existed) or an improved method (in a case
where a method already existed but exhibited deficits) is presented next:

1. New method for extracting fixed-speed motors with a varying mechanical
load;

2. Improved method for extracting uncontrolled bridge rectifiers, which were
present in all variable speed drives analyzed in this thesis;

3. Improved method for detecting events and determining their step changes;
4. New method for classifying fixed-speed motors according to their me-

chanical loads.

For each method, the general approach is described first, followed by a more
detailed description of the algorithm. Thereafter, each method is validated.
All methods can be merged into a combined measurement method based on
disaggregation, which is depicted in Fig. 6.1 (compare with the preliminary
combined method presented in Fig. 4.6). This measurement method is later
applied to seven machines used in manufacturing in chapter 7.

This combined method works in the following way. First, the voltage and
current of the aggregate load are measured using appropriate data acquisition
hardware. Second, the current of any one phase and/or three phase uncontrolled
bridge rectifiers is extracted from the aggregate current according to the
disaggregation method described in section 6.2. Whether any type of bridge
rectifier is present in the aggregate load or not is identified automatically (see
section 6.2). Thereafter, the current from the bridge rectifiers is subtracted from
the aggregate load. Based on the residual aggregate current and the aggregate
voltage, relevant electric properties such as the active power, the reactive
power and the current harmonics are calculated. Third, using these properties,
switching events are detected (see section 6.3) and clustered according to the
disaggregation method based on switching events. Each distinct cluster is
assumed to be a two-state load. Fourth, any potential fixed-speed motors
exhibiting a continuously variable power demand due to a varying mechanical
load are extracted (see section 6.1). Fifth, all two-state loads that were
extracted using the disaggregation method based on switching events are
labeled according to, e.g., the power factor λ = p/s (see subsubsection 3.7.1.2).
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Fixed-speed motors can be further classified according to their mechanical
loads by analyzing their transient current (see section 6.4).

∈{pi | i   T}

uagg, iagg

Measurement of aggregate load

Disaggregation method for
uncontrolled bridge rectifiers

(see section 6.2)

- +
iUBR1ph iUBR3ph
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uresidual, iresidual

presidual, qresidual, Iresidual

Disaggregation method
based on switching events

(see section 6.3)

Disaggregation method for
varying fixed-speed motors

(see section 6.1)

Labeling of loads (existing methods)

pUBR1ph pUBR3ph pFSM

Labeling of fixed-speed motors (see section 6.4)

Uncontrolled bridge rectifiers
(including variable speed drives)

Two-state
loads

Fixed-speed motors
with a varying
mechanical load

Figure 6.1: Flow chart of the combined measurement method based on disag-
gregation
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6.1 Method for extracting fixed-speed motors

6.1.1 Approach

An algorithm was developed for a situation in which the following conditions
hold true:

• The aggregate load consists of only one fixed-speed motor whose active
power demand varies continuously, and any number of two-state loads
and uncontrolled bridge rectifiers.

• The fixed-speed motors with a continuously variable power demand
exhibits a characteristic step change in the active power demand and in
the current harmonics when switched on and off.

• There is a significant linear correlation between at least one current
harmonic of the aggregate load and the continuously variable active power
demand of the fixed-speed motor.

In this case, the continuously variable active power demand of the fixed-speed
motor can be estimated by performing the following steps (see Fig. 6.2):

1. Perform the existing disaggregation method for uncontrolled bridge recti-
fiers as well as the disaggregation method based on switching events (see
flow chart in Fig. 6.1).

2. Calculate the difference ∆pagg between the sum of the estimated active
power demand of the loads and the measured aggregate active power.

3. Identify a specific current harmonic Ix, which correlates linearly with
∆pagg and identify the to which it belongs to.

4. Perform a linear fit between ∆pagg and Ix.
5. Estimate the active power demand of the fixed-speed motor pFSM through

the linear fit.

The algorithm is based on the following idea: In order to derive a continuously
variable active power demand of a specific load based on only measurements of
the aggregate load, it is necessary that one aggregate feature can be uniquely
associated with this load. To this end, only two electrical properties have
been proposed in literature so far, namely high frequency voltage noise (see
subsubsection 3.7.1.1) and current harmonics (see subsection 3.7.3). High
frequency harmonics could not be analyzed in this thesis because it requires
expensive measurement equipment featuring a sample frequency of 1 MHz.
Current harmonics have been used for the disaggregation of uncontrolled bridge
rectifiers, which are characterized by a high total harmonic distortion of more
than 100 % (see section 5.1). Moreover, the relation between the current
harmonics and the active power demand can be analytically determined (see
subsection 5.2). In contrast, the current of fixed-speed motors only exhibits
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a total harmonic distortion of a few percent and there is no obvious relation
between any current harmonic and the active power demand. Nevertheless, it
was found that a significant linear correlation between a current harmonic and
the active power demand can exist.

An interesting question is when and why such a linear correlation exists.
While the relation between current harmonics and the fundamental current
harmonic (with which the active power demand can be calculated) can be easily
analytically determined for several electric loads such as uncontrolled bridge
rectifiers, light dimmers and ideal line commuted converters (Grady 2012),
it cannot be derived in a similar way for fixed-speed motors. Grady (2012)
notes that single-phase motors typically have a low total harmonic distortion
of around 10 % because the current becomes nonlinear when the motor is
operated with peak flux densities beyond the saturation knee, but he does
not specify a quantitative relation. Moreover, almost all ideal electric loads
in AC systems generate only odd harmonics, since loads typically affect the
positive and negative cycles symmetrically (Chapman 2005). However, in the
validation example (see subsection 6.1.3) the linear relation between an even
current harmonic and the active power demand is used. Reasons for even
harmonics are either loads such as diodes or imperfections of AC loads, such
as tolerances in transformer windings, commutation reactances and deviations
in the firing times of thyristors (Buddingh 2003). However, in general, even
harmonics seem to be scarcely described in literature (Barros et al. 2007),
and it is difficult to specify the conditions under which a linear correlation
between the active power demand and an even current harmonic exists.

6.1.2 Detailed algorithm

As mentioned above, the algorithm comprises five steps:

1. Perform the existing disaggregation methods.
2. Calculate the difference ∆pagg.
3. Identify the correlation between ∆pagg and Ix.
4. Perform a linear fit between ∆pagg and Ix.
5. Estimate the active power demand of the fixed-speed motor using the

linear fit.

Step 1: Perform existing disaggregation methods First, any loads featur-
ing uncontrolled bridge rectifiers (in particular, variable speed drives) are
extracted using the new disaggregation algorithm described in 6.2. Thereafter,
the power demand of all two-state loads is estimated using the event-based
disaggregation algorithm described in section 3.7.1. Since it is assumed that the
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fixed-speed motor with the continuously variable power demand also exhibits a
characteristic step change, it is first estimated as a two-state load.

Step 2: Calculate difference ∆pagg Second, the difference between the mea-
sured aggregate power and the sum of the estimated power demands is calculated
as

∆pagg(t) = pmeasagg (t)−

(∑
UBR

pestUBR(t) +
∑
i

θesti (t)pesti

)
︸ ︷︷ ︸

≡pestagg

, (6.1)

where the first subtrahend represents the estimated active power demand of all
loads featuring uncontrolled bridge rectifiers, and the second subtrahend refers
to the estimated active power demand of all two-state electric loads of the
aggregate load. The second subtrahend includes the fixed-speed motor with a
continuously variable power demand, since it also exhibits a characteristic step
change (see assumption above). If the active power demand of all loads was
estimated correctly, ∆pagg(t) contains only the fluctuations of the active power
demand of the fixed-speed motor. With real data, it is beneficial to slightly
smoothen ∆pagg using a median filter because otherwise imprecisely detected
switching times lead to narrow peaks in ∆pagg.

Step 3: Identify correlation Third, two tests are executed for each harmonic
In and for each two-state load i:

• The correlation between ∆pagg and the measured aggregate current
harmonic |Iaggn | is tested using the Pearson correlation coefficient for
the time windows defined by θesti . The Pearson correlation coefficient is
calculated as

ρ(x, y) =
∑n

i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
, (6.2)

where x refers to |Iaggn |, and y represents ∆pagg.
• It is tested, whether a significant step change was detected for the

harmonic |Iaggn | when the load i is turned on and off. Therefore, the
step-change magnitude of |Iaggn | at switching times is compared to its
usual noisiness quantified with the coefficient of variation.

If both tests return positive results for a harmonic |Iaggn∗ | and a specific load
indicated by the subscript FSM in the following steps, then this suggests that
the continuous variable power demand can be estimated based on the harmonic
n∗.
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Step 4: Perform linear fit Fourth, a linear fit is performed, and its parameters
are returned using

m∗, b∗ = argmin
m,b

∫ ∣∣θestFSM (t) ·
[
∆pagg(t) + pestFSM − (m · |Iaggn∗ |(t) + b)

]∣∣ dt .
(6.3)

Step 5: Estimate using linear fit Fifth and finally, the estimated active power
demand of load i∗ is substituted by

pest,newFSM (t) = θestFSM (t) · (m∗ · |Iaggn∗ |(t) + b∗) . (6.4)

Extension to more complicated cases In contrast to the assumption that the
aggregate load comprises only one fixed-speed motor whose power consumption
varies continuously, the disaggregation algorithm presented above is also appli-
cable to aggregate loads comprising two fixed-speed motors with a continuously
variable power demand, under the condition that the regions in which their
power varies, do not overlap. If they do overlap, the aggregate power will not
display a significant linear correlation with any of the harmonics, and hence
the algorithm will stop at step three.

For this scenario, an estimation of the individual power demands is still
conceivable. One approach would be to linearly fit not one but multiple
fixed-speed motors in equation 6.3, i.e.,

m∗, b∗ = argmin
m,b

∫ ∣∣∣∣∣∆pagg(t) +
∑

i∈FSM

θesti (t)pesti − (mi · |Iaggn |(t) + bi)

∣∣∣∣∣ dt︸ ︷︷ ︸
ε

,

(6.5)

where the sum iterates over all fixed-speed motors that might have a con-
tinuously variable power demand. Furthermore, m = m1,m2, . . . and
b = b1, b2, . . . .

However, assuming two fixed-speed motors with a continuously variable active
power demand, the equation already allows for four degrees of freedom. With
such a high freedom, many signals can be fitted to the measured aggregate
active power demand even though no correlation might exist. This should be
prevented. To this end, Gebbe et al. (2017a) proposed first performing a
fit in which only the parameter b is variable. Then, the same fit is performed
again, allowing both parameters b and m to be variable. The final result is only
accepted if the error ε from the second fit is at least 20 % lower than the error
ε from the first fit. The underlying thinking is that the error in the second fit
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will always be lower than the error in the fit, even for random signals, since
the second fit allows for more degrees of freedom. In other words, a smaller
error in the second fit does not necessarily indicate that the signals are indeed
linearly correlated. However, this has to be tested, for example, by calculating
the probability of a random signal to achieve the same decrease in the error
ε. If and how this can be achieved was not analyzed further, though. As a
simple alternative, an error decrease of 20 % was set as a threshold, but this
value is not based on any statistic criterion. Therefore, further research is
recommended.

6.1.3 Validation

The method was validated for a real world example, more specifically, for
a fixed-speed motor driving a vacuum pump whose active power demand
fluctuates between 600 W and 950 W. It is part of a thermoform machine,
which also comprises several Joule heating elements; two variable speed drives;
three fixed-speed motors driving different types of conveyor belts; a fan and
an external cooling unit consisting of a compressor, a pump and a fan. The
active power demand of both the aggregate load and the fixed-speed motor
with the continuously variable active power demand is illustrated in Fig. 6.3.
The disaggregation method makes use of only the aggregate data. The data of
the fixed-speed motor were only used for the evaluation of the algorithm.
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Figure 6.3: Active power demand of the fixed-speed motor with a continuously
variable power demand and the aggregate load. Same fixed-speed
motor as presented in Fig. 4.2 top and Fig. 5.1.

Step 1 &2: Disaggregate and calculate difference First, the uncontrolled
bridge rectifiers were extracted from the aggregate load (see Fig. 6.4). The
residual aggregate load was then disaggregated using the method based on
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switching events. The result of the latter disaggregation as well as the calculated
difference ∆pagg is displayed in Fig. 6.4.
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Figure 6.4: Result of the disaggregation method based on switching events

Steps 3 & 4: Identify correlation and perform fit The degree of linear cor-
relation between ∆pagg and all aggregate current harmonics was quantified
using the Pearson correlation coefficient (see Table 6.1). ∆pagg only correlated
significantly with the 16th aggregate current harmonic Iagg16 with a coefficient of
0.80. The second highest correlation coefficient has a significantly lower value
of only 0.48. Then, it was tested whether the 16th current harmonic exhibits
a significant step change when any of the four estimated two-state loads (see
Fig. 6.4) are switched on or off. This was true for only one load, namely the
fixed-speed motor driving the vacuum pump. Based on this result, a linear fit
was performed between ∆pagg(t) + θFSM (t) · pFSM and Iagg16 (see Fig. 6.5).
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Figure 6.5: Linear correlation between ∆pagg and Iagg16

While a correlation coefficient value of 0.80 between ∆pagg and Iagg16 does not
imply a perfect correlation, the correlation coefficient between the active power
demand of the fixed-speed motor driving the vacuum pump pmeasFSM and IFSM16
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was actually much higher, at 0.94 (see Table 6.1). There are three reasons for
the discrepancy, which can be demonstrated with the values in Table 6.1:

• Non-ideal two-state behavior of loads,
• Estimation errors introduced in previous steps,
• Interference of other loads featuring a 16th current harmonic.

Table 6.1: Pearson correlation ρ(x, y) between different current harmonics
and the active power demand as well as the harmonic interference
ψFSMn from other loads according to equation 6.6

n ρ (|Iaggn |,∆pagg) ρ (|Iaggn |, pmeasFSM ) ψFSMn ρ
(
|IFSMn |, pmeasFSM

)
0 0.01 0.12 218 % 0.38
1 0.06 0.18 90 % 0.93
2 0.01 0.11 391 % 0.49
3 0.03 -0.04 418 % 0.57
4 0.02 0.11 460 % 0.51
5 0.04 0.02 614 % 0.66
6 0.04 0.12 519 % 0.46
7 0.02 0.10 785 % 0.64
8 0.14 0.22 404 % 0.51
9 0.07 0.06 788 % 0.54
10 0.19 0.24 276 % 0.58
11 0.12 0.12 2106 % 0.64
12 0.38 0.37 194 % 0.85
13 0.09 0.07 1251 % 0.70
14 0.42 0.48 118 % 0.89
15 0.14 0.16 331 % 0.98
16 0.80 0.91 28 % 0.94
17 0.12 0.16 189 % 0.55
18 0.25 0.58 70 % 0.98
19 0.21 0.14 577 % 0.96
20 0.15 0.61 96 % 0.98
21 0.14 0.28 443 % 0.95
22 0.48 0.58 135 % 0.93
23 0.01 0.12 2733 % 0.86
24 0.02 0.19 240 % 0.87
25 0.17 0.25 2831 % 0.80
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If all two-state loads would have operated ideally and the estimation in pre-
vious steps would have been perfect, ρ (|Iagg16 |,∆pagg) would have equaled
ρ (|Iagg16 |, p

meas
FSM ) = 0.91.

The degree to which the current harmonics of other loads interfered with the
current harmonics of the fixed-speed motor driving the vacuum pump can be
quantified with the following formula:

ψFSMn =
∑

i 6=FSM |I
i
n|

|IFSMn |
, (6.6)

where the sum iterates through all loads i of the aggregate load excluding the
relevant fixed-speed motor with a continuously variable power demand and
n refers to the analyzed harmonic. Accordingly, the sum of the 16th current
harmonic of all residual loads was 28 % as much as IFSM16 (see Table 6.1). If
no other load would have generated the 16th current harmonic, the correlation
would have equaled ρ

(
|IFSM16 |, pmeasFSM

)
= 0.94.

The values of ρ
(
|IFSMn |, pmeasFSM

)
also demonstrate that the 16th current har-

monic was not the only current harmonic that exhibited a significant linear
correlation with the active power demand of the fixed-speed motor driving the
vacuum pump. Indeed, the 15th, 18th, 19th, 20th and 21st current harmon-
ics demonstrated an even higher correlation than the 16th current harmonic.
However, in those cases the interference from other loads was much higher.

Step 5: Estimate using linear fit Using the linear fit obtained in the previous
step, the active power demand of the fixed-speed motor driving the vacuum
pump was estimated (see Fig. 6.6). The estimation yielded an accuracy of 89 %
according to equation 1.1, which satisfies the requirements (see section 1.3).
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Figure 6.6: Estimated and measured active power demand of the fixed-speed
motor with a continuously variable power demand
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6.2 Method for extracting uncontrolled bridge rectifiers

6.2.1 Approach

The idea for a new disaggregation method for uncontrolled bridge rectifiers,
which were found in all of the variable speed drives analyzed in this thesis,
originates from two observations. First, in most cases, the characteristic peaks
in the current of an uncontrolled three- or single-phase bridge rectifier are
visible in the aggregate current. Second, the current of an ideal uncontrolled
bridge rectifier is zero for every region apart from the peaks. Therefore, if
the visible peaks in the aggregate current could be filtered or "cut off", the
aggregate current could be separated into the current of the uncontrolled bridge
rectifier and the current of all residual loads. This approach can be realized by
performing the following steps (see Fig. 6.7):

1. Detect the beginning and the ending of peaks by analyzing the curvature
of the aggregate current.

2. Identify the type of uncontrolled bridge rectifier - either single-phase
or three-phase - by examining the distribution of all estimated peak
beginnings and endings.

3. Filter out false positives and false negatives in the estimated current peak
beginnings and endings.

4. Estimate the current of the residual loads through interpolation.
5. Estimate the current of the uncontrolled bridge rectifier through a simple

subtraction.

A preliminary version of this method has been published in (Gebbe et al.
2017b).

6.2.2 Detailed algorithm

Step 1: Detect beginning and ending of current peaks

The presence of peaks leads to a characteristic shape in the second derivative of
the aggregate current corresponding to its curvature, as can be seen in Fig. 6.8.
For the two positive peaks in the first half-period, in which the voltage is
positive, the following is true: the beginning and end of a positive peak lead to
a local maximum in the second derivative of the current, since the curvature of
the current increases significantly at those times. In the center of the peaks,
the curvature drops and results in a local minimum. Hence, the beginning and
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end times of these two peaks can be determined by searching the four largest
local maxima in the second derivative of the current, i.e.,

φmax = argmax
φ

d2

dφ2 iagg , (6.7)

where φmax refers to the phase angle with respect to the voltage at which a
local maxima of the curvature of the measured aggregate current was found.
For half-periods in which the voltage is negative, the same procedure can be
performed on the additive inverse of the aggregate current.
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Figure 6.8: Plot of a simulated current, including its second derivative, of
an aggregate load comprising an uncontrolled three-phase bridge
rectifier

This simple approach works well for ideal signals. However, in real-world
signals, the presence of noise and electric loads with current harmonics may
lead to either additional peaks in the aggregate current (false positives) or
peaks from the uncontrolled bridge rectifier being obscured (false negatives).
To handle such signals, the final algorithm is more complex:

First, the current is split into half-periods by detecting the zero crossings of
the voltage. While other methods to achieve this result exist, the zero crossing
detection is simple and well described in literature (Wall 2003). If the mean
voltage in that half-period is negative, the additive inverse of the current is
used instead by multiplying the current with (−1). This ensures that all peaks
are positive.
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Second, the second derivative of the current in each half-period is split into
sections with the same sign by performing another zero crossing detection.
Then, for each such section the extremum is determined. In other words, a
maximum is determined for sections in which the second derivative of the
current is positive, and a minimum is determined for sections in which the
second derivative of the current is negative.

Third, among those extrema, the six largest maxima and the three lowest
minima are chosen for further consideration. While only four maxima and two
minima are relevant for a three-phase uncontrolled bridge rectifier, considering
more extrema increases the chance of detecting the relevant extrema in case
of false positives on the one hand. On the other hand, the percentage of false
positives among all detected extrema is now at least 33 %.

Step 2: Identify type of uncontrolled bridge rectifier

After detecting the extrema for all half-periods, the distribution of times at
which these extrema occur is analyzed (see example in Fig. 6.9). For this
purpose, the time is represented as the phase angle with respect to the last
zero crossing of the voltage. All extrema occurring at phase angles below 30°
or above 150° are discarded since they most likely represent false positives (see
simulated data in section A.2).

Ideally, for an uncontrolled three-phase bridge rectifier two minima should
occur in each half-period around 60° and 120°. Moreover, four maxima should
occur in the interval [30°, 150°]. Similarly, for an uncontrolled one-phase bridge
rectifier, one minimum should occur in each half-period around 90° and two
maxima in the interval [30°, 150°] (see section 2.4).

Only if this number of extrema occurs, it is decided that the respective type
of rectifier is present in the aggregate load, and the respective disaggregation
procedure described in the following steps is performed. Note that it is also
possible that the conditions of both the three-phase and the single-phase bridge
rectifier are fulfilled. In this case, the below-mentioned disaggregation procedure
is performed twice: first for a three-phase rectifier using the aggregate current,
and afterwards for a single-phase rectifier using the residual current.

Step 3: Filter estimated current peak beginnings and endings

As mentioned above, among the detected extrema, at least 33 % are not relevant.
Therefore, the relevant extrema need to be detected using the following filtering
process. This is achieved in three substeps:
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Figure 6.9: Distribution of times (measured in phase angles) at which local
maxima and minima were detected for a real world example in
which an uncontrolled three-phase bridge rectifier was present

1. Estimate the likely peak center, which is assumed to be constant for all
half-periods.

2. Estimate the likely peak width for each half-period.
3. Substitute the estimated values with nearby detected extrema.

Estimate likely peak center First, the actual center of the peaks are found
using the detected minima. For an uncontrolled three-phase rectifier two
peaks occur at φC1 ≈ 60° and φC2 = φC1 + 60° ≈ 120°, whereas for an
uncontrolled single-phase rectifier one peak occurs at φC ≈ 90°. Moreover, in
a first approximation, it can be assumed that the peak centers for a particular
uncontrolled bridge rectifier always occur at the same phase angles independent
of the load (see section A.2). Therefore, the most likely peak center ˆφC1 for
the three-phase rectifier is found by

ˆφC1 = argmax
φC1

∑
φmin

N (φmin, φC1, σ
2
C) +N (φmin, φC1 + 60°, σ2

C) (6.8)

s. t. φC1 ∈ [60°− 6°, 60° + 6°] ,

where the sum ranges over all phase angles φmin for which a minima was found,
and N (x, µ, σ2) represents the normal distribution.

This can be understood as finding estimate values for φC1, φC2, which overlap
the most with any detected local minima φmin. It shall be pointed out that
using such a likelihood function is robust against outliers, which is not the
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case for cost functions that penalize distances. Similarly, the most likely peak
center φ̂C for the single-phase rectifier is found by

φ̂C = argmax
φC

∑
φmin

N (φmin, φC , σ2
C) (6.9)

s. t. φC ∈ [90°− 8°, 90° + 8°] .

Estimate likely peak width Second, the most likely width φW of the current
peaks is determined using the detected maxima. It is assumed that the peak
width varies over time given a varying load. In the case of the three-phase
rectifier it is further assumed that the peak width is the same for both peaks
in the same half-period. Hence, for the three-phase rectifier the beginning and
end of the two peaks can be defined as

φb1 = ˆφC1 − 0.5 · φW (6.10)
φe1 = ˆφC1 + 0.5 · φW
φb1 = ˆφC1 + 60°− 0.5 · φW
φe2 = ˆφC1 + 60° + 0.5 · φW ,

where the subscript b1 refers to the beginning of the first peak, e1 denotes the
end of the first peak, b2 indicates the beginning of the second peak and e2
represents the end of the second peak per half-period.

Similarly, the beginning and end of the one peak in case of the single-phase
rectifier can be defined as

φb =φ̂C − 0.5 · φW (6.11)
φe =φ̂C + 0.5 · φW .

The most likely peak width φ̂W for each half-period H is then found for the
three-phase rectifier by

φ̂W (H) = argmax
φW

∑
φmax∈H

+N (φmax, φb1, σ2
W ) +N (φmax, φe1, σ2

W ) (6.12)

+N (φmax, φb2, σ2
W ) +N (φmax, φe2, σ2

W )
s. t. φW (H) ∈ [6°, 60°] and |φW (H)− φW (H − 1)| ≤ 6° .



104 6 New and improved methods

Similarly, the most likely peak width φ̂W for the single-phase rectifier is
determined by

φ̂W (H) = argmax
φW

∑
φmax∈H

+N (φmax, φb, σ2
W ) +N (φmax, φe, σ2

W ) (6.13)

s. t. φW (H) ∈ [6°, 120°] and |φW (H)− φW (H − 1)| ≤ 6° .

Substitute estimated values with nearby detected extrema Based on the
estimated peak center and peak width, all likely peak beginnings and endings
φb1, φe1, φb2 and φe2 or φb and φe can be calculated (see equations above).
These estimate values can be substituted by a phase angle φmax for which
a maximum was actually detected if φmax is close to one of the estimated
values.

An exemplary result for a three-phase uncontrolled bridge rectifier is presented
in Fig. 6.10 with regard to the detected phase angles φmax corresponding to the
input to step 3 and the final values for φb1, φe1, φb2 and φe2 for each half-period
corresponding to the output of step 3.
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Figure 6.10: Plot of all detected phase angles φmax as well as all final phase
angles φb1, φe1, φb2 and φe2. Same real-world example as in
Fig. 6.9.
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Step 4: Estimate current of residual loads through interpolation

After the peak beginnings and endings have been detected, the residual current
(i.e., the current of all residual loads) is estimated. Since the current of the
uncontrolled bridge rectifier is zero outside the peaks, the residual current
equals the aggregate current in these regions. For the regions corresponding to
the peaks, the residual current is not known, and it is thus estimated via an
interpolation.

In the simplest approach, the interpolation is performed linearly. Therefore,
the current values at the beginning and at the end of a peak are connected
with a line that can be expressed mathematically as:

ires(φ) =

{(
1− φ−φb

φe−φb

)
iagg(φb) +

(
φ−φb
φe−φb

)
iagg(φe) . . . if φ ∈ [φb, φe]

iagg(φ) . . . else
,

(6.14)

where ires represents the current of all residual loads, iagg the measured
aggregate current, and φb and φe refer to the estimated peak beginning and
ending. This approach works well if the undefined region (i.e., the peak) is
narrow, and it has the advantage of being computationally efficient.

However, if the undefined region is large, the linear approximation of the
residual current fails because the current is in fact curved instead of linear. In
these cases, more sophisticated interpolations are recommended. If the total
harmonic distortion of the residual current is low, its undefined region can
be interpolated using a single sine wave with variable amplitude and phase
difference but a fixed frequency of ω = 2πf = 2π/(2 ·TH), where TH represents
the duration of the half-period. If, on the other hand, the total harmonic
distortion is large, multiple sine waves with fixed frequencies can be used for
the interpolation. Their parameters can be inferred by, e.g., a least squares fit
to the already defined region of the residual current.

Step 5: Estimate current of uncontrolled bridge rectifiers

After the residual current has been estimated, the current of the uncontrolled
bridge rectifier can be calculated by simply subtracting the residual current
from the aggregate current:

iUBR = iagg − ires . (6.15)
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Figure 6.11: Plot of the estimated current from the uncontrolled bridge
rectifier (UBR) and the estimated residual current.

6.2.3 Validation

The improved algorithm was evaluated against the four deficits of the existing
disaggregation method based on correlation. These deficits were described in
detail in section 5.2 and are summarized below:

• A low accuracy,
• A high susceptibility to other loads exhibiting current harmonics,
• An inapplicability if the aggregate load comprises both a three-phase and

a single-phase uncontrolled bridge rectifier,
• An inability to disaggregate the current directly.

6.2.3.1 Low accuracy

In order to verify that the new disaggregation algorithm yields a greater
accuracy than the ones described in section 5.2, the following experiment was
performed:

An aggregate load, consisting of a three-phase uncontrolled bridge rectifier and
a linear load, was simulated. The current of the linear load could be described
as a pure sinus with a peak magnitude of 200 A, which was approximately
twice as high as the peak current magnitude of the uncontrolled bridge rectifier
(see Fig. 6.11). For the uncontrolled bridge rectifier, the same simulation data
as described in section 5.2 and section A.2 were used.
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The improved disaggregation algorithm described above was then applied to the
voltage and aggregate current of these two electric loads. The disaggregation
result of the uncontrolled bridge rectifier was then evaluated in terms of the
measurement accuracy (see eq. 1.1). The accuracy ranged between 95 and 100 %
for all scenarios (see Table 6.2) and thus fulfilled the required accuracy of at
least 85 %.

Table 6.2: Accuracy of the improved disaggregation method for the different
rectifiers defined in section 5.2

Type of rectifier
A B C D E F

R
lo
a
d

10 Ω 100 % 100 % 99 % 100 % 99 % 100 %
15 Ω 100 % 99 % 100 % 98 % 99 % 100 %
20 Ω 97 % 99 % 100 % 100 % 100 % 100 %
30 Ω 99 % 100 % 100 % 100 % 99 % 100 %
40 Ω 99 % 97 % 100 % 100 % 100 % 100 %
80 Ω 99 % 99 % 100 % 99 % 100 % 100 %
160 Ω 99 % 99 % 100 % 99 % 100 % 100 %
320 Ω 99 % 100 % 100 % 100 % 97 % 100 %
640 Ω 100 % 100 % 100 % 100 % 100 % 100 %
1000 Ω 100 % 100 % 100 % 100 % 100 % 95 %

6.2.3.2 Susceptibility to current harmonics from other loads

In another experiment, it was demonstrated that the new disaggregation is
also more robust against the presence of other electric loads generating similar
current harmonics as the uncontrolled bridge rectifier. Therefore, one of the
simulated currents described in section 5.2 was used again to represent the
current of an uncontrolled bridge rectifier (rectifier A, Rload = 40 Ω ). Another
electric load was defined, whose first and fifth harmonics equaled the first and
fifth harmonics of the uncontrolled bridge rectifier in magnitude and phase.
All other harmonics of this load were defined as zero.

Again, the improved disaggregation algorithm described above was applied to
the voltage and aggregate current of these two electric loads, and the result
was evaluated in terms of the accuracy defined in eq. 1.1. In this case, the
residual current was interpolated using a mixture of sinus-waves of different
frequencies. The result was that the current of the uncontrolled bridge rectifier
was estimated with an accuracy of 97 % (see Fig. 6.12). This is a significant
advantage compared to the previous method by Laughman et al. (2003);
Lee et al. (2005), which yielded an accuracy of 0 % (see section 5.2).
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Figure 6.12: Disaggregation result when another load with current harmonics
is present

6.2.3.3 Inapplicability if two different types of uncontrolled bridge
rectifier are present

The previous disaggregation method could not be applied to an aggregate load
comprising both a single-phase and a three-phase uncontrolled bridge rectifier
(see section 5.2.3). In contrast, the improved disaggregation method can be
applied to such an aggregate load. For the case described in section 5.2.3,
the disaggregation result is presented in Fig. 6.13. The method achieved
disaggregation accuracies of 98-99 % for all three loads.

6.2.3.4 Inability to extract the current

The previous disaggregation methods could only estimate the active power
demand or the fundamental harmonic, both of which are defined for one period
(see section 2.2). In contrast, the improved disaggregation methods directly
estimates the current and thus hundreds of values per period (depending on
the sample rate). This is beneficial if further methods require one to analyze
either the current of the uncontrolled bridge rectifier or of the residual loads.
An example of such a method is the classification described in section 6.4.
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Figure 6.13: An aggregate load comprising both a single-phase and a three-
phase uncontrolled bridge rectifier (UBR) (top) can be success-
fully disaggregated with the improved method (bottom).
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6.3 Method for detecting switching events

6.3.1 Approach

The improved approach for detecting events consists of functions which are
similar to the ones used in the previous approach described in section 5.3. It
comprises three steps (see Fig. 6.14):

1. Determine the probability of a step change using the function ξ already
described in section 5.3, albeit with improved robustness.

2. Reconstruct the signal using f̂mod.
3. Determine the step-change magnitude based on the reconstructed signal

using ∆fmod .

The idea for the algorithm can be thought of as a mixture of the event detection
approach by Luo et al. (2002) and the original event detection by Hart
(1985). While the probability of step changes is calculated using the method
proposed in Luo et al. (2002), their magnitude is determined in a way that is
more similar to Hart (1985) than Luo et al. (2002). Hart (1985) determines
the step-change magnitude by calculating the difference between steady states.
The advantage of this is that the reconstructed signal always approximately
equals the original signal. While steady states may not be apparent due to
noise or continuously variable loads, a similar approach is used here: first, quasi
steady states are calculated using f̂mod, and then the step changes between
these quasi steady states are determined using ∆fmod.

6.3.2 Detailed algorithm

Step 1: Determine probability using function ξ

To determine the probability of a step change function, the same function ξ
as described in detail in section 5.3 is used. However, ξ can lead to undesired
results in case of low values of σP . This problem and a solution will be described
next.

Moreover, an alternative function ξmod for determining step changes is briefly
presented. While this alternative function is not used in the final combined
method, it does aid in the understanding of the event detection process,
including its challenges, and it may be useful in other scenarios.
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Figure 6.14: Improved approach for detecting events
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Improved robustness against low values of σP As Luo et al. (2002) already
mentioned, low values of σP can yield undesired detection results compared
to human intuition. Therefore, they proposed setting a lower limit to σP as
σP

!
≥ 1 % · µP .

However, this limitation does not suffice in some cases. This can be proven
with an exemplary signal f derived from real data, illustrated in Fig. 6.15 at
the top. The signal f and its standard deviation are defined as follows:

f ≈
{

0 . . . k < 15
10 . . . k ≥ 15

, (6.16)

σ(f) ≈
{

0.25 . . . k < 10
1 . . . k ≥ 10

.
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Figure 6.15: Probability of step changes without (top) and with limiting zi
(bottom). ND = 6 was chosen here.

While the desired result is to detect the step change at k = 15, ξ actually
determines the most likely step change at k = 10 due to the low value of σ(f)
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for k < 10. A solution is to constrain zi in equation 5.4 as

zmodi =
{

10 if zi > 10
zi else

. (6.17)

The constant value of 10 is chosen specifically for the example above. For real
data, a value of 100 was found to be helpful. With this limitation of zi, ξ
determines the most likely step change at k = 15, as desired.

Alternative function for determining probability It is possible to define a
modified function for determining the probability of step changes that is robust
against narrow peaks. Such a function ξmod will be presented next and its
robustness will be proven. However, since the step change in the active power
demand of some motors with a particularly large inrush current rather resembles
a narrow peak than a step change (see Fig. 6.16), it is actually necessary to
also detect narrow peaks. Therefore, ξmod was not considered further.
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Figure 6.16: Measured active power demand of a motor being switched on

The alternative function for determining the probability ξmod : Z 7→ R can be
defined as

ξmodk = ND
2

(
µD − µP

max(σD, σP )

)2

. (6.18)

For the two signals fs and fp defined in subsection 5.3.1, the test statistic
yields the following values:

for fs : ξmodk∗
see eq. 5.5= ND

2

(
m

σ

)2
, (6.19)

for fp : ξmodk∗
see sec. A.5
≈

(1
2

)2
.
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Thus, ξmod yields the same result as ξ for the signal fs, or more generally
speaking for σP ≈ σD, but a significantly lower result for the signal fp by a
factor of (m/σ)2. Assuming that ξthres = (ND/2) · 52 and (m/σ)2 � 52, the
following inequalities hold true: ξmodk∗ (fp)� ξthres � ξmodk∗ (fs). This means,
that the signal fs would be classified as a step change, but not fp, which is in
principle the desired result.

Step 2: Reconstruct signal using f̂mod

A signal with quasi steady states is reconstructed by calculating the median
of the original signal between two detected step changes. To this end, it is
assumed that step changes were detected at times s1, s2, . . . . The reconstructed
signal f̂mod can then be defined as

f̂modk ≡median(fi| argmax
sj≤k

sj ≤ i < argmin
k<sj

sj) . (6.20)

At the beginning of a signal, no previous step change exists. In this case, the
median is taken from the beginning of the signal until the first detected step
change s1. Similarly, at the end of a signal, the median is taken from the last
detected step change until the end of the signal.

Step 3: Determine step changes using ∆fmod

Based on the reconstructed signal, the magnitude of a step change is simply
calculated as the difference between the current and previous quasi steady
states:

∆fmodsi ≡ f̂modsi − f̂modsi−1 (6.21)

6.3.3 Validation

The improved algorithm was evaluated against the following two deficits, which
are explained in detail in section 5.3:

• Low robustness against narrow peaks,
• Dissimilarity between reconstructed and original signals.
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Low robustness against narrow peaks Since the magnitude of step changes
is inferred from the median of signal values, narrow peaks do not affect the
step-change magnitude at all under the condition that the residual part of the
quasi state is longer than the peak width. This is also evident in Fig. 6.14, in
which the magnitude of the step change at k = 10 was determined correctly
despite the narrow peak due to its inrush current.

Dissimilarity between reconstructed and original signals In contrast to the
previous method, the reconstructed signal is directly inferred from the original
signal. Thus, they are similar. In particular, it is impossible that estimation
errors in f̂mod add up, which was the case in the previous method (compare
k > 20 in Fig. 5.5 and Fig. 6.14).
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6.4 Method for classifying fixed-speed motors

In this section, a simple, generally valid classifier is sought that can differentiate
motors according to their mechanical load using the measured aggregate current
during the transient state of a turn-on event. To this end, two separate
conditions must be met:

• A classification must be possible using features calculated from the
measured motor current,

• The features describing the motor current need to be accurately extracted
from the measured aggregate current.

The first condition is examined in the following subsection 6.4.1, i.e., a method
is searched that can classify motors according to their mechanical load using
the measured motor current. This method and its classification results are
currently being published in (Gebbe et al. 2019). The second condition is
analyzed in subsection 6.4.4, in which a suitable disaggregation method for
deriving the motor current is proposed and evaluated. A preliminary version
of that disaggregation method has been published in (Bashir 2017).

6.4.1 Approach

In order to classify motors according to their mechanical output using the
measured motor current, features from the turn-on transient current were
calculated. The transient behavior of the current was used because it is said to
be "intimately related to the physical task [a] load performs" (Sultanem 1991)
(see subsection 5.4).

As explained in section 2.5, a classifier can be either manually specified or
automatically learned based on existing data. The latter approach was chosen
here. This means that a classifier was constructed based on training data, and
the accuracy of this constructed classifier was determined for test data. This
process can be divided into five steps (see Fig. 6.17):

1. Acquire a data set, i.e., measure the currents of several motors driving
different types of mechanical loads.

2. Normalize the measured motor currents so that unwanted influence factors
are filtered out.

3. Extract features from the motor transient currents.
4. Identify and select suitable features.
5. Classify the transient currents using the extracted suitable features.

The result of the classification in terms of the classification accuracy is then
evaluated in subsection 6.4.3.
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6.4.2 Detailed algorithm

Step 1: Acquire data set

The data set consisted of 21 motors from eight different machines (see Table 6.3).
In total, these motors drove eight pumps, four compressors, six fans and three
other types of mechanical loads. The vacuum pump is listed as a compressor,
since it also transports a gas from one side to the other while increasing its
pressure. Only fixed-speed motors were considered because the current of
motors with a uncontrolled bridge rectifier featuring an uncontrolled bridge
rectifier deviates significantly from a sinus (see subsection 2.4) and would thus
require a different treatment.

Table 6.3: List of the analyzed motors categorized according to the containing
machine and the type of mechanical load

Machine Pump Com-
pressor

Fan Other
mech.
load

Thermoform machine - vacuum pump 1
Thermoform machine - conveyor belt 1
Thermoform machine - motor for winding 1
Thermoform machine - cooling unit 1 1 1
Heated washing basin 1
Milling machine - fan for spindle 1
Milling machine - lubricant pump 1
Milling machine - cooling lubricant pump 1
Milling machine - hydraulic pump 1
Motor driving a generator 1
Pedestal fan 1
Cooling unit for selective laser sintering
machine 1

1 1 1

Cooling unit for selective laser sintering
machine 2

1 1

Ultrasonic cleaner - fan 1
Ultrasonic cleaner - fan for drying 1
Ultrasonic cleaner - circulation pump 1
Total 8 4 6 3

For each motor 2-53 turn-on events were recorded (385 turn-on events in total).
For each turn-on event, the current and voltage were recorded for 300 ms,
corresponding to approximately 15 periods. Each turn-on event can also be
referred to as an item in the context of machine learning.
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Step 2: Normalize current

Before the classification, the current was modified in two ways. First, the
current of each motor was normalized by dividing it by its peak value during
the steady state. Thus, all normalized currents had the same steady-state peak
magnitude of 1 A and the only difference between the motors was the transient
behavior of the current.

Second, the current was partitioned into half-periods using a zero-crossing
approach. The first two half-periods of each turn-on event were omitted for
calculating the features. Moreover, the current was potentially multiplied with
(−1) such that the current was positive in the third half-period. The reason for
this modification was that the transient current is significantly affected by the
exact point in time at which the motor turns on with respect to the last zero
crossing of the voltage. This effect is the strongest for the first two half-periods
(see Fig. 6.18 top). In contrast, after the modification, the current transients
of different turn-on events belonging to the same motor often looked nearly
identical (see Fig. 6.18 bottom).
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Figure 6.18: Transient current of 27 turn-on events of the heated washing
basin before (top) and after (bottom) omitting the first period
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Step 3: Define and calculate features

For each turn-on event, several features were calculated. For this purpose, only
the time scale of the second to sixth periods of the current after the turn-on
event was considered, which corresponds to the first approximately 20-120 ms
after a turn-on event. While later times would probably provide useful features
too, there is a higher chance that another turn-on event occurs during that
time period. For this reason, the duration of the transient was not used as a
feature, since it can be much longer than 120 ms. The following features were
calculated (see summary in Table 6.4).

Table 6.4: List of all features calculated in the case study
Feature category Number of features in category
Exponential decay constant 4
Line slope constant 4
Peak values, absolute and relative 20
Energy, absolute and relative 10
Energy sum, absolute and relative 10
Magnitude of harmonics 100
Total harmonic distortion of harmonics 5
Presence of local extrema 10
Presence of inflection points 10
Sum 173

Exponential decay constant An exponential function of the form
i(t) = imax · e−λt + isteady was fitted to the current peaks and the pa-
rameter λ was used as a feature. More exactly, this function was fitted to
four different signals resulting in four different features: the maxima of the
positive half-periods of the current, the minima of the negative half-periods,
the maxima of the half-periods of the absolute value of the current and the
maxima of the half-periods of the instantaneous power pinst. Thus, five values
were considered when fitting the current, and ten values were considered when
fitting either the absolute value of the current or the instantaneous power.

Linear slope constant Analogous to calculating the exponential decay con-
stant, a linear slope constant m was calculated by fitting a function of the form
i(t) = imax ·m+ isteady. It was also calculated for the four signals specified
above.
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Current peak values Another set of features comprised the peak values of
the current in the second to sixth periods, i.e., the local maxima or minima
of each of the corresponding half-periods. In total, five local maxima and five
local minima were used as features. These features represent absolute values
and make sense in this chapter, since all currents were normalized (see above).
However, for a generally valid classifier, relative values are preferable. These
can be achieved either by dividing the peak values by the peak current value
of the steady state (as was done in this case study) or by dividing them by
one of the values themselves. The latter approach was also tested by dividing
each peak value by the peak value corresponding to the second half-period of
the third period. This particular peak was chosen because it had the lowest
coefficient of variation among all 10 peak values. Concluding, both the absolute
and the relative peak values were used as features.

Energy Inspired by Chang et al. (2007), the energy of the transient, defined
as e(t0,∆t) =

∫ t0+∆t
t0

pinst(t)dt, was used as a feature. More precisely, the
energy of each period from the second to sixth periods was used (five values)
along with the sum of the energy ranging from the second to either the second,
third, fourth, fifth or sixth period (five values). Since these values represent
absolute values again, in addition to the absolute values, relative values were
calculated by dividing the energy in each period by the energy of the sixth period.
The sixth period was chosen because the energy in this period represented the
lowest coefficient of variation among the energy of the five periods.

Current harmonics Similar to Leeb et al. (1995), the current harmonics
for each period from the second to sixth periods was calculated using a fast
Fourier transformation. Only the relative magnitude of the first 20 harmonics
was used with respect to the magnitude of the first harmonic, resulting in 100
features in total. Moreover, for each period the total harmonic distortion was
calculated, resulting in five more features.

Presence of additional local extrema and inflection points In a perfect sinus
signal, there is only one local extrema in the middle of each half-period.
However, some currents exhibited multiple local extrema in half-periods. This
phenomenon was captured with one feature per half-period, which took the
value 1 whenever multiple local extrema appeared. Similarly, an inflection point,
at which the curvature of a signal changes, only appears for a perfect sinus when
its value approaches zero. In some half-periods, additional inflection points
were observed though, and in these cases, a corresponding feature adopted
the value 1 and otherwise 0.1 (a value of 0 led to issues when calculating the
coefficient of variation).
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Step 4: Identify and select suitable features

While a classifier could be constructed using all 173 features, such a classifier
would not be considered simple, and it may be difficult to interpret. Instead,
a classifier based on only a handful of the most useful features was preferred.
A useful feature should exhibit two characteristics. First, the feature values
within one class should vary little. This can be quantified using the coefficient
of variation defined as COV = σ/µ. Second, a high classification accuracy
should be achieved using only this feature.

The first characteristic could be checked easily. For each feature, the coefficient
of variation within the same motor class (not the same mechanical load type
class) was calculated. If the mean coefficient of variation over all 21 motors was
above one, the feature was not considered to be a useful feature. In this way,
12 out of the 173 features were omitted, including all four exponential decay
constants, amongst others. The residual 161 features were kept for further
examination.

The second characteristic is more complex to check, since an actual classification
has to be performed. This involves choosing a classifier, training it and
determining its accuracy (see details in the next step 5). Such a classification
was performed using each of the 161 features individually. Based on these
results, only the top 50 features resulting in the highest classification accuracy
were selected for further processing

Step 5: Classify transient currents

The actual classification can be subdivided into the following five substeps:

1. Prepare the data set to facilitate the classification process.
2. Split the data set into training and test set.
3. Choose a classifier.
4. Train a classifier.
5. Choose a classification accuracy measure.

Prepare data set Before the classification all features were rescaled to [0, 1].
Otherwise, features with a high magnitude are likely to dominate the clas-
sification process. Furthermore, the number of turn-on events of all motors
was equalized to 20. This meant that for some motors, only a fraction of
the recorded turn-on events was considered for training and evaluating the
classifier, while for other motors, turn-on events were duplicated. Without this
modification, the classifier would have prioritized the correct classification of
motors with many turn-on events over motors with fewer turn-on events.
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Split data set In order to train and evaluate the classifier, the data set was
split into a training set for training the classifier and a test set for evaluating
the classifier. This was performed using the stratified k-fold cross validation
technique with k = 20 (Refaeilzadeh et al. 2009). One weakness of the data
set was that the number of turn-on events per type of mechanical load was not
equal. In machine learning terms, the data set is said to be imbalanced. As
a consequence, the classifier would prioritize the correct classification of the
class with the highest number of turn-on events, whereas it should consider
all classes as equally important. The equal treatment of classes was achieved
by modifying the cost function during the training procedure. Therefore, in
scikit-learn the parameter class weight was set to "balanced".

Choose classifier Two of the most frequently employed supervised classifica-
tion techniques are neural networks and support vector machines. While neural
networks tend to require a large number of samples (Gebbe et al. 2017c),
support vector machines "are well suited to deal with learning tasks where the
number of features is large with respect to the number of training instances"
(Maglogiannis 2007, p. 13). Since this condition was true for this case study
(the number of potential features was approximately half the number of the
samples), the support vector machine was chosen. It was implemented using the
function "sklearn.svm.SVC" from the python module scikit-learn (Pedregosa
et al. 2011). One of the parameters to further specify the support vector
machine classifier is the choice of the kernel. Here, three kernels were tested: a
linear kernel, a polynomial kernel and a radial basis function kernel.

Train classifier Training the classifier means fitting the parameters of the
mathematical model of the support vector machine to the training data such
that the classification accuracy is maximized. To this end, the function "fit"
provided by scikit-learn was used.

Choose accuracy measure The classification accuracy of the trained classifier
was evaluated using the test data. To this end, the predicted labels ŷ were
compared with the actual labels y. A straightforward classification accuracy
measure is the accuracy defined as

accuracy(y, ŷ) ≡ 1
Nitems

∑
l∈L

|yl ∩ ŷl| , (6.22)

where Nitems refers to the number of items, and L represents the set of labels.
However, this indicator can be misleading. Imagine a case with Nitems = 100,
where 10 of the items have the label "A" and the residual 90 the label "B". A
classifier which would assign all items to category "B" would have an accuracy
of 90 % because 90 items are classified correctly.
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Due to this disadvantage, the macro-averaged f1 score was used here. It is
defined as

f1macro(y, ŷ) ≡2 · p(y, ŷ) · r(y, ŷ)
p(y, ŷ) + r(y, ŷ) , where (6.23)

r(y, ŷ) ≡ 1
|L|
∑
l∈L

|yl ∩ ŷl|
|yl|

and

p(y, ŷ) ≡

{
0 if |ŷl| = 0
1
|L|

∑
l∈L

|yl∩ŷl|
|ŷl|

else
,

where p(y, ŷ) is referred to as precision and r(y, ŷ) as recall.

For the example described above, the f1 score yields a more helpful classification
accuracy measure:

r(y, ŷ) =1
2

[ 0
10 + 90

90

]
= 0.50 (6.24)

p(y, ŷ) =1
2

[
0 + 90

100

]
= 0.45

f1macro(y, ŷ) ≈0.47 .

6.4.3 Validation

Several classifiers were assessed that differed in terms of the used label of
the turn-on events (either the motor or the type of mechanical load), the
type of kernel of the support vector machine (linear, polynomial or radial
basis function) and the number of considered features (all 161 features with
a suitable coefficient of variation, only one of those 161 features or all 1225
possible pairwise combinations of the top 50 useful features). Among the
classifiers using only one or two features, only the f1 score of the classifiers
yielding the highest f1 score is reported in Table 6.5. Moreover, for classifiers
using the mechanical load type as the label, all samples belonging to the
category "other type of mechanical loads" were discarded in the training and
evaluation phase, since it was not clear whether they were actually similar to
each other. Therefore, only the three classes fans, pumps and compressors
remained in this case.

When classifying according to the type of mechanical load, f1 scores between
54 and 98 % were achieved with the exception of one f1 score with the value
of only 33 % (see Table 6.5). This low score was probably a result of the
high number of variable parameters compared to the low number of turn-on
events. Similarly, when classifying according to the motor, f1 scores between
50 and 97 % were attained. The features with which the highest accuracies
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Table 6.5: Resulting f1 scores for different classifiers (the polynomial kernel is
abbreviated to "poly" and the radial basis function kernel to "rbf")

Label Number
of fea-
tures

Kernel f1 score Feature(s), with which f1 score was
achieved

Mech. load 161 linear 98 %
Mech. load 161 poly 33 %
Mech. load 161 rbf 85 %
Mech. load 2 linear 79 % Total harmonic distortion in pe-

riod 5 + Relative magnitude of
15th harmonic in period 4

Mech. load 2 poly 64 % Relative peak value in half-
period 10 + Presence of inflection
points in half-period 6

Mech. load 2 rbf 80 % Total harmonic distortion in pe-
riod 5 + Relative magnitude of
15th harmonic in period 4

Mech. load 1 linear 59 % Total harmonic distortion in pe-
riod 5

Mech. load 1 poly 54 % Relative peak value in half-
period 11

Mech. load 1 rbf 66 % Total harmonic distortion in pe-
riod 5

Motor 161 linear 97 %
Motor 161 poly 86 %
Motor 161 rbf 93 %
Motor 2 linear 76 % Linear slope constant of the local

minima of the current + Sum of
absolute energy from period 2 to 3

Motor 2 poly 68 % Sum of absolute energy from pe-
riod 2 to 5 + Relative magnitude
of seventh harmonic in period 4

Motor 2 rbf 76 % Linear slope constant of the local
minima of the current + Sum of
absolute energy from period 2 to 3

Motor 1 linear 52 % Absolute peak value in half-
period 10

Motor 1 poly 50 % Absolute energy in period 5
Motor 1 rbf 52 % Absolute peak value in half-

period 10
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were achieved varied significantly depending on the choice of kernel and label.
Among them were the following features:

• The total harmonic distortion in the fifth period,
• The relative magnitude of the 15th current harmonic in the fifth period,
• The linear slope constant of the local minima of the current,
• The absolute current peak values in the tenth half-period as well as the

relative peak value in the tenth and eleventh half-period,
• The sum of the absolute energy from period two to three,
• The presence of inflection points in the sixth half-period.

While some features such as the linear slope constant or the sum of the absolute
energy from periods two to three clearly describe the transient behavior, other
features are extracted from the fifth or sixth period where the transient state
of some motors seemed to have already ended.

In conclusion, a classifier was found that can differentiate motors according
to their mechanical load with an f1 score of 98 %. However, this classifier is
certainly not simple as it uses 161 features. In contrast, if only two of the
most useful features are used for classification, an f1 score of at most 80 %
is achieved. This example indicates that it is unlikely that a generally valid
classifier was found. In other words, the classifier with an f1 score of 98 %
would likely misclassify any turn-on events from new motors. This can also
be graphically seen in the scatter plots using two features in Fig. 6.19 and
Fig. 6.20, in which no strict classification borders separating the different load
types are evident. Only some tendencies are apparent such that most motors
driving fans had a low total harmonic distortion, a small linear slope and a low
energy, compared to motors driving other types of loads.

The high classification accuracy of 98 % according to the mechanical load
type can rather be explained by the fact that the motors themselves could
be differentiated well with an f1 score of 97 % using all features and with an
f1 score of 76 % using only two features (see Table 6.5). This can also be
seen in Fig. 6.20, in which the turn-on events belonging to the same motor are
grouped closely together, and different clusters for the motors are apparent.
This means that two motors can be distinguished with a high certainty using
only transient features, even when their steady state value is the same.

The fact that this study did not find a simple, generally valid and sufficiently
accurate classifier separating motors according to their mechanical loads does
not mean that such a classifier does not exist. In order to conduct the search
for such a classifier more thoroughly, the use of electromechanical models with
which different types of motors and different types of mechanical loads can be
simulated is recommended. However, such simulations are complex (Boghos
& Al Jazi 2007; Mohan 2014) and were thus not carried out in this study.
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Figure 6.19: Scatter plot of turn-on events. CU=cooling unit,
SLM=selective laser sintering machine, TM= thermoform ma-
chine, MM=milling machine, UCM=ultrasonic cleaning ma-
chine.
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SLM=selective laser sintering machine, TM= thermoform ma-
chine, MM=milling machine, UCM=ultrasonic cleaning ma-
chine.
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6.4.4 Method for extracting transient motor currents

6.4.4.1 Approach

A simple approach for extracting the turn-on transient motor current from an
aggregate load is to subtract the measured aggregate current before the turn-on
event from the aggregate current after the turn-on event, assuming that the
behavior of all other loads does not change:

îaftermotor(t) = iafteragg (t)− iafterother(t) (6.25)
≈ iafteragg (t)− ibeforeagg (t) ,

where imotor represents the motor current, iagg denotes the aggregate current,
iother refers to the current of all other loads and the superscripts before and
after indicate the time periods before and after a turn-on event respectively.

However, as indicated in section 5.4, previous works have neither performed
this kind of disaggregation nor analyzed its accuracy in comparison with the
measured motor current. Instead, it has been implicitly suggested to only
extract the feature(s) of the motor current from the feature(s) of the aggregate
current. This can be expressed mathematically as follows:

ϑ
(
iaftermotor

)
= ϑ

(
iafteragg − iafterother

)
(6.26)

≈ ϑ
(
iafteragg − ibeforeagg

)
= ϑ

(
iafteragg

)
− ϑ

(
ibeforeagg

)
.

where ϑ represents a linear function, i.e., ϑ(a+ b) = ϑ(a) + ϑ(b), with which a
feature can be calculated. The majority of the features, including, for example,
the active power and the complex current harmonics, are calculated using
linear functions. In contrast, the functions used to calculate, e.g., the electric
properties cos(φ) or the total harmonic distortion are not linear.

While this approach is valid, the direct extraction of the motor current instead
of the extraction of the feature(s) of the motor current can be helpful. This is
because if the motor current can be extracted with an accuracy of 100 % , then
it is certain that all features based on the current can also be extracted with an
accuracy of 100 %. However, the opposite is not true: if one feature, such as
the active power demand, was extracted with an accuracy of 100 %, it does not
mean that all other features, e.g., the seventh current harmonic, can also be
extracted with an accuracy of 100 %. Therefore, the analysis of the extraction
accuracy of the motor current is a helpful indicator for answering the question
regarding whether a classification using only the measured aggregate current
can be as successful as a classification using the measured motor current.
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A new approach is thus proposed, with which the motor current can be
extracted from the aggregate current, and its accuracy is evaluated. The
approach comprises four steps (see Fig. 6.21):

1. Acquire a data set, i.e., measure the aggregate current as well as the
motor current for evaluation purposes.

2. Filter out the current of uncontrolled bridge rectifiers in the aggregate
current.

3. Extrapolate the aggregate current before the turn-on event.
4. Estimate the motor current as the difference between the measured

aggregate current and the extrapolated aggregate current.

6.4.4.2 Detailed Algorithm

Step 1: Acquire data set The same dataset as described in subsubsection 6.4.2
was used, where not only the current of the motor but also the aggregate
current of the whole machine was measured with a time synchronization of
approximately 1 µs.

Step 2: Filter uncontrolled bridge rectifier Many aggregate currents exhibited
sharp peaks due to the presence of an uncontrolled bridge rectifier in variable
speed drives. These peaks were often not perfectly periodic, and they were thus
difficult to extrapolate in the subsequent step. To remedy this issue, the current
of the uncontrolled bridge rectifier was filtered out using the new disaggregation
method described in 6.2. This disaggregation prior to classification is also
planned for in the complete preliminary disaggregation concept (see Fig. 4.6).
It shall be pointed out that any of the old methods for filtering uncontrolled
bridge rectifier could not have been employed for this purpose, as they do
not target the current directly. The benefit of this filtering is evaluated in
subsubsection 6.4.4.3.

Step 3: Extrapolate aggregate current In order to extract the motor current
from the aggregate current, a simple subtraction as described in equation 6.27
is possible. However, this can lead to errors if the measured aggregate current
before the turn-on event exhibits non-periodic irregularities. A more robust
approach is to infer the average periodic behavior of the aggregate current
before the turn-on event and then extrapolate it. This was achieved by
first performing a discrete Fourier transformation (see subsection 2.1) over
Nperiod = 15 periods, followed by an inverse discrete Fourier transformation
using only those frequencies that are multiples of Nperiod. Moreover, all
frequencies below Nperiod were included in the inverse Fourier transform so
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that any underlying slow oscillations of the current due to, e.g., a varying
mechanical load could be modeled.

The value of Nperiod can be chosen freely within certain limits. If a low value
of Nperiod is chosen (e.g., Nperiod = 3), the averaging window is short, and
the current inferred through the inverse Fourier transform may be affected by
non-periodic irregularities. On the other hand, if a high value of Nperiod is
chosen (e.g., Nperiod = 50), it is likely that other turn-on events occur during
such a long time period and that the assumption of a periodic aggregate current
in that time period is not fulfilled.

The accuracy of the estimated aggregate current using the inverse Fourier
transform îagg was assessed with the following indicator:

εagg =
∫
|̂ibeforeagg (t)− ibeforeagg (t)|dt∫

|ibeforeagg (t)|dt
. (6.27)

For the calculation of the error εagg the time interval [t0-300 ms, t0-10 ms]
was used, where t0 refers to the time of the turn-on event. This time interval
corresponds approximately to the last 15 periods before the turn-on event.

Step 4: Estimate motor current The current of the motor was then estimated
through a simple subtraction:

îaftermotor(t) =iafteragg (t)− îafteragg (t) . (6.28)

The accuracy of the estimation was evaluated in terms of

εmotor =
∫
|̂iaftermotor(t)− i

after
motor(t)|dt∫

|iaftermotor(t)|dt
. (6.29)

For the calculation of the error εmotor, the time interval [t0+20 ms, t0+180 ms]
was used, which approximately corresponds to the second to eighth full periods.
Any subsequent periods were irrelevant since they were not used for the
classification of the turn-on events (see feature definitions in subsection 6.4.1).
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6.4.4.3 Validation

Two aspects of the new extraction method are evaluated in the this subsubsec-
tion:

• The benefit of step 2, i.e,. filtering out the current of uncontrolled bridge
rectifiers;

• The accuracy of the extraction of the transient motor current quantified
in terms of εmotor and εagg.

Benefit of filtering out uncontrolled bridge rectifiers By filtering out un-
controlled bridge rectifiers, the errors εagg and εmotor could be reduced for
approximately 75 % of the 244 turn-on events (see Fig. 6.22, where the errors
were determined both with and without filtering the uncontrolled bridge recti-
fier current). While both errors could be reduced by a factor of 70-100 % for
the majority of the turn-on events, for some turn-on events the errors were even
reduced by a factor of up to 10 % (see example in Fig. 6.23). For a minority of
the turn-on events, the error increased when the uncontrolled bridge rectifier
current was filtered. The reason for an increase was that the filtering of the
uncontrolled bridge rectifier current did not work perfectly and thus introduced
more non-periodic irregularities than before. It shall be pointed out that in
such cases the increase in the errors was almost always below 10 %, though.
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Figure 6.22: The ratio of the errors εmotor and εagg with and without filtering
of the uncontrolled bridge rectifier (UBR) for 244 turn-on events
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îmotor

Figure 6.23: Aggregate current and motor current without filtering of the
uncontrolled bridge rectifier (top two rows, εmotor = 116 %) and
with such filtering (bottom two rows, εmotor = 65 %)



6.4 Method for classifying fixed-speed motors 135

Accuracy of extraction The error εmotor in the extraction of the motor current
varied significantly for all 420 turn-on events, ranging from less than 0.3 %
to 3,000 % with a median of 5 % (see left subplot in Fig. 6.24). This median
error can be interpreted as a success, since an error of εmotor = 5 % means
that the feature values calculated from the extracted motor current îmotor
would also likely deviate by 5 % or less from the feature values calculated
from the measured motor current imotor. Moreover, even motor currents that
have been estimated with an error of εmotor = 65 % demonstrate a macrosopic
behavior that is similar to the one of the measured motor current (see bottom
row in Fig. 6.22). Therefore, features such as the linear slope or the energy per
half-period might still be calculated accurately. To conclude, if a classification
of the motors using the measured motor current would be possible, then it is
likely that the same classification could be achieved using only the measured
aggregate current.

Next, the reasons for both the large spread of the error εmotor and the error
being larger than 10 % for some turn-on events is analyzed. To this end, it is
helpful to represent the error εmotor as a multiplication of two factors:

εmotor ≡
∫
|̂iaftermotor(t)− i

after
motor(t)|dt∫

|iaftermotor(t)|dt
(6.30)

=
∫
|(iafteragg (t)− îafterother(t))− iaftermotor(t)|dt∫

|iaftermotor(t)|dt

=
∫
|̂iafterother(t)− iafterother(t)|dt∫

|iaftermotor(t)|dt

≈
∫
|̂ibeforeother (t)− ibeforeother (t)|dt∫

|iaftermotor(t)|dt

=
∫
|̂ibeforeagg (t)− ibeforeagg (t)|dt∫

|iaftermotor(t)|dt

=
∫
|̂ibeforeagg (t)− ibeforeagg (t)|dt∫

|ibeforeagg (t)dt|︸ ︷︷ ︸
=εagg

∫
|ibeforeagg (t)|dt∫
|iaftermotor(t)|dt︸ ︷︷ ︸

≡κ

.

This means that a low εmotor can only be achieved with a low value of εagg and
a low value of κ. This makes sense: a high error εagg means that the aggregate
current could only be fitted poorly using the inverse Fourier transform. In
this case, the motor current will likely be estimated with a high error too. On
the other side, a high value of κ means that the current of the motor is much
smaller than the sum of the currents of all other loads. In that case, even small
deviations in εagg can lead to large errors of εmotor.
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Figure 6.24: Evaluation of the error εmotor with respect to εmotor · κ

That the relation derived in equation 6.30 holds true, is demonstrated in
Fig. 6.24. In most cases, εmotor is a few percent larger than εagg · κ. The fact
that it is not equal but slightly larger is due to the following two reasons. First,
|̂iafterother − i

after
other | was approximated in equation 6.30 with |̂ibeforeother − i

before
other |. In

general though, the difference will be larger in the time interval after the
turn-on event than in the time interval before the turn-on event, since îother
is estimated based on the time period before the turn-on event. Second, the
measurement of both the aggregate current and the motor current comprises
inherent measurement inaccuracies from, e.g., the current clamps in the order
of magnitude of a few percent.

Some turn-on events do not follow equation 6.30. More specifically, the inequal-
ities εmotor > 10 · εagg · κ and εmotor > 10 % hold true for 57 turn-on events.
In all of these events, another switching event occurred either at the same time
as the turn-on event of the motor or during the first periods of the transient.
In these cases, an accurate extraction is not possible.

In short, it has been demonstrated that large errors of εmotors can be either
explained by overlapping switching events or by a high value of εagg · κ. In
this paragraph, it is analyzed whether εagg or rather κ is responsible for large
values of εmotors. To this end, both factors are plotted as a scatter plot in
Fig. 6.25. It can be observed that for the majority of the cases εagg < κ, and
also εagg ≤ 20 % almost always. All turn-on events with εagg > 20 % can be
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attributed to two machines whose current was significantly affected by the
presence of an uncontrolled bridge rectifier in a variable speed drive. For these
machines the filtering of the uncontrolled bridge rectifier did not always work
perfectly, resulting in a high estimation error εagg.
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εagg

0.01 %

0.1 %

1 %

10 %

100 %

1000 %

10000 %

κ
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Figure 6.25: Evaluation of the influencing factors εagg and κ. The
dashed lines represent a constant value of εmotor · κ =
{0.01%, 0.1%, 1%, 10%, 100%, 1000%} and thus correspond
to the vertical grid lines in Fig. 6.24

In summary, an error εmotor of above approximately 10 % was a result of one
of the following conditions:

• Another electric load switched on or off either at the same time as the
turn-on event of the examined motor or during its transient state.

• The current magnitude of the motor was very small compared to the cur-
rent magnitude of all other loads. In this case, even small approximation
errors εagg led to large errors in εmotors.

• In two machines variable speed drives featuring uncontrolled bridge
rectifiers were present and they could not always be effectively filtered.
In these cases, the average aggregate current îbeforeagg was estimated with
an error εagg of larger than 20 %, which makes the correct estimation of
îaftermotor unlikely.
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The combined measurement method based on disaggregation, illustrated in
Fig. 6.1, was implemented in python 3.5.3, resulting in several thousand
lines of code. Some noteworthy details concerning the implementation of the
disaggregation method based on switching events as well as concerning the
employed measurement equipment are explained in section 7.1 and section 7.2
respectively.

The combined measurement method, excluding the labeling, was then applied
to seven machines used in manufacturing. The labeling was omitted, since the
labeling using the transient current was already analyzed with real data in
section 6.4. Other labeling methods, e.g., based on the power factor, represent
the state of the art and were thus not further examined in this thesis. The
results of the measurements are presented in section 7.3, and they are critically
discussed in section 7.4.

7.1 Details concerning event detection and clustering

While most individual disaggregation methods presented in Fig. 6.1 were
described in detail in the respective sections in chapter 6, only part of the
disaggregation method based on switching events, namely the detection of the
events, was explained in section 6.3. The missing information is presented
next:

Switching events were detected by applying the function ξ defined in equa-
tion 5.3 to the residual aggregate active power presidual. While it is possible to
additionally use other electric properties for the event detection, it was found
that the events were most pronounced in the active power, the reactive power
and the fundamental current harmonic. More exactly, the signal-to-noise ratio,
which was measured as the median of a running coefficient of variation, was
found to be the highest in those signals.

For each detected switching event, the step-change magnitude in the electric
properties active and reactive power as well as the real and imaginary parts
of the current harmonics I1, I3, I5, I7 and I9 were calculated according to
equation 6.21. Only a fraction of all possible current harmonics was used
because the other ones exhibited a lower signal-to-noise ratio. A lower signal-to-
noise ratio means that the detected step-change magnitude of an ideal two-state
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load would not always be the same. Therefore, the inclusion of a harmonic
with a low signal-to-noise ratio would likely deteriorate the clustering result.
Based on the step changes of the real and imaginary parts of the five current
harmonics, their norms were calculated. These norms, plus the active and
reactive power, formed the feature vector, which characterizes each event.

In two cases, two different two-state loads were observed to act together as a
multi-state load. This means that they turned on at exactly the same time but
turned off at different times. In these cases, the turn-on event was manually
split into two events. This manual intervention could be automated in the
future, as several approaches have already been presented in literature (see
subsection 3.7.1).

The events were then clustered based on the absolute feature vector so that
turn-on and turn-off events were assigned to the same cluster. Before clustering,
each feature was rescaled to the interval [0, 1]. The features corresponding to
the active power, the reactive power and the norm of the first current harmonic
were weighed twice as much as the residual features, since their signal-to-noise
ratio was higher. For the clustering task, the agglomerative clustering method
using the average Euclidean distance between clusters was employed, since its
result can be easily retraced using the graphical representation as a dendro-
gram (Rousseeuw 1987). An important parameter is the threshold distance,
above which clusters are considered to be different. This parameter effectively
determines the number of clusters. In this thesis, it was chosen manually with
the help of the resulting dendrogram. However, several approaches exist for
determining the parameter automatically (Halkidi et al. 2001; Milligan &
Cooper 1985; Wagner & Wagner 2004), and they could be implemented in
the future. Also, the validity of a cluster can be checked by requiring that all
events in one cluster should alternate between turning on and turning off.

One or two cluster typically comprised dozens of false positive events with a
low step-change magnitude. Such clusters were automatically discarded by
examining the coefficient of variation of the absolute active power step changes
in each cluster and analyzing the alternation between the turn-on and turn-off
events.

7.2 Measurement equipment

The aggregate current and voltage were measured with a sample frequency of
10 kHz using a data acquisition hardware of type DS-NET from the company
DEWESoft GmbH. A V4-HV module was used for measuring the voltage, and a
V8 module combined with current clamps was employed to measure the current.
As current clamps, the model WZ12B from the company GMC-I Messtechnik
GmbH were used, for which a measurement error of ε(t) = ±1.5 % · i(t)± 1mA
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is stated. Even though they are only specified for a frequency range of 45 Hz
to 500 Hz, it was experimentally determined by both the author and the
manufacturer that they measure a current with a frequency of 10 kHz with
an attenuation factor of only a few percent (see Fig. 7.1). According to the
Nyquist–Shannon sampling theorem (Shannon 1949), the current clamps are
thus appropriate for calculating the highest current harmonic used in this
implementation, which is the ninth harmonic correlating to a frequency of
450 Hz.
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Figure 7.1: Measured frequency response of the utilized current clamps in
this thesis, determined using an analog signal generator. To
the measured data a first-order low pass filter was fitted as
v(f) = v0/

√
1 + (f/fcut)2. The current clamps return a volt-

age signal.

In order to assess the result of the disaggregation method, not only the current
and the voltage of the aggregate load were measured with the hardware, but also
the current of all individual loads with a time synchronicity of approximately
1 µs.
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7.3 Results for application examples

The complete disaggregation method was applied to seven aggregate loads:

• Thermoform machine,
• Selective laser machine - phase one,
• Selective laser machine - phase two,
• Vacuum-based handling equipment for carbon composites,
• Milling machine,
• External cooling device,
• Heated washing basin.

These machines were chosen out of the 18 machines analyzed in section 4.2 based
on the following criteria: accessibility to the machine, availability of measuring
the voltage and current of all individual loads and the informative value of
the disaggregation result, i.e. how much insight about the capabilities of the
combined aggregation method can be gained from the application example.

The informative value was low if an aggregate power could be easily disaggre-
gated into its constituent parts. This was the case, if only one or two individual
loads consumed any noticeable electric power or if few switching events were
recorded. In contrast, the informative value was also low if the aggregate power
could not be easily disaggregated into its constituent parts because of already
known limitations of the combined disaggregation method. For example, the
machine for folding cardboard boxes comprised 13 variable speed drives and
apart from that only a small DC power supply with a negligible power demand
compared to those (see section A.1). Since all 13 variable speed drives are
of the three-phase type, they cannot be distinguished using the method for
extracting uncontrolled bridge rectifiers. Moreover, the power demand of the
DC power supply can also not be extracted due to its negligible amount. Thus,
the combined disaggregation method detects only one load, which represents
the sum of all variable speed drives. Showing this result is of little informative
value. Another example is represented by machines in which a one-phase
uncontrolled bride rectifier is connected between two phases instead of between
a phase and the neutral line. While this electric structure results in the same
kind of peaks as described in section 2.4, the peaks appear at different times
which are not taken into consideration currently in the current algorithm (see
subsection 6.2). As such an electric structure was rare, it was not further
analyzed.

The seven selected aggregate loads listed above are representative without
loss of generality as they comprise the four most frequent load classes (see
section 4.2), i.e., fixed-speed motors, motors fed by a variable speed drive,
Joule heating elements and rectifiers, in different combinations and variations
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(e.g., a motor driving a pump and a motor driving a fan) plus a semiconductor
laser. Therefore, it can be assumed that equivalent disaggregation results can
be achieved for any other machine which consists of these four load classes.
This conditions holds true for the majority of the machines (see section 4.2).

Most of the machines listed above represent a three-phase load. In these cases,
only the most interesting phase in terms of number of loads and number of
switching events was chosen for the application. In the case of the selective
laser machine, the aggregate load in each phase differed significantly though.
Therefore, two phases were analyzed for this machine. Only a fraction of the
measured time was used for the application, since most events were repetitive,
and thus no additional information was gained by presenting a longer time
period. Moreover, it simplified the graphical presentation of the disaggregation
results.

The disaggregation results illustrated in Fig. 7.2 to 7.8 are presented using the
following elements:

• An area chart in which the estimated active power demand pest : Z 7→ R

of each load is displayed.
• A table in which the actual loads corresponding to the estimated loads are

described. If a load comprises a single-phase or three-phase uncontrolled
bridge rectifier, it is marked in the description as (UBR1ph) or (UBR3ph),
respectively. Moreover, the table lists three quantitative indicators:
– The measured energy of the load calculated as e =

∑
k
|pmeas,k|.

– The error of the disaggregation result quantified as
∆e =

∑
k
|pmeas,k − pest,k|. Therefore, the calculated active

power demand was downsampled to 10 periods or approximately
200 ms as stated in the norm (IEC 61000-4-30:2015 2015).

– The accuracy calculated as acc = 1−∆e/e, which coincides with
the definition in eq. 1.1. It shall be noted that even in case of a
perfect disaggregation, the accuracy is likely to be a few percent less
than 100 % due to the inaccuracies of the measurement hardware.
A weighted average accuracy was also determined for the aggregate
load and it is denoted by the description "Sum".

• A caption text in which the disaggregation result is briefly commented,
especially if an accuracy acc� 85 % was achieved.
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Label Load e in Wh ∆e in Wh acc
1 Rest: Two motors for winding, two

fans, DC supply, conveyor belt
14.2 1.7 88 %

2 External cooling device 16.3 4.0 76 %
3 Heating 17.3 1.2 93 %
4 Motor driving a vacuum pump 43.5 4.7 89 %
5 Two variable speed drives

(UBR3ph)
4.1 0.1 97 %

Sum 95.4 11.7 88%

Figure 7.2: Disaggregation result for a thermoform machine. Apart from the
external cooling device, all loads were extracted with an accuracy of nearly
90 % or more. Particular attention can be paid to the power demand of the
fixed-speed motor driving the vacuum pump. Despite its continuous variation
it was estimated with an accuracy of 89 %. Similarly, the two variable speed
drives comprising a three phase uncontrolled bridge rectifier were extracted
with an accuracy of 97 % despite their low contribution to the aggregate power
demand. The low accuracy of the external cooling device can be explained
by the fact that four turn-on and four turn-off events with a magnitude of
only 80 W between 1.5 and 4 minutes were falsely classified as noise. A more
intelligent clustering algorithm is likely to classify these events correctly.
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2 Laser 26.8 1.5 95%
3 DC power supply (UBR3ph) 3.6 1.5 59%

Sum 30.4 2.9 90%

Figure 7.3: Disaggregation result for the first phase of a selective laser machine.
This phase only comprises two loads: a laser and a three-phase DC power
supply. The laser was identified as two separate loads corresponding to the base
load and the additional power demand when activated. Its power demand was
estimated with an accuracy of 95 %. The residual DC power supply featuring a
three-phase uncontrolled bridge rectifier was extracted with an accuracy of only
59 %. The reason is that the current of the activated laser was not perfectly
sinusoidal but was instead characterized by a large share of high-frequency
harmonics resulting in a jagged shape. Therefore, the two typical current peaks
of the three-phase uncontrolled bridge rectifier were barely observable in the
aggregate current.



146 7 Implementation

0 1 2 3 4 5

time in minutes

0

200

400

600

800

1000

1200

1400

a
ct

iv
e

p
ow

er
in

W

5

4

3

2

1

Label Load e in Wh ∆e in Wh acc
1 Computer and fan 7.6 0.8 89%
2 Air circulation fan 5.8 2.2 62%
3 Heating 32.8 5.2 84%
4 DC supply (UBR3ph) 3.2 1.0 69%
5 Motor for lifting platform

(UBR1ph)
2.2 0.5 77%

Sum 51.6 9.7 81%

Figure 7.4: Disaggregation result for the second phase of a selective laser
machine. The load with the highest energy demand was a heating element,
which was extracted with an accuracy of only 84 %. In fact, some of its
active steady states were not detected at all because they lasted shorter than
the detection window length |Dk| of 10 periods (see section 5.3). The motor
driving the air circulation fan exhibited an atypical turn-on transient behavior
lasting several seconds in which the active power demand varied continuously
(see Fig. 7.10), which explains its low accuracy of 62 %. A noteworthy fact
is that this aggregate load comprised both a single-phase and a three-phase
uncontrolled bridge rectifier. Both could be extracted using the method
described in section 6.2 with an accuracy of approximately 80 % and 70 %.
The error is due to the fact that their current peaks overlapped slightly.
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Label Load e in Wh ∆e in Wh acc
1 Two DC power supplies 2.0 0.6 72%
2 Fan (UBR1ph) 16.2 0.7 96%

Sum 18.2 1.3 93%

Figure 7.5: Disaggregation result for a vacuum-based handling equipment
for carbon composites. The active power demand of the aggregate load was
dominated by a fan whose motor was controlled by a variable speed drive
featuring a single-phase uncontrolled bridge rectifier. Its power demand was
extracted with 96 % accuracy. This example reveals that the disaggregation
method for uncontrolled bridge rectifiers also works well for scenarios in which
the rectifier contributes a dominant share to the aggregate active power demand.
The residual power demand can be linked to two DC power supplies, which
were estimated with an accuracy of 72 %. The error is due to the fact that the
power demand of the fan was estimated a few percent too high in the inactive
phases. This small relative error for the fan translated into a high relative error
for the power supplies, since the power demand of the fan was significantly
higher than that of the power supplies.
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Label Description of load e in Wh ∆e in Wh acc
1 Residual loads: pump for lubri-

cants and electronics
2,62 0,63 76%

2 Fan for spindle 1.85 0.27 85%
3 False positive 0.00 0.02 ∞
4 Pump for cooling lubricant 0.72 0.40 45%
5 Pump for hydraulic 0.21 0.03 87%
6 Variable speed drive (UBR3ph) 11.53 0.83 93%

Sum 16.9 2.2 87%

Figure 7.6: Disaggregation result for a milling machine. The variable speed
drive, the hydraulic pump and the spindle fan were extracted with accuracies
of 85 % and more. Despite this suitable result, the low estimation error of
7 % for the variable speed resulted in an overestimation of the active power
demand of the pump for the cooling lubricant which led to an accuracy of only
45 %. The imperfect disaggregation of the variable speed drive also yielded
a false positive with a brief active state at around 1:00 min. Shortly before
this false positive, the cooling lubricant pump and the spindle fan turned on
simultaneously. This event was spitted manually, since the two loads turned
off at separate times.
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Label Description of load e in Wh ∆e in Wh acc
1 Pump 86.9 0.5 100%
2 Compressor 23.8 3.5 85%
3 Fan 4.0 6.7 -68%
4 DC power supply (UBR3ph) 1.2 0.5 58%

Sum 115.9 11.1 90%

Figure 7.7: Disaggregation result for an external cooling device. While the
power demand of the pump and compressor were extracted with a satisfactory
accuracy of 100 % and 85 % respectively, the accuracy for the fan was in fact
negative, corresponding to a disaggregation error ε of 168 %. The reason is
that the turn-on event exhibited an atypical shape due to the oscillating power
demand of the compressor (see Fig. 7.9), resulting in an overestimation of the
step-change magnitude. Oscillations of the current also masked the current
peaks of the DC power supply, whose active power demand was small compared
to the other loads. This explains its rather low accuracy of only 58 %.
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Label Description of load e in Wh ∆e in Wh acc
1 Air pump 0.21 0.01 93%
2 Heating element 12.51 0.04 100%
3 Water pump 0.63 0.03 95%

Sum 13.35 0.08 99%

Figure 7.8: Disaggregation result for a heated washing basin. The operating
behavior of all three loads in this machine resembled that of an ideal two-state
load. Therefore, their power demand could be estimated with accuracies above
90 %. The measured active power demand of the air pump varied slightly in
correlation with the switching events of the heating element and the water
pump. However, it is believed that the power demand of the air pump was
actually constant and that the observed fluctuations were an effect of unwanted
electromagnetic interference in the current clamp due to the air pump’s low
power demand of only 6 W.
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Figure 7.9: Due to the oscillations of the active power demand of the residual
aggregate load (induced by the compressor), the turn-on event of the fan was
falsely interpreted as a series of one large positive step change and two negative
ones instead of just one positive step change. Only the large positive step
change was used for estimating the fan’s active power demand magnitude,
which explains the significant overestimation of its active power demand.
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Figure 7.10: Upon being turned on, the motor driving the air circulation
pump exhibited a continuously variable active power demand over several
seconds until a steady state was reached. This turn-on behavior stands in
contrast to that of an ideal two-state load.
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7.4 Discussion of results

For all but one aggregate load, an average weighted accuracy of 85 % or more
was achieved. Moreover, for a majority of the individual loads, an accuracy
of at least 85 % could be achieved with the proposed measurement method.
Notably, the active power demand of loads featuring an uncontrolled bridge
rectifier was estimated with accuracies of close to 100 % in most cases despite
its challenging continuously variable shape. Even if both a three-phase and a
single-phase uncontrolled bridge rectifier were present in the aggregate load
(see Fig. 7.4), they could be extracted separately, albeit with lower accuracies
of only approximately 80 % and 70 %. Similarly, the challenging continuously
variable power demand of a fixed-speed motor with a fluctuating mechanical
load was estimated with a suitable accuracy of 89 % (see Fig. 7.2).

If an accuracy of approximately 85 % was not achieved for an individual load,
it was due to one of the following reasons:

• If the power demand of an uncontrolled bridge rectifier was extracted with
an accuracy of less than 85 %, its current peaks were barley observable
either due to overlapping current peaks in the presence of both a single-
phase and a three-phase uncontrolled bridge rectifier (see Fig. 7.4) or
due to the high-frequency noise of other loads with a much higher power
demand than the uncontrolled bridge rectifier.

• Any estimation errors resulting from the disaggregation method for
uncontrolled bridge rectifier are effectively passed on to the estimated two-
state loads (see Fig. 6.1). Thus, even errors that were small in comparison
to the active power demand of the uncontrolled bridge rectifier resulted in
large errors relative to loads whose active power demand is much smaller
than that from the uncontrolled bridge rectifier.

• Some two-state loads exhibited an active power demand shape at turn-
on that deviated significantly from the one of ideal two-state loads (see
Fig. 7.10, Fig. 7.9 and the brief operating states of the heating in Fig. 7.4).

• In one case, the turn-on events of two-state loads with a comparatively
low power demand were masked by the active power demand fluctuations
of a fixed-speed motor with a varying mechanical load (see Fig. 7.2).
More precisely, some of these fluctuations were erroneously detected as
switching events, which led to a large number of false positives. Actual
switching events, whose step-change magnitude was of the same order of
magnitude as the false positive events, were thus indistinguishable.

In order to handle these situations in the future, several improvement options
are presented next. Since the three different disaggregation methods illustrated
in Fig. 6.1 work independently of each other, they are also reviewed separately.
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Disaggregation method for uncontrolled bridge rectifier In order to improve
the disaggregation of uncontrolled bridge rectifiers, several sanity checks can
be added to make the algorithm more robust. First, it was observed that the
estimated current of uncontrolled bridge rectifiers sometimes changes the sign
within some half-periods, which stands in contrast to reality. Therefore, the
algorithm could be constrained in such a way that the sign of the estimated
current of the uncontrolled bridge rectifiers is always constant for one half-
period. Second, in the case of the three-phase uncontrolled bridge rectifier,
it could be checked that the two peaks in each half-period have a similar
shape. Third, the disaggregation method based on the correlation between the
active power demand and current harmonics (see subsection 3.7.3) could be
performed in parallel and used in cases in which the peaks are masked due
to the high-frequency currents of other loads. Fourth, it seems worthwhile to
research whether a correlation also exists between the active power demand
and high-frequency voltage noise.

Disaggregation method based on switching events First, when detecting the
events, the test statistic by Luo yields different results when applied "from left
to right" than "from right to left" (see Fig. 7.11). Mathematically speaking,
let f : Z 7→ R be a discrete signal and let f̃ be its horizontally symmetric with
respect to the y-axis defined as f̃k = f−k. Then, ξ−k(f̃) 6= ξk(f). Such behavior
does not coincide with human intuition and it might hence be beneficial to
perform the test statistic twice - once from left to right and once from right to
left - and then combine the detection results.

Second, some loads exhibited a large inrush current when being turned on,
which results in a transient peak. Sometimes, part of this peak was falsely
identified as a steady state (see Fig. 7.9) which resulted in an overestimation of
the step-change magnitude. In these cases, it is necessary to test whether the
detected step changes might be false positives. This check can be performed
either during the event detection or during the clustering step.

Third, many loads in machines draw approximately the same current on all
three phases so that their events in the three phases should occur simultaneously,
too. This knowledge is currently not used at all. Instead, all phases are dealt
with independently.

Fourth, the current clustering method is rather simple in the sense that it
groups events based on only the distance between their feature vectors. It is
easy to envision a clustering algorithm that also examines whether events in
the cluster alternate perfectly between turn-on and turn-off events. Moreover,
the sum of the estimated active power demands can be compared against the
measured aggregate active power demand while comparing different clustering
alternatives.
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Figure 7.11: The test statistic ξ defined in eq. 5.3 yields different results when
performed from left to right than from right to left. This is shown here by
applying the test statistic to the original signal f (top) and to the horizontally
flipped signal f̃ (bottom).

Disaggregation method for varying fixed-speed motors If the fluctuations in
the power demand mask the switching events of actual two-state loads, it is
conceivable that the event detection is performed again after the disaggregation
of the relevant fixed-speed motor. This should result in less false positives and
thus make it easier to detect actual switching events.

Apart from that, one of the most important things is to gain a better under-
standing of why the correlations between the active power demand and even
harmonics occur (see section 6.1). Based on a better understanding it is likely
that the disaggregation procedure can be further improved.
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The proposed measurement method has already been evaluated in Tab. 3.3
according to the requirement criteria described in section 1.3. However, based
on the findings in chapter 7, the evaluation of the technical aspects is performed
more thoroughly now in section 8.1. Moreover, the economic aspect is analyzed
in greater detail in section 8.2.

8.1 Technical evaluation

As stated in section 1.3, it is required that the identified loads contribute at
least 80 % to the aggregate active power demand. This requirement was met by
all application examples presented in section 7.3. In several cases, some small
loads could not be extracted individually but were estimated as one aggregate
load instead. This was true for several loads referred to as "rest" in the case
of the thermoform machine (see Fig. 7.2), for the computer and fan in the
case of the selective laser machine (Fig. 7.4) and for the lubricant pump and
electronics in the case of the milling machine (see Fig. 7.6). However, in all
three cases, these loads only represented approximately 15 % of the aggregate
load. In other words, all loads contributing 85 % to the aggregate active power
demand were successfully identified individually.

Another requirement was that the identified loads are measured with an
accuracy of approximately 85 % or greater. This was true for the majority
of the identified loads presented in section 7.3. For loads with accuracies
below 85 %, several improvement options have been proposed in section 7.4.
Implementing these will almost certainly increase the accuracy on average and
thus probably fulfill the requirement of an accuracy of 85 % for all loads.

The results from the application examples can be generalized to new machines
in the sense that the seven examples represent different combinations of the four
most frequent load classes, i.e., fixed-speed motors, motors fed by a variable
speed drive, Joule heating elements and rectifiers supplying different kinds of
electronics (see section 4.2). If a new machine also comprises only these four
load classes, it can be assumed that the proposed measurement method yields
comparable results.
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8.2 Economic evaluation

The algorithms presented in this thesis need to be implemented in a user
friendly software. This software could run either online or offline and ei-
ther directly on the measurement device or on, e.g., a personal computer
which may or may not always be connected to the device. Since moni-
toring the voltages and currents of a three-phase system at 10 kHz and
24 bit would result in a significant data stream of close to 1 GByte/h
(8 signals · 10000 Hz · 24 bit · 1/8 byte/bit · 3600 s/h = 864 MByte/h), it is
assumed that the data are processed online directly at the measurement device
instead of first being transferred to another computing device.

In this scenario, one company would develop and sell a measurement device with
the incorporated algorithms to interested manufacturing companies. Therefore,
the economic benefit has to be evaluated from two viewpoints:

• From the viewpoint of a manufacturing company using the device,
• From the viewpoint of the vendor who develops and sells the device.

From the viewpoint of the user

As indicated in section 1.3, a manufacturing company does not directly benefit
from measuring the active power demands of its machines. Instead, performing
measurements can lead to the detection of previously unknown energy efficiency
deficits. By remedying these deficits, the current and future energy costs can
be decreased, which results in cost savings. According to section 1.2, the
measurement equipment is required to cost less than 10,000 €, and the setup
time for the measurement is required to last less than one hour. That efficiency
measures concerning the electricity consumption can be profitable under these
circumstances shall be demonstrated next with an example.

An efficiency measure is an investment option for the manufacturer. It requires
initial expenses for planning the efficiency measure (cplan) and actually mod-
ifying the machine (cmod) and it yields annual cost savings (ċsavings). Such
investments are typically expected to have a payback period of three years
(tpayback). This can be expressed as:

cplan + cmod
ċsavings

!
≤ tpayback . (8.1)

The planning costs cplan involve buying a piece of mobile measurement equip-
ment, which can be easily moved from one machine to another (cequipment).
Moreover, the measurements must be setup (csetup) and analyzed (canalysis)
for several machines (Nexamined). One measurement of a machine, including



8.2 Economic evaluation 157

the subsequent analysis, will not always generate one or more relevant ideas for
potential efficiency measures. Here, it will be assumed that five measurements
result in one relevant idea. This idea has to be further detailed (cdetail), before
it can be executed. Concluding, the planning costs cplan consist of the following
elements:

cplan = cequipment +Nexamined · (csetup + canalysis) + cdetail . (8.2)

The costs of modifying a machine comprise the necessary material (cmaterial) as
well as internal or external services (cservice). A type of machine is often owned
not only once but several times (Nmachines) by a manufacturing company,
potentially in plants at different locations. Then it would be advantageous to
carry out the efficiency measure not only for one but for all machines. In this
case, the modification cost cmod can be calculated as follows:

cmod = Nmachines · (cmaterial + cservice) . (8.3)

Last, the cost savings are determined by the average reduction in the active
power demand of a machine ∆p times the annual operating time ṫoperating and
the electricity price celec. They scale with the number of machines for which
the efficiency measure is carried out (Nmachines). In short,

ċsavings = Nmachines ·∆p · ṫoperation · celec . (8.4)

Based on the exemplary numbers listed in Tab. 8.1 whose order of magnitude
was drawn from interviews with experts and (BDEW 2018; Dreessen 2017;
Gleich 2014; Neugebauer 2013; Reinhart et al. 2016), a payback time of
three years is feasible:

cplan + cmod
ċsavings

= 20, 000 € + 100, 000 €
40, 000 €/a = 3 a . (8.5)

While the numbers listed in Table 8.5 are only exemplary, they show that the
cost savings are typically in the order of magnitude of several ten thousand
euros and that the personnel costs for planning an efficiency measure quickly
amount to 10,000 €. Compared to these numbers, purchasing a measurement
equipment for 10,000 € or less is not a significant investment.
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Table 8.1: Exemplary values for parameters used in eq. 8.5
Parameter Subparameters Value
cplan cequipment in € 10,000

Nexamined 5
csetup in € 200
canalysis in € 800
cdetail in € 5,000

cmod Nmachines 10
cmaterial in € 5,000
cservice in € 5,000

ċsavings ∆p in kW 10
ṫoperation in h/a 4,000
celec in €/kWh 0.10

From the viewpoint of the vendor

In this subsection it will be demonstrated that a price of 10.000 € is realistic
and that under such conditions, the vendor can make a profit. The price p
consists of the following elements:

p = (cP + cadd + coverhead
Ndevices

) · 1
1−mP

· 1
1−mT

· (1 + t) · 1
1− d , (8.6)

where cP represents the costs of obtaining a device with which the aggregate
current and voltage can be measured; cadd refers to the additional costs of
implementing the disaggregation and labeling algorithms, which are being
distributed over Ndevices sold devices; coverhead denotes the overhead costs of
the vendor for, e.g., rent, administrative staff and marketing; mP is the profit
margin of the vendor; mT is the gross profit margin of a potential intermediary
trading company; t represents any taxes and d refers to any discounts, including
a cash discount.

Several devices already exist that can simultaneously measure the voltage and
the current of a three-phase (aggregate) load. Therefore, it is assumed that such
a device is purchased rather than developed from scratch. The price of this type
of device for end customers excluding taxes ranges from approximately 350 €
(e.g., Janitza UMG 96RM-E) to 1,300 € (e.g., a Beckhoff CX5140 embedded
PC with a EL3773 oversampling terminal) depending on the computing power
and other features. Three of the current clamps used in this thesis cost an
additional 450 €. Based on these numbers, and taking volume discounts into
account, it seems realistic that a company can procure a device with sufficient
computing power and modifiability for approximately cP = 1, 500 €.
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Next, the new disaggregation and labeling algorithms need to be implemented
on the existing hardware device. These additional development costs shall
be estimated to be approximately cadd = 1 mio. €, which typically suffices to
finance a development team of five people over two years. If these costs are
distributed over Ndevices = 500 sold devices, the additional costs per device are
2,000 €. The estimated number of 500 sold devices seems to be a conservative
estimation given that in Germany alone there are 200,000 manufacturing
companies of which approximately 5,000 have more than 250 employees and
often more than one plant (Gude 2017).

The overhead costs of the company are also estimated conservatively at
coverhead = 1 mio. € based on the idea that it may take five years to
sell Ndevices = 500 devices and that the annual overhead costs amount to
200,000 €.

Finally, the profit margins of the company selling the devices are assumed to
be mP = 15 %, and the gross profit margin of a potential intermediary trading
company mT = 25 %. No value-added tax needs to be paid, since the device
is not sold to an end consumer, therefore t = 0. Furthermore, discounts of
d = 5 % are postulated.

These numbers result in a price of less than 10.000 €:

p =(cP + cadd + coverhead
Ndevices

) · 1
1−mP

· 1
1−mT

· (1 + t) · 1
1− d (8.7)

=(1, 500 € + 1, 000, 000 € + 1, 000, 000 €
500 )

· 1
1− 0.15 ·

1
1− 0.30 · (1 + 0) · 1

1− 0.05

=(1, 500 € + 2, 000 € + 2, 000 €) · 1
1− 0.15 ·

1
1− 0.30 · (1 + 0) · 1

1− 0.05
=9, 082 € .

While the numbers provided above are again only exemplary, they demonstrate
that the additional development costs per unit and the overhead costs per
unit are larger than the costs for obtaining a suitable hardware device. Here,
the development and overhead costs were estimated rather high given that a
working algorithm was already presented in this thesis. However, even in this
case, a price of 10,000 € or less seems realistic.





9 Summary

In this thesis, a measurement method was sought to determine the active
power demand of machines components in a more economical manner than by
acquiring the current and voltage of each load individually. To this end, several
alternative measurement methods were assessed at first. The most suitable
method works by only measuring the active power demand of the aggregate
load (i.e., the entire machine) and then automatically disaggregating it into
its parts based on a detailed analysis of the electric properties. While this
measurement method has been proven to be successful for determining the
active power demand of residential household devices, it has never been applied
to a machine used in manufacturing before.

Since the suitability of this measurement method depends on the types of loads
and their operating behavior, 151 electric loads in manufacturing machines
were classified next. The four most prevalent load classes were fixed-speed
motors (38 % of all loads), motors controlled by a variable speed drive (26 %),
Joule heating elements (15 %) and rectifiers supplying electronic loads such as
programmable logic controllers (13 %). While most of these loads had only two
operating states (i.e., on and off), fixed-speed motors with a varying mechanical
load and motors controlled by a variable speed drive exhibited a continuously
variable active power demand, which is more challenging to determine through
disaggregation.

Based on this analysis, the suitability of the already existing disaggregation
methods developed for residential household devices was evaluated for the
four most prevalent load classes, thereby revealing several deficits. First, no
disaggregation algorithm existed with which the continuously variable active
power demand of fixed-speed motors could be extracted. Second, the existing
disaggregation method for variable speed drives featuring uncontrolled bridge
rectifiers had several disadvantages, most notably a low disaggregation accuracy
unless training data are provided. Third, the disaggregation algorithm suited to
loads with only two operating states yielded imprecise results if narrow peaks in
the active power demand were present due to, e.g., inrush current. Fourth, no
algorithm existed with which fixed-speed motors could be classified according
to their mechanical load, even though its feasibility has been indicated in
literature and such an automatic classification would be desirable from a user’s
perspective.
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For each of these four deficits, a new, improved method was developed and
for each new method, the general approach was presented first, followed by
the detailed algorithm and a validation. The new methods were then merged
into a combined measurement method based on disaggregation, which was
implemented in the programming language python.

The combined measurement method was applied to seven real aggregate loads,
which represented different types of machines used in manufacturing and
comprised three to eleven electric components. In all cases, the majority of
the electric components could be identified through the disaggregation. More
specifically, the extracted loads contributed at least 85 % to the active power
demand of the aggregate load. Moreover, the active power demand of the loads
could be estimated with an accuracy of 85 % or more in the majority of the
cases. The weighted average accuracy ranged between 87 and 93 % for six out
of the seven aggregate loads. Some remaining challenges were pointed out for
which potential future solutions were proposed. As a result, an estimation
accuracy of 85 % or more seems achievable for all loads in the near future.

Apart from this technical evaluation, it could be demonstrated that the im-
plementation of the developed algorithms on a measurement device would be
economically profitable for both a manufacturing company using the measure-
ment device and a vendor who develops and distributes the device.

In conclusion, the combined measurement method based on disaggregation
has been proven to represent a highly economical and a sufficiently accurate
alternative, compared to the current state-of-the-art measurement method. Its
application would allow companies to increase their energy efficiency more
rapidly and more cost effectively.

Besides tweaking the methods that were already implemented in this thesis,
there are several additional promising approaches to be researched in the
future:

• Patel et al. (2007) and Gupta et al. (2010) stated that the use of
voltage oscillations in the kilohertz to megahertz range allows one to
differentiate between the switching events of lights of the same model,
since each light is wired slightly differently. Such voltage oscillations were
not investigated in this thesis due to the lack of a suitable measurement
device. However, they could prove to be similarly useful to distinguish
motors of the same type. Moreover, the magnitudes of the voltage
oscillations might correlate with a continuously variable active power
demand of a load and thus improve their disaggregation accuracies.

• Many loads in machines used in manufacturing draw approximately the
same current on all three phases. Therefore, there is a strong link between
all three measured phases. This link has currently not been utilized at
all. Instead, each phase was dealt with independently.
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• Apart from measuring the voltage and current of the aggregate load, it
is also possible to monitor the operating states of the individual loads
(Gebbe et al. 2014; Panten et al. 2016). Using the operating status of
all loads, a disaggregation can be performed as a simple linear regression.
While depending purely on the operating status signals of all loads
is questionable, since they may be difficult to acquire, the additional
use of any potential operating status signal is likely to improve the
disaggregation accuracy.

• The disaggregation method currently estimates an active power demand
for each identified load without stating a confidence level. Calculating
such a confidence level seems feasible by taking into account the validity
of the result and the difficulty of the signal to be disaggregated. This
confidence level would help users to asses the disaggregation result.





A Appendix

A.1 Classification of electric loads

The table of all 151 classified electric loads is presented in the following.
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m
ac
h
in
e

co
m
p
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t
n
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e

variable speed drive + motor

motor + fan

motor + pump

motor + compressor

motor + other mechanical load

Joule heating

electro-magnetic induction +
Joule heating

rectifier + electronic load (e. g.
programmable logic controller)

phase angle control (light
dimmer)

rectifier + resonant inverter +
impact ionization (compact

fluorescent lamp)

rectifier + high frequency
inverter + inverse piezoelectric

effect (ultrasound)

rectifier + boost converter +
LED-TFT

rectifier + radiative
recombination (e.g.,
semiconductor laser)

hot cathode in magnetron
(microwave)

rectifier + high frequency
inverter + capacitor (plasma

generator)
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variable speed drive + motor

motor + fan

motor + pump

motor + compressor

motor + other mechanical load

Joule heating

electro-magnetic induction +
Joule heating

rectifier + electronic load (e. g.
programmable logic controller)

phase angle control (light
dimmer)

rectifier + resonant inverter +
impact ionization (compact

fluorescent lamp)

rectifier + high frequency
inverter + inverse piezoelectric

effect (ultrasound)

rectifier + boost converter +
LED-TFT

rectifier + radiative
recombination (e.g.,
semiconductor laser)

hot cathode in magnetron
(microwave)

rectifier + high frequency
inverter + capacitor (plasma

generator)
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m
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co
m
p
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variable speed drive + motor

motor + fan

motor + pump

motor + compressor

motor + other mechanical load

Joule heating

electro-magnetic induction +
Joule heating

rectifier + electronic load (e. g.
programmable logic controller)

phase angle control (light
dimmer)

rectifier + resonant inverter +
impact ionization (compact

fluorescent lamp)

rectifier + high frequency
inverter + inverse piezoelectric

effect (ultrasound)

rectifier + boost converter +
LED-TFT

rectifier + radiative
recombination (e.g.,
semiconductor laser)

hot cathode in magnetron
(microwave)

rectifier + high frequency
inverter + capacitor (plasma

generator)
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m
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variable speed drive + motor

motor + fan

motor + pump

motor + compressor

motor + other mechanical load

Joule heating

electro-magnetic induction +
Joule heating

rectifier + electronic load (e. g.
programmable logic controller)

phase angle control (light
dimmer)

rectifier + resonant inverter +
impact ionization (compact

fluorescent lamp)

rectifier + high frequency
inverter + inverse piezoelectric

effect (ultrasound)

rectifier + boost converter +
LED-TFT

rectifier + radiative
recombination (e.g.,
semiconductor laser)

hot cathode in magnetron
(microwave)

rectifier + high frequency
inverter + capacitor (plasma

generator)
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A.2 Simulation of a three-phase uncontrolled bridge rectifier

For the simulation of a three-phase uncontrolled bridge rectifier with different
parameters for C, Rseries and Lseries the program LTspice XVII was used.
However, the simulation of the ideal circuit diagram shown in Fig. A.1 did not
converge. Hence, several modifications were made to the ideal circuit in order
to enable convergence:

• Addition of the resistances R3, R4 and R5 with a value of 1 µΩ,
• Addition of an internal series resistances of 10 mΩ for the three voltage

sources,
• Selection of the real diode model MUR460 for all six diodes instead of

using an idealized diode,
• Usage of the alternate solver in LTspice XVII.

These modifications resulted in a more realistic circuit shown in Fig. A.1. The
simulated voltage and current of phase 1 is shown in figures A.2 and A.3 for
Rload ∈ [10, 15, 20, 30, 40, 80, 160, 320, 640, 1000] Ω. Based on these results, the
active power demand p and the harmonics I5 and I7 were calculated.

SINE(0 325 50)
Rser=10m

V1

SINE(0 325 50 0 0 120)
Rser=10m

V2

SINE(0 325 50 0 0 240)
Rser=10m

V3

D1

MUR460

D2

MUR460

D3

MUR460

D4

MUR460

D5

MUR460

D6

MUR460

R3

1µ
R4

1µ

R5

1µ R1

{R}

C1

1m

R2

0.1

L1

0.5m

;op 0 1000 0

.tran 0 2.15 2.095 0.0001

;tran 0 0.6 0.5 0.0001

.step param R list 10 15 20 30 40 80 160 320 640 1000

Figure A.1: Screenshot of the circuit diagram in LTspice
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Figure A.2: Simulated current and voltage for rectifiers A, B and C for a
varying load
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Figure A.3: Simulated current and voltage for rectifiers D, E and F for a
varying load
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A.3 Deficit of the mapping function by Wichakool et al.

In Wichakool et al. (2009, 2015) the mapping function relates not only
one but multiple aggregate current harmonics to the first current harmonic
of e. g. an uncontrolled bridge rectifier so that the mapping function takes
the form IUBR1 = F (Iagg5 , Iagg7 , . . . ). Based on the first current harmonic, the
active power demand of the uncontrolled bridge rectifier can be calculated (see
subsection 3.7.3). This mapping function is mathematically derived based on
the representation of the signal using the Fourier transform (see section 2.1).

If the mapping function uses all aggregate current harmonics as inputs and
if the uncontrolled bridge rectifier is the only device which generates current
harmonics, the mapping function is in fact 100% accurate. However, this
assumption is unlikely to be met in practice and Wichakool et al. (2009, 2015)
themselves suggest to only use a few aggregate current harmonics as inputs
based on heuristics. Then, the mapping function ceases to be exact and the
same deficits as described in section 5.2 hold true.

Method described in Wichakool et al. (2009) The idea presented in
(Wichakool et al. 2009) bases on the fact that the current of any of the
three phases i : R 7→ R can be described as a product of a switching function
x : R 7→ R known a priori and the rectified current through the resistor or
inductor r : R 7→ R:

i(t) = x(t) · t(t) (A.1)

Any signal, even a non-periodic one, can be represented as a Fourier series
similar to the inverse discrete Fourier transform described in section 2.1, which
results in

i(t) =
∞∑

k=−∞

Ike
jkωt =

∞∑
l=−∞

Xle
jlωt ·

∞∑
m=−∞

Rme
jmωt (A.2)

=
∑
l

∑
m

XlRme
j(l+m)ωt

=
∑
n

∑
m

Xn−mRm︸ ︷︷ ︸
=̂In

ejnωt

, where Ik, Xl, Rm ∈ C ∀k, l,m and in the last line the index l has been
substituted by n = l +m. The limits of the sums are omitted for simplicity
reasons but always range from −∞ to +∞.
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Figure A.4: Exemplary signal of the rectified current (top), the switching
function (middle) and the phase current (bottom) (Wichakool et al. 2009)

This means that the coefficient Ik can be calculated as

Ik =
∑
m

Xk−mRm (A.3)

⇔ I = XR

, where I and R are vectors and X is a square matrix.

The vector I can be split into I1 containing the Fourier coefficients I1 and I−1
and Ires containing all residual Fourier coefficients:[

I1
Ires

]
=
[
X1
Xres

]
R (A.4)

⇒ I1 = X1R

This equation represents a way to calculate I1 if X1 and R are given. In fact,
X1 (and Xres) can be easily calculated, since the function x(t) is known a
priori. The vector R can be inferred from the equation

Ires = XresR (A.5)

under the condition that Ires is given and that Xres has at least as many
linearly independent rows as columns. The last condition is not met because
Xres actually has exactly two rows less than columns due to the detachment
of X1 from the square matrix X. Because of that, Wichakool et al. (2009)
propose to reduce the number of columns by only considering a subset M
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of Fourier coefficients (Rm|m ∈M). More specifically, Wichakool et al.
(2009) argue that an ideal rectified current r has a periodicity of six. In
this case, only Fourier coefficients which are multiples of six are non-zero,
i. e. R0, R6, R−6, R12, R−12, . . . . Similarly, only a set K of Fourier coefficients
of Ires are chosen such that |K| = |M |. Here, Wichakool reasons that even
Fourier coefficients are in general zero for AC-systems due to their odd waveform
symmetry (Chapman 2005). Moreover, all coefficients which are a multiples of
three are zero under a balanced three-phase voltage (Wichakool et al. 2015).
Last, they deduce that the magnitude of the Fourier coefficients ik decreases
with increasing k. Concluding, the most relevant coefficients in decreasing
order are I5, I−5, I7, I−7, I11, I−11, . . . . With these simplifications equation A.4
can be approximated as

I1 = X1R (A.6)
≈ XM

1 RM

= XM
1
(
XK,M
res

)−1
IKres

, where vectors and matrices with superscripts M or K represent the described
subset of their original versions.

In summary, Wichakool et al. (2009) analytically derived an equation to
calculate the first current harmonic based on higher order current harmonics.
In a case study, this estimator achieved disaggregation accuracies of close to
100 %. However, the aggregate load in the study was very simple: it consisted
only of a 50 W light bulb and a 300 W variable speed drive featuring an
uncontrolled bridge rectifier. And despite the advantages of the method, it has
some drawbacks:

• Most importantly, the rectified current r is approximated with only |K|
Fourier coefficients. This may lead to significant approximation errors.
As Wichakool et al. (2009) themselves state, r often does not have a
perfect periodicity of six, resulting in a lot more non-zero coefficients such
as r2, r4, r8, . . . . This approximation error could be reduced by increasing
|K|. This would require to increase |M | too, though, meaning that more
and higher current harmonics have to be used for the estimation of I1.
However, such higher harmonics have the disadvantage of being more
susceptible to interference (Ciccolella & Canavero 1995; Rich 1982;
Xu et al. 1996), which implies a larger measurement error.

• As Wichakool et al. (2009) clearly state, it is assumed that all har-
monics k ∈ K are generated only by the variable speed drive. The larger
|K|, the less likely this condition is to be met in practice.

• As Wichakool et al. (2009) also indicate, one risk is that the matrix
XK,M
res is singular and thus cannot be inversed.
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Method described in Wichakool et al. (2015) In a following paper,
Wichakool et al. (2015) described another idea to extract uncontrolled
bridge rectifier. It originates from the representation of the current of a
variable speed i as the inverse Fourier transform (see eq. 2.3). It can be
rewritten as

i0
i1
i2
...

iN−1


︸ ︷︷ ︸

= i

=


1 1 · · · 1
1 e2πj·1·1/N · · · e2πj(N−1)·1/N

1 e2πj·1·2/N · · · e2πj(N−1)·2/N

...
...

...
...

1 e2πj·1·(N−1)/N · · · e2πj(N−1)(N−1)/N


︸ ︷︷ ︸

≡ A


I0
I1
I2
...

IN−1


︸ ︷︷ ︸
≡ x

(A.7)

The matrix A can be easily calculated for any given N . Hence, if i is given and x
is unknown, eq. A.7 represents a system of linear equations. Since the columns of
A are pairwise orthogonal (see eq. 2.4) and thus linearly independent, the system
has one unique solution. Wichakool now uses the fact, that the current of the
variable speed drive is zero for (ik = 0 | k/N · 360° ∈ [−30°, 30°] ∪ [150°, 210°]).
If eq. A.7 is limited to those k’s, the number of rows of i and matrix A are
reduced to 1/3 ·N . Then, the columns of this reduced matrix A and the rows
of vector x are permutated such that x = [I1, Iothers, Iinput]T , where the vector
Iothers has a length of 1/3 ·N − 1 and Iinput a length of 2/3 ·N . eq. A.7 then
becomes 

0
0
0
...
0

 = Ã

 I1
Iothers
Iinput

 , (A.8)

where Ã represents matrix A with the reduced rows and permutated columns.
Ã has N/3 rows and N columns, hence this system of linear equations has
no unique solution, but is underdetermined. Only the relationship between
different harmonics can be calculated by bringing Ã into a reduced row echolon
form using the Gaussian elimination method:

0
0
0
...
0

 =
[

1 0 Cgoal
0 1 Cothers

] I1
Iothers
Iinput

 , (A.9)

where 1 represents the identity matrix.
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From the equation described above, the estimator for the first harmonic can
be deduced:

⇒ I1 = −CgoalIinput (A.10)

While the derivation of this estimator is elegant and creative, its applicability
is very limited. As mentioned above, Iinput has a length of 2/3 · N . In this
thesis the number of samples per period is N = 200, that means that the
values of approximately 133 harmonics of the aggregate current are used to
estimate the first harmonic I1 of the variable speed drive. It is implicitly
assumed that all of these 133 harmonics of the current of the variable speed
drive equal the measured aggregate current. This requirement seems unlikely
to be met in practice, especially for high frequency harmonics, which are more
sensitive to interferences (Ciccolella & Canavero 1995; Rich 1982; Xu
et al. 1996). Because of that, Wichakool only used one to three harmonics
for the estimation in his example instead of 133. However, it is not exactly
stated, which harmonics shall be chosen, even though the choice affects the
estimator Cgoal significantly. This shall be demonstrated with the following
simple example:

Let k0/N = 0 and k1/N = 29/360, Iinput = I5 and Iothers = I11, then A.7
becomes:[

0
0

]
=
[

1 1 1
e2πj·1·29/360 e2πj·11·29/360 e2πj·5·29/360

][ I1
I11
I5

]
(A.11)

⇒ 0 =
[
1− e2πj·(1−11)·29/360 0 1− e2πj·(5−11)·29/360

] [ I1
I11
I5

]

⇒ I1 =− 1− e2πj·(5−11)·29/360

1− e2πj·(1−11)·29/360︸ ︷︷ ︸
Cgoal

I5 = (−0.92− 1.48j) · I5 = 1.74 · e1.74i · I5

However, if Iothers = I17 is chosen instead, the estimator changes significantly:

⇒ I1 =(0.07 + 0.11j) · I5 = 0.13 · e0.13i · I5 (A.12)

In fact, the hypothesis, that the relationship between I1 and only a few
(� 2/3 ·N) other harmonics Iinput is determined by the fact that a third of
the signal i is zero, is mistaken. This will be shown in the following with the
help of a counterexample. In Fig. A.5 three different signals i are shown, which
all fulfill the criterion (ik = 0 | k/N ·360° ∈ [−30°, 30°]∪ [150°, 210°]). However,
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the relationship of the harmonics differs significantly among the three signals
as shown in Table A.2.

0 30 60 90 120 150 180 210 240 270 300 330 360

phase in degree

−1.0

−0.5

0.0

0.5

1.0

cu
rr

en
t

in
A

rectangle

Gauss wide

Gauss narrow

Figure A.5: Three different signals, whose values are all zero between
φ ∈ [−30°, 30°] ∪ [150°, 210°]

Table A.2: Calculated harmonics of the three signals presented in A.5. All
even harmonics are zero, since the three signals are odd.

rectangle Gauss wide Gauss narrow
|I1/I1| 100% 100% 100%
|I3/I1| 1% 76% 2%
|I5/I1| 20% 45% 90%
|I7/I1| 15% 20% 86%
|I9/I1| 1% 7% 4%
|I11/I1| 9% 2% 64%
|I13/I1| 8% 0% 58%
|I15/I1| 1% 0% 4%
|I17/I1| 6% 0% 35%
|I19/I1| 6% 0% 31%
|I21/I1| 1% 0% 3%
|I23/I1| 4% 0% 15%
|I25/I1| 4% 0% 13%
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A.4 Detailed deficits concerning classifying motors



A.4 Detailed deficits concerning classifying motors 181

P
ap

er
P
ro
po

se
d
fe
at
ur
e

C
la
ss
ifi
er

L
oa
ds

in
ca
se

st
ud

y
C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

us
in
g

pr
o-

po
se
d
fe
at
ur
e

Su
lt

an
em

(1
99
1)

du
ra
ti
on

of
tr
an

si
en
t

i
de

te
rm

in
ed

by
an

-
al
yz
in
g
cr
es
t
cu

rr
en
t

va
lu
es

no
t
sp
ec
ifi
ed

A
pp

lia
nc

es
in

on
e
ho

us
eh

ol
d,

to
w
hi
ch

a
co
m
pl
et
e
di
sa
gg
re
ga
ti
on

al
-

go
ri
th
m

in
cl
ud

in
g
cl
us
te
ri
ng

an
d

la
be

lin
g
w
as

ap
pl
ie
d.

A
pp

lia
nc

es
no

t
fu
rt
he

r
sp
ec
ifi
ed

N
o
fo
cu

s
on

cl
as
si
fic

at
io
n
us
in
g
on

ly
tr
an

si
en
t
fe
at
ur
es

an
d

no
qu

an
ti
-

ta
ti
ve

re
su
lt
s.

Ju
st

sa
id

th
at

th
e

"l
en

gt
h
of

th
e
tr
an

si
en
t
is
no

t
al
w
ay
s

[a
]
re
lia

bl
e
[fe

at
ur
e]
".

L
ee

b
(1
99
3)
;

L
ee

b
et

al
.

(1
99

3)
;

N
or

fo
rd

&
Le

eb
(1
99
6)

p
,
q
,

|I
3
|,

|I
3
|2

du
r-

in
g

m
os
t

va
ry
in
g

pa
rt

of
tr
an

si
en
t

(d
ub

be
d
v-
se
ct
io
n)

pa
tt
er

di
sc
ri
m
-

in
at
io
n

vi
a

tr
an

sv
er
sa
l
fil
te
r

Fo
ur

lo
ad

s:
in
st
an

t-
st
ar
t
flu

or
es
-

ce
nt

la
m
p,

ra
pi
d-
st
ar
t
flu

or
es
ce
nt

la
m
p,

tw
o

th
re
e-
ph

as
e
in
du

ct
io
n

m
ot
or
s
w
it
h
ra
ti
ng

s
of

0.
25

hp
an

d
0.
33

hp

N
o

qu
an

ti
fic

at
io
n

ap
ar
t
fr
om

th
e

se
nt
en

ce
"[
th
e
cl
as
si
fie

r]
pe

rf
or
m
s
re
-

m
ar
ka

bl
y
w
el
l"
.

L
ee

b
et

al
.

(1
99
5)

ti
m
e-
va
ry
in
g
Fo

ur
ie
r

co
effi

ci
en
ts

of
v-

se
ct
io
n

of
cu

rr
en
t

i

pa
tt
er

di
sc
ri
m
-

in
at
io
n

vi
a

tr
an

sv
er
sa
l
fil
te
r

Sa
m
e
as

in
L
ee
b,
A
M
P
19
93

N
o

qu
an

ti
fic

at
io
n

ap
ar
t
fr
om

th
e

se
nt
en

ce
"a
ll

ev
en
ts

ar
e
co
rr
ec
tl
y

id
en
ti
fie

d"
.

C
ol

e
&

A
lb

ic
ki

(1
99
8)

lin
ea
r
sl
op

e
of

ac
ti
ve

po
w
er

p
w
he

n
be

in
g

tu
rn
ed

on

no
t
sp
ec
ifi
ed

A
co
m
pr
es
so
r
of

he
at

pu
m
p
an

d
a

w
as
hi
ng

m
ac
hi
ne

N
o
cl
as
si
fic

at
io
n
is

pe
rf
or
m
ed

an
d

th
us

no
ac
cu

ra
cy

is
re
po

rt
ed

.
It

is
on

ly
st
at
ed

th
at

th
e
lin

ea
r
ap

pr
ox

i-
m
at
io
n
of

p
yi
el
ds

an
ap

pr
ox
im

at
io
n

er
ro
r
of

le
ss

th
an

5
%
.

C
ox

et
al

.
(2
00
6)

ti
m
e-
va
ry
in
g
Fo

ur
ie
r

co
effi

ci
en
ts

of
vo
lt
-

ag
e

no
t
sp
ec
ifi
ed

A
t
le
as
t
fo
ur

lo
ad

s:
1
kW

he
at
er
,

0.
33

si
ng

le
-p
ha

se
in
du

ct
io
n

m
o-

to
r,

th
re
e-
w
ay

in
ca
nd

es
ce
nt

la
m
p,

ra
pi
d-
st
ar
t
flu

or
es
ce
nt

la
m
p

It
is

st
at
ed

th
at

"t
he

sy
st
em

ha
s

be
en

ab
le

to
id
en
ti
fy

ne
ar
ly

al
l

lo
ad

s"
.
H
ow

ev
er
,
ne

it
he

r
de

ta
ils

of
th
e
cl
as
si
fic

at
io
n

no
r
qu

an
ti
fia

bl
e

cl
as
si
fic

at
io
n
re
su
lt
s
ar
e
sh
ow

n.
In
-

st
ea
d,

is
is

on
ly

sh
ow

n
gr
ap

hi
ca
lly

th
at

th
e
fe
at
ur
e
va
ri
es

si
gn

ifi
ca
nt
ly

fo
r
di
ffe

re
nt

ap
pl
ia
nc

es
.

Pa
te

l
et

al
.

(2
00
7)

co
effi

ci
en
ts

of
fa
st

Fo
ur
ie
r

tr
an

sf
or
m

fr
om

vo
lt
ag
e

v
in

th
e
fr
eq
ue

nc
y
ra
ng

e
be

tw
ee
n
0-
50

kH
z

su
pp

or
t

ve
ct
or

m
ac
hi
ne

(k
er
ne

l
no

t
sp
ec
ifi
ed

)

Si
x

di
ff
er
en
t

re
si
de

nt
ia
l

ho
us
es
,

w
ho

se
ap

pl
ia
nc

es
ar
e
no

t
fu
rt
he

r
sp
ec
ifi
ed

.
It

is
on

ly
re
po

rt
ed

th
at

ho
us
e
1
co
m
pr
is
es

41
di
ff
er
en
t
ap

-
pl
ia
nc

es
.

A
cc
ur
ac
y
of

84
-9
2
%

re
po

rt
ed

fo
r

th
e
si
x
ho

us
es

us
in
g
on

ly
th
e
pr
o-

po
se
d
fe
at
ur
e



182 A Appendix
P
ap

er
P
ro
po

se
d
fe
at
ur
e

C
la
ss
ifi
er

L
oa
ds

in
ca
se

st
ud

y
C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

us
in
g

pr
o-

po
se
d
fe
at
ur
e

C
ha

ng
et

al
.

(2
00
7)
;

Y
an

g
et

al
.
(2
00
7)

en
er
gy

e
(t

0
,
∆
t
)

=
∫ t 0+∆

t

t
0

p
i
n
s
t
(t

)
ne

ur
al

ne
tw

or
k

tr
ai
ne

d
ei
th
er

by
ba

ck
pr
op

-
ag
at
io
n

or
by

le
ar
ni
ng

ve
ct
or

qu
an

ti
za
ti
on

F
iv
e
lo
ad

s:
th
re
e
in
du

ct
io
n
m
ot
or
s

(9
5
hp

,
14
0
hp

,
30
0
hp

),
on

e
in
du

c-
ti
on

m
ot
or

co
nt
ro
lle

d
by

a
va
ri
ab

le
sp
ee
d
dr
iv
e
(9
5
hp

),
on

e
lo
ad

ba
nk

(R
=

4
Ω
)
su
pp

lie
d
by

an
un

co
n-

tr
ol
le
d
th
re
e-
ph

as
e
br
id
ge

re
ct
ifi
er

C
la
ss
ifi
ca
ti
on

is
pe

rf
or
m
ed

no
t
on

ly
w
it
h
th
e
pr
op

os
ed

fe
at
ur
e
bu

t
al
so

w
it
h
p,

q
an

d
th
e
to
ta
l
ha

rm
on

ic
di
st
or
ti
on

of
vo

lt
ag

e
as

w
el
l
as

cu
r-

re
nt
.
H
en

ce
,
th
e
pr
op

os
ed

fe
at
ur
e

w
as

no
t
di
re
ct
ly

as
se
ss
ed
.

In
th
e

ca
se

of
ov
er
la
pp

in
g
tu
rn
-o
n
ev
en
ts
,

th
e
in
cl
us
io
n
of

th
e
pr
op

os
ed

fe
at
ur
e

in
cr
ea
se
s
th
e
cl
as
si
fic

at
io
n
ac
cu

ra
cy

sl
ig
ht
ly
.

C
ha

ng
et

al
.

(2
00
8)

en
er
gy

e
(t

0
,
∆
t
)

=
∫ t 0+∆

t

t
0

p
i
n
s
t
(t

)
ne

ur
al

ne
tw

or
k

tr
ai
ne

d
by

ba
ck
-

pr
op

ag
at
io
n

C
as
e
1:

tw
o
th
re
e-
ph

as
e
in
du

ct
io
n

m
ot
or
s
ra
te
d
2.
6
hp

an
d
4.
7
hp

an
d

a
R
-L
-l
in
ea
r
lo
ad

w
ho

se
re
al

an
d

re
ac
ti
ve

po
w
er

re
se
m
bl
es

th
e
4.
7
hp

m
ot
or
.
C
as
e
2:

11
9
W

de
hu

m
id
i-

fie
r,

59
0
W

va
cu

um
cl
ea
ne

r,
R
-L

lin
ea
r
lo
ad

w
ho

se
re
al

an
d
re
ac
ti
ve

po
w
er

re
se
m
bl
es

th
e
59
0
W

va
cu

um
cl
ea
ne

r

C
la
ss
ifi
ca
ti
on

is
pe

rf
or
m
ed

no
t
on

ly
w
it
h
th
e
pr
op

os
ed

fe
at
ur
e,

bu
t
al
so

w
it
h
p
an

d
q.

T
he

In
cl
us
io
n
of

th
e

pr
op

os
ed

fe
at
ur
e
in
cr
ea
se
s
cl
as
si
fic

a-
ti
on

ac
cu

ra
cy

si
gn

ifi
ca
nt
ly

th
ou

gh
,

fr
om

ap
pr
ox
im

at
el
y
40

%
to

10
0
%
.

C
ha

ng
et

al
.

(2
01
0,

20
12
)

en
er
gy

e
(t

0
,
∆
t
)

=
∫ t 0+∆

t

t
0

p
i
n
s
t
(t

)
ne

ur
al

ne
tw

or
k

tr
ai
ne

d
by

ba
ck
-

pr
op

ag
at
io
n

C
as
e
1:

tw
o
th
re
e-
ph

as
e
in
du

ct
io
n

m
ot
or
s
ra
te
d
16
0
hp

an
d
12
3
hp

su
pp

lie
d
by

va
ri
ab

le
vo
lt
ag

e
dr
iv
es

an
d
a
lo
ad

ba
nk

su
pp

lie
d
by

a
co
n-

tr
ol
le
d
th
re
e-
ph

as
e
br
id
ge

re
ct
ifi
er

(s
ix

pu
ls
e
th
yr
is
to
r
re
ct
ifi
er
).

C
as
e

2:
a
si
ng

le
-p
ha

se
in
du

ct
io
n
m
ot
or

ra
te
d
0.
2
hp

,
a
th
re
e
ph

as
e
in
du

c-
ti
on

m
ot
or

ra
te
d
1
hp

an
d
a
th
re
e

ph
as
e
R
-L

lin
ea
r
lo
ad

C
as
e
3
an

d
4
ar
e
eq
ui
va
le
nt

to
ca
se

1
an

d
2
in

(C
ha

ng
et

al
.
20
08
)

C
la
ss
ifi
ca
ti
on

is
pe

rf
or
m
ed

no
t
on

ly
w
it
h
th
e
pr
op

os
ed

fe
at
ur
e,

bu
t
al
so

w
it
h
p
an

d
q.

In
ca
se

1,
th
e
cl
as
si
fi-

ca
ti
on

ac
cu

ra
cy

is
al
re
ad

y
10
0
%

w
it
ho

ut
th
e
in
cl
us
io
n

of
th
e
pr
o-

po
se
d

fe
at
ur
e.

In
ca
se

2,
th
e
in
-

cl
us
io
n
of

th
e
pr
op

os
ed

fe
at
ur
e
in
-

cr
ea
se
s
th
e
ac
cu

ra
cy

fr
om

95
%

to
10

0
%
.
C
as
e
3
an

d
4
ar
e
eq
ui
va
le
nt

to
ca
se

1
an

d
2
in

(C
ha

ng
et

al
.

20
08
)



A.4 Detailed deficits concerning classifying motors 183

P
ap

er
P
ro
po

se
d
fe
at
ur
e

C
la
ss
ifi
er

L
oa
ds

in
ca
se

st
ud

y
C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

us
in
g

pr
o-

po
se
d
fe
at
ur
e

C
ha

ng
et

al
.

(2
01
2)

en
er
gy

e
(t

0
,
∆
t
)

=
∫ t 0+∆

t

t
0

p
i
n
s
t
(t

)
an

d
du

ra
ti
on

of
tr
an

si
en
t

p
i
n
s
t
(t

)
de

te
rm

in
ed

by
co
effi

ci
en
ts

fr
om

ei
th
er

di
sc
re
te

w
av
el
et

tr
an

sf
or
m

or
sh
or
t

ti
m
e

Fo
ur
ie
r

tr
an

sf
or
m

ne
ur
al

ne
tw

or
k

tr
ai
ne

d
by

ba
ck
-

pr
op

ag
at
io
n

Sa
m
e
fo
ur

ca
se
s
as

in
C
ha

ng
20
10
,

ch
an

g2
01
2

C
la
ss
ifi
ca
ti
on

is
al
so

pe
rf
or
m
ed

us
-

in
g

on
ly

bo
th

pr
op

os
ed

fe
at
ur
es
.

T
he

n,
th
e

cl
as
si
fic

at
io
n

ac
cu

ra
cy

re
ac
he

s
10
0

%
(c
as
e
1)
,
83
-9
2

%
(c
as
e2
),

94
-9
7
%

(c
as
e
3)

an
d

79
-

83
%

(c
as
e
4)

de
pe

nd
in
g
on

w
he

th
er

th
e
tr
an

si
en
t
du

ra
ti
on

is
de

te
rm

in
ed

us
in
g

ei
th
er

th
e

di
sc
re
te

w
av
el
et

tr
an

sf
or
m

or
th
e
sh
or
t
ti
m
e
Fo

ur
ie
r

tr
an

sf
or
m
.

T
ab

le
A
.3
:
D
et
ai
le
d
su
m
m
ar
y
of

th
e
pa

pe
rs

pr
es
en
te
d
in

th
e
pa

ra
gr
ap

h
tit

le
"t
ra
ns
ie
nt

fe
at
ur
es
"
in

su
bs
ec
tio

n
3.
7.
1



184 A Appendix

A.5 Calculation of ξ for fp

The test statistics will be calculated for point k∗ and thus
P = {k∗ − 1, k∗ − 2, . . . , k∗ −NP } and D = {k∗, k∗ + 1, . . . , k∗ + (ND − 1)}.
In order to simplify the derivation, the following abbreviated notation is
introduced:

(fpk |k 6= k∗) = µP ± σ =̂
{
µP + σ for even k
µP − σ for odd k

(A.13)

Using this notation, first, the mean and standard deviation for both the
pre-event and detection window are calculated:

µP = 1
NP

∑
k∈P

fk (A.14)

= 1
NP

∑
k∈P

µP ± σ

≈µP

µD = 1
ND

∑
k∈D

fk (A.15)

= 1
ND

[(ND − 1)(µP ± σ) + (µP +m± σ)]

=µP + 1
ND

(ND − 1)(±σ)︸ ︷︷ ︸
�m

+(m± σ)


≈µP + m

ND

σP =
√

1
NP

∑
k∈P

(fk − µP )2 (A.16)

=
√

1
NP

∑
k∈P

(µP ± σ − µP )2

=σ
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σD =
√

1
NP

∑
k∈P

(fk − µD)2 (A.17)

=

√
1
ND

[
(ND − 1)

(
µP ± σ −

(
µP + m

ND

))2
+
(
µP +m± σ −

(
µP + m

ND

))2
]

=

√
1
ND

[
(ND − 1)

(±NDσ −m
ND

)2
+
(
m+ ±NDσ −m

ND

)2
]

≈

√
1
ND

[
(ND − 1)

(−m
ND

)2
+
(
m+ −m

ND

)2
]

≈
√

1
ND

(
m

ND

)2
[(ND − 1) + (ND − 1)2]

= m

ND

√
ND − 1
ND

[1 + (ND − 1)]

≈ m√
ND
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Based on these values, the test statistic ξ can be approximated as:

ξk∗(fp) =NDln
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The modified function ξmod yields:

ξmodk∗ (fp) =ND
2
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