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Abstract

In systems biology, mathematical models are often employed to study the dynamics of

biological processes. Model parameters, such as kinetic rate constants or measurement

noise parameters, cannot usually directly be measured and need to be estimated from ex-

perimental data. To test biological hypotheses and thus gain a better understanding of the

biological system, different models representing different hypotheses are fitted to experi-

mental data and compared using statistical concepts. Increasing amounts and resolution

of experimental data yield more detailed information, but also challenge the building and

calibration of mathematical models.

In this thesis, we first considered data which provide only information about the average

behavior of a cell population, often modeled by ordinary differential equations. We studied

the calibration of these models on outlier-corrupted data using heavier tailed distributions

for the measurement noise. We exploited the structure of the optimization problem and

calculated optimal values for the parameters which do not contribute to the dynamics of the

model analytically for different noise distribution assumptions. This enabled the robust

and efficient fitting of computationally demanding models. We applied the developed

methods to study histone methylation, where we performed model calibration and selection

to gain new insights into the dynamics of the restoration of epigenetic marks in cycling

cell populations.

Afterwards, we focused on data collected at the single-cell level, which requires models

that are able to capture cellular heterogeneity. We proposed the hierarchical population

model which allowed us to mechanistically describe multiple levels of cellular heterogeneity.

It combines mixture modeling with mechanistic modeling of the statistical moments of

cellular subpopulations. To ensure robustness of the model, we incorporated different

distribution assumptions and investigated their influence on the optimization results. We

applied the hierarchical population model to gain new knowledge about pain sensitization

in primary sensory neurons.

The concepts and methods developed in this thesis enable the reliable, robust and com-

putationally efficient calibration of comprehensive models even in the presence of outliers.

Their application to experimental data facilitates a deeper understanding of and new

mechanistic insights into biological systems.





Zusammenfassung

In der Systembiologie werden oft mathematische Modelle verwendet, um die Dynamiken

von biologischen Prozessen zu untersuchen. Modellparameter, wie zum Beispiel kinetische

Ratenkonstanten oder Parameter für das Messrauschen, können oft nicht direkt gemessen

werden und müssen aus experimentellen Daten geschätzt werden. Um biologische Hy-

pothesen zu testen und ein besseres Verständnis des biologischen Systems zu erhalten,

werden unterschiedliche Modelle, welche unterschiedliche Hypothesen repräsentieren, an

experimentelle Daten angepasst und mithilfe statistischer Methoden verglichen. Wach-

sende Datenmengen und genauere Auflösung der Daten stellen detaillierte Informationen

bereit, erschweren allerdings auch die mathematische Modellbildung und -kalibrierung.

In dieser Arbeit betrachten wir zunächst Daten, die nur Informationen über das durch-

schnittliche Verhalten der Zellpopulation enthalten. Dies wird meist mit gewöhnlichen Dif-

ferentialgleichungen modelliert. Wir betrachten die Modellkalibrierung anhand von Daten,

die mit Ausreißern behaftet sind. Hierfür verwenden wir für das Messrauschen Verteilun-

gen mit Rändern, die schwerer sind als die der üblicherweise genutzten Normalverteilung.

Darüber hinaus nutzen wir die Struktur des Optimierungsproblems und berechnen die op-

timalen Werte der Parameter, die nicht zur Dynamik des Modelles beitragen, analytisch

für unterschiedliche Verteilungen für das Messrauschen. Diese Ansätze ermöglichen die

robuste und effiziente Anpassung von rechenintensiven Modellen. Wir wenden unsere

Methoden an, um Histonmethylierung zu untersuchen, für welche wir Modelle kalibrieren

und diese mit Modelselektionskriterien vergleichen. Hierbei gewinnen wir neue Einblicke

in die Dynamik der Restorierung von epigenetischen Markierungen in einer sich teilenden

Zellpopulation.

Anschließend konzentrieren wir uns auf Daten, welche auf der Einzelzellebene erhoben

wurden. Die Untersuchung dieser Daten erfordert Modelle, die in der Lage sind, zel-

luläre Heterogenität zu beschreiben. Wir stellen ein hierarchisches Populationsmodell

vor, welches uns erlaubt, mehrere Heterogenitätslevel mechanistisch zu beschreiben. Das

Modell kombiniert Mischmodelle mit mechanistischer Modellierung der statistischen Mo-

mente der zellulären Subpopulationen. Wir integrieren mehrere Verteilungsannahmen, um

die Robustheit des Modells sicherzustellen, und untersuchen deren Einfluss auf die Opti-

mierungsergebnisse. Wir wenden unser Populationsmodell an, um neue Kenntnisse über

die Schmerzsensitivierungen von sensorischen Neuronen zu erhalten.



Die Konzepte und Methoden, die in dieser Arbeit entwickelt wurden, ermöglichen die

robuste und recheneffiziente Kalibrierung von komplexen Modellen, sogar wenn Ausreißer

in den Daten vorhanden sind. Die Anwendung der Methoden auf experimentelle Daten

ermöglicht ein tiefgehenderes Verständnis von und neue Einblicke in biologische Systeme.
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Chapter 1

Introduction

Mathematical models are widely used in systems biology to gain a mechanistic under-

standing and extend the knowledge about biological processes (Baker et al., 2018; Cho

and Wolkenhauer, 2005; Kitano, 2002). The models facilitate the unraveling of system

properties that cannot directly be assessed with experiments (Aderem, 2005). They can

also be used to compare and reject hypotheses about biological mechanisms (Crauste et al.,

2017; Hross and Hasenauer, 2016) or to perform in-silico studies to predict how a system

would respond to perturbations (Fröhlich et al., 2018; Molinelli et al., 2013). Mathemat-

ical models are used to study many biological processes and are employed to investigate,

among others, epigenetics (Zheng et al., 2012), immunology (Buchholz et al., 2013), and

cancer (Hass et al., 2017). This broad applicability has rendered them a powerful tool for

developing treatment strategies for various diseases and for studying biological systems in

general (Isensee et al., 2018; Merkle et al., 2016).

There exist many different types of mathematical models in systems biology, including

deterministic (Klipp et al., 2005; von Foerster, 1959) and stochastic models (Wilkinson,

2009). The choice of modeling framework depends on the particular question and bio-

logical system under consideration. Many studies focus on the average behavior of a cell

population and thus employ deterministic ordinary differential equation (ODE) models

(Bachmann et al., 2011; Schöberl et al., 2009). However, the importance of differences

between individual cells has gained enormous attention during the last decades (Elowitz

et al., 2002; Regev et al., 2017). Even isogenic cells can behave differently upon stimu-

lation (Tay et al., 2010). Heterogeneity has been shown to have important implications

for cell fate (Spencer et al., 2009) or differentiation (Gerlach et al., 2013), and occurs for

instance in cancer (Michor and Polyak, 2010) or pain sensitization (Hucho and Levine,

2007). Investigating heterogeneity requires measurements at the single-cell level, because

the heterogeneity is concealed in the population averages (Figure 1.1). The single-cell

data then needs to be combined with models which are able to delineate heterogeneity

(Hasenauer et al., 2014; Zechner et al., 2012). However, developing appropriate modeling

frameworks is still an open topic of current research.
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Figure 1.1: Heterogeneous cell populations. The displayed cell populations all have the
same mean value of the measured cellular property. The population in (A) does not have
subpopulations, while (B) and (C) comprise two distinct subpopulations with different
subpopulation sizes and mean values for the subpopulations.

Using mathematical models to obtain a mechanistic understanding of the biological pro-

cesses mostly requires the parametrization of the models (Tarantola, 2005), namely es-

timating the model parameters, such as kinetic rate constants, from experimental data.

The goal is to obtain reliable results and draw sound conclusions even for complex models

in a realistic and reasonable amount of time. Therefore, model calibration should be ro-

bust, reliable and (computationally) efficient. This is hindered and complicated by many

factors, among others, outliers in the data, high number of parameters which need to be

estimated and the lack of appropriate modeling frameworks. In this thesis, we developed

and assessed robust and efficient methods for the calibration of ODE models on popu-

lation average data. We exploited the structure of the optimization problem for robust

distributions, which provide reliable results even in the presence of outliers, to split up

and thus speed up the overall optimization problem. Additionally, we introduced a hierar-

chical population model for the analysis of single-cell snapshot data, which is a modeling

framework that enables the description of heterogeneity at multiple levels. For this model,

we also assessed its robustness with respect to the choice of incorporated distributions.

We applied the developed models and methods to gain new insights into the dynamics

of histone methylation and pain sensitization. The remainder of this chapter gives an

introductory overview to the research topic and highlights the key issues and challenges

in data-driven modeling, which are then addressed in the following chapters of this thesis.
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1.1 Data-driven, dynamic modeling of biological processes

Different types of biological data carry different information. This ranges from providing

measurements of the average behavior of the cells to providing the dynamics of individual

cells. The first type of data, referred to as population average data, is typically collected

by techniques such as Western blotting (Renart et al., 1979) or microarrays (Malone and

Oliver, 2011). The latter, single-cell data, can be collected by fluorescent microscopy

(Herzenberg et al., 2006), flow cytometry (Herzenberg et al., 2006) or mass cytometry

(Giesen et al., 2014). It can further be differentiated between single-cell time-lapse and

snapshot data, for which the first provides the dynamics of individual cells while the latter

does not provide this information.

For both types of data, population average and single-cell data, often fluorescent markers

or antibodies are employed to collect measurements, which yields measurements which

are proportional to the cellular quantity of interest. Additionally, the measurements can

be obscured by outliers, which arise due to errors in the data collection and processing

(Ghosh and Vogt, 2012). The mathematical models which are used to interpret the data

thus need to account for these discrepancies between the collected measurement and the

examined cellular property.

The unknown parameters of the model, e.g., kinetic rate constants, scaling parameters,

parameters encoding measurement noise or initial conditions, are estimated from exper-

imental data. How the discrepancy between mathematical model and data is evaluated

is crucial and influences the estimation results (Loos et al., 2015). The parameters are

usually estimated by maximizing a likelihood function, which provides the probability of

observing the data given the model and corresponding parameters. This optimization

problem is generally non-convex, which has to be accounted for in the calibration. For

this, multi-start local optimization has shown to be a good globalization strategy (Raue

et al., 2013; Villaverde et al., 2018). The best found function value is assumed to be the

potentially global optimum, with higher reliability if it is found more often. Methods for

model calibration are assumed to be more robust if they find the global optimum more

repeatedly, while a model is assumed to be robust if it provides parameter estimates close

to the true parameter values even in the presence of outliers.

1.1.1 Mathematical modeling and model calibration for population averages

For modeling population average data, the most commonly used modeling technique are

ODE models. These are reaction rate equations (RREs) and describe, e.g., the synthesis,
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degradation or transition of biochemical species and interactions between these. Chal-

lenges here arise in the definition of the model structure. Different structures represent

different biological hypotheses.

Further challenges in the modeling of population averages arise due to the complexity of

the models themselves or the number of models which need to be calibrated to answer the

considered question. To understand complex processes, detailed and large-scale models

with increasing numbers of parameters are developed (Bouhaddou et al., 2018; Fröhlich

et al., 2018; Hass et al., 2017). In addition, experimental techniques allow the collection

of large amounts of data which can be integrated by mathematical models. This yields an

increasing number of observation parameters, i.e., parameters used to map the biochemical

species to the measurable output. Furthermore, with more measured data points also the

probability that outliers occur in the data increases, which changes the measurement noise

distribution. All these factors can substantially hinder model calibration. Methods for

model calibration need to be adapted in order to cope with the increasing complexity, i.e.,

by speeding up the gradient evaluation required for the optimization (Fröhlich et al., 2017)

or exploiting the structure of the optimization problem (Weber et al., 2011). If there are

many hypotheses to be tested, efficient techniques for model selection need to be employed

in addition to the efficient calibration of a single model (Steiert et al., 2016).

1.1.2 Mathematical modeling of cell populations

A difficult task when modeling a cell population is the choice of modeling framework.

Single-cell data carry information about the cellular heterogeneity, which needs to be cap-

tured by the employed model in order to obtain a mechanistic understanding of the het-

erogeneity. Heterogeneity in a cell population can arise on different levels: (i) differences

between subpopulations or cell-types that can be caused by the cellular micro-environment

(Ebinger et al., 2016) or stable epigenetic markers which are acquired during cell differ-

entiation (Reik, 2007); and (ii) differences between cells of the same subpopulation or

cell-type that arise, e.g., from differences in the cell state (Buettner et al., 2015) or from

stochastic fluctuations in gene expression (Elowitz et al., 2002). The differences on both

levels can be caused by intrinsic or extrinsic noise (Elowitz et al., 2002). Intrinsic noise

emerges due to the stochastic nature of gene expression, while extrinsic noise refers to

fluctuations in other cellular components, e.g., differences in protein levels of individual

cells. Diverse modeling frameworks exist which capture intrinsic noise (Gillespie, 2000),

extrinsic noise (van der Merwe, 2004), intrinsic and extrinsic noise (Zechner et al., 2012),

or subpopulation structures (Hasenauer et al., 2014). However, a unifying framework is

still missing.
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1.2 Overview and contribution of this thesis

In this thesis, we focus on the following problems and bottlenecks:

(i) The assumption about the distribution of the measurement noise influences the esti-

mation results. Yet, robust distributions have not been adapted to fitting procedures

for dynamical models. Moreover, the influence of outliers on the estimation results

and the optimization performance is unclear.

(ii) ODE models often comprise not only parameters which influence the dynamics,

but also scaling parameters, which are used model relative data, and measurement

noise parameters. The scaling and noise parameters are estimated along with the

dynamic parameters. This increases the dimension of the optimization problem and

complicates model calibration and analysis.

(iii) Cell populations often comprise heterogeneous subpopulations. Yet, no computa-

tionally tractable modeling framework is available which can incorporate a mecha-

nistic description of variability between and within subpopulations.

(iv) The assessment of distribution assumptions is not only missing for modeling pop-

ulation average data (i), but also for population models that rely on distribution

assumptions. Since the data types usually have quite different properties, e.g., num-

ber of measured data points, results for studying population averages cannot directly

be transferred to single-cell data.

These problems arise when studying various biological processes and hinder a reliable

computational analysis of the biological systems. In this thesis, the following two biological

questions are addressed:

(v) Methylations at histone tails play an important role for epigenetic regulation. In

a proliferating cell population, new unmodified histones are incorporated and the

epigenetic marks need to be restored. To understand this process and the influence

of parental histone modification, a deeper understanding of the establishment of

H3K27K36 methylated chromatin is required.

(vi) Primary sensory neurons are highly heterogeneous cells which are involved in pain

sensitization. So far, the influence of extracellular scaffolds, which are often highly

altered in painful conditions such as wounds or tumors, on pain signaling has not

been studied in a mechanistic way.
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In this thesis, we addressed the aforementioned issues and in the following the contribu-

tions are delineated. For modeling population average data with ODE models, the main

contributions are:

• Robust calibration of ODE models with outlier-corrupted data. In the con-

text of dynamical systems, we assessed various noise distributions which have heavier

tails than the generally used Gaussian distribution. We derived the equations for the

likelihood functions and their gradients which is required for the efficient calibration

of the distributions. In addition, we investigated the robustness and performance

of these distributions in the absence and presence of outliers for different outlier

scenarios. We found an improved robustness by using heavier tailed distributions.

This contribution addressed aforementioned problem (i).

• Efficient calibration of ODE models employing hierarchical optimization.

We split the overall optimization problem into subproblems of smaller dimension.

The inner problem includes parameters which do not influence the dynamics of the

ODE for the biochemical species, e.g., scaling and measurement noise parameters.

Under two different distribution assumptions, we derived the analytical expressions

for the inner subproblem. The hierarchical approach for optimization achieved a

higher number of optimization runs which converged to the potentially global op-

timum than the standard approach in less computation time. This contribution

addressed problem (ii).

• Studying the dynamics of histone H3 methylation. The developed approaches

were applied to study the dynamics of histone H3 methylation. We developed two

mathematical models describing the temporal evolution of the relative abundance

of K27 and K36 methylation states. Performing model selection and validating the

predictions of the models, we found that a model assuming that a fraction of histones

can only be methylated up to a defined final state seems to be most reasonable. This

contribution addressed problem (v).

For single-cell snapshot data, the main contributions of this thesis are the following:

• Developing the hierarchical population model, which captures multiple

levels of heterogeneity. We developed a modeling framework which incorporates

inter- and intra-subpopulation variability. This framework combines mixture mod-

eling with modeling of the statistical moments of individual subpopulations. This

enables a mechanistic description of various levels of heterogeneity and correlation

structures of multiplexed measurements. We provided the theoretical concepts and
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equations for an efficient model calibration and model selection. This contribution

addressed problem (iii).

• Robust calibration of hierarchical population model. We assessed and incor-

porated different distribution assumptions in the hierarchical population modeling

framework. This enables a robust calibration of these models in the presence and

absence of outliers. This contribution addressed problem (iv).

• Unraveling sources of heterogeneity in NGF-induced Erk signaling. We

applied the introduced framework of hierarchical population models to study pain

signaling in primary sensory neurons exposed to different extracellular scaffolds.

Our analysis revealed that differences in the response to NGF stimulation of cells

cultured on different extracellular scaffolds could be explained by altered intracellular

signaling but not a shift in the subpopulation size. This contribution addressed

problem (iv).

Some of these contributions are already part of peer-reviewed publications, currently sub-

mitted to peer-reviewed journals or in preparation. Parts of the work in this thesis thus

correspond or are to some extent identical with the following publications:

• Loos, C.∗, Krause, S.∗, & Hasenauer, J. (2018). Hierarchical optimization for

the efficient parametrization of ODE models. Bioinformatics, 34(24), 4266–4273.

(∗equal contribution)

• Loos, C.∗, Völker-Albert, M.∗, Forne, I., Hasenauer, J., Imhof, A., Marr, C., Groth,

A., Alabert, C. Efficient K27me3 establishment requires naive histone substrates and

pre-existing K27me3 on old histones. in preparation.

• Loos, C.∗, Moeller, K.∗, Fröhlich, F., Hucho, T., & Hasenauer, J. (2018). A hi-

erarchical, data-driven approach to modeling single-cell populations predicts latent

causes of cell-to-cell variability. Cell Systems, 6(5), 593-603.

• Loos, C., Fiedler, A., & Hasenauer, J. (2016). Parameter estimation for reaction

rate equation constrained mixture models. In International Conference on Computa-

tional Methods in Systems Biology (pp. 186-200). Springer International Publishing.

• Loos, C., & Hasenauer, J. Robust calibration of hierarchical population models on
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• Fröhlich, F., Loos, C., & Hasenauer, J. (2019). Scalable inference of ordinary

differential equation models of biochemical processes. In Gene Regulatory Networks

(pp. 385-422). Humana Press, New York, NY.

• Maier, C., Loos, C., & Hasenauer, J. (2017). Robust parameter estimation for

dynamical systems from outlier-corrupted data. Bioinformatics, 33(5), 718-725.

In the sixth publication, I contributed Section 3: Inference of Model Structure, which is

in parts included in the Background Chapter 2 of this thesis. I wrote the main part of

the last publication, which is based on a master’s thesis (Maier, 2016), which I supervised

during my doctoral research.

Other contributions of my doctoral research which are not included in this thesis are:

• Hass, H.*, Loos, C.*, Raimúndez-Álvarez, E., Timmer, J., Hasenauer, J., & Kreutz,

C. (2019). Benchmark problems for dynamic modeling of intracellular processes.

Bioinformatics, btz020.

• Sinzger, M., Vanhoefer, J., Loos, C., & Hasenauer, J. (2019). Comparison of null

models for combination drug therapy reveals Hand model as biochemically most

plausible. Scientific Reports, 9(3002).

• Stapor, P., Weindl, D., Ballnus, B., Hug, S., Loos, C., Fiedler, A., Krause, S., Hroß,

S., Fröhlich, F., & Hasenauer, J. (2018). PESTO: Parameter EStimation TOolbox.

Bioinformatics, 34(4), 705-707.

1.3 Outline

This thesis is structured as follows: In Chapter 2, the background knowledge and notation

for the methods employed in this thesis are introduced. The considered data types are

explained and the corresponding possible modeling approaches are outlined. The chap-

ter also provides the background of model calibration and selection. In Chapter 3, the

robustness and computational efficiency of methods for calibrating ODE models on popu-

lation average data are addressed. Different noise distributions and their influence on the

estimation performance and results are assessed. This is followed by the introduction of

a hierarchical optimization approach for calibrating ODE models on relative data. The

established methods of this chapter are then applied to study the dynamics of histone

H3 methylation to obtain a better understanding of epigenetic regulation. In Chapter 4,

a hierarchical population model is introduced which incorporates multiple levels of het-
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erogeneity. The developed modeling framework is applied to study NGF-induced Erk

signaling in nociceptive neurons and provides new biological insights into mechanisms of

pain signaling, which can have important implications for the treatment of pain sensiti-

zation. Afterwards, the framework, which relies on distribution assumptions, is extended

by incorporating and analyzing further distributions to enable a more robust calibration

of the population model. In Chapter 5, we conclude the thesis by briefly summarizing the

main results and providing an outlook for potential future scientific directions.





Chapter 2

Background

In this chapter, the considered types of experimental data are described as well as the

mathematical concepts to model the temporal evolution of biochemical species. Further-

more, we outline the main methods which are used to calibrate these models on experi-

mental data and to perform model selection.

2.1 Experimental data

There are various experimental techniques which can be employed to collect measurement

data. We mainly distinguish these techniques by the level of information they provide,

i.e, whether a high number of cells is combined and the average properties of this cell

population are measured or whether the properties of the individual cells are measured

and tracked over time.

2.1.1 Population average data

Experimental techniques such as microarrays (Malone and Oliver, 2011) or Western blot-

ting (Renart et al., 1979) provide information about cellular properties, such as protein

or RNA levels, averaged over a cell population. Many techniques rely on antibodies or

fluorescent markers and provide only measurements which are proportional to the quantity

of interest.

We denote population average data by

D =
{{
{ȳk,d,e, tk,d,e,ud,e}k

}
d

}
e
, (2.1)

with indices for time point k, experiment e and condition d. The vector ȳ includes jointly

measured quantities yi, i = 1, . . . , ny. The vector ud,e gathers the inputs of experiment e,

which can be concentrations of stimulating agents, such as growth factors, or drugs, such

as kinase inhibitors.
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2.1.2 Single-cell snapshot data

During the last decades the importance of heterogeneity in cell populations became clear

(Altschuler and Wu, 2010; Regev et al., 2017). Information about this heterogeneity is

hidden in population average data and higher resolution techniques need to be employed

which provide measurements for individual cells. Common techniques are flow cytometry

(Davey and Kell, 1996), mass cytometry (Bodenmiller et al., 2012), image cytometry

(Ozaki et al., 2010), single-cell microscopy (Miyashiro and Goulian, 2007) or scRNA-

seq (Kolodziejczyk et al., 2015). Further techniques have been developed which not only

provide information about cellular properties, such as protein abundance, but also measure

spatial information (Lin et al., 2015). For most of these experiments, measurements of a

cell can only be collected once due to, e.g., fixation of the cells. Therefore, these data only

provide snapshots and do not measure the same cells across different time points or drug

dosages. Mostly, either protein levels or gene expression is measured for an individual cell,

but also some techniques have recently been developed to measure both simultaneously

(Frei et al., 2016; Lane et al., 2017).

In this thesis, we denote single-cell snapshot data as

D =
{{{{

ȳck,d,e, tk,d,e,ud,e
}
c

}
k

}
d

}
e
, (2.2)

with cell index c. Other types of single-cell data such as single-cell time-lapse data, which

keep track of individual cells over time, or data for the cell population size, e.g., measured

by persistent cell labeling (Lyons and Parish, 1994), are not discussed in this thesis.

While Chapter 3 focuses on the estimation of model parameters based on population

average data, Chapter 4 considers the calibration of mathematical models based on single-

cell snapshot data.

2.2 Mathematical modeling of biological systems

Mathematical models are valuable tools for studying biological processes. Depending on

the studied data type and particular biological question, different modeling techniques

are used. We first introduce models for individual cells. A model assuming deterministic

behavior for each cell can be used to model the population average. This is followed by a

discussion of models for cell populations.
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The parts addressing sigma-point and moment-closure approximation in Section 2.2.2 are

modified versions of the corresponding sections of the author’s publication (Loos et al.,

2018b).

2.2.1 Models for individual cells

Models for individual cells describe the temporal evolution of biochemical species x =

(x1, . . . , xnx) depending on a vector ψ of dynamic parameters, e.g., kinetic rate constants,

and input u. Models for individual cells can principally account for intrinsic noise. In the

following, we describe Markov jump processes and reaction rate equations, for which the

first is a stochastic and the latter a deterministic modelling approach.

Markov jump processes (MJPs) have a discrete state space but continuous time. They

are often employed to describe the dynamics of individual cells if it is important to capture

the discreteness of the molecule numbers and account for intrinsic noise. Changes in the

state x ∈ Nnx of the cell occur due to reactions

Rl :

nx∑
i=1

ν−i,l xi
kl(ψ,u)−−−−→

nx∑
i=1

ν+
i,l xi , (2.3)

with reaction index l, parameter-dependent reaction rate constant kl(ψ,u) and stoichiom-

etry νl = ν+
l − ν−l . The propensity of a reaction indexed by l is denoted by al(x,ψ,u)

and the probability of the reaction to occur in time interval dt is al(x,ψ,u)dt+ o(dt). For

example, for a zero-order reaction which does not depend on the number of molecules,

i.e., ν−l = 0, the propensity is al(x,ψ,u) = kl(ψ,u). The reaction changes the state

of the system from x to x + νl. A method to simulate MJPs has been developed by

Gillespie (1977) and is called the stochastic simulation algorithm (SSA). However, this al-

gorithm can be computationally expensive, especially if a high number of reactions needs

to be simulated. For this, more computationally efficient approximations for the SSA have

been developed, e.g., tau-leaping (Gillespie, 2001) and multi-level methods (Anderson and

Higham, 2012; Lester et al., 2015). An approximation of the MJP is given by the chemical

Langevin equation (Gillespie, 2000) which is based on stochastic differential equations. It

is a continuous approximation with continuous state space x ∈ Rnx .

The reaction rate equation (RRE) is given by the ordinary differential equation (ODE)

ẋ = f(x,ψ,u), x(0) = x0(ψ,u), (2.4)
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with vector field f : Rnx+ × Rnψ × Rnu → Rnx . A unique solution to (2.4) exists if f is

Lipschitz continuous. The RRE assumes that each cell behaves in the same, deterministic

way, not accounting for intrinsic noise. Since RREs can also be interpreted as modeling

the behavior of the average cell, they are frequently used to model population averages

(Klipp et al., 2005). This modeling approach will be used in Chapter 3.

We denote the overall vector of parameters which is estimated from the data as θ ∈ Θ,

for which Θ is the biologically reasonable regime of parameter values. Usually, θ includes

the dynamic parameters ψ, scaling parameters s and distribution parameters ϕ used

to describe measurement noise. We obtain the observables by an observation function

h : Rnx×Rnθ×Rnu → Rny , which maps the states, parameters and inputs to the observables

via

y(t,θ,u) = h(x(t,ψ,u),θ,u) . (2.5)

The observables are the properties of the system which are measured. Since measurements

are mostly subject to measurement noise, the model also needs to account for this by a

noise model

ȳi,k,d,e ∼ p (ȳi,k,d,e|yi(tk,e,θ,ud,e),ϕi(tk,e,θ,ud,e)) , (2.6)

with indices introduced in (2.1, 2.2). For this, often Gaussian noise is assumed.

2.2.2 Models for heterogeneous cell populations

One approach for modeling a whole-cell population are ensemble models, which use models

for individual cells, e.g., MJPs or RREs as discussed in Section 2.2.1, and model the overall

population as a collection of many individual cells (Henson, 2003; Kuepfer et al., 2007).

The dynamics of the individual cells might also be stochastic. However, the computational

complexity limits the practicability of ensemble models. In contrast to ensemble models,

density based models do not describe the dynamics of each individual cell of the population,

but model the temporal evolution of the cell density (Gillespie, 1992; Hasenauer et al.,

2011b). An ensemble model can also be interpreted as a sampling-based approximation of

a density based model (Waldherr, 2018). To incorporate measurement noise, the density is

convolved with a density for the measurement noise. Similar to the models for individual

cells, density based models differ in the discreteness/continuity of the state space, as well as

the incorporation of intrinsic noise. Since these models describe the whole-cell population,

they can also include extrinsic noise. This is often done by assuming certain parameters,

which represent the quantities responsible for the extrinsic variability, to differ between
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cells. The parameters for cell c are then assumed to be distributed according to

ψc ∼ pψ(ψ) , (2.7)

where β is the mean and D the covariance matrix of probability distribution pψ:

E[ψc] = β, Cov[ψc] = D, ξ = (β,D) . (2.8)

We assume that extrinsic noise is encoded in L parameters of the parameter vector ψ ∈
Rnψ . For parameters that are considered to be homogeneous, i.e., not variable across

the cells, it is assumed that βi = ψi and Dii = Dij = Dji = 0, ∀j. In the case of cell

population models which comprise extrinsic noise, θ can also contain means, variances

and parameters to parametrize the covariance matrix of the parameters which encode

properties of extrinsic noise. Also methods exist which do not parametrize (2.7) and infer

the density by, e.g., using maximum entropy approaches (Dixit et al., 2019).

The whole density which would be obtained with an ensemble model for a large number of

individual cells can be described with a population balance equation (PBE). Assuming

neither intrinsic nor extrinsic noise, heterogeneity occurs only due to differences in the

initial state. If not the population average or an individual cell is described, the temporal

evolution of the density of the cell states can be described by a PBE (see, e.g., (Waldherr,

2018)):

∂p(x,ψ,u, t)

∂t
= −divx(f(x,ψ,u)p(x,ψ,u, t)), p(0,x,ψ,u) = x0(ψ,u) . (2.9)

In (2.9) only cellular dynamics such as signaling are included and proliferation of the

cells is neglected. These would be included as additional terms. Extensions address also

the incorporation of intrinsic and extrinsic noise (Hasenauer et al., 2011b). However,

the numerical simulation of these models requires, e.g., hierarchical simulation schemes

(Pinto et al., 2007), grid-based approaches (Mantzaris et al., 2001) or characteristic-based

approaches (Küper et al., 2019). These are often computationally expensive and do not

scale well with high-dimensions, limiting the applicability of PBEs.

If intrinsic variability is neglected and the only source of biological variability is the dis-

tribution in the parameters pψ(ψ) as introduced in (2.7), this distribution is mapped to

a distribution of cell states and observables. A detailed analysis of this image requires

sampling from pψ(ψ) and subsequent evaluation of the state and observable vectors by

simulation. This procedure is, however, computationally demanding. The sigma-point

approximation addresses this issue and gives an approximation of the statistical moments
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of the image, mean and covariance matrix and their dynamics in time, using a small num-

ber of simulations (Filippi et al., 2016; Silk, 2013; van der Merwe, 2004). The sigma-point

approximation uses only the image of deterministically chosen parameter vectors and can

be seen as an approximation to an ensemble model. These parameter vectors, the so called

sigma-points, are chosen to represent the mean β and the covariance D of pψ.

Following van der Merwe (2004), the 2L+ 1 sigma-points {vl,S l} are defined as

S0 = β, v
(m)
0 =

ζ3

L+ ζ3
, for l = 0

S l = β +
(√

(L+ ζ4) D
)
l
, v

(c)
l =

ζ3

L+ ζ3
+ 1− ζ2

1 + ζ2 , for l = 1 . . . , L (2.10)

S l = β −
(√

(L+ ζ4) D
)
l
, v

(m)
l = v

(c)
l =

1

2 (L+ ζ3)
, for l = L+ 1 . . . , 2L .

For the hyperparameters, van der Merwe (2004) proposes to use ζ2 = 2 and ζ3 = ζ2
1 (L +

ζ4)− L, with ζ1 = 0.7 and ζ4 = 0. The superscripts for vl indicate whether it is used for

the calculation of the mean (m) or the covariance (c).

The dynamics of individual cells can, e.g., be described by the RRE (2.4). Accordingly,

the images of the sigma-points in the state and the observation space, X l and Y l, are

computed as

Ẋ l = f(X l,S l,u) , l = 0, . . . , 2L ,

Y l = h(X l,S l,u) .
(2.11)

The mean and covariance matrix of the species are computed as

mx ≈
2L∑
l=0

v
(m)
l X l ,

Cx ≈
2L∑
l=0

v
(c)
l (X l −mx) (X l −mx)T .

The mean and covariances of the observables read

my ≈
2L∑
l=0

v
(m)
l Y l

Cy ≈
2L∑
l=0

v
(c)
l (Y l −my) (Y l −my)T .

(2.12)
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The temporal evolution of the cell density is governed by the chemical master equation

(CME) (Gillespie, 1992)

ṗ(x,ψ,u, t) =
∑
l

[p(x− νl,ψ,u, t)al(x− νl,ψ,u)− al(x,ψ,u)p(x,ψ,u, t)] , (2.13)

with definitions as in (2.3). The CME accounts for the stochasticity of the biological

processes and models intrinsic noise. Extrinsic noise can be included by extending the

state space with the heterogeneous parameters and assuming that these additional states

only influence reactions, but are not altered by any reaction and thus have no dynamics.

For many biological systems, the state space is infinite and the CME an infinite dimensional

system of coupled ODEs. Therefore, the CME is often studied by simulating trajectories

of the system with the SSA. This can be computationally expensive, especially if high

number of molecules are involved. To address this issue of computational complexity, many

concepts for the approximation of the CME have been developed, such as the finite state

projection (Munsky and Khammash, 2006), the moment-closure approximation (Engblom,

2006; Lee et al., 2009), or the system size expansion (van Kampen, 2007), which gives, e.g.,

the Fokker-Plank equation (Risken, 1996) or the linear noise approximation (Komorowski

et al., 2009). In this thesis, the moment-closure approximation is employed.

The moment-closure approximation (MA) provides equations for the temporal evolution

of moments of the species, i.e., of the mean

ṁx
i =

∑
x∈Ω

xi ṗ(x,ψ,u, t), i = 1, . . . , nx , (2.14)

of species xi, with ṗ(x,ψ,u, t) defined by (2.13), and higher-order moments such as the

covariance

Ċxij =
∑
x∈Ω

(xi −mx
i )(xj −mx

j )ṗ(x,ψ,u, t), i, j = 1, . . . , nx (2.15)

between species xi and xj . Here, Ω denotes the set of possible states. Given the moments

of the species, the moments of the observables are calculated by

my
i =

∑
x∈Ω

hi(x,θ,u)p(x,ψ,u, t)

Cyij =
∑
x∈Ω

(hi(x,θ,u)−my
i )
(
hj(x,θ,u)−my

j

)
p(x,ψ,u, t) .

(2.16)

Here, hi denotes the ith component of the observation function h defined in (2.5). For

nonlinear systems, the dynamics of the moments of order k depend on moments of order
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k + 1. For this, moment-closure schemes are applied which introduce an approximation

error (Lee et al., 2009). These schemes describe higher-order moments as functions of

lower-order moments. In the MA, extrinsic noise can be included by extending the state

space by the heterogeneous parameters and assuming that they are constant (Zechner

et al., 2012).

Often, cell populations have subpopulation structures (Altschuler and Wu, 2010; Buettner

et al., 2015; Nester and Stocker, 1963). The aforementioned models do not explicitly model

these structures. RRE-constrained mixture modeling (Hasenauer et al., 2014) mechanis-

tically models the mean of ns subpopulations by RREs (2.4). The whole-cell population is

then the mixture of normal or log-normal distributions, for which the subpopulations are

the mixture components. Parameters are either homogeneous or assume distinct values

for different subpopulations

p(ψci ) =

{
δ(ψci − βi) homogeneous∑

sws δ(ψ
c
i − βs,i) subpopulation variable

in which δ denotes the Dirac delta distribution. For measurement ȳi,k, it then reads

p(ȳi,k|θ) =

ns∑
s=1

ws(θ)φ
(
ȳi,k|µs,i(tk,θ,u), σ2

s,i(tk,θ,u)
)

with ẋs = f (xs, ξs(θ),u) , xs(0) = x0(ξs(θ),u) ,

µs = gϕ (xs, ξs(θ),u) .

(2.17)

Here and in the following, we neglect for convenience the indices for experiment and

condition. The mean for the subpopulation obtained by RREs is linked to the distribution

parameter µ by function gϕ. The distribution parameter σ is estimated from the data. No

intrinsic or extrinsic noise within a subpopulation is included. This approach is a rough

simplification of the underlying single-cell dynamics but computationally efficient.

The appropriate modeling framework needs to consider the importance of intrinsic and

extrinsic noise upon population dynamics (Waldherr, 2018). The CME, the MA and

variants of the PBE can account for intrinsic noise, while the sigma-point approximation

only allows for variability due to extrinsic noise. The differences between measurements

for cells in the RRE-constrained mixture model only occur due to measurement noise

and cells belonging to different subpopulations. The CME, PBE and RRE-constrained

mixture model describe the whole density of the population. However, the latter is a

parametrized approximation to the cell population using mixture distributions. The MA

and sigma-point approximation provide only the moments of the system.
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2.3 Parameter inference

The mathematical models for population average and single-cell snapshot data introduced

above depend on parameters, e.g., kinetic rate constants, initial conditions and measure-

ment noise. These parameters generally cannot be directly experimentally measured and

the corresponding, often ill-posed inverse problem needs to be solved, which means the

parameters are inferred from experimental data. In this section, we describe how models

introduced in Section 2.2 can be calibrated to data introduced in Section 2.1. General

approaches to estimate the parameters of a model include frequentist (Raue et al., 2013),

Bayes (Wilkinson, 2007) or set-based (Rumschinski et al., 2010) approaches. In this thesis,

we mainly consider the frequentist approach.

The likelihood

L(θ) = p(D|θ) , (2.18)

is the conditional probability of observing data D given a model and its corresponding

parameters θ. The optimal parameters are obtained by solving the optimization problem

min
θ∈Θ

J(θ) with J(θ) = − logL(θ) . (2.19)

Due to numerical reasons, the negative log-likelihood is minimized rather than the negative

likelihood. Both functions have the same minima, but the negative log-likelihood does not

suffer from problems occurring when small probabilities and their products are numerically

evaluated to zero. Solving (2.19) yields the maximum likelihood estimate (MLE)

θ̂ = argmax
θ∈Θ

L(θ)

= argmin
θ∈Θ

J(θ).
(2.20)

This optimization problem can efficiently be solved employing the gradient of the log-

likelihood function (Nocedal and Wright, 2006; Raue et al., 2013). The local optimization

which employs gradient information can, e.g., perform a line-search to determine the next

parameter vector, or choose the next parameter vector based on an approximation of

the likelihood function within a trust-region (see, e.g., (Nocedal and Wright, 2006) for

more details). Most biological meaningful parameters are non-negative and thus can be

log-transformed. In a comprehensive study, we showed that this substantially improves

optimization (Hass et al., 2019). We use multi-start local optimization, which starts the

local optimization from randomly sampled initial points (Raue et al., 2013). Using a

likelihood function to calibrate the models in contrast to pure norm-based approaches has
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the advantage that statistical methods, as will be elaborated in more detail later in this

chapter, can be employed to perform model selection.

In the following, we specify the structure of the likelihood functions for different data types

and mathematical models. We again distinguish the cases of population average (2.1) and

single-cell snapshot data (2.2).

2.3.1 Likelihood function for population average data

Since experiments are mostly subject to measurement noise, linking of observables y,

defined in (2.5), and measurements ȳ, defined in (2.1), requires a noise model

L(θ) =
∏
i,k

p(ȳi,k|yi(tk,θ,u),ϕi(tk,θ,u)) , (2.21)

J(θ) = − logL(θ) = −
∑
i,k

log p(ȳi,k|yi(tk,θ,u),ϕi(tk,θ,u)), (2.22)

with distribution parameters ϕ. For this, independence of measurement noise for differ-

ent time points and observables is assumed. Most commonly, a Gaussian distribution is

assumed with standard deviation σ = ϕ, which is also estimated from the data. The

calculation of the gradient of the negative log-likelihood function with respect to θj re-

quires the derivative of yi(tk,θ,u) with respect to θj . This can reliably be computed by

extending the ODE system by forward sensitivities (Raue et al., 2013; Sengupta et al.,

2014) or calculating adjoint sensitivites (Fröhlich et al., 2017). This thesis is concerned

with the choice of noise distribution, and different assumptions for the noise model are

employed and analyzed in Chapter 3.

2.3.2 Likelihood function for single-cell snapshot data

As stated above, we focus on likelihood-based calibration of the mathematical models,

since norm-based calibration as, e.g., used in (Dixit et al., 2019; Hasenauer et al., 2010,

2011b; Munsky and Khammash, 2010) does not allow for a statistical comparison of dif-

ferent models as it will be introduced in Section 2.4, or uncertainty analysis as it will be

introduced in Section 2.3.3. If moments of the distributions are fitted rather than the whole

distribution, the likelihood comprises terms for each of the considered moments (Fröhlich

et al., 2016; Zechner et al., 2012). For fitting mean and covariances, this likelihood is given
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by

L (θ) =
∏
i,k

p(m̄i,k|mi(tk,θ,u),θ) ·
∏
i,j,k

p(C̄i,j,k|Ci,j(tk,θ,u),θ) , (2.23)

with sample mean and sample covariance matrix

m̄i,k =
1

nc

∑
c

ȳci,k ,

C̄i,j,k =
1

nc − 1

∑
c

(
ȳci,k − m̄i,k

) (
ȳcj,k − m̄j,k

)
.

In this thesis, we consider a likelihood function, for which the probability density provided

by the model is evaluated for each cell

L (θ) =
∏
i,k,c

p(ȳci,k|θ) . (2.24)

This is employed, for example, in RRE-constrained mixture modeling (2.17), where p is

a normal or log-normal mixture distribution, by Filippi et al. (2013), where p is given

by a log-normal distribution, and by Fox and Munsky (2019), where p is obtained by

the finite state projection. Other approaches, for example, employ the area between

empirical cumulative density functions of the observed data and simulated cumulative

density function (Fischer et al., 2019).

2.3.3 Uncertainty analysis

The maximum likelihood estimate provides a single point estimator for the model parame-

ters, but does not provide information about the uncertainties of the parameter estimates.

These are especially important for model predictions. The uncertainty of parameters can

be assessed using profile likelihoods or Bayesian sampling.

The profile likelihood is given by

PL(θi) = max
θj 6=i,θ∈Θ

L(θ) , (2.25)

for parameter θi (Raue et al., 2009). For a fixed value of θi, the maximum over all

remaining parameters is computed. Based on the profiles, the confidence intervals (CIs)
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of parameter θi for significance level α can be defined as

CIi,α =

{
θi

∣∣∣∣∣PL(θi)

L(θ̂)
> exp

(
−∆α

2

)}
, (2.26)

(Meeker and Escobar, 1995). Here, ∆α is the αth percentile of the χ2 distribution with one

degree of freedom. The profiles can be calculated by repeated optimization (Raue et al.,

2015) or by an integration-based approach (Boiger et al., 2016; Stapor et al., 2018a).

Alternatively to profile likelihoods, posterior distributions can be assessed. The posterior

is defined according to Bayes’ theorem by

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (2.27)

The numerator comprises the likelihood and the prior p(θ), which encodes prior knowledge

about the parameter values. If the prior is a uniform distribution on the interval defined

by the parameters boundaries, the posterior corresponds to the likelihood subject to con-

straints. The denominator consists of the evidence p(D), which in most cases is difficult

to compute, but can be ignored for parameter inference and sampling since it is indepen-

dent of θ. Maximizing the posterior distribution gives the maximum a posteriori (MAP)

estimate. Often samples of the posterior distributions are studied to directly assess the

parameter uncertainty and report credible intervals. For sampling, Markov chain Monte

Carlo (MCMC) approaches can be employed such as the Metropolis-Hastings algorithm

(Hastings, 1970; Metropolis et al., 1953), the adaptive Metropolis algorihm (Haario et al.,

2001) or algorithms with multiple chains like parallel tempering (Lacki and Miasojedow,

2015; Neal, 1996) or parallel hierarchical sampling (Rigat and Mira, 2012).

2.3.4 Evaluation of parameter estimation results and distribution assumptions

In this thesis, new methods for the estimation of the parameters are introduced and differ-

ent distribution assumptions assessed. To compare state-of-the-art and newly developed

methods as well as to compare the appropriateness of different distribution assumptions,

the following criteria are considered: We evaluate a method for optimization based on the

number of converged starts. The number of converged starts is defined as the number of

starts for which the distance between the final objective function value and the best found

value across all methods is below a certain threshold (Figure 2.1A). This threshold can

for example be motivated by a likelihood ratio test (Hross and Hasenauer, 2016). Using

the number of converged starts as measure for the performance of the algorithm can be



2.3. PARAMETER INFERENCE 23

sorted optimizer run

ne
ga

tiv
e 

lo
g-

lik
el

ih
oo

d 
va

lu
e

threshold

 not converged to global optimum

converged to global optimum

A B

0                              1
confidence level

CR
 fo

r p
ar

am
et

er
 !

i

0

1 CI too wide

CI too narrow

Figure 2.1: Illustration of the evaluation of optimization results and distribution as-
sumptions. (A) Likelihood waterfall plot. Optimization runs are considered to be con-
verged if the distance between the negative log-likelihood values to the minimal value
found is below a certain threshold. The runs are sorted with respect to their final negative
log-likelihood values. (B) Appropriateness of CIs is assessed by comparing the coverage
ratio (CR) with the confidence level. Ideally, the CR should be close to the corresponding
confidence level, yielding the dashed line.

misleading, because it does not take into account the computation time. However, com-

putation resources are often the limiting factor. Thus performance can be quantified by

the number of converged starts per given time unit.

In simulation studies, the true parameters, which were used to generate the data, are

known and can be used to assess the ability of the method to obtain the true parame-

ters. The accuracy of the MLE, apart from non-identifiabilities, for different distribution

assumptions can be evaluated using the mean squared error (MSE)

MSE
[
θ̂,θtrue

]
= E

[(
θ̂ − θtrue

)2
]

(2.28)

= E
[(
θ̂ − E[θ̂]

)2
]

︸ ︷︷ ︸
Var(θ̂)

+
(
E[θ̂]− θtrue︸ ︷︷ ︸
Bias(θ̂,θtrue)

)2
.

It incorporates the variance and the bias of the estimator. A small (norm of the) MSE in-

dicates a good agreement of the true and estimated parameters. However, the uncertainty

of the parameter estimates is not taken into account when analyzing the MSE.

Uncertainty is included in the analysis by studying the CIs, defined in (2.26). For given

confidence level α, the CIs should cover the true parameter with a frequency of 1 −
α. Accordingly, if the true parameter is known, the appropriateness of the CIs can be

evaluated by computing the coverage ratio (CR), which is the probability that the true

parameter is contained in the CI (Figure 2.1B). It can be calculated by repeating the
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optimization procedure and profiling for many generated data sets. The CR should be

close to the desired confidence level (Schelker et al., 2012).

2.4 Model selection

This section is modified from Section 3 of (Fröhlich et al., 2019) which I contributed to

the book chapter.

In many applications, it is not apparent which biochemical species and reactions are nec-

essary to describe the dynamics of a biochemical process. In this case, the structure of

the ODE model (2.4) has to be inferred from experimental data. The selection should

compromise between goodness-of-fit and complexity. Following the concept of Occam’s

razor (Blumer et al., 1987), one tries to control variability associated with over-fitting

while protecting against the bias associated with under-fitting.

2.4.1 Model selection criteria

Given a set of candidate models M1,M2, . . . ,MnM , the aim of model inference is to find a

model or a set of models which (i) describe the data available and (ii) generalize to other

data sets (Hastie et al., 2009). The choice of model can be made based on several selection

criteria, differing among others in asymptotic consistency (Shibata, 1980), asymptotic

efficiency (Fisher, 1922) and computational complexity. If the true model is included in

the set of candidate models, a consistent criterion will asymptotically, for an increasing

number of data points, select the true model with probability one and an efficient criterion

will select the model that minimizes the MSE of the prediction.

One popular criterion is the Bayes factor (Kass and Raftery, 1995), which has been

shown to be asymptotically consistent for a broad range of models (Choi and Rousseau,

2015; Wang and Sun, 2014). However, for the case of general ODE models, no proofs for

asymptotic efficiency and consistency are available for all the criteria presented in this

section. Bayes’ theorem yields the posterior model probability

p(Mm|D) =
p(D|Mm)p(Mm)

p(D)
, (2.29)

with marginal likelihood

p(D|Mm) =

∫
Θm

p(D|θm,Mm)p(θm|Mm)dθm , (2.30)
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with model prior p(Mm) and marginal probability p(D) =
∑

j p(D|Mj)P (Mj). The Bayes

factor of models Mm and Ml is the ratio of the corresponding marginal likelihoods

Bml =
p(D|Mm)

p(D|Ml)
. (2.31)

The Bayes factor describes how much more likely it is that the data are generated from

Mm instead of Ml. A Bayes factor Bml > 100 is often considered decisive for rejecting

model Ml (Jeffreys, 1961). The Bayes factor intrinsically penalizes model complexity by

integrating over the whole parameter space of each model. Bayes factors can be approxi-

mated by Laplace approximation, which has a low computational complexity but provides

only a local approximation. To enable a more precise computation of the Bayes factors,

thermodynamic integration can be employed to evaluate (2.30) (Lartillot and Philippe,

2006). This approach uses the tempered posterior

pτ (θm|D,Mm) =
p(D|θm,Mm)τp(θm|Mm)∫

Θm
p(D|θm,Mm)τp(θm|Mm)dθm

, (2.32)

with parameter τ ∈ [0, 1]. For τ = 0, (2.32) corresponds to the prior p(θm|Mm) and for

τ = 1 it corresponds to the untempered posterior. It can then be shown that (Lartillot

and Philippe, 2006)

log p(D|Mm) =

∫ 1

0
Epτ [log p(D|θm,Mm)] dτ . (2.33)

This integral can numerically easier be solved by choosing a discretization 0 = τ0 < τ1 <

. . . < τnτ−1 = 1, evaluating the integrand in (2.33) for the nτ discretization steps by Monte

Carlo sampling and applying, e.g., the trapezoidal or Simpsons’ rule. The number of tem-

peratures nτ can also be chosen adaptively (Hug et al., 2016). Other methods which can

be employed for the evaluation of the marginal likelihood are, e.g., bridge sampling (Meng

and Wong, 1996), nested sampling (Skilling, 2006) or related methods. As the approaches

require a large number of function evaluations, the methods are usually computation-

ally demanding and the computational complexity is highly problem-dependent. Thus,

efficient sampling methods are required.

For high-dimensional or computationally costly problems, the calculation of Bayes factors

can be intractable and computationally less expensive model selection criteria need to be

employed. A model selection criterion which is based on the MLE instead of a marginal

likelihood (an integral over the whole parameter space), is the Bayesian Information
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Criterion (BIC) (Schwarz, 1978). The BIC value for model Mm is

BICm = −2 log p(D|θ̂m,Mm) + log (nD)nθm , (2.34)

with nD data points. For structurally identifiable models, the BIC provides in the limit

of large sample sizes information about the Bayes factors (Kass and Raftery, 1995),

lim
nD−>∞

−2 logBml − (BICm − BICl)

−2 logBml
= 0 . (2.35)

From information theoretical arguments, the Akaike Information Criterion (AIC)

AICm = −2 log p(D|θ̂m,Mm) + 2nθm , (2.36)

has been derived (Akaike, 1973). Low BIC and AIC values are preferable and differences

above 10 are assumed to be substantial (see Table 2.1) (Burnham and Anderson, 2002;

Kass and Raftery, 1995). For model selection in many problem classes, the AIC is asymp-

totically efficient, but not consistent, while the BIC is asymptotically consistent, but not

efficient (Acquah, 2010; Kuha, 2004; Shibata, 1981). When incorporating prior informa-

tion about parameters, the priors can conceptually be treated as additional data points

and, thus, be part of the likelihood to still allow the use of BIC and AIC. While Bayes

factors are proven to be valid for non-identifiable parameters, the use of AIC and BIC can

be problematic for these cases.

The log pointwise predictive density for model Mm (Gelman et al., 2014)

lppdm =

nsubs.∑
i=1

log

 1

nsam.

nsam.∑
j=1

p(Di|θi,jm ,Mm)

 , (2.37)

evaluates the predictions of model Mm. For the calculation in (2.37), (i) the full data

set is split into nsubs. subsets Di, (ii) for each combination of nsubs. − 1 subsets, samples

from the posterior distribution are collected and (iii) for each subset the logarithm of the

average likelihood is calculated based on samples {θi,jm } from the posterior distribution for

all remaining subsets. The superscript i here indicates the samples of the posterior for all

subsets but the one indexed by i.

Further model selection criteria exist, such as the corrected AIC (Hurvich and Tsia, 1989),

which provides a correction for finite sample sizes, cross-validation (Arlot and Celisse,

2010) or the likelihood ratio test, which is efficient and can only be applied to nested

models (Neyman and Pearson, 1992; Wilks, 1938).
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Table 2.1: Decisions based on the Bayes factor and differences in BIC and AIC val-
ues (Burnham and Anderson, 2002; Jeffreys, 1961; Kass and Raftery, 1995).

Blm BICm −minl BICl AICm −minl AICl decision

1− 3 0− 2 0− 4 do not reject model Mm

3− 100 2− 10 4− 10 -

> 100 > 10 > 10 reject model Mm

2.4.2 Reduction of the number of models

For most models, computing Bayes factors is computationally demanding compared to

optimization and the evaluation of AIC, BIC or likelihood ratio. Yet, if the number of

candidate models nM is large, even the evaluation of AIC or BIC can become limiting

as nM optimization problems have to be solved. For non-nested models, the model selec-

tion criterion of choice needs to be calculated for each model to determine the optimal

model. For a nested set of candidate models all candidate models are a special case of

a comprehensive model and can be constructed by fixing a subset of the parameters to

specific values (Figure 2.2A). We assume that we can split the model parameters θ into

general parameters η ∈ Rnη , which are present in all models, and difference parameters

κ ∈ Rnκ , which encode the nesting between models and could for example be the kinetic

rates of hypothesized reactions (Klimovskaia et al., 2016) or scaling factors for possibly

cell-type or condition-specific parameters (Steiert et al., 2016). Such settings yield a total

of 2nκ candidate models, where nκ is limited by nθ. Thus, for models with a high number

of parameters, also a high number of nested models is possible. When nκ and nθ are

both large, the inference of model parameters and thus the inference of model structure

is challenging.

In statistics, step-wise regression is an often-used approach to reduce the number of mod-

els that need to be tested. This comprises forward-selection and backward-elimination

(Hastie et al., 2009) and combinations of both (Kaltenbacher and Offtermatt, 2011).

Forward-selection is a bottom-up approach which starts with the least complex model

and successively activates individual difference parameters (i.e., setting κi 6= 0) until a

sufficient agreement with experimental data is achieved, evaluated using a model selection

criterion (Figure 2.2B). In contrast, backward-elimination is a top-down approach starting

with the most complex model, successively deactivating individual difference parameters

(i.e., setting κi = 0) that are not required for a good fit to the data. Forward-selection

and backward-elimination reduce the number of models that need to be compared with

the model selection criteria described before from 2nκ to at most 0.5 ·nκ(nκ+1). However,
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Figure 2.2: Illustration of methods for model reduction. (A) Set of candidate models,
varying in the existence of connections between nodes x1, x2 and x3. In total, there are
2nκ = 23 models with at least nη = 1 parameters. (B) Illustration of forward-selection
starting from minimal model. In the first iteration, the model with κ1 6= 0, κ2, κ3 = 0 is
selected (green) and in the second iteration the model with κ1, κ3 6= 0, κ2 = 0. The full
model is rejected based on the selection criteria. (C) Illustration of model averaging. The
thickness of the arrows corresponds to the posterior probability, Akaike weight or BIC
weight and indicates the contribution of the model to the averaged model properties. This
figure and its legend is modified from Figure 2 of the author’s publication (Fröhlich et al.,
2019).

they are both greedy approaches and do not guarantee to find the globally least complex

candidate model that explains the data. An alternative approach is to penalize the num-

ber of parameters in the objective function to enforce sparsity of the parameters (see our

review (Fröhlich et al., 2019) for a more detailed discussion).
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2.4.3 Model averaging

For large sets of candidate models and limited data, it frequently happens that not a single

model is chosen by the model selection criterion. Instead, a set of models is plausible,

cannot be rejected and should be considered in the subsequent analysis. In this case,

model averaging can be employed to predict the behavior of the process (Figure 2.2C).

Given that a certain parameter is comparable between models, an average estimate can

be derived as

E[θi] =
∑
m

ωmθ̂i,m , (2.38)

with ωm denoting the weight of model Mm and θ̂i,m denoting the MLE of parameter θi for

model Mm (Burnham and Anderson, 2002; Wassermann, 2000). The weights capture the

plausibility of the model. An obvious choice for the weights is the posterior probability

p(Mm|D). Alternatively, BIC weights

ωm =
exp(−1

2BICm)∑nM
i=1 exp(−1

2BICi)
, (2.39)

or Akaike weights, where the BIC is replaced by the AIC in (2.39), can be employed. The

weights for models that are not plausible are close to zero and, thus, these models do not

influence the output of the averaged model.

2.5 Implementation

In this section, the toolboxes are listed which were employed for the analyses described in

the following chapters.

• AMICI (Fröhlich et al., 2017) provides an interface to the SUNDIALS solver suite

(Hindmarsh et al., 2005) and enables the efficient simulation of the ODEs obtained

by the RREs (2.4) and the corresponding sensitivities. In particular, AMICI employs

the solver CVODES (Serban and Hindmarsh, 2005).

• CERENA derives and provides the simulation functions for the moment-closure ap-

proximation (2.14, 2.15) (Kazeroonian et al., 2016).

• SPToolbox provides the sigma-point approximation (2.10, 2.11).
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• PESTO was employed for parameter estimation and uncertainty analysis (Stapor

et al., 2018b). It provides an interface to the MATLAB optimization routine fmincon.

PESTO also comprises algorithms for parallel tempering.

• ODEMM provides the implementation for RRE-constrained mixture models (2.17)

(Hasenauer et al., 2014) and the hierarchical population model which will be intro-

duced in Chapter 4.

All these toolboxes are available on GitHub under https://github.com/ICB-DCM. The

author of this thesis developed the toolbox ODEMM and co-developed the toolbox PESTO.

For the latter, the author contributed in particular the implementations for the hierar-

chical optimization as introduced in Section 3.2. The implementations for the analyses

performed in this thesis are also freely available on GitHub and/or the Supplementary

Information of the corresponding publications.

https://github.com/ICB-DCM


Chapter 3

Robust and efficient calibration of

ODE models on population average

data

ODE models are valuable tools to study biological processes. Their model parameters are

often estimated based on population average data (Section 2.1.1). This requires the defini-

tion of the differential equations (2.4), the observable function (2.5) and the measurement

noise model (2.6). The combination of these parts of the model should reflect the biologi-

cal process as well as the process of data collection. This can require the introduction of

observable parameters, e.g., scaling parameters which map the states of the biochemical

species to the measurable output if only relative measurements can be collected. In ad-

dition, the measurements are often corrupted by outliers and follow a distribution which

is a mixture of the unknown outlier-generating distribution, smaller measurement noise

and the true biological process. This should also be captured by the measurement noise

model. However, with increasing numbers of measurements and experiments which are

integrated and fitted simultaneously, the models become more and more complex, which

hinders their calibration and requires efficient methods.

In this chapter, we address the open problems which have been stated in Section 1.2:

(i) the influence and handling of outliers; (ii) the high number of observation parameters;

and (v) the dynamics of histone methylation. In particular, we investigate the measure-

ment noise model by incorporating heavier tailed distributions in the maximum likelihood

framework used for model calibration. We then study the choice of the distribution p in

(2.22) and assess the properties of the distributions for simulated data of a conversion

process. Afterwards, we provide an approach for efficiently estimating the model parame-

ters by splitting the optimization problem into smaller subproblems, using the analytically

calculated optimal values for the observable parameters and noise parameters in each op-

timization step. This is followed by a study on the kinetics of histone H3 methylation to

address problem (v), where we apply the developed methods to compare models which

differ in their equations and represent different biological hypotheses.
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This chapter is based on and in part identical with these publications:

• Maier, C., Loos, C., & Hasenauer, J. (2017). Robust parameter estimation for

dynamical systems from outlier-corrupted data. Bioinformatics, 33(5), 718-725.

• Loos, C.∗, Krause, S.∗, & Hasenauer, J. (2018). Hierarchical optimization for

the efficient parametrization of ODE models. Bioinformatics, 34(24), 4266–4273.

(∗equal contribution)

• Loos, C.∗, Völker-Albert, M.∗, Forne, I., Hasenauer, J., Imhof, A., Marr, C., Groth,

A., Alabert, C. Efficient K27me3 establishment requires naive histone substrates and

pre-existing K27me3 on old histones. in preparation.

3.1 Robust calibration of ODE models in the presence of outliers

In addition to general measurement noise, various errors can occur in the process of data

collection, including human errors, e.g., labeling or technical errors. Human errors usu-

ally yield bigger deviations, while measurement noise is generally smaller. The distorted

measurements, often referred to as outliers, can influence further analyses and thus yield

incorrect results (Hawkins, 1980; Tarantola, 2005). Using an assumption about measure-

ment noise in the model calibration which cannot cope with the outliers can yield incorrect

parameter estimates. This limits the validity of the models and hinders model predictions.

Methods which try to detect and remove the outliers from the data set exist in various

fields (Ben-Gal, 2005; Hodge and Austin, 2004; Niu et al., 2011). However, this detection

is potentially not easy due to noisy measurements and the increasing size and complexity

of the data. The removal of data points which were wrongly assigned as outliers, as

well as keeping true outliers in the data set can distort further analyses (Motulsky and

Christopoulos, 2003). To circumvent the manual removal of the outliers, the employed

method needs to be able to directly cope with the outliers.

In the fields of regression (Lange et al., 1989; Peel and McLachlan, 2000) and computer

vision (Stewart, 1999) robust estimation methods are used to circumvent the removal of

data points. These robust approaches exploit estimators that are less affected by outliers

than the standard approach, the least squares estimator. Well known maximum-likelihood

type estimators (M-estimators) (Press et al., 1988) which were found to be robust to

outliers are, e.g., the least absolute deviation estimator (Tarantola, 2005) (corresponding

to Laplace distributed errors) and the Huber M-estimator (Huber, 1964). These estimators

essentially use lower weights for data points with large residuals compared to least squares,
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i.e., Gaussian errors. In addition, Student’s t regression models have been studied which

assume Student’s t distributed errors (Fernández and Steel, 1999).

The methods developed in the field of robust regression can in principle be applied across

scientific fields. Each field has, however, its particularities regarding experimental data,

e.g., noise levels, outlier generating mechanisms and mathematical models which influence

the performance. For dynamical models of biological systems, the Huber M-estimator

was already successfully applied, yielding more reliable parameter estimates (Cao et al.,

2011; Qiu et al., 2016). A comprehensive evaluation of different methods in the field of

quantitative biology is still missing. Furthermore, the standard formulation as a regression

problem does not allow one to perform model selection using statistical methods such as

the likelihood ratio test, the Akaike or the Bayesian information criterion in a straightfor-

ward way (Section 2.4.1). To facilitate model selection for the mechanistic as well as the

statistical model, a formulation of robust estimation in terms of (normalized) probability

distributions would be beneficial.

In this section, we provide the equations for the likelihood functions and its analytical

gradients of distributions with heavier tails than the Gaussian distribution. We compare

robustness and reliability of the models for these different distributions for the case of

outlier-free and outlier-corrupted data sets.

Notation: In the following, we simplify the notation and define the index j = 1, . . . , nD for

all measured data points, comprising observables, time points, dosages, experiments and

replicates. We only explicitly note the dependence on the parameters θ. The dependence

on, e.g., the states, input and time is implicitly captured by index j:

yj(θ) = hj(θ) . (3.1)

3.1.1 Equations for heavier tailed noise distributions

The distributions, along with their distribution parameters, are listed in Table 3.1 and

visualized in Figure 3.1. While the Gaussian and Laplace distributions have well-defined

moments for all values for the distribution parameters, the Students’ t distribution only

has a well-defined mean for ν > 1 and a well-defined variance for ν > 2. The variance of

the Cauchy distribution is always infinite. We refer to the Laplace, Huber, Cauchy and

Student’s t distributions in the following as heavier tailed distributions, since their tails

are heavier than the tails of a Gaussian distribution.



34 CHAPTER 3. ROBUST AND EFFICIENT ODE MODEL CALIBRATION

-5 0 5
0

0.2

0.4

0.6

-5 0 5 -5 0 5-5 0 5

pr
ob

ab
ilit

y 
de

ns
ity

residual ȳ-y

CauchyLaplace Student’s tHuber

Gaussian

σ =
σ =

σ =
σ =

σ =
ν =
σ =
ν =

σ =
τ =0.9

1.2
0.6
0.8

1.345
1

1

1
0.3

0.7

Figure 3.1: Distribution assumptions. Distributions with heavier tails than the Gaus-
sian distribution are shown for different scale parameters in comparison with a standard
Gaussian distribution N (0, 1). For the Huber distribution, the corresponding Gaussian
and Laplace distributions are indicated.

For parameter estimation, the distributions were used in the likelihood function (2.22).

The parameter vector θ = (ψ,ϕ) comprises the dynamic parameters as well as the distri-

bution parameters.

Under the generally used Gaussian distributed measurement noise, the log-likelihood func-

tion is given by given by

logLD(θ) = −1

2

∑
j

[
log
(
2πσj(θ)2

)
+

(
ȳj − yj(θ)

σj(θ)

)2
]
, (3.2)

with standard deviation σj(θ) > 0. The gradient of the log-likelihood for i = 1, . . . , nθ is

given by

∂logLD(θ)

∂θi
= −1

2

∑
j

[
1

σ2
j (θ)

(
1−

(
ȳj − yj(θ)

σj(θ)

)2
)
∂σ2

j (θ)

∂θi
− 2

ȳj − yj(θ)

σ2
j (θ)

∂yj(θ)

∂θl

]
.

Under the assumption of independent Laplace distributed measurement noise, the log-

likelihood function is given by

logLD(θ) = −
∑
j

[
log (2σj(θ)) +

|ȳj − yj(θ)|
σj(θ)

]
, (3.3)
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with scale σj(θ) > 0. The likelihood function is non-differentiable for parameters θ, for

which ∃j : ȳj = yj(θ). The gradient of the log-likelihood for i = 1, . . . , nθ is given by

∂logLD(θ)

∂θi
=
∑
j

[(
− 1

σj(θ)
+
|ȳj − yj(θ)|
σ2
j (θ)

)
∂σj(θ)

∂θi
+

sgn(ȳj − yj(θ))

σj(θ)

∂yj(θ)

∂θi

]
,

and we used sgn(0) = 0.

The Huber M-estimator exploits a combination of squared 2-norm and 1-norm for penal-

ization. Residuals with absolute value below τ are penalized quadratically while residuals

with absolute values larger τ are penalized linearly. Under the assumption of independent

Huber distributed measurement noise, the log-likelihood function is given by

logLD(θ) =
∑
j

[
log(cHuber,j(θ))−

1
2(resj(θ))2 |resj(θ)| ≤ τ(θ)

1
2(2τ(θ)|resj(θ)| − τ2(θ)) |resj(θ)| > τ(θ)

]
,

(3.4)

with resj(θ) = (ȳj − yj(θ)) /σj(θ), scale σj(θ) > 0 and tuning parameter τ(θ) > 0. The

constant

cHuber,j(θ) =

(√
2πσj(θ)erf

(
τ(θ)√

2

)
+

2σj(θ)

τ(θ)
exp

(
−1

2
τ2(θ)

))−1

,

normalizes the function such that it is a probability density and possesses integral 1. Here,

erf(x) =
2

π

∫ x

0
exp

(
−t2
)
dt ,

denotes the error function. The gradient of the log-likelihood for i = 1, . . . , nθ is given by

∂logLD(θ)

∂θi
=
∑
j

[
∂yj(θ)

∂θi
·


ȳj−yj(θ)

σ2
j (θ)

|resj(θ)| ≤ τ(θ)

τ(θ)
σj(θ)sgn(ȳj − yj(θ)) |resj(θ)| > τ(θ)

+
∂σj(θ)

∂θi

(
− 1

σj(θ)
+


(ȳj−yj(θ))2

σ3
j (θ)

|resj(θ)| ≤ τ(θ)

τ(θ)
σ2
j (θ)
|ȳj − yj(θ)| |resj(θ)| > τ(θ)

)

+
∂τ(θ)

∂θi

(
2

τ2(θ)
exp(−1

2τ
2(θ))

√
2πerf

(
τ(θ)√

2

)
+ 2

τ(θ)exp
(
−1

2τ
2(θ)

)
−

0 |resj(θ)| ≤ τ(θ)

|ȳj−yj(θ)|
σj(θ) − τ(θ) |resj(θ)| > τ(θ)

)]
.
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Table 3.1: Probability densities. The probability density functions for the Gaussian, Laplace, Huber, Cauchy and Student’s
t distribution are listed together with the parameters defining the distributions. The error function is denoted by erf and the
gamma function by Γ. Note that the distribution parameter σ has a different meaning for the different distributions and is not
comparable across these. This table has been modified from Table 1 from the author’s publication (Maier et al., 2017).

probability density p(ȳ|y,ϕ) distribution parameters ϕ

Gaussian 1√
2πσ

exp
(
−1

2

( ȳ−y
σ

)2)
standard deviation σ > 0

Laplace 1
2σ exp

(
− |ȳ−y|σ

)
scale σ > 0

Huber cHuber ·
{

exp
(
−1

2

( ȳ−y
σ

)2)
, | ȳ−yσ | ≤ τ

exp
(
−1

2

(
2τ | ȳ−yσ | − τ2

))
, | ȳ−yσ | > τ

scale σ > 0, tuning parameter τ > 0

with cHuber =
(√

2πσerf
(
τ√
2

)
+ 2σ

τ exp
(
− 1

2τ
2
))−1

Cauchy 1
πσ

σ2

(ȳ−y)2+σ2
scale σ > 0

Student’s t
Γ( ν+1

2 )
Γ( ν2 )

√
πνσ

(
1 + 1

ν

( ȳ−y
σ

)2)− ν+1
2

scale σ > 0, degrees of freedom ν > 0
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Under the assumption of independent Cauchy distributed measurement noise, the log-

likelihood function is given by

logLD(θ) =
∑
j

[
− log(π) + log(σj(θ))− log

((
ȳj − yj(θ)

)2
+ σ2

j (θ)
)]
, (3.5)

with scale σj(θ) > 0. The gradient of the log-likelihood for i = 1, . . . , nθ is given by

∂logLD(θ)

∂θi
=
∑
j

[(
1

σj(θ)
− 2

σj(θ)

(ȳj − yj(θ))2 + σ2
j (θ)

)
∂σj(θ)

∂θi
+

2
ȳj − yj(θ)

(ȳj − yj(θ))2 + σ2
j (θ)

∂yj(θ)

∂θi

]
.

Under the assumption of independent Student’s t distributed measurement noise, the

log-likelihood function is given by

logLD(θ) =
∑
j

[
log

 Γ
(
νj(θ)+1

2

)
√
νj(θ)π σj(θ) Γ

(
νj(θ)

2

)
−

νj(θ) + 1

2
log

(
1 +

1

νj(θ)

(
ȳj − yj(θ)

σj(θ)

)2
)]

,

(3.6)

with scale σj(θ) > 0 and degrees of freedom νj(θ) > 0. The gradient of the log-likelihood

for i = 1, . . . , nθ is given by

∂logLD(θ)

∂θi
=
∑
j

[
1

2

(
Ψ

(
νj(θ) + 1

2

)
−Ψ

(
νj(θ)

2

)
− log

(
1 +

(ȳj − yj(θ))2

νj(θ)σ2
j (θ)

)

− 1

νj(θ)
+

νj(θ) + 1

ν2
j (θ)σ2

j (θ)

(ȳj − yj(θ))2

1 + 1
νj(θ)

(ȳj−yj(θ))2

σ2
j (θ)

)
∂νj(θ)

∂θi

−

 1

σj(θ)
− νj(θ) + 1

1 + 1
νj(θ)

(ȳj−yj(θ))2

σ2
j (θ)

(ȳj − yj(θ))2

νj(θ)σ3
j (θ)

 ∂σj(θ)

∂θi

+
νj(θ) + 1

1 + 1
νj(θ)

(ȳj−yj(θ))2

σ2
j (θ)

1

νj(θ)

ȳj − yj(θ)

σ2
j (θ)

∂yj(θ)

∂θi

]
,

(3.7)

where Ψ denotes the digamma function, which is the logarithmic derivative of the gamma

function Γ. For ν = 1, the Student’s t distribution equals the Cauchy distribution, and

for ν =∞, it equals the Gaussian distribution.
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To obtain approximations for the Hessians of the distributions, it is often assumed that

the deviation between measurement and observable is small and can be neglected. For the

Gaussian, Cauchy and Student’s t distributions, thus, the terms comprising the second-

order sensitivities were neglected and approximations were obtained which only depend on

the first-order sensitivities. However, this assumption is not appropriate for the Laplace

and Huber distribution, since the terms including the second-order sensitivities have an

influence on the Hessian even for small deviations of measurement and observable. There-

fore, the Hessian requires the simulation of second-order sensitivities which slows down the

computation. Thus, we employed the interior-point algorithm of the MATLAB routine

fmincon, which uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to approx-

imate the Hessian (Fletcher and Powell, 1963; Goldfarb, 1970). The Hessian matrices can

be found in Appendix A.

3.1.2 Simulation example: Conversion reaction

To study the different distribution assumptions, we considered a simple conversion process,

which often occurs in biological systems (Figure 3.2A). It involves two biochemical species

A and B and the conversion between these species takes place with rate constants k1 and

k2. The ODEs describing this process are given by

ẋ1 = −k1x1 + k2x2 , x1(0) = 1 ,

ẋ2 = k1x1 − k2x2 , x2(0) = 0 ,
(3.8)
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Figure 3.2: Data and fits for different scenarios and distribution assumptions.
(A) Model of a conversion process of two species A and B. (B) The data points are
generated by simulating the system with Gaussian distributed noise and generating out-
liers according to the defined scenarios. The fits corresponding to the different distribution
assumptions, Gaussian, Laplace, Huber, Cauchy and Student’s t distributions are plotted
as lines. The true trajectories, which are noise- and outlier-free, are shown as gray lines.
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with x1 and x2 denoting the concentrations of A and B, respectively. We assumed that

only x2 was measured yielding y = s · x2. The parameter s was introduced as scaling

parameter to reflect the case of relative data. However, in this section it was set to 1 and

not estimated from the data.

We generated 103 artificial data sets for three outlier scenarios (Figure 3.2B):

(i) no outliers: no outliers were included in the data.

(ii) one data point at zero: the measured concentration at a certain time point tk is zero,

e.g., due to a missing label or entry. Consequently, we measured ȳj = 0. In practice

this might not be easy to spot due to background intensity and additional noise.

(iii) two data points interchanged : two data points in the data set were interchanged.

This could have occurred due to labeling or entry errors. In the case of several

observables (ny > 1), the modification was applied to all ny observables.

The data sets were generated for the dynamic parameters ψ = (k1, k2)T =
(
10-1.5, 10-1.5

)T
and Gaussian distributed measurement noise with standard deviation σ = 0.02. The dy-

namic parameters ψ were estimated from the data along with the distribution parameters

ϕ. For the dynamic parameters, we used the lower bound 10−3.5 and the upper bound 10.

For the scale parameters, σ, we used the lower bound 10−5 and the upper bound 1. For

the Huber distribution, the boundaries for τ were set to 10−1 and 105. For the degree of

freedom ν of the Student’s t distribution, we used boundaries such that it corresponds to

the Cauchy distribution for the lower bound 1 and is similar to the Gaussian distribution

for the upper bound 105. For optimization, we employed the MATLAB routine fmincon

interfaced by PESTO (Section 2.5). For the Gaussian, Cauchy and Student’s t distribu-

tions, we used the incorporated trust-region and for the Laplace and Huber distributions

the incorporated interior-point algorithm.

Evaluation of estimation results for different distribution assumptions

Parameter estimation using the assumption of Gaussian distributed measurement noise

allowed for the reconstruction of the systems trajectory in the absence of outliers (Figure

3.2B). However, if there were strongly deviating outliers, the fitted and the true trajec-

tory differed, implying estimation errors. For the heavier tailed distributions the resulted

trajectories were close to the true underlying trajectory of the system.

These findings were also reflected in the MSE for the parameter estimates of the dynamic

parameters (Section 2.3.4 and Figure 3.3A). If no outliers were present in the data, all
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methods yielded a comparable MSE for both dynamic parameters. In the presence of out-

liers, the MSE which was achieved assuming Gaussian noise was much higher. This implies

that the parameter estimates differ largely from the true parameters, which will result in

wrong predictions. The heavier tailed distributions were able to provide reliable estimates

of the parameters in the presence of outliers. Indeed, the MSE hardly increased, indicat-

ing that the influence of a small number of outliers could be compensated. Consequently,

robust estimation methods reduced the MSE for outlier-corrupted data.

Using the 103 data sets per scenario, we calculated the percentage of how often a distribu-

tion assumption achieved the lowest BIC. The model employing the Gaussian distribution

assumption was chosen for most of the no outliers data sets (Figure 3.3B). In the presence

of outliers, heavier tailed distributions were preferred over the Gaussian noise model and

model selection detected the presence of outliers in the data sets.

We found that for this simple example the convergence was comparable and above 75% for

most distributions (Figure 3.3C). Merely the optimization using the Huber distribution

yielded a slightly lower fraction of converged starts.

The mean time needed per start was similarly low for the Gaussian, Cauchy and Stu-

dent’s t distributions (Figure 3.3D). Only the Laplace and Huber distributions had a

higher computation time, since no good approximation of the Hessians based on first-

order sensitivities could be found. This verified that the use of robust methods did not

increase the computation time significantly.

To assess the influence of outliers on parameter CIs, we computed profile likelihoods

(Section 2.3.3). Based on these profile likelihoods, the CIs were computed for different

confidence levels (Figure 3.3E). We found that in the case of no outliers, all distribution

assumptions yielded similar CIs for parameter k1. The CIs computed using the Gaussian

distribution widened in the presence of outliers, yet not ensuring that the true parameter

was covered. Also for the Laplace and Huber distributions the CIs became wider, but

the true parameter remained covered. For the Cauchy and Student’s t distributions, we

observed that the CIs became even tighter, which is counter-intuitive as the information

content in the data should be decreased. The presence of outliers shifted the probability

mass often closer to the mode.

We evaluated the reliability of the CIs by determining the CR, which states how often the

true parameter ψtrue was covered by the CIs for all 103 generated data sets per scenario

(Section 2.3.4 and Figure 3.3F). Interestingly, the CR was lower than the confidence level

for most of the cases, indicating that the size of the CIs was too narrow and therefore
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Figure 3.3: Evaluation of optimization results for the outlier scenarios. (A) MSE for
the log10-transformed dynamic parameter k1. The circles indicate the MSE over all 103

data sets per scenario, while the error bars represent the 95% percentile bootstrap CIs.
(B) Model selection results using BIC. The percentage is given for how many times each
statistical model is chosen for the 103 data sets per scenario. (C) Average percentage
of converged starts over all data sets. (D) The mean computation time per optimizer
start and the corresponding standard error of mean. (E) Example CIs for one data set
per scenario (shown in Figure 3.2B), indicated by different bars for 80%, 90%, 95% and
99% from dark to light colors. The MLEs for the Gaussian, Laplace, Huber, Cauchy and
Student’s t distributions are displayed as vertical lines. The true parameter value for k1

is displayed as vertical grey lines. (F) CRs for parameter k1 for different confidence levels
considering all 103 data sets per outlier scenario. Lines in the upper part of the panels
indicate that the CI is too wide, lines in the lower part that it is too narrow. This figure
is a modified version of Figures 3 and 4 of the author’s publication (Maier et al., 2017).
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the uncertainty in the parameter estimates was underrated. The Laplace and Huber

distributions provided the best CR in the presence of outliers.

Sample size limitation of the Cauchy and Student’s t distributions

The performance of estimators often depends strongly on the sample size. Therefore, we

analyzed how different distributions perform for decreased sample sizes. To this end, we

varied the number of data points (nt = 10, 4, 3) for data sets of the conversion process

without outliers. For a lower number of data points, the model could fit a higher per-

centage of the data points exactly, i.e., up to numerical accuracy. For the full data sets

(nt = 10), the obtained residual distributions for all combined data sets fitted the corre-

sponding distributions (Figure 3.4A), visualized for the median scale parameters obtained

with parameter estimation (Figure 3.4B). The scale parameters for the Gaussian, Laplace

and Huber distributions did not become much smaller for lower numbers of data points.

However, the scale parameters of the Cauchy and Student’s t distributions were decreased

and thus the mass of the distribution was concentrated on the exactly fitted data points.

Other residuals were neglected, i.e., the model over-fitted single data points. For nt = 3

these scale parameters were even estimated at the lower bound defined as 10-10. Scale

parameters close to zero yielded residual distributions which did not reflect the variation

in the data.

For regression, Fernández and Steel (1999) suggest to provide a lower bound for the degrees

of freedom ν calculated with respect to the ratio of exactly fitted data points to other data

points, thereby avoiding the regions of likelihood for which the problem occurs (Jones and

Faddy, 2003; Taylor and Verbyla, 2004). However, such a restriction was not possible for

the Cauchy distribution, which should according to Fernández and Steel (1999), only be

used if less than half of the data points can be fitted exactly. In general, the Cauchy

and Student’s t distributions should be applied carefully if the model is too flexible and

over-fitting is to be expected.

We further used Laplace noise as a heavier tailed alternative to Gaussian noise. The

Laplace distribution did not have problems with scale parameters becoming too small,

like the Cauchy and Student’s t distributions, and showed better convergence with less

computation time than the Huber distribution.
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3.2 Hierarchical approach for calibrating ODE models on relative data

Experimental data often only provide information about the relative changes between con-

ditions. In the literature, two methods are employed to link relative data to mathematical

models: (i) evaluation of relative changes (Degasperi et al., 2017); and (ii) introduction of

scaling parameters (Raue et al., 2013). In (i), relative changes between conditions are com-

pared, and the differences between observed and simulated relative changes are minimized.

While this approach is intuitive and does not alter the dimension of the fitting problem,

the noise distribution is non-trivial and the residuals are not uncorrelated (Thomaseth

and Radde, 2016), which is often disregarded (see, e.g., (Degasperi et al., 2017)). This

can in principle result in incorrect confidence intervals. In (ii), scaling parameters are

introduced to replace the calibration curves. The scaling parameters are often unknown

and have to be inferred along with the remaining parameters of the model. While this

increases the dimensionality of the optimization problem (see (Bachmann et al., 2011)

for an example in which the number of parameters is doubled), the noise distribution is

simple and the confidence intervals are consistent. To address the dimensionality increase,

Weber et al. (2011) have proposed an approach for estimating the conditionally optimal

scaling parameters given the dynamic parameters. This approach eliminates the scaling

parameters, however, it is only applicable in the special case of additive Gaussian noise

with known standard deviations. Estimating the noise parameters instead of providing

the standard deviations has been shown to yield a statistically more accurate assessment

of the model (Raue et al., 2013). Unknown noise parameters and outlier-corrupted data

(Section 3.1) – as found in many applications – cannot be handled by the approach of

Weber et al. (2011).

Here, we propose a hierarchical optimization approach for estimating the parameters for

models which include scaling and noise parameters. Our approach restructures the opti-

mization problem into an inner and outer subproblem. These subproblems possess lower

dimensions than the original optimization problem, and the inner problem can often be

solved analytically. Furthermore, the hierarchical approach can also be employed for

optimization-based profile calculation (Section 2.3.3). We evaluate accuracy, robustness,

and computational efficiency of the hierarchical approach by studying three signaling path-

ways.

The scaling parameters are usually incorporated in h, which is defined in (2.5). In this

section, we factor-out the scaling parameters from the observable function h and write

yj(θ) = sj · hj(ψ) . (3.9)
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Often, the scaling and noise parameters are assumed to not vary over time and thus the

corresponding measured data points share these parameters. Also, these parameter might

be shared across observables or experiments. We define Is,1, . . . , Is,ns as the index sets

for the measured data points which share the same scaling parameter, and Iσ,1, . . . , Iσ,nσ

as index sets for the measured data points which share the same noise parameter. This

means that sj = sjs ,∀j ∈ Is,js and σj = σjσ , ∀j ∈ Iσ,jσ .

For the standard approach, the dynamic parameters ψ, the scaling parameters s and the

noise parameters σ are estimated simultaneously. This optimization problem has dimen-

sion equal to number of dynamic parameters nψ + number of scaling parameters ns +

number of noise parameters nσ. As described in Section 2.3, this optimization problem can

be solved using multi-start local optimization. For each iteration, the objective function

and its gradient are computed. If the objective function for these parameters fulfills cer-

tain criteria, e.g., the norm of the gradient is below a certain threshold, the optimization is

stopped, otherwise the parameter is updated and the procedure is continued (Figure 3.5A).

Since the optimization problem (2.19) often possess a large number of optimization vari-

ables and can be difficult to solve, we exploited its structure. Instead of solving simultane-

ously for ψ, s, and σ, we considered the hierarchical optimization problem (Figure 3.5B-D)

min
ψ

J(ψ, ŝ(ψ), σ̂(ψ)) (3.10)

with (ŝ, σ̂) = argmin
s,σ

J(ψ, s,σ) . (3.11)

The inner problem (3.11) provides the optimal values ŝ(ψ) and σ̂(ψ) of s and σ given ψ.

These optimal values are used in the outer subproblem to determine the optimal value for

ψ denoted by ψ̂. It is apparent that a locally optimal point of the hierarchical optimization

problem (3.10, 3.11) is also locally optimal for the standard optimization problem (2.19),

given the same parameters boundaries for both problems. However, starting at the same

initial values, the standard and hierarchical optimization might converge to different local

optima, since the basin of attraction potentially differs.

The formulation (3.10) may appear more involved, however, it possesses several properties

which can be advantageous:

(i) The individual dimensions of the inner and outer subproblems (3.10, 3.11) are lower

than the dimension of the original problem (2.19).

(ii) The optimization of the inner subproblem does not require the repeated numerical

simulation of the ODE model.
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Figure 3.5: Visualization of standard and hierarchical optimization schemes. (A) Local
optimization in the standard approach with parameters θ = (ψ, s,σ). (B) Outer local
optimization in the hierarchical approach with parameters ψ. (C,D) Inner (local) opti-
mization in the hierarchical approach to find the optimal scaling and noise parameters, ŝ
and σ̂, for given dynamic parameters ψ. (C) Iterative local optimization to determine ŝ
and σ̂. This does not require the numerical simulation of the model. (D) Calculating op-
timal parameters ŝ and σ̂ using analytic expressions for common noise distributions. This
figure is a modified version of Figure 1 of the author’s publication (Loos et al., 2018a).

(iii) For several noise models, e.g., Gaussian (3.2) and Laplace noise (3.3), the inner

subproblem can be solved analytically.

If an analytical solution for the inner subproblem is available, the scaling parameters s

and also the noise parameters σ can be calculated directly, and the number of parameters

that need to be optimized iteratively reduces to nψ, which corresponds to alternative 2

in Figure 3.5D. In the following, the analytic expressions for scaling and noise parameters

under Gaussian and Laplace noise are derived.

3.2.1 Analytical expressions for scaling and noise parameters for Gaussian and

Laplace noise

The scaling and noise parameters for Gaussian noise were computed analytically. To

derive the analytic expression for the optimal parameters, we exploited that the negative
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log-likelihood function for Gaussian noise,

J(ψ, s,σ) =
1

2

∑
j

[
log(2πσ2

j ) +

(
ȳj − sj · hj(ψ)

σj

)2
]
, (3.12)

is continuously differentiable, and that the gradient of J at a local minimum is zero. For

the inner subproblem this implies

∇sJ(ψ, s,σ)
∣∣
ŝ,σ̂

= 0 and ∇σJ(ψ, s,σ)
∣∣
ŝ,σ̂

= 0 . (3.13)

The derivative of the negative log-likelihood function with respect to a scaling parameter

sjs reads

∂J(ψ, s,σ)

∂sjs
=

1

2

∑
j∈Is,js

2

σ2
j

(ȳj − sjs · hj(ψ)) · (−hj(ψ))
!

= 0 ,

which was set to zero to obtain the analytic expression for the optimal scaling parameter

ŝjs . If ∃j ∈ Is,js : hj(ψ) 6= 0, the optimal scaling parameter is

ŝjs(ψ) =

∑
j∈Is,js ȳj · hj(ψ) · 1

σ2
j∑

j∈Is,js hj(ψ)2 · 1
σ2
j

. (3.14)

It does not depend on the noise parameter if the following condition is fulfilled:

∀js ∃jσ : Is,js ⊂ Iσ,jσ . (3.15)

This means that all observations which share a scaling parameters also need to share the

noise parameters. This is a plausible restriction and should not pose a problem. It is

∂2J(ψ, s,σ)

∂s2
js

=
∑
j∈Is,js

(
hj(ψ)

σj

)2

> 0 ,

which yields that ŝjs(ψ) is the unique optimal scaling parameter which minimizes (3.12)

for a given set of dynamic parameters ψ. If ∀j ∈ Is,js : hj(ψ) = 0, the scaling parameter

does not have an effect on the objective function.
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Given the optimal scaling parameter at each observation, ŝj = ŝjs if j ∈ Is,js , it needs to

hold for the noise parameter:

∂J(ψ, ŝ(ψ),σ(ψ))

∂σjσ
=

1

σjσ

∑
j∈Iσ,jσ

[
1−

(
ȳj − ŝj(ψ) · hj(ψ)

σjσ

)2
]

!
= 0

⇒ σ̂2
jσ(ψ) =

1

|Iσ,jσ |
∑

j∈Iσ,jσ

(ȳj − ŝj(ψ) · hj(ψ))2 , (3.16)

with |Iσ,jσ | denoting the cardinality of the index set. Since

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂σ2
jσ

=
∑

j∈Iσ,jσ

3 (ȳj − ŝj(ψ) · hj(ψ))2 − σ̂2
jσ

(ψ)

σ̂4
jσ

(ψ)

=
1

σ̂4
jσ

(ψ)

(
3
∑

j∈Iσ,jσ

[
(ȳj − ŝj(ψ) · hj(ψ))2

]
︸ ︷︷ ︸

σ̂2
jσ

(ψ)·|Iσ,jσ |

−σ̂2
jσ(ψ) · |Iσ,jσ |

)

=
1

σ̂4
jσ

(ψ)

(
|Iσ,jσ | ·

(
3σ̂2

jσ(ψ)− σ̂2
jσ(ψ)

) )
=

2|Iσ,jσ |
σ̂2
jσ

(ψ)
> 0,

(3.17)

the noise parameter σ̂2
jσ

is the unique parameter minimizing (3.12). Consistent with the

structure of the hierarchical problem (3.10), both equations for the optimal parameters

(3.14, 3.16) depend only on the dynamic parameters ψ.

The gradient used for the outer optimization (3.10) for i = 1, . . . , nψ is given by

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi
= −

∑
j

ȳj − ŝj(ψ) · hj(ψ)

σ̂2
j (ψ)

· ŝj(ψ) · ∂hj(ψ)

∂ψi
,

for which ∂hj(ψ)/∂ψi is obtained by forward sensitivity equations. The Hessian with

respect to the dynamic parameters for i, l = 1, . . . , nψ is

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi∂ψl
=
∑
j

[(
ŝj(ψ)

σ̂j(ψ)

)2

· ∂hj(ψ)

∂ψi
· ∂hj(ψ)

∂ψl
−

ȳj − ŝj(ψ) · hj(ψ)

σ̂2
j (ψ)

· ŝj(ψ) · ∂
2hj(ψ)

∂ψi∂ψl︸ ︷︷ ︸
(∗)

]
.
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We implemented an approximation of the Hessian neglecting the terms (∗) that include

second-order sensitivities.

For Laplace noise the negative log-likelihood function is

J(ψ, s,σ) =
∑
j

[
log(2σj) +

|ȳj − sj · hj(ψ)|
σj

]
. (3.18)

This function is continuous, but not continuously differentiable. In this case, a sufficient

condition for a local minimum is that the right limit value of the derivative is negative and

the left limit value is positive. The derivative of (3.18) with respect to sjs can be written

as

∂J(ψ, s,σ)

∂sjs
= −

∑
j∈Is,js

1

σj

(
|hj(ψ)| · sgn

(
ȳj

hj(ψ)
− sjs

))
.

As σj is positive and, if (3.15) holds, it is the same ∀j ∈ Is,js , the locations of kinks in

the objective function and the corresponding jumps in the derivative are independent of
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σj (Figure 3.6). Accordingly, the problem of finding ŝjs(ψ) reduces to checking the signs

of the derivative before and after the jump points

sj(ψ) =
ȳj

hj(ψ)
, j ∈ Is,js . (3.19)

We sorted sj(ψ) in increasing order and evaluated the derivatives at the midpoints between

adjacent jumps, a procedure which is highly efficient as the ODE model does not have to

be simulated.

To obtain the optimal noise parameter, we require

∂J(ψ, ŝ(ψ),σ)

∂σjσ
=

1

σjσ

∑
j∈Iσ,jσ

(
1− |ȳj − ŝj(ψ) · hj(ψ)|

σjσ

)
!

= 0. (3.20)

This yields

σ̂jσ(ψ) = |Iσ,jσ |−1
∑

j∈Iσ,jσ

|ȳj − ŝj(ψ) · hj(ψ)| . (3.21)

With

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂σ2
jσ

=
1

σ̂jσ(ψ)2

∑
j∈Iσ,jσ

(
2 · |ȳj − ŝj(ψ) · hj(ψ)|

σ̂jσ(ψ)
− 1

)

=
1

σ̂jσ(ψ)2

−|Iσ,jσ |+ 2

σ̂jσ(ψ)

∑
j∈Iσ,jσ

|ȳj − ŝj(ψ) · hj(ψ)|


=
|Iσ,jσ |
σ̂jσ(ψ)2

> 0 ,

we obtained that (3.21) minimizes (3.18).

The gradient used for optimization of the outer subproblem for i = 1, . . . , nψ is given by

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi
= −

∑
j

[
sgn (ȳj − ŝj(ψ) · hj(ψ))

σ̂j(ψ)
· ŝj(ψ) · ∂hj(ψ)

∂ψi
+

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ŝj(ψ)︸ ︷︷ ︸
(∗)

∂ŝj(ψ)

∂ψi

]
,

for which ∂hj(ψ)/∂ψi is obtained by forward sensitivity equations and the term (∗) is

defined as the right limit value of the derivative.
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3.2.2 Analytical expressions for log-transformed observables

In many studies (e.g., Bachmann et al. (2011)), observation functions of the form log(ȳj) =

log(sj · hj(ψ)) + εj are used. In the following, we provide the analytical expressions for

the optimal values of the scaling and measurement noise parameters for log-transformed

observables and measurement data.

For Gaussian noise, the objective function for the comparison on the logarithmic scale is

given by

J(ψ, s,σ) =
1

2

∑
j

[
log(2πσj

2) +

(
log(ȳj)− log (sj · hj(ψ))

σj

)2
]
. (3.22)

Thus, the derivative with respect to the scaling parameters is

∂J(ψ, s,σ)

∂sjs
=
∑
j∈Is,js

log(sjs) + log(hj(ψ))− log(ȳj)

sjs · σj2
.

This yields the equation for the optimal scaling parameters

ŝjs(ψ) = exp

∑j∈Is,js
log(ȳj)−log(hj(ψ))

σ2
j

|Is,js |

 , (3.23)

which is independent of the noise parameter if (3.15) is fulfilled. The second-order deriva-

tive is

∂2J(ψ, ŝ(ψ),σ

∂s2
js

=
1

σ2
j · ŝjs(ψ)2

∑
j∈Is,js

[
1 + log(ȳj)− log(hj(ψ))− log(ŝjs(ψ))

]
⇒ |Is,js | − |Is,js | · log(ŝjs(ψ)) +

∑
j∈Is,js

[
log(ȳj)− log(hj(ψ))

]
= |Is,js | > 0 ,

and thus (3.23) minimizes (3.22).

Using

∂J(ψ, ŝ(ψ),σ)

∂σjσ
=

1

σjσ
·
∑

j∈Iσ,jσ

(
1− (log(ȳj)− log (ŝj(ψ) · hj(ψ)))2

σ2
jσ

)
,
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we obtained the optimal noise parameter

σ̂2
jσ(ψ) = |Iσ,jσ |−1

∑
j∈Iσ,jσ

(log (ȳj)− log (ŝj (ψ) · hj(ψ)))2 . (3.24)

Similarly as in (3.17)

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂σ2
jσ

=
2|Iσ,jσ |
σ̂2
jσ

(ψ)
> 0 .

The gradient used for the outer optimization problem for i = 1, . . . , nψ is given by

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi
= −

∑
j

log(ȳj)− log(ŝj(ψ) · hj(ψ))

σ̂2
j (ψ)

· 1

hj(ψ)
· ∂hj(ψ)

∂ψi
.

The Hessian with respect to the dynamic parameters for i, l = 1, . . . , nψ is

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi∂ψl
=
∑
j

[(
1 + log(ȳj)− log(ŝj(ψ) · hj(ψ))

σ̂2
j (ψ) · hj(ψ)2

· ∂hj(ψ)

∂ψi
· ∂hj(ψ)

∂ψl

− (log(ȳj)− log (ŝj (ψ) · hj(ψ)))

σ̂2
j (ψ) · hj(ψ)

· ∂
2hj(ψ)

∂ψi∂ψl︸ ︷︷ ︸
(∗)

)]
.

An approximation can again be obtained by neglecting the terms (∗) that include second-

order sensitivities.

If the data and simulation are compared on a log10 scale, the optimal scaling parameters

are the same as when using the natural logarithm (3.23). For the optimal noise parameters

the natural logarithm is replaced by log10 in (3.24).

For the Laplace noise including the logarithmic comparison,

J(ψ, s,σ) =
∑
j

[
log(2σj) +

|log(ȳj)− log(sj · hj(ψ)|
σj

]
,

the same procedure can be applied for the logarithmic scale as for the linear scale, with the

same set of candidate scaling parameters (3.19) as for the linear scale. However, one has

to pay attention to adapt the derivative properly, for which the change of sign is checked.
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For the calculation of the optimal noise parameter, we used

∂J(ψ, ŝ(ψ),σ)

∂σjσ
=

1

σjσ

∑
j∈Iσ,jσ

(
1− | log(ȳj)− log(ŝj(ψ) · hj(ψ))|

σjσ

)
,

and obtained

σ̂jσ(ψ) = |Iσ,jσ |−1
∑

j∈Iσ,jσ

|log(ȳj)− log(ŝj(ψ) · hj(ψ))| .

It also holds that

∂2J(ψ, ŝ(ψ), σ̂(ψ))

∂σ2
jσ

=
|Iσ,jσ |
σ̂2
jσ

(ψ)
> 0 .

The gradient used for the outer optimization for i = 1, . . . , nψ is given by

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ψi
= −

∑
j

[
sgn (log(ȳj)− log(ŝj(ψ) · hj(ψ)))

σ̂j(ψ)
· 1

hj(ψ)
· ∂hj(ψ)

∂ψi
+

∂J(ψ, ŝ(ψ), σ̂(ψ))

∂ŝj(ψ)︸ ︷︷ ︸
(∗)

∂ŝj(ψ)

∂ψi

]
,

for which ∂hj(ψ)/∂ψi is obtained by forward sensitivity equations and the term (∗) is

defined as the right limit value of the derivative.

In summary, we reformulated the original optimization problem (2.19) as a hierarchical

optimization problem (3.10, 3.11), and provided an analytic solution to the inner subprob-

lem (3.11) for several relevant cases. Using the analytic solutions, the dynamic parameters

can be inferred by solving a lower-dimensional optimization problem.

3.2.3 Simulation example: Conversion reaction

We compared the standard and hierarchical approach for optimization for the example

of a conversion reaction (see (3.8) in Section 3.1.2) in the case of no outliers. Here, we

assumed that both states could be measured up to some proportionality constant, yielding

y = (y1, y2) = (s1x1, s2x2) (Figure 3.7A). Both observables had different noise levels

σ1 = 0.02, σ2 = 0.01. This yielded six parameters for the standard optimization and two

parameters for the hierarchical optimization (Figure 3.7B). The data was generated with

Gaussian noise for the same parameter values as in Section 3.1.2 and with s1 = s2 = 1.
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Figure 3.7: Comparison of the standard and hierarchical approach for optimization
for the conversion reaction. (A) Simulated data and fitted trajectories employing Gaus-
sian and Laplace noise. (B) Number of optimization variables in the outer subproblem.
(C) Percentage of converged optimization starts. (D) Number of iterations for the opti-
mization starts. (E) Converged starts per minute.

In this section, we employed the interior-point algorithm of fmincon for both distribu-

tion assumptions and optimization approaches. Estimating both noise distributions with

the standard and the hierarchical approach for optimization showed that for this simple

example, both approach achieved a high convergence rate (Figure 3.7C). The hierarchi-

cal approach converged for all optimization starts to the same optimal objective function

value. To do so, it required less iterations (Figure 3.7D) and overall outperformed the stan-

dard approach in terms of optimization performance, which was measured as converged

starts per minute (Figure 3.7E).

3.3 Evaluation of the methods for three signaling models

To study the proposed methods, the heavier tailed Laplace distribution (Section 3.1)

and the hierarchical approach for optimization (Section 3.2), we calibrated mathematical

models of signaling on published experimental data. In the following, we give a brief

introduction to these models of the JAK-STAT (Bachmann et al., 2011; Swameye et al.,

2003) and the RAF/MEK/ERK signaling pathway (Fiedler et al., 2016).
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As first application example, referred to as JAK-STAT signaling I, we considered the

model of Epo-induced JAK-STAT signaling introduced by Swameye et al. (2003) (Fig-

ure 3.8A). Epo yields the phosphorylation of signal transducer and activator of transcrip-

tion 5 (STAT5), which dimerizes, enters the nucleus to trigger the transcription of target

genes, gets dephosphorylated and is transported to the cytoplasm. We implemented the

model which describes the phosphorylated Epo receptor concentration as a time-dependent

spline (Schelker et al., 2012). The model parameters were estimated using immunoblotting

data for the phosphorylated Epo receptor (pEpoR), phosphorylated STAT5 (pSTAT5) and

the total amount of STAT5 in the cytoplasm (tSTAT5) (Figure 3.8B). In total 46 data

points were available for 16 different time points. Since immunoblotting only provides

relative data, the scaling parameters for the observables needed to be estimated from the

data. As proposed by Schelker et al. (2012), the scaling parameter for pEpoR was fixed

to avoid structural non-identifiabilities (Raue et al., 2009). The model with the reduced

parameter vector is structurally identifiable. This yielded in total 16 parameters, which

comprise nψ = 11 dynamic parameters, ns = 2 scaling parameters and nσ = 3 noise

parameters.

The second application example is the model of JAK-STAT signaling II introduced by

Bachmann et al. (2011). This model provides more details compared to the previous

one. It includes, for instance, gene expression of cytokine-inducible SH2-containing pro-

tein (CIS) and suppressor of cytokine signaling 3 (SOCS3), and possesses more state

variables and parameters (Figure 3.8C). The model parameters were estimated using 541

data points collected by immunoblotting, qRT-PCR and quantitative mass spectrometry

(Figure 3.8D). To model the observables, Bachmann et al. (2011) used ns = 43 scaling

parameters, nσ = 11 noise parameters and nψ = 58 dynamic parameters yielding in total

112 parameters. Some scaling and noise parameters were shared between experiments

and some were shared between observables. For this model, most of the observables were

compared at the log10 scale.

The third application example we considered is the model of RAF/MEK/ERK signaling

introduced by Fiedler et al. (2016). The model describes the phosphorylation cascade

and a negative feedback of phosphorylated ERK on RAF phosphorylation (Figure 3.8).

Fiedler et al. (2016) collected Western blot data for HeLa cells for two observables,

phosphorylated MEK, and phosphorylated ERK, with four replicates at seven time points

giving 72 data points (Figure 3.8F,G). Each observable and replicate was assumed to have

different scaling and noise parameters, yielding 16 additional parameters and in total 28

parameters in the standard approach compared to nψ = 12 in the hierarchical approach.
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Figure 3.8: Models and experimental data. Figure caption on next page.
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Figure 3.8: Models and experimental data. (A,B) JAK-STAT signaling I. (A) Illustration
of the model according to Swameye et al. (2003). Arrows represent biochemical reactions,
and the observables of the model used are highlighted by boxes. (B) Experimental data
and fitted trajectories for the best parameter found with multi-start local optimization
with 100 starts. The results are shown for the standard (dotted lines) and hierarchical
(solid lines) approach for optimization for Gaussian and Laplace noise. (C,D) JAK-STAT
signaling II. (C) Illustration of the model according to Bachmann et al. (2011). (D) Ex-
perimental data and fitted trajectories for the best parameter found with multi-start local
optimization for 100 starts. 33 out of 541 data points are shown. (E-G) RAF/MEK/ERK
signaling. (E) Illustration of the model according to Fiedler et al. (2016). (F,G) Exper-
imental data and fitted trajectories for the best parameter found with multi-start local
optimization for 500 and 1000 starts for Gaussian and Laplace noise, respectively. Dif-
ferent markers indicate the different blots. The data is scaled according to the estimated
scaling parameters, yielding different visualizations for different parameters, as obtained
with the Gaussian and the Laplace noise assumption. (F) Fitted trajectories for Gaussian
noise for the standard (dotted line) and hierarchical (solid line) approach for optimization.
(G) Fitted trajectories for Laplace noise. This figure and its legend is a modified version
of Figure 3 of the author’s publication (Loos et al., 2018a).

3.3.1 Comparison of standard and hierarchical approach for Gaussian and Laplace

measurement noise

We performed parameter estimation for the application examples using the standard and

the hierarchical approach. For each example, the case of Gaussian and Laplace noise was

considered.

The trajectories of the optimizer for the dynamic parameters differed between the standard

and the hierarchical approach (Figure 3.9). For the example shown in Figure 3.9, the

hierarchical approach needed less than half of the iterations as the standard approach.

The standard approach needed 50 iterations to reach the same objective function value

the hierarchical approach reached after already two iterations. Both approaches, however,

yielded the same dynamic, scaling and noise parameter values. This was true for these

particular runs, but more generally also for multi-start optimization and other global

optimization methods under the assumption of parameter identifiability.

As the standard and hierarchical approaches should in principle be able to achieve the same

fit, we first studied the agreement of trajectories for the optimal parameters. We found

that they coincide for the JAK-STAT models I and II, for both noise distributions, and

the RAF/MEK/ERK for Gaussian noise. This indicated that the hierarchical approach

was able to find the same optimal likelihood value as the standard approach. Also the

best likelihood values which were found by the two approaches were the same. For the
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RAF/MEK/ERK model with the assumption of Laplace distributed measurement noise,

the fitted trajectories between the experimental data slightly deviated (Figure 3.8F), which

could be explained by convergence issues and broad confidence intervals of the parameters

(Figure 3.11C,D). As expected, there were differences between the results obtained with

Gaussian and Laplace noise, which is visible in the fitted trajectories and the corresponding

likelihood values. For all models, the Laplace noise yielded a better BIC, however, only for

JAK-STAT model II and RAF/MEK/ERK the difference was substantial (Figure 3.10B).

The application examples varied with respect to the total number of parameters and the

number of parameters which correspond to scaling or noise parameters (Figure 3.10A).

While for the JAK-STAT model I only five out of 16 parameters could be optimized

analytically, for the JAK-STAT model II almost half of the parameters correspond to scal-

ing or noise parameters. Interestingly, even when the dimension of the outer optimization

problem was only reduced by few parameters by solving the inner problem analytically, we

observed a substantial increase of the percentage of converged multi-starts (Figure 3.10C).

We found that the proposed hierarchical approach consistently achieved a higher fraction

of converged starts than the standard approach. Local optimization using the hierar-
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Figure 3.9: Optimization paths for JAK-STAT signaling I. (A) Objective function values
and (B) parameter values at each optimization step. For a detailed description of the
parameters p1, p2, . . . , offsetpSTAT, we refer to Schelker et al. (2012). The trajectories for
the standard approach are shown as solid lines and for the hierarchical approach as dashed
lines. This figure is adapted from Figure S2 of the author’s publication (Loos et al., 2018a).
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et al., 2018a).

chical approach converged on average in 29.3% of the runs while the standard approach

converged on average in 18.4% of the runs.

We found that on average, the computation time per start was lower for the hierarchical

approach than for the standard approach (Figure 3.10D). The hierarchical approach was

faster than the standard approach for a high fraction of the starts. In combination with

the improved convergence rate, this resulted in a substantially reduced computation time

per converged start, i.e., a start which reached the minimal value observed across all starts

(Figure 3.10E). Given a fixed computational budget, the hierarchical approach achieved
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on average 5.06 times more optimization runs which reached the best objective function

values than the standard approach. The expected improvement in terms of CPU time per

converged start when using the hierarchical approach was on average 3.4 · 103, 5.8 · 102,

and 6.5 · 104 seconds for JAK-STAT I, JAK-STAT II, and RAF/MEK/ERK, respectively.

3.3.2 Profile likelihood-based uncertainty analysis employing hierarchical optimization

Employing the hierarchical approach for optimization for the calculation of the profile

likelihood (2.25), we obtain

PL(ψi) = exp

(
−min
ψl 6=i

J(ψ, ŝ(ψ), σ̂(ψ))

)
,

with (ŝ(ψ), σ̂(ψ)) = argmin
s,σ

J(ψ, s,σ).

The profile likelihoods with the hierarchical approach are the same as for the standard

approach if the scaling and noise parameters are unconstrained, since the profile comprises

only objective function values of optimal scaling and noise parameter. As shown before,

the optimal values are the same for the standard and the hierarchical approach and also

the objective function values and the resulting profile likelihoods are the same. If the

gradient in the standard approach is zero, also the gradient in the hierarchical approach

is zero, because it is a part of the gradient of the standard approach.

To compare the hierarchical and standard approaches for profiling, we used higher upper

boundaries than used for optimization for the scaling and noise parameters in the standard

approach. Employing the standard and the hierarchical approach within the routine for the

profile likelihood calculation showed that the profiles coincide for the Gaussian distribution

for JAK-STAT model I (Figure 3.11A). For RAF/MEK/ERK signaling, the standard

approach underestimated the profiles due to convergence problems during optimization

(Figure 3.11C). The profiles lay under the profiles calculated by the hierarchical approach.

A similar problem has been observed by Stapor et al. (2018a) when using only first-

order derivative information. Interestingly, the improved convergence of the hierarchical

approach allowed to calculate the profiles even without the employment of second-order

derivative information as proposed by Stapor et al. (2018a). The resulting profiles were

also in good agreement with the profiles calculated by Stapor et al. (2018a), showing again

also numerically that the identifiability of the model is not influenced by the use of the

hierarchical approach. For profiling, we employed the trust-region and the interior-point

algorithm of fmincon for JAK-STAT model I and RAF/MEK/ERK, respectively. These

algorithms each provided more reliable results for the respective model.
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Figure 3.11: Profile likelihoods for (A,B) JAK-STAT signaling I and (C,D)
RAF/MEK/ERK signaling for (A,C) Gaussian and (B,D) Laplace noise. This figure is
adapted from Figures S4 and S8 of the author’s publication (Loos et al., 2018a). For
a detailed description of the parameters p1, . . . , offsetpSTAT of JAK-STAT signaling I,
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While optimization worked well for Laplace noise, the profile calculation for the models

considered here showed difficulties, especially when using the standard approach (Fig-

ure 3.11B&D). Profile calculation for Laplace noise with the standard method failed to

determine the true profile. Because of convergence problems, the profile dropped too

early (as visible from the comparison of the standard and hierarchical approaches) and

therefore underestimated the uncertainty. This demonstrates the relevance of the hierar-

chical approach. Further analysis and method development is required to enable a robust

profile calculation with Laplace noise. However, employing the hierarchical approach for

optimization is already a substantial improvement.

In summary, the application of our hierarchical approach to parameter estimation from

relative data to the models showed consistently that our approach yielded parameter

estimates of the same quality as the standard method, while achieving better convergence

and reducing the computation time substantially. More reliable results were also observed

when employing the optimization approach within profile likelihood-based uncertainty

analysis.

3.4 Application example: Modeling the kinetics of histone H3 methylation

The evaluation of the methods proposed in Sections 3.1 and 3.2 is complemented by its

application in an ongoing research project about histone methylation dynamics. The core

of the nucleosome around which the DNA is wrapped consists of different histone proteins,

H2A, H2B, H3 and H4. These can possess post-translational modifications (PTMs) at their

N-terminal tail, at which the amino acids can be, e.g., methylated, acetylated, phospho-

rylated or ubiquinated. PTMs, for example, change DNA accessibility and thus play an

important role in epigenetic gene regulation (Kouzarides, 2007; Orkin and Hochedlinger,

2011). Specific modifications at certain sites of the histone tails are associated with differ-

ent functions: H3K27me3, i.e., trimethylation of lysine 27 of histone H3, is known to have a

repressive function of transcription (Ferrari et al., 2014), while H3K36me3 has an activat-

ing function (Wagner and Carpenter, 2012). Methylation modifications are catalyzed by a

group of enzymes called methyltransferases. Deregulation of methyltransferases thus yields

epigenetic deregulation, which is often found in cancer cells. For example, the methyltrans-

ferase EZH2 (enhancer of zeste homolog 2), which is responsible for H3K27me3, is known

to be overexpressed in many forms of cancer (Kim and Roberts, 2016). In a proliferating

cell population, PTMs are diluted by continuous chromatin replication. Histones which

are newly integrated into the chromatin thus need to restore the PTMs. However, the

mechanisms that underlie PTM inheritance and restoration, and in particular the influ-
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ence of the parental histones are so far not well understood and remain to be studied in

detail.

3.4.1 Experimental data

Our experimental collaboration partners collected quantitative data of H3 methylation dy-

namics at K27 and K36 in mouse embryonic stem cells (mESCs) using triple-SILAC (stable

isotope labeling with amino acids in cell culture) mass spectrometry. In triple-SILAC cells

are cultured in three different media that contain different stable isotopes of amino acids

(Figure 3.12A). We used labeled arginine (R) and lysine (K), which are incorporated into

the proliferating cells. In particular, we used R0K0, R6K4 and R10K8, with changes at

−3 and 0 h. Based on these isotopes, the peptides could then be distinguished in the mass

spectrometer and assigned to the corresponding medium. This allowed us to track the his-

tone modifications during DNA replication and to distinguish histones newly incorporated

into the chromatin at different time points of the experiment. Histones which were incor-

porated on the different media belong to different generations of histones. The abundance

of individual modifications was measured using LC-MSMS (liquid chromatography-mass

spectrometry/mass spectrometry) which does not provide spatial information. It provides

the relative abundance of each modification in a generation, i.e., all modifications in a

generation at each time point sum up to 100%. We obtained data for two different sce-

narios (Figure 3.12A): Untreated cells (Duntr) and inhibition of EZH2 (Dinh) for which the

inhibitor is added when changing the culture medium for the first time.

We were in particular interested in the modifications at K27 and K36, which both can

be un-, mono-, di- or trimethylated, denoted by me0, me1, me2 and me3, respectively.

For each histone generation, the relative abundances of 15 combinations of methylations

were measured – excluding K27me3K36me3 (both lysines trimethylated) since it was not

detected in any of the experiments. This yields in total 45 observables. In the follow-

ing, we introduce the mathematical models which we used to describe these observables

(Figure 3.12B,C) and fitted to the experimental data (Figure 3.12D).

3.4.2 Standard model

The first model we considered consists of 45 state variables, with 15 state variables for each

generation. It describes the change in modifications due to methylation and demethylation

as well as dilution, which occurs when the cells divide and new, unmodified histones are

incorporated. This model is similar to the one proposed by Zheng et al. (2012). To obtain
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the model for the relative abundance of modifications, we first derived the model for the

absolute number of histone modifications.

The ODE system for the absolute number of histone modifications x̃g = (x̃g,00, . . . , x̃g,23)

reads for generation g

˙̃xg,ij = χ{(i,j)=(0,0)}(i, j) cg(t)N

+ χ{i>0∧(i,j)6=(3,3)}(i, j) ki−1 j→i j x̃g,i−1 j

+ χ{j>0∧(i,j)6=(3,3)}(i, j) kij−1→ij x̃g,ij−1

− χ{i<3∧(i,j)6=(2,3)}(i, j) kij→i+1 j x̃g,ij

− χ{j<3∧(i,j)6=(3,2)}(i, j) kij→ij+1 x̃g,ij

+ χ{i<3∧(i,j)6=(2,3)}(i, j) dK27,i+1 x̃g,i+1 j

+ χ{j<3∧(i,j)6=(3,2)}(i, j) dK36,j+1 x̃g,ij+1

− χ{i>0∧(i,j)6=(3,3)}(i, j) dK27,i x̃g,ij

− χ{j>0∧(i,j)6=(3,3)}(i, j) dK36,j x̃g,ij ,

Ṅ = cN .

(3.25)

The full equations can be found in Appendix B. The indicator function is denoted by χ,

i denotes the number of methyl groups at K27, j the number of methyl groups at K36,

N(t) = exp(c(t − t0))N0 the total number of histone tails and N(t0) = N0 the number

of histone tails at the beginning of the experiment (Figure 3.12B). Furthermore, dK27,i is

the rate constant for demethylation, i.e., reducing the number of methyl groups at K27

from i to i − 1. The special cases with (i, j) 6= (2, 3) and (i, j) 6= (3, 2) arise because we

did not observe any K27me3K36me3 methylations. The newly incorporated histones are

unmodified and belong to the generation of the corresponding current culture medium:

cg(t) =


χ{t<−3 h}(t) · c , g = 1 ,

χ{−3 h≤t<0 h}(t) · c , g = 2 ,

χ{t≥0 h}(t) · c , g = 3 .

(3.26)

Here, c > 0 represents the cell division rate and is multiplied with the number of histone

tails in (3.25), because the number of histone tails is proportional to the number of cells

and thus duplicated at cell division.
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Figure 3.12: Model and data for histone H3 methylation. Figure caption on
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Figure 3.12: Model and data for histone H3 methylation. (A) Triple-SILAC mass spec-
trometry for mouse embryonic stem cells (mESCs) gives three generations of histones for
untreated cells (Duntr) and cells where an EZH2 inhibitor was added (Dinh). (B,C) Model
illustrations for the relative abundance of methylations at K27 and K36 for one genera-
tion. Differences between the generations are in the incorporation of unmodified histones
and dilution of other modifications due to cell division (dotted diagonal arrows). This
only occurs for the time where the cells are in the corresponding culture medium. (B) The
standard model assumes methylation and demethylation for both lysines. (C) The domain
model assumes no demethylation. Histone tails are methylated until they reach a defined
final state, which depends on the domain the histone belongs to. Purple boxes indicate
these final states of the domains obtained by performing model reduction. (D) Experimen-
tal data for the untreated case and model fits. (E) QQ-plots for the best model fits for two
example offsets, with low and high correlation of theoretical and empirical quantiles. (F)
Correlations for the QQ-plots for varying offsets. The maximum correlation is achieved
for offset 10−1. The gray arrows highlight the offsets for the QQ-plots shown in (E).

When changing the culture medium, initially no histones of this generation are present:

x̃g,ij(t) = 0 for


t < t0 , g = 1 ,

t < −3 h , g = 2 ,

t < 0 h , g = 3 ,

∀i, j . (3.27)

The model comprises nψ = 29 dynamic parameters

ψ = (c, dK27,1, dK27,2, dK27,3, dK36,1, dK36,2, dK36,3, k00→01, k00→10, k01→02, k01→11,

k02→03, k02→12, k03→13, k10→11, k10→20, k11→12, k11→21, k12→13, k12→22

k13→23, k20→21, k20→30, k21→22, k21→31, k22→23, k22→32, k30→31, k31→32) .

To bring the system to relative scale, we divided the total abundance of modifications by

the number of histone tails

xg,ij =
x̃g,ij
N

,

ẋg,ij =
˙̃xg,ij
N
− x̃g,ijṄ

N2
.
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This yields for the relative scale

ẋg,ij = χ{(i,j)=(0,0)}(i, j) cg(t)− cg(t)
x̃g,ij
N

+ χ{i>0∧(i,j)6=(3,3)}(i, j) ki−1 j→i j
x̃g,i−1 j

N

+ χ{j>0∧(i,j)6=(3,3)}(i, j) kij−1→ij
x̃g,ij−1

N

− χ{i<3∧(i,j)6=(2,3)}(i, j) kij→i+1 j
x̃g,ij
N

− χ{j<3∧(i,j)6=(3,2)}(i, j) kij→ij+1
x̃g,ij
N

+ χ{i<3∧(i,j)6=(2,3)}(i, j) dK27,i+1
x̃g,i+1 j

N

+ χ{j<3∧(i,j)6=(3,2)}(i, j) dK36,j+1
x̃g,ij+1

N

− χ{i>0∧(i,j)6=(3,3)}(i, j) dK27,i
x̃g,ij
N

− χ{j>0∧(i,j)6=(3,3)}(i, j) dK36,j
x̃g,ij
N

= χ{(i,j)=(0,0)}(i, j) cg(t)− cg(t)xg,ij
+ χ{i>0∧(i,j)6=(3,3)}(i, j) ki−1 j→i j xg,i−1 j

+ χ{j>0∧(i,j)6=(3,3)}(i, j) kij−1→ij xg,ij−1

− χ{i<3∧(i,j)6=(2,3)}(i, j) kij→i+1 j xg,ij

− χ{j<3∧(i,j)6=(3,2)}(i, j) kij→ij+1 xg,ij

+ χ{i<3∧(i,j)6=(2,3)}(i, j) dK27,i+1 xg,i+1 j

+ χ{j<3∧(i,j)6=(3,2)}(i, j) dK36,j+1 xg,ij+1

− χ{i>0∧(i,j)6=(3,3)}(i, j) dK27,i xg,ij

− χ{j>0∧(i,j)6=(3,3)}(i, j) dK36,j xg,ij ,

for g = 1, 2, 3 and i, j = 0, 1, 2, 3. At relative scale, (3.26) can be seen as the dilution

which occurs due to cell division.

The observables are obtained by

yg,ij =
xg,ij∑
i,j xg,ij

.

We assumed that methylation rates did not change for different culture media and different

dynamics were obtained due to presence/absence of dilution (3.26) and different initial

conditions (3.27).
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3.4.3 Domain model

As an alternative, we considered that demethylation is not required. For this, we pro-

posed a model which assumes that certain domains of the chromatin are determined to

acquire certain methylation patterns, e.g., due to particular transcription factor bind-

ing or parental histone context. For example, (i) histones of domain 00 do not get any

methylations at all (Figure 3.12E). (ii) Histones of the domain 20 will get no additional

methylations once the 20 state is reached. (iii) Histones of the domain 31 can acquire

the methylation via different pathways. The histone composition tends towards the state

where all domains acquired their determined state. Since newly incorporated histones are

unmodified (00 ), the model still shows dynamics.

To construct this model, we denoted wlm as the relative size of domain lm, with
∑

l,mwlm =

1. Let xlmg,ij be the relative abundance of histones tails with methylation K27meiK36mej

in domain lm for generation g. Then the ODEs are

ẋlmg,ij = χ{(i,j)=(0,0)}(i, j) cg(t)− cg(t)xlmg,ij
+ χ{(0<i≤l}(i, j) ki−1 j→ij x

lm
g,i−1 j

+ χ{0<j≤m}(i, j) kij−1→ij x
lm
g,ij−1

− χ{i<l}(i, j) kij→i+1 j x
lm
g,ij

− χ{j<m}(i, j) kij→ij+1 x
lm
g,ij ,

with cg(t) as defined in (3.26) and initial conditions

xlmg,ij(t) = 0 for


t < t0 , g = 1 ,

t < −3 h , g = 2 ,

t < 0 h , g = 3 ,

∀i, j, l,m . (3.28)

The observables are obtained by

yg,ij =

∑
l,mwlmx

lm
g,ij∑

l,mwlm
∑

i,j x
lm
g,ij

.

We assumed that the methylation rate constants are shared between the domains, and

estimated them together with the relative sizes of the domains from the data.
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3.4.4 Model calibration and validation

To find the best measurement noise model, we first compared Gaussian and Laplace dis-

tributed measurement noise. We compared the model output and the observables on a

log-scale and offsetted both to cope with zero measurements

log(ȳg,ij + offset) ∼ p (log(ȳg,ij + offset)| log (yg,ij + offset) , σ) , (3.29)

with noise distribution p. We chose offset = 10−1 which provided the best fit with respect

to the QQ-plots for the standard model and the domain model with 15 domains using

Laplace noise (Figure 3.12D-F). We performed 100 local optimization runs for Gaussian

and Laplace noise as well as the standard and the hierarchical approach for optimiza-

tion. For the hierarchical approach, we analytically calculated the measurement noise

parameter σ, which is shared for all time points, observables and generations. We found

strong support for Laplace noise over Gaussian noise for both models (∆BIC > 700).

This demonstrates the importance of employing a heavier tailed distribution assumption

as proposed in Section 3.1. Even though the optimization problem was reduced by only

one parameter using the hierarchical approach for optimization, the performance, i.e., the

number of converged starts per minute, increased by 20% (standard model) and 30% (do-

main model) for the given realizations of multi-starts. Both models were able to describe

the data well (Figure 3.12D).

We did not expect all 15 domains to be necessary to explain the data and thus the domain

model could be overparametrized. Since it was unclear which domains exist a priori, we

performed model selection to detect the present domains. If we would consider all poten-

tial combinations of domains, we would end up with 215 models, which is computationally

too expensive. Thus, we employed model reduction techniques described in Section 2.4.2.

Since
∑

l,mwlm = 1, the model reduction using a l1 penalized objective function as done

by Steiert et al. (2016) is not possible. The penalty would always be exactly one in-

dependent of the choice of wlm. Performing forward-selection and backward-elimination

(Section 2.4.2, Figure 3.13), we found seven domains which were necessary to explain the

data (highlighted in Figure 3.12C). The corresponding fit of the reduced model is shown

in Figure 3.12D.

To further test and validate the models, we used the data Dinh of the inhibitor experiment.

EZH2 is the only known methyltransferase for K27 trimethylation (Kuzmichev et al.,

2002) and this enzyme was inhibited by EPZ-6438. This inhibitor competes with S-

adenosylmethionine (SAM) for the binding to the EZH2 SET domain and directly blocks

the transfer of the methyl group to histone tails. Using our calibrated models, we predicted
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Figure 3.13: Model reduction for the domain model. The difference in BIC values is
shown for the best tested model with given numbers of domains. A model with eight
domains has the best BIC value, and there are models with seven and nine domains which
cannot be rejected according to their BIC value. The dotted line shows the generally
employed threshold of ∆BIC=10 (Table 2.1).

the total amount of K27me3 in generation 1 under inhibitor treatment (Figure 3.14). For

this, we assumed that the trimethylation rate was inhibited by a factor κ:

k2j→3j,inh = (1− κ) · k2j→3j,untr . (3.30)

To obtain reasonable values for κ, we analyzed a simplified model which only consid-

ers K27 methylations of histones of generation 3, x0, x1, x2, x3 for un-, mono-, di-, and

trimethylation at K27 and assumes independence between the methylation sites. The

model reads

ẋ0 = c− cx0 − k0→1 x0 + dK27,1x1 ,

ẋ1 = −cx1 + k0→1 x0 − k1→2 x1 + dK27,2x2 − dK27,1x1 ,

ẋ2 = −cx2 + k1→2 x1 − k2→3 x2 + dK27,3x3 − dK27,2x2 ,

ẋ3 = −cx3 + k2→3 x2 − dK27,3x3 .

The steady states for K27me3 for untreated cells and cells in the inhibitory experiment

are given by

x3,untr =
k2→3 x2,untr

dK27,3 + c
, (3.31)

x3,inh =
(1− κ)k2→3 x2,inh

dK27,3 + c
. (3.32)
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Figure 3.14: Model validation for inhibitor treatment data. (A) Ratio of K27me3 and
K27me2 levels for untreated histones of generation 3 at 16 h for three replicates. From
this, the inhibitor efficiency was estimated with a factor κ which changes K27 trimethy-
lation k2→3,inh = (1− κ)k2→3,untr. The average value for κ from three replicates is 0.928.
(B,C) Data for the K27me3 levels of generation 1 for the inhibitor treatment and model
predictions for (B) the standard model and (C) the domain model. Both models were
calibrated for the untreated case for all generations. The gray lines shows the model pre-
diction for the case of no inhibition (κ = 0), the dark red line the case of full inhibition
(κ = 1).

Thus, K27me3 only depends on the trimethylation rate k2→3, the demethylation dK27,3,

the dilution rate c, the amount of relative K27me2 and in the inhibitor case the factor κ

(3.30) by which the trimethylation is inhibited. Thus we obtained

dK27,3 + c

k2→3
=
x2,untr

x3,untr
= (1− κ)

x2,inh

x3,inh
(3.33)

⇒ κ = 1− x2,untr x3,inh

x3,untr x2,inh
. (3.34)

Using the last time point for generation 3 from data Dinh, we obtained for three replicates

a rough estimate κ = 0.928 ± 0.052 (Figure 3.14A). The same expression for κ (3.34) is

also valid for the domain model.

We compared our model predictions to the experimental data for K27me3 levels, i.e.,

summing all states with K27me3, to be robust against potential effects of the inhibitor

on K36 methylations. Predicting the K27me3 levels of generation 1 with inhibition of

EZH2 for different values of κ, we found that the standard model failed to explain the

data for reasonable ranges of κ (Figure 3.14B). Here, we only assumed the trimethylation

rate to change. However, if also mono-, or dimethylation changes, the model predictions

would be even lower and the illustrated predictions in Figure 3.14B can be seen as rough
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estimates for the upper bound. However, the prediction of the domain model for the

inhibitor treatment was in good agreement with the data (Figure 3.14C).

In summary, we found that a domain model is more suitable to describe the kinetics of his-

tone H3 methylation at K27 and K36. The antagonism between the two methylation sites

was reflected in the rates which were estimated from experimental triple-SILAC LC-MSMS

data. For this study, we applied the methodological approaches which were developed in

Sections 3.1 and 3.2, demonstrating their practical importance and applicability.

3.5 Summary and discussion

In this chapter, we evaluated different heavier tailed distributions for the calibration of

dynamical models. We found that the Laplace distribution seems to be the most promising

distribution. On the one hand, it provides reliable parameter estimates and confidence

intervals in the absence and presence of outliers, on the other hand it still has a reasonable

optimizer performance and does not yield problems when the model tends to over-fit the

data. For this distribution and the generally used Gaussian distribution, we were able

to derive analytical expressions for the optimal measurement noise parameters as well

as for the optimal scaling parameters, which are required to model relative data. This

consistently improved optimization, even if the dimension of the optimization problems is

reduced by only one parameter, as it was the case for the considered application example

of histone methylation. For this example, we compared different mathematical models ex-

plaining the restoration of histone modifications and gained new insights into the dynamics

of histone methylation. Furthermore, the developed methods are currently used in other

application examples which are not included in this thesis, for example, in a project about

viral infection where we collaborate with Frederik Graw from BioQuant in Heidelberg.

For the considered models, we observed that the fraction of converged local optimization

runs decreases as the model dimension increases. Potential reasons are that for larger

models the region of attraction of the global optimum is potentially smaller. We also

observed that the fraction of converged starts is lower for Laplace noise than for Gaussian

noise. This most probably occurs due to non-differentiabilities in the objective function,

which complicate the optimization procedure. When using Laplace priors for parameters,

the optimization routine can be adapted (Steiert et al., 2016). However, this approach is

not easily transferable to the use of Laplace measurement noise, as the switching points

depend on the numerical solution of the ODE.
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In addition to the scaling and noise parameters, other parameters which only contribute to

the mapping from the states to the observables could also be optimized analytically. This

includes offset parameters, which are used to model background intensities or unspecific

binding. Extending our approach to also calculate these parameters analytically would

decrease the parameters in the outer optimization even more.

When using gradient-based optimization, further improvements could be achieved by ex-

tending the approach to scalable approaches to calculate the objective function gradient.

In this thesis, we employed forward sensitivities for the calculation of the gradient. How-

ever, it has been shown that for large-scale models with a high number of parameters, ad-

joint sensitivities can reduce the computation time needed for simulation (Fröhlich et al.,

2017). Thus, a further promising approach is the combination of both complementary

approaches for the handling of large-scale models.

In summary, the presented methods enabled a robust and efficient calibration of ODE

models. The methods can cope with an increasing complexity of the data and corre-

sponding models and, thus, will facilitate the in-depth mechanistic analysis of biological

processes.





Chapter 4

Mechanistic modeling of heteroge-

neous cell populations based on

single-cell snapshot data

Cellular heterogeneity is critical for cellular decision making and the formation of complex

organisms (Balázsi et al., 2011). To study heterogeneity, experimental techniques (Section

2.1.2) have been developed which yield increasing amounts of data. A large number

of powerful statistical methods have been developed for the analysis of single-cell data

(Kharchenko et al., 2014; Lun et al., 2017). Unfortunately, these are unable to identify

causalities and latent causes, or to reconstruct the governing equations of the process.

Improved methods of data analysis are therefore required.

In this chapter, we address the problem (iii) stated in Section 1.2 that a unifying frame-

work which facilitates a mechanistic description of the heterogeneity in the presence of

subpopulations is missing. Furthermore, we tackle the problem (iv) that the influence of

the incorporated distribution assumptions on the optimization results and performance is

unknown (Section 1.2). We develop and analyze the framework and apply it to study pain

sensitization in primary sensory neurons to address problem (vi).

In the case of homogeneous cell populations, the RREs (2.4) provide a description of the

population behavior (Figure 4.1A). Stochastic fluctuations or latent differences between

cells result in cell-to-cell variability and a distribution of cell states (Filippi et al., 2016;

Hasenauer et al., 2011a; Yao et al., 2016; Zechner et al., 2012) (Figure 4.1B). The statistical

moments of this distribution are described by moment-closure approximations (2.14, 2.15)

and system size expansions (Fröhlich et al., 2016; van Kampen, 2007). These provide

scalable approximations for a range of processes in which variability arises from different

sources. However, the approximation could be crude, e.g., even negative variances can be

predicted (Schnoerr et al., 2014). Additionally, they fail to provide an accurate description

of the population heterogeneity when subpopulations are present and cannot be used to

study the causal differences between cells and subpopulations.
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Figure 4.1: Cell populations exhibiting different levels of heterogeneity. Properties of
cells, e.g., receptor levels or reaction rates, indicated by different gray shades for individual
cells, can be (A) homogeneous: the property is the same for the entire cell population;
(B) cell-to-cell variable: the property has a unimodal distribution across the cells; (C)
subpopulation variable: the population can be separated into subpopulations, but within
each subpopulation, the property does not vary; (D) inter- and intra-subpopulation vari-
able: the property splits the population into subpopulations and also varies between cells
within a subpopulation. This figure is adapted from Figure 1 of the author’s publication
(Loos et al., 2018b)

To address parameter differences between cellular subpopulations, RRE-constrained mix-

ture modeling (2.17) combines mixture modeling and mechanistic RRE modeling of the

subpopulation means (Figure 4.1C). Cell-to-cell variability within a subpopulation is

treated naively as an additional parameter that has to be estimated. Thus, no mech-

anistic description of cell-to-cell variability within a subpopulation is possible. Moreover,

the method can only be applied to one-dimensional measurements. When multivariate

measurements are used, only marginal distributions can be analyzed and correlations be-

tween measurements are neglected. This may result in a substantial loss of information

(Altschuler and Wu, 2010; Buchholz et al., 2013).

We introduce a non-trivial combination of mixture models that is able to capture subpop-

ulation structures and models for individual subpopulations that account for differences

between individual cells (Figure 4.1D). The approach therefore covers several levels of het-

erogeneity simultaneously (Figure 4.1A-D). We provide the equations which are required

for the calibration of these models. Afterwards, we evaluate the capability of the frame-

work to disentangle different sources of variability and handle multivariate data. We apply

our framework to study pain sensitization based on quantitative single-cell microscopy of

cultured sensory neurons. The presented modeling framework relies on parametric mix-

ture distributions. Therefore, we incorporate different distribution assumptions in the

framework and analyzed their robustness and performance.

The following chapter is based on and in part identical to these publications:
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• Loos, C.∗, Moeller, K.∗, Fröhlich, F., Hucho, T., & Hasenauer, J. (2018). A hi-

erarchical, data-driven approach to modeling single-cell populations predicts latent

causes of cell-to-cell variability. Cell Systems, 6(5), 593-603. (∗equal contribution)

• Loos, C., Fiedler, A., & Hasenauer, J. (2016). Parameter estimation for reaction

rate equation constrained mixture models. In International Conference on Computa-

tional Methods in Systems Biology (pp. 186-200). Springer International Publishing.

• Loos, C., & Hasenauer, J. Robust calibration of hierarchical population models on

single-cell snapshot data. in preparation

4.1 Hierarchical population model

For the hierarchical population model, the mechanistic description of individual subpop-

ulations is combined with mixture models to describe the entire cell population. Each

subpopulation itself is allowed to be heterogeneous.

4.1.1 Hierarchical model and its approximations

We considered heterogeneous cell populations consisting of multiple subpopulations, s =

1, ..., ns. Assuming independence, the distribution of the states x and observables y in the

overall population at time t, p(x, t) and p(y, t), is the weighted sum of the distribution

of the states and observables in the subpopulations, ps(x, t) and ps(y, t). The weights

ws(t) are the relative population sizes, with ∀t :
∑

sws(t) = 1. This yields the hierarchical

population model for states and observables

p(x, t) =
∑
s

ws(t)ps(x, t) ,

p(y, t) =
∑
s

ws(t)ps(y, t) .

As the measurements ȳ are in general noise corrupted, ȳ ∼ p(ȳ|y), we also considered the

distribution

p(ȳ, t) =

∫
p(ȳ|y)p(y, t)dy

=
∑
s

ws(t)

∫
p(ȳ|y)ps(y, t)dy︸ ︷︷ ︸

=:ps(ȳ,t)

.
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To ensure computational efficiency, we mostly worked with the statistical moments. For

the measured observables, the computed statistical moments were encoded in ϕs, yielding

p(ȳ, t) =
∑
s

ws(t)φ(ȳ|ϕs(t)) (4.1)

with parametric probability distribution φ.

In the following, we explain how the statistical moments of distribution φ are obtained and

linked to the distribution parameters ϕs. For this, we assumed that cells differ in their

cellular properties. Each cell indexed by c has cellular properties which are encoded in the

parameter vector ψc∈ Rnψ . In the hierarchical framework (Figure 4.2), these parameters

are considered to be drawn from a mixture distribution as follows:

ψc ∼
∑
s

wsN (βs,Ds) ,

with subpopulation weight ws, mean βs and covariance Ds for subpopulation s = 1, . . . , ns.

The subpopulation parameters ξs = (βs,Ds) classify the variability of a property ψi: The

subpopulation parameters ξs = (βs,Ds) are given by

βs,i =


βi , homogeneous ,

βi , cell-to-cell variable ,

βs,i , subpopulation variable ,

βs,i , inter- and intra-subpopulation variable ,

Ds,ii =


0 , homogeneous ,

Dii , cell-to-cell variable ,

0 , subpopulation variable ,

Ds,ii , inter- and intra-subpopulation variable ,

and allow for correlated parameters, Ds,ij 6= 0, with indices i, j = 1, . . . , nψ for the cellular

property. The distribution of the parameters produces a distribution of cell states and

observables (Figure 4.3).

The temporal evolution of the statistical properties of the cells of a subpopulation, in-

cluding the mean and covariance, were computed using scalable methods. System size

expansions and moment-closure approximations are used to account for stochastic single-

cell dynamics, whereas sigma-points are used otherwise (Section 2.2.2). These approaches

yield ODE models for the statistical moments, comprising the means and covariances
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Figure 4.2: Plate notation for the structure of the single-cell system and approximation
by the hierarchical population model. Squares indicate fixed parameters, whereas circles
indicate random variables. Gray shading of the circles/squares indicates a known value,
whereas the other values are latent. The upper plate illustrates the variables associated
with a cell c. Each of the nc cells has parameters ψc drawn from a distribution defined
by ξs and w. The states of the species xc, resulting from the single-cell dynamics, yield
the observables ȳc, additionally influenced by measurement noise Γ. The bottom plate
visualizes the statistics of the corresponding cells of a subpopulation. For each subpop-
ulation, the subpopulation parameters ξs are mapped to the means and covariances of
the species of a subpopulation zs, which then are mapped to the distribution parameters
ϕs. The observables at the population level are considered to be distributed according
to (4.1). This figure is a modified version of Figure 2C of the author’s publication (Loos
et al., 2018b).

zs = (mx
s ,C

x
s )T of species x. The models are simulated for each of the ns subpopulations

żs = gz (zs, ξs,u) , zs(0) = z0 (ξs,u) , (4.2)

with initial conditions z0 and experimental condition u. The moments of the species in a

subpopulation are then mapped to the distribution parameters

ϕs = gϕ (zs, ξs,u) , (4.3)

of the distribution φ, including measurement noise Γ, which is mostly assumed to be the

same for all subpopulations.

In this section, we employed for φ the multivariate normal distribution

N (ȳ|µs,Σs) =
1

(2π)
ny
2 det (Σs)

1
2

e−
1
2

(ȳ−µs)
T (Σs)

−1(ȳ−µs), (4.4)
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Figure 4.3: Illustration of the dynamics of a heterogeneous cell population and the
mechanistic hierarchical population model. (A) Parameter distribution of a cell pop-
ulation consisting of two subpopulations. The contour lines illustrate the (approxi-
mated) parameter density of the cell-to-cell variable parameter 1 and the inter-and intra-
subpopulation variable parameters 2. The heterogeneity of parameters is propagated from
the latent parameter space to the observed measurement space. (B) Heterogeneity in
parameters yields heterogeneous observables y = (y1, y2)T that separate into two subpop-
ulations after stimulation at time point t0. This figure is a modified version of Figure
2A-B of the author’s publication (Loos et al., 2018b)

and multivariate log-normal distribution

logN (ȳ|µs,Σs) =
1

(2π)
ny
2 det (Σs)

1
2
(∏ny

i=1 ȳi
)e− 1

2
(log(ȳ)−µs)

T (Σs)
−1(log(ȳ)−µs) , (4.5)

with distribution parameters ϕs = (µs,Σs).

For the multivariate normal distribution (4.4), the distribution parameters can be obtained

by

ϕs = (µs,Σs) = gϕ((mx
s ,C

x
s ), ξs,u) = (my

s ,C
y
s + Γ) , (4.6)

including additive normally distributed measurement noise parametrized by

Γ = (Γij)i,j=1,...,ny =


σ2

1,noise 0 0

0
. . . 0

0 0 σ2
ny ,noise

 . (4.7)

For the multivariate log-normal distribution (4.5), the distribution parameters can directly

be simulated with the sigma-point approximation for the logarithm of the observable,

yielding the relation

ϕs = (µs,Σs) = gϕ((mx
s ,C

x
s ), ξs,u) = (mlog(y)

s ,Clog(y)
s + Γ) , (4.8)
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Table 4.1: Comparison of the hierarchical population model with existing methods.

method
mechanistic description of

subpopulations
multivariate

data
reference

dynamics variability
mixture model X X e.g., Hastie et al. (2009)
moment-closure
approximation

X X X e.g., Zechner et al. (2012)

RRE-constrained
mixture model

X X Hasenauer et al. (2014)

hierarchical
population model

X X X X Loos et al. (2018b)

accounting for multiplicative log-normally distributed measurement noise. Alternatively,

the mean of the simulation can be linked to the mean of the log-normal distribution by

µs,i = log(my
s,i)−

1

2
Σs,ii ,

Σs,ij = log

(
Cys,ij

my
s,im

y
s,j

+ 1

)
+ Γij ,

with observable indices i and j. In Section 4.4, we provide the equations for the incorpo-

ration of further distributions.

The sigma-point or moment-closure approximation (Section 2.2.2) provides time-dependent

moments of the system and accounts for cell-to-cell variability. When combined with sub-

population variability, this yields both the inter- and intra-subpopulation variability (Fig-

ure 4.1D). For a comparison of the hierarchical population model with existing methods

we refer to Table 4.1. In this thesis, we assumed a log-normal distribution of the parame-

ters, i.e., β and D describe the median and scale matrix of the corresponding log-normal

distribution, and the exponent of S l was used in (2.11).

4.1.2 Likelihood function for the hierarchical population model

The parameters of the hierarchical population model θ comprise the means/medians of the

single-cell parameters β,βs as well as the entries of the scale matrices D,Ds, the mixture

weights ws and entries of the measurement noise matrix Γ. These parameters need to be

estimated from experimental data. For this, we employed a maximum likelihood approach

as introduced in Section 2.3.2.
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The likelihood function of the hierarchical population model for multivariate measurement

data ȳck ∈ Rny with time index k and single-cell index c is given by

L (θ) =
∏
k,c

∑
s

ws (tk,θ,u)φ (ȳck|ϕs(tk,θ,u)) (4.9)

with żs = gz (zs, ξs(θ),u) , zs(0) = z0 (ξs(θ),u) ,

ϕs = gϕ (zs, ξs(θ),u) ,

with means and covariances zs = (mx
s ,C

x
s )T of species x. In general, the subpopula-

tion weight ws and the subpopulation parameters can also be experiment specific (see

Section 4.3.3). Also other distributions can be incorporated in our modeling framework

(Section 4.4). Due to numerical reasons, we used the negative log-likelihood function (Loos

et al., 2016)

J(θ) = − logL (θ) = −
∑
k,c

log

(∑
s

ws (tk,θ,u)φ (ȳck|ϕs(tk,θ,u))

)
. (4.10)

To promote efficiency of the numerical optimization and robust convergence, we derived

the gradient of the negative log-likelihood function

∂J(θ)

∂θi
= −

∑
k,c

1∑
sws (tk,θ,u)φ

(
ȳck|ϕs(tk,θ,u)

) · (4.11)

∑
s

(
∂ws (tk,θ,u)

∂θi
φ (ȳck|ϕs(tk,θ,u)) + ws (tk,θ,u)

∂φ (ȳck|ϕs(tk,θ,u))

∂θi

)
.

The gradient of the negative log-likelihood function (4.11) comprises the gradient of the

corresponding mixture distribution φ with respect to θi. For a simpler notation we only

explicitly denote the dependence of the distribution parameters on θ. For the normal and

log-normal distributions, it is

∂

∂θi
N (ȳck|µs(θ),Σs(θ)) =− 1

2
N (ȳck|µs(θ),Σs(θ)) ·

(
Tr

(
(Σs(θ))−1 ∂Σs(θ)

∂θi

)

+ (µs(θ)− ȳck)
T (Σs(θ))−1

(
∂µs(θ)

∂θi

)T
+

(
∂µs(θ)

∂θi

)T
(Σs(θ))−1 (µs(θ)− ȳck)

+ (µs(θ)− ȳck)
T ∂ (Σs(θ))−1

∂θi
(µs(θ)− ȳck)

)
,

(4.12)
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and the relation

logN (ȳck|µs(θ),Σs(θ)) = N (log(ȳck)|µs(θ),Σs(θ))

( ny∏
i=1

yci,k

)−1

.

Additionally, the sensitivities of the distribution parameters ∂µs(θ)/∂θi and ∂Σs(θ)/∂θi

were required, which were obtained by simulating the sensitivity equation for the sigma-

point or the moment-closure approximation to obtain ∂zs(θ)/∂θi, and linking it to the

distribution parameters using gϕ.

A reformulation of the equations for the robust evaluation of the log-likelihood func-

tion and its gradient is given in the following. This reformulation prevents numerical

problems when small probabilities occur (Murphy, 2012). For fixed k and c, we define

φs = φ (ȳck|ϕs(tk,θ,u)), qs := log(φs), ws = ws(tk,θ,u) and ŝ = argmaxsqs, and reformu-

late

log

(∑
s

wse
qs

)
= log

1 +
∑
s 6=ŝ

ws
wŝ

(
eqs−qŝ

)+ log(wŝ) + qŝ . (4.13)

Regarding the calculation of the gradient we obtain

∂ log
∑

swsφs
∂θi

=
1∑

s∗ ws∗φs∗
·
∑
s

dwsφs
dθi

=
1∑

s∗ ws∗e
qs∗−qŝ

·
∑
s

eqs−qŝ
(
∂ws
∂θi

+
ws
φs

∂φs
∂θi

)
.

(4.14)

The proposed reformulations (4.13) and (4.14) were used for the robust evaluation of the

log-likelihood function and its gradient.

4.1.3 Calibration of the single-cell model

The calibrated hierarchical population model provides estimates for βs,i, and Ds,ii which

can then be used as prior information for the single-cell parameters ψc of cell c:

p(ψci ) =


δ(ψci − βi) , homogeneous ,

N (βi, Dii) , cell-to-cell variable ,∑
sws δ(ψ

c
i − βs,i) , subpopulation variable ,∑

swsN (βs,i, Ds,ii) , inter- and intra-subpopulation variable ,
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in which δ denotes the Dirac delta distribution. The posterior distribution for the param-

eters of cell c, ψc, is given by

p(ψc|ȳc,Γ) ∝ p(ȳc|ψc,Γ)p(ψc) ,

in which p(ȳc|ψc,Γ) denotes the likelihood of the single-cell measurement ȳc for single-cell

parameters ψc and noise parameters Γ. The likelihood is p(ȳc|ψc,Γ) = N (ȳc|yc,Γ) for

additive normally distributed measurement noise and p(ȳc|ψc,Γ) = logN (ȳc|yc,Γ) for

multiplicative log-normally distributed measurement noise.

4.2 Evaluation of the hierarchical population model

We evaluated the capabilities of the proposed hierarchical population model for three sim-

ulation examples. For a simple conversion, we compared our model with RRE-constrained

mixture modeling (2.17), assessed its ability to detect causal sources of variability and

reconstruct the latent single-cell trajectory. Furthermore, for a model of stochastic gene

expression, we analyzed the incorporation of intrinsic noise in the framework. For a model

of protein expression, we assessed the model for multivariate data.

4.2.1 Unraveling sources of variability

To demonstrate the advantages of the hierarchical population model, which incorporates a

mechanistic description of the means and variances, over RRE-constrained mixture mod-

eling (2.17), we applied our approach to simulated data on a simple conversion process

(3.8). The conversion process comprised two species A and B, with cell-to-cell variable

conversions from B to A (Figure 4.4A), corresponding to different levels of phosphatase in

the cells. Two subpopulations were assumed with different responses to stimulus u. This

produced subpopulations with different rates of stimulus-dependent conversion from A to

B. Artificial measurement noise was added to allow the capability of the framework to

distinguish measurement noise from biological variability to be assessed.

The RRE for (x1, x2) = ([A], [B]) is given by

ẋ1 = k3x2 − (k1u+ k2)x1 ,

ẋ2 = (k1u+ k2)x1 − k3x2 ,



4.2. EVALUATION OF THE HIERARCHICAL POPULATION MODEL 85

low responsive 
subpopulation

u
k2 B

homogeneous
cell-to-cell variable
subpopulation variable
inter- and intra-subpop.
variable

measured
not measured

high responsive 
subpopulation

k2
B

ugr
ou

nd
 tr

ut
h 

k3

k1,2

k3

k1,1

A

A

data        
best model                

time [min]

0.4

0.8

0        6        30       60     120 

B 
le

ve
ls 

[a
u]

CA

parameter value
pa

ra
m

et
er

10-1.05 10-1 10-0.95

10-1.9 10-1.7 10-1.5

�k3

�noise

true parameter

95%MLE

90%

80%
99%

D

no
rm

al
ize

d 
m

ar
gi

na
l /

 lik
el

ih
oo

d 
ra

tio

k1 k2 k3

-0.1
log 10(k1,1)

0

0.5

1

0.1
log 10(k1,2)

0

0.5

1

-0.5 -0.4
log 10(k2)

0

0.5

1

-0.2
log 10( k3

)

0

0.5

1

-1
log 10( k3

)

0

0.5

1

-2 -1.5
log 10( noise)

0

0.5

1

0.7
w1

0

0.5

1
profile likelihood
0.5×ΔBIC + 1
marginal posterior 
distribution
neg. log Bayes factor + 1 
neg. log pointwise predictive 
density + const.

E

0
50
100

0
50
100

0
50
100

0
50
100

0
0.5
1

ev
id

en
ce

 
of

 v
ar

ia
bi

lity
co

nt
rib

ut
ed

 b
io

lo
gi

ca
l v

ar
ia

bi
lity

 [%
]

(i)

(ii)

(iii)

(iv)

k2

k2

k1

k2

k3

k1

k1 k2 k3

k1

k3

k3

F

G

100

101

102

103

102

103

104

105

subpop.
time

k1
k2
k3

models

m
od

el
 s

el
ec

tio
n 

cr
ite

rio
n

CP
U 

tim
e 

[s
ec

]

mean     

ΔBIC < 10
Bayes factor < 100

(i)       (ii) (iii) (iv)

B mean and
 variance

Figure 4.4: Inference of cell-to-cell variability using mechanistic models. Figure

caption on next page.



86 CHAPTER 4. MECHANISTIC MODELING OF SINGLE-CELL DATA

Figure 4.4: Inference of cell-to-cell variability using mechanistic models. (A) Model
of a conversion between two species A and B comprising two subpopulations differing
in their response to stimulus u. Different colors indicate the variability of the reaction
rates. (B) Model selection criteria and required computation times for all models. Lower
values indicate a higher evidence for the corresponding model. The horizontal dotted lines
indicate the cutoff corresponding to a BIC difference of 10 and a Bayes factor of 100.
(C) Data on the conversion process (1000 cells per time point) and fit corresponding to
the best and true underlying model. (D) CIs for the variability of k3 and the measurement
noise (σnoise). Horizontal bars show the CIs corresponding to the 80%, 90%, 95%, and
99% confidence levels, and the vertical lines the MLE. (E) Normalized marginal poste-
rior distribution computed from samples of the posterior distribution and likelihood ratio
obtained by profile likelihoods for all parameters. (F) Contribution to overall cell-to-cell
variability of the observable for the models with Bayes factor < 100. The errorbars in-
dicate deviation over time points. (G) Evidence for variability in parameters computed
based on BIC weights (left, purple) and marginal likelihoods (right, yellow). This figure
is a modified version of Figures 3 and S1 of the author’s publication (Loos et al., 2018b)

with initial conditions

x1(0) =
k3

k2
, x2(0) = 1− k3

k2
,

accounting for mass conservation [A] + [B] = 1 and the assumption that the system was

in steady state before the stimulus was added at 0 min. We assumed the conversion from

B to A to be cell-to-cell variable,

k3 ∼ logN (βk3 , σ
2
k3) , (4.15)

yielding cell-to-cell variable initial conditions. The parameter k1 was considered to differ

between subpopulations and therefore was parametrized by k1,1 and k1,2. The weight w1

indicated the proportion of the low responsive subpopulation. We generated artificial data

for the parameters

θtrue = (k1,1, k1,2, k2, βk3 , σk3 , σnoise, w1)

= (10−0.1, 100.1, 10−0.45, 10−0.2, 10−1, 10−1.8, 0.7) .

We observed the concentration of B, i.e., y = x2. The data was created including 1000 cells

at five time points for u = 1 by sampling from the distribution for k3 (4.15) and simulating

the corresponding RREs. Of the 1000 cells, 700 cells belonged to subpopulation 1 with low

response to stimulation and 300 cells to the high responsive subpopulation 2. Additionally,
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the measurements of both subpopulations were assumed to be subject to logarithmic

multiplicative measurement noise parametrized by σnoise.

We assumed the parameters θ to be unknown and estimated them from the data with

(i) RRE-constrained mixture modeling (2.17) using the means and

(ii) the hierarchical population model describing the means and covariances (obtained

by the sigma-point approximation).

For both approaches, the underlying subpopulation structure was given, i.e., subpopulation

variability of k1.

Hierarchical model using RREs We considered a hierarchical model with subpopulation

means that were described by the RRE. The distribution of the observables was assumed to

be log-normal and the scale parameters were estimated from the data. This approach does

not model the temporal evolution of the variance, requiring different parametrizations to be

compared, i.e., constant, time-dependent, and time/subpopulation-dependent variability.

We distinguished the following scenarios:

• one scale parameter that is shared across time points and subpopulations,

• one scale parameter for every subpopulation, which is shared between time points,

• 10 scale parameters that differ for each subpopulation and time-point.

These scale parameters were estimated along with k1,1, k1,2, k2, k3, and w1 for this setting,

which corresponds to the RRE-constrained mixture modeling (2.17). For optimization,

the kinetic parameters ki were assumed to be in the interval [10−3, 103], the weight w1

in [0, 1], and the scale parameters for the log-normal distribution were restricted to the

interval [10−2, 102]. For each model we performed 50 multi-starts at randomly drawn

initial points.

Hierarchical model using sigma-point approximations For the hierarchical population

model, the parameter vector for subpopulation s was given by ξs = (βs,Ds) with

βs =


k1,s

k2

βk3
σnoise


subpopulation variable ,

homogeneous ,

cell-to-cell variable ,

homogeneous ,



88 CHAPTER 4. MECHANISTIC MODELING OF SINGLE-CELL DATA

and

Ds,ij =

{
σ2
k3
, for i = j = 3 ,

0 , otherwise .

To describe the introduced cell-to-cell variability in k3 (4.15), we used the sigma-point

approximation for the log-parameters. For optimization, the dynamic parameters or their

means (in case of cell-to-cell variability) were assumed to be in the interval [10−3, 103],

the scale parameters σki and measurement noise σnoise in [10−3, 102] and the weight w1

in [0, 1]. As for the RRE model, we performed 50 multi-starts. For sampling and to

facilitate a comparison of frequentist and Bayesian approaches, we considered uniform

prior distributions.

We performed model selection for a range of hypotheses, including the number of vari-

ance parameters when using RREs, as well as additional cell-to-cell variability when using

sigma-points. We employed BIC (2.34), log marginal likelihoods and log pointwise pre-

dictive density (2.37) (Figure 4.4B). The log marginal likelihood was determined using

thermodynamic integration with the Simpsons’ rule (Section 2.4.1). The log pointwise

predictive density was determined by sampling the posterior distribution for a subset of

the data, for the measurements for all but one time point, and computing the logarithm

of the average likelihood on the remaining data. The log pointwise predictive density

was robustly evaluated using the expressions in (4.13). The comparison of BIC values,

log marginal likelihoods and log pointwise predictive densities revealed a good agreement.

The Spearman’s rank correlation coefficient between BICs and log marginal likelihoods is

r = 0.98, and r = 0.83 between BICs and log pointwise predictive densities.

Model selection indicates that different parameters for each subpopulation at every time

point are required to describe the data (Figure 4.4B). This demonstrates that the observed

cell-to-cell variability changes over time but provides no information about the sources of

the observed cell-to-cell variability. The mechanistic modeling of multiple levels of hetero-

geneity facilitates the prediction of its causal source via model selection. We considered a

range of hypotheses and tested all possible combinations of cell-to-cell variability in k1,s, k2

or k3. The sigma-point approximation was applied to the logarithm of the observable, to

link the mean and variance of the simulation directly to the distribution parameters of

the log-normal distribution. The case of no additional cell-to-cell variability corresponds

to the RRE models and is therefore not covered here. All criteria suggest the rejection of

the models which include only the mechanistic description of the mean but not the vari-

ance. For the remaining models the methods provided a sightly different ordering, but all

of them indicate the importance of the variability of k3. Interestingly, model complexity
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seems to be more penalized by the BIC. Given the subpopulation structure, the additional

source of heterogeneity, namely, the conversion from B to A, was correctly predicted and

the corresponding model provided a good fit to the data (Figure 4.4C). The model selec-

tion criteria for most of the hierarchical models were substantially better than that of the

best model that incorporates only the mean. This confirms that a mechanistic description

of the variability is more appropriate.

For uncertainty analysis, we first calculated CIs obtained using profile likelihoods (2.25)

for the best model (Figure 4.4D). We analyzed the ability of the hierarchical model to

predict the different contributions of cell-to-cell variability and measurement noise, as

both are normally present in single-cell experiments. The uncertainty analysis suggested

that the hierarchical modeling approach was able to distinguish between the two.

Furthermore, we evaluated the reliability of the CIs obtained using profile likelihoods.

Therefore, we sampled the posterior distribution of the ground truth model using the

parallel tempering algorithm implemented in the parameter estimation toolbox PESTO.

The chains were initialized at the MLEs and their convergence was assessed using the

Geweke test (Geweke, 1992). The comparison of the marginal posterior distributions and

the profile likelihoods revealed an excellent agreement (Figure 4.4E). We note that the

initialization of the parallel tempering algorithm using a sample from the prior instead of

using the pre-computed MLEs, yielded substantially longer computation times and often

did not result in a converged chain for 2 · 105 iterations (corresponding to roughly 4 CPU

hours). This indicates that for this problem optimization is an important step.

As the model selection did not reject all models but the ground truth model, we evaluated

the contribution of the variability of individual parameters to the variability of the observ-

able. Therefore, we determined the reduction of the variability of the observable achieved

by removing the variability in the parameter of interest. This analysis was performed for

samples from the posterior distribution (Figure 4.4E). We performed this analysis for the

models which cannot be rejected based on a Bayes factor cutoff of 100 (Table 2.1) and

found that the main contribution to the variability clearly comes from variability in k3.

This means that even for plausible models which account for additional variability in k1

or k2, the main source of variability is k3. To confirm this further, we computed the BIC

weights for a certain variability by summing the BIC weights (2.39) for all models ac-

counting for this variability. To detect the source of variability, we took the models for all

possible combinations into account. Similarly, we calculated the evidence of a variability

based on the computed marginal likelihoods. Both approaches agree in the presence of

variability in k3, confirming the agreement of the results. The BIC weights for the param-
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eters k1 and k2 are higher than the evidences computed from the log marginal likelihoods,

which, however, do not have a big contribution to the overall variability (Figure 4.4F&G).

4.2.2 Single-cell calibration

To evaluate the predictive power of the method for single-cell trajectories, we inferred the

parameters of individual cells from the single data point available for each cell in combina-

tion with the calibrated hierarchical population model as a prior (Section 4.1.3). We found

that the information about the behavior of a single-cell encoded in the measurement of the

first time point was limited, e.g., the prediction is off (Figure 4.5A). However, using data

from late time points, we obtained a good estimate of the (latent) single-cell trajectory

(Figure 4.5B). The predictions of the trajectories for 100 single-cells from measurements

at time point t = 120 min (Figure 4.5C) reveal a correlation between true and predicted

values > 0.9 for all but early time points.

4.2.3 Including intrinsic and extrinsic noise sources

To study the possibility of accounting for intrinsic noise in the hierarchical population

model, we generated artificial data of a two stage gene expression (Figure 4.6A) using the

SSA. The system comprises the following reactions

R1 : ∅ → mA , rate = k1 ,

R2 : ∅ → mA , rate = uk2 ,

R3 : mA→ ∅ , rate = k3[mA] ,

R4 : mA→ A , rate = k4[mA] ,

R5 : A→ ∅ , rate = k5[A] .

Here, mA denotes the mRNA and A the protein, and we assumed that only A could be

observed. The two subpopulations differed in their response to stimulus u yielding different

rate constants k2,1 and k2,2. For this setting, we only accounted for homogeneous and

subpopulation variable parameters. However, the intrinsic variability of the production

and degradation of individual molecules gave cell-to-cell variability in the cellular states.

The ODEs for the temporal evolution of the means and covariances were provided by the

toolbox CERENA (Kazeroonian et al., 2016). In particular, the means m1 and m2 and

the variances C11 and C22 of mRNA mA and protein A, respectively, were described as



4.2. EVALUATION OF THE HIERARCHICAL POPULATION MODEL 91

0  60 120
time [min]

0.5

0.6

0.7

B 
le

ve
ls

 [a
u]

measurement

A

0 min
60 min
120 min

99%

20%  10%

median

true single-cell 
trajectory      

B

0.4 0.6 0.8
0.4

0.6

0.8

tru
e 

B 
le

ve
ls

r=0.59

0.4 0.6 0.8
0.4

0.6

0.8
r=0.93

0.4 0.6 0.8
0.4

0.6

0.8
r=0.97

predicted B levels

C

Figure 4.5: Single-cell calibration. (A) Single-cell trajectories inferred using a single
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trajectory from which the measurement point was generated. (C) Correlation of predicted
and true level of B at 0, 60 and 120 min. True values were extracted from the (noise-free)
simulation. Predictions are obtained using the single-cell data at time t=120 min. This
figure is adapted from Figure 3E-G of the author’s publication (Loos et al., 2018b).

well as the correlation C12 of mA and A. The ODE system reads

ṁ1 =
k1

Ω
+
uk2

Ω
− k3m1 ,

ṁ2 = k4m1 − k5m2 ,

Ċ11 =
k1

Ω2
+
uk2

Ω2
− 2C11k3 +

k3m1

Ω
,

Ċ12 = C11k4 − C12(k3 + k5) ,

Ċ22 = 2C12k4 − 2C22k5 +
k4m1

Ω
+
k5m2

Ω
,
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and disregarding subpopulation structures, and RREs. This figure is adapted from Figure
S6A-B of the author’s publication (Loos et al., 2018b).

with system size Ω = 1000. Under the assumption that the system was in steady state

before stimulation with u, the initial conditions are

m1(0) =
k1

Ωk3
,

m2(0) =
k1k4

Ωk3k5
,

C11(0) =
k1

Ω2k3
,

C12(0) =
k1k4

Ω2k3(k3 + k5)
,

C22(0) =
1

Ω2

(
k1k4

k3 + k5
+

k1k
2
4

k3k5(k3 + k5)

)
.

The true parameters used for the generation of the data were

θtrue = (k1, k2,1, k2,2, k3, k4, k5, w1)

= (10, 10, 20, 1, 5, 0.1, 0.5) .

In this example, we employed mixtures of normal distributions, for which the mean and

variance were linked to the distribution parameters by µs = ms and Σs = Cs. First, we

compared a model accounting for the mean, which was obtained by the RRE-constrained
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to the method proposed by Zechner et al. (2012). Note that the range in x-direction differs
for subplots (A)-(C). This figure is adapted from Figure S6E-G of the author’s publication
(Loos et al., 2018b).

mixture model (2.17), and a hierarchical model accounting for the mean and covariances,

which were obtained by the MA (2.14, 2.15), both accounting for two subpopulations. For

the RRE model 10 parameters for the parametrization of the variances were introduced,

yielding in total nθ = 17. The model using the MA only comprised nθ = 7, since a

mechanistic description of the variances was incorporated. For parameter estimation, the
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kinetic parameters were restricted to the interval [10−3, 103] and the log10-transformed

parameters were fitted, whereas the weight w1 was restricted to [0, 1] and fitted linearly.

For the RRE model, the parameters for the variance were assumed to lie within [10−4, 102]

and also fitted in log10-space. Second, we studied two models that incorporate the mech-

anistic description of the variance by the MA, but did not consider the presence of two

subpopulations (MA, no subpop.). One of these models, however, accounts for cell-to-cell

variability of each parameter (MA, cell-to-cell variability, no subpop.), which corresponds

to the description by Zechner et al. (2012).

The models not accounting for subpopulation structures did not fit the data at all (Fig-

ure 4.6B). Even the included variability in parameters did not improve the fits sub-

stantially. In contrast, both subpopulation models provided a good fit to the data.

However, the BIC for the MA model was substantially better than for the RRE model

(BICRRE − BICMA = 79.09).

Furthermore, we studied the uncertainty of the parameter estimates using profile likeli-

hoods (Figure 4.7). Using the MA with subpopulations, all parameters were identifiable,

indicated by a narrow profile. This was not the case for RREs, for which some param-

eters could not be identified from the data and showed a flat profile. For the case of no

subpopulations, most of the true parameters did not lie within the estimated intervals

(Figure 4.7B&C). This emphasizes the importance of taking into account subpopulation

structures.

4.2.4 Accounting for correlations in multivariate measurements

Many single-cell technologies provide multivariate measurements and therefore convey

information about the correlations between the observables. To incorporate this, we

extended our hierarchical modeling framework to multivariate data and demonstrated

its capability to reconstruct the differential protein expression of cellular subpopulations

(Kharchenko et al., 2014; Sauvageau et al., 1994) using simulated data. We considered a

model describing the abundance of two proteins, the expression of which is regulated by

stimulus u (Figure 4.8A). The influence of u varies between cell populations and is therefore

able to capture, e.g., different levels of membrane receptors. We generated multivariate

data by simulating a single-cell model.
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The simple model of differential protein expression considers six reactions

R1 : ∅ → A , rate = k1 ,

R2 : ∅ → B , rate = k1 ,

R3 : ∅ → A , rate = k2u ,

R4 : ∅ → B , rate = k3u ,

R5 : A→ ∅ , rate = k4[A] ,

R6 : B→ ∅ , rate = k4[B] ,

comprising the basal expression with rate k1, degradation with rate constant k4 and

stimulus-induced expression, depending on u, with rate constants k2 and k3 for protein

A and B, respectively. The corresponding ODE system for the temporal evolution of

(x1, x2) = ([A], [B]) is

ẋ1 = k1 + k2u− k4x1 ,

ẋ2 = k1 + k3u− k4x2 ,

with initial conditions

x1(0) = x2(0) =
k1

k4
,

obtained by assuming that the system was in steady state before the stimulus was added

at 0 min. Two subpopulations were assumed, one showing high expression of A while the

other showed high expression of B after stimulation with u. The degradation rate constant

k4 was considered to be cell-to-cell variable,

k4 ∼ logN (βk4 , σ
2
k4) , (4.16)

with median βk4 and scale σk4 which were equal between the subpopulations. The mea-

surements were exposed to log-normally distributed multiplicative measurement noise

parametrized by σnoise.
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The hierarchical model accounted for the subpopulation variability of k2 and k3 and the

cell-to-cell variability of k4. This yielded the subpopulation parameters

βs =


k1

k2,s

k3,s

βk4
σnoise


homogeneous ,

subpopulation variable ,

subpopulation variable ,

cell-to-cell variable ,

homogeneous ,

Ds,ij =

{
σ2
k4
, for i = j = 4 ,

0 , otherwise .

Using our hierarchical approach confirmed the ability of the proposed model to reproduce

the data (Figure 4.8B) and to provide reliable parameter estimates (Figure 4.8C). Such

multivariate data cannot be exploited by existing model-based approaches. When the tem-

poral evolution of proteins is measured individually, the correlation information is missing

and a symmetry arises in the system (Figure 4.8D). This is reflected in the multimodal

profiles of the parameters k2,1 and k2,2, indicating a lack of practical identifiability.

Our framework exploits the correlation structures of multivariate data, which in this sim-

ulation example allowed us to conclude that each subpopulation had a high expression of

only a single protein. This only becomes possible when the correlations are analyzed.

4.3 Application example: Pain sensitization

To assess the modeling framework in a real application setting, we studied pain sensiti-

zation in primary sensory neurons. These neurons are highly heterogeneous cells which

are involved in pain sensitization. In this section, we studied signal transduction in the

extracellular-signal regulated kinase (Erk) pathway, a signaling cascade that is involved in

a range of biological processes. The specific focus of this section is pain sensitization in re-

sponse to nerve growth factor (NGF) stimulation (Andres et al., 2012; Hucho and Levine,

2007; Ji et al., 2009). The neurons encounter a broad range of extracellular environments,

including various extracellular scaffolds, and are highly heterogeneous. Performing single-

cell microscopy experiments (Andres et al., 2010; Isensee et al., 2014), we investigated the

influence of extracellular scaffolds on the response of individual subpopulations.
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Figure 4.8: Reconstruction of differential protein expression in heterogeneous popula-
tions using multivariate data. (A) Model of differentially expressed proteins A and B.
(B) Upper row: data points (1000 cells per time point) and kernel density estimation.
Lower row: data points and model for the full distribution. (C,D) CIs for the parameters
of the model using (C) the full distribution and (D) the marginal distributions. Horizontal
bars show the CIs corresponding to the 80%, 90%, 95%, and 99% confidence levels. The
vertical lines show the MLE. This figure is a modified version of Figure 4 of the author’s
publication (Loos et al., 2018b).

4.3.1 NGF-induced Erk signaling in primary sensory neurons

We applied the hierarchical modeling approach to investigate the influence of an extra-

cellular scaffold on NGF-induced Erk1/2 activation in cultures of adult sensory neurons

(Figure 4.9A). This was done by monitoring the rates of NGF-mediated Erk1/2 phospho-

rylation in dissociated cultures of the primary sensory neurons of rat dorsal root ganglia.

NGF-mediated Erk1/2 signaling has been shown to play a crucial role in nociceptor sen-

sitization in thermal and mechanical hyperalgesia (Malik-Hall et al., 2005; Zhuang et al.,

2004). Primary sensory neurons form a heterogeneous population, from which, upon NGF

stimulation, a subpopulation reacts with a graded Erk1/2 phosphorylation response. Pre-
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vious models have attempted to approximate this by assuming the existence of responders

and non-responders with differing levels of the NGF receptor TrkA (Hasenauer et al.,

2014). Here, we refined this substantially by modeling the overall population using two

heterogeneous subpopulations that differed in their average response. To calibrate this re-

fined model, we collected quantitative single-cell microscopy data on NGF-induced Erk1/2

phosphorylation kinetics and dose response curves using immunofluorescence labeling of

pErk1/2 alone, co-labeled with Erk1/2 and TrkA antibodies (see STAR Methods of (Loos

et al., 2018b) for more details on the experimental setup).

We employed the model proposed by Hasenauer et al. (2014), which comprises the reactions

R1 : TrkA + NGF→ TrkA:NGF , rate = k1[TrkA][NGF] ,

R2 : TrkA:NGF→ TrkA + NGF , rate = k2[TrkA:NGF] ,

R3 : Erk→ pErk , rate = k3[TrkA:NGF][Erk] ,

R4 : Erk→ pErk , rate = k4[Erk] ,

R5 : pErk→ Erk , rate = k5[pErk] .

Conservation of mass yields

[TrkA] + [TrkA:NGF] = [TrkA]0 ,

[NGF] + [TrkA:NGF] = [NGF]0 ,

[Erk] + [pErk] = [Erk]0 .

To eliminate structurally non-identifiable parameters, the model was reparametrized to

ẋ1 = k1[NGF]0(k3[TrkA]0 − x1)− k2x1 , x1(0) = 0 , (4.17)

ẋ2 = (x1 + k4)(sP [Erk]0 − x2)− k5x2 , x2(0) =
k4sP [Erk]0
(k4 + k5)

,

with x1 = k3[TrkA:NGF] and x2 = sP [pErk]. The observables for the considered experi-

mental conditions are

ye =


sP,e[pErk] + oP,e , e = 1, 2 ,

(sP,e[pErk] + oP,e, sT [TrkA]0 + oT )T , e = 3 ,

(sP,e[pErk] + oP,e, sE [Erk]0 + oE)T , e = 4 ,
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to compare the subpopulations on poly-D-lysine (PDL). This comprises pErk1/2 kinetics

(e = 1), pErk1/2 dose response (e = 2), pErk/TrkA dose response (e = 3), and pErk/Erk

dose response (e = 4). Furthermore, the observables to study the effects of the extracellular

scaffolds PDL and collagen type I (Col I) on the neurons (PDL: e = 1, 3, 5, 7, Col I:

e = 2, 4, 6, 8) are:

ye =


sP,e[pErk] + oP,e , e = 1, 2, 3, 4 ,

(sP,e[pErk] + oP,e, sT [TrkA]0 + oT )T , e = 5, 6 ,

(sP,e[pErk] + oP,e, sE [Erk]0 + oE)T , e = 7, 8 .

This comprises pErk1/2 kinetics (e = 1, 2), pErk1/2 dose response (e = 3, 4), pErk/TrkA

dose response (e = 5, 6), and pErk/Erk dose response (e = 7, 8).

The pErk1/2, TrkA and Erk1/2 levels could only be measured up to some scaling con-

stants denoted by sP , sT and sE , respectively, and with some offsets denoted by oP , oT and

oE . Each observable was assumed to be subject to multiplicative log-normally distributed

measurement noise parametrized by σP,e,noise, σT,noise and σE,noise. For the comparison of

the extracellular scaffold, the same scaling, offset, and measurement noise parameters were

used for PDL and Col I. For each subpopulation, we used the sigma-point approximation

accounting for cell-to-cell variability in cellular TrkA activity and Erk1/2 levels. The co-

variance between TrkA activity and relative Erk1/2 expression was parametrized, account-

ing for correlations, with the matrix logarithm parametrization M(σT , σE , σTE) ∈ R2×2.

All other entries of Ds were assumed to be 0.

4.3.2 Differences between subpopulations

Differences between the responses of responders and non-responders are likely caused by

the expression of the receptor corresponding to the stimulus. In case of NGF the activation

of the TrkA receptor leads classically to Erk1/2 sensitization signaling. Thus we first

validated our modeling approach by predicting causal differences between subpopulations

and its accordance with described differences in TrkA expression. We used experimental

kinetic and dose response data from sensory neurons cultured on the adherence substrate

PDL.

We accounted for all possible combinations of subpopulation variability of k1, k2, k4, k5,

k3[TrkA]0, and sP,e[Erk]0. This yielded in total 26 = 64 models that were tested, ranging

from nθ = 26 parameters, for the model assuming no subpopulations at all, to nθ = 33 pa-
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rameters, assuming that the subpopulations differ in all parameters. To take into account

all hierarchical models, we considered the BIC weights (2.39). The BIC-based ranking

scheme suggested that cellular TrkA activity (k3[TrkA]0) made the greatest contribution

(Figure 4.9B). This was indicated by a high BIC weight and the substantially better mean

rank of the models using differences in cellular TrkA activity compared with those using

other differences. Using a model including only additional subpopulation variability of

TrkA expression levels produced an excellent fit to the experimental data (Figures 4.9C).

This difference was also confirmed experimentally in the cultures (Figure 4.9D).

The potential differences which follow cellular TrkA activity are the relative Erk1/2 ex-

pression levels (s[Erk]0) and the dephosphorylation rate constant (k5). However, our ex-

perimental data showed no statistically significant difference in total Erk1/2 levels between

responders and non-responders (Figure 4.9E). To assess the relevance of the dephosphory-

lation rate and thus the corresponding phosphatase activity, we performed experiments in

which we monitored the pErk1/2 decline dynamics after inhibiting the mitogen-activated

protein kinase (Mek) that phosphorylates Erk1/2. If the phosphatase activity varies, we

would expect to observe different equilibration dynamics. To validate whether the two

subpopulations differ in their dephosphorylation/phosphotase activity (parametrized by

k5), we inhibited cells with the Mek-inhibitor U0126 (10µM). NGF binds to the TrkA+

subpopulation and activates pErk1/2 signaling, whereas GDNF binds to the Ret receptor

on the opposing subpopulation (TrkA-) and yields pErk1/2 signaling in this neuronal sub-

group. Cells were pre-stimulated for 1 h with the combined stimuli NGF (20 ng/ml) and

GDNF (100 ng/ml) to obtain responses in both subpopulations. We measured pErk1/2

levels to obtain the dynamics of the dephosphorylation as well as TrkA levels to distinguish

the two subpopulations. Cells were considered to belong to the TrkA+ subpopulation if

their intensity was above 670 and to the TrkA- subpopulation if their intensity was be-

low 630. The measurements were taken every 3 minutes between 0 and 37 min for four

replicates.

To obtain the de-phosphorylation rate constant k5, we normalized the values of pErk1/2

to 1 at t =0 min and 0 at tmax = 37 min. We fitted an exponential decay,

E(t) = Ec exp(−k5t) + Eo ,

to the scaled data of the four replicates. The scaling Ec and offset Eo could be determined

from the boundary conditions

E(0) = 1 and E(tmax) = 0 .
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This yielded four values for the de-phosphorylation in the TrkA+ subpopulation and in

the TrkA- subpopulation. A two-sample t-test with Welch’s correction gave a p-value

of 0.62, indicating that the dephosphorylation rates in the two subpopulations were not

significantly different (Figures 4.9F).

We compared the results of model selection by BIC and log pointwise posterior density.

This was done for the models accounting for no or one difference between the subpopula-

tions. We considered this reduced set of models for the comparison, as the sampling for

the calculation of the log pointwise predictive density and the calculation of the Bayes

factors took on average 780 CPU hours per model. The BIC values, the log pointwise

posterior density and the Bayes factors strongly prefer the model accounting for differing

TrkA levels over all other models (∆BIC > 7 ·103). We found that the log pointwise poste-

rior density is sensitive to the splitting of the data set, with smaller test and training data

sets preferring less complex models. The results in Figure 4.9G are shown for splitting

the data set in two parts, which gave a rank correlation of r = 0.61. The Bayes factors

even yielded a rank correlation of r = 1, indicating that the Bayes factors are indeed well

approximated by the BIC for these models.

The final model accounted for subpopulation differences in cellular TrkA activity and also

took into account differences in the variance of TrkA activity between the subpopulations.

The fits for parts of the data are visualized in Figure 4.9C. Using the final calibrated

model, we predicted the relation between pErk1/2 levels at 0 and 120 min by drawing

parameters from the inferred single-cell parameter distribution and simulating the ODE

model (Figure 4.9H).

In summary, this analysis of subpopulation structures demonstrates that the hierarchical

approach using experimental data provided an appropriate ranking of differences which

could be demonstrated experimentally and is in line with literature (reviewed in, e.g.,

(Mantyh et al., 2011)).
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Figure 4.9: Sources of heterogeneity between subpopulations in primary sensory neu-

rons. Figure caption on next page.
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Figure 4.9: Sources of heterogeneity between subpopulations in primary sensory neu-
rons. (A) Pathway model of NGF-induced Erk signaling. (B) Ranking according to the
BIC values for the 64 hierarchical models, in which the colored dots indicate those pa-
rameters that are assumed to differ between the subpopulations. The importance of the
differences is ranked according to the BIC weights. The black circles indicate the mean
rank of the models including the corresponding difference. (C) Data and fit for measure-
ments of pErk1/2 levels (approximately 1400 cells per time point and 4300 cells per dosage)
and multivariate measurements of pErk/TrkA and pErk/Erk levels (approximately 3000
cells per dosage) measured for 60 min under NGF stimulation with indicated concentra-
tions. The measured values are in arbitrary units of intensity. For the multivariate data,
the contour lines of the kernel density estimation of the data and the level sets of the
density of the hierarchical model are shown. Mean and standard deviation of (D) TrkA
levels (nr = 4 replicates) (E) Erk1/2 levels (nr = 4) and (F) Erk1/2 dephosphorylation
(nr = 4) of non-responsive (pErk-) and responsive (pErk+) sensory neurons after NGF
stimulation with varying concentrations (as indicated in (C) for 60 min). (G) Comparison
of models, which account for one or no difference between subpopulations, using BIC, log
pointwise predictive densities and Bayes factors. (H) Predicted single-cell trajectories for
the optimal parameter values, showing the relation between pErk1/2 levels in steady state
(0 min) and after stimulation with NGF (120 min). The color of the cells indicates the
TrkA level, which is assumed to be constant over time. This figure is a modified version
of Figures 5 and S4B&E of the author’s publication (Loos et al., 2018b).

4.3.3 Differences mediated by extracellular scaffolds

Even though matrix molecules have been investigated for their impact on signaling path-

ways underlying neurite outgrowth (Chen et al., 2007; Myers et al., 2011), much less is

known about the role of cell scaffolds in sensitization and thus sensitization signaling of

nociceptive neurons. To approach this, we compared the modification of the well-described

NGF initiated sensitization signaling pathway by the two example scaffolds, Col I, a clas-

sical extracellular matrix protein that forms receptor-matrix interactions, and by PDL, a

neutral scaffolding that promotes cell adherence by electrostatic interaction. We deter-

mined the kinetics and dose response curves of NGF-induced Erk1/2 phosphorylation in

sensory neurons cultured overnight on Col I or PDL. We found that the mean Erk1/2

activation was approximately 17 % higher in Col I compared to PDL after NGF treatment

(Figure 4.10A for pErk1/2 dose responses). In addition to showing increased NGF-induced

Erk1/2 activation, the number of cells was observed to be 1.5 times lower in the collagen

cultures than in the PDL cultures. These observations raised questions about the source

of the measured increase in mean NGF-mediated Erk1/2 activation. We considered two

hypotheses: (i) the increase results from a biological action of the different scaffolds onto

the neurons; and (ii) the increase reflects a shift of the subpopulation sizes arising from a



104 CHAPTER 4. MECHANISTIC MODELING OF SINGLE-CELL DATA

nonrandom loss of parts of the high-responder subpopulation due to reduced cell adherence

in the collagen cultures.

To unravel the causal differences between the primary sensory neurons cultured on PDL

and on Col I, we used the model which assumes subpopulation differences in TrkA levels.

The model for each adherence substrate accounted for the cell-to-cell variability of Erk1/2

and the inter- and intra-subpopulation variability of cellular TrkA activity. The differences

between the extracellular scaffolds were parametrized as

κk1 , κk2 , κk4 , κk5 , κβk3[TrkA]0
, κβc[Erk]0

, κw ,

and the parameters were related by

k1,Col I = k1,PDL10κk1 .

Accounting for these seven potential differences, we defined 128 hierarchical models. Each

model was fitted to the data with multi-start local optimization using at least 20 starts.

We sorted the models with respect to their BIC value. The BIC weights for the differences

were computed by summing over the BIC weights (2.39) of the models accounting for the

corresponding differences. The model ranked first by the BIC (Figures 4.10B) gave a good

fit to the data and suggested differences not only in cellular TrkA activity (k3[TrkA]0) but

also in Erk1/2 expression (s[Erk]0), and Erk1/2 dephoshorylation (k5) (Figures 4.10C&D).

These differences were assumed to explain the higher response on Col I, and therefore

supported hypothesis (i). The model that assumed no difference between the extracellular

scaffolds (rank 128) or changes only in the relative size of the subpopulations (rank 127)

performed worst, indicating that hypothesis (ii) failed to explain the data. These results

confirmed the model-based analysis and suggested an impact of the classical extracellular

matrix protein Col I on protein expression. Indeed, the differences in relative TrkA and

Erk1/2 expression levels could be confirmed (Figures 4.10E&F).
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Figure 4.10: Differences in NGF-induced Erk1/2 phosphorylation mediated by different
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substrate showed a significantly higher mean phospho-Erk1/2 response to indicated doses
of NGF after 1 h of stimulation. Means and standard deviations of four replicates are
shown. (B) BIC-based ranking for the potential differences between culture conditions.
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scaffolds. (C) Experimental data and fit for measurements of pErk1/2 distributions from
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cultured neurons after treatment with indicated NGF concentrations for 1 h. (D) Marginal
levels for TrkA and Erk1/2, which were assumed to be constant over varying doses and
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for 6 doses). This figure is adapted from Figure 6 of the author’s publication (Loos et al.,
2018b).
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4.4 Robust calibration of hierarchical population models

In Section 3.1, we demonstrated the importance of incorporating robust distributions when

studying population average data. For single-cell snapshot data, the probability of outlier

in the data is even higher due to the high number of data points (Pyne et al., 2009).

However, the results obtained in Section 3.1 cannot directly be transferred to population

models due to specificities of the different data and model types.

In this section, we provide the likelihood functions for several distribution assumptions

which can be incorporated into the hierarchical population modeling framework. In par-

ticular, we investigate the choice of distribution φ in (4.9). For each distribution, we derive

the function gϕ defined in (4.3), which maps the mean and covariances of the species to

the distribution parameters ϕ. We assess the influence of the distribution assumption for

simulated data of the models studied in Section 4.2 and the experimental data studied in

Section 4.3.2.

4.4.1 Distribution assumptions

The multivariate normal distribution (4.4, 4.12) and its incorporation in the hierarchical

population modeling framework were introduced in Section 4.1.1. This distribution has

the parameters ϕ = (µ,Σ) with mean µ ∈ Rny and covariance matrix Σ ∈ Rny×ny and

was used for the analyses in previous Sections 4.2 and 4.3.

For the incorporation of the multivariate skew normal, we followed the definition of Pyne

et al. (2009). The distribution has the parameters ϕ = (µ,Σ, δ), with location µ ∈ Rny ,
skew parameters δ ∈ Rny and covariance matrix Σ ∈ Rny×ny . The probability density

function is

φ(ȳ|ϕ) = 2φny(ȳ|µ,Ω)Φ(α(ȳ − µ)) ,

with Ω = Σ+δδT and α = δTΩ−1/(1−δTΩ−1δ)
1
2 , φny denoting the multivariate normal

density with ny dimensions, and Φ denoting the cumulative distribution function of a

univariate standard normal distribution. The log-density function is given by

log φ(ȳ|ϕ) = log(2) + log(φny(ȳ|µ,Ω)) + log(Φ(α(ȳ − µ))) .
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Assuming that the distribution parameters depend on parameter vector θ, the gradient is

given by

∂ log φ(ȳ|ϕ(θ))

∂θi
=

∂φny(ȳ|µ(θ),Ω(θ))

∂θi

1

φny(ȳ|µ(θ),Ω(θ))
+

1

Φ(α(θ)(ȳµ(θ)))
φ1(α(θ)(ȳ − µ(θ))) ·(

−α(θ)
∂µ(θ)

∂θi
+ (ȳ − µ(θ))

∂α(θ)

∂θi

)
,

with

∂α(θ)

∂θi
=

∂

∂θi

δ(θ)TΩ(θ)−1
(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 1
2︸ ︷︷ ︸

:=a(θ)


=

(
∂δ(θ)T

∂θi
Ω(θ)−1 + δ(θ)T

∂Ω(θ)−1

∂θi

)
a(θ) + δ(θ)TΩ(θ)−1∂a(θ)

∂θi
,

∂Ω(θ)−1

∂θi
= −Ω(θ)−1∂Ω(θ)

∂θi
Ω(θ)−1

= −
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1
(
∂Σ(θ)

∂θi
+

1

2

(
δ(θ)δ(θ)T

)− 1
2 ·

(
∂δ(θ)

∂θi
δT + δ(θ)

∂δ(θ)T

∂θi

))
·
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1

,

∂a(θ)

∂θi
=

1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2
∂δ(θ)TΩ(θ)−1δ(θ)

∂θi

=
1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2

(
∂δ(θ)T

∂θi
Ω(θ)−1δ(θ) +

δ(θ)T
(
∂Ω(θ)−1

∂θi
δ(θ) + Ω(θ)−1∂δ(θ)

∂θi

))
.

The derivative of the multivariate normal density is given in (4.12). Following Pyne et al.

(2009) and Sahu et al. (2003), the mean and covariance matrix of the multivariate skew

normal distribution are given by

m = µ+

√
2

π
δ ,

C = Σ +

(
1− 2

π

)
δδT .
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Figure 4.11: Robust distributions for the hierarchical population model. The visualized
distributions (normal, skew normal, Student’s t and negative binomial) all have mean
m = 50 and variance C = 60.

This yields for ϕs(θ) = (µs(θ),Σs(θ), δ(θ)) the relation

µs(θ) = my
s(θ)−

√
2

π
δ(θ) ,

Σs(θ) = Cy
s(θ)−

(
1− 2

π

)
δ(θ)δ(θ)T + Γ(θ) ,

with measurement noise matrix Γ (4.7). The derivatives are given by

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
−
√

2

π

∂δ(θ)

∂θi
,

∂Σs(θ)

∂θi
=
∂Cy

s(θ)

∂θi
−
(

1− 2

π

)(
∂δ(θ)

∂θi
δ(θ)T + δ(θ)

∂δ(θ)T

∂θi

)
+
∂Γ(θ)

∂θi
.

The entries of the skew parameter vector δ are allowed to be different and are not linked

to the simulated moments of the system my
s and Cy

s . However, the entries are restricted

in a way that Σs needs to be positive definite.

The multivariate Student’s t distribution has distribution parameters ϕ = (µ,Σ, ν) with

location µ ∈ Rny , shape matrix Σ ∈ Rny×ny and degree of freedom ν ∈ R+. The proba-

bility density function reads

φ(ȳ|ϕ) =
Γ
(
ν+ny

2

)
|Σ|− 1

2

(πν)
ny
2 Γ
(
ν
2

) (
1 + 1

νZ
) ν+ny

2

,

with Z = (ȳ − µ)TΣ−1(ȳ − µ) ,
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with log-density function

log φ(ȳ|ϕ) = log Γ

(
ν + ny

2

)
− log Γ

(ν
2

)
+ log

(
|Σ|− 1

2

)
−

ny
2

log(πν)− ν + ny
2

log

(
1 +

1

ν
Z

)
.

The gradient is given by

∂ log φ(ȳ|ϕ(θ))

∂θi
=

1

2

((
Ψ

(
ν(θ) + ny

2

)
−Ψ

(
ν(θ)

2

)
− ny
ν(θ)

+

Z(θ)(ν(θ) + ny)− ν(θ)(ν(θ) + Z(θ)) log
(

1 + 1
ν(θ)Z(θ)

)
ν(θ)(ν(θ) + Z(θ))

)
∂ν(θ)

∂θi

− Tr

(
Σ(θ)−1∂Σ(θ)

∂θi

)
− ν(θ) + ny
ν(θ) + Z(θ)

∂Z(θ)

∂θi

)
,

with

∂Z(θ)

∂θi
= (y − µ(θ))TΣ(θ)−1

(
∂µ(θ)

∂θi

)T
+

(
∂µ(θ)

∂θi

)T
Σ(θ)−1(y − µ(θ)) +

(y − µ(θ))T
∂Σ(θ)−1

∂θi
(y − µ(θ)) ,

and digamma function Ψ as in (3.7). For ν > 2, the mean and covariance matrix of the

multivariate skew normal distribution are given by

m = µ ,

C =
ν

ν − 2
Σ .

This yields ϕs(θ) = (µs(θ),Σs(θ), ν(θ)) with

µs(θ) = my
s(θ) ,

Σs(θ) =
ν(θ)− 2

ν(θ)
(Cy

s(θ) + Γ(θ)) ,

and derivatives

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
,

∂Σs(θ)

∂θi
=
ν(θ)− 2

ν(θ)

(
∂Cy

s(θ)

∂θi
+
∂Γ(θ)

∂θi

)
+ (Cy

s(θ) + Γ(θ))
2

ν(θ)2

∂ν(θ)

∂θi
.
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As for the skewness parameter in the case of the skew normal distribution, the degree of

freedom ν is not linked to the simulated moments of the system.

A further distribution assumption which is often employed in the analysis of single-cell

data is the negative binomial distribution (Grün et al., 2014). For a two stage model of

gene expression, the protein number follows a negative binomial distribution, if the ratio

of mRNA degradation to protein degradation is high (Shahrezaei and Swain, 2008). This

distribution has the parameters ϕ = (τ, ρ) with τ > 0 and ρ ∈ [0, 1]. In contrast to the

other distributions in this section, this distribution is only defined for the one-dimensional

case. However, potentially extensions to higher dimensions could be employed (Shi and

Valdez, 2014). The probability density function reads

φ(ȳ|ϕ) =

(
ȳ + τ − 1

ȳ

)
(1− ρ)ȳρτ ,

and the log-density function

log φ(ȳ|ϕ) = log(Γ(ȳ + τ))− log(Γ(ȳ + 1))− log(Γ(τ)) + ȳ log(1− ρ) + τ log(ρ) .

The derivative of the log-density function is

∂ log φ(ȳ|ϕ(θ))

∂θi
=

(
Ψ(ȳ + τ(θ))−Ψ(τ(θ)) + log(ρ(θ))

)
∂τ(θ)

∂θi
+(

ȳ

1− ρ(θ)
+
τ(θ)

ρ

)
∂ρ(θ)

∂θi
.

The mean and variance of the negative binomial distribution are

m =
(1− ρ)τ

ρ
,

C =
(1− ρ)τ

ρ2
.

Thus, the distribution parameters ϕs(θ) = (ρs(θ), τs(θ)) are mapped to the moments and

measurement noise via

ρs(θ) =
my
s(θ)

Cys (θ) + σnoise(θ)
, (4.18)

τs(θ) =
my
s(θ)2

Cys (θ) + σnoise(θ)−my
s(θ)

. (4.19)
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If no measurement noise is taken into account, it is required that C > m such that τ > 0.

The derivatives of the distribution parameters are

∂ρs(θ)

∂θi
=

1

Cys (θ) + σnoise(θ)

∂my
s(θ)

∂θi
− my

s(θ)

Cys (θ) + σnoise(θ)

(
∂Cys (θ)

∂θi
+
∂σnoise(θ)

∂θi

)
∂τs(θ)

∂θi
=

my
s(θ)(2Cys (θ) + 2σnoise(θ)−my

s(θ))

(Cys (θ) + σnoise(θ)−my
s(θ))2

∂my
s(θ)

∂θi
−

my
s(θ)2

(Cys (θ)σnoise(θ)−my
s(θ))2

(
∂Cys (θ)

∂θi
+
∂σnoise(θ)

∂θi

)
.

4.4.2 Evaluation of influence of distribution assumptions for simulated data

We simulated univariate data for three different models: (i) conversion process (Figure

4.4A, 4.12A); (ii) two stage gene expression (Figure 4.6A, 4.12B); and (iii) birth-death

process (Figure 4.8A, 4.12C). The models (ii) and (iii) are commonly used for the descrip-

tion of gene expression. For each model, we chose three parameter vectors, three numbers

of time points and four numbers of cells per time point (50, 100, 500, 1000). This yielded

108 data sets which were simulated using the SSA. The differences in the measurements

for individual cells arose solely due to intrinsic noise and no additional measurement noise

was added to the data.

To assess the distribution assumption in the hierarchical population model, we generated

data for different outlier scenarios (Figure 4.12D):

(i) no outliers: no outliers were included in the data.

(ii) zeros: the measured concentration at a certain time point tk is zero, e.g., due to a

missing label or entry. Consequently, we measured ȳj = 0.

(iii) doublets: two cells were wrongly measured as one cell. To simulate this, the measured

value of a random cell was doubled.

(iv) uniform: cells were randomly chosen and their measured value assigned to the

rounded value of a uniformly distributed value on an interval which is 1.5 times

broader than the range Ino outlier of the measurements without outliers.

We assumed 2%, 5% and 10% of the cells to be outliers for scenarios (ii), (iii), and (iv),

respectively. We calibrated the hierarchical population models based on all data sets for

the different distribution assumptions with 30 multi-starts. For this, we assumed the

true underlying source of subpopulation variability to be known and did not allow for

measurement noise.
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For the model of the birth-death process (Figure 4.12C), the first time point follows a

Poisson distribution, for which the mean equals the variance. The MA provides that mean

and variance equal the ratio of stimulus-independent synthesis to degradation. Linking the

moments for the first time point to the distribution parameters of the negative binomial

distribution is thus not possible, since it hurts the restriction that the variance needs

to be higher than the mean and results in undefined τ (4.19). The density cannot be

evaluated for the first time point without the assumption of additional measurement noise

which would increase the variance. Thus, the negative binomial distribution could not be

applied to study this model.

In the case of outlier-free data, the best distribution assumption according to the BIC

differs between the studied models. For the conversion process and birth-death process,

the normal distribution seemed most appropriate, while for the two stage gene expression

model the Student’s t and the negative binomial distributions were chosen. It is to be

expected that the negative binomial distribution fits well for this model, since this process

follows a negative binomial distribution in steady state if the ratio between mRNA and

protein degradation rate is high (Shahrezaei and Swain, 2008). As soon as outliers were

introduced to the data, the Student’s t distribution provided most often the best BIC.

The MSE obtained with the Student’s t distribution was similarly low as the best obtained

MSE and did not change a lot for the outlier-corrupted data sets. However, the MSE

obtained for other distributions increased substantially in the presence of outliers.

For the here considered models and data sets, the computation time, convergence and,

thus, performance were not influenced by the presence of outliers. For the conversion

process, the negative binomial distribution needed the lowest computation time, directly

followed by the normal distribution. For the other models, the normal distribution re-

quired the lowest computation time. This might be due to the lower dimension of the

optimization problem since no additional parameters were estimated from the data such

as it is the case for the skew normal and the Student’s t distributions. In terms of converged

starts, we observed some differences between the considered models. For the conversion

process the negative binomial distribution, and for the remaining models the skew nor-

mal distribution, provided the lowest number of converged starts, while the normal and

Student’s t distributions did not seem to suffer from convergence problems. The influence

of the outliers is also visualized for example data sets of the outlier scenarios where the

normal, skew normal and negative binomial distributions were clearly deviated by the

outliers (Figure 4.12E). In this simulation study, the degrees of freedom of the models

were limited since no measurement noise was incorporated in the population models.



4.4. ROBUST CALIBRATION OF HIERARCHICAL POPULATION MODELS 113

0 100 200 300 400
0

100

200

200 400 600 800 200 300 400

doublets

data                                  outliers

zeros uniform

counts

fre
qu

en
cy

M
SE

Δ
BI

C+
1

 C
PU

 ti
m

e
pe

r s
ta

rt

no outliers

mA A
u

BA
u

A

with outliers

A

D

E

co
nv

. s
ta

rts
 

pe
r m

in
u

co
nv

er
ge

d 
st

ar
ts

 [%
]

104

102

100

102

100

10-2

10-4

102

101

100

10-1

100

50

0

102

101

100

normal                              skew normal                           Student’s t                        negative binomial                 

B C
fre

qu
en

cy

200 400 600 800
counts

0

100

200

300

fre
qu
en
cy

200 300 400
counts

0

100

200

300

fre
qu
en
cy

0 100 200 300 400
counts

0

100

200

300

fre
qu
en
cy

no outliers with outliers no outliers with outliers

Ino outlier
Ioutlier

Figure 4.12: Robust distributions within the hierarchical population modeling frame-
work. (A-C) Comparison of BIC values, MSE, CPU time per optimization start, number
of converged starts and performance for the distribution assumptions for the models of a
(A) conversion process, (B) two stage gene expression and (C) birth-death process. We
considered outlier-free and outlier-corrupted data. Each boxplot showing the CPU time
per optimization start has 1080 points (36 data sets and 30 multi-starts) and the other
boxplots comprise 36 points. (D) Outlier scenarios for single-cell snapshot data illustrated
for example data sets of a conversion process with (E) corresponding fits obtained by
different distribution assumptions.
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4.4.3 NGF-induced Erk signaling

To test the distributions in a real application setting, we reanalyzed the data and the hier-

archical population model introduced in Section 4.3.2. For these data, we cannot apply the

negative binomial distribution, since the distribution requires integer valued measurements

and is only defined for univariate measurements. In this section, we used log-transformed

simulations and data. Calibrating the hierarchical population models using the normal (as

in Section 4.3.2), the skew normal and the Student’s t distributions, we found that for the

univariate data of the pErk1/2 kinetics, the model fits cannot visually be distinguished

(Figure 4.13A). However, for the bivariate data, the skew normal and the Student’s t

distributions fit the data better (Figure 4.13B). We cannot assess the MSE since the true

parameters are not known. Visualizing the likelihood waterfall plots (Figure 4.13C) and

analyzing the performance of the optimizations (Figure 4.13D), we found that the Stu-

dent’s t distribution substantially outperformed the other distributions. Interestingly, the

skew normal distribution which showed bad performance for the simulation study has

here a comparable performance as the normal distribution. The skew normal distribution

provided the best likelihood value. However, it also has the highest number of parameters

since for the bivariate measurements each dimension is allowed to have different skewness

parameters.

4.5 Summary and discussion

Elucidating the causes of cellular heterogeneity is a challenging task in systems biology

and requires appropriate mechanistic models for the use with single-cell data. In this

chapter, we proposed a hierarchical modeling framework that for the first time allowed

different levels of heterogeneity to be investigated, including subpopulation structures and

cell-to-cell variability within subpopulations. Beyond cell-to-cell variability, the method

accounts for measurement noise and is able to deconvolute these sources.

This modeling approach unifies available mechanistic modeling and inference frameworks

(Hasenauer et al., 2014; Zechner et al., 2012), complements available statistical meth-

ods and exploits efficient simulation methods for cellular subpopulations. The proposed

method facilitates the integration and simultaneous analysis of multiple data sets, without

requiring complex pre-processing of the data (Lee et al., 2011).

Differences between cell types can be analyzed and modeled in the same manner as differ-

ences between cellular subpopulations. The method is also able to handle more than two

subpopulations, and the number of subpopulations can even be inferred using a data-driven
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Figure 4.13: Robust distributions for NGF-induced Erk signaling. (A,B) Data and model
fits for (A) univariate measurements of pErk1/2 levels and (B) bivariate measurements
for pErk/TrkA and pErk/Erk levels. (C) Likelihood waterfall plot for the three different
distribution assumptions. The best 80 values are shown and in total 500 multi-starts were
performed. (D) The performance of the optimization measured as number of converged
starts per minute.

approach. Procedures such as a forward-backward algorithm (Section 2.4.2) or reversible

jump Markov Chain Monte Carlo (Green, 1995) could be implemented to simultaneously

perform parameter estimation and model selection.

In this thesis, we incorporated various distributions to model the cell population. We

found that the normal distribution assumption was appropriate when not many outliers

are to be expected. The negative binomial distribution did not provide appropriate results
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for all scenarios, is highly restricted by the relation between mean and variance and can

only describe univariate data. A trivial extension to allow for multivariate measurements

would be the product distribution, which neglects correlations. Multivariate extensions

which account for correlations could be incorporated (Shi and Valdez, 2014). If the data is

outlier-corrupted, robust alternatives such as the Student’s t distribution might be more

reasonable. This distribution also provides reliable results when the data is outlier-free

and could be considered as a default distribution assumption. If more information is

available about the precise type of outliers, e.g., that they arise due to dropout events

in single-cell RNA-seq data, computational methods can be adapted accordingly (Eraslan

et al., 2019; Pierson and Yau, 2015). While the Student’s t distribution suffered from

problems of over-fitting in the case of population-average data (Chapter 3), the number of

measurements in single-cell data sets is usually much higher and we do not expect to face

the same problems as observed in Section 3.1.2. To allow for different degrees of freedom

in multivariate measurements, a t copula could be employed (Luo and Shevchenko, 2010).

Also, a skewed version of the Student’s t distribution as, e.g., used by Pyne et al. (2009)

could be incorporated.

The inference of mechanistic models from single-cell data relies on statistical models for

the measurement and sampling process. In many modeling studies using single-cell data,

no distinction is made between cells from different batches, obscuring cell-to-cell variabil-

ity and differences between experimental batches (Hicks et al., 2017). We observed that

model selection is often biased towards complex models. To circumvent this issue, we

used a ranking of potential differences rather than a precise measure of statistical signif-

icance. However, this problem will need to be addressed, as the use of single-cell data is

increasingly common.

In summary, we proposed the use of hierarchical population models as a novel tool to

study heterogeneity in multivariate single-cell data and evaluated their performance. Our

framework is the first to account for multiple levels of heterogeneity simultaneously. Our

results on simulation and application examples suggested that this method can be used to

obtain a more holistic understanding of cellular heterogeneity.



Chapter 5

Summary and conclusion

Each step in the building, calibration and comparison of mathematical models for studying

biological processes faces different challenges depending on the biological questions and

data types considered. In this thesis, we covered all these steps and addressed the research

questions posed in Section 1.2. These are the methodological questions of robust and

efficient modeling and model calibration for population averages and single-cells as well

as the biological questions of histone methylation and pain sensitization.

In Chapter 3 we addressed the problems of outlier-occurrence and large number of pa-

rameters for ODE models which are calibrated to population average data. We used

distributions with heavier tails than the Gaussian distribution and derived the gradients

and Hessians of the corresponding likelihood functions to enable an efficient optimiza-

tion. The alternative distributions allowed for robust estimation results for our considered

outlier scenarios. This provided the first comprehensive evaluation of alternative distribu-

tions in the biosciences, where specific experimental errors and outliers occur. The Cauchy

and Student’s t distributions faced problems with over-fitting when the sample size is too

small. However, we found that the Laplace distribution provides a good trade-off between

robustness and computational complexity. For the Gaussian and Laplace distributions,

we were able to employ a hierarchical scheme for optimization, where we calculate the

optimal scaling and noise parameters, which do not contribute to the dynamics of the

system, analytically. The hierarchical approach to optimization yielded a substantial in-

crease in optimizer performance, measured in terms of the number of converged starts

as well as computation time required. Furthermore, the approach can also be used to

calculate profile likelihoods of the parameters. We evaluated the proposed methods for

real experimental data of histone modifications. We built models which represent different

hypothesis about the mechanisms of histone H3 methylation and calibrated these models

employing Laplace noise and hierarchical optimization. We found that a model assum-

ing that the histone tails are only methylated up to a predefined final state seems more

appropriate.

In Chapter 4 we provided a framework for mechanistically studying heterogeneous sub-

populations based on single-cell snapshot data. For this, we proposed the hierarchical
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population model which unifies existing modeling techniques and facilitates the inclusion

of different types of heterogeneity. This includes cellular variability between and within

subpopulations. Similarly to Section 3.1, we also provided the equations to incorporate

alternative distribution assumptions to the Gaussian distribution and assessed their influ-

ence on optimization results and performance. Since the individual data types are rather

specific, the results obtained in Chapter 3 could not directly be transferred to the results

on single-cell data. Indeed, we found that for our examples, the Student’s t distribution

did not suffer from the problems of over-fitting which occurred for population average

data. We also evaluated the methods proposed in Chapter 4 for real experimental data, in

particular, for data of NGF-induced Erk signaling in primary sensory neurons. Performing

model selection for a large number of models, we found that extracellular scaffolds have

an impact on intracellular signaling but do not change the subpopulation composition.

We discussed ideas for possible extensions of all proposed methods in the corresponding

Sections 3.5 and 4.5. These ideas comprised, e.g., the use of adjoint sensitivities within

the hierarchical approach for optimization to enable the efficient calibration of even larger

models. Furthermore, methods for simultaneously estimating the parameters and per-

forming model selection could be employed, and other promising alternative distributions

could be incorporated in the frameworks. Further work could also be directed towards

enabling the fitting of mechanistic models with a large number of parameters for single-cell

data. For this, approaches from Chapter 3 for improving efficiency of optimization could

be employed for studying single-cell data, e.g., analytically calculating optimal parameter

values for parameters not required for model simulation. Furthermore, adjoint sensitivity

analysis could not only be used for the calibration of ODE models, but also to facilitate a

more efficient calibration of population models. Beyond population average and single-cell

snapshot data, single-cell time-lapse data are commonly studied but were not considered

in this thesis. These data provide temporal information about individual cells and the

concepts proposed in this thesis could also be extended to include this information.

To conclude, this thesis proposed methods for the mathematical modeling and model cali-

bration for different types of biological data. We showed the importance and capabilities of

the methods by applying the methods to real biological problems and gaining new insights

into the mechanisms of histone methylation and pain sensitization. This demonstrated

that the methods and their application to study a broad range of biological questions will

enable progress towards the aim of systems biology, namely, getting a holistic, mechanistic

understanding of biological systems.
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A. Hessian matrices

We provide the Hessian matrices for the Gaussian, Laplace, Cauchy, Student’s t and Huber

distributions which were introduced in Section 3.1.

The Hessian matrix for the Gaussian distribution (3.2) for l,m = 1, . . . , nθ is given by

∂logLD(θ)

∂θl∂θm
= −1

2

∑
j

[
− 1

σ4
j (θ)

(
1− 2

(ȳj − yj(θ))2

σ2
j (θ)

)
∂σ2

j (θ)

∂θl

∂σ2
j (θ)

∂θm

+
1

σ2
j (θ)

(
1− (ȳj − yj(θ))2

σ2
j (θ)

)
∂2σ2

j (θ)

∂θl∂θm

+ 2
ȳj − yj(θ)

σ4
j (θ)

(
∂σ2

j (θ)

∂θl

∂yj(θ)

∂θm
+
∂σ2

j (θ)

∂θm

∂yj(θ)

∂θl

)
+ 2

1

σ2
j (θ)

∂yj(θ)

∂θl

∂yj(θ)

∂θm
− 2

ȳj − yj(θ)

σ2
j (θ)

∂2yj(θ)

∂θl∂θm

]
.

For optimization, we approximated the Hessian by neglecting terms which depend on the

second-order derivative of the outputs with respect to the parameters. This is based on

the assumption that for good fits ȳj − yj(θ) is small and, thus, also the influence of the

second-order sensitivities is small.

The Hessian matrix for the Laplace distribution (3.3) is given by

∂2logLD(θ)

∂θlθm
=
∑
j

[(
− 1

σj(θ)
+
|ȳj − yj(θ)|
σ2
j (θ)

)
∂2σj(θ)

∂θl∂θm

+

(
1

σ2
j (θ)

− 2|ȳj − yj(θ)|
σ3
j (θ)

)
∂σj(θ)

∂θl

∂σj(θ)

∂θm

− sgn(ȳj − yj(θ))

σ2
j (θ)

(
∂σj(θ)

∂θl

∂yj(θ)
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sgn(ȳj − yj(θ))

σj(θ)

∂2yj(θ)

∂θl∂θm

]
.

Note that, in contrast to Gaussian noise, the term including the second-order sensitiv-

ities has an influence on the Hessian for Laplace noise even for small deviations of the

measurement and observable.
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The Hessian matrix for the Huber distribution (3.4) is given by

∂2logLD(θ)

∂θl∂θm
=
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j
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For residuals for which the absolute value is greater than τ , the Hessian depends on

second-order sensitivities, even for small deviations of measurement and observable.

The Hessian matrix for the Cauchy distribution (3.5) is given by
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2(ȳj − yj(θ))2
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.

Assuming that the deviation between measurement and observable is small, we can again

neglect the second-order sensitivities. This provides an approximation which only depends

on the first-order sensitivities.

The Hessian matrix for the Student’s t distribution (3.6) is given by
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(ȳj−yj(θ))2

σ2
j (θ)

− 1

(νj(θ) +
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,

where Ψ1 is the trigamma function, the derivative of the digamma function Ψ as in (3.7).

Assuming that the deviation between measurement and observable is small, we can again

neglect the second-order sensitivities. This provides an approximation which only depends

on the first-order sensitivities.

B. Standard model for histone methylation

Here, we provide the equations for the absolute abundance of histone modifications of

generation g corresponding to (3.25):
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

˙̃xg,00
˙̃xg,01
˙̃xg,02
˙̃xg,03
˙̃xg,10
˙̃xg,11
˙̃xg,12
˙̃xg,13
˙̃xg,20
˙̃xg,21
˙̃xg,22
˙̃xg,23
˙̃xg,30
˙̃xg,31
˙̃xg,32



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1
1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1
1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1
0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0



T 

cg(t)N(t)
k00→01 x̃g,00

k00→10 x̃g,00

k01→02 x̃g,01

k01→11 x̃g,01

k02→03 x̃g,02

k02→12 x̃g,02

k03→13 x̃g,03

k10→11 x̃g,10

k10→20 x̃g,10

k11→12 x̃g,11

k11→21 x̃g,11

k12→13 x̃g,12

k12→22 x̃g,12

k13→23 x̃g,13

k20→21 x̃g,20

k20→30 x̃g,20

k21→22 x̃g,21

k21→31 x̃g,21

k22→23 x̃g,22

k22→32 x̃g,22

k30→31 x̃g,30

k31→32 x̃g,31

dK27,1 x̃g,10

dK27,1 x̃g,11

dK27,1 x̃g,12

dK27,1 x̃g,13

dK27,2 x̃g,20

dK27,2 x̃g,21

dK27,2 x̃g,22

dK27,2 x̃g,23

dK27,3 x̃g,30

dK27,3 x̃g,31

dK27,3 x̃g,32

dK36,1 x̃g,01

dK36,1 x̃g,11

dK36,1 x̃g,12

dK36,1 x̃g,13

dK36,2 x̃g,02

dK36,2 x̃g,12

dK36,2 x̃g,22

dK36,2 x̃g,32

dK36,3 x̃g,03

dK36,3 x̃g,13

dK36,3 x̃g,23



,

and initial conditions (3.27).
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